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ABSTRACT

A series of parametric studies are conducted in order to assess the
effect of nonlinear soil behavior on the dynamic stiffness of founda­
tions. The results of these studies are translated into simple, approxi­
mate formulae and rules which can be used for preliminary soil-structure
interaction analyses.

Two different situations are considered: the case of a machine foun­
dation, where the dynamic excitation is caused exclusively by the vibra­
tions induced in the structure, and the case of a building subject to an
earthquake motion, where substantial nonlinearities would take place in
the soil due to the seismic waves even if no structure were present. In
both instances a two-dimensional, plane-strain model, corresponding to a
strip footing resting on the surface of a layer of finite depth, and an
equivalent linearization technique based on an iterative procedure were
used for the analyses.

In the case of a vibrating machine, the static stiffnesses are ob­
tained first as a function of the ratio of layer depth to foundation
width and parameters representative of the nonlinearity of the soil. The
frequency dependence of the dynamic stiffnesses and the effect of the
level of excitation on this dependency are discussed next.

In the case of seismic excitation, the variation of effective soil
properties with depth is determined first as a function of the original
soil properties and the intensity of shaking. The stiffnesses of a foun­
dation resting on a soil profile with these properties are determined
next, and the characteristics of an "equivalent l' uniform soil deposit are
obtained.

Because of the limitations in the model itself (two-dimensional,
iterative solution) and in the number of parametric studies conducted,
the results obtained and the rules suggested are only of a crude approxi­
mate nature. It is believed, however, that they can be used for prelim­
inary estimates of interaction effects. (It should be noticed that many
of these limitations are also present in sophisticated computer programs
used today).
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PREFACE

The work described in this report represents a summary of the
Thesis of Moshe Jakub, submitted to the Civil Engineering Department
of M.I.T. in partial fulfillment of the requirements for the degree
of Master of Science. The research was supervised by Professor Jose
M. Roesset and was made possible through Grant AEN-7417835 from the
National Science Foundation, Division of Advanced Environmental Re­
search and Technology.

This is the fifth of a series of reports published under this
grant. The other four were:

1. Research Report R76-8 by Mohammed M. Ettouney, "Transmitting
Boundaries: A Comparison," January 1976.

2. Research Report R76-9 by Mohammed M. Ettouney, "Nonlinear Soil
Behavior in Soil Structure Interaction Analysis," February,
1976.

3. Research Report R77-30 by Jose J. Gonzalez, "Dynamic Interaction
between Adjacent Structures," September 1977.

4. Research Report R77-33 by F. Elsabee and J. P. Morray, "Dynamic
Behavior of Embedded Foundations," September 1977.
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INTRODUCTION

Most of the analytical or semi-analytical solutions for the dynamic
stiffness of foundations are based on the assumption of linear elastic
soil behavior. It has been long recognized, however, that if the re­
sults of a soil structure interaction analysis are to be realistic, the
nonlinear behavior of the soil must be taken into account. Three pro­
cedures, with varying degree of sophistication, are used at present for
this purpose:

a) To perform a linear analysis using soil properties consistent with
the expected level of strains in the soil. These properties are
estimated in the simplest case on the basis of approximate rules,
applying reduction factors to the values of shear modulus correspond­
ing to low levels of strain and adding some internal damping of a
hysteretic nature. In other cases they are obtained from more com­
plicated analyses on simpler models.

b) To perform a series of linear analyses using soil properties (modu­
lus and damping) consistent with the level of strains resulting from
the previous analysis. This iterative procedure has been extensively
used and is implemented at present in such programs as SHAKE (8)
(one-dimensional situations) and FLUSH (6) (two-dimensional geome­
tries) .

c) To perform a true nonlinear analysis in the time domain using a dis­
crete model (finite elements or finite differences) with appropriate'
nonlinear constitutive equations for the soil. Two main categories
of models are being used for this purpose:

- Empirical-type models based on the results of relatively simple
tests, such as the hyperbolic or the Ramberg-Osgood model. These
models are particularly appropriate for one-dimensional problems,
but their extension to two- or three-dimensional states of stress
requires some arbitrary decisions in the selection of the character-
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istic strain and the variation of a second elastic parameter (Young's
modulus, the bulk modulus, the constrained modulus or Poisson's ratio).

- Models based on the theories of Plasticity or Elasto-Plasticity.
While these models have the advantage of a much more rigorous and
logical treatment of two- or three-dimensional states of stress, their
parameters are often hard to adjust from the results of simple tests.
In addition, most of the models suggested to date are applicable to
the case of monotonic loading or to the study of failure conditions
under loads of short duration and high intensity but will not repro­
duce properly the behavior under cyclic loading with large reversals
of shear strains, the case of interest under seismic excitations.

