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ABSTRACT

A finite element type formulation for the solution of truly three­
dimensional soil-structure interaction problems is presented. The
formulation is based on the use of the consistent boundary developed by
Waas for two-dimensional problems and by Kause1 for three-dimensional
conditions (with cylindrical coordinates) to determine the displacement
on the surface of a layered soil deposit due to a unit harmonic load.
The method is applied first to the determination of the dynamic stiff­
nesses of a square foundation and the results are compared to those of
an equivalent circular footing to check their validity. An excellent
agreement is obtained.

The interaction, through the underlying soil, between two rigid
masses (and two structures idealized as simple one-degree-of-freedom
systems) is studied next for the case of a harmonic force applied at
one of the masses (or structures) and for the case of a base motion
representing an earthquake-type excitation. In both cases it is found
that the interaction effects increase when the two structures have the
same natural frequency (on a flexible foundation), when their masses
increase and as the distance between them decreases. When applying a
force to one of the structures, the presence of the other tends to in­
crease the peak response for the cases considered. For a base motion,
on the other hand, the peak response tends to decrease within the range
of parameters studied. In all cases the most significant effect is a
change in the natural frequencies of the soil-structures system.



3

PREFACE

The work described in this report represents a summary of the
thesis of Jose J. Gonzalez, presented to the Civil Engineering Depart­
ment at M.I.T. in partial fulfillment of the requirements for the
degree of Master of Science. The research was supervised by Professor
Jose M. Roesset'and was made possible through Grant AEN-7417835 from
the National Science Foundation, Division of Advanced Environmental
Research and Technology.

This is the third of a series of reports published under this
grant. The other two are:

1. Research Report R76-8 by Mohammed M. Ettouney, IITransmitting
Boundaries: A Comparison,1I January 1976.

2. Research Report R76-9 by Mohammed M. Ettouney, IINon1inear Soil
Behavior in Soil Structure Interaction Ana1ysis,1I February
1976.
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DYNAMIC INTERACTION BETWEEN ADJACENT STRUCTURES

INTRODUCTION

The vibrati.ons of soils and soil deposits and the dynamic interaction
between soils and structures have received considerable attention in re­
cent years. There are a variety of practical engineering problems associ­
ated with this general area: the design of foundations for vibrating
machinery and the response of buried structures to blast loading were

among the first ones to be studied; the effect of local soil conditions on
the characteristics of earthquake motions, the stability of slopes and
earth dams under seismic excitation (including the possibility of lique­
faction) and the assessment of vibrations caused by transit systems were
all considered later. In the last few years and because of the need to
perform a seismic analysis for all nuclear power plants, the earthquake
response of structures accounting for the flexibility of the foundation
(soil-structure interaction) has been a problem of considerable interest
and research.

A substantial amount of work has been done in all phases of the soil­
structure interaction problem, from the determination of the motions at
the foundation level, before the structure is built, for different types
of waves (of particular importance for embedded foundations) to the devel­
opment of analytical or semi-analytical solutions for the foundation stiff­
nesses as a function of frequency (strip footings, circular foundations
and rectangular foundations can now be studied on the surface of a horizon­
tally stratified soil deposit), the derivation of simplified formulas from
parametric studies, the consideration of nonlinear effects due to the soil
behavior or to the possible separation of the mat from the soil, and the
implementation of general computer programs to solve the complete problem
for some idealized situations (normally with very simple models of the

structure) .
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Two general approaches are used now for the solution of soil-struc­
ture interaction problems:

A one-step or direct approach, in which the soil and the structure
are analyzed together, modelling them through finite elements (or
finite differences) and linear members. This procedure has a clear
theoretical advantage if inelastic behavior, particularly in the soil,
is to be ac~ounted for through a step-by-step numerical integration
of the equations of motion in the time domain. The advantage is
hampered by the fact that the input motion must be specified at the
base of the model, where it is not known a priori. When the design
earthquake is specified at the free surface of the soil deposit, as
is now norma11 y the case, a deconvo1ut ion is neces sa ry to obta i n fi rs t
a compatible motion at bedrock.

A three-step approach also referred to as the substructure or spring
method. In this case the first step is the determination of the seis­
mic motion at the foundation level, considering a rigid but massless
foundation (for an embedded structure the motion will have both trans­
lational and rotational components). The second step is the deter­
mination of the dynamic stiffnesses of the foundation, complex func­
tions of the frequency. Finally the dynamic analysis of the structure
resting on frequency dependent II springs" as obtained in the second
step is carried out for the base motions computed in the first. This
procedure implies the validity of linear superposition and is there­
fore restricted in rigor to linear analyses or studies in which non­
linearities are simulated through an equivalent linearization. It
offers on the other hand considerably more flexibility in the way each
step is handled and it is particularly suited to parametric studies.

