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ABSTRACT

Most computer programs used at present for soil structure inter
action analyses are based on a two-dimensional (or pseudo three-dimen
sional) model of the soil. In this work the results of parametric stud
ies are presented, leading to approximate formulae for the dynamic
stiffnesses of embedded strip footings similar to those already avail
able for circular foundations. A comparison is then established between
the static values of these stiffnesses and their frequency variation for
two- and three-dimensional solutions. It is shown that a plane strain
model cannot reproduce all the stiffness terms of a circular or square
foundation over the complete range of frequencies. Recognizing, on the
other hand, that not all the terms may contribute significantly to the
structural response, it is recommended that for each particular problem,
before embarking on the use of finite element programs, preliminary analy
ses be conducted with formulae and graphs similar to those presented here,
in order to estimate the natural frequencies and effective modal damping
provided by two-dimensional and three-dimensional solutions. These esti
mates will allow assessment of the order of magnitude of the error in
volved in a plane strain model and will indicate whether more expensive
studies with such a model are justified.
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PREFACE

The work described in this report was conducted by Moshe Jakub,
a graduate research assistant in the Civil Engineering Department at
M.I.T., under the supervision of Professor Jose M. Roesset. It was
made possible through Grant AEN 7417835 from the National Science Foun
dation, Division of Advanced Environmental Research and Technology.

This is the sixth of a series of reports published under this
grant. The other five were:

1. Research Report R76-8 by Mohammed M. Ettouney, "Transmitting
Boundaries: A Comparison,1I January 1976.

2. Research Report R76-9 by Mohammed M. Ettouney, IINon1inear
Soil Behavi or in Soil Structure Interacti on Ana1ysis," Febru
ary 1976.

3. Research Report R77-30, by Jose J. Gonzalez, IIDynamic Inter
action between Adjacent Structures,1I September 1977.

4. Research Report R77-33 by F. E1sabee and J.P. Morray, "Dynam
ic Behavior of Embedded Foundations,1I September 1977.

5. Research Report R77-35, by Moshe Jakub, IINon1inear Stiffness
of Foundations,1I September 1977.
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DYNAMIC STIFFNESS OF FOUNDATIONS: 2-D vs. 3-D SOLUTIONS

INTRODUCTION

A considerable amount of work has been done in recent years to
determine the dynamic stiffnesses of foundations of various shapes, a
problem of interest on its own (as for the design of machine founda
tions), but of particular importance in relation to the seismic analy
sis of nuclear power plants. Analytical solutions have been presented
and tabulated for circular foundations on the surface of an elastic
(15) or viscoelastic (16) halfspace, and algorithms have been developed
to study circular and rectangular foundations (or for that purpose foun
dations of arbitrary shape) on the surface of a horizontally stratified
soil deposit (4,9,18). These analytical or semi-analytical solutions
have been limited until now to surface foundations and linear soil be
havior, but approximate procedures to account for the effect of embed
ment (3,12,13,14) and for the nonlinear characteristics of soils (7)
have also been suggested. Finally, finite element solutions are also
available to study circular foundations embedded or on the surface (6)
and surface footings of arbitrary shape (5).

In spite of all this work, most of the computer programs used in
practice, such as LUSH (10), are based on a two-dimensional (plane strain)
model of the soil and the structure. Even a more recent version, FLUSH
(11), which claims to solve the three-dimensional problem has in fact a
plane strain model with viscous dashpots added to the lateral faces in
order to increase the radiation damping (this is at best a pseudo three
dimensional solution).

The main reason invoked for the use of two-dimensional models is
one of economy: the solution of a completely three-dimensional model for
an embedded foundation of arbitrary shape and a soil profile with variable
properties and nonlinear behavior is today prohibitively expensive (al
though the only problem in the formulation of such a model is the deriva

tion of realistic constitutive equations for the soil). This argument
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would imply that these two effects are accurately reproduced in present
programs and that the increased accuracy over the approximate solutions
mentioned above more than compensates for the errors introduced by the
two-dimensional idealization. The first point is not entirely correct.
Present finite element solutions assume perfect welding between the
sidewalls of the foundation and the surrounding soil, but the actual con
ditions of the backfill, often uncertain, may significantly influence the
effective depth of embedment; nonlinear soil behavior is normally simu
lated through an equivalent linearization technique, using an iterative
scheme which requires several arbitrary assumptions; thus whether there
is in fact an important increase in accuracy in these finite element models
may be questionable. The second point requires more extensive studies
than those conducted to date in order to assess the magnitude of the poten
tial errors introduced by plane strain models (or the modified versions)
for typical situations.

