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ABSTRACT

As a part of a continuing program to evaluate the dynamic response

of actual structures and to accumulate a body of information on the

dynamic properties of structures, especially when these structures have

novel design features, a dynamic test program was conducted on the forty­

two story Rainer Tower Building. Equally important, this program is aimed

at evaluating the accuracy of computer modeling techniques and programs by

comparing the experimentally derived dynamic response data with analytically

predicted values.

The dynamic tests of the building included both a forced vibration

study and an ambient vibration study. These results are compared and in

general show very good correlation. A mathematical computer model of the

Rainer Tower was formulated, and the results of the analysis are presented

and compared to the experimental results. Again, in general, the results

compare very favorably.

ix Preceding page blank





1. INTRODUCTION

1.1 General

The design of multistory structures subjected to dynamic forces

resulting from foundation motions requires a consideration of both the

characteristics of the ground motion and the dynamic properties of the

structure. Ground motions as caused by an earthquake are random and,

although not prescriptible for aseismic design, have been fairly well

studied for certain well-known past earthquakes. The engiheer is there­

fore mainly interested in the dynamic properties of the structure when

designing for earthquake forces and is only indirectly concerned with the

ground motion characteristics.

High speed digital computers and more sophisticated idealizations

and computer model formulations of structures can predict the

elastic, and in certain structural systems the inelastic, response of

structures when subjected to earthquakes. However, the accuracy of th~

results in large measure depend upon the computer model formulation of

the structure and its foundation. In order to determine the accuracy of

the calculated results and to accumulate a body of information on the

dynamic properties of structures, especially when these structures have

novel design features, a number of dynamic tests have been conducted on

full-scale structures (1).

For the above reasons, dynamic tests using forced and ambient

methods were performed on the Rainer Tower Building in Seattle, Washing­

ton. Because of the potential advantages of the ambient vibration method

in dynamic testing of full-scale structures, it was desirable to compare

both methods in order to assess the accuracy of each method in evaluating

the dynamic properties of the structural systems.
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The building is described in Chapter 2, and the results of the dynamic

tests, from forced, as well as ambient vibration study, are given in

Chapters 3 and 4, respectively. Comparison of the dynamic properties of

the bUilding from both studies is presented in Chapter 5. A mathematical

model of the structural system was formulated, and the calculated and

experimental dynamic properties were compared. The formulation of the

mathematical model and the analytical dynamic properties obtained are

described in Chapter 6.

1.2 Acknowledgement
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contractor, William Simpson Construction Co., Inc.; and the Structural

Engineers, Skilling, Helle, Christiansen, Robertson, especially Mr. John

B. Skilling, for their help and cooperation in coordinating and carrying

out the test program.
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2. THE RAINER TOWER BUILDING

2.1 General

The Rainer Tower Building is located in Seattle, Washington. The

dynamic tests were performed on the Tower during April and May 1977. The

building is a multistory structure, forty stories in height above the

lobby level, and two below ground levels. The height of the building above

the lobby level is about 514 feet. Figure 2.1 shows a general view of

Rainer Square with Rainer Tower as it would be seen from the Northwest,

and Fig. 2.2 shows the building from the Southeast.

2.2 Structural System and Structural Elements

The structure consists of a twelve-story pedestal rising from the

basement level, above which rises a thirty-story steel frame. In overall

plan, the pedestal is 68 feet 4 inches square at the base and flares out

as it rises to the twelfth floor to 138 feet 10 inches square. The walls

of the reinforced concrete pedestal are 5 feet 10 inches thick at the

base and have a minimum thickness near the tenth floor of 1 foot 11 3/4

inches. The top of the pedestal is the twelfth floor, which is approxi­

mately 2 feet thick and is heavily reinforced with both conventional

reinforcing bars and post-tensioning tendons. The pedestal rests on a

12-foot thick foundation mat that is 106 feet square in plan. Fig. 2.3

shows a cross-section of the building.

The steel frame structure extends from the twelfth floor level to the

roof and consists of core frames with shear connected beams and ex-

terior moment resistant frames with six bays at 18 feet 8 inches. The

arrangement of the columns for both the core and the exterior frames is
'';:''.

shown in Fig. 2.4.

The floor plan at the basement level is shown in Fig. 2.5. A
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typical floor plan of the building from the twelfth floor to the fortieth

floor is given in Fig. 2.6.

The core frame columns are rolled sections of W14shape with a mini­

mum yield strength of 50 ksi. The core beams are, in general, rolled

sections mostly wide flange shapes varying from W8 to W2l. The steel

being mostly A36 with some Gr50 material. The exterior columns consist

of W14 shapes of A36 steel in lower floors, and above the twenty-seventh

floor, they are mostly Gr50 steel. The exterior frame beams are wide

flange shapes of W30 or W36, in general, of A36 steel with some beams of

Gr50 steel.
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FIG. 2.1 GENERAL VIEW OF RAINER SQUARE
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FIG. 2.2 RAINER TOWER BUILDING
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3. FORCED VIBRATION STUDY

3.1 General

The forced vibration study was carried out and completed during April

and May 1977. The building was structurally completed prior to the exper~

imental work, and all of the facing cover, both glass and aluminum, as well

as partition walls and installations in the core part of the building,

were in place. The experimental apparatus employed in the dynamic test is

described below. The general experimental procedures, equipment used, and

procedures for data reduction applied, for forced vibration study conduct­

ed are also described. Finally, the experimental results are presented

and discussed.

3.2 Experimental Apparatus

The experimental apparatus employed in the tests were two vibration

generators, twelve accelerometers and equipment for the measurement and

recording of the frequency responses. The apparatus is described in the

following sections.

3.2.1 Vibration Generators

Forced vibrations were produced by two rotating-mass vibration

generators or shaking machines, one of which is shown in Fig. 3.1. These

machines were developed at the California Institute of Technology under

the supervision of the Earthquake Engineering Research Institute for the

Office of Architecture and Construction, State of California. Each machine

consists of an electric motor driving two pie-shaped baskets or rotors,

each of which produces a centrifugal force as a result of the rotation.

