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ABSTRACT

The three-step or substructure approach to the solution of soil
structure interaction problems becomes particularly convenient when
analytical or semi-analytical solutions can be used for each one of
the first two steps: determination of the seismic motions at the base
of a massless foundation and computation of the dynamic stiffness matrix
of the foundation. Unfortunately these solutions are only available at
present for surface foundations~ while most massive structures~ such as
nuclear power plants~ will always have some degree of embedment.

In this work the results of a series of parametric studies us
ing a three-dimensional ~ cylindrical finite element formulation with
consistent lateral boundaries are presented. From these results approxi
mate rules are suggested to derive:

-- the translational and rotational components of motion at the
base of a rigid, massless embedded foundation from the specified
seismic input at the free surface of the soil in the free field.
The importance of the rotational component is illustrated and
its dependence on the flexibility of the sidewalls~ the actual
conditions of the backfill~ and the possible loss of contact
between the sidewalls and the soil is discussed.

the dynamic stiffness matrix of an embedded rigid and massless
foundation from the results already available for a surface foun
dation.

The degree of approximation provided by these rules is illustrated
for a specific and particularly unfavorable case. It is concluded that
these simplified rules can be used at least for preliminary analyses in
order to evaluate the importance of the interaction effect and the rela

tive influence of various parameters.
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DYNAMIC BEHAVIOR OF EMBEDDED FOUNDATIONS

INTRODUCTION

The effect of the flexibility of the underlying soil on the dynamic
response of structures has been a subject of considerable interest and
research in recent years, particularly in relation to the seismic analy
sis of massive structures such as nuclear power plants.

Two general approaches are used at present for the solution of soi1
structure interaction problems:

-- A one-step or direct approach, in which the soil and the structure
are modelled and analyzed together, using finite elements (or finite dif
ferences) and linear members. The model of the structure is normally a
very simplified one, appropriate for the determination of the interaction
effects (the motion at the base of the building or the accelerograms at
various floor levels), but insufficient for the purpose of structural
design. The input motion is applied at the base of the soil profile, re
qUlrlng the use of a previous deconvolution if the design earthquake is
specified at the free surface of the soil (as is normally the case). This
procedure would have a definite theoretical advantage if a true three
dimensional model were used and nonlinear constitutive equations were
utilized for the structure and especially the soil, with a step-by-step
solution of the equations of motion in the time domain. The way it is
commonly applied, with essentially a two-dimensional model of the soil
and the use of an equival~nt linearization technique to simulate nonlinear
soil behavior, this advantage disappears.

A three-step approach, also referred to as the substructure or spring
method. In this case the first step is the determination of the seismic
motion at the foundation level, considering a massless foundation. This
step can be bypassed for a surface foundation if it is assumed that the
seismic excitation consists of shear waves propagating vertically through
the soil and the design earthquake is specified at the free surface of the
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deposit. It is necessary in all other cases. The second step is the
determination of the dynamic stiffnesses of the foundation, complex func
tions of frequency (two, three or six stiffness functions if the founda
tion is assumed to be rigid and a complete dynamic stiffness matrix for
a flexible foundation). The final step is the dynamic analysis of the
structure resting on frequency-dependent "springs" as obtained in the
second step and subject to the base motions computed in the first. This
procedure implies the validity of superposition a~d is therefore restric
ted in rigor to linear analyses or studies in which nonlinearities are
simulated through an equivalent linearization. It offers on the other
hand considerably more flexibility in the way each step is handled, and
itis particularly suited to parametric studies.

The three-step approach is particularly convenient when analytical
or semi-analytical (simplified) solutions can be used for each one of
the first two steps. These solutions exist now for horizontally strati
fied soil deposits and rigid surface foundations. The purpose of this
work is to investigate the effect of embedment on the behavior of founda
tions and to derive simplified, approximate rules, to determine both the
motions at the base of the foundation from the specified input at the
free surface of the soil and the stiffnesses of an embedded foundation
from those of a surface one. These rules could then be used at least for
preliminary analyses in order to assess the importance of the interaction
effects and the sensitivity of the results to variations in the basic
parameters (characteristics of the input motion, soil properties, etc.).

For simplicity the majority of the studies are limited to the con
sideration of a rigid circular foundation embedded in a homogeneous soil
stratum of finite depth (resting on much stiffer rock-like material which
can be considered as rigid). It is assumed, furthermore, that the seis
mic motions are caused by vertically propagating shear waves (the usual
assumption in present studies). It must be noticed, however, that these
are not limitations of the three-step approach, but rather simplifications
introduced here to limit the number of parameters. When dealing with a
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flexible foundation, the derivation of simplified formulae is neverthe
less more difficult, because it is necessary to obtain both the motions
and the equivalent forces at all contact points of the interface between
the soil and the foundation and to determine a complete stiffness matrix
with size equal to the product of the number of degrees of freedom at
each node (2 or 3 depending on the model) by the number of contact nodes
at the interface. A limited number of studies were, however, conducted
considering flexible lateral sidewalls for the foundation and a soil
deposit with modulus increasing with depth, in order to investigate the
effect of these more realistic conditions.