PREVIOUS WORK

In 1974 Kausel (16) conducted a comparative study for a typical con
tainment building using both a cylindrical finite element formulation,
reproducing the exact three-dimensional condition for a horizontal seismic
excitation, and an equivalent two-dimensional model. The building had a
circular foundation with a radius of 57.5 ft. and was embedded 55 ft. in
a soil stratum with a total depth of 170 ft. The shear wave velocity of
the soil varied from 428 ft/sec at the surface to 934 ft/sec at the bottom,
and the stratum was underlain by competent rock which was simulated as a
rigid base. In the 2-D model the structure was represented by two coaxial
columns of lumped masses and springs, attached to a massless, rigid founda
tion with flexible sidewalls. Masses and stiffnesses were normalized with
respect to an equivalent width 2B, obtained by equating the area of a
square foundation to that of the actual circular mat. The properties of
the flexible sidewalls (deforming mainly in flexure) were selected so as
to yield the same horizontal displacement at grade level as the cylindrical
wall (deforming mainly in shear) under a uniform lateral load.
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The results of this study indicated that for the case considered
the agreement between the two models was reasonable and probably good
enough for practical purposes. Differences in the amplified response
spectra at various levels of the structure were of the order of 15%.

Luco and Hadjian (8), on the other hand, considered the case of a
structure resting on the surface of an elastic, homogeneous halfspace.
For this case they presented and discussed various alternatives for the
selection of the width and thickness (out of the plane) of a strip footing
so as to match the average values of the stiffness and damping terms of
a circular foundation over a certain frequency range (it should be noticed
that the static stiffness of a strip footing on a halfspace is zero).
They decided that the best approach was to select the halfwidth of the
footing B = O.816R and the total thickness 2C = 1.25 x (2R) in order to

match the stiffnesses; the natural frequencies of the soil structure sys
tem would remain then unchanged, a factor they considered of primary im
portance for the determination of equipment response. In this way, how
ever, the damping terms for the strip footing were larger than for the
circular foundation (32% in swaying and 18% in rocking over the high fre
quency range, and substantially more for low values of the dimensionless
frequency ao). Using this approach, they determined amplified response
spectra at the base, top of the internal structure, and top of the contain
ment building for a structure with a fundamental frequency of 3 cps on a
rigid base, and 0.74 and 1.29 cps on the elastic foundation (with shear
wave velocities for the soil of 600 and 1150 ft/sec respectively). The
spectra at the top of the structures had peaks at the natural frequencies
which were approximately 50% higher for the three-dimensional solution than
for the equivalent two-dimensional model.

Several points of this study deserve careful consideration. In the
first place, the selection of the equivalent width and thickness does not
seem to be the most appropriate; while it is important to reproduce reason
ably well the natural frequencies of the soil structure system, it should
be noticed that these frequencies will vary at most with the square root
of the foundation stiffnesses. Thus an error of even 25 or 30% on these
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stiffnesses will represent only an error of at most 10 to t5% on
the frequencies (the error being larger as the soil becomes softer and
the stiffnesses decrease). Considering the uncertainties in the actual
values of the soil properties (both their values in situ for low levels
of strain and their variation with shear strain), and even in the struc
tural characteristics,this error does not seem unreasonable (one should
consider in any case variations in the soil parameters and not rely on
a single analysis). Reproduction of the radiation damping, particularly
in rocking and in the neighborhood of the natural frequency of the com
bined system, would appear to be more important in order to obtain sen
sible results.