The two rotors are mounted on a common vertical shaft and rotate in

opposite directions so that the resultant of their centrifugal forces is

a sinusoidal rectilinear force. When the baskets are 1ined up, a peak
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value of the sinusoidal force will be exerted. The structural design of

the machines limits the peak value of force to 5,000 lbs. This maximum

force may be attained at a number of combinations of eccentric mass and

rotati ona1 speed, since the output force is proporti ona1 to the square of

the rotational speed as well as the mass of the baskets and the lead

plates inserted in the baskets. The maximum force of 5,000 lbs. can be

reached for a minimum rotational speed of 2.5 cps when all the lead

plates are placed in the baskets. At higher speeds the eccentric mass

must be reduced in order not to surpass the maximum force of 5,000 lbs.

The maximum operating speed is 10 cps, and the minimum practical speed is

approximately 0.5 cps. At 0.5 cps with all lead plates in the baskets, a

force of 200 lbs. can be generated. The relationship between output

force and frequency of rotation of the baskets for different basket loads

is shown in Fig. 3.2. Although the rotating mass vibration generators

are very difficult to accurately control at frequencies lower than 0.5 cps

and at the same time develop sufficiently large forces to record the motion

of the building, in this dynamic test with extremely careful performance,

it was possible to obtain frequency response for the first modes. The

frequencies excited were in the range of 0.2 to 0.4 cps, and the exciting

resonant force was within 81 and 114 lbs.

The speed of rotation of each motor driving the baskets is controlled

by an electronicamplidyne housed in a control unit. The control unit

allows the machines to be synchronized or operated 1800 out-of-phase.

This makes it convenient to excite, in structures with a line of symmetry,

either torsional or pure translational vibrations without changing the

position of either machine. A complete description of the vibration gen­

erators is given in (7).
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The vibration generators were mounted on the 39th floor at the east

and west sides of the building, 1 foot 10 inches off the north-south

centerline and located 59 feet 11-1/2 inches on each side of the east-west

centerline. Associated vibration control and recording equipment was also

placed on the 39th floor (Fig. 2.6 and 3.1).

3.2.2 Accelerometers

The transducers used to detect horizontal floor accelerations of the

building were Statham Model A4 linear accelerometers, with a maximum

rating of ± 0.25 g.

3.2.3 Equipment for Measurement of Frequency

For the vibration generators, the vibration excitation frequencies

were determined by measurement of the speed of rotation of the electric

motor driving the baskets. A tachometer, attached to a rotating shaft

driven by a transmission belt from the motor, generated a sinusoidal sig­

nal of frequency 300 times the frequency of rotation of the baskets.

Hence, the maximum accuracy of frequency measurements was ± 1 count in

the total number of counts in a period of 1 second (the gating period),

i.e., ± 1/3 of 1% at 1 cps and ± 1/9 of 1% at 3 cps.

3.2.4 Recording Equipment

The electrical signals for all accelerometers were fed to amplifiers

and then to a Honeywell Model 1858 Graphic Data Acquisition System with

8-in. wide chart. In frequency-response tests, the digital counter read­

ing was observed and recorded manually on the chart alongside the associated

traces.

3.3 Experimental Procedure and Data Reduction

The quantities normally determined by a dynamic test of a structure

- 13 -



are: resonant frequencies, mode shapes, and damping capacities. The

experimental procedures and reduction of data involved in determining

these quantities are described in the next section.

3.3.1 Resonant Freguencies

With the equipment described on the previous page, resonant fre­

quencies are determined by sweeping the frequency range of the vibration

generators from 0.2 to 10 cps.

In the case of the vibration generators, the exciting frequency is

increased slowly until acceleration traces on the recording chart are

large enough for measurement. Above this level, the frequency is increased

in steps until the upper speed limit of the machine is reached. Near

resonance, where the slope of the frequency-response curve is changing

rapidly, the frequency-interval steps are as small as the speed control

permits. These steps are relatively large in regions away from resonance.

Each time the frequency is set to a particular value, the vibration res­

ponse is given sufficient time to become steady-state, before the accelera­

tion traces are recorded. At the same time, the frequency of vibration,

as recorded on a digital counter, is observed and written on the chart

with its corresponding traces. Plotting the vibration response at each

frequency step results in a frequency-response curve.

Frequency-response curves .in the form of acceleration amplitude

versus exciting frequency may be plotted directly from the data on the

recording chart. However, the curves are for a force which increases

with the square of the exciting frequency, and each acceleration amplitude

should be divided by the corresponding square of its exciting frequency

to obtain so-called normalized curves equivalent to those for a constant

force (assuming linear stiffness and damping for the structural system).
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If the original acceleration amplitudes are divided by the frequency to

the fourth power, displacement frequency-response curves for constant

exciting forces are obtained. In cases of fairly low damping (under 5%),

there is little difference between results obtained for resonant frequen­

cies and damping capacities measured from the different curves.

3.3.2 Mode Shapes

Once the resonant frequencies of a structure have been found, the

mode shapes at each of these frequencies may be determined. In this case,

with twelve accelerometers available, it was decided to use eleven floors

for the measurement of the mode shapes, keeping one accelerometer as a

spare.

The structure was vibrated at each of the resonant frequencies, and

the vibration amplitude was determined for all accelerometers at each

frequency.

It is generally necessary to make corrections to the recorded ampli­

tudes to compensate for differences between calibration factors for each

accelerometer. Absolute calibration is not required for mode shapes, and

cross-calibration is sufficient. The accelerometers and all equipment

associated with them in their respective recording channels are cross­

calibrated simply by placing them all together and measuring the vibra­

tion amplitude of all of the accelerometers when the structure is vibrated

at each of the resonant frequencies. Cross-calibration is generally

carried out at the beginning and end of each day. The average calibration

factors as derived from the pre- and post-test cross-calibration runs are

used to adjust the recorded amplitude.

The number of points required to define a mode shape accurately

depends on the mode and the number of degrees of freedom in the system.
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For example, in a dynamic test on a 15-story building (12) four points

were sufficient to define the first mode, whereas it required measurements

of the vibration of all 14 floors and the roof to define the fifth mode

shape accurately.

3.3.3 Damping Capacities

Damping capacities may be found from resonance curves in the normal­

ized frequency-response curves by the formula:

where

~ = damping factor,

f = resonant frequency,

ilf = difference in frequency of the two points on the resonance
curve with amplitudes of l/~ times the resonant amplitude.

