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ABSTRACT 

The Boundary Element method is applied to the determination of 
the dynamic stiffnesses of rectangular foundations resting on the sur­
face of or embedded in an elastic half space. The procedure is applied 
first to surface square foundations, and the effects of mesh size and 
relaxed versus nonrelaxed boundary conditions (smooth versus rough foot­
ing) are investigated by comparing the results to other published solu­
tions. It is found that the solution for the smooth footing, which is 
considerably more economical, is almost identical for practical purposes 
to that of a rough foundation. The static stiffnesses and the frequency­
dependent stiffness coefficients are then obtained as a function of the 
aspect ratio for rectangular foundations. 

Solutions for embedded foundations are again obtained using com­
plex coupling between horizontal and vertical forces (and displacements) 
and through a simplified procedure based on relaxed boundary conditions. 
The agreement between both approaches is very good, the second one being 
much less expensive computationally. The effect of embedment ratio on 
the static stiffnesses and the dynamic coefficients (frequency dependent) 
is presented for a square and a rectangular foundation with an aspect 

ratio of 2. 

The Boundary Element method seems to provide an accurate and compu­
tationally feasible procedure to solve truly three-dimensional problems 
in soil-structure interaction. The method has clear advantages over 
finite element solutions, particularly when dealing with a half-space and 

embedded foundations. 
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Chapter 

I NTRODUCTI ON 

The determination of the dynamic stiffnesses of surface and embedded 
foundations of different shapes consitutes an important part of soil-struc­
ture interaction analyses using the substructure method, and is also an 

interesting problem on its own for the design of machine foundations. Anal­
ytical solutions have been developed only for particular cases [20J. To 

take into account the effect of embedment and different shapes and because 
of the high cost of three-dimensional finite element models, several other 
approximate methods have been suggested. The methods that can deal with 
foundations of arbitrary shape are based on a fundamental solution corre­
sponding to the behavior of the soil under a concentrated load. 

For the static case, a solution for the stresses and displacements in 
an elastic half-space due to a point force in the interior was developed by 
Mindlin [15J. However, there is not an explicit analytical solution for the 
dynamic problem. Lambe [14J obtained Green's function for the response of 
an elastic half-space to a point load on the surface, but the solution is 
left in terms of an integral that is not always easy to evaluate and which 
requires an approximate numerical solution. Some of the approaches sugges­
ted to compute the dynamic stiffnesses of surface foundations of arbitrary 
shape are based on this solution. 

Wong [22J and Wong and Luco [23J computed the dynamic compliances of a 
surface rigid massless foundation of arbitrary shape resting on an isotropic 
elastic half-space by dividing the soil-foundation interface into rectangu­
lar elements. The tractions were considered uniformly distributed within 
the elements. An expression for the displacement at the center of the ele­
ments was obtained adding the integrals of the product of the Green's func­
tion and the traction over each element. For the usual case of known dis­

placements, what would be an integral equation was then transformed into a 
system of linear algebraic equations relating displacements at the center 
of the elements and tractions. The diagonal influence functions of this 
system were derived by Thomson and Kobori [18J, and Wong [22J obtained the 
off-diagonal terms in a similar way. The solution involves a double integral 



6 

that has to be computed by a numerical procedure, and the presence of a 
single pole has to be taken into account [22J. Further applications on 
the dynamic behavior of surface foundations using this method have been 
reported by Werner et al. [21J and Wong and Luco [24J. 

Previous to the work by Wong and Luco, a similar method was used by 

Elorduy, Nieto and Szekeley [5J, where tractions over each element were 
represented by a concentrated load at the midpoint. This approach was 

formulated for the vertical component and has the difficulty of producing 
a singularity in the displacement under the load. The problem was solved 

by shifting the observation point from the center of the element. This, 
however, has an important influence over the diagonal terms of the system 
of equations,and a large number of elements are necessary to obtain good 
results. 

Kitamura and Sakurai[13J presented an approach similar to the previ­

ous ones, assuming a concentrated load on each element except to evaluate 
the displacement of the loaded element where a uniformly distributed load 

is considered in order to avoid the singularity. They computed the vertical 
and rocking stiffnesses of frictionless surface foundations considering 
the vertical component to be independent of the other two. The main dif­
ference in this method is that instead of using the Green1s functions de­
rived by Lambe [14J, which imply an integral, an explicit and simpler 
approximate formula proposed by Tajimi was adopted. However, Tajimi's for­
mula is only accurate for low values of w,y/C s (Csshear wave velocity of 
the soil) and consequently the method produces good results for low values 
of w· B/C s' (B = characteristic dimension of the foundation). 

