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PREFACE

This report is one of a series, summarizing the work started under Grant No.

ENV P76-9838 of the National Science Foundation (RANN - Program Manager:

Dr. S.C. Liu) on the project: "Underground Lifelines in a Seismic

Environment." The work was continued under Grant No. PFR 78-15049. The

objective of the research is to develop information needed for the

formulation of guidelines for the design, evaluation and risk analysis of

underground lifeline systems and components, located in areas which may be

subjected to earthquakes. The results will be useful to public utilities,

regulatory bodies, manufacturers, planners and civil engineers.

The research work is conducted by Weidlinger Associates and Columbia

University (Department of Civil Engineering & Engineering Mechanics) with

the following participants:

Principal Investigators: M. Baron, M. Shinozuka, P. Weidlinger

Investigators: J. Isenberg, R. KratkY, 1. Nelson, M. Salvadori, S. Takada,

J. Wright
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ABSTRACT

Lifeline structures extending over long horizontal distances are affected

by the non-coherent components of ground shaking. The response of in

terest is the relative displacement of adjacent points on the structure,

instead of displacement relative to the ground. For this reason, the

seismic analysis of lifelines requires techniques which are distinct from

those used in the analysis of buildings.

In this paper, the concept of the Interference Response Spectrum (IR

Spectrum) is discussed. The IR Spectrum presents quantitatively and in a

unified form the effects of the non-coherent free field on the dynamic res-

ponse of lifeline structures.

spectra are given.

Derivations, properties and examples of IR
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Highways, bridges, tunnels and pipelines are called

lifelines. A characteristic that distinquishes a lifeline from other

structures is that it extends (essentially parallel to the ground surface)

over a distance which is long compared to its other dimensions. The founda-

tions, therefore, are either at widely separated points (e.g., bridges) or

they extend continuously over long distances (pipes, tunnels). For this

reason, in considering the effects of ground shaking, we cannot assume a

priori that the motion at all points of ground contact is identical(*) (i.e.,

that the ground motion is coherent). When the motion is not coherent, the

relative displacement of the points of contact produces stresses in the

structure, whereas identical (Le., coherent) excitation at continuous or

closely spaced foundation points may result in primarily rigid body displace-

ment, with no significant strain.

The analysis and design of lifelines subjected to earthquake is, therefore,

different from that of buildings, where we customarily (and a priori) assume

that the ground motion over the entire foundation plane is coherent and that

the relevant response is displacement relative to the ground.

These two types of ground excitations and their consequences determine the

essential difference between the analysis of bUildings and lifelines, as

summarized in th~ table below:

(*) The significance of this is recognized by researchers concerned with
lifelines, Cf. Newmark in Ref. 11 p. 16, Christian (3) and
Matsushima (9).



1.

2.

Ground motion:

Relevant response:

I
I

TABLE 1

Buildings

coherent

relative to
ground surface
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Lifelines

non-coherent

relative to adjacent
points in structure

The first line in Table 1 above is mostly a subject for seismologi-

cal research (i.e., acquisition and analysis of records and extension of

the knowledge of the free-field phenomena). The second item concerns it-

self with problems of dynamic analysis and methods of calculation. This

investigation is addressed primarily to the latter but contributions

to the clarification of non-coherent ground motion are offered by in-

vestigating appropriate forms of input for the analysis.

Consider a segment of a lifeline, as shown schema~ically in Figure 1.
I

The structure is supported on the ground at points A and B, separated by

an interval i. The ground motions at these points are zA(t) and zB(t), and

we call it coherent if

and non-coherent if

(1)

(2)
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In the latter case, it is conveni?nt to decompose the ground excitation

into its coherent component:

Z = ~(z + zB)c . A

and its incoherent component:

(3)

(4)

and we may note that if the structure itself is sYmmetrical, with respect

to A and B, its response to the two components will be in symmetrical and

antisYmmetrical modes respectively. In the analysis of buildings (as

mentioned previously) the assumption is either that

t.Z = 0 (5)

or that its effects are negligible because of the dynamic characteristics

of the structure or because the ground-structure interaction filter; out

incoherence.