Strictly, the expression for ~ is only applicable to the displacement

resonance curve of a linear, single degree-of-freedom system with a small

amount of viscous damping. However, it has been used widely for systems

differing appreciably from that for which the formula was derived, and it

has become accepted as a reasonable measure of damping. In this respect,

it should be remembered that in the case of full-size civil engineering

structures, it is not necessary to measure damping accurately in a per­

centage sense. It is sufficient if the range in which an equivalent vis­

cous damping coef~icient lies is known. Meaningful ranges might be

defined as: under 1%,1-2%,2-5%,5-10%, over 10% (1,10).

The bandwidth method described above is extremely useful when the

damping factor lies in the range of 1-10% of critical. However, if the

damping lies below 1%, difficulties maybe encountered in observing suf~

ficient points on the resonance curve. Also, the small frequency
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difference between two relatively large frequencies becomes difficult to

measure accurately. Above 10% of critical damping, resonance curves often

become poorly defined due to interference between modes, and the results

from the bandwidth method have little meaning.

3.4 Experimental Results

The vibration equipment was bolted to the 39th floor, as shown in

Fig. 2.6; and, with the appropriate adjustments to the vibration genera~

tor equipment, it was possible to produce translational or torsional

vibrations of the building. The first six translational modes, respec­

tively in E-W and N-S directions, were excited as well as the first five

torsional modes. Frequency response curves in the region of the resonant

frequencies for all excited translational and torsional modes are shown

successively in Figs. 3.3 through 3.19. The curves are plotted in the

form of normalized displacement amplitude versus exciting frequency. The

ordinates were obtained by dividing the recorded acceleration amplitude

by the square of the exciting frequency to obtain acceleration amplitudes

for a constant equivalent force amplitude. The values thus obtained are

divided by the square of the circular frequency (rad/sec) to obtain nor­

malized displacement amplitudes. For convenience, the actual exciting

force (Fr ) and displacement amplitude (ur ) for each of the excited reson­

ancies are given in Figs. 3.3 through 3.19 as well as calculated damping

factors.

The resonant frequencies and damping factors evaluated from the

response curves are summarized in Tables 3.1 and 3.2, respectively. The

generated exciting force by both shaking machines and the corresponding

resonant displacement amplitude for each resonant frequency are given in

Tables 3.3 and 3.4, respectively.
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TABLE 3.1 - RESONANT FREQUENCIES (cps)

Mode
Excitation

1 2 3 4 5 6

E-W 0.232 0.755 1.385 1.87 2.21 2.68

N-S 0.225 0.720 1.32 1.81 2.14 2.62

Torsional 0.377 1.055 1.86 2.60 3.32 ----

TABLES 3.2 - DAMPING FACTORS (%) FROM RESONANCE CURVES

Mode
Excitation

1 2 3 4 5 6

E-W 1.7 2.7 2.2 2.9 2.0 3.0

N-S 6.6 2.6 1.9 2.1 1.6 2.8

Torsional 2.5 1.0 1.6 2.0 2.0 ---

TABLE 3.3 - RESONANT FORCE AMPLITUDES (lb)

Mode
Excitation

1 2 3 4 5 6

E-W 87 917 3087 5627 3338 4894

N-S ;81 834 2804 5254 3115 4619

Torsional 228 1792 5549 6546 10722 ----
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TABLE 3.4 - RESONANT DISPLACEMENT AMPLITUDES (x 10-2 in) 39th FLOOR

Mode
Excitation

1 2 3 4 5 6

E-W 1.98 0.279 0.116 0.175 0.178 0.248

N-S 1.59 0.349 0.097 0.343 0.190 0.252

Torsional 1.44 0.43 0.178 0.437 0.776 -----

The mode shapes for the translational and torsional modes that were

excited are shown in Figs. 3.20 through 3.36. Particular attention has

been given to observation of inp1ane deformations on the 39th and 12th

floors for each of the excited resonances. The horizontal inp1ane floor

vibrational mode associated with each of the translational and torsional

modes of vibration as well as the resonant disp1acementamp1 itudes of the

floor center and the rotational amplitudes about the center are given in

Figs. 3.20 through 3.36. Resonant rotation amplitudes for the 39th and

12th floors are summarized in Tables 3.5 and 3.6, respectively.

TABLE 3.5 - RESONANCE ROTATION AMPLITUDES
39th Floor (x 10- 7 rad)

Mode
Excitation

1 2 3 4 5 6

E-W 11.6 2.2 0 0.43 0.39 0.48

N-S 20.2 2.4 0 0.55 0 0.17

Torsional 17.4 43.1 16.2 21.3 23.4 ----
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TABLE 3.6 - RESONANCE ROTATION AMPLITUDES
12th Floor (x 10- 7 rad)

Mode
Excitation

1 2 3 4 5 6

E-W 0 0 0 0.68 0.19 0.09

N-S 0 0 0 1.10 0.62 0.17

Torsional 0 4.8 0.45 3.7 9.46 ----

3.5 Discussion of Experimental Results

The forced-vibration study of the building was conducted to obtain

accurate resonant frequencies for the first six translational modes of

vibration in the N-S direction along one of the symmetry lines of the

floor plane and the first six translation modes in the orthogonal E-W

direction as well as the first five torsional modes of vibration. The

resonant frequencies were well separated, and it was of interest to note

the ratios of the observed higher mode frequencies with respect to the

fundamental one. These ratios are given in Table 3.7 for all three direc­

tions of excited vibrations, and they indicate a type of overall structural

response.

From these results, it may be concluded that the building vibration

in both translational directions as well as torsional vibration are pre-

dominantly of the shear type because the determined frequency ratios

follow closely the ratios 1,3,5,7,9,11, .... , which apply for the

uniform shear beam.

