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SYNOPSIS

Although structural walls have a long history of satis-
factory use in stiffening buildings against wind, there is in-
sufficient information on their behavior under strong earth-
quakes. Observations of the performance of buildings during
recent earthquakes have demonstrated the superior performance
of buildings stiffened by properly proportioned and designed
structural walls - from the point of view of safety and espe-
cially from the standpoint of damage control,

The primary objective of the analytical investigation, of
which the work reported here is a part, is the estimation of
the maximum forces and deformations that can reasonably be ex-
pected in critical regions of structural walls subjected to
strong ground motion. The results of the analytical investiga-
tion, when correlated with data from the concurrent experi-
mental program, will form the basis for the design procedure to
be developed as the ultimate objective of the overall investi-
gation.

This is the fourth part of the report on the analytical
investigation. It deals mainly with the qualitative des-~
cription of "a representative loading history" which can be
used in testing isolated structural wall specimens under slowly
reversing loads. A total of 170 rotational response histories,
representing a broad range of parameter values, are examined.
The representative loading history is described in terms of the

magnitude of the largest rotational deformation that can rea-
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sonably be expected in the hinging region of isolated walls,
the total number of cycles of such large-amplitude deformations
and the sequence in which these large-amplitude deformations
occur relative to deformations of lesser amplitude. Also con-
sidered are the forces (moments and shears) that can accompany
these deformations.

It is shown that, for the isolated walls considered in this
study, the maximum number of large-amplitude cycles that can
reasonably be expected for a 20-second duration of strong ground
motion is six. A significant result is the fact that the first
large-amplitude cycle of deformation can occur early in the

response, with hardly any inelastic cycle preceding it.
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Dynamic Analysis Of Isolated Structural Walls

REPRESENTATIVE LOADING HISTORY

by

A. T. Derecho(l), M. Iqbal(z), S. K. Ghosh(B)

M. Fintel(4), W. G. Corley(s)

BACKGROUND

Although structural walls (shear walls)* have a long his-
tory of satisfactory use in stiffening multistory buildings
against wind, not enough information is available on the be-
havior of such elements under strong earthquake conditions.

Observations of the performance of buildings subjected to
earthquakes during the past decade have focused attention on
the need to minimize damage in addition to ensuring the general
safety of buildings during strong earthgquakes. The need to con-
trol damage to both structural and nonstructural components dur-
ing earthquakes becomes particularly important in hospitals and
other facilities which must continue operation following a major
disaster. Damage control, in addition to life safety, is also

economically desirable in tall buildings designed for residen-

(1)Manager, Structural Analytical Section, Engineering Develop-
ment Department, (2)Structural Engineer, Structural Analytical
Section, Engineering Development Department, (3)Senior Struc-
tural Engineer, Advanced ©Engineering Services Department,
(4)Director, Advanced Engineering Services Department, and
(5)Director, Engineering Development Department.

*In conformity with the nomenclature adopted by the Applied
Technology Council(l) and in the forthcoming revised edition
of Appendix A to ACI 318-77, Building Code Requirements for
Reinforced Concrete(2), the term "structural wall" is used in
place of "shear wall".



tial and commercial occupancy, since the nonstructural compo-
nents in such buildings usually account for 60 to 80 percent of
the total cost.

There is little doubt that structural walls offer an effi-
cient way to stiffen a building against lateral 1loads. When
proportioned so that they possess adequate lateral stiffness to
reduce interstory distortions due to earthquake-induced motions,
walls effectively reduce the likelihood of damage to the non-
structural elements in a building. When used with rigid frames,
walls form a structural system that combines the gravity-load-
carrying efficiency of the rigid frame with the lateral-load-
resisting efficiency of the structural wall.

Observations of the comparative performance of rigid frame
buildings and buildings stiffened by structural walls during

recent earthquakes,(3'4r5)

have clearly demonstrated the su-
perior performance of buildings stiffened by properly propor-
tioned and designed structural walls, from the point of view of
safety and especially from the standpoint of damage control.