In the analysis of lifelines, the coherent component should not be a

priori neglected, but if i·t turns out to be significant, the procedures

and methods are identical to those, used in the analysis of buildings.

This investigation, therefore, concerns itself with the incoherent com-

ponent of the ground motion.

Generally, if the time histories zA(t) and zB(t) are known (or

can be synthetized), integration of the equations of motion provides the

entire response without separation of the input into coherent and incoherent

components. If we operate in the frequency domain, the modal contributions

give a clear indication of the significance of each component. Whenever
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the significant response is contributed by coherent excitation,

analysis by standard response spectrum techniques is the method of choice

at the present. This procedure is very attractive because of the com

putational convenience it offers. Equally important is the free-field

information contained implicitly in the response spectrum itself, as

reflected by its modification due to variations of the resonant fre

quency of soil layers above the base rock. The spectrum also clarifies

and quantifies the effect of structural damping and of non-linear

elastoplastic response (12). By presenting these essential facts in a

concise form, response spectra are useful tools for the definition of

design earthquakes, and permit the codification of the design input and

analytical procedure.

The purpose of this paper is to develop a similar technique (called

Interference Response (IR) Spectrum) for incoherent ground excitation,

applicable to lifeline analysis and design.
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The ground motion z(x,t) is said to be

coherent in the interval ~, if for purposes of analysis it is reasonable to

assume that

z(x,t) ~ z(t) (6)

where x is a coordinate within~. This assumption is used in the seismic analy

sis of buildings (as noted in the Introduction).

Consider now a straight branch of length L of a lifeline network consisting of

links of length ~ «L. In this case, the approximation of Eq (6) is not valid,

and the incoherent component of the ground motion, with respect to the (end

points) of the interval ~ is given by

8z(x,t,~) = z(X+~!Z,t) - z(x-t!Z,t) (7)

where x is a coordinate of the midpoint of the interval. In ana!ysis of life

lines, it is usually permissible to use a first order approximation of the inco

herent motion by setting

(8)

for points in L, provided that 'the peak relative response of adjacent links,

located at, or near the midpoint of L may be taken as representative of the per

formance of the entire segment. The approximation of the two types of ground

motionsby Eq's (6) and (8) are assumed to be sufficiently accurate inputs for

seismic analysis. The approximation is also justified by probabilistic con

siderations, in view of the limited resolution and the statistical nature of

seismic records. In the discussions that follow, we will consider only first

order incoherence as defined in Eq (8). Incoherent motion includes the following
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two special cases:

(a) If one of the end points of the interval is at rest at a time t, we have:

(9)

This will occur at all times if the separation interval £ is large, compared

to the hypocentral distance.

(b) If all Fourier components of the motions of the two points of the interval

are out of phase by an angle ~, we have

6z(t,t) 2z(t) (10)

and consequently, in general, the coherent and incoherent ground motion must

satisfy the inequality:

(11)

(12)

(13)

which defines the upperbound of the incoherent motion (Newmark, op. cit. p. 14).

Finally, incoherent motion leads to the definition of the mean strain, by

€(t,£) = 6z(~,t)

over the interval, and also to the strain at a point within the interval:

E(t) = lim 6z(t,£)
£=0 £

Such ground motion maxima and strains are important characteristics of the free

field. If it can be assumed or shown, that the deformation of a lifeline

structure conforms to that of the surrounding soil, these quantities are the

design parameters of the system, otherwise, they are the input for further dyna-

mic analysis.

To clarify the causes of incoherent ground motion,we consider a disturbance

propagating from a symmetric point source in an infinite, homogenous isotropic,
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elastic space. One component of the motion of two spatially separate points will be

coherent if, and only if, they are equidistant from the source. In all other cases, we

will observe incoherence as manifested by phase shift and variations in ampli-

tude. In seismic distrubances, non~coherent motion exists due to a variety of

causes. The following is a list of some of the significant sources of non-

coherent seismic ground motion.