The advantages and disadvantages of each one of these two approaches
and the possibility of obtaining with either sensible results, when properly
implemented, has been extensively discussed, although some controversy seems
to persist, unfortunately, on the validity or adequacy of each method.
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HISTORICAL REVIEW

It has long been recognized that no building stands alone, and that
the presence of neighboring structures may affect its dynamic response,
particularly under a seismic excitation~ but very little work has been
done to date to determine in a systematic way the importance of these
interactions. The problem is complicated by the large number of param­
eters involved: xhe number of structures, the relative position in space,
their size, mass and stiffness and the characteristics of the soil pro­
file. The interaction of two structures through the underlying, or sur­
rounding, soil is not only of interest in seismic analyses but also in
the assessment of potential damage to very sensitive structures due to
vibrations induced from adjacent buildings (vibrating machinery, wind
loads, etc.).

In 1969 Richardson (5) studied the case of two rigid cylinders (with
the same dimensions) resting on the surface of an elastic half-space when
one of them was excited by external harmonic forces. This solution was
based on an analytical formulation using an averaging procedure to deter­
mine the motions of each cylinder from the free field displacements. With
the two cylinders at a distance of ten radii between centers, Richardson's
results indicate that the direct effects in the excited mass (vertical
displacement due to a vertical load) are only slightly affected by the
presence of the second mass, but that new effects appear which would not
have occurred had the mass been alone (horizontal displacements and rota­
tions under a vertical load). Under this type of excitation the vertical
displacement of the second, passive mass, is about 20% of that of the
first with a similar variation with frequency. The horizontal displace­
ment and the rotation of the second mass are, however, much larger than
those of the first. This result is quite logical if one takes into account
that these effects are induced first in the passive mass and then trans­
mitted, through a feedback mechanism, to the active one.

In 1974 Chang Liang (1) presented the results of a more extensive set
of parametric studies on the interaction effects between two rigid masses



7

resting on the surface of a soil layer of finite depth (underlain by
rigid rock). A two-dimensional (plane strain) problem was considered
and the solution was obtained using a ftnite element type formulatton
with the consi stentboundary originally developed by Waas (6). Both the
case of a harmonic force (a horizontal force or a rocking moment) applied
to one of the masses, and the case of a base motion affecting the two
masses, and simulating a seismic type excitation, were studied.

For the fi r'st case and withi n the range of parameters studi ed (values
of the masses, relative distances between their centers and stratum
depths), Chang Liang concluded that the interaction effect between the two
masses seemed to be 1ess important for very shallow 1ayers of soil (rest­
ing on rigid rock) than for layers of moderate thickness. In all cases
the existence of a second mass at distances of 2.5 to 5 times the base
width affected only slightly the direct response of the excited mass (al­
though there were again vertical displacements that would not have occurred
had the mass been alone). The significant part of this kind of study would
thus be the determination of the vibrations induced in the second, unex­
cited mass. The horizontal displacement of this mass due to a horizontal
force applied at the first is of the order of 50% that of the active mass
when the stratum is relatively deep and the distance between the founda­
tions is 2.5 times their base width; it reduces to about 20% if the stratum
is very shallow or if the distance increases to ftve widths. This ratio is
larger when the masses increase (particularly the second one). Similar
results are obtained for the rotations induced by a rocking moment, but the
ratios of the effects in the passive structure to those in the active one
are slightly smaller (of the order of 30 to 40% for the deep stratum and
the smaller distance). These observations are basically consistent with
those of Richardson.

For the second case, when a base motion simulating an earthquake exci­
tation (caused by a train of shear waves propagating vertically through the
soil at a specified frequency) was imposed on both masses, the main effect
of the adjoining mass seemed to be a change in the natural frequencies of
the system. As a consequence, if the displacements at the base of one of



8

the masses (including the effect of the other) were divided by the corre­
sponding result if the mass were alone, amplifications and deamplifica­
tions would take place at different frequencies. The amplifications could
be of the order of 50 to 100% when the masses were heavy and the deampli­
fications were similarly of the order of 40 to 60%. The net effect under
an actual earthquake would depend, however, on the frequency content of
the specified motion. For a narrow band process interaction effects be­
tween the two ma£ses could be very important: if most of the energy of the
earthquake is around one of the frequencies where amplifications take place,
a large increase in response could occur (the range of amplification is
very narrow for the swaying frequency of the masses, but broader for the
rockin~ frequency); on the other hand, if the energy was centered in the
frequency range where the results show deamplifications, the effect of the
adjoining mass would be beneficial. For a white noise or a wide band pro­
cess, the main effect would be the appearance of small shifts in the fre­
quencies at which the peaks of the response spectra occur. Whether the
amplitude of these peaks would increase or decrease is not obvious from the
results presented, but it appears that small amplifications might occur.
In particular the presence of a larger and heavier structure seemed to have
a detrimental effect on the response of a lighter one.

More recently (1975) Lysmer et al. (4) have presented results for the
seismic response of a nuclear power plant, including the effect of two
auxiliary buildings. The formulation was based on a finite element solution
by the one-step approach, using basically a two-dimensional model to which
viscous dashpots are added on the lateral faces to increase the amount of
damping and thus simulate radiation in the direction perpendicular to the
plane. The model will have, however, the foundation stiffnesses and natural
frequencies corresponding to a two-dimensional solution rather than those of
the true three-dimensional problem. Furthermore, the buildings must be cen­
tered along a common axis, and their foundations must have the same width
in the direction perpendicular to the plane (a serious limitation for the
analysis of general three-dimensional situations).