FORMULATION

The solutions presented in this work were obtained with a three
dimensional axisymmetric finite element formulation. A layer of soil of
finite depth resting on much stiffer, rock-like material was assumed, and
the bottom boundary of the model was therefore considered rigid. The
lateral boundaries were reproduced through a consistent boundary matrix
developed by Waas (21) for the plane strain case and extended by Kausel
(9) to the three-dimensional case. This transmitting boundary can be
regarded as a virtual extension of the finite element mesh to infinity
and has been shown to provide results in excellent agreement with analyt
ical solutions even when placed directly at the edge of the foundation
(3,9). It is important to notice that contrary to what has been sometimes
reported (see 11 for instance) the use of this boundary matrix is not re
stricted to the solution of axisymmetric problems. For the situations
studied here, the geometry of the problem must tndeed be axisymmetric:
thus the consideration of circular foundations. The loads or excitatton
may have, however, any distribution expanding them in a Fourter series
along the circumference (the approach normally used for the solution of
of shells of revolution under arbitrary loadings). For the study of the
foundation stiffnesses, the term n=O is to be used for verttcal or torsion
al excitation, and the term n=l for horizontal forces (swaying) or rockin9

moments (the two types of excitation studied here).
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Consider a finite element discretization of the soil structure
system as shown schematically in figure 3, Let K denote a dynamic stiff,.
ness matrix including inertia and damping terms for a steady state motion
with frequency n, P represent forces and U absolute displacements. The
following subscripts can be used;

s for the nodes of the structure excluding tile soil structure inter,.
face.

b for the nodes of the structure along the interface.
f for the nodes of the soil along the same interface.
g for the nodes of the soil excl uding the interface and the boun-

daries.
r for the nodes along the bottom boundary of the soil,
Q, for the nodes along the 1atera1 boundary.

Let finally L denote the consistent boundary matrix for the lateral
boundary, U~ the displacements along this boundary in the free field,
P~ the corresponding forces, and Ur the specified displacements at the
bottom. Notice that U~ P~ can be obtained from an analytical (or numer
ical) solution of the wave propagation problem for any train of waves.
This determination is particularly simple for a horizontally stratified
soil deposit.

The equations of motion for the complete soil-structure system are;

rK Ksb a a Us ass
Kbs Kbb+Kff Kfg KfQ, Ub -K Ufr r
a Kgf K KgQ, U = -K Ugg g gr r
a Ktf KQ,g KQ,Q,+L UQ,

I I

KQ,r UrP + LU -Q, Q,

where in general Kfr will be zero if there is more than one row of finite
elements between the base of the structure and the bottom of the soil de
posit.
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This system of equations can be partitioned into two different ones;

for the structure

[

Kss

. Kbs

for the soi 1

fKff K Kf 9, U -P - K Ufg b b fr r

~f
Kgg K U = -K U

K:f

99, 9 gr r
I I

1<9,9 K9,9,+ L U9, P + LU - K U9, 9, 9,r r

where Pb = - Pf are the forces between the structure and the soil at the
interface and Ub = Uf are the displacements of the contact nodes.

From this last set of equations it is possible to eliminate Ug ' U9,'
writing

or in general

AU = AUb = P - K U - Bf f fr r
AU b = - Pb - B

Pb- Kfr Ur - B

for Kfr = O.

In these expressions

A = Kff - [Kf9 KH ] rK
gg Kg 9, r rK

gfJ
_K9,g K9,9, + L K9,f

- -

tgg
l-l f -K U lB = [Kf9 Kf 9,J K~ J gr r

I I

K9,g K9,9,+ L lP9,+ LU9, - K U J9,r r

The equations for the structure can then be written as:
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A

face) .
sary to
seismic

is the stiffness matrix of the foundation (soil-structure inter
It represents the forces at the nodes f of the soil system neces
produce unit displacements of these same points when there is no
excitation (U r = B = 0).

Defining, on the other hand

-1U = - A B
bo

(or -A-1(K
f

U + B))
r r

it can be seen that Ubo are the displacements of the nodes f of the soil
system when there is no structure (Pf = Pb = 0) and the soil deposit with
the excavation is subjected to the seismic input.