TABLE 2

SOURCES OF NON-COHERENCE

1. Attenuation of amplitude as a function of hypocentral distance

2. Finite dimension and directionality of source (faults)

3. Phase delay due to finite propagation velocity

4. Observable and measurable geophysical and geological irregularities

(inhomogeneity, layering, variation of soil properties, non-uniformity

in layering)

5. Random variations

6. Man-made discontinuities

Cases 1 and 2 produce noncoherent ground motions in homogeneous soil, but

changes in the wave form which are attributable to this cause are not signifi

cant if the epicentral distance R»~. This restriction applies··to most in~

stances of practical interest and, therefore, these sources of non-coherence

will not be considered.
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Case 3 phase delay is the predominant source of non-coherent motion. In this

case, the motion may be described by a single progressing wave equation, in the x

direction

z(x,t) = f(x-ct) (14)

where c is a const.ant velocity of propagation. (This formulation ignores variable

phase velocity due to inhomogeneity and layering. Results obtained under

this constant velocity assumption are expected to be modified, to some extent,

,

by further research). By Eq's (7) and (14) we may now compute the incoherent

ground motion by

~z(t,~t) = z(t) - z(t+~t)

which is the interference of two waves and where

(15)

(16)

is the phase delay when the direction of propagation is along the x coordinate.

Examples of the use of Eq (15) with data obtained from integrated accelerometer

records are shown on Figure 2. If the plane wave front is inclined at an angle

a to the x axis the effective velocity to be used in Eq (16) is

E:max

c = c/sina
e

and incoherent motion, in this case, vanishes whenever a = 0 (i.e. ~t=O)

By substituting Eq's (15) and (16) into (13) the strain at point is

1 lim ~z(t,M) = vic
E: = c tlt=o tlt

where

V=~at

is the ground velocity. The maximum strain is
V

rn.ax
c

where V is the maximum ground velocity.
max

(17)

(18)

(19)

(20)
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The peak amplitude of the incoherent motion due to a phase delay is

MAXI8.Z(t,8t) I = 8z (8t) = 8Z(t ,8t)max 0

where t is a root ofo

(21)

oz(t) - oz(t+t.t)
ot ot

o
(22)

The peak amplitude of 8z is conveniently representated by a non-dimensional

function

I(8t)
8z (8t)- max·
Dmax

(23)

called the Incoherence function, where

D = MAXlz(t) Imax
(24)

The initial slope and the maximum value of this function are significant, and

they are determined as follows:

It can be shown that

d.z

1
= MAX a• z

d8t o8t
8t=·O

and since

1. .8Z OZI
8t~~ 8t = at

8t=o

we conclude that
d8z

maxi - V
d8t max

8t=o

and, therefore, by Eq's (23) and (27):

v

8t=·o (25)

(26)

(27)

dI
d8t

V
max
~

D .max
8t=o

(28)
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If the ground displacement z(t) exhibits a single dominant frequency w the

relation
V,
"max
Dmax

follows and the maximum value of the incoherence, by Eq (11)

I(l~t) ~2max'

occurs when

wflt = 1T

(29)

(30)

(31)

Fig. 3 shows plots of incoherence I, (calculated from six accelerometer records)

vs. the non-dimensional phase delay:

V
't=~

Dmax
where w is given by Eq (29).

At
2

wflt=--
2 (32)

(33)

An upperbound approximation to these curves is the function

I(T) = MAxlsinwt - sinw(t-flt) 1=2sinT, T<3
~ 2

as shown by the solid line of Fig. 3. The numerical value for the frequency w

may be estimated by using the empirical relation given in Ref. 12.

