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ABSTRACT

This report describes the behavior of mild steel energy-absorbing

devices that can be used in earthquake isolation systems. The devices are

rigid under service-type loading. but yield and absorb energy under large

earthquake-type loading. The devices were shown to have substantial hysteretic

energy abosrbing capacity over a useful life in excess of 300 cycles. far ex

ceeding any load duration which can be expected from earthquake loadings. The

hysteresis loops developed by sinusoidal loading of the devices effectively

bounded the loops obtained by the random loading of the devices. The actual

incorporation of the devices in a structural steel frame is being investigated

in ongoing research.
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I INTRODUCTION

We describe a series of tests designed to determine favorable

characteristics for an energy-absorbing device to be used in conjunction

with a base isolation system. The devices were to have high initial

elastic stiffness, flat post-yield response and high damping capacity;

they were to be reliable and their response predictable. The devices

are designed to act as mechanical fuses in that they are rigid under

small excitations such as wind loading or small earthquake motions,

but yield under large loading and thus dissipate energy. The advantages

of incorporating these devices into a base isolation system are that

damage would be concentrated in replaceable elements and the devices,

being mechanical, would require little or no maintenance.

Two energy-absorbing devices both based on the plastic torsion

of mild steel bars were tested to determine: (1) cyclic response, capa

city to dissipate energy and fatigue life under displacement-controlled

sinusoidal loading at various rates, (2) response and fatigue life under

random loading and (3) the influence of device geometry on response.

Devices of the type described here have been used in shaking

table experiments on a stepping frame [1] and on a frame on a rubber base

isolation system [2,3,4]. Devices based on the model are being used in a

railway bridge under construction in New Zealand. The purpose of this

report is to describe the development preceding the application of these

devices to the shaking table experiments.

In the application to the stepping frame [1] the devices operate

in a vertical direction. The column foot of the stepping frame is free

to uplift v:ertically~ restrained only by the device; when the column

foot moves off the base the device produces a downward restraining force

and when the foot moves downwards the inelastic response of the device pro

duces an upward force on the column foot. In the rubber bearing foundation

system the action of the device is horizontal.
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II DEVICES, INSTRUMENTATION AND TESTING PROCEDURE

Based on the results of an earlier feasibility study [5,6],

the following design criteria were established for the energy-absorbing

devices:

(1) The principal mechanism of energy absorption should be

torsional plastic deformation.

(2) The devices should be fabricated from a material capable

of sustaining high levels of plastic deformation and

hysteretic damping.

(3) The devices should have sufficient integrity to function

after undergoing a great many loading cycles.

(4) The devices should be fabricated easily and economically.

These requirements were met by a design incorporating a mild

steel torsion bar of rectangular cross section. Such a cross section

was chosen to facilitate external clamping of the device to fixtures

or interfaces and to limit device deterioration. The externally applied

torque is transferred to the torsion bar by means of moment arms or

clamps. Outer clamping arms fix the torque action and integrate the

device with structural and/or foundation elements. A set of inner arms

coupled to active elements of the frame twists the bar when any of the

active elements are displaced. As a result of the preliminary investi~

gation, the connections chosen for the energy-absorbing device were

3/8" fillet welds. Two device configurations as illustrated in Figures 1

and 2 were tested. It is important to note that the welding was done on

the outside of the outside bars and the inside of the inside bars

(Figures 1 and 2). This welding arrangement was found in the earlier

research to be particularly efficient in that the torque is transmitted

to the bars through surface contact and not through the welds themselves,

thus inhibiting weld failure.

Type A devices were flat in appearance with centerlines of

sYmmetry. The outer arms were drilled to accept 3/4" [1.91 cm] diameter

high-strength bolts to hold the devices in the testing frame. The inner
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arms were drilled to accept 1" [2.54 ern] diameter high-strength pins

through which the devices were externally loaded. Type A devices

were tested under sinusoidal loading to assess the feasibility of

the design and to establish that failure of the devices took place as

required in the torsion bar and not in the welds. These devices were

tested at a variety of loading rates under sinusoidal loading to assess

the influence of rate on the response and life of the devices. Nonsinu

soidal loading including random and periodic inputs was used to study

initial yielding, torsional load capacity, cyclic deterioration and

displacement versus force hysteresis with the purpose of developing

an interrelation between the response under sinusoidal loading and that

under random-type loading typical of earthquake motions.