Numerical approaches have also been applied to solve the problem of 
the concentrated load on the half-space surface. Gazetas and Roesset [6J 
obtained the solution for a layered half-space by a harmonic decomposition 
of the load. Kausel [12J considered a layered stratum of finite depth and 
computed the response to the surface point load using a Finite Element 
model that includes consistent transmitting boundaries. 

The surface point load permits only to work with surface foundations. 

For embedded foundations a more general fundamental solution is required. 
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Harkreider [8J presented the formulation for a buried concentrated load 
in a layered half-space. The motions and stresses are left in terms of 

integrals that have to be treated numerically. In the present work the 
dynamic stiffness of surface and embedded foundations are computed using 
the Boundary Element Method and considering the soil to be a linear elas-

tic isotropic half-space. The fundamental solution is considered to be 
the response of the complete elastic region to a concentrated load. As 
obtained by Cruse and Rizzo [2J, this solution is written in an explicit 
form which makes the computation of stresses and displacements at any 
point straight-forward. The Boundary Element Method allows working wi.th 
surface and embedded foundations of arbitrary shape. The use of the com­
plete region fundamental solution instead of the half-space one makes it neces­

sary i~ certain cases to discretize not only the soil foundation interface, 
but also the soil surface surrounding the foundation. This discretization 
is needed in the cases of embedded foundations or surface foundations 
II we lded ll to the soil, but not for surface foundations with relaxed boundary 
conditions as considered in most previous works. 
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Chapter 2 

FORMULATION 

The Boundary Element ~1ethod has been increasingly used for the solu­
tion of engineering problems in the last few years. It was formulated for 
potential problems by Jaswon and Ponter [9J and for elastostatic as well 
as for elastodynamic problems by Rizzo and Cruse [16, 2, 3J. Swedlow and 
Cruse applied it also to elasto-plastic flow [17J. In the following the 
elastostatic formulation will be summarized first due to its simplicity 
and the elastodynamic formulation will follow as an immediate consequence. 
The method basically consists in dividing the boundary of the region under 
consideration into small elements and establishing a relation between trac­

tions (stresses) and displacements over these elements. Due to the fact 
that the interior of the region does not have to be discretized, th€ method is 

suitable for problems involving large regions and among these for soil prob­
lems. 

The formulation is based on the Betti-Maxwell reciprocity relation. 
Consider a body ~ with a boundary 5 under a certain load condition a .. , 

lJ 
E .. , u., t., b. being the stress, strain, displacement, traction and body 

1J 1 1 1 . 

force components. Assuming a virtual state "*" on the same body, the fol-
lowing can be established. l 

f t.u~dS + f b.u~ d~ = f t~u.dS + f b~ u. dQ 
S11 ~ll 511 ~1 1 

Let the virtual state be the fundamental solution state produced for 
Kelvin1s problem of a unit point load applied at a point P of the body 
supposed to be part of the infinite region (Fig. 1). The displacement at 
any point when the load is applied in the j direction is given by: 

1 Tensor notation is used, a summation being implied when indices are re­
repeated. The comma -index indicates partial differentiation with respect 
to the independent variable of the index. 
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In this expression r is the distance from the point P, e. the unit vector 
J 

in the direction of the load, G the shear modulus of the soil and 8 .. the 
1J 

Kronecker delta. 

The tractions at a point on the surface with outer normal n are: 

* t. = 
1 

1 ? {~r [(1-2v)8 .. + 3r . r .J 
81T(1-v)r- on 1J ,1,J 

+ (1-2v)(n·r .-n. r .) }. e. 
J ,1 1 ,J J 

For a problem with zero body forces, the previous equations can be written 
* * in the form u l' = U.. e. and t· = T.. e

J
.• me basJ~ c re 1 a ti'ons become then 

J1 J 1 Jl 

u. - U ., t. dS - T .. u. dS p - f J J S J1 1 S J1 1 

where uj =displacement in direction j at point P. 

This last equation is known as Somigliana's Identity and allows us to 
compute the displacement at any interior point from displacements and trac­
tions over the boundary using the known functions U .. and T ... 

J 1 J 1 

Somigliana's Identity can be established for any point P of the body 
but in- order to establish a relation between prescribed and unknown boun­
dary conditions the virtual load point P has to be taken at the boundary. 
This will lead to an integral equation of the first kind for a problem with 
specified displacements, to an integral equation of the second kind for 
known tractions and to a mixed formulation for a mixed boundary value prob­
lem. 