With the translational directions of vibration having been selected

along the E-W and N-S lines of symmetry, it should be expected that the
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TABLE 3.7 - RATIO OF RESONANT FREQUENCIES

Translational Translational TorsionalE-W N-S
Mode

fi fi/f, fi filfl
fi fi/f,(cps) (cps) (cps)

1 0.232 1.0 0.225 1.0 0.377 1.0

2 0.755 3.25 0.720 3.20 1.055 2.80

3 1.385 5.97 1.32 5.87 1.86 4.93

4 1.87 8.06 1.81 8.04 2.60 6.90

5 2.21 9.53 2.14 9.51 3.32 8.81

6 2.68 11.55 2.62 11.64 ---- ----

translational modes exist in the direction of the lines of symmetry. It

was found that amplitudes of rotation on the 39th and 12th floors for both

directions are on the same order of magnitude (Tables 3.5 and 3.6 and

Figs. 3.20 through 3.31); and, comparing them with the amplitudes of rota-

tion in the torsional modes, they are from one to two orders of magnitude

smaller. Thus, it could be concluded that the modes of vibration excited

along the lines of symmetry are actual translational modes, with practically

the same resonant frequencies and mode shapes (Table 3.1 and Figs. 3.20

through 3.31). In the torsional modes of vibration, it appears that in

general the line of rotation is crossing the floor plane centroid (Figs.

3.32 through 3.36). It is of interest to note that in the third torsional

mode there was some N-S translational motion, and this, no doubt, was due

to the close coupling of the frequencies of the fourth N-S translational

mode and the third torsional mode (1.81 versus 1.86, respectively). From

these results it could be concluded that the mass and stiffness center

- 21 -



coincide with the geometric center and that the floor slabs are practically

rigid in their own plane.

Damping coefficients, in general, varied from 1% to 3% of critical

damping in all modes, except for the first mode in the N-S direction. It

should be mentioned that the damping coefficient for the first mode in

the translational direction is probably higher due to difficulties in

properly controlling the building vibration at such low frequencies (0.2

and 0.4 cps) and at a very low exciting force amplitude (81 lb). Similar

dampi~g values have been reported from the other full-scale forced vibra­

tion studies of steel frame high-rise buildings (13,14,15,20).
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4. AMBIENT VIBRATION STUDY

4.1 General

In recent years a method for testing of full-scale structures based

on wind and microtremor-induced vibrations has been developed. Although

the method has been in use for almost 40 years by the United States Coast

and Geodetic Survey (16) to measure fundamental periods of the buildings,

it was not until recently that this was extended to higher modes (5,8,9,

13,14,17,20).

The ambient vibration study of the dynamic properties of the struc­

tures is a fast and relatively simple method of field measurements. It

does not interfere with normal building functions, and the measuring

instruments and equipment can be installed and operated by a small crew.

The objective of performing the ambient vibration study was to obtain

dynamic properties of the building and then compare these results with

those obtained from the forced vibration study to assess efficiency of

both techniques.

The ambient vibration, experimental and analytical procedures were

first suggested by Crawford and Ward (5,17). An assumption in the analysis

technique is that the exciting forces are a stationary random process

possessing reasonably flat frequency spectrum. For multistory buildings

and other large above ground structures, the largest ambient vibrations

are produced by wind. If the frequency spectrum of the vibrational excit­

ing forces is reasonably flat, a structure subjected to this input will

response in all its normal modes.

The ambient vibration study of the Rainer Tower Building was carried

out on April 28, 1977. Wind direction and velocity on the day of dynamic

testing measured at the Seattle-Tacoma airport are given in Table 4.1.
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The direction of the wind was almost constant at aximuth 23-32° and ve1o-

city of 6-8 mph.

TABLE 4.1 - WIND DIRECTION AND VELOCITY
(at Seattle-Tacoma Airport, April 28, 1977)

Time Wind Blowing Direction (0) Velocity (mph)

1 p.m. 32 6.9

4 p.m. 31 5.8

7 p.m. 23 8.0

The vibration measuring equipment employed in the ambient vibration-

dynamic test is described below. The general experimental procedures and

procedures for data analyses applied are also described. Finally, the
experimental results are presented and discussed.

4.2 Field Measurements

4.2.1 Measuring Equipment

The wind induced vibrations were measured using Kinemetrics Ranger

Seismometers, Model SS-l. The seismometer has a strong, permanent magnet

as the seismic inertial mass moving within a stationary coil attached to

the seismometer case. Small rod magnets at the periphery of the coil

produce a reversed field which provides a destabilizing force to extend

the natural period'of the mass and its suspension.

The resulting seismometer frequency was 1 Hz. Damping was set at

. 0.7 critical. The output for a given velocity is a constant voltage at

all frequencies greater than 1 Hz and falls off at 12 dB/octave for fre­

quencies less than 1 Hz.
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The Kinemetrics Signal Conditioner, Model SC-l (Fig. 4.1) was used

to amplify and control simultaneously four seismometer signals. The four

input channels have isolated circuitry to integrate and differentiate the

amplified input signal. All outputs are simultaneously or independently

available for recording. A modification to the signal conditioner allows

for outputing each channel separately or for taking the sum or difference

on two channels and outputing the average of those channels. Each channel

provides a nominal maximum gain of 100,000. An 18 dB/octave low pass

filter is available with a cut-off frequency continuously selectable

between 1 Hz and 100 Hz for each channel.

The amplified analog signals were recorded and directly converted to

digital format using the Kinemetrics Digital Data System, Model 00S-1103.

A direct recording oscillograph was provided to display and monitor the

four signal levels during tape recordings. The data was digitized, in

general, at 40 samples per second. The DDS-1103's rate of scan across

multiple input channels is 40,000 Hz. This rapid scan rate is sufficient

to retain the phase relationship between channels.

A Rockland FFT 512/S Real-Time Spectrum Analyzer was used in order

to facilitate the rapid determination of the modal frequencies (Fig. 4.1).

This unit is a single channel analyzer with 512 spectral lines calculated

but only 400 lines displayed to reduce aliasing errors. Twelve analysis

ranges are provided from 0-2 Hz to 0-10 KHz.

4.2.2 Measurement Procedures

When measuring ambient and forced vibrations of the buildings, it is

usually assumed that the structure can be approximated by a one-dimensional,

damped discrete or continuous system. In most of the cases (11,13,14),

measurements indicate that for the level of excitation applied, floor
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structures are sufficiently stiff so that the above assumption is accept­

able. In the case of the Rainer Tower Building, it is assumed that the

structural behavior may be approximated by a linear one-dimensional model.