Comparative studies carried out by Constantopoulos (2) for the one­
dimensional case using the Ramberg-Osgood model for a true nonlinear analy­
sis in the time domain and consistent laws of variation of shear modulus
and hysteretic damping for the iterative solution indicated that the re­
sults from both types of solutions are in relatively good agreement (with­
in 20%) for maximum accelerations or response spectra, although maximum
displacements and strains are badly underestimated in the iterative ap­
proach (a point of concern if one is interested in the soil behavior or
in the possibility of failure of the foundation rather than only the struc­
tural response). Similar comparisons by Ettouney (3) for the two-dimen­
sional case (plane-strain problem) showed larger differences between the
results provided by the two approaches. The models used were not, how­
ever, entirely consistent since complete memory, with perfect closing of
the hysteretic loops (implicitly assumed in the iterative procedure) was
not enforced in the time solution. Further studies enforcing this condi­
tion would seem to provide better agreement for the two-dimensional case,
with conclusions similar in type to those reported by Constantopoulos.

In spite of its limitations the iterative procedure is still widely
used for lack of a completely satisfactory nonlinear model which could
be implemented in the time domain. A substantial amount of research is
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being done now in this area, and constitutive relations with both iso­
tropic and kinematic hardening are being derived which can reproduce
much better the cyclic shear behavior of certain classes of soils (un­
drained, saturated clays for instance). It can thus be expected that
in a few years nonlinear analyses will become more popular; in the mean­
time, however, most practical solutions of soil structure interaction
problems will be based on one of the first two approaches.

The purpose of this work is to determine, through parametric stud­
ies, simplified procedures which could be used with a type a) approach
to account, at least in an approximate way, for nonlinear soil behavior.
Two different situations are considered: the case of a foundation for
vibrating machinery, and the case of a structure subjected to an earth­
quake motion. In the first case forces applied by the structure on the
foundation are the only source of excitation, and the nonlinearity of
the soil must be studied in two or ideally three dimensions. In the sec­
ond case one can distinguish between primary and secondary non1inearities.
The former are the result of the seismic waves travelling through the soil
and take place even when no structure is present; the latter are the re­
sult of the disturbances produced by the soil structure interaction effects
and are generally restricted to the immediate neighborhood of the founda­
tion. Studies by Kausel, Roesset and Christian (5) and by Ettouney (3)
indicate that while the secondary nonlinearities play an important role
in the strains and values of moduli around the foundation (particularly
along the side boundaries of an embedded foundation and in the vicinity
of the corners), their effect on the structural response is relatively
small (if the seismic excitation is moderate to large). This is an impor­
tant observation, because the primary nonlinearities can be estimated
economically with an iterative scheme using either an exact analytical
solution or a discrete model in each cycle of the iteration; on the other
hand, application of the iterative procedure to the complete analysis of
a discretized soil structure system is expensive since each cycle of the
analysis with a large number of finite elements is time consuming.
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DYNAMIC STIFFNESSES FOR SURFACE EXCITATION

Formulation. A linear, two-dimensional finite element model was used
to derive the dynamic foundation stiffnesses for the case of a surface
excitation. The iterative procedure was implemented to account for non­
linear soil behavior: at the beginning of each cycle of analysis, values

of modulus and damping were selected for each finite element on the
basis of a characteristic shear strain computed from the results of the
previous analysis. The process was repeated until results from two con­
secutive cycles differed by less than a specified tolerance (5 percent).

The finite element model consisted of a core region, discretized
with square finite elements (linear displacement expansion) and limited
by two types of boundaries: a rigid boundary at the bottom, simulating
a much stiffer rock-like material, and a consistent lateral boundary (1)
to model the layered far field. Since the behavior of the soil in the
layered outside region is assumed to be linearly elastic, these lateral
boundaries were placed at a distance of lOB from the edge of the founda­
tion (B is half the foundation width). It was felt (based on the results
of previous studies such as those conducted by Ettouney) that at this
distance the nonlinearities caused by the structural vibration would be
negligible. The model would reproduce therefore the behavior of a strip
footing on the surface of a layer of finite depth. The size of the ele­
ments in the core region was taken equal to 0.25B so that there were
eight elements across the total width of the footing, and the stiffness
functions could be reproduced with good accuracy up to values of the dimen~

sionless frequency a of~. (a = nB/c , where n is the frequency of theo 0 s
excitation in radians/second and Cs is the shear wave velocity of the soil
for low levels of strain). Three different layer depths were considered:
H = B (a very shallow stratum), H = 28 and H = 48.

A Ramberg-Osgood model was used to simulate the nonlinear constitutive
equations of the soil. This model was initially applied to the solution
of soil dynamics problems by Constantopoulos (2) and is particularly appro­
priate for one-dimensional situations. Then the shear stress and the
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shear strain are related for the backbone curve (monotonic loading) by
an equation of the form

where a and r are parameters controlling the position of the stress-strain
curve and its curvature and y L define the tangent modulus at the originy y
(value of the shear modulus for low levels of strain).

The equation for unloading and reloading is, in order to satisfy
Masing's law

where Yo TO are the coordinates of the last reversal point.