The equations of motion of the structure on elastic foundation can
be finally written as

If it is assumed that the foundation is rigid, the displacements of
the nodes at the interface Uf or Ub can be expressed in terms of the dis
placements of one point (the centroid of the base, for instance) by a
relationship of the form

U = TT U
b c

where TT is a rigid body transformation matrix.

The resultants at the same point of the forces at the interface
nodes Pb are given by

P = TPc b
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and the final equations of motion become

with

and

TK::bT~: KOJ {~: }= {KO:CO}

Ko = TATT

K U - - TBo co

In this work a rigid foundation is assumed. The objective is to
derive simplified expressions for the stiffness matrix K and the diso
placement vector U • For a seismic excitation causing only horizontalco '
displacements in phase in the free field (shear waves propagating vertic-
ally through the soil deposit), the only motions induced in the foundation
(at the center of its base) will be a horizontal translation and a rota
tion. In this case, the matrix K will be 2 x 2 and the vector U willo co
have two components.

MOTION OF AN EMBEDDED FOUNDATION

For the case of SH or SV waves propagating vertically through the
soil, the variation of motion with depth in the free field of a horizon
tally stratified deposit will be given by one-dimensional amplification
theory. This theory is now well understood (16) and needs not be dis
cussed in detail here. For a homogenous layer of soil, the motion at any
depth z will be given by

u = A(e ipz + e- ipz ) eiQt

with

p is the mass density of the soil, G its shear modulus, D the amount
of internal soil damping of a hysteretic nature (frequency independent)



11

and Q is the frequency of vibration. A is the amplitude of the shear
waves.

·Qt
The motion at the free surface would thus be Uo = 2Ae' and the

transfer function for the motion at depth z (for a specified motion at
the free surface) would be

Notice that if there is no internal damping in the soil, the func
tion F will become cos (Qz/cs ) with Cs = IG/p, the shear wave velocity
of the soil. For any specific depth z = E the transfer function will
become 0 at Q =[(2n+l) TIcs]/2E or f =[(2n+l)cs]/4E, which are the natural
shear frequencies of a stratum of depth E. This implies that these fre
quencies would be entirely filtered out from the seismic motion and since
the transfer function has a modulus less or equal to lover the complete
frequency range, the amplitudes of motion would always be deamplified with
depth. These statements are no longer true when there is some amount of
internal damping in the soil, but for moderate values of damping the trans
fer function would still show some important oscillations with frequency.

It is also possible in the free field to define a pseudo-rotation
(fig. 4)

For the case of the homogeneous stratum and no internal damping, this
pseudo-rotation becomes

u
ep =-.A(lB E

Q E) _ 2 uAs,' n2 11.E- cos - -
Cs E 2cs

When considering a three-dimensional, cylindrical, rigid foundation
embedded into the soil stratum, the vertically propagating shear waves
will produce not only a horizontal translation of the base, but also a
rotation. This rotation is caused by shear forces developed along the
sidewalls-soil interface, due to the fact that the rigid sidewalls cannot
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deform in the same way as the surrounding soil would in the free field.
The horizontal translation and the rotation were computed with the finite
element formulation described earlier and divided by the amplitude of the
horizontal motion at the free surface of the soil in the far field (one
dimensional solution). Seven different embedment ratios were studied,
covering a range of values commonly encountered in the design of nuclear
power plants. The corresponding values of the parameters were as indica
ted in Table 1.

Table 1

Case E/R H/R E/H

1 0.5 1.5 1/3
2 0.5 2.0 1/4
3 0.5 2.5 1/5
4 1.0 1.5 2/3
5 1.0 2.0 1/2
6 1.0 2.5 2/5
7 1.5 2.0 3/4

5% internal damping, of a hysteretic nature, was assumed for all the
cases.

Figures 5 through 11 show the amplitude of the transfer functions for
the translational motion of the base of the foundation (3D solution). For
the purposes of comparison, the corresponding results from the one-dimen
sional solution (motion at the level of the foundation in the far field)
are also shown. The 3D solution follows very closely the lD motion up to
roughly 0.75 of the first natural frequency of the embedment region (fl =
c /4E). After that point the 3D solution oscillates with only moderates
amplitudes, while thelD motion exhibits significant oscillations. Because
of this the lD solution would severely underestimate the motion in the
region of the natural frequencies of the embedment region (fn), while over
estimating it in the intervals between these frequencies (f = 1/2(fn+fn+l )).
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On the other hand t defining the input motion at the foundation level in
the far field t as was suggested at one timet would result in a motion at
the base of the foundation where the opposite would occur: the motion
would be substantially amplified in the range of the natural frequencies
fn and deamplified in the intermediate ranges (} f n + } fn+l ).