Type B devices were tested to ascertain the effects of changing

device configuration. Type B devices had an oblique rather than the

flat geometry of the type A devices. The inner arms were distorted to

provide freer access to the pin location and to facilitate attachment

of the devices to structural elements. Device types A and B were

physically similar in all other respects and, with the exception of

the initial sinusoidal loading tests of device type A to establish the

basic viability of the design and the periodic random loading tests

described in Section IV of this report, were subjected to identical

loading tests.

The devices were tested in a specially designed loading rig

with a 50-kip [18650-Kg] capacity hydraulic ram operating in a displace

ment-controlled mode. The inner moment arms of the devices were stroked

through nominal displacements of .!.-1/8", .!.-1/4", :!:-3/8li , .!.-1/2", +5/8", or .!.-3/4

[+.32 em +.63 ern, +.95 ern, +1.27 ern, +1.59 ern or +1.91 em] at the pin- '- - - - -
location with respect to the fixed outer arms. The forces corresponding

to the displacement history were measured by a load cell and recorded

by a data acquisition system.

Figure 3.

placement

The stroke displacement was applied in two ways as shown in

SYffiffietric loading with the stroke centered about zero dis-

was used to study hysteresis sYffiffietry. ASYffiffietric loading with
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an input stroke offset by 0.1" and 0.2" [.25 cm and .51 cm] to bias the

stroke in one direction (i. e. -.4" to +.6" or -.3" to +.7") was used to

check any change in the shape of the hysteresis loops and to simulate

field conditions where asymmetric loading might be expected.

In all tests the horizontal pin displacement of the device was

recorded by means of a Linear Variable Displacement Transducer (LVDT)

positioned opposite the pin location to measure actual horizontal dis

placements (Figure 4). Voltage data from the LVDT were fed through an

amplifier and then recorded on a variety of systems including XY plotters

and the low-speed Portable Nova Mini-Computer for the sinusoidal loading

tests (Figures 5 and 6) or on the magnetic tape system of the high-speed

Kinemetrics Data Acquisition System for the random loading tests

(Figure 7).

In later tests horizontal displacements of the top and bottom

of the torsion bar as well as pin displacements were recorded. As illu

strated in Figure 8, two LVDT's were positioned opposite to the center

of the torsion bar to measure displacements and to allow a study of

angular rotation. Voltage data from these LVDT's were amplified and

recorded in the manner described for the pin displacements (Figure 6).

These bar displacements were recorded and plotted against pin dis

placements in the sinusoidal loading tests.

A load cell mounted on the horizontal ram of the testing

frame was used to measure the force necessary to produce any corre

sponding horizontal displacement of the pin position (Figures 4 to 7).

The load cell voltage data were passed through a control console

calibration and recorded on XY plotters or on the acquisition systems

previously described. Force was usually recorded and plotted instan

taneously against either pin displacement or a time scale generated by

a ramp generator during the sinusoidal loading tests. During the ran

dom loading tests the data were recorded but not plotted. Data reduc

tion and processing for these tests were completed later.
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During selected sinusoidal loading tests post-yield strain

gages were applied to the open faces of the torsion bar to measure

torsion and bending strains. Torsion was taken about the center of

the 2" [5.18 cm] square face and bending at each corner

in order to study strain distribution over the face of the torsion bar

and to enable an assessment of the relative magnitudes of torsion and

bending and the contribution of each to device hysteresis. The data

from these tests were stored on separate channels of the Nova Mini

Computer and later analyzed and plotted.



- 6 -

III TESTING UNDER SINUSOIDAL LOADING

Device Hysteresis

The basic viability of the design of the energy--absorbing

device having been established by preliminary testing, device types

A and B were subjected to sinusoidal loading to study device hysteresis

in detail. A study of the progressive behavior of the devices, from

initial response at loading through cyclic deterioration and including

assessments of physical torsion and bending behavior, was undertaken.