When the point P is taken on the surface, the integrals along the boun­
dary will present a singular point. The integration at the singularity can 
be done by isolating a small area S around P and doing single and double 
layer potential considerations or by the less rigorous but simpler argument 

used in referece [lJ. 

It can be shown that 
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1 im I IJ .• t. dS = 0 and lim r T .. u. dS - - 1 uP 
E -7 0 S 1J 1 E+O js 1J 1 2 j 

E E 

where E = radius of the area S for a smooth boundary at the point 

The Somigliana Identity can then be written for a boundary point. 

-2
1 u~ = I U .. t. dS - IT .. u. dS 

J S J1 1 S J1 1 

In a more general form: 

with 

cp u~ = I u .. t. dS - IT .. u. dS . 
J S J1 1 S J1 1 

Using matrix notation, 

cP uP + Is T u dS = Is U t dS 

cP = I . cPo 

P. 

For cases where the boundary is not smooth at P, the coefficient cP 

will not be equal to 1/2. However, in the eventual formulation its compu­
tation does not present any problem. 

Solution of an integral equation like the one above in a systematic 

way is only possible by numerical procedures. To do so the boundary Swill 
be divided into elements. For simplicity the displacements and tractions 
will be considered to be constant throughout each element and associated 
with its center. Higher order elements with several nodes can also be 

used (Fig. 2). For the node K the basic equation can be established, 

C k Uk + I [J T dsl Un = I [J U dS~ tn 
n=l S J n=l S n n 

N being the total number of boundary elements. 

The integrals are carried out numerically over the surface Sn of the ele­
ments, being also functions of the nodal point K under considerat10n. Calling 

for each node. 

H = 
kn 

and G = kn 
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The system of equations for the N nodes can be expressed in the fol­
lowing form: 

*-C u + H u = G t 
u and t are vectors with the three displacement and traction components of 
the N nodes. 

* Hand G are 3N x 3N square matrices obtained assembling the 3x3 matrices 
that relate every two elements. 

Making 

when k f n 

* H kn = H kn + Ck when k = n 

the system of equations can be INritten in compact form: 

H u = G t 

The previous system of equations establishes a relation between dis­
placements and tractions over the boundary of the body under study. At 
every point of the boundary, one of these conditions is known and thus solv­
ing the system, the other can be obtained. 

It should be pointed out that the matrix H is not symmetric and also 
that both G and H have most of their elements different from zero. In 

spite of these factors that make the computations longer than those of the 
Finite Element Method for the same number of unknowns, the Boundary Element 
Method is in many cases more efficient because of the much smaller number· 

of unknowns due to the fact that only the boundary of the region under 
study has to be discretized. 

For cases that include infinite or semi-infinite regions as soil prob­
lems do, the method is particularly suitable. In fact, for the infinite 

region case only the internal boundaries have to be discretized. The ker­
nels of the boundary integrals satisfy the regularity conditions, meaning 
that the product of virtual tractions and actual displacements and vice­

versa tend to zero at least as fast as 1/r3 when r increases to infinity. 
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As a result the integrals over the infinitely di,stant boundary are zero. 

For problems where a semi-·infinite region is considered~ only th.e plane 

boundary has to be discretized. This surface is already infinite, but 

taking into account only the elements of a zone surrounding the loaded area 

will produce good results since the integral kernels decrease rapidly. 

DYNAMIC FORMULATION. The same considerations that have been applied to 

elastostatics can be extended to elastodynamic problems. The bastc rela­
tion will be the reciprocity equation established between the Fourier Trans­

forms of the actual and virtual states. 

f t. C~dS+J b. C~ d~ = f t~ C, dS +f b~ u. d~ 
S 1 1 0 1 1 S 1, 1 0 1 1 

The fundamental solution will be here the response of the infinite 
medium to a unit concentrated harmonic force at a point P. This solution 
following the works by Doyle [4J, and Cruse and Rizzo [2J can be obtained 

from the equations of motion of linear isotropic elastic bodies and are of 

the form: 

G .. = 1 2 {~o .. - X r . r .} 
J1 a 7T r:C J1 ,1 ,J 

s 

T .. - - {(~_lx)(o 22:.+ r n)-
J 1 a 7T dr r i j an , i j 

2 ar) Qx ar - - x(n. r . - 2r . r . ~ - 2 dr. r . dn r 1 ,J ,1 ,J on r, 1 ,J 

2 

+ (~- 2)(d~ - s!x. - ~x)r .n'JI c2 dr dr 2r ,J 1 
s 

A. A* /'\. 
~unctions U

J
·
1
• and T

J
.
1
• are defined as previously by u. = U .. e. and 

,,* " 1 J1 J 
t. = T .. e .. In the above expressions a is an integer number equal to 2 