In the second place the unusually small natural frequencies of the
structure on elastic foundation make the error in the radiation damping
considerably larger than the 32 or 18% predicted by the formulae for the
high frequency range (the effective values of damping in the first mode
were 2.3 and 1.8% for the three-dimensional solution and 6.36 and 5% for
the two-dimensional one). The fact that no internal damping was assumed
for the soil aggravates the situation; clearly the difference in the re
sults from 2% damping to a value of 5% is much larger than from, say,
7 to 11% or 12 to 16%.

Because of these facts one should expect that the differences be
tween the two solutions would not be as large as the reported 50% in
practical situations. It is important to realize, however, that differ
ences will exist and that, as pointed out by the authors, it is not pos
sible to select an equivalent two-dimensional model which will match all
the stiffness terms over the complete frequency range. Furthermore, the
fact that the radiation damping will be generally overestimated by the
equivalent strip footing would indicate that increasing the dissipation
of energy by adding viscous dashpots may make the situation worse instead
of improving it.

In 1975 Berger, Lysmer and Seed (1) presented results of another
comparative study. They concluded that the differences between their
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three-dimensional and their two-dimensional solutions, which were again
significant, were due to deficiencies in the structural model, which
would be an obvious source of errors. The horizontal component of motion
at the base of the structure was, however, very similar for the two cases,
and the study recommended the use of a complete two-dimensional soil
structure model to obtain the base motion and then the use of an independ
ent structural analysis program with a three-dimensional model of the
building and the computed motion at the base to determine the structural
response. A proper justification of this approach, beyond the comparison
of the translational components of the base motion, was, however, lacking,
and the rotational component which would be an important part of the total
motion was not presented (and seemed to be ignored).

Finally Lysmer et al. (11) showed results for a nuclear reactor and
two adjoining buildings using a purely two-dimensional model and the pseudo
three-dimensional solution. Since the only difference between the two models
is an increase in damping for the latter, the response in this case was
significantly smaller (about 50%) when simulating three-dimensional effects,
contrary to most of the other comparisons. The fact that a true three-dimen
sional solution was not presented and that there were two adjoining struc
tures which were very deeply embedded make this example inappropriate for
an adequate evaluation of the errors introduced by the two-dimensional
approximation.

SCOPE

It is clear that the use of a plane strain finite element model for
the analysis of a structure resting on the surface of an elastic, homogen
eous, halfspace is entirely unjustified. Not only are the available ana
lytical solutions (15, 16) much more accurate than those that could be
obtained with the discrete formulation, but the use of these solutions
with the three-step approach (or substructure method) would be considera
bly more economical than the direct (or one-step) solution of the complete
soil structure system with any of the available computer programs (LUSH

or FLUSH).
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In most practical cases, however, the soil properties will not be

uniform with depth (the shear modulus will normally increase) or a de
posit of finite depth will be underlain by much stiffer, rock-like mater
ial. The elastic, uniform halfspace is therefore a mathematical ideali
zation rather than a true physical condition. In addition, most struc
tural foundations, and those of nuclear power plants especially, will
have some degree of embedment.

The purpose of this work is to conduct further comparisons between
two-dimensional and three-dimensional solutionsby obtaining approximate
expressions for the dynamic stiffnesses of embedded strip footings and
comparing them to those presented by Elsabee(3) for circular foundations.

The dynamic behavior of strip footings had already been extensively
studied by Chang Liang (2), who presented a series of curves relating
the static stiffnesses (and particularly the flexibilities) to layer
depth and embedment. Here, following the work of Kausel (6) and Elsabee
(3) for circular foundations, the static stiffnesses are determined first
for surface foundations and approximate formulae are fitted to the numer
ical results. Parametric studies are conducted next for embedded founda
tions, within the range of embedment ratios of practical interest, and
corrective factors are obtained by fitting straight lines. Finally, the
variation with frequency of the stiffness coefficients is studied.