In this study two equal auxiliary buildings were included, one on each
side of the nuclear power plant (sYmmetrically placed). A layer of sand
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with a depth of 65 ft. resting on rigid rock was considered. The main
building had a base width of aboot 2 times the stratum depth and was
embedded to about one-third of this depth. The auxil iary buildings h.ad
base widths approximately equal to the stratum depth and were deeply
embedded to about two-thirds of this depth. The control motion, with a
maximum acceleration of 0.25g and a spectrum according to the AEC Regu­
latory Guide,seemed to be specified at the depth of the reactor founda­
tion in the free. field. The results presented were the acceleration re­
sponse spectra for 2% oscillator damping at a point of the containment
building at the level of the soil surface, considering only the main build­
ing (two-dimensional solution) and with the effect of the auxiliary build­
ings (for a two-dimensional and a pseudo three-dimensional solutions).

These results are particularly striking and show much stronger effects
than those of previous studies. When the two-dimensional model is consid­
ered throughout, the peak of the response spectrum is amplified by a factor
of almost 2.5, due to the presence of the auxiliary buildings. This would
suggest that present practice, analyzing nuclear power plants under seismic
excitation without due account for the presence of adjacent structures,could
lead to very erroneous results and unsafe designs, a very disquieting thought.
It would also indicate that the interaction of adjacent buildings is much
more important than other effects which are now being studied.

The comparison of the two-dimensional solution without auxiliary build­
ings and the pseudo three-dimensional results shows an increase in the peak
of the response spectrum of only 1.5 to 2 (still very significant), but it
is not very meaningful because of the inconsistency in the models. The build­
ing alone should have been studied also with the pseudo three-dimensional
model for a valid comparison.

Finally, the comparison between the normal two-dimensional solution and
the one with additional viscous dashpots on the lateral faces (pseudo three­
dimensional approach) shows a reduction in response which can be easily ex­
plained by the increase in damping provided in the latter.

An interpretation of these results is difficult without the complete
data on the structures (stiffnesses and masses) and on the motion character-
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istics. It is possible on one hand that the interaction effects be
so marked because the input at the base of the building has a large peak
at a specific frequency, or because the parameters are not realistic for
typi ca1 structures (they waul d increase with very 1arge masses 1. On the
other hand, the very deep embedment of the auxiliary buildings may cause
a box-type effect and decrease the effective radiatton damping (it would
be necessary to assess first what the soil-structure interaction effect
is for the containment building alone and what is the amount of effective
damping due to radiation). This is a case where a solution using the
three-step approach woul d have greatly facil itated the identHi cati on of
the factors contributing to the increase in response.

It seems, in any case, that because of these results, more studies are
needed to improve present knowledge on the nature and magnitude of struc ..
ture-soil-structure interaction effects.

SCOPE

In this work a formulation is presented for the general three-dimensional
solution of structure-soil-structure interaction problems with the three-step
approa-ch. Any number of structures with foundations of arbitrary shape can
be considered. The main two limitations are that the structures are founded
on the surface (the method could be extended to embedded foundations, but it
would become much more expensive computationally) and that a horizontally
stratified soil deposit of finite depth (resting on much harder, rock-like
material) must be considered. The formulation is essentially an extension
of the procedure used by Chang-Liang in his studies (1) to the three-dimen­
sional case.

The formulation is described first and evaluated by comparing the free
field displacements due to concentrated loads on the surface of a layer of ­
finite depth to results of a semi-analytical solution suggested by Gazetas
(2). The method proposed here furnishes results which are in good agreement
with the analytical solution at considerably less computational expense. In
addition, the dynamic stiffnesses of a square foundation are obtained and
compared to those of an equivalent circular footing, and the convergence char­
acteristics of the method are investigated as a function of the mesh size.
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Results are then presented for the cases. of two rigid masses and two
simple structures resting on the s.urface of a homogeneous soil deposit
with a depth equal to twice the foundation width. In order to reduce the
number of parameters, both foundations are assumed to be square, of equal
size, parallel and centered along a common horizontal axis. The values of
the masses, the natural frequencies and the distance between the foundations
are varied. Both the cases of a harmonic excitation applied to one of the
masses or structures and of a base motion (simulating an earthquake) are
considered. The results are presented in dimensionless form: the displace­
ments are multiplied by the shear modulus of the soil and the side of the
foundation, and divided by the value of the applied force (they correspond
to unit values of these three quantities). They are plotted versus a dimen­
sionless frequency which is the actual frequency in cycles per second (Hz)
multiplied by the size of the foundation and divided by the shear wave veloc­
ity of the soil. (Notice that this is not exactly the same dimensionless
frequency used in other studies where the frequency in radians per second
is multiplied by the radius of a circular foundation, or half the size of
a square one, and divided by the shear wave velocity. A factor of TI should
be applied to the values used here to obtain the other).