When applying the model to a two-dimensional problem, some arbitrary
decisions must be made. In this work it was assumed that the above equa­
tions apply to the maximum shear strain

and the maximum shear stress

This is the assumption commonly made with the iterative procedure
and implemented in such widely accepted and used programs as LUSH (7) or
FLUSH (6).

In order to define the variation of a second elastic parameter, it
was assumed that the bulk modulus of the material remained constant. This
assumption, while not entirely correct, would appear to be more appropri­
ate than maintaining a constant Poisson's ratio and forcing Young1s
modulus to change with shear strain proportionally to the shear modulus
(as done in LUSH or FLUSH).
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Calling Go = Ty/Yy the initial shear modulus for very low levels
of strain, the secant modulus corresponding to a strain amplitude Y or
a shear stress amplitude T (for a harmonic excitation) is given by

G _ 1

Go - 1 + a 1..1-1 r- 1
Ty

The effective damping ratio 0 (of a hysteretic nature) correspond­
ing to this level of deformation is then

2 r-l
0= rrar+l

1
r-1

or 2 r-lo = :rrar+l

Finally the value of the effective Poisson's ratio v can be obtained
from the condition of a constant bulk modulus

2G (l+v )
K - 0 0

- 3(l-2vo)
1 3K-2G

and v ="2 3K+G = G G .
(2+ -)+ 2v (1- -)

Go 0 Go

In order to use a Ramberg-Osgood model for a specific soil, it would
be necessary to adjust the parameters a, r, Yy and Ty to fit experimental
data either on the backbone curve or better on the variation of modulus
and damping with shear strain (notice that r need not be an odd integer
the way the model is defined here). The studies by Constantopoulos (2)
indicated that values of r between 2 and 3, values of a from 0.05 to 0.1

-6 -5and values of Yy from 10 to 10 seemed to match reasonably well the
curves provided by Seed and Idriss (9). In this work, since no particular
soil deposit was considered, a value of r=2 was assumed for simplicity
(various values of a were used). The above expressions simplify then to
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and

In order to determine the dynamic stiffnesses of the foundation,
assumed to be massless and rigid, harmonic horizontal displacements and
rotations were imposed and the forces necessary to preserve equilibrium
were computed. The resultant of these forces due to a horizontal displace­
ment is the term Kxx of the stiffness matrix and the corresponding moment

is K¢x. In the same way the resultant due to a base rotation is Kx¢ and
the moment is K¢¢. The equations of motion are then written as

for a given frequency of vibration n and a specified amplitude of the dis­
placement and rotation.

To make a distinction between the internal dissipation of energy in
the soil due to hysteretic (nonlinear) behavior and the loss of energy by
radiation of waves away from the foundation (radiation damping) the stiff­
ness terms were written in the form

Kxx = Kx(kl + iaocl)(l + 2iOl )

K¢¢ = K¢(k2 + iaoc2)(1 + 2i02)

where K , K~ are the static values of the horizontal and rocking stiff­
x 't' nesses

klc l k2c2 are frequency dependent stiffness coefficients

01 and 02 are the effective values of hysteretic damping in sway­
ing and rocking

ao is the dimensionless frequency QB/cs .
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The variation of the static stiffnesses Kx K¢ with amplitude of
motion was investigated first.Kx was obtained by applying a horizontal
translation to the rigid foundation and K¢ by applying a rotation. The
terms Kx¢ and K¢x were also computed, but they were found to be small,
as in the case of a surface foundation on an elastic stratum. Clearly
when both a horizonta:l force and a moment are appl ied to the founda­
tion (giving raise to both a horizontal translation and a rotation)~due

to the inelastic action)Kx and K¢ will be different from the values com­
puted here, considering each type of excitation independently. It was
felt, however, that these coupling effects could be ignored as a first
approximation for the purposes of this study.

The variation with frequency of the stiffness coefficients k1cl k2c2
and the effective damping ratios 0102 were determined next, considering
again a horizontal motion of varying amplitude for k1cl and 01 and a
rotation for k2c2 and 02·

Static Stiffnesses------------------
By analogy to the expressions for the secant modulus using the Ram­

berg-Osgood model, the static stiffnesses of the foundation were written
in the form

1

1
M

+ b a 2
4B T

Y

where F is the shear force on the foundation, Mthe rocking moment, B the
half-width of the foundation, a and T characteristics of the soil modely
and K and K~ the elastic stiffnesses for very low levels of excitation.xo '/'0
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Values of a of 0.025,0.05 and 0.1 were considered and layer depths of
H=B, 2B and 48. Alternatively the expressions above can be rewritten as

a is almost independent of a and can be approximated by a = t(l + ~)

b is almost independent of a and ~ and approximately equal to ~.