The sinusoidal wave was generated by a variable voltage

generator with ~lO-vo1t maximum range and a variable offset control

to shift the voltage output to achieve various strokes and offsets.

The voltage output was interpreted by a control console to obtain

desired stroke displacements by means of the hydraulic loading ram

testing rig. Maximum voltage amplitudes ranged from +1.25 to +5 volts
- ,- --4

with offsets of 0.0, 0.1 or 0.2 volts and frequencies from 1 x 10

to 400 x 10-4 Hz. Stroke displacements included ~1/4", ~3/8", ~1/2",

~5/8" and ~3/4" [~.63 cm, ~.95 cm, ~1.27 cm, ~l.59 cm and ~l.9l cmJ.

The initial pin displacement versus force hysteresis loops

for device types A and B are shown in Figures lOa and lOb, respectively.

The average elastic slope of the loops and yielding varied as shown in

Table 1. The data in Table 1 were confirmed for both forward and

backward displacements. Whereas the yield strength of the specimens

was identical, the torsional stiffness increased substantially espe

cially for the type B devices with their shorter effective moment arms.

In Table 2, data on typical load capacity of the devices in the first

few load cycles after yielding are given for the ~1/2" [.!.1.27 cmJ dis

placement stroke tests. Similar data were obtained for tests with

strokes of ~5/8" and +3/4" [~1.59 cm and ~1.90 cmJ. Th~ force dis

placement curves for all type A devices were symmetric, but due to

the oblique inner arms of the type B devices there was a 3 to 4 ratio

in peak forward and backward forces. A decrease of 1" [2.54 cmJ in the

effective length of the inner moment arms substantially increased the

force level.
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The effect of strain hardening on device response was generally

to increase force with increasing displacement (Figures lOa and lOb).

However, the geometry of the type B device produced a response which in

the backward direction has a more steeply rising character than in the

forward direction. In fact, the interaction of the geometry and the

natural strain hardening of the material produced a force displacement

curve which is very nearly flat in the forward direction. In no other

case did the force level decrease in the plastic region. Because the

aSYmmetrical type B device was designed for use in a stepping frame [1],

it was thought to be essential that the force-displacement characteristics

of the device under aSYmmetric loading be established. Type B devices

were therefore subjected to aSYmmetric loading with offsets of 0.1" and

0.2" [.25 em and .51 em] resulting in strokes of from -.4" to +.6" and

from -.3" to +.7" [-1.07 cm to +1.52 cm and -.76 cm to +1. 78 em],

respectively. These offsets generally produced no substantial change in

the hysteresis loops from that shown in Figure lOb for a stroke of .::..1/2"

other than the effect of the offset. The general shape and curvature

of the loops were identical for all practical purposes as long as the

total stroke range remained fixed at 1" [2.54 cm]. Only when the total

stroke range was changed or when one direction of load failed to strain

into the plastic range was there any significant difference in results.

It was therefore concluded that results from SYmmetric loading tests

could be extrapolated for aSYmmetric applications for the type B device.

Bar rotation and displacement were measured by means of LVDT's

positioned at the top and bottom edges of the torsion bar. Data gathered

from these instruments indicated that rotation had occurred about the top

of the bar in both devices types. The greatest distortion was at the

bottom portion of the torsion bar and fatigue cracking initiated from

that location. During fatigue testing, type B devices accumulated a

permanent deformation in the pointed direction of the oblique arms.

After bringing the devices back to their initial zero pin displacement

and force position, this deformation was approximately 1/4" [.63 cm]

(Figure 11) when loading exceeded 300 cycles. Type A devices sustained

no permanent deformation, a difference in response attributable to the

differences in configuration of the two device types.
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Measurements of strain from the faces of the torsion bars

confirmed the observation of rotation about the top of the bars.

Bending strains were greater in the bottom portion of the bar than in

the top for both types of device. Torsional strains, isolated from

bending strains, were almost linear with respect to pin displacement

(Figure 12). The maximum bending and torsional strains were of comparable

magnitude, not exceeding 2.5% for a stroke of ~1/2" [~1.27 cm]. Although

total strain in combined torsion and bending was not measured, previous

analysis by Kelly, Skinner and Heine [5] indicated that strains greater

than 3.75% can be expected. Although the gages used in the present

testing may not have been positioned properly to measure peak strain,

the indicated maximum values may be taken as reliable estimates of the

plastic strain developed in the material.