FORMULATION

The starting point for the proposed formulation is the determination
of the displacements at any point on the surface of the soil deposit due
to a harmonic unit horizontal force x, a unit horizontal force y, and a unit
vertical force z applied at the origin, as a function of the frequency of
excitation. A semi-analytical type solution for this problem was suggested
by Gazetas (2) using a double Fourier expansion in the x-y plane. In this
work the solution is based on a finite element type formulation using the
consistent boundary developed by Waas (6) and extended by Kausel (3) to the
three-dimensional case. It is important to notice that contrary to what has'
been sometimes reported (see 4~ for instance) the use of this boundary matrix
is not restricted to the solution of axisymmetric problems. When part of the
soil profile or the structure are reproduced by axisymmetric (toroidal)
finite elements, then the geometry of the problem must be indeed axisymmetric,
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although the loads or excitation can have any distribution expanding them
in a Fourier series along the circumference (the approach normally used
for the solution of shells of revolution under arbitrary loadings). This
restriction becomes meaningful when the soil-structure interaction problem
is to be solved in a single step but no longer applies if the three-step
solution is used. All that is necessary is to express the coordinates of
the points where displacements are desired in cyl indrical coordinates and
to refer the radial and tangential displacement to orthogonal cartesian
components.

Figures 1 and 2 show the horizontal and vertical displacements at the
free surface of a soil layer of finite depth due to a unit horizontal or
vertical force at the origin, respectively. The abscissa is the distance
to the point of application of the load divided by the stratum thickness H.
To evaluate these results it must be taken into account that in the present
solution a concentrated load is considered within the accuracy of the finite
element method. In the semi-analytical solution, on the other hand, the load
is expanded in a double Fourier series using a discrete Fourier transform.
The solution corresponds then to a rectangular pulse, or a load uniformly
distributed over a rectangle, with sides equal to 1/6 of the stratum depth
for the case shown. One can expect therefore that in the immediate neighbor­
hood of the point of application of the load, the results provided by the
finite element model will be slightly larger (the actual condition of a
point load is better modelled). A second parameter which affects the accur­
acy of Gazetas· solution is the number of points used for the double Fourier
expansion. The results shown are for a mesh with 64 equally spaced points in
each horizontal direction. Considering these differences the agreement in
the results seems very good. The curves shown are for frequencies of O. 1
C /H and 0.4 C /H, where Cis the shear wave velocity of the soil and Hiss s s
the stratum depth. They are typical of those obtained for a number of fre-
quencies studied.

For the problem at hand the foundation o~ foundations considered are
discretized by a grid of equally spaced points in the x and y directions
(Figure 3). (The method would accept of course unequal spacing of the
points, but in this work only square foundations were treated). Assuming
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that each side of a foundation is divided into N equal segments, there
are (N+l)2 points for each foundation and a total of 2(N+l}2 points (if
both foundations are equal). By considering a unit force applied at one
of these points and determining the displacements u, v and w at all the
others, one can form a column of a global flexibility matrix F of dimen­
sions 6(N+l)2 by 6(N+l)2 (since there are three displacement components
at each node), or in general 3Nl + 3N2 if Nl is the total number of points
in the first fo~ndation and N2 the corresponding quantity in the second.
It is important to notice that it is not necessary to repeat the computa­
tion for each point (or column of the flexibility matrix), since many of
the coefficients can be derived from the others by a simple shift or by
applying symmetry and anti symmetry conditions.

If Pl represents a vector of
applied at the mesh points of the
displacements at the same points,
bles for the second foundation.

forces (in the x, y and z directions)
first foundation, Ul is the vector of
and P2' U2 are the corresponding varia-

Imposing now the condition of a rigid body motion for each foundation,
the displacements of the mesh points can be related to those of the corre­
sponding centroid by a transformation of the form

U
l

= Tl ul

U2 = T2 u2

where U
l

, U2 have 3(N+l)2 components (or in general 3Nl and 3N2 respectively).
T, and T

2
are matrices 3(N+l)2 by 6 (or in general 3N, by 6 and 3NZ by 6),

and u
l

and u
2

have six components each (three translational components along
the x, y, and z axis and three rotations around each one of these axes).

The resultants of the forces applied at the mesh points of a foundation
with respect to its centroid will consist of three forces and three components.
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Denoting by Pl and P2 the vectors of these six force components,

and

It is then possible to write

K is then the dynamic stiffness matrix (with terms complex functions
of frequency) of the system of two foundations on the soil layer. It
should be noticed that in order to obtain K it is not necessary to invert
the flexibility matrix F. It is enough instead to form directly the pro-

-1 fT1 0-
duct F I? T~ by solving a system of equations with F as matrix of

coefficients and the columns of the transformation matrix as right-hand
side vectors. For the case of two foundations, matrix Kwill be of size
12 x 12. It can be partitioned into four submatrices of the form

K=

Twhere Kll and K22 are symmetric and K21 = K12 .

It must be noticed that due to the interaction effects Kll and K22 are
not equal to the stiffness matrices of the individual foundation considered
alone. Furthermore, even if the two foundations are equal, Kll and K22 are
not identical.