1 J1 J 
for the two-dimensional case and to 4 for three dimensions. The functions 

X and ~ for three dimensions are given by: 
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iwr 
3 C2 3C - cs-

( ___ s + -.--2- + 1) _e __ 
2 2 lwr r w r 

iwr 
C2 3 C2 3C - C;; 
(~)(_ ----.e. + ~ + 1) e 
C2 w2 2 1 wr r 

p r 
x = 

ljJ = (1 -

iwr 
C2 C - ~ 

_s_ + _s) _e __ 
2 2 i wr r w r 

A "-

The obtained functions Uji and Tji also satisfy 
the boundary singularity as U .. and T .. for the 

J1 J1 
an equal pattern to the one described there the 

the same conditions at 
static case. Following 
system of equations can 

be assembled: 

H u = G t 

The kernels of the integrals involved in the formulation satisfy 
also the regularity conditions for the dynamic case and consequently the 
boundaries at an infinite distance do not have to be taken into account. 

For two dimensions the fundamental solution remains in the same 
form and X and ljJ are given in terms of the Bessel functions. 

K (iwr) 
C2 . 

X ~ K (lwr) 
2 Cs C2 2 C 

p P 

K (iwr) 
C 

[K (iwr) 
Cs (iWr,] ljJ = + -.--2- - C
p 

K, o Cs lwr 1 Cs Cp 

COMPUTER IMPLEMENTATION FOR FOUNDATION STIFFNESS. A program was written 
using the method described above to compute the stiffness of foundations 

of arbitrary shape, embedded, or on the surface of the soil considered 
as an elastic isotropic half-space. The foundation stiffnesses can be 
calculated considering the three components of the motion and traction to 

be coupled as established in the general formulation. However, it can be 
assumed that the vertical tractions and displacements are independent of 
those in the two horizontal directions and thus for surface foundations, 
vertical and rocking components of the stiffness are computed establishing 
a rElation between vertical tractions and displacements only and the hori­
zontal and torsional stiffnesses are computed considering both horizontal 
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components coupled. This assumption is consistent with that of relaxed 
boundary conditions used by other researchers when studying the stiffness 

of foundations by different methods. To compute the rocking stiffness for 
embedded foundations taking into account the previous assumption, one has 
to decompose the motion of the side walls into two parts: a motion that 
includes only the vertical component and a rotation of the side walls 
around the base that will produce horizontal displacements. Results using 
relaxed and non-relaxed boundary conditions will be compared in the follow­
ing section. 

For all the problems analyzed in the present work, rectangular boun­

dary elements have been used. Tractions and displacements are constant 
throughout each element and associated with a nodal point at its center. 

The soil-foundation interface as well as the soil outside the foundation 
were modeled with rectangular elements that on the free surface increased 
in size as the distance to the foundation increased. Only a few free-field 
elements were, however, needed, since their influence on the foundation 

stiffness is small. 

Consider the 3x3 element matrices Hkn and Gkn that relate the element 
k to the n, being k f n. Let 

6T .. = fT .. dS 
J 1 S J 1 

n 

Then 

----------------,-------
I 

6T3l 6T32 : 6T33 
I 

for two elements that belong to the same horizontal plane, only the terms 

~T13,~T23' ~T3l and ~T32 of the matrix Hkn are different from zero. When 
relaxed boundary conditions are assumed, only the upper left and lower 

right parts of the matrix are used, and since the tractions are zero for 

the free-field elements, both products Gkn tn ~nd Hkn un will be zero. 
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These elements will not have, therefore, any influence on the other ele­

ments on their own plane, and for surface foundations no elements are neces­
sary on the free part of the soil surface. 