The importance of the error introduced by a two-dimensional ideali
zation will depend in a practical situation on the characteristics of the
soil profile and the structure considered. (It will be obviously negli
gible if the soil structure interaction effect is small). Using the re
sults presented in this work and those already available for circular
foundations one can, in each specific situation, carry out some simple
preliminary computations to estimate the natural frequencies of the soil
structure system and the effective modal damping for both types of models
before embarking on expensive computer runs. This will allow the assess

ment of the validity of a plane strain analysis.
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FORMULATION

The parametric studies for surface foundations were carried out
with an analytical-type formulation developed by Gazetas (4) and with
a finite element model implemented by Chang Liang (2). The former is
only applicable to a dynamic situation, i.e. to values of the frequency
of vibration different from zero: the static stiffnesses were then ob
tained by extrapolating the values in the low frequency range. The
latter discretizes the soil under the footing by a finite element mesh
and places the consistent transmitting boundary developed by Waas (17)
directly at the edge of the foundation. This boundary has been shown
to reproduce with great accuracy the radiation of waves from the core
region into the far field. By using these two approaches, with almost
identical results, the validity of the extrapolation procedure to de
termine the static stiffnesses in the analytical solution and the ade
quacy of the finite element meshes used could be checked (two meshes
were actually used, and a linear extrapolation was applied to obtain
improved estimates).

The results for embedded foundations were obtained in all cases
with the finite element model, assuming a massless, rigid foundation
with the sidewalls (also rigid) welded to the backfill. In order to
isolate the effect of embedment, the static stiffnesses were divided by
those of an identical footing on the surface. To compute these ratios
the values used were the ones corresponding to the same finite element
meshes.

The variation of the dynamic stiffnesses with frequency was studied
for surface foundations using again the analytical-type solution of
Gazetas (4). For this purpose the stiffnesses were written in the form

Kx = Kxo(kl + i aocl)(l + 2iD)

K~ = K~o(k2 + i aoc2)(l + 2iD)

where Kxo and K~o are the static values.
kl k2 cl c2 are the stiffness coefficients, function of frequency.
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o is the internal damping in the soil, of a hysteretic nature
(frequency independent).

ao = QB/cs is a dimensionless frequency; Q is the frequency of
excitation in rad/sec; B is the halfwidth of the footing, and
Cs is the shear wave velocity of the soil.