When the two foundations are parallel and centered along the x axis
(as shown in fig. 3) in-plane and out-of-plane effects can be uncoupled.
The in-plane effects are represented by forces and displacements in the x
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(horizontal) and z (vertical) directions, and moments and rotations

around the y axis. The out-of-plane effects consist of forces and dis­
placements in the y direction, and moments and rotations around the x
axis (rocking) and around the z axis (torsion). For this situation the
in-plane matrices are of the form

K K Kx</>xx xz
Kll = Kxz Kzz Kz</>

Kx</> Kz</> K</></>

and I

:~$I
Kxx Kxz

K21 = K' K'
xz zz z</>
I I I

-K -K K</></> Jx</> z</>

K K -Kxx xz x</>
K22 = Kxz Kzz -Kz</>

-K -K K</></>_ x</> z</>

Similar relationships take place for the out-of-plane effects.

In order to check the accuracy of the solution procedure, the case
of a single foundation, rigid and square, was considered. Following the
approach used by Kausel (3), the convergence of the solution with mesh
size was investigated by considering different grids and plotting the
values of the stiffnesses versus mesh size. In all cases it was considered
that the thickness of each sublayer of soil for the determination of the
consistent boundary matrix (and the computation of the surface displace­
ments) was equal to the mesh size. As in Kausel's studies the values of
the stiffnesses for different meshes fell almost exactly on straight lines.
The extrapolated values of the static stiffnesses obtained from the study
were

K = K ~ 9.2 GB (1 + 0.6 ~) (horizontal)
xx yy 2-v H

K
zz

~ 4.6 GB (1 + 1.6 ~) (vertical)
l-v H

3
K ~ 4GB (1 + 0.11 ~) (rocking)

</></> l-v H
3 BKee ~ 8.2 GB (1 + 0.05 H) (torsion)
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where G is the shear modulus of the soil, B is half the side of the
square foundation, and H is the stratum depth.

By comparison for a circular foundation, Kausel had suggested the
formulas (3)

K = 8GR (l + 0 5 B.)xx 2-v • H·

8GR3 R
K¢¢ = 3(1-v} (l + 0.17 ff)

Taking an equivalent radius so as to obtain the same area for the
circular and the square foundation Re = /4/TI B the first expression
would become

K = 9.1GB (1 + 0. 56 .1l.)
xx 2-v H

Taking Re = r16/n B to obtain the same moment of inertia, the second
expression yields

3 B
K - 11.9GB (1 + 0.2 ff)'
¢¢ - 3(l-v )

These results indicate that the usual procedure of adapting the stiff­
nesses of a circular foundation to the case of a square footing by defin­
ing an equivalent radius provides an excellent approximation. Furthermore,
the variation of the stiffness coefficients with frequency was almost
identical to the results of Kausel using again the equivalent radius and
modifying accordingly the values of the dimensionless frequency.

It should be noted that the accuracy provided by a given mesh is not
the same for all the terms of the stiffness matrix. Thus for instance for
a coarse mesh with each side divided in three equal segments (a total of
sixteen points under the foundation) the error in the terms Kxx Kyy or Kzz
may be of the order of 15 to 20% (depending on Poisson1s rati9)the error
in the terms K¢¢ or Kee is of the order of 50%. In all cases the results
converge monotonically from above: that is to say, the computed values are

larger than the actual ones. It is thus recommended, if the method is used
for practical applications to use a mesh which is sufficiently fine, or
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even better, to compute results for two meshes (a coarse one and a medium
one) and to obtain improved estimates using a linear extrapolation.

In order to study the interaction effects between two rigid masses,
it is sufficient to form the inertia matrices of each mass. If Mi is the
mass, Ix I and I are the mass moments of inertia with respect toi y. ;Z.

axes parallel to the'x, y and z directions passing through the center of
gravity, and Ei .i s the height of this point with respect to the base, the
inertia matrix referred to the base displacements is of the form

M. 0 0 0 ~1. E. 01 1 1

0 M. 0 -M.E. 0 0
1 1 1

0 0 M. 0 0 0
Mb. = 1

0 -M.E. 0
2

0 01 I + M.E.
1 1 X. 1 1

1 2M.E. 0 0 0 I + M.E. 0
1 1 y. 1 1

1
0 0 0 0 0 I

zi

The dynamic equations of motion for a steady state response in the
frequency n are then

(K - ~lM) U = F

where
M=

o

and F is the vector of applied harmonic forces at the base of the masses.
For the case of a base motion, simulating an earthquake type excitation if

U are the absolute accelerations at the base of the masses (for a fre­
quency n) and UG represents a vector of free field ground accelerations
(with the specified amplitudes of acceleration in the appropriate degrees
of freedom of each mass and zeroes for all other components), the corre­
sponding equations are
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For two (or more) structures it is necessary to form first the
dynamic stiffness matrix Oi = Ki - ~2Mi of each structure. If this
matrix is partitioned in the form

where 011 corresponds to all the degrees of freedom above (and excluding)
the foundation, 022 to the six degrees of freedom of the foundation (as­
sumed to be rigid) and 012' 021 = 0~2 are the coupling terms, the equa­
tions of motion for a steady state condition are

A U = F

with 1 0 1
°11 °12

A = 0 2 2
°11 °12

1 2 B+K°21 °21

B = [:2 D~2J
K is the stiffness matrix of the two foundations and the soil stratum as
obtained from the proposed method of analysis. F is the vector of harmon­
ic forces applied at any of the degrees of freedom of the structures and
the two foundations. Partitioning it in a manner analogous to that used
for matrix A,

Finally, to determine the dynamic response of two (or more) structures to
a base motion representing a seismic input at the free surface of the soil
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deposit (in the far field) obtaining the transfer functions of the abso­
lute ~ccelerations, the same equations can be used replacing the vector
U by U and the vector of applied forces F by a vector of the form

with the same partitioning used above and UG as previously defined.