One of the problems that requires attention in the implementation of 
the,method is the integration of the fundamental solution over the elements 

to obtain the terms of the G and H matri ces. When the integrati on has to 
be performed over an element different from the one where the virtual load 
is applied, it does not present any problem, and a normal numerical integra­
tion procedure can be applied. In the present work a nine point standard 

Gaussian quadrature method was used. The element matrices Hnn and Knn re­
quire, however, a different treatment because of the integration around a 
singular point. For each type of rectangular element (displacement expan­
sion), one can, however, estimate the value of the integrals from analytical 
considerations, once the singular point is excluded. In the computation of 

the integrals 

J 
U .. dS 

S 1 J 
n 

For i = j a series expansion of the exponential function was used, and the 

integral was then computed analytically. 
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Figure 1 - Virtual State over the Body Q 

nodes ____ 

\ 

Figure 2 - Boundary Discretization for 3-D Problem 
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Chapter 3 

FOUNDATION STIFFNESSES - SURFACE FOUNDATIONS 

Using the procedure described in Chapter 2, parametric studies were 

conducted of the dynamic stiffness of square and rectangular foundations 
with different aspect ratios, resting on the surface or with different 
levels of embedment. Results were obtained considering relaxed and non­
relaxed boundary conditions in several cases and also a comparison was per­
formed with other published results for square and circular equivalent 
foundations. The dynamic formulation produces an indeterminate value for 

a zero frequency, and the static stiffnesses were computed using the re­
sults for a very low value of the frequency. 

To study the variation of the stiffness components with frequency, 

they were expressed in the form 

where 

o 
K .. = K.. (k .. + i ao C .. ) 
lJ lJ lJ lJ 

o 
K .. is the static value 
lJ 

k .. and C .. are frequency-dependent coefficients 
lJ lJ 

ao = w.B/C s is a dimensionless frequency 
B is the half-side for square foundations and half of the small­

est side for rectangular footings 
Cs is the shear wave velocity of the soil. 

When an internal hysteretical damping is considered in the soil, the dynamic 
stiffness can be given by the approximate expression: 

o 
K .. = K .. (k .. + i a C .. )(l + 2iD), 

lJ lJ lJ 0 lJ 

where 0 is the damping ratio. In reality the coefficients k .. and C .. depend 
lJ lJ 

on 0, but for typical values this dependence is small. 

SURFACE FOUNDATIONS: A series of studies were first conducted in order to 
assess the accuracy of the method, and determining the dynamic stiffness of 

a surface square foundation. Results were obtained considering first re-
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laxed boundary conditions, i.e., vertical direction independent of the 
other two, and subdividing the surface of the foundation into 3x3, 6x6 and 

8x8 equal square elements. Figure 3 shows the model and the coordinate 
system. All the results obtained are for values of the shear modulus G=l 
and Poisson's modulus v=1/3. 

Figure 4 shows a comparison of the vertical compliance obtain~d using 
two different meshes and the results published by Wong and Luco [23]. The 
results show a good agreement between the methods even for a model with 
only nine elements. 

Following a procedure proposed by Kausel [12J, the results obtained 
for different meshes were extrapolated. In this case, however, when using 
constant displacement square elements, the extrapolation law is not known 
a priori. Results were obtained for a certain frequency, and several meshes 
for square and rectangular foundations, and from them the extrapolation law 
was decided to be linear with the element size for the displacement compon­
ents of the stiffness and quadratic for the rotations. In Table I results 
are compared for the static stiffness coefficients using relaxed and non­

relaxed boundary conditions and also with results by J.J. Gonzalez [7J for 
surface square foundations. For our two cases the values are extrapolated 
linearly with the size of the elements under the foundation. In the non­
relaxed boundary conditions case, the free field around the foundation was 
modeled with forty square elements increasing in size with distance to the 
foundation and covering a square surface the side of which was seven times 

the side of the foundation. 

TABLE I - STATIC STIFFNESS FOR SQUARE FOUNDATIONS 

Relaxed B.C. Non-relaxed B.C. After J.J. Gonzalez 
0 

Kx/GB 5.679 5.61 5.52 
0 

KzzlGB 7.324 7.126 6.9 
o 3 

5.774 5.688 6. K¢ cp 1GB 
0
1 1 3 

7.528 7.479 8,2 Kcp cp 1GB 
3 3 
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Figures 5 to 8 show the variation with frequency of the stiffness 
coefficients. Results using both relaxed and non-relaxed boundary condi­
tions are plotted. The agreement is good for the displacement components 
and excellent for the rotations. The non-relaxed boundary condition re­
sults present a decay in Figures 5 and 6 for the highest values of fre­
quency represented. This is due to the fact that the elements in the free 

field are larger than the ones inside, and they are no longer appropriate 
to reproduce a motion with the wave length corresponding to this range of 
frequency. In Figures 5 and 7 the results are also compared to those com­
puted using the values given by Veletsos and Wei [20J for circular founda­

tions. An equivalent radius was computed for each stiffness component: the 
radius of a foundation with the same surface, i.e., R = !4/TI B, for the 

vertical stiffness and the radius of a foundation with the same moment of 

inertia, i.e., R = rl6/3TIB, for the rocking stiffness. It can be seen in 
Figures 5 and 7 that there is good agreement between the three solutions. 