It is thus possible to write for the range of parameters studied

K K 1
~

x xo B F1 + 0.25(1 + R)a 2B1:
y

K<jJ K<jJo
1

~

M+ 0.50'.
4821:

Y

For each one of the cases studied the amplitudes of the maximum shear
stresses T were computed in all the finite elements. As an alternative to
the above formulae the stiffnesses were written in the form

K =
Kxo

x TS'
1 + a-

Ty

K =
K<po

¢ 1:r1 + a-
Ty
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where T and T would be characteristic shear stresses for swaying (hori-s r
zonta1 excitations) and rocking. For each case the values of T and Ts r
were then computed from the known values of KKK K a and T andx xo ¢ ¢o y
the location of these stresses within the soil mass was identified. it
was found that for the very shallow profile (H=B) T occurred approximatelys
at a depth of 0.33B under the edge of the footing, while for the two other
cases (H=2B or 4B) it occurred at a depth of 0.58 (again under the edge).
For rocking T was in all cases the stress at a depth of 0.75B under the

r
edge of the footing.

While additional and more refined studies would be necessary to deter­
mine better the location of these characteristic stresses, it would seem
that within the level of approximation sought in this study (with the soil
model used and the iterative procedure), one could for preliminary purposes
determine the stiffnesses Kx and K¢ from the previous expressions using
as a characteristic strain:

- for swaying the maximum shear stress from an elastic (static) analy­
sis occurring at a depth of 0.5B under the edge of the footing (if

H .::: 28) ;

- for rocking the maximum shear stress from an elastic (static) analy­
sis at a depth of 0.75B under the edge of the footing.

In order to use in practice any of the above formulae, it is neces­
sary to estimate appropriate values of the soil parameters Go (needed to
compute K and K ), a and T , from experimental data (such as a monotonicxo ¢o y .
loading shear stress - shear strain curve or better curves showing the vari-
ation of modulus and damping with shear strain). If these curves are not
available (as may be the case for preliminary studies), values of a = 0.05
and Y = 10-5 can be taken. T can be computed then as GoY.

y Y Y

It must be emphasized again that the expressions suggested in this
work are only crude approximations. To obtain more reliable ones it would
be necessary to repeat the analyses for other values of the parameter r,
other soil models, combinations of horizontal forces and rocking moments
and ideally three-dimensional discretizations of the soil and the foundation.
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Considering, however, the uncertainties often present in the estimation
of the actual soil properties and the lack of accurate nonlinear consti­
tutive equations, it is felt that they can provide a reasonable feeling
for the effect of the magnitude of the applied forces on the foundation
stiffnesses and that they can be used at least for preliminary analyses.
It must be noticed. in addition, that most of the limitations just men­
tioned are also present in the pseudo nonlinear analyses performed in
practice today.

Writing the dynamic stiffnesses first in the form

figures 3 to 6 show the variation of kx and k¢ with frequency for various
levels of excitation and the two extreme cases H=B, H=4B. It can be seen
from these figures that as the level of excitation and the nonlinearity in
the soil increase, all the curves are shifted to the left. This shift re­
flects a reduction in the natural frequencies of the soil and can be accoun­
ted for approximately by using in the expr~ssion for ao = ~B/Cs the shear
wave velocity corresponding to the reduced shear modulus

G G
G = 0 or 0

1
T

S 1
Tr+ ex- + ex-

Ty Ty

For the horizontal stiffness kx and the case of the deeper stratum
(H=4B), a clear reduction in the amplitude of the oscillations is also
apparent due to the increased internal damping. When dealing with a circu­
lar or rectangular foundation on a stratum of moderate depth (H ~ 28), it
can be expected that the variation of kx with ao will tend to approach the
solution for a half space as the excitation increases.
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For the rocking stiffness k¢ the shift in the curves is caused not
only by the softening of the soil (reduction in modulus and increase in
damping), but also by the increase in Poisson's ratio resulting from the
assumption of a constant bulk modulus (see for instance ref. 10 for the
variation of k¢ with v in the case of a circular foundation on an elastic
half space). This effect can also be reproduced by taking the value of v
corresponding to the effective modulus G.

Figures 7 to 10 show the variation of ao Cx and ao c¢ with frequency
for the same two cases H=8 and H=4B. These terms start with a constant
value, function of the level of excitation. Until the fundamental frequency
of the stratum is reached (the fundamental shear frequency for the term Cx
and the dilatational frequency for c¢). Beyond these frequencies they in­
crease almost linearly with ao' showing again oscillations. Their values
in the low frequency range, and particularly for ao=O, can be interpreted
as a hysteretic damping ratio 2D or 2D. Tables 1 and 2 show the values. s r
resulting for the case H=48 and compare them to those obtained from the
formulae

It can be seen that the agreement is very good, particularly for mod­
erate to large levels of excitation.

Table 1 - Values of effective internal soil damping, Os

App1i ed Force L
S

x 1000 0 from L
S

OS measureds
F x 1000/G G x 100 x 100

0.19 0.006 0.6 1.6
0.89 0.028 2.6 3.3
1.66 0.052 4.4 4.9

6.01 0.188 10.3 9.8
9.85 0.308 12.9 12.1
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Table 2 - Values of effective internal soil damping Dr

Applied Moment Tr x 1000 0 from T 0 measuredr r r
Mx 1000/G G x 100 x 100

5.90 0.030 2.8 3.7
22.42 0.112 7.6 8.7
37.51 0.188 10.3 11.'