In the experimental study of building vibration which is based on

the linear model, it is assumed that the resulting motions can be expressed

as the superposition of modes associated with the discrete frequencies

(2,3). This approach then requires a simultaneous measurement of motion

in a given direction at at least two different floors to obtain their

relat5ve amplitude and phase, the two quantities needed to determine mode

shapes. During the measurements of wind induced vibrations, it is not

necessary to find the actual amplitudes that are recorded because all that

is ever used in determining mode shapes is the relative amplitude of the

same two instruments.

The modal frequencies were obtained by placing two pairs of seismo­

meters near the outer walls on the north and south and east and west sides

of the 39th floor of the building. They were oriented so that the seismo­

meters on the north and south sides produced the east-west frequencies and

those on the east and west sides produced the north-south frequencies.

The signal conditioner was set so that seismometers 1 and 2 would be out­

put as channell, giving the average of the sum of these two readings, and

channel ~ the average of the difference of seismometers 1 and 2. The out­

put of seismometers 3 and 4 were similarly averaged. In this way, the

translational frequencies could be obtained from the average of the sum

of the seismometer readings and the torsional frequencies from the average

of the difference of the seismometer readings. As noted in Table 4.2, for

the modal frequencies'seismometers 1 and 2 were oriented to obtain the

north-south frequencies and seismometers 3 and 4 to obtain the east-west
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frequencies. The data was recorded for a total of 900 seconds.

For measurement of the translational and torsional modes, two of the

seismometers remained at the 39th floor and were placed along the building

centerlines near the outer column lines and oriented south and west, res­

pectively. The other two seismometers were oriented in the same way and

relocated in approximately five floor intervals for simultaneous measure­

ments of motion along the height of the building (Fig.4.3 and Table 4.2).

As in the case for determining the modal frequencies, the sum of the two

seis~ometers was averaged to give the translational modes and the differ­

ence of the seismometers was averaged to give the torsional modes. Each

mode shape run was recorded continuously for 60 seconds. The low pass

filter was set on each channel at 10 Hz to attenuate all higher frequen­

cies, thus completely removing electrical noise and other possible high

frequency vibrations. The voltage output to the recorder was adjusted

to not exceed about ± 1.5 volts. The unattenuated calibration constant

for the seismometers used was approximately 4.32 volts/in/sec. Corres­

ponding first mode acceleration and displacement were about ± 0.03 x 10- 5 9

and ± 5.5 x 10- 5 inches, respectively.

4.3 Data Analysis

4.3.1 Fourier Analysis

It is convenient to use Fourier transforms to analyze low level

structural vibrations. They may be used to exhibit the frequency content

of the recorded vibration, thus identifying modal frequencies when the

input force frequency spectrum is reasonably flat. Comparing measured

amplitude and phase between various points on the structure provides an

estimate of the mode shape.

A measured time-series signal x(t) can be transformed to the
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TABlE 4.2 LOCATION OF SEISMOMETERS.

~.", .
• "Y

Run Sample Duration Floor. nirectinn Channel Data
Number Rate (sec) 5eis 5eis "Seis Seis 1 2 3 4(sps) #1 #2 #3 #4

1 20 900 395 395 39W 39W T e T e
2 40 60 395 395 R5 R5 T e T e
3 40 60 39W 39W 35W 35W T e T e
4 40 60 39W 39W 35W 35W T e T e
5 40 60 395 395 355 355 T e T e
6 40 60 395 395 305 305 T e T e

7 40- 60 39W 39W 30W 30W T e T e
8 40 60 39W 39W 25W 25W T e T e
9 40 60 395 395 255 255 T e T e

10 40 60 395 395 125 125 T e T e
11 40 60 39W 39W 12W 12W T e T e

12 40 60 39t~ 39W 15W 15W T e T e
13 40 60 395 395 155 155 T e T e

14 40 60 395 395 205 205 T e T e
15 40 60 39W 39W 20W 20W T e T e

16 40 60 39W 39W 6W 6W T e T e

17 40 60 39W 395 65 65 T e T e
18 40 60 395 395 B5 B5 T e T e

Core Core
Wall Wall

19 40 60 39W 39W R5 B5 T e T e
Outer Outer
Wall Wall

20 40 60 39W 39W BW BW T e T e
Core Core
Wall Wall

21 40 60 39W 39W BW BW T e T e
Outer Outer

Wall Wall

* T = Translation e = Torsion
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frequency domain, with certain restrictions, using the integral

00

X(f) = f x(t)e-2n ift df
_00

(4-1)

where X(f) represents the frequency domain function, f is frequency,

and i = 1=1.

The time-series x(t) can be recovered by the inverse transformation

00

x(t) = f X(f)e2n ift df
_00

(4-2)

Equations 4-1 and 4-2 may be expressed in functional notation as

X(f) = F [x(t)]

x(t) = F- l [X(f)]

(4-3)

(4-4)

Equation 4-3 is the direct transform and Equation 4-4 is the inverse

transform. Together they are called a Fourier Transform Pair. The direct

transform maps a time-series (time domain) into a function of f (frequency

domain). The inverse transform reverses the process. X(f) is a complex

number with both amplitude and phase.

IX(f)1 is known as the amplitude spectrum of x(t). The function

IX(f)1 2 is known as the power spectrum of f(t).

Consider the elastic structure representing a multistory building.

The set of time-series xl(t), x2(t), ... xi(t), ... , xn(t) recorded for

corresponding floor levels is transformed to the frequency domain,

Xl(f) = F [xl(t)]

X2(f) = F [x2(t)]
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•

•

Modal frequencies of the structure appear as peaks in the plots of

amplitude spectra IXn(f)l. The i,th mode shape coefficient aij at each

natural frequency fj normalized to the value at coordinate 1 is simply:

(4-6)

The relative phase of the complex product Xl(f) Xi(f) gives the

mode shape direction.

Actual calculations are based on a limited time measurement of X(t).

In the time interval T, the Fourier transform (4-1) becomes

T/2
X(f) = f x(t)e-21T ift dt

-T/2

(4-7)

The Hanning time window is'one of the simplest methods used to mini­

mize the spectral spreading effect caused by the finite record length. It

is used for the routine Fourier amplitude spectrum calculations in this

,report. The standard Fourier amplitude spectrum is smoothed by 1/4, 1/2,

1/4 weights as follows:

IXi (f) Ism = 1/2 IXi (f) I + 1/4 {I Xx+1(f) I + IXi _1(f) I} (4-8)
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In addition to the Hanning window, a number of transforms were

determined using discrete sets of data along the total time history.