Typical pin displacement versus force hysteresis curves

after initial cyclic hardening had occurred in both types of device

are shown in Figures l3a and l3b. The outline of the hysteresis loops

is similar, with both sets of loops passing through two nodes at approx

imately zero force. Force decay versus force plots for the two types

of device are similar (Figures l4a and l4b). Decay was very gradual.

Four decay stages can be distinguished: rapid initial loss of force

capacity, degradation prior to cracking, force necking during crack

development, and degradation after cracking.

After longitudinal cracks had developed in the torsion bar,

the peak force steadily decreased with increasing cycle. However, as

the peak force diminished the rate of decrease lessened, presumably

due to the fact that the primary cause of the deterioration was the

dissipation of energy and/or cumulative plastic work. If this is the

case, the asymptotic decay curve would be negatively exponential. It is

thus difficult to speak of the life of such devices and the term half

life becomes valuable. Thus, comparisons in the present work are made

in terms of the half-life, i.e. the number of cycles at which the peak

force is half its initial value. In general, the tests were terminated

when this number of cycles had passed.
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Progressive crack development was observed in the type B

devices and to a lesser extent in the type A devices under sinusoidal

loading (Figure 15). Cracking initiated at the bottom edge of the

torsion bars at the interface between the bars and the inner torque

arms. A similar set of cracks frequently developed at the outer arms

after the inner cracks had progressed into the center portion of the

bar. Although earlier cracking may have occurred, cracks were first

observed between 50 and 90 loading cycles. The cracks generally pro

gressed upward to the central portion of the bar and then longitudinally

towards the center of each open face of the devices •. As loading con

tinued, the cracks developed through the cross section of the bar.

The final cracking pattern of the type B devices (Figure 16) was similar

to that for the type A devices. Although crack development was sub

stantial, the devices retained approximately one-half their original

damping capacity after about 400 cycles of sinusoidal loading.

Effect of Loading Rate

Type A devices were subjected to sinusoidal loading with pin

displacements of ±3/8", ±1/2" and ±5/8" [±. 95 cm, ±l. 27 cm and ±l. 59 cm]

at loading rates of 0.02, 0.2 and 1.0 Hz to assess the influence of

loading rate on device hysteresis and lifetime. The loading capacity of

the hydraulic testing ram decreased with increasing loading rate,

limiting the loading frequency to 1.0 Hz. The long-time fatigue res

ponse of the type A devices at higher rates was in every case found to

be comparable to that of the devices at lower rates and in some cases

was enhanced. It is difficult to draw conclusions about the long-time

fatigue response of the device from these results since variations in

welding from device to device resulted in considerable scatter in the

fatigue life data. However, the results on rate effects appear to

indicate that the damage to the devices is no greater at frequencies

which are more typical of earthquakes than these at which the bulk of

the testing was carried out.
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IV TESTING UNDER NONSINUSOIDAL LOADING

Types A and B energy-absorbing device were subjected to

nonsinusoidal loading in order to establish the energy-absorbing capa

city and lifetime of the devices when input motion more characteristic

of earthquake loading was used. Two series of tests were conducted.

In the first series, both types of device were subjected to random

nonperiodic wave forms (Figure 18), and in the second, type A devices

were subjected to a set ·of recurring random wave forms with a period of

51.5 seconds (Figure 19). The wave forms were generated by a noise

function generator with a ~10-vo1t range and a 2-Hz bandwidth. No

offset adjustment was made. The nonperiodic function was used to study

device response to random loading with nominal strokes of ~1/2", ~5/8"

and +3/4" [~1. 27 cm, +1. 59 cm and +1. 91 cm]. The periodic function was

used to study device deterioration over a number of loading cycles with

nominal strokes of ~1/8", ..!.1/4" and ..!.1/2" [~. 32 cm, ~. 63 cm and ~1. 27 cm].

All random voltage input was passed through a 2-Hz filter to allow stable

interpretation by the control console and to simulate natural structural

damping. The maximum voltage amplitude ranged from ..!.1.25 to ..!.4.00 volts

with a variety of control console and amplifier calibrations to achieve

the desired stroke displacements.