STATIC STIFFNESSES

~~~f~~~_E~~~~~!!~~~. Figure 1 shows the variation of the horizontal
static stiffness with layer depth for different values of Poisson's
ratio v(O, 0.15, 0.3 and 0.45). It can be seen that for values of the
ratio B/H (B is the halfwidth of the footing and H the thickness of
the soil stratum) larger than 1/4, the computed values fall almost
exactly on a straight line. For deeper strata the stiffness decreases
much faster and tends, obviously, to zero as H increases.

Figure 2 shows the corresponding results for the rocking stiffness.
The values for a halfspace are now finite (nonzero). The variation over
the complete range studied, up to values of B/H = 1, is no longer linear
but more closely parabolic. It should be noticed, however, that H = 2B
represents already a rather shallow stratum (thickness equal to total
foundation width). The range of practical interest may then be reduced
to values of H/B from 1/8 to 1/2. Within this range linear approxima
tions can furnish reasonable results.

By comparison, figure 3 shows the varation of the static stiffnesses
versus layer depth for a circular foundation, as reported by Kausel (6),
and figure 4 the same results for a square foundation with sides = 2B as
computed by Gonzalez (5). Notice that in both cases the studies were
limited to the range of R/H or B/H from 1/8 to 1/2.

For this reduced range straight lines were fitted to the computed
stiffnesses. The resulting formulae are shown in tables 1 and 2.
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Table 1 - Horizontal Static Stiffness

Poisson's ratio v

o
0.15
0.30
0.45

K /Gxo

0.904 (1 + 2.5 B/H)

1.017 (1 + 2.37 B/H)
1.175 (1 + 2.15 B/H)
1.419 (1 + 1.95 B/H)

Table 2 - Rocking Static Stiffness

Poisson's ratio v KpO/GB
2

o
0.15
0.30
0.45

1.891 (1 + 0.17 B/H)
2.094 (1 + 0.17 B/H)
2.394 (1 + 0.17 B/H)
2.907 (1 + 0.24 B/H)

Writing the static stiffnesses in the form

Kxo = aG(l + b B/H)

K~o = cGB
2

(1 + dB/H)

Figure 5 shows the variation of the coefficients a, c with Poisson's
ratio v. The available analytical expressions for both strip footings
and circular foundations indicate that a should be inversely propor
tional to 2-v, whereas c should vary inversely to l-v. These results are
based, however, on the assumption of a smooth footing (the horizontal
stiffness being associated only with horizontal shear forces and the
rocking stiffness resulting exclusively from applied normal stresses).
Expressions of these forms do not fit exactly the results obtained here
(it was found that the coefficients a, c, tended to vary more closely
with the inverse of 4-3v). Over the range of practical interest for
soils, however, with values of v from 0.3 to 0.5, a good approximation

is provided by
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1.62c =~1··.
.. v

As indicated by the expressions in tables 1 and 2, the coefficients
band d are also functions of Poisson's ratio. Within the range v = 0.3

to 0.5 one can again take average values of these coefficients without
too much error. With these approximations the expressions for the static
stiffnesses become

K = 2.1 G(l + 2 B/H)
xo 2-v

K = 1.62 GB2(l + 0 2 B/H)
q>o 1- v •

The expressions used by Luco and Hadjian (8) in their study for a
halfspace were

K = 0.94TI G ~ 2.95 G
x 2- v 2- v

The agreement for the rocking stiffness (1.62 vs. 1.57) is very
good. The values of the horizontal stiffnesses differ, however, by al
most 50%. This discrepancy is due to the fact that Kxo for a halfspace
is actually zero and the expression used by Luco and Hadjian corresponds
to an average over the high frequency range. For a halfspace or a deep
soil stratum, Kx will increase with frequency initially and then remain
essentially constant (with some oscillations) as will be shown later.

By comparison the formulae suggested by Kausel (6) for a circular
foundation are

K = 8GR (1 + 1 R/H)
xo 2-v 2

3
K = 8GR (1 + 1 R/H)
~o 3(l-v) 6

The expressions for a square foundation proposed by Gonzalez (5)
are
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K
xo

= 4.2GB (1 + 2 B/H)
2-v

3
K = 3.24GB (1 + 0.2 B/H)

</JO l-v

The agreement between the static stiffnesses computed from a two
dimensional, plane strain model and the true three-dimensional solution
will depend therefore on the ratio B/H, particularly for the horizontal
case. For very shallow layers the two-dimensional approximation may be
reasonable, but as the depth of the stratum increases, it deteriorates
considerably. Within the range of values of B/H of practical interest,
1/8 to 1/2, the horizontal stiffness of the strip footing is from 50 to
70% of that of a square footing and the rocking stiffness from 80 to 85%.

Embedded Foundations. The static stiffnesses of embedded foundations--------------------
were obtained for embedment ratios E/B of 1/3, 2/3 and 1, and layer depths