110.96 0.555 15.6 15.7
171.29 0.856 17.2 17.1

Using these values of Ds Dr' the dynamic stiffnesses can be written
in the alternate form

Kx = Kxo (kl + i ao cl}(l + 2i Ds )

K¢ = K¢o (k2 + i ao c2}(1 + 2i Dr)

The terms cl c2 can then be interpreted as representing the effect
of radiation damping. Figures 11 to 14 show the variation of these coef­
ficients with frequency. For the horizontal excitation the main effect of
increasing the level of motion is to diminish the oscillations and to re­
duce the frequency at which radiation starts to take place (this effect
can be again accounted for by using in the expression of the dimensionless
frequency ao a reduced shear wave velocity of the 50;1). It should be
noticed, however, that the average value of clover the high frequency range
;s almost independent of the applied force. Since these values were com­
puted using for ao the initial shear wave velocity cso (corresponding to low
levels of strain), the expression Kx should be written as

Kx = Kxo (kl + i c~ cl)(l + 2i Ds )

or alternati ve ly

k, and cl can then be taken the same as for the foundation in elastic soil
using for a = ~B/c , with c the reduced shear wave velocity correspondingo 5 s
to G.
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For rocking, on the other hand, there is not only a shift in the fre­
quency variation of cZ' but also an increase in its value with increasing
magnitude of moment. This increase is consistent with the reduction in
the shear wave velocity of the multiplier ao' and therefore the expression
for K~ can be used directly with a

o
= nB/cs both for the computation of c2

and for the product ao c2.

Summary. It appears from the studies conducted that for the case of a
machine foundation the dynamic stiffnesses including the effect of nonlinear
soil behavior can be approximated by estimating first characteristic stresses
L

S
and Lr . These stresses may be computed as the values from an elastic

static analysis under the edge of the footing at depths of 0.5B and 0.75B
when applying a shear force or a rocking moment respectively. Alternatively
for the soil model used here, they can be obtained from the formulae

When both a horizontal force and a moment are applied on the founda­
tion, as would be normally the case, within the degree of approximation
sought here, a unique characteristic stress L

C
may be used. L

C
would be

the maximum shear stress from an elastic static analysis (with both the
shear force and the rocking moment) at an average depth under the edge of
the footing, of say 2/3 B (or 2/3 R for a circular foundation). All the
parametric studies conducted in this part of the work corresponded, however,
to a soil stratum which had initially uniform properties. If the modulus
increased with depth, a smaller value, of say 0.5B might be more appropriate.

Once the characteristic stresses L
S

and Lr or L
C

values of the shear modulus G, the shear wave velocity
~ and internal damping D may be computed. The dynamic
be written as

are known, equivalent
c , Poisson's ratios
stiffnesses can then

(k +x
(k +

~

i ao IG/G c)
o x

i a o c~)
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where Kxo K¢o kx k¢ Cx and c¢ are the solutions for a linear elastic soil
deposit with the above properties and ao = wB/cs (or wRlcs for a circular
foundation).

DYNAMIC STIFFNESSES FOR SEISMIC EXCITATION

Formulation. For this part of the study a horizontally stratified soil
deposit, without any foundation, was considered first, in order to deter­
mine the effect of the so-called "primary nonlinearties" (5). Three dif­
ferent profiles were studied: two uniform profiles with initial shear wave
velocities of 750 and 1500 ft/sec and a variable soil profile with the shear
modulus increasing as a function of the square root of the depth. In this
last case the shear wave velocity of the first layer (at a depth of 2.5 ft)
was taken equal to 500 ft/sec. The profiles were divided into layers with
5-ft. thickness, and artificial earthquakes, generated to match the Newmark­
Blume-Kapur response spectra, were applied at the surface. These earthquakes
were scaled to maximum accelerations of 0.05,0.15.0.25 and 0.50g. A de­
convolution process was then applied, assuming a one-dimensional condition
(shear waves propagating vertically through the soil) and using the equiv­
alent linearization technique (iterative procedure) to simulate nonlinear
soil behavior. A Ramberg-Osgood model with r=2 was again selected to obtain
the variation of shear modulus and damping with shear strain. Maximum values
of accelerations and shear stresses and strain compatible values of modulus
and damping were then computed at various depths.

The deconvolution process is normally performed in the frequency do­
main. It should be noticed, however, that it is not necessary to consider'
the whole soil profile simultaneously, but that the computations can proceed
one layer at a time, starting from the top.

If F(~) represents the Fourier transform of the acceleration at the
free surface of the soil deposit. the Fourier transform of the displacements
in the first layer is given by

with

iPlz -iPlz
Ul(~) = E1(e + e )

2 = Pl ~2
Pl G,(l + 2iO,)
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Pl is the mass density of the layers Gl its effectiv~ shear modulus
and 01 the effective hysteretic damping.