Vmax 36
w = -D--- = 48 = 0.75 rad/sec.

max

so that in this case

T = 0.375 fit

(34)

(35)

The Incoherence function of Eq (33) may be used as the generic definition of the

incoherent ground motion maximum as a function of phase delay. It is directly

applicable as design input, and it is used in the IR Spectrum, as
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will be shown in the next section.

When incoherence is not attributable to phase delay phenomena, the following

procedures for the other cases of Table 2 are suggested:

Cases 4 and 5 incoherent motions are calculated by Eq (7), where the ground

motions z(x±.QJ2) are synthetized in accordance with the subsurface conditions at

the end points of the interval (4.) • The subsurface data (such as, resonant

ground frequency, e.g.) are obtained either deterministically or by statistical

methods (16, 17).

Case 6, occurs frequently in the lifeline networks at nodal or terminal points,

where the lifeline is connected to a larger structure. If the coherent motion

z(t) is known (or can be synthetized) we calculate the response time history

R(t) of the nodal structure, and obtain

!\z(t) = z(t) - R(t) (36)

provided that the presence of the nodal structure does not significantly affect

the free field.

It is anticipated that further research; will make it possible to deal with the

above cases in a manner similar to that used in the case of phase delay. An

illustration of the incoherent motion corresponding to Eq (36) is shown on Fig.

4, where both inputs, i.e., the free field z(t) and the function R(t) were

available from accelerometer records. The instruments were placed at an interval

of 160 ft at the Hollywood Storage basement and at the parking lot. The orienta

tion of the interval is such that it is nearly perpendicular to the direction at

which the epicenter is located, so that phase delay phenomenaby Eq (17) do not

contribute to the incoherent motion.
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III. INTERFERENCE RESPONSE SPECTRUM (IR Spectrum).

1. Standard Frequency Response Spectrum. To develop the spectral

technique of lifeline analysis, it is useful to recall the derivation of the

single degree of freedom (SDF) response spectrum, which is used to represent

the peak modal response of structures. The (relative) displacement spectrum

( 1 ) is defined by:

SD (w, l;) == MAxly(t) I - Ytnax

where y(t) is the solution to

2Y+ 2wl;Y + w y = -z(t)

(37)

(38)

which is the response of a SDF oscillator (of undamped frequency wand fraction

of critical damping l;), subject to the ground motion input z(t). The variable

y(t) is the relative displacement of the mass point with respect to the ground

displacement z(t), and y therefore is proportional to the peak force in themax

spring. The absolute displacement of the mass point is:

x = y + z

and Eq (37) in absolute coordinates, is written as:

(39)

x+ 2Wl;x + 2w x (40)

and using "mixed" coordinates we find:

x + 2
• 2

wl;y + w Y = 0 (41)

from which, for an undamped oscillator, we obtain

which is a good approximation for a damped system, provided that

l;« 1

(42)

(43)



By eq's (42) and (37) the spectral acceleration is defined as:

Sa(w,l,;) :: w
2

S
D

(w,l,;)

which is the approximate peak absolute acceleration of a lightly damped

oscillator. By analogy,
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(44)

(45)

is called the spectral or pseudo velocity, which is taken as a measure of the

kinetic energy of the system. It is the peak velocity response only when it

occurs after ground motion has cease~and is an approximation, provided that

the peak response occurs after the strong motion phase. Eq's (44) and (45) per-

mit the familiar tripartite logarithmic representation of the three spectral

amplitudes in a single plot. An envelope obtained by statistical analysis of a

large number of spectra is represented in the tripartite plot, consisting of

three (or four) straight line segments, called a generic or design spectrum

C 12). It is used as an input for the seismic analysis of buildings and

other structures.

2. Absolute Spectrum. In the standard response spectrum, discussed

above, the spectral acceleration S is the peak absolute acceleration response,
a

while the displacement spectrum SD is in relative coordinates. The absolute

displacement spectrum (2 ) is defined as

SA
D (w,l,;) =MAXlx(t) I

and the absolute velocity spectrum is defined as

S~ (w,l,;) =MAXlx(t) I

where x(t) and x(t) are solutions of Eq (40).