H = 8B, 4B and 2B. E is the depth of embedment and B is again the half
width of the footing. These solutions were obtained with the finite ele
ment computer program developed by Chang-Liang (2).

Following the work of Elsabee (3), these stiffnesses were divided
by those of a surface foundation with the same width and total layer depth.
These ratios are shown in figure 6. The stiffnesses were then written in
the form

K = 22.1 G(l + 2 B/H)(l + _ya B/H)Yxo -v

K = 1.62 GB2(1 + 0.2 B/H)(l + ~ B/H)B
</>0 l-v B

The coefficients a/Y ,y, o/S
versus E/B as shown in figure 7.
expressions are obtained:

E
Y = + 0.3 B

S = 1 + IB

and S were then computed and plotted
From these figures the approximate

a 4 E
Y= 3" B

<5 2 E
S = 3" B

valid for ratios B/H ~ 1/2 and E/B ~ 2/3.
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The final formulae are then

K = 2.1 G(l + 2 .!!)(l + 1.!!)(1 + .1. .!!)
xo 2-v H 3 H 3 H

The corresponding formulae for embedded circular foundations (3)

are

8GR3 1 R E E
K~o = 3(1-v} (1 + 6 H)(l + 2 R)(l + 0.7 H)

It is interesting to notice that the coefficients of the term E/H,
ratio of embedment depth to total layer depth, are very similar for both
cases. On the other hand the coefficients of the term E/B or E/R, ratio
of embedment depth to footing halfwidth or foundation radius, are approxi
mately half for the strip footing.

DYNAMIC STIFFNESSES

The variation of the dynamic stiffnesses with frequency was studied,
using the analytical-type solution, for the case of a surface foundation,
layer depths H = 8B and H = 4B and a soil depo£it with a Poisson's ratio

v = 0.3. Three values of internal soil damping D (of a hysteretic nature)
were used: 0 = 0.05,0.10, and 0.20.

The stiffnesses were written in the form

Kx = Kxo (k1 + i aoc1)(1 + 2iO)

K~ = K~(k2 + i aoc2)(1 + 2iO)

with a = ~B/c , ~ the frequency of excitation in radians/second, and
o s

c the shear wave velocity of the soil.s
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Figures 8 to 10 show the variation of the horizontal stiffnesses
K K
~o kl and ~o cl ' versus ao for the three values of D considered. It

can be noticed that while the stiffnesses are strongly dependent on the
ratio B/H in the low frequency range (including the static case) the
values in the higher frequency range oscillate around those of the half
space (these oscillations correspond to the natural frequencies of the
soil stratum). As the internal damping increases, these oscillations
become less pronounced, and the effect of finite depth of the layer tends

K
to disappear. The values of ~o kl increase slightly with increasing D,
but this increase is relatively small for typical values of damping in
soils (of the order of 5 to 10%). The complex term of the dynamic stiff-

Kxoness, ~ cl ' would be zero below the fundamental shear frequency of an

elastic stratum (ao =~ ~), since in this range of frequencies there can

not be any radiation of waves into the far field. Above this frequency,
the values of this term approach again those corresponding to a halfspace
with some oscillations. The effect of the internal soil damping D is to
decrease these oscillations and to provide for a smoother continuous
transition from the zero value for the static case to the halfspace values.

Figures 11 to 13 show the corresponding results for the rocking

c the P wave velocity of the soil and c the shear wavep s

Above this value of a the results are again very similar too
halfspace. The existence of internal soil damping provides for

K
stiffness. The effect of layer depth on the term -~ k? is not very marked,

GB -
and for H = 8B the solution is almost identical to that of a halfspace.
The effect of increasing the internal damping D is again to reduce the
oscillations and to increase the values of k2 in the high frequency range
(this increase is only significant for values of D of the order of 0.20 or
larger). If the soil had no internal damping, the complex term ~c? would

GB ~

be zero below the fundamental dilatational frequency of the stratum (ao =
c

K~ ~ with
2 H Cs
velocity).
those of a
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nonzero values of c2 below the stratum's natural frequency and a smooth
transition from zero at ao = 0 to the halfspace curve. Notice, however,
that in the low frequency range the damping term c2 will always be sub
stantially smaller for a finite soil layer than for a halfspace.

Figures 14 to 16 and 17 to 19 show the variation with frequency of
the terms klc l and k2c2. This is the form in which the dynamic stiff
ness coefficients are normally presented for circular foundations. The
same basic observations can be made from these figures with respect to
the effects of layer depth and of internal soil damping. In this case
for higher frequencies the values of kl increase with layer depth since