E = - _1_ F(n)
1 2n2

The shear strains are then given by

For the second layer ip z -ip z
U (Q) = E e 2 + F

2
e 2

2 2

-ip z
F
2

e 2]

with

and

ip h -ip h
2E

2
::: E

l
[e 1 1(l+1l2) + e 11(1-1l2)]

ip h -ip h
2F

2
::: E

l
[e 1 1(l_~) + e 1 1(1+1l2)]

p,G, (1 + 2jDl)
II -
2 - P2G2(1 + 21°2)

iP2z
::: iP2 [E2 e

thIn general for the n layers

and

calling
2

2 Pn n
p~ = G (1 + 2iO )

n n

P , G ,(1+2iO,)n- n- n-,
lln =---PnGn(l + 2iOn)

ip z
rn(n) = ip [E e n ­

n n

ip h
) n-1 n-1+ II en

ip h
) n-1 n-l

- II en

2E ::: E 1(1n n-

2F = E 1(1n n- + F (1
n-l

-ip z
Fen ]
n

-ip h
) n-l n-l

- II en
-ip h

+ ll)e n-' n-l
n
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In these expressions z is always measured from the top of each indi­
vidual layer and h is the thickness of the nth layer.

n

Since the values of E F are functions of the unknown properties
n n

GnDn (through the term ~n)' an iterative procedure must be established for
each layer. In order to perform the iteration it is common practice, in
such programs as SHAKE (8), to compute the inverse Fourier transform of
r(~) and scan the time history y(t) for the maximum value ~ in time.max
A characteristic strain of Ych =t Ymax is then selected to obtain consist-
ent values of G and D from the appropriate curves.

In this work a much simpler and more economical procedure suggested
in (5) was adopted, defining

_ 2 Maximum Input Acceleration .
Ych - 3 RMS Input Acceleration x RMS straln

It should be noticed that the maximum input acceleration and the rms
input acceleration are computed only once, at the beginning of the process,
and that the rms strain for each layer is easily obtained from r(~) without
the need to compute the inverse Fourier transform. r(~) was evaluated in
all cases at the middepth of the layer for z = ~ hn.

An alternative to this approach is to model the soil deposit by an
equivalent discrete system with lumped masses and interconnecting springs.
The first mass is then M1 = } Pl h1, and the remaining masses are Mn =

G
-21 P 1h 1 + -2

1 ph. Each spring has a constant of the form k = hn .n- n- n n n n
The equation of motion for the first mass yields then

.. ..
or in the frequency domain M1Ul(~) + Tl(~) = 0 , where Ul(~) = F(~) and
T1(~) is the Fourier transform of the shear stress Tl·

Taking then - Maximum Input Acceleration x RMS stress,
Lch - RMS Input Acceleration

the consistent values of shear modulus and damping for the first layer can
be computed, without any iteration, from the corresponding curves, or in
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the present case from the formulae

G =
Go D = 2a G Tch

Tch 37f Go Ty1 +a-Ty

r/ Mln
2.. .. ..

Then U2(n) = ulen) + k (1+2iO ) Tl(n) = Ul(n) - kl (1+2iOl } Ul(n)
1 1

For the nth layer the equation of motion is

n .,
I MiUi(n) + Tn(n) = 0

i=l
n .,

or T (n) = - \' M.U.(n)n L 1 1i=l

It can be noticed that in this procedure it is necessary to differ­
entiate twice the shear forces in order to compute the acceleration of
each new mass. In the frequency domain this represents multiplying T (n)
by the factor _n2. As a result the amplitudes in the high frequency ~ange
will continuously increase as the calculations proceed downward and even­
tually the solution will blow up. The same problem is encountered with the
first approach~ although it may not be as apparent from the form of the
equations. It is a result of the assumption that the seismic motions are
caused exclusively by vertically polarized shear waves. In order to be
able to carry out the analysis until an appropriate depth is reached, it is
common practice to truncate the Fourier transform of the input earthquake
above a threshold frequency~ of the order of 15 or 20 cps. This same approach
was used in this work.

Both procedures were used here~ yielding essentially identical results.
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If the effect of secondary non1inearities in the structural response
is not important, as suggested by previous studies (3,5), once the equiv­
alent values of modulus and damping are obtained, a single linear analysis
could be conducted to estimate the foundation stiffnesses (or to do the
analysis of the complete soil-structure system in a single step). A further
simplification can be introduced, at least for preliminary analyses, by con­
sidering a uniform profile with some equivalent properties and using avail­
able solutions as those reported by Ve1etsos and Wei (10) or Veletsos and
Verbic (11). In order to determine these equivalent properties, additional
studies were conducted determining the foundation stiffnesses for the soil
profiles with the strain compatible properties. Effective values of modulus
and damping were then obtained so as to match the static stiffnesses, and
the depth at which these values occurred was identified. The frequency vari­
ation of the dynamic stiffnesses for the actual profiles and the equivalent
uniform deposit were then compared. These studies were conducted using both
an analytical solution developed by Gazetas (4) and a finite element model
with the consistent transmitting boundary placed at the edge of the footing
(1) with almost identical results. Ratios of layer depth H to half the
foundation width B of 2 and 4 were considered, and the bottom was assumed
to be rigid.