From inspection of these results it appears that a reasonable approx
imation to the 3D solution can be obtained by defining the transfer func
tion for the horizontal translation as

= { cos ¥~
Fu(Q)

0.453

c
with f1 = 4~.

for f < 0.7 f l

for f > 0.7 f l

Figures 12 through 18 show the amplitude of the transfer function
for the rotation at the base of the foundation multiplied by the foundation
radius R (¢R/uA). Shown in the same figures are the transfer functions
for the one-dimensional pseudo rotation ~B multiplied by the scaling factor
0.257E (this factor was obtained by comparing the average values of both
functions). It can be seen that the agreement is very good in the low
frequency range, but that it deteriorates again for larger frequencies
where the one-dimensional solution exhibits much larger oscillations than
the true rotation.

From inspection of these figures it appears that a reasonable approxi
mation to the 3D solution can be obtained by defining the transfer function
for the rotation as

0.257 (1 _ cos ~ Jl)
R 2 f l

0.257
R

for f ~ f l

with f l as previously defined.

In these expressions ~ is considered as positive clockwise.
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In order to investigate the degree of approximation provided by
these rules for a more realistic soil profile where the modulus increased
with depth, one additional case was studied, with E/R = 1 and H/R = 2.
The shear wave velocity varied from 0.5 c at the free surface to c ats s
the foundation level and 1J Cs at the bottom of the soil profile. Figure
19 shows again the 3D and 10 transfer functions for the horizontal trans
lation and the rotation as well as the suggested approximation. The re
sults are still reasonable if f1 is taken as the actual natural frequency
of the embedment region.

Finally, in order to determine the effect of the foundation flexi
bility, the case E/R = 1, H/R = 2 was again considered, assuming a rigid
base but modelling the sidewalls with finite elements with the elastic
properties of concrete. Fig. 20 shows the results for this case and for
the rigid foundation. It can be seen that the effect on the horizontal
translation is negligible.

The base rotation on the other hand is reduced by 20 to 25%, a result
which is intuitively logical. In the limiting case, if there were no side
walls the foundation would still have a rotation but of opposite sign: this
rotation would result from the fact that the lateral sides of the excava
tion would not have any shear stresses, while these stresses should exist
in the far field solution. The actual conditions of the backfill would
also have a significant influence on the magnitude of the rotation as well
as the fact that some slippage should take place between the sidewalls and
the soil during the vibration. Thus while the approximate expressions sug
gested above would yield results consistent with those provided by a direct
solution of the combined soil-structure system (as provided by some of the
computer programs used at present), in reality the rotation may be expected
to be somewhat smaller.

It should be noticed that the rotation is an integral and important
part of the base motion for the massless foundation. Ignoring it, while
deamplifying the translational component, may lead to important errors on
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the unconservative side. To illustrate this point, figure 21 shows the
results of a soil-structure interaction analysis performed on a structure
with characteristics similar to those of typical containment buildings in
nuclear power plants using the three-step approach and considering both
components of motion (translation and rotation) and only the translation.
Results obtained with a direct solution of the complete soil structure
system were almost identical to those of the three-step approach with the
two components of motion. The characteristics of the motions at the base
of the structure (including the soil structure interaction effects)and at
the top of the building are depicted in terms of their response spectra.
It can be seen from the figure that the results of both analyses are very
similar at the base of the structure, where the rotation has very little
effect (the small differences are due to the coupling terms Kx~ in the
foundation stiffness). At the top of the structure, however, the results
ignoring the rotation are only about 50% of the "true" ones.

Figure 22 shows the corresponding results using the estimates of the
translation and the rotation provided by the approximate rules suggested
above. The agreement with the "true" solution is remarkably good, particu
larly at the top of the structure. Small differences exist in the response
spectra at the base of the structure, but these differences are not signif
icant, particularly if one takes into account the uncertainties involved
in the definition of the design earthquake.

In all these analyses the dynamic stiffness matrix of the foundation,
as a function of frequency, was the one computed from an appropriate finite
element analysis, and the solution of the equations of motion for the struc
ture on elastic foundation was carried out in the frequency domain.

DYNAMIC STIFFNESS OF EMBEDDED FOUNDATIONS

Approximate equations for the motion of a rigid cylindrical body com
pletely embedded in an elastic spectrum were presented by Tajimi (18) in
1969. Novak and Beredugo (14) derived approximate analytical solutions for
the vertical, horizontal and rocking stiffnesses of a rigid circular footing
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embedded in an elastic half space; frequency independent stiffness and
damping parameters were approximated by Novak (13) and by Novak and Sachs
(15). These solutions were used by Bielak (2) to study the behavior of
structures with embedded foundations.