INTERACTION BETWEEN TWO RIGID MASSES

In this section results are presented illustrating the interaction be­
tween two rigid masses on equal, square foundations_and resting on the
surface of a homogeneous soil deposit. The depth of the stratum (under­
lain by rigid rock) is equal to four times the side of each foundation
(H = 4B); a Poisson's ratio of 1/3 and an internal hysteretic damping in
the soil of 5% were assumed.

The masses are defined in terms of the dimensionless parameter
m = M;8PB3 where M;s the actual value of the mass and p is the mass den­
sity of the soil. Values of m = 1 and 2 were studied; the first one may
be typical of a heavy nuclear power plant; the second one would correspond
to an extremely heavy building. These large values were selected in order
to emphasize the interaction effects. It was assumed in all cases that the
height of the center of gravity above the foundation was equal to 1/3 of the
base size and that the radius of gyration (for the computation of the mass
moments of inertia) was equal to half the base. Distances between the
centers of the foundations of 38 (a clear spacing of half the foundation
size), 48, 58, and 108 were considered. The results presented here are all
for the case D = 38 where the interaction effects are more marked. They
are plotted versus the dimensionless frequency fo = f (28/cs) defined above.

Figure 4 shows the variation with frequency of the horizontal displace­
ment at the base of the first mass when it is excited by a harmonic horizon-
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tal force (applied also at the base). The first, excited, mass has m = 1.
It can be seen that the presence of the second mass originates shifts in
the natural frequencies with amplification of the motion in certain ranges
and deamplifications in others. Similar results are obtained when ml = 2

(figure 5), but it can be seen that the effect of interaction increases
when the second mass is heavier (and also as both masses increase). To
interpret these figures it is interesting to notice that the swaying rock­
ing frequencies 'of the masses alone (frequencies at which the peaks occur)
are approximately

for m = 1
for m = 2

0.125
0.125

0.21
0.16

0.375
0.34

The first peak is affected by the natural frequency of the soil de­
posit (at precisely 0.125). For the case of a half-space one would have
expected to find only two peaks.

Figure 6 shows the horizontal displacements induced in the second mass.
For a distance of 38 between the centers of the foundations, the displace­
ment of the passive mass is about 0.6 times that of the excited one for
m2 = 1 and about 0.8 times for m2 = 2. This ratio decreases obviously as
the distance between the foundations increases, but it is still of the order
of 0.25 to 0.30 for D = lOB. For the case (1,1) the variation with fre­
quency of the motion of the second mass is similar to that of the first.
For the other cases it tends to show only one peak. Notice that the re­
sults for (1,2) and (2,1) are almost identical (the difference in the scale
of the figures should be taken into account).

Figure 7 shows the vertical displacements of the two masses for the
two cases (1,1) and (2,2). It must be remembered that this displacement
is entirely a result of the adjoining mass, since for a mass alone no ver­
tical motion should take place (under a horizontal excitation). The dis­
placement is almost zero below the fundamental frequency of the stratum,
but it becomes significant in the neighborhood of the vertical frequencies
of the masses (0.23 for m = 1 and 0.20 for m = 2). The effect ot the hori­
zontal rocking frequency can still be seen when both masses are equal to 2,
but is very small in the other instances.
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When the two masses are very close to each other (D = 3B) the verti­
cal displacement induced in the active mass by the presence of the second
can have a peak amplitude of the order of 1/5 to 1/8 of the peak horizon­
tal displacement. The maxima of both effects occur, however, at differ­
ent frequencies: if the excitation were to take place in the neighborhood
of the vertical frequency, the vertical displacements could be almost as~

large as the horizontal ones (from 0.5 to 1 times, depending on the mass
ratios). These·vertical effects decay, though, very fast as the distance
between the foundations increases. They are about half to two-thirds of
the values shown at D = 4B, and only 1/20 of these values at D = lOB.

The vertical displacements of the passive mass have a frequency vari­
ation very similar to those of the first mass. It is important to notice
that their amplitude is much larger (about 1.7 times when D = 3B and up
to 10 times for D = lOB). This illustrates the fact that this displace­
ment is induced first in the adjoining mass and then transmitted as a feed­
back to the active one.

The effect of the adjoining mass on the rotations caused by a unit
horizontal force or a unit rocking moment is very similar to that described
above for the horizontal displacement. Analogous conclusions are reached
comparing vertical displacements due to vertical loads. The corresponding
quantities in the passive mass are again of the order of 50 to 60% those
of the primary mass for D = 3B and decrease to 10 to 20% for D = lOB. Fin­
ally, if a horizontal force is applied in the y direction to the first
mass,torsiona1 rotations appear in both. The behavior of these torsional
motions is of the same nature as that of the vertical displacements caused
by a horizontal force.