These transforms were averaged to give a final Fourier amplitude spectra.

Estimates of equivalent viscous damping are obtained from the width

of the peak corresponding to the modal frequency of interest

(4-9)

where ~ is the critical damping ratio and ~f is the peak width (bandwidth

in Hz) measured at l/~ of the amplitude spectrum value IX(fi)l.

4.3.2 Data Processing

Four simultaneous outputs were recorded on magnetic tape during each

of the 21 runs listed in Table 4.2. The first run was digitized at a

sample rate of 20 discrete points per second~ and all the remaining runs

were digitized at 40 points per second. Because of the high frequency

filtering present in the field instrumentation, no significant frequencies

above 10 Hz were found in the recordings. For the resonant frequency runs,

2048 data points were selected for the translational and torsional modes.

A total of 20 transforms separated by 839 points were calculated and

averaged over the 18,000 data points gathered.

For each mode shape run, 1024 data points were selected and a total

of 10 transforms were taken. The Fourier amplitude spectrum was an

average of the 10 transforms computed.

The spectral estimates were smoothed by 1/4, 1/2, 1/4 weights. The

1024 spectral estimates are uniformly distributed between 0 Hz and 40 Hz,

giving a frequency resolution of 40/1024, or about 0.0391 Hz.
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4.3.3 Frequencies and Modes of Vibration

The natural frequencies of vibration for six E-W and N-S translational

modes and for five torsional modes. are given in Table 4.3.

TABLE 4.3 - RESONANT FREQUENCIES (cps)

Mode
Excitation

1 2 3 4 5 6

E-W .234 .762 1.41 1.98 2.29 2.85

N-S .225 .732 1.35 1.87 2.16 2.76

Torsional .381 1.07 1.86 2.64 3.47 ----

The ratios of the higher mode frequencies with respect to fundamental

ones are given in Table 4.4. The values obtained are close to the ratios

1,3,5,7,9,11 .•. , indicating that the building vibration in all

studied directions are predominantly of the shear type.

TABLE 4.4 - RATIO OF RESONANT FREQUENCIES

Translational, E-W Translational, N-S Torsional
Mode fi fi fi

(cps) f i /f1 (cps) filfl (cps) fi/fl

1 .. 234 1.00 .225 1.00 .380 1.00

2 ·.762 3.26 .732 3.25 1.07 2.81

3 1.41 6.03 1.35 6.00 1.86 4.88

4 1. 98 8.46 1.86 8.27 2.64 6.93

5 2.29 9.79 2.16 9.6 3.47 9.10

6 2.85 12.18 2.76 12.27 ---- ----
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Mode shapes were calculated for all six modes in the E-W and N-S

translational directions as well as five torsional modes. All determined

modes of vibration are given in Figs. 4.4 through 4.20.

4.3.4 Damping

In the case of force vibration study, damping in the structure can

be determined in several ways: by the bandwidth method, by measuring

relative peak amplitudes, or, when there is no wind, by measuring a free

vibration response.

During the ambient vibrations, strictly speaking, all these methods

fail unless measurements can be taken during the period when wind excita­

tions are random and stationary in time (17). According to the criteria

described in (17), during the ambient vibration study of the Rainer Tower

Building, wind excitation could be considered in most of the runs as

random and nearly stationary in time. There was also reasonably good

separation of the translational and torsional modes and no overlapping

in the peak areas was noticed.

Estimation of the equivalent viscous damping factors from this study

are given in Table 4.5. The damping for the translational and torsional

modes was calculated from the averaged spectra from run number one on the

39th floor.

TABLE 4.5 - DAMPING FACTORS (%)

Mode
Excitation

1 2 3 4 5 6

E-W 1.9 1.1 3.0 1.3 1.7 0.7

N-S 2.2 1.5 1.8 1.1 1.1 1.0

Torsional 3.3 1.6 1.7 1.4 0.6 ---
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FIG. 4.1 AMBIENT VIBRATION EQUIPMENT
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5. COMPARISON OF FORCED AND AMBIENT VIBRATION STUDIES

The dynamic properties (resonant frequencies s modes of vibration

and damping values) were determined by full-scale dynamic test using

forced and ambient vibration methods. Resonant frequencies and damping

factors from both studies are summarized and compared in Table 5.1.

The resonant frequencies from both studies are in very good agree­

ment in all separated modes of vibrations with the maximum difference

about 6%. The ratios of the observed higher mode frequencies with res­

pect to the fundamental one from both dynamic studies of the building

are plotted in Fig. 5.1. These ratios for both translational directions

as well as the torsional direction indicate that overall structural res­

ponse is predominantly of the shear type. Equivalent viscous damping

factors for the reasons discussed in Chapter 4 show some difference.

It appears that it is rather difficult to obtain appropriate damping values

from the ambient vibration studys particularly in cases when equivalent

viscous damping is expected to be rather low.

Mode shapes for the translational (E-W and N-S) directions as well

as torsional ones are compared in Figs. 5.2 through 5.13. All presented

mode shapes are in good agreement from both studies.

Comparison of the forced and ambient vibration experiments of the

Rainer Tower Building demonstrate the consistency of the two methods in

determining with adequate accuracy the natural frequencies and mode

shapes of a typical modern building. Difficulties in the evaluation of

equivalent viscous damping factors from ambient vibration studies are

presented, and it probably would be more realistic from this type of

study to expect assessment of the range of damping factors rather than

damping values associated with each mode of vibration.
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The field effort involved in the ambient vibration study was signi­

ficantly smaller than for the forced vibration experiment because the

measuri ng equipment used for the ambient vibration test is much 1i ghter

and has fewer components. A group of three people required for both

ambient and forced vibration experiments can perform the necessary mea­

surements for the ambient test in one to two days. The time necessary

to complete the forced vibration test was about two weeks. The total

number of necessary measurements in the ambient test is significantly

smaller, and, also, each individual measurement requires a shorter time

interval. On the other hand, data analysis is slightly more complicated

because it requires Fourier analysis using digital computers.