the product Kxo kl would tend to be constant (independent of B/H) and
Kxo increases with increasing B/H. For comparison, figures 20 and 21
show the dynamic stiffness coefficients for circular foundations presen
ted by Kausel (6). These results correspond to the case of a soil pro
file with a Poisson's ratio v = 0.33 and an internal hysteretic damping
D = 0.10. Results obtained by Gonzalez (5) indicate that the frequency
variation of the dynamic stiffnesses for square foundations is very simi
lar to that of circular foundations using an equivalent B (or R) in the
expression for ao.

These results indicate that for values of the dimensionless fre
quencya larger than 1.5 to 2 times the fundamental frequency of the

o
soil deposit, the horizontal stiffness term Kxokl can be approximated
(for a surface foundation) by the static value corresponding to H = 48

K k 3. 15G 71" G
xo 1 = 2-v = 2-v

almost independently of the layer depth (particularly if there is some
internal damping in the soil, as would be normally the case). Luco and
Hadjian (8) used this same expression for the halfspace multiplied by an

averaging factor of 0.94.

It should be noticed that the decrease in the effect of layer depth
with increasing frequency ao also takes place in a circular foundation.
It is less dramatic in this case because the effect is smaller, since the
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corresponding factor is 1 +} ~ instead of 1 + 2~. Thus for the same

range the values of ao' the dynamic horizontal stiffness of a circular
foundation should be written simply as

K k = 8GR
xo 1 2-v

For the same range of frequencies the term Kxoc l is approximately
1.1 to 1.15 times K kl orxo

KxoCl ~ 2 to 2.1G for v = 0.3

Luco and Hadjian (8) used a value of KxoCl = 2G which is again in very
good agreement with these results. Veletsos and Wei (15) have shown
that for circular foundations the value of cl is not independent of
Poisson's ratio and therefore the expression for KxoC l in terms of v is
not identical to that of Kxokl . Within the range of values of practical
interest (v = 0.3 to 0.5), the variation is not, however, large. One
can thus write approximately

K 3.6Gcl ~ -2-xo . -v

whereas for a circular foundation

The rocking stiffness term K~ k? is only slightly affected by the
'/'0 <-

layer depth since the factor is 1 + 0.2 B/H. The disappearance of this
factor with increasing values of ao is therefore harder to ascertain
from the numerical results. Since the effect is, however, small for
typical values of B/H, this question is not of great importance. The
variation of this term with frequency is very similar for the strip foot
ing and for the circular foundation. Over the range of frequencies stud
ied it can be approximated as a straight line of the form
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The studies by Veletsos and Wei (15) over a more complete range
of frequencies indicate that for circular foundations k2 can be approxi
mated by 1 - 0.2ao for values of v close to 0.5; for values of v of the
order of 0.3, this expression is valid (approximately) for a < 2.5.

o -
For ao ~ 2.5, k2 ~ 0.5. A similar type of behavior can be expected for
strip footings.

c2 ~ 2
1 + ao

The term c2 is still increasing slowly at a frequency ao = 0.5TI. It
has then a value of about 0.4 for the strip footing and just about 0.2
for the circular foundation. For higher frequencies Luco and Hadjian
(8) used values of c2 = 0.56 for the strip footing and 0.4 for the circu
lar foundation (at v = 0.3), which seem reasonable. Thus while the vari
ation of c2 with frequency looks similar for both cases, the values are
somewhat higher for the strip footing, and the increase takes place fas
ter. For a halfspace the results of Veletsos and Wei (15) for a circu
lar foundation can be approximated (for typical values of v between 0.3

and 0.5) by O.35i
o

For a strip footing on a halfspace, the corresponding approximation

is more nearly

+ 2a~

SELECTION OF AN EQUIVALENT FOOTING

In order to reproduce a three-dimensional foundation (circular or
nearly square) by a two-dimensional model, it is necessary to select
some equivalent dimensions for the strip footing. The width of the foot
ing 2B will affect the various stiffness terms in different form, as well
as the dimensionless frequency ao. The thickness in the direction per
pendicular to the plane 2C will just be a scaling factor applied to all
the terms.
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For the purpose of estimating the values of the stiffnesses pro
vided by the models, the results of the previous sections can be sum
marized in the form of the following formulae:

strip footing

with

with

K = 2'rrGC (l + 1 I)(l + .i I)
xo 2-\) 3 B 3 H

k1 = ~ (l + 2 ~) for n = 0 (static case)

= 1 for n larger than 1.5 times the natural
shear frequency of the 1a~er. Between these