(46)

(47)
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In the high frequency range (i.e., w = large), the oscilator is very stiff and

the absolute response of the masspoint is not too different from the ground

motion, so that the approximations

(48)

and

(49)

are good in the high frequency range (f>3Hz, approximately) and at high

frequencies the spectral amplitudes are constant (i.e., horizontal) at the

value of the ground motion maxima.

In the low frequency range, when the osscilator spring is "weak" (i.e., w"'o)

we find

(50)

but the displacement response relative to the ground motion is nearly that of

the ground motion, so that

SD '" Dmax (51)

Finally, in the mid and low frequency ranges, peak response to seismic excita-

tions tend to occur after (or near the end) of the strong motion phase, and,

therefore, in this regime the approximation

is valid, but because of Eq (51), the approximation

SA '" S
D D

(52)

(53)
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holds only in the mid frequency range. These observations are illustrated on

Fig.'s 5(a) to (c) and Fig. 6(a) and (b) which compare pseudo velocity to

absolute velocity and relative displacement to absolute displacement spectra

calculated respectively from several accelerometer records. These comparisons

suggest that absolute spectra may be constructed on a tripartite logarithmic

plot from the pseudo velocity spectrum. This is shown on Fig. 7.

3. Interference Response (IR) Spectrum. We define the IR Spectrum by

as the solution to

(54)

(55)

where ~z(t,~) is as in Eq (7),and the interference response

(56)

is the difference of the absolute displacements of two adjacent points

i and i+1. Since the response is in apso1ute coordinates, the IR Spectrum may also

be defined as an absolute displacement spectrum in which the ground motion input

is as in Eq (9):

(57)

The response of Eq (56) is interpreted as the distortion (separation or rota-

tion) of a joint in a lifeline. It can be shown (23) that such response

occurs in antisYmmetric modes and it is excited only by the incoherent com-

ponent of a multipoint ground input. If this component satisfies Eq (8), the
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(58)

where Lk is the modal participation factor. The contribution of n significant

modes may be combined e.g.~ by:

I1x
max [ J

kn 2 2

L(I1X
k

)
1 max (59)

Eq (54) gives the IR spectrum as a family of curves parametric in ~ (and ~)

which are computed from a set of two ground motion records separated by various
~

distances. This is done by solving Eq(55) for a set of inputs of the form of

Eq (7). Only very few such record pairs are available at the present time from

(closely spaced) instruments. Fig. 8 shows an IR spectrum computed from the

input shown on Fig 4 corresponding to an interval ~ = 160 ft (50 m).

If the interference response is excited by phase delay incoherence~ the input

(of the type shown on Fig. 2) is obtained from a single record by use of Eq. (15)

and the spectrum is parametric in 11 4 given in Eq. (16).

For small values of I1t~ Taylor expansion of Eq. (15) yields

by neglecting higher order derivatives (11)

(60)

and by using Eq. (60) as input

into Eq (40) and using the equivalence of Eq (57) we obtain

A
SI(w~~~l1t) '" I1tSv (w~~) (61)

so that the parameter I1t is now a coefficient of the spectral amplitude. The

approximation is good for the entire frequency range of interest for I1t <0.10

sec. ~ which for c = 1000 ft/sec (300 m/sec)represents intervals ~ < 100 ft

( 30 m). This corresponds to the maximum spacing of joints as used in
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many pipelines.

In lifelines where the interval of interest is larger, the approximation

Az(t,At) ~ I(At) z(t)

may be used in the neighborhood of wAt < ~, where

(62)

I(At) is given in Eq's (23) or (33) and w , in Eq (29). The approximation appears

to be good for O.5<At<2.5 sec. When Eq (62) holds,

A
SI(w,t,At) ~ I(At) Sn(w,t) (63)

where now the parameter appears through the incoherence function which is a co-

efficient of the spectral amplitude.