Both ambient and forced vibration studies may lead to the determina­

tion of up to six and more modes of vibration. The number of mode shapes
resolved depends mainly on the level of the high frequency noise and the

number of measuring stations in the building. Although both methods of

dynamic testing of full scale structures are based on small levels of

excitation, compared to strong earthquake motion, the derived dynamic

properties of the structural systems are invaluable since they offer a

sound basis for rational improvements of the formulation of the mathemati­

cal models in the elastic range of behavior of the structural systems.
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6. THE MATHEMATICAL MODEL

6.1 General

A model using available computer programs was set-up to analytically

assess the dynamic characteristics of the building. The translational

properties in two orthogonal directions and the torsional characteristics

were studied and comparisons made with the observed values. The model

represented one-quarter of the building above the base level. The build­

ing was represented primarily using the multipurpose program SAP, but

param~ter studies on the effect of rotational flexibility at the base

were carried out using TABS (before that effect was incorporated in the

SAP model). Both of these programs are described below, along with des­

criptions of the models.

6.2 Computer Programs

SAP is a multipurpose computer program developed by the Division of

Structural Engineering and Structural Mechanics of the Department of

Civil Engineering at the University of California, Berkeley. It was used

to calculate the frequencies and mode shapes of the building. A full

description of this program is given in (20).

SAP is based on the direct stiffness method, which first calculates

element stiffnesses in element local coordinates and then transforms these
,

stiffness matrices to the global system. The overall stiffness matrix is

obtained by appropriate assemblage of the element stiffness matrices in

global coordinates. The program evaluates the mode shapes and frequencies

from the lateral stiffness matrix for the complete structure and, in this

case, a diagonal matrix of its story masses, by subspace iteration.

The computer time required for a typical run for eight modes was 20

minutes. The basic computer performance data are as follows:
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Typical Time Log

Nodal Point Input
Element Stiffness Formation
Nodal Load Input
Total Stiffness Formation
Eigenvalue Extraction

11 secs
125 secs

1 sec
80 secs

275 secs

492 secs

Set-Up of Model

Number of Equations 845
Half-Bandwidth of Stiffness Matrix 46
Number of Equation Blocks 7
Number of Equations per Block 122
Number of Eigenvalues Required 8

TABS was also developed at the Berkeley campus, and a full descrip­

tion of it is given in (21).

TABS considers all floors to be rigid in their own plane and to have

zero transverse stiffness. Initially, all elements are assembled into

planar frames and their stiffnesses are transformed, using the rigid

diaphragm assumption, to three degrees of freedom at the center of mass

of each story level (2 translations, 1 rotation), where the story mass is

lumped. Coupling between independent frames at common column lines is

ignored.

The basic computer data for a very simplified one-frame idealization

of the building, requiring eight modes, is as follows:

Form Frame Stiffness
Mode Shapes and Frequencies

2.5 secs
2.7 secs
5.2 secs

A comparison of CP time between SAP and TABS indicates why the latter

program was chosen for parameter studies.

Both programs used in this investigation were run on the CDC 6400

digital computer at the University of California, Berkeley campus.
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6.3 Mathematical Model

6.3.1 Fixed Base Model Using SAP

The symmetrical nature of the building enabled all its characteristics

to be captured by modeling only one-quarter of each floor. The obvious

advantage in doing this is that storage requirements are kept to a minimum,

and with logical floor-by-floor node numbering, the bandwidth of the stiff­

ness matrix, which is the most important single factor in controlling

eigenvalue solution time, can be kept down.

The response of the building in each of two translational directions

and its torsional behavior were considered to be completely uncoupled, and.

three separate analyses were conducted to model the behavior in the N-S,

E-W, and rotational modes by suitable adjustment of boundary conditions.

This assumption on the independence of the degrees of freedom is considered

reasonable due to the symmetry of the structure.

Three-dimensional beam elements were used to model physical beams

and columns above level 12 (top of pedestal), and slaving of appropriate

degrees of freedom to those of a master node at the center of each floor

was used to produce an effective rigid diaphragm in its own plane, repre­

senting the inp1ane rigidity of the floor slab. The pedestal was modeled

using two-dimensional membrane elements for both the walls and the floors.

Schematics for the modeling of the pedestal and a typical upper floor are

shown in Figs. 6.1 and 6.2.

The dead weights for each floor of the building were supplied by the

designers, and after consultation with those who tested the building, it

was decided to include 10% of the dead loads from floors 12-25 as being a

reasonable estimate of the live load in the building at the time of the

testing. This figure of 10% amounted to a live load of approximately
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TABLE 6.1 BfPROXIMATE LUMPED FLOOR WEIGHTS USED IN ANALYSIS

FLOOR Weight Used in Program
(KI PS)

Roof 2996

42 3328

41 3955

40 2133

39 2070

38 . 2070

37 2074

36 2074

35 2088

34 2088

33 2101

32 2110

31 2129

30 2129

29 2147

28 2147

27 2309

26 2309

25 2400

24 2484

23 2409

22 2409

21 2416

20 2416

-

FLOOR Weight Used in Program
(KIPS)

19 2430

18 2430

17 2444

16 2444

15 2449

14 2449

13 2461

12 7560

10 6073

8 5027

6 6562

4 6454

Lobby 8734

1 4516

Base --
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15 1b/ft2 • The weights for each floor used in the analysis are indicated

in Table 6.1.

In the N-S direction, several steps were taken to arrive at the final

model. To begin with, just that part of the building above the pedestal

was modeled. SAP uses centerline dimensions, and thus for the second run,

girder depths were considered rigid and thus reduced the effective clear

heights of the columns. With this inclusion, it seemed that the partial

model was working satisfactorily so the pedestal was added in the next

run. " Finally, an accurate estimate of composite slab action with the

floor girders was included. The effect of each of these additions on the

first natural period is summarized in Table 6.2 below.

TABLE 6.2 - EFFECT OF STRUCTURAL MODEL ON THE
FUNDAMENTAL PERIOD IN THE N-S DIRECTION

Structural Model First Natural Frequency
Period (sec) (cps)

1. Frame above the pedestal 4.59 0.218
2. (1) plus reduced column heights 3.85 0.259
3. (2) plus addition of pedestal 4.16 0.240
4. (3) plus composite slab action 4.10 0.243

Experimental 4.44 0.225

By studying Table 6.2, the following remarks can be made:

1. The effect of" the pedestal is rather small. By studying the mode

shapes, it can be seen that this part of the structure is extremely

stiff, and the building is behaving rather like a 30-story struc­

ture connected to the ground via an almost rigid arm.