The variation of stiffness with the aspect ratio for surface rectangu­
lar foundations was also studied using the Boundary Element Method and assum­
ing relaxed boundary conditions. The shortest half-side of the foundation, 
B, was set equal to 1 and the other took values from 1 to 4. Each foundation 
was studied using two meshes of square elements: one with three elements along 
the shortest side and the other with four. From these meshes the values of 
the stiffnesses were computed again by a linear extrapolation for displace­
ment components and a quadratic extrapolation for the rotations. Figure 9 
represents the variation of the static stiffness with A/B. It can be pointed 
out that the three displacement components and the rotation <Pl follow almost 
a straight line and that could be used as an approximation. This figure also 

shows a comparison with results given by approximate formulae proposed by C. 
Vardanega. In Figure 10 the static stiffnesses are presented normalized by 

their own values for the square foundation. 

The variation of the stiffness coefficients with the dimensionless fre­
quency ao = w·B/Cs and with the aspect ratio A/B are represented in the next 
figures. The terms K and C are shown in Figure 11. It can be noticed xx xx . 
that these coefficients have very little variation with frequency and only 

C
xx 

has a shifting with A/B. The terms Kyy and Cyy ' in Figure 12, present 
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more variation with both frequency and aspect ratio. When AlB grows, the 
variation versus ao tends to be of the form of that for the strip footing, 

as could be expected. Figure 13 shows the variation for the vertical stiff­
ness coefficients which has a similar shape to the variation for K and C . xx xx 
In this case, there is, however, more variation of the coefficients with 
respect to ao and AlB and in particular the damping coefficient Czz is always 
larger than C . xx 

Figure 14 shows the variation of the coefficients for rocking around 
the longest axes of the foundation. It is interesting to notice that there 

is no variation of K~ ~ when AlB changes. The term C~ ~ has negligible 
~1~1 ~l~l 

values in the low frequency range. It increases in value with frequency and 
varies only slightly with the aspect ratio AlB. The coefficients for rock­

ing around the short axis are represented in Figure 15. The K¢2¢2 coefficient 
presents some variation with respect to AlB from the square to the 2xl foun­
dation, but it does not change as much with the aspect ratio and for larger 

values of AlB it has some fluctuations with the increase in ao. The damping 
term Ccp cp grows much faster with AlB than the C¢ ¢ term. Figure 16 shows 
the sti*f~ess coefficients for the torsion around t~elvertical axes. The 
K ~ ~ term presents a similar variation with frequency for all the ratios 

't'3'3 
AlB considered, but with more fluctuations as AlB increases. The variation 

with frequency and aspect ratio of C¢3¢3 is also of the same shape as those 
of the other rotation damping terms, but while none of the others got to a 
stable value in the range ao and AlB represented, this term reaches it 
for the higher values of those parameters. 
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Figure 3 - 8 x 8 Elements Discretization and System of 
Coordinates 

0.15 

8x8 e 1 em. B. E. M . 

x 

8x8 elem. Won~ & Luco 
3x3 elem. B.E.M. 

0.1 

0.05 

- ...... _--
.~ -'-

2 3 

Figure 4 - Vertical Compliance for a Surface Square 
Foundation 
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Chapter 4 

EMBEDDED FOUNDATIONS 

Dynamic stiffnesses for embedded square and rectangular foundations 
were also computed assuming relaxed boundary conditions. The free field 
was modeled with a band of 16 rectangular elements around the foundation 
as shown in Figure 17. In order to check the model, some results were 
obtained with non-relaxed boundary conditions and also considering a 
bigger zone of the free field. In Table II, results are listed for a 
square foundation with an embedment ratio E/B = 2/3 being the soil-founda­
tion interface discretized in the same form for all cases, with 3x3 square 
elements at the bottom and a row of these elements for the side walls. 
Results are listed for a dimensionless frequency ao = 0.9, and only 16 
free-field elements were considered when using relaxed boundary conditions. 
When non-relaxed boundary conditions were assumed, the free field was dis­
cretized with 16 and 40 rectangular elements s the latter covering a 
square surface the side of which is seven times the side of the foundation. 

TABLE II - EMBEDDED SQUARE FOUNDATION 
EIB = 2/3, ao = 0.9 

Relaxed B.C. Non-relaxed B.C. 
l6-free-field elem. 16 free-field elem. 