~~r~i~_~Q~E~~!e!~_~Q!!_~r2E~r~!~~. Figures 15 to 17 show the variation of
the effective shear modulus with depth for the three soil profiles considered
and various levels of acceleration at the free surface. The corresponding
values of hysteretic damping are shown in figures 18 to 20.

Figures 21 to 23 show the variation of the dimensionless parameter
T /paz with depth, where T is the maximum shear stress at depth z, a ism m
the maximum surface acceleration in consistent units and p is the mass den-
sity of the soil (one can replace pa by ya with y the unit weight of the soil
and a the acceleration in gls). This parameter provides an indication of
the variation of the maximum acceleration: if the acceleration were uniform
T would increase linearly with depth and the above ratio would be constant,m
equal to 1.
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It can be seen that Tm/paz is much less dependent on the value of
the maximum acceleration a than the soil properties. It is still a
function, however, of the original values of the shear wave velocity c

so
'

In an effort to find a relationship which included the soil characteris­
tics and the acceleration level, a function of the form

= f(~)
H

was tried, with Cs 5/6 T 1/5
H = (4f

o
) (~)

o

cso is the initial shear wave velocity of the soil, for low levels
of strain, at depth z; fo is the fundamental frequency of the earthquake,
of the order of 2.5 cps for the motions considered; a is again the maximum
surface acceleration, p is the mass density of the soil and Ty and a are
characteristics of the Ramberg-Osgood model (values of a = 0.05 and Ty =
Go x 10-5 were used in this part of the study).

Figure 24 shows the variation of Tm/paz versus z/H for the two uni­
form soil profiles and all the levels of acceleration. It can be seen that
the scatter in the results is extremely small and that a unique curve can
be adopted as valid for all cases.

Figure 25 shows the results for the variable soil profile. The scat­
ter due to the acceleration level is again very small.

From these curves it is thus possible to determine for any specific
soil deposit and a desired level of acceleration at the surface, the values·
of the maximum shear stresses T at various depths. Corresponding values

m
of shear modulus G and hysteretic damping D can then be computed using a
characteristic stress Tch = ~ Tm and the appropriate formulae for the de­
sired soil model (the Ramberg-Osgood equations, for instance). The effect
of the paramters f and a was not studied, and further verification of theo
expression for H is therefore necessary. For seismic motions based on the
Newmark-Blume-Kapur response spectra (as those selected for the study) the
curves can be used with some degree of confidence with fo = 2.5 cps. A value
of a = 0.05 is recommended.
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~!~!i~_~!iff~~~~~~. For the soil profile which had originally uniform
properties with cso = 1500 fps, and for the variable soil profile, parame­
tric studies were conducted using the strain-compatible moduli and damping
obtained in the previous step and applying a unit horizontal di'splacement
and a unit rotation to a massless rigid foundation. Two ratios of layer
depth to foundation half width (H/8 = 2 and 4) were considered.

From the resulting values of the horizontal and rocking stiffnesses
an equivalent shear wave velocity c and an equivalent damping D correspond-s
ing to a uniform soil profile were determined (so as to provide the same
foundation stiffnesses). The depth Heq at which these properties occurred
was then evaluated. Table 3 shows these results for the originally uniform
soil profile. It can be seen that in swaying Heq varies from 0.58 to B,
increasing with layer depth and decreasing with increasing level of accel­
eration. In rocking, on the other hand, the variation of Heq is less pro­
nounced (from 0.5B to 0.6B). Table 4 shows the corresponding results for
the variable soil profile: in swaying Heq varies from 0.3B to 0.5B and in
rocking from 0.3B to 0.45B.

By conducting a more extensive set of parametric studies, it might be
possible to obtain approximate formulae expressing the effective shear modu­
lus and damping as a function of the level of acceleration, the characteris­
tics of the soil profile, the Ramberg-Osgood parameters, the ratio of layer
depth to foundation width and the total foundation width. Due to the cost
of computation, however, only a small number of cases would be covered here,
and the amount of data available was not sufficient to fit approximate ex­
pressions with any reliability. Until more studies of this nature are con­
ducted, it is believed that a reasonable approximation can be obtained by:

using for a soil profile which has originally uniform properties the
modulus and damping consistent with the strains caused by the seismic
motion at a depth of 0.5 to 0.7B (say 2/3 8).

using for a soil profile which has originally a modulus increasing
with the ~quare root of depth the modulus and damping consistent with
the strains caused by the seismic motions at a depth of 0.3 to 0.5B

(say O.4B).