Figure 8 shows the horizontal accelerations at the base of the masses
due to a ground acceleration specified at the free surface of the soil
deposit (in the far field). The main effect of the adjoining mass is again
the appearance of shifts in the frequences of the peaks. The values of
the peaks seem to increase slightly (of the order of 5 to 20%), but whether
an amplification or a deamplification will occur depends on the specific
frequency of interest, or generally on the frequency content of the earth­

quake.
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Figure 11 shows the torsional accelerations induced by the presence
of the second mass when the ground motion takes place in the y direction.
The torsional frequencies of the masses on the soil stratum are 0.35 for
m = 1 and 0.26 for m = 2. When both masses are equal to 1 the torsional
acceleration shows two peaks: one at the second natural frequency in sway­
ing rocking (0.21); the second one, larger, at the torsional frequency
(0.35). The horizontal acceleration at the edge of the mass due to this
torsional rotation would be about 10 to 20% of the acceleration of the
centroid. When the second mass is heavier, the first peak increases
slightly and shifts towards the frequency of the second mass; the second
peak, on the other hand, increases by a factor of almost 2.5. In this case
the lateral displacement of the edge of the mass due to torsion would be
about 50% of the centroidal displacement (at that frequency). As the dis­
tance between the two foundations increases, the first peak changes very
slowly; the second peak decreases faster and shifts to the left.

When the first mass is the heavy one (ml = 2) and the adjoining mass
is smaller, peaks appear at frequencies of 0.125 (very small), 0.21 and
0.26 (torsional frequency of m = 2). The edge displacement caused by the
tOI'siqn at 0.21 is about 50% of the centroidal displacement at that fre­
quency, but is very small compared to the maximum horizontal displacement
(at a different frequency). When both masses are equal to 2 the excited
frequencies are 0.125,0.16 (the two swaying-rocking frequencies) and 0.26
(the torsional frequency). The maximum response occurs again at the tor­
sional frequency, but this peak decreases faster with distance.

INTERACTION BETWEEN TWO STRUCTURES

In order to study the interaction between two structures, introducing
their own natural frequencies as parameters, two simple structures, ideal­
ized as single-degree-of-freedom systems, were used. Each structure was
modelled as a single mass, lumped at a certain height, h, and a shear
spring. The foundation was assumed to be rigid but massless. The struc­
ture was rigid in the vertical direction and had the same rotation at the
base and at the top. The two foundations were still square, of equal size,
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and centered along the x axis so that in-plane and out-of-plane effects
could be uncoupled. Considering only the in-plane effects, each struc­
ture alone, on the elastic foundation, had four degrees of freedom but
only two dynamic ones.

In order to define the structural characteristics, the dimensionless
frequency k= K/2GB (K is the stiffness of the shear spring), the dimension­
less mass m = M/8pB3 (defined before), and the height h are used. In
all cases it was assumed that h = B. A hysteretic type damping of 5% was
employed. The soil profile was the same one of the previous studies with
rigid masses. The results are shown again for a distance of 3B between
the centers of the foundations.

The structures considered and their natural frequencies on a rigid
base and on the elastic foundation were:

for a rigid
base
for an elastic
foundation

m=l k=4
0.318

0.170

m-l k=2
0.225

0.154

m=0.5 k=2
0.318

0.220

m=0.5 k=l
0.225

0.175

It is interesting to notice that although structures 1 and 3 (and 2
and 4) have the same natural frequencies on a rigid base, the actual fre­
quencies when considering the elastic foundation are different. For the
soil structure system cases 1 and 4 have almost the same natural frequency.
It is the frequency accounting for the flexibility of the foundation which
is important in interpreting the shape of the response curves.

Figure 12 (a,b, and c) shows the displacements at the top of the two
structures for various combinations of the structural models when a hori­
zontal harmonic force is applied at the top of the first.

When the two structures are equal (m=l k=4), the amplitude of the
response at the resonant frequency (slightly shifted) increases by about
30 to 40% due to the presence of the second structure, but the peak is
narrower. The displacement of the passive structure has a similar shape
with a peak response about 50% of that of the first.
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When m1=1 k1=4 and m2=1/2 k2=2 (same natural frequency on rigid
base), the interaction effect is much smaller, with an increase in the
peak value of about 10%. The response of the passive structure is still
similar (controlled by the characteristics of the first) and of the order
of 40%.

If m1=1 k1=4 and m2=1/2 k2=2 (same natural frequency approximately
on elastic foundation), the peak displacement of the excited structure
is increased by a factor of 1.2 to 1.3 over the value for the structure
alone, a situation intermediate between the two previous ones. The re­
sponse of the second structure becomes relatively larger, about 75% of
that of the first. If the situation is reversed and the excited structure
is the lighter one (m1=1/2 k1=2 m2=1 k2=4), the increase in the peak
response of the excited structure is smaller (15 to 20%). The response
of the passive structure is now much smaller (about 25% of that of the
active one).

When the two structures have the same mass but different natural fre­
quencies (m1=1 k1=4 m2=1 k2=2), the increase in the peak response is
again of the order of 20 to 30%, and the response of the passive structure
is half that of the active.

Finally, if both structures are equal but with smaller masses (m=O.5
k=l~ the increase in the peak response of the excited structure is only
of the order of 20%, and the response of the passive structure is less than
half (about 40%).