Nonperiodic Random Loading

Typical pin displacement versus force hysteresis and force or

energy absorption capacity are shown in Figures 20 and 21. Device

yielding and plasticity were not rigorously identified although both

obviously occurred during peak displacement amplitudes. The first three

seconds of device response is shown in Figure 20 and an assessment of

lifetime damping capacity in Figure 21. The process of deterioration

of the energy-absorbing capacity of the devices was not clear from

the results of these tests. In an attempt to clarify this process, the

loading input was intermittently stopped, the device subjected to a

cycle of sinusoidal loading and device response recorded. By this pro

cedure it was determined that although device deterioration and loss of

energy-absorbing capacity had occurred under random loading, the devices

had retained satisfactory levels of damping capacity and were able to



- 11 -

endure prolonged cyclic loading. In Figures 22a and 22b, typical pin

displacement versus force hysteresis loops are shown for five-second

durations when a nominal stroke displacement of ~1/2" [~1.27 cm] was

used. Results obtained using shorter displacement strokes were similar

but proportionally smaller. In Figures 22a and 22b the approximate

outline of the corresponding hysteresis loop for sinusoidal loading

but otherwise identical testing conditions is indicated by a dashed

line. A fair correlation exists between the response of the devices to

sinusoidal and random loading in that the hysteresis loops for random

loading are bound by those for sinusoidal loading. The effect of

changing device geometry is apparent when the figures are compared.

The 1" [2.54 cm] shorter effective torque arm of the type B device

produced higher forces since the torque associated with the torsion

bar remained essentially the same for both types of device. The

oblique position of the inner torque arms of the type B device

accounted for most of the aSYmmetry of peak load associated with this

device.

Periodic Random Loading

Because it was difficult to define the deterioration of the

devices under random loading with any precision, a series of tests

were conducted under periodic random loading. When nonperiodic inputs

were used, it was not possible to isolate device deterioration from the

effects of the nonrepetitiveinput. The procedure adopted during the

initial random loading tests, i.e. that of intermittently stopping the

input to check device damping capacity by inputting a cycle of sinu

soidal loading and recording the resulting hysteresis, did not provide

sufficiently accurate results. By using random input that was periodic

in that a random input function was repeated every 51.5 seconds, it was

possible to study the hysteretic behavior of the devices in terms of

the number of loading periods. The periodic random input used in these

tests is shown in Figure 19; the function had a period of 51.5 seconds

and for most tests a nominal amplitude of +2 volts with scattered

peaks slightly exceeding this value.
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Since the changes in behavior introduced by the changes in

geometry of the type B device had been shown to be predictable, only

type A devices were tested under periodic random loading. In Figure 23

a group of hysteresis loops selected from 90 loading periods is shown,

where each loop represents approximately 3.2 seconds of response taken

24 seconds after the beginning of the repeating loading period. Over

the 90 loading periods -- 77 continuous minutes of testing -- the hys

teresis loops closed significantly. Normal load capacity diminished

from +6 kips [~2238Kg] to ~3 kips [~1119 Kg] and the energy-absorbing

capacity as defined by the area enclosed by all loops dropped to approx

imately 1/3 to 1/2 of the original capacity by cycle 90.

The relationship between device response to sinusoidal and

random loading is illustrated in Figure 24. For the same +1/2" [~1.27 cm]

nominal stroke displacement and device condition, the hysteresis loop

for sinusoidal loading (shown in dashes) effectively bounded that for

periodic random loading with the actual force capacity of the device at

peak loading slightly underestimated. Nominal force decay over the 90

loading periods is more clearly shown in Figure 25. Rapid initial force

necking was followed by a gradual decline in force. Overall, the decay

of nominal force was similar to that for sinusoidal loading (compare

Figures l4a and l4b to Figure 25). Crack propagation was also similar

for the two types of loading. The final cracking pattern of the type

A devices was ~rittle and jagged (Figure 26). Cracking along the

longitudinal axis of the torsion bar was noted by the 25th period,

having initiated from the bottom edge of the bar as noted in previous

tests. By period 80, some cracks had worked completely through the

bar cross section in numerous places along the longitudinal axis and

cracking from the top edge of the bar had begun. Even in its half-life

state, however, the device had substantial load damping capacity, approx

imately half that originally available.
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V CONCLUSIONS

The testing program described herein established that the

energy-absorbing devices whose design was based on the feasibility

study by Kelly, Skinner and Heine [5,6] can operate under random

loading typical of that which occurs during earthquakes.