Re[Kxx]/GB 9.772 9.841 

Im[Kx)IGB 8.879 8.922 

Re[K ]/GB 8.650 7.930 zz 

Im[Kzz]/GB 10.023 9.740 

Re[Kcp cp ]/GB3 8.987 9.146 
1 1 3 

2.811 3.105 Im[K~ ¢ ]/GB 
'1 1 

Re[Kcp cp ]/GB3 17.47 17.452 
3 3 

Im[Kcp-cp ]/GB3 3.895 3.882 
3 3 

Non-relaxed B.C. 
40 free-field e1em. 

9.627 

9.606 

8.367 

10.573 

9.378 

3.428 

17.289 

4.325 
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The rocking stiffness for relaxed boundary conditions is always com­
puted by addition of the results for two motions: one that includes the 
vertical displacements of the bottom and side walls, and the other corre­
sponding to the horizontal motion of the elements on the side walls due to 
the rotation. The above table shows little variation of results when non­
relaxed boundary conditions are considered, and when more elements are l. 

added to the free field. 

The variation of the static stiffnesses with level of embedment for 
square foundations, shown in Figure 18, was studied using relaxed boundary 
conditions, 16 elements on the free field and subdividing the soil-founda­
tion interface into two possible meshes for each level of embedment: 
one with 3x3 equal square elements on the bottom of the foundation, and 
the other with 4x4 elements. The side-walls were discretized with one, 

two or three rows of 12 elements equal to those on the bottom for the first 
case, and with one, three and four rows of 16 equal rectangular or square 
elements for the second type of mesh. When the mesh with 4x4 elements on 

the bottom of the foundation is used for E/8 = 2/3 or 4/3, the side-wall 
elements are not exactly the same as the bottom ones, but for all three 
levels of embedment considered (E/8 = 2/3,4/3 and 2), the extrapolation 
law was assumed to be the same as for surface foundation (linear with the 
size of the bottom elements for the displacement components and quadratic 
for the rotation and cross~coupling terms). 

The comparison of the results in Figure 18 with those for circular 
foundations is not easy, due to the fact that the equivalent radius of 
the circular footing is not well defined. A crude comparison shows these 
results to be close to the ones obtained by Kaldjian [llJ for circular 
embedded foundations. 

Figure 19 shows the variation of the horizontal stiffness coefficients 
with frequency for various values of E/B. The decay with frequency of the 
term K increases with the level of embedment. The term C x does not u x 
change much with frequency for any level of embedment, but it takes higher 
values as E/B increases. A similar variation with E/B is exhibited by the 

vertical stiffness coefficients in Figure 20, but the vertical terms have 
more variation with frequency than the horizontal ones. 
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Figure 21 presents the variation of the rocking coefficients. It 
should be noticed that the term C~l~l does not tend to zero in the low 
range of frequencies when the foundation is embedded. The increase of 
this term with E/B is similar for the whole range of frequencies repre­
sented. The torsional stiffness coefficients shown in Figure 22 have 
less variation with the level of embedment than the other coefficients, 
and this variation, as could be expected, is smaller when E/B takes in­
creasing values. 

Figure 23 shows the variation of real and imaginary parts of the 
cross-coupling stiffnesses normalized with respect to the horizontal 
static stiffness. It can be noticed that the influence of the level of 
embedment over the real part tends to be smaller as the frequency in­
creases. In Figure 24 the height of the center of stiffness is represented 
versus frequency and level of embedment. This height has very little vari­
ation with both parameters, and for practical purposes it can be assumed 
to remain constant at hiE = 1/3. The same value was obtained by Kausel 
[12J for a circular foundation with E/R = 1. 

The variation of the real part of the stiffnesses is shown in Figure 
25, normalizing all the stiffnesses with respect to the static values for 
the surface foundation instead of using for each level of embedment its 
own static value. In this form it can be seen that the influence of the 
embedment over the real part of the stiffnesses decreases with increasing 
values of the frequency for the range represented in the figure. This 
fact was already pointed out for the cross-coupling term. 

In order to make this study more general, stiffnesses were also com­
puted for a rectangular embedded foundation with A = 28 and embedment ratios 
E/B = 2/3 and 4/3. Relaxed boundary conditions were assumed, and the free 
field was modeled again with a band of rectangular elements (this time 22) 

around the foundation. 