Finite element (or finite difference) solutions for strip footings
and circular foundations embedded in a half space or a layer of finite
depth were obtained at different times by Kaldjian (8), Krizek, Gupta
and Parmelee (10), Waas (21), Urlich and Kuhlemeyer (19), Chang-Liang (3),
Kausel (9), and Johnson, Christiano and Epstein (7).

Experimental studies on the dynamic behavior of embedded circular
footings have been conducted and reported by Anandakrishnan and Krishna
swamy (1), Stokoe (17) and Erden (5).

The results used in this work were obtained with the same formulation
and computer program developed by Kausel (9). As in the previous section
(determination of the foundation motions), most of the studies were con
ducted for a uniform soil deposit of finite depth (resting on much stiffer
rock-like material) and assuming a rigid foundation perfectly welded to
the soil. The effects of variation of soil properties with depth and of
the flexibility of the sidewalls were again investigated in a limited num
ber of cases.

For the case of a steady state harmonic motion with frequency Q the
force displacement relationships can be written (for a rigid foundation) as

H = Kxx u + Kx~ ~

M= K~x u + K~~ ~

where H is the horizontal force, Mthe rocking moment, and u and ~ the cor

responding horizontal displacement and rotation. K~x = Kx~·

Each stiffness term can be expressed in the form

K.. = K~. (k .. + i a c .. )
lJ lJ lJ 0 lJ
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K~. is the static value
1J

k.. and c .. are frequency depemdemt stiffness coefficients1J 1J

ao = R/cs is a dimensionless frequency

R is the radius of the circular foundation

Cs is the shear wave velocity of the soil.

If the soil has an internal damping ratio D, caused by hysteretic
losses due to nonlinear behavior, the previous expression can be written
approximately as

K.. = K~. (1 + 2i D) (k.. + i a c .. )
1J 1J 1J 0 1J

The stiffness coefficients k.. , c .. are in rigor a function of the
lJ 1J

damping ratio D, but for typical values of this parameter and a hysteretic
type damping (frequency independent) the dependence on Dis small in the
case of a half space and only significant around the fundamental frequency
of the layer for a soil stratum of finite depth.

Static Stiffnesses. The effect of embedment on the static stiffnesses K~.
lJ

was investigated first by considering the nine cases shown in Table 2. H
is again the total depth of the stratum, R the radius of the foundation,
and E the depth of embedment.

Table 2

Case H/R E/R E/H

1 2 0.5 0.25
2 2 1.0 0.50
3 2 1.5 0.75
4 3 0.5 0.167
5 3 1.0 0.333
6 3 1.5 0.50
7 4 0.5 0.125
8 4 1.0 0.25
9 4 1.5 0.375
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It is important to notice that when using finite elements the re
sults will be a function of the mesh size. In order to obtain an accur
ate solution it is necessary thus to use a sufficiently fine mesh or,
better even, to use two or three different meshes and to extrapolate the
results. Following Kausel (9), three different meshes were used in this
study with square elements whose size was equal to 1/4, 1/8, and 1/16 of
the radius. Figure 23 shows the results obtained for a typical case
(case 1 in table 2). It can be seen that since a linear displacement
expansion was used for the finite elements, a linear extrapolation pro

cedure seems to apply.

For a surface foundation Kausel (9) had suggested the approximate

formulae

K
X

O

X
= 8G13. (1 + 1 R)

2-v 2 H

° 8GR
3

(1 + lR)
K¢¢ = 3(1-v) 6 H

o °
K = -0.03 R KxcP xx

The extrapolated values resulting from this study for Kxx and K¢¢
were divided by the above expressions and plotted versus R/H for differ
ent values of E/R, as shown in figures 24 and 25. It can be seen that for
values of R/H ~ 1/2 and E/R ~ 1, the points fall almost exactly along
straight lines. As the depth of the stratum decreases or the embedment

°increases beyond these values, the increase in the stiffnesses Kxx and
°K is faster than linear as indicated schematically in figure 26. Most
¢¢

cases of practical interest would fall, however, within the range where
the linear approximation is valid. Writing then the expressions for Kxx
and K¢¢ in the form

K° = 8GR (1 + 1 ~) (1 + ~~) y
xx 2-v 2 H Y H

K;cP= 3~f~~) (1 + t ~)(l + %~)
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the coefficients a/y, y, 8/S and S were computed and plotted versus E/R
as shown in figure 27. From this figure the approximate expressions re
sult:

a 5 E
y~4R

o ES ~ 0.7 R

leading to the final formulae

+£~
3 R

S~1+2ft

K
X

O

X
= 8GR (1 + lR)(l + ~~)(l + i~)