two values of n a transition must be used as
shown in figures 8 to 11 or 14 to 16.

c1 = 1.1 for values of n larger than the natural
frequency of the layer; a transition curve
must be used for lower values of n , depending
on the internal damping D.

K~ = K~o (k2 + i ~: c2}(1 + 2iD)

nGCB2 B E 2 EK = -- (1 + 0.2 -H)(l + -B)(l + -3 -H)
¢o 1-\)

k = 1 - 0.2 nB for nB < 2.5 all \)
2 c c -s s

= 1 - 0.2 nB for nB > 2.5 \) = 0.45 to 0.5
c

s
cs -

= 0.5 for nB > 2.5 \) = 0.3 to 0.4c -s

a2
o with a = nB for n larger than the fun-

+ 2 2 0 Csao
damenta1 dilatational frequency of the layer. For

smaller values of n use a transition curve depend
ing on the internal damping D.
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circular foundations

with

Kx = K
XO

(kl + i ~: cl)(l + 2iO)

K = 8GR (l + !f)(l + ~~)
XO 2-\1 3 R 4 H

kl = 1 + t ~ for n = 0 (static case)

= 1 for n larger than 1.5 times the natural shear fre
quency of the 1ayer. Be"QI/een these two values of n,
use a transition curve as shown in figure 20.

with

c
l

~ 0.6

I)p = K<Po (k2 + i ~: c2)(1 + 210)

8GR3 1 R E E
Kepo = 3(1-v) (l + 6H)(1 + 2 jf)(l + 0.7 iT)

k2 = 1 - 0.2 nR for --R< 2.5 all v
Cs Cs -

v = 0.3 to 0.4

v = 0.45 to 0.5for nR > 2.5c -s
nRfor - > 2.5c -s

= 1 - 0.2 nR
Cs

= 0.5

0.35 a~
c2 = with a = cnR for n larger than the fundamental

1 + a~ 0 s

dilatational frequency of the layer. Transition depend
ing on D for smaller values of n.

Elsabee (3) has recommended for the transition curves in the case of cir
cular foundations

a
c1 = 0.65D a 0 < 12 for 0.=-

1 (1-20)0. aol
2O.35a a c

0.50D a but 0 for a = ....Q. <---.l?.c = 22
+ a~ aol -c1 - (1-2D)o. s
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Similar expressions could be used as a first approximation for the
strip footing, although their applicability was not checked in this study.

As Luco and Hadjian (8) had already pointed out, it is not possible
to select values of footing width and thickness so as to match all the
stiffness terms over the complete frequency range. Accounting for a layer
of finite depth and embedment complicates the problem further. Even so,
it must be recognized that not all the terms have the same effect or im
portance on the structural response and that some degree of error may be
tolerated in some of them. In order to assess the validity of a two
dimensional model it would be advisable, for each particular problem, to
estimate the natural frequency of the soil structure system and the effec
tive amount of damping. These quantities can be computed with various
degrees of accuracy (and complexity). In the simplest case, if the struc
ture is modelled as an equivalent single-degree-of-freedom system with a
mass M(or weight w) concentrated at a height h above the base of the foun
dation, and a spring k such that wo = Ik/M is the fundamental frequency
of the structure on a rigid foundation (without any soil structure inter
action effect}, the natural frequency of the combined soil structure sys~

tern can be estimated by

A simple iterative procedure can be used to account for the frequency.

variation of Kxokl and K~ok2.

Once the natural frequency w is known, the effective damping can be

estimated from

(3 = (3 (~) 2
+ 0fl - (.~) 21 + 1 wB (i!L) 2 [~_ ~ + --li c2l

o Wo L Wo J 2 Cs Wo Kxokl kl K~ok2 k2J
where (3 is the structural damping (assumed to be of a hysteretic nature),o
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D is the internal soil damping (also hysteretic) and a is the effective
damping of the combined system. For circular foundations the term wB/cs
should be replaced by wR/cs .

By computing wand B using the formulae for both strip footings and
circular foundations, one can determine whether the error introduced by
the two-dimensional approximation will be acceptable for the case con
sidered.

CONCLUSIONS AND RECOMMENDATIONS

A series of parametric studies were conducted to determine the dy
namic stiffnesses of strip footings. From the results of these studies
approximate formulae were derived which were then compared to those
already available for circular and square foundations. The differences
between these formulae are such that important errors may result in some
cases when attempting to reproduce a three-dimensional problem by a two
dimensional model. Furthermore, it appears that increasing the amount
of radiation damping for the strip footing, as done in some pseudo three
dimensional solutions, may not improve in general the agreement between
the two models. It is therefore recommended that before embarking on
the use of computer programs based on a plane strain model, some prelim
inary analyses be conducted to assess the magnitude of the errors involved
in this idealization for the particular case under consideration.
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