It appears therefore that the interaction effects are more pronounced
when both structures have the same natural frequency on the elastic foun­
dation and when the masses are heavy. To illustrate better the reasons
for the increase in the peak response due to the presence of the second
structure, figure 13 shows the base displacements and rotations for the
case when both structures are equal, with m=l and k=4 (for the case of both
structures and one structure alone). The main increase in response takes

place in the rotation.

Figure 14 shows the horizontal accelerations at the top of the first
structure when they are both excited by a ground acceleration in the x direc-
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tion specified at the surface of the soil in the free field. In all cases
the first structure has m:l k=4; the second structure takes the values
of each one of the four models. When the second structure is equal to the
first, the interaction effect is more marked. Two peaks appear instead
of one, and the peak response decreases by about 30%. When m2=0.5 and
k2=2, the main effect is a shift in the frequency of the peak; the decrease
in the amplitud~ of the peak is only of the order of 5%. If m2=0.5 and
k2=1, the decrease is of the order of 15%. Finally, if m2=1 and k2=2, two
peaks occur again and the amplitude of the larger is about 5 to 10% smaller
than that of the structure alone.

Figure 15 shows the horizontal accelerations at the top of the second
structure for the same situations. When m2=0.5 and k2=2, there is an in­
crease in response at the frequency of the first structure and a slight
decrease at its own frequency. In the second case, when m2=0.5 and k2=1
(both structures have approximately the same natural frequency on the elas­
tic foundation), the reduction in the peak response is very marked, of the
order of 40%. This implies that the fact that the other structure has a
larger mass reinforces the interaction effect. In the last case (m2=1
k2=2), the interaction effect is relatively small.

The decrease in response at the peak is again primarily due to the
base rotation. The results for a base excitation are in general terms,
similar to those of the applied harmonic force, but the effect of the rota­
tion is of opposite sign (it decreases the acceleration at the top for the
case of a base motion and increases it in the other·

CONCLUSIONS

From the studies carried out and described here, it appears that the
proposed formulation, based on a finite element type procedure with the
consistent boundary developed by Kausel, can provide an excellent solution
for truly three-dimensional problems and for the study of interaction ef­
fects between adjacent structures. In order to use the procedure in prac-
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tice it would be necessary to use a finer mesh under each foundation
or to obtain solutions for two different meshes and apply a linear ex­
trapolation. (The results shown were obtained with a 3 x 3 mesh or a
total of 16 points under each foundation for reasons of economy).

One of the main effects of an adjoining mass or structure is the
excitation of modes of vibration which would not appear if the structure
were alone (such as vertical vibrations under a horizontal force in the
x direction and "torsional rotations under a force in the y direction).
When only one of the masses (or structures) is excited by an external
force, these effects are due to a feedback from the passive structure,
and they decay very rapidly with increasing distance between the founda­
tions. When the two masses are excited (as in the case of a base motion),
they become more significant and their rate of decay with distance is
much slower.

A second important effect is a change in the natural frequencies of
the combined soil structure system. This change is more pronounced when
dealing with two rigid masses, because their frequencies are affected only
by the foundation stiffnesses. For the case of two structures, their own

stiffness is an additional factor.

For the case of two rigid masses, when one of them is excited by a
horizontal force, the effect of the adjoining mass on its horizontal dis­
placement is only small. The effect is a little more pronounced in the
rotations induced by a horizontal force or a rocking moment. The response
of the passive mass is of the same order of magnitude as that of the ex­
cited one: from 30 to 80% when the masses are close (D=38) and 10 to 30%

when they are at a distance D=108.

Under a base motion the existence of two masses tends to increase
slightly the peaks of the base translation, but it reduces more importantly

the rotation. The effect is more marked when both masses have the same
natural frequency on elastic foundation and as their masses increase.

For the case of two structures, with one of them excited by a horizon­
tal force at the top (where the mass is applied), the top displacement
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tended to increase in all cases due to the presence of the other struc­
ture, the increase being more noticeable when both of them had the same
natural frequency on elastic foundation and as their masses increased.
The increase in the peak response varied between 5 and 40% for the cases
considered with the two foundations at a distance of 3B. The main cause
for the increase lies in the base rotation.

Under a base motion, simulating a seismic input, the presence of the
second structure tended instead to decrease the peak response. The de­
creases are of the same order as the increases found in the case of an
exciting force and are also caused by the base rotation.

The results obtained are in general agreement with those reported
by Richardson (5) and by Chang Liang (1). Because of the large number of
parameters involved in this problem and the relatively small number of
cases considered, it is difficult yet to present more specific conclusions.
It appears, however, from these studies that simple rules could be derived
to estimate the magnitude of the vibrations caused in a passive structure
as a function of distance and feedback effects. These rules could then
be extended to the case where both structures are excited.

In order to understand better the interaction effects, it would be
convenient to isolate further translational and rotational effects (notice
that in this work even for the case of rigid masses the horizontal force
creates rotations due to the elevation of the center of mass). The rota­
tional effects seem to be the most important ones. It would also be more
convenient to work with a half-space rather than with a finite layer of
soil to eliminate the effect of the stratum frequencies.
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