2-v 2 H 3 R 4 H

° 8GR3 1 R E E
K~~ = 3(1-v) (1 + 6 H)(l + 2 R)(l + 0.7 H)

o °
The term Kx~/Kxx can be interpreted as an equivalent height of the

center of stiffness of the foundation h. Since the rotation is assumed
to be positive clockwise, a positive value of h would indicate that the
center of stiffness is above the base of the foundation. It was found

° °from the study that the term h/R = Kx~/RKxx varied almost linearly with
E/R within the range of parameters studied and had a small dependence on
H/R and on Poisson's ratio v. (h/R decreases slightly with increasing H/R
and increases with v). This variation is illustrated in figure 28. For

practical purposes, considering the uncertainty in the actual value of
for any specific soil, an average expression can be used

o ° E ° E
Kx~ = K~x = (0.4 R - 0.03) RKxx for H~ 0.5

In order to investigate the effect of the flexibility of the founda
tion and in particular that of the sidewalls, the case E/R = 1, v = 1/3
was again studied for the three values of H/R. The base of the foundation

was still considered rigid, but the sidewalls were modeled with finite ele
ments with the properties of concrete. The results are shown in Table 3.
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Table 3 - Effect of Flexible Sidewalls

H/R = 2 H/R = 3 H/R = 4
0

Kxx RIGID SIDEt~ALL 16.84 13.75 12.60
GR FLEX. SIDEWALL 15.72 12.91 11.89

0

K¢¢ RIGID SIDEWALL 18.30 16.12 15.51

GR3 FLEX. SIDEWALL 14.66 12.88 12.43
0

Kx<p RIGID SIDEWALL 5.79 4.64 4.16

GR2 FLEX. SIDEWALL 3.91 3.12 2.79

As in the case of the foundation motion, the effect of the flexi
bility of the sidewalls is more important for the rotation than for the
translation. The reduction in the horizontal stiffness is only of the
order of 7%, while the rotational stiffness decreases by about 20% and

o
the coupling term Kx<p by nearly 30%. The actual conditions of the soil
in the backfill and the possible separation between the sidewalls and
the soil during the vibration would again contribute to a reduction in
the effective embedment, but an assessment of this reduction is diffi
cult and would require additional studies with a nonlinear soil model.

The case H/R = 2, E/R = 1, v = 1/3 was studied again considering a
soil profile with variable properties. As in the previous section, it
was assumed that the shear wave velocity of the soil increased from a
value of 0.5 Cs at the surface to Cs at the foundation level and l/cs
at the bottom. Expressing the stiffness in terms of the shear modulus
corresponding to c , table 4 compares the results obtained for the uni-s
form and the variable profiles.
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Table 4

Uniform soil profile

16.84

18.30

5.79

Variable soil profile

15.52

15.46

3.97

It can be seen that the increase in the stiffness of the soil below
the foundation is less significant for the case considered than the reduc
tion in the modulus over the embedment. Again the effect is more marked

for the terms Kx~ and K~~ than for Kxx (the results are in fact very
similar to those obtained for the flexible sidewalls).

Figure 29 shows a comparison of the static stiffnesses (divided by

those of a surface foundation) predicted from the approximate expressions
suggested above and those that would result from the work of Ur1ich and
Kuh1emeyer (19). The solution of Ur1ich and Kuh1emeyer was intended to
apply to the case of a half space, but it is based on a finite element
model with viscous dashpots at the boundaries. Since these dashpots are
not operative for the static case, the values nf the static stiffnesses
derived from the study correspond in fact to a stratum of finite depth
(H/R = 6) and a domain which is also finite in the lateral direction (it
should be noticed that their results do not converge to the correct analyt
ical solution as the embedment tends to zero). Considering these facts,
the agreement between the two solutions is very good, particularly for the
terms K~¢ and h/R (or Kx¢/RKxx )' The results for Kxx show small discrepan
cies, particularly in their trend: although the differences are not signif
icant for practical purposes, it would appear that the results from Ur1ich
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and Kuhlemeyer1s work correspond to a shallower stratum for lower values
of the embedment ratio and approach the half space solution as E/R in
creases.

Figure 30 compares the values predicted by the approximate formulae
with those obtained by Johnson, Christiano and Epstein (7) using a finite
element model with triangular elements and lateral boundaries on roller
supports. It should be noticed again that their solution does not con
verge to the analytical values for a surface foundation on a half space.
The agreement in the trend of the results is very good, but the stiffnesses
resulting from Johnson, Christiano and Epstein1s work are sightly larger:
this may be due to the use of triangular finite elements without an appro
priate extrapolation to correct for mesh size (the model would be naturally
too stiff).