Eq (61) by Eq (26) leads to

SI
Azmax

and Eq (63) by Eq (23) to:

SI
Azmax

SA
V

~-V-

max

SA
n

nmax

= spectral amplitude

= spectral amplitude

(64)

(65)

These relations are shown on Fig. 9(a) to (d), where IR spectra for various

phase delays and the absolute spectra are calculated from four different records.

These observations show that approximate IR spectra may be obtained from absolute

velocity and displacement spectra, which in turn may be constructed from pseudo

velocity spectra as shown on Fig. 7, so that, an IR spectrum approximation is

obtainable, if a pseudo velocity spectrum is given.
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Examination of the curves of Fig. 9 show that the maximum

spectral amplitude (i.e., dynamic amplification) of 2 to 4 occurs in the frequency

band O.IHz<f<2.0Hz at a damping of 5.0% of critical. (Calculations show that the

spectrum is essentially flat at an amplitude of unity when ~>0.25). Because the

failure or service limit of pipes subjected to seismic shaking, is most con-

veniently expressed by the separation or rotation of joints (7) the IR spectrum

gives the peak relative displacement (or rotation) of adjacent points (i.e.,

links). Acceleration response can also be obtained from the spectral accelera-

tion S calculated for the incoherent input.a

For the IR spectrum technique to be applied for the analysis of lifeline networks,

experimental (observational) and theoretical investigations in three major areas

need to be completed:

1. The properties of the incoherent ground motion must be further ex-

plored and better understood. This should be accomplished by data acquisition

from accelerometer arrays placed at close intervals and by the resolution of

several theoretical problems regarding the properties of local velocity (20, 21)

of propagation, free field strain and curvatures (22).

2. The work on static and dynamic failure and service limits of the

various lifeline systems nee~ to be continued and expanded by experimental and

analytical methods (5, 6, 15). Dynamic properties, such as typical response

frequencies and damping characteristics of these systems must also be established

( 19) .

3. The interaction of buried pipes with the surrounding soil must be

better understood. The prevalent view in the current literature (7, 8) is that,

usuall~ interaction is not significant. But, interaction with the incoherent
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component of the motion has not been fully investigated, although general experi

mental (10, 18, 19) and theoretical (13, 14) work has been published. Ongoing

research in this area indicates that there are ranges of dimensions, geometries

and construction details where strong dynamic amplifications occur in s1gnifi

cant frequency ranges. The assumption that buried pipes generally conform to

the ground motion is almost certainly not correct in a number of instances of

practical interest.
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APPENDIX 2 - NOTATIONS

spectral displacement - absolute

spectral velocity - pseudo velocity

absolute

relative

velocity of propagation
ground motion maximum

frequency
incoherence function
mode number
modal participation factor (k-th mode)

interference interval
mass
response function
spectral acceleration

spectral displacement

spectral velocity - absolute

interference response spectral displacement
time
period
ground velocity maximum

displacement - absolute
displacement - relative to ground
ground displacement
angle of incidence
phase delay time
displacement - relative to adjacent point
incoherent ground displacement component
st'rain
fraction of critical damping
nondimensional phase delay
circular frequency
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WARREN T. LAVERY, SUPERINTENDENT
LATHAM WATER DISTRICT
MEMORIAL TOWN HALL
NEWTONVILLE, NY 12128

DAVID J. LEEDS' EDITOR
EERI NEWSLETTER
11972 CHALON ROAD
LOS ANGELES, CA 90049

JAMES LEFTER
DIRECTOR. CIVIL ENGINEERING SERVICES
OFFICE OF CONSTRUCTION
810 VERMONT AVENUE, N. W.
WASHINGTON, DC 20420

H. S. LEW
BUILDING 226, ROOM 8-168
NATIONAL BUREAU OF STANDARDS
WASHINGTON, DC 20234

NHRAIC LIBRARIAN
IBS BUILDING NO. 6
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RAUL SOSA - SENIOR WORKS ENGINEER
LOS ANGELES DEPARTMENT OF WATER & POWER
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