The variation of the static stiffnesses with embedment ratio was stud­
ied again using two meshes to discretize the soil-foundation interface, one 
with 3x6 elements at the bottom, and the other 4xS. The side-walls were 
modeled with one or two rows of 18 square elements around the bottom for 
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the first kind of mesh, and one or two bands of 24 equal rectangular ele­
ments with an aspect ratio of 4/3 for the second type of mesh. The ex­

trapolation laws were the same as for the square foundation. Figure 26 
shows the variation of the static stiffnesses with level of embedment, and 
it can be noticed that this variation is of the same shape as for the square 
foundation. The increase with E/B is, however, smaller, as could be ex­
pected, due to the fact that the level of embedment is measured versus the 
small side B. 

variation of 
Figures 27 to 32 show the/stiffness coefficients with the dimension-

less frequency ao for the two levels of embedment considered, and for the 
surface foundation. The variation of those coefficeents with embedment is 
in general of the same shape as for the square foundation. Both rocking 

damping coefficients C~l~l and C~2¢2 have again non-zero values for the em­
bedded foundations when w tends to zero, but the term C¢2¢2 has a smaller 
increase with E/B than C~l¢l' and a larger variation with frequency for all 
values of E/B. 

The cross-coupling terms are presented in Figures 33 and 34. Both 
have essentially the same behavior. Figure 35 shows the height of the cen­
ter of stiffness in both directions. The values are almost the same and 

remain approximately hiE = 1/3. 

Figure 36 shows the real part of the dynamic stiffnesses normalized 
with respect to the static value for the surface foundation and as in the 
square case it can be noticed that the influence of the level of embedment 

on the real part of the stiffnesses becomes smaller as ao increases in the 
range represented. 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

One of the purposes of this work was to explore the applicability 
of the Boundary Element method to the solution of problems in the area 
of Soil Dynamics. Because only the boundary of the region of interest 
has to be discretized instead of the whole domain, the method reduces the 
dimensions of the problem by one over classical finite element solutions. 
On the other hand the resulting boundary matrices are full instead of ex­

hibiting a band. The method is as a result particularly attractive when 
dealing with a three-dimensional situation, an elastic or viscoelastic 
halfspace and embedded foundations of arbitrary shape. 

A second problem encountered is that there is no closed form analyt­
ical solution for the displacements and stresses due to a concentrated 
load inside a halfspace. It was found, however, that by using the expres­
sions corresponding to the full space, accurate and economical solutions 
could still be obtained. For surface foundations with relaxed boundary 
conditions (smooth footing), it is only necessary to consider the boundary 
under the foundation. For all other cases one must include part of the 
soil surface outside of the foundation, but only a small number of elements 
in this region are needed to obtain satisfactory results. 

For surface foundations the results obtained were compared to those 
published by other researchers. The agreement with the solutions of Wong 
and Luco was very good at approximately one third of the computation cost 
reported by Wong. Agreement with the results for stiffnesses of rectangular 
foundations obtained by Vardanega using a finite element type formulation 
was within 5 to 10%. No attempt was made at this stage to derive approxi­
mate formulae for the static stiffnesses or the dynamic coefficients as a 
function of the aspect ratio, but it appears that for the range considered 
(ratios AlB from 1 to 4) relatively simple expressions could be fitted to 
the results. The translational and torsional static stiffnesses vary in 
this range almost linearly with aspect ratio, while the variation of the 

rocking stiffnesses is parabolic. 
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The results for embedded foundations confirm in general terms those 
reported by Elsabee for circular foundations embedded in a finite soil 
stratum. Embedment increases the real and imaginary parts of the stiff­
nesses. The increase of the real part tends to disappear, however, as 
the frequency increases. For the static case and embedment ratios E/8 
(E embedment depth, B half of the smaller foundation size) in the order of 
1 or less, a linear variation of the stiffnesses (as suggested by Elsabee) 
would provide a reasonable approximation. The fact that the rocking stiff­
nesses have a nonzero imaginary part, indicating the existence of radiation 
damping, even for the static case is a result of particular significance 
which seems physically correct. This effect could not be detected in 
E1sabee 1 s work because of the existence of a finite soil stratum on rigid 
rock (no radiation will take place in this case below the fundamental fre­
quency of the stratum). 

The curves included in the report can be used directly or with the help 
of interpolation to estimate in practice the dynamic stiffnesses of rectan­
gular foundations. It should be noticed, howeVer, that the effect of embed­
ment is actually dependent on the conditions of the backfill. In reality, 
the assumption of a foundation welded to the surrounding soil may only be 
valid for small levels of vibrations. When separation occurs the true stiff­
nesses should be somewhere between those of a surface and an embedded founda­
tion. 
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