It is believed that the formulae suggested here will provide an ex
cellent approximation within the range of parameters for which they apply
(H/R ~ 2, E/R ~ 1, E/H ~ 1/2). In practice, however, it may be expected
that the values of K¢¢ and Kx¢ particularly should be somewhat smaller
than those given by the formulae because of the other effects discussed
above. A reduction in these values should be, however, accompanied by a
similar reduction in the foundation rotation (due to the seismic motions).

Dynamic Stiffness Coefficients

The dynamic stiffness coefficients kij cij were obtained for the same
cases presented above by computing the stiffnesses K,.. as a function of

J 0

the dimensionless frequency ao and dividing them by the factor Kij (1+2iD).
A value of D = 0.05 was considered. Figure 31 shows typical results for
one of the cases (H/R = 3, E/R = 1). Shown in the figure are the swaying
and rocking coefficients for the embedded foundation, the same foundation
on the surface of a soil stratum with the total depth H and a surface foun
dation on a half space. The last results are obtained from the analytical
solution presented by Veletsos and Wei (20), but the imaginary terms below
the fundamental frequency of the stratum are modified according to the rules

suggested later.
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It can be seen from this figure that for the case of a finite stra
tum the term kxx shows oscillations with frequency corresponding to the
existence of natural frequencies for the soil deposit (if the soil had
no internal damping, the stiffness should become zero at a value ao =
(2rr/4)(R/H) = rr/6 for the case shown). These oscillations decrease, how
ever, as the internal damping in the soil increases. As a first approxi
mation, if some amount of hysteretic damping is expected, due to the seis
mic excitation itself or to the foundation motion, one can take the half
space solution without a significant loss of accuracy (although it should
be noticed that as the frequency ao increases, the effect of the layer
depth in increasing the stiffness through the term 1 + 1/2 (R/H)tends to
disappear). One can assume therefore kxx ~ 1.

The agreement between the rocking stiffness coefficients k~~ for the
three cases is better than for the term kxx and use of the half space solu
tion seems quite appropriate. As an approximation for values of Poisson's
ratio between 0 and 0.4 one can take

k~~ = 1 - 0.2 ao for ao ~ 2.5

and k~~ ~ 0.5 for ao ~ 2.5.

For values of v of the order of 0.45 to 0.5, k~~ ~ 1 - 0.2 ao over the com
plete range of interest.

The complex stiffness coefficients cxx c~~ are associated with the
radiation damping (loss of energy by radiation of waves away from the foun
dation). For the case of a half space, the solutions presented by Veletsos
and Wei (20) can be approximated by

cxx ~ 0.60

0.35 a~
c ~ -----;<-

~~ - 1 + a2
o

(More accurate analytical expressions for the coefficients kxx k~~ cxx
and c have been obtained by Veletsos and Verbic (21) in terms of Poisson's

~~
ratio v, and can be used in practice without any increase in complexity if

the value of v is known).
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For a surface foundation on a soil stratum of finite depth (resting
on rigid rock). the above expressions for c and c can again be used

xx <1><1>

as an approximation above the fundamental frequencies of the stratum
{aol = nR/2H or fol = R/4H for c and a 2 = a 1 (c Ic ) for c wherexx 0 0 p s <I>¢
c is the P wave velocity of the soil and c the shear wave velocity.p s
Below this frequency there is no lateral radiation of waves (the vertical
radiation is prevented by the rigid bottom). and if the soil were perfectly
elastic cxx and c¢¢ should be zero. If the soil has some internal damping
D, of a hysteretic nature, associated with nonlinear behavior, a transi
tion curve should be used from ao = 0 to ao = aol or ao2 respectively.
Figure 32 shows the transition curves for the same case of Figure 31 (with
D ~ 0.05). The dotted line corresponds to the approximation

c ~ 0.65 D a 2
xx 1-{1-2D)a

for a =~ < 1aol -

~ 0.50D a but <
1- (l-2D)a2

0.35a~

l+io
for a ~<-cs

The results provided by these expressions will be in general slightly
on the conservative side, particularly in the neighborhood of the transi
tion point (ao = aol or ao2 where there is a jump in the proposed solution).