Influence of Asymmetric Loading

When results from tests using identical sinusoidal stroke

displacement amplitudes but differing pin displacements are compared,

asymmetric loading is seen to effect hysteretic behavior negligibly

except in that offset changes are reflected. So long as plastic

behavior in both forward and backward displacement directions was

achieved, the shape of the resulting hysteresis loops was unchanged

and the damping capacity of the devices undiminished.

Influence of Changes in Device Geometry

Yielding in the torsion bar of the devices was not greatly

affected by changes in device geometry under sinusoidal loading and

may primarily depend on the properties of the mild steel bar used to

fabricate a given device. On the other hand, device loading or

damping capacity increased when shorter or out-of-plane inner moment

arms were used. It would thus be possible to optimize device hysteresis

for particular applications by alterations in design. Differential

force capacity could be provided by using oblique inner arms where pin

displacement or uplift might be expected to be greater in one direction

than in another. Such changes in geometry also produce a relatively

stiffer design against torsion produced by small elastic pin displace

ments which might be useful if a minimum system stiffness were required

to resist pin displacement or base level uplift during normal service

loading.

Bending versus Torsion and Crack Development

Bar rotation about the top edge of the torsion bar resulted

in substantial energy absorption by bending as well as by torsion.

Strain gage measurements indicated that peak bending and torsional
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strains were of comparable magnitude. Since the bar rotation was

asymmetric about the top of the bar, cracking initiated from the bottom

edge and worked up through the bar cross section. Rather than developing

straight to the top edge of the bar, however, the cracks diverted along

the longitudinal axis of the bar. Substantial hysteretic capacity thus

remained even during advanced stages of crack development. In addition,

the half-life of the devices is an order of magnitude greater than the

number of critical loading cycles that would be expected during an

earthquake.

Influence of Random Loading

Device hysteresis was also defined under random loading.

Peak displacement-force responses and nominal force decay over periods

of random loading were comparable to results obtained for sinusoidal

loading. Lifetime deterioration for both types of loading was gradual

and the half-life of the devices far exceeded any expected duration

of damaging earthquake excitation. Although the devices can be replaced

when damaged, the favorable results of the random loading tests suggest

that it may be possible to design the devices to have a lifetime equal

to that of the structures in which they are installed, especially if the

devices are expected to be torqued only infrequently into the inelastic

range by high-intensity earthquakes.

Basis for Design

Comparisons of the hysteresis loops for sinusoidal and random

loading tests indicates a relationship between the two types of response.

For the same stroke displacement and device condition, the hysteretic

response of the devices for random loading was for the most part bounded

by that for sinusoidal loading. This suggests a design procedure wherein

device load or damping capacity is specified by first prescribing pin

displacements or uplifts and then using sinusoidal loading inputs to

check such designs, bearing in mind that the hysteretic response for

sinusoidal loading may be a lower bound on peak hysteretic response for

random loading. Reasonable safety factors may also be applied to the

data obtained for sinusoidal loading to rate device damping capacity.
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TABLE 1 AVERAGE ELASTIC SLOPE OF LOOPS AND YIELDING 
SINUSOIDAL LOADING TESTS

DEVICE ELASTIC SLOPE YIELDINGTYPE

A 48 kip/in 4.0 kips

B 90 kip/in 4.6 kips

NOTE: 1 kip/in = 147 kg/em

1 kip = 373 kg

TABLE 2 LOAD CAPACITY OF DEVICES AFTER INITIAL YIELDING 
SINUSOIDAL LOADING TESTS - .::1/2" [.::1. 27 em] STROKE

DEVICE PEAK FORCE

TYPE BACKWARD FORWARD

A -6.0 kips +6.0 kips

B -11. 0 kips +8.0 kips
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