2. The most significant effect on the fundamental period is the
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reduction in clear column height due to the assumption of rigid

column action over the girder depths. The reduction in period

is obvious when one considers that the increase in 'stiffness is

by the ratio (t~) 3 where Ll is the clear height and LO is the

floor to floor height. This parameter is typically:

(~ i: )3 = (1. 26 ) 3 = 2. 02

At this point, eight modes were extracted for the N-$ direction and

compared to those from the forced vibration tests. The frequency values

agreed well but examination of the mode shapes, especially the higher

modes, suggested that there may well be some rotational flexibility due

to nonrigid soil action at the base.

6.3.2 Flexible Base Model Using TABS

It was decided to use the computer program TABS, with its capability

of external story stiffnesses, to arrive at some figures for the effect of

base flexibility. A model using a single frame with four column lines

and panel elements to represent the pedestal was established to give a

fundamental frequency of 0.243 cps.

The procedure from there was to see what value of flexural inertia

was needed for the dummy story in order to reduce the fundamental fre­

quency to 0.225 cps. A value of 0.005 times that of the actual base I

was found to give the appropriate reduction. A check on the higher mode

shapes indicated that this value also gave better correlation with

observed mode shapes. This value of I for a dummy story was then included

in a SAP model.

6.3.3 Flexible Base Model Using SAP

An extra dummy story was added to the SAP model, and boundary elements
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were used to give external translational stiffness at the true base level.

The effect on the first period is indicated in Table 6.3.

TABLE 6.3 - EFFECT OF FLEXIBLE BASE ON FUNDAMENTAL
PERIOD, N-S DIRECTION

Fundamental Peri'od Frequency
(sec) (Hz)

Fixed Base SAP Model 4.10 0.243
Flexible Base SAP Model 4.48 0.223
Experiment 4.44 0.225

The higher mode shapes from the flexible base model were in better agree­

ment than those from the fixed base model.

6.4 Results of the Mathematical Model

The frequencies from the model which were described in Section 6.3

are summarized in Table 6.4 below. The corresponding translational mode

shapes for the flexible base model are shown in Figs. 6.3 through 6.8.

The torsional mode shape from the fixed based model are shown in Figs. 6.9

through 6.14.

TABLE 6.4 - RESULTS OF MATHEMATICAL MODEL RESONANT FREQUENCIES (Hz)

Mode
Model

1 2 3 4 5 6 7

N-S Fixed Base .243 .719 1.240 . 1. 751 2.260 2.740 3.202
N-S Flexible Base .223 .700 1. 196 1.695 2.143 2.536 2.923
E-W Fixed Base .245 .721 1.248 1.757 2.275 2.764 3.222
Torsional .323 .857 1.439 2.020 2.615 3.196 -----
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7. COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

The resonant frequencies and damping factors obtained from the full­

scale tests are summarized and compared in Table 7.1. The analytical

results for the E-W translation with the fixed base and theN-S transla­

tion with the fixed and flexible base are listed. The mode shapes for the

translational as well as the torsional motions are compared in Fig. 7.1.

The analytical translational mode plotted is for the flexible base whereas

the torsional analytical mode is for the fixed base model.

A comparison of the translational analytical flexible base model

results show good agreement with the experimental studies. The fixed

base analytical results vary up to about 8% of the experimental transla­

tional results. Even with the flexible base model, it would appear that

the model is somewhat stiffer than the actual building. In comparing the

torsional analytical results, which were for a fixed base model, with the

experimental results, the actual building indicates a much more flexible

structure.

- 131 -



TABLE 7.1 COMPARISON OF RESONANT
FREQUENCIES AND DAMPING FACTORS

Translational E-W

Forced Ambient Analysis
Mode Fixed Base

No.
f ~ f ~ f

(Hz) (%) (Hz) (%) (Hz)

1 0.232 1.7 0.234 1.9 0.245
2 0.755 2.7 0.762 1.1 0.721
3 1.385 2.2 1. 41 3.0 1.248
4 1.87 2.9 1. 98 1.3 1.757
5 2.21 2.0 2.29 1.7 2.275
6 2.68 3.0 2.85 0.7 2.764

Translational N-S

Forced Ambient Analysis Analysis
Mode Fixed Base Flexible Base

No.
f ~ f ~ f f

(Hz) (%) (Hz) (%) (Hz) (Hz)

1 0.225 6.6 0.225 2.2 0.243 0.223
2 0.720 2.6 0.732 1.5 0.719 0.700
3 1.32 1.9 1.35 1.8 1.240 1.196
4 1.81 2.1 1.87 1.1 1. 751 1.695
5 2.14 1.6 2.16 1.1 2.26 2.143
6 2.62 2.8 2.76 1.0 2.74 2.536

Torsional

Mode Forced Ambient Analysis
No. Fixed Base

f ~ f ~ f
(Hz) (%) (Hz) (%) (Hz)

1 0.377 2.5 0.381 3.3 0.322
2 1.055 1.0 1.07 1.6 0.857
3 1.86 1.6 1.86 1.7 1.439
4 2.60 2.0 2.64 1.4 2.02
5 3.32 2.0 3.47 0.6 2.615
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8. GENERAL CONCLUSIONS

The dynamic properties of the translational modes in the N-S and E-W

directions as well as the torsional modes of the Rainer Tower Building

were determined by forced vibration and ambient vibration studies.

The resonant frequencies from both studies are in very good agreement

in all separated modes of vibration. The ratios of the observed higher

mode frequencies with respect to the fundamental one from both dynamic

studies of the building indicate that the overall structural response is

predominantly of the shear type.

Comparison of the forced and ambient vibration experiments demon­

strates that it is possible to determine with adequate accuracy the

natural frequencies and mode shapes of typical modern buildings using

the ambient vibration method. Difficulties in evaluation of equivalent

viscous damping factors from ambient vibration studies are presents and

it would probably be more realistic from this type of study to expect

assessment of the range of damping factors rather than damping values

associated with each mode of vibration.

A comparison of the analytical results with the experimental results

shows good agreement in the translational motions especially when a flex­

ible base was incorporated into the model.
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