For an embedded foundation in a finite stratum, it can be seen from
figure 31 that the same type of transition must take place. The values of
cxx above ao = aol are, however, somewhat larger than those of a surface
foundation and so are the values of c¢¢ over most of the frequency range.
Embedment will thus increase not only the static stiffnesses, but also the
amount of radiation damping. This increase is sensitive, however, to the
conditions of the backfill, the flexibility of the sidewalls and the bond
ing (or debonding) between the foundation and the surrounding soil. With
out further studies on these effects, it is therefore recommended to use
for the dynamic stiffness coefficients of an embedded foundation.
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kxx ' k¢¢ same as the half space solution for a surface foundatiQn,
using the expressions given above or the more accurate
ones by Ve1etsos and Wei (20) or Veletsos and Verbic (21).

for a = ~ < 1ao1 -
c =xx

{

0.650 a
1-(1-20)a2

half space solution for a 'ffRsurface foundation for ao > ao1 = 2H

20.35a
a but < 0

( ) 2 - 2
1- 1-20 a l+aoc¢¢ =

{

0.500

half space solution for a surface ~foundation for ao > ao1 Cs

The stiffness coefficients for the coupling term Kx¢ can be better
evaluated by studying the term h/R(Kx¢/RKxx)' For the cases studied it was
found that this ratio is nearly a real number and almost independent of
frequency. It is thus recommended to take the same expression as for the
static values

KX¢ = (0.4 ~ - 0.03) RKxx

To illustrate the degree of approximation provided by these rules, the
same structure considered in the previous section was analyzed using the
three-step approach with the lIexactll foundation motions but the approximate
stiffnesses. The results in terms of response spectra of the foundation
level and at the top of the structure are shown in figure 33. It can be
seen that the spectra at the base are almost identical. At the top of the
structure, on the other hand, the use of the approximate stiffnesses gives
a peak response which is about 30% higher than the IIcorrectll one. This is
due to the fact that the natural frequency of the soil-structure system was
of the order of 2. 4cps, slightly smaller than the dilatational frequency
of the stratum (2.5 cps). The radiation damping in rocking given by the
approximate expressions (applicable to a surface foundation) is therefore
very small, while that resulting with the embedment effect would be more
significant. The question remains, however, as to whether the full effect
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of embedment would actually take place in practice and thus as to whether
the "correct" solution or the approximate one is more realistic. Addi
tional studies made with deeper soil strata, in which the resonant shear
beam and dilatational frequencies of the stratum were smaller than the
fundamental rocking-swaying frequency of the soil-structure system~ re
vealed a much better agreement between true and approximate solutions.

Figure 34 shows, finally, the results obtained using both the approxi
mate foundation motions and the approximate foundation stiffnesses (for the
same structure). The same comments made before when using only the approxi
mate motions or the approximate stiffnesses apply here. On the other hand,
analyses made using directly the half space stiffnesses and limiting the
damping to 10% of critical (a procedure which has been suggested sometimes)
and/or subjecting the system to the control motion directly at the base of
the foundation gave results in gross disagreement with any of these solu
tions.

CONCLUSIONS AND RECOMMENDATIONS

It was the purpose of this work to derive simplified rules to account
for the effect of foundation embedment in a soil-structure interaction
analysis using the three-step or substructure approach. It is believed
that the rules suggested will provide in general results in good agreement
with those of a direct or one-step solution. It is important to notice
that for a consistent solution the motions at the base of a massless foun
dation, computed in step 1, must include both a translation and a rotation.
Neglecting the latter could result in important errors on the unconservative
side. In addition, the translation, while exhibiting a deamp1ification from
the motion at the free surface, has much less frequency sensitivity than
would be implied by a one-dimensional solution. The foundation stiffnesses
will increase due to embedment and so will, to some extent, the amount of
radiation damping. It appears, however, that it is more important to repro
duce correctly the static values of the stiffnesses than their complete
frequency variations and one can, without serious error, assume the same
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functions of frequency (dynamic stiffness coefficients) as for a surface
foundation on an elastic half space (if one expects some amount of in-
ternal soil damping). The only point of concern in this respect is the
variation of the imaginary stiffness coefficients (and particularly the
rocking one) below the fundamental frequencies of the stratum when assum-
ing a rigid bottom (if there is in fact an abrupt transition in soil proper
ties, with a much stiffer, rock-like material, underlying a soft soil layer).
The formulae suggested here will give results generally on the conservative
side, particularly in the neighborhood of the soil frequencies.

The rotation at the base of the massless foundation due to the seis-
o 0

mic input and the stiffness functions Kx¢ K¢¢ and c¢¢ are particularly sen-
sitive to the flexibility of the sidewalls, the actual conditions of the
backfill and the possible debonding between the sidewalls and the soil dur
ing the vibration. All these effects will tend to decrease their values
(reducing the effective embedment).

More studies should be conducted to assess the importance of these
effects (normally neglected in a direct solution) using a nonlinear soil
model.

It would seem in addition that the studies reported in the section on
foundation motions should be extended to the consideration of other types
of waves instead of only shear waves propagating vertically. In this way
rules might be derived to obtain average-type motions (including torsional
components) at the foundation base.
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