25

Table 3 - Uniform Soil Profile

Sway~ Rocking

a Cs Heq/B D% Heq/B cs Heq/B D% Heq/B

0.1 ~ H=2B 1370 0.6 3.3 0.5 1370 0.6 3.3 0.5
H=4B 1310 1 4.4 0.8 1360 0.65 3.5 0.55

H=2B 1310 0.6 5 0.6 1310 0.6 5 0.6
0. 259 H=48 1240 0.8 6.2 0.8 1290 0.65 5.4 0.65

0.50g H=2B 1190 0.5 7.5 0.5 1190 0.5 7.5 0.5

H=48 1120 0.7 9 0.7 1160 0.6 8.2 0.6

Table 4 - Variable Soil Profile

Swaying Rocking

a cs Heq/B D% Heq/B Cs Heq/B 0% Heq/B

0.059 H=2B 760 0.4 2.3 0.3 760 0.4 2.3 0.3
H=4B 810 0.5 2.5 0.4 780 0.45 2.4 0.35

0. 159 H=2B 690 0.4 5.7 0.3 690 0.4 5.7 0.3

H=4B 730 0.5 5.9 0.4 710 0.45 5.7 0.3

0. 259 H=2B 650 0.4 7.9 0.3 640 0.4 7.9 0.3

H=4B 675 0.5 8.2 0.35 650 0.4 8 0.3
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It should be noticed that for a circular foundation the variation of
the static horizontal stiffness with the H/B ratio is much less pronounced
than for a strip footing. The increase in Heq to values of almost B for
deep profiles in the swaying case ;s thus probably character~stic of the
two-dimensional problem and may not occur in a three-dimensional geometry.

Q~~~~1~_~~!ff~~~~_~~~ffi~!~~~~. The selection of the modulus and damping
of an equivalent uniform soil deposit was based on the values of the static
stiffnesses. To investigate the effect of this approximation on the varia­

tion with frequency of the dynamic stiffnesses, the soil profile which had
originally a uniform shear wave velocity of 1500 ft/sec, subject to an
earthquake with a maximum surface acceleration of 0.5g, was again considered.
The dynamic stiffnesses were obtained for a ratio H/B = 2, using the vari­

able soil properties consistent with the earthquake excitation and an equiv­
alent profile with Cs = 1190 ftlsec and D = 7.5%. Writing the dynamic stiff­
nesses again in the form

Kxx = Kxo (kx + i ao cx)

K¢¢ = K¢o (k¢ + i ao c¢)

figure 26 shows the frequency variation of kx and k~ for the two cases.
Figure 27 shows the correspondinq results for a c and a c~. It can be

- 0 x 0 ~

seen that in this case the natural frequencies of the soil deposit are
slightly overestimated by the equivalent cs ' If Cs had been selected so as
to match these natural frequencies, the agreement between the dynamic stiff­
ness coefficients would have improved, but a larger error would have been
introduced in K and K~. Considering on the other hand the uncertaintyxo ~o

existing in practice in the actual soil properties and the degree of approx-
imation sought in this study, the agreement seems reasonable.

Summary. It appears from these studies that for the case of a seismic ex­
citation the effect of nonlinear soil behavior on the foundation stiffnesses
can be estimated by:

- computing first from figures 24 or 25 the maximum shear stresses at
various depths, defining a characteristic stress Tch =i Tm, and
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obtaining appropriate values of G and D from the soil curves or the
Ramberg-Osgood model.

making a single linear analysis using for the soil profile the strain
compatible properties determined above or using the available solu­
tions for the foundation stiffnesses (10,11) with the values of G and
D at a depth of 0.68 (or 0.6R) if the soil deposit were originally
uniform or at a depth of 0.48 (O.4R) if the original modulus increased
with depth.

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this work was to determine, through parametric studies,
simplified rules which could be used with a single linear analysis to ac­
count, at least in an approximate way, for nonlinear soil behavior. Within
the limitations of this study (two-dimensional problem, nonlinear soil
model, etc.), it appears that the procedures suggested should provide rea­
sonable results at least for preliminary analyses. It should be noticed
that many of the limitations of this work are also present in the iterative
procedure used in practice with complete and expensive two-dimensional
finite element models (or pseudo three-dimensional solutions).

In order to improve the reliability of the approximate procedures, more
parametric studies should be conducted both for the case of a surface exci­
tation (vibrating machinery) and for the case of seismic loading: for the
former in order to consider combinations of forces and moments acting simul­
taneously on the foundation; for the latter in order to investigate the ef­
fect of the frequency content of the earthquake and variations in the soil
parameters. More soil profiles and geometries should be considered (includ­
ing embedded foundations).

Similar studies for circular or rectangular foundations would be desir­
able, but these cases would be considerably more expensive from the point of
view of computation. In all instances the use of better nonlinear constitu­
tive equations for the soil, when they become available, and a solution in
the time domain would greatly increase the reliability of the results.
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