The need to minimize damage during strong earthquakes, in
addition to the primary requirement of 1life safety (i.e., no
collapse), clearly imposes more stringent requirements on the
design of structures. This need to minimize damage provided the
impetus for a closer examination of the structural wall as an
earthquake-resisting element. Among the more immediate ques-

tions to be answered before a rational design procedure can be

developed are:



What magnitudes of deformation and associated forces
can reasonably be expected at c¢ritical regions of
structural walls corresponding to specific combina-
tions of structural and ground motion parameters? How
many cycles of large deformation can be expected in
critical regions of walls under earthquakes of average

duration?

What stiffness and strength should structural walls in
typical building configurations have relative to the
expected ground motion in order to limit the deforma-

tions to acceptable levels?

What design and detailing requirements must be met to
provide walls with the strength and deformation capa-

cities indicated by analysis?

The combined analytical and experimental investigation, of

which this study is a part, was undertaken to provide answers to

the above questions. The ultimate objective of the overall in-

vestigation is the development of practical and reliable design

procedures for earthquake-resistant structural walls and wall

systems.

The analytical program undertaken to accomplish part of the

desired objective consists of the following steps:

(a)

Characterization of input motions in terms of the sig-
nificant parameters to enable the calculation of cri-
tical or 'near-maximum' response using a minimum num-

(6)

ber of input motions .



(b)) Determination of the relative influence of the various
structural and ground motion parameters on dynamic
structural response through parametric studies(7).
The purpose of this study is to identify the most sig-
nificant variables.

(c} Calculation of estimates of strength and deformation
demands in critical regions of structural walls as
affected by the significant parameters determined in
Step (b). A number of input accelerograms chosen on
the basis of information developed in Steps (a) and
(b) are used(8).

(d) Development of procedure for determining design force

1evels(8)

by correlating the stiffness, strength and
deformation demands obtained in Step (c¢) with the cor-
responding capacities determined from the concurrent
experimental program(g).

The first phase of this investigation is concerned mainly
with isolated structural walls. A detailed consideration of
the dynamic response of frame-wall and coupled wall structures
is planned for the subsequent phases of the investigation.

This is the fourth part of the report on the analytical
investigation. It describes a procedure for defining a "repre-
sentative loading history" which can be used in testing lab-
oratory specimens under slowly reversing 1loads to simulate
earthquake loading. The representative loading history, for a
particular set of structural and ground motion parameters, 1is

described in terms of the magnitude of the largest rotational

deformation that can reasonably be expected in the hinging
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region, the total number of cycles of such large-amplitude
deformations and the sequence in which these large-amplitude
deformations occur relative to deformations of lesser amplitude.
Also considered are the forces (moments and shears) that can
accompany these deformations. To determine the number and
sequence of large-amplitude cycles, a total of 170 rotational
response histories of the critical region at the base of iso-
lated structural walls, were examined. These represent a broad
range of parameter values.

The f£irst part of the report on the analytical investiga-

(6)

tion dealt mainly with the characterization of input mo-
tions in terms of duration, intensity and frequency content,
with particular regard to the effects of these on dynamic in-
elastic response. The second part of the report(7) discussed
the results of parametric studies designed to isolate the most
significant structural and ground motion parameters. A proée-
dure for determining design force levels for isolated structural
walls is developed in the third part of the report on the ana-

lytical investigation(g),



INTRODUCTION

A major objective of the analytical investigation 1is the
determination of the force and deformation demands in structures
corregsponding to particular combinations of the significant
structural and ground motion parameters. 8Since design attention
will have to be focused on the critically stressed regions in
structures, these demands will have to be defined mainly in
relation to the hinging regions in elements. A complete char-
acterization of these demands would include not only the maximum
amplitude but also the number of large-amplitude cycles that
can reasonably be expected, the sequence of such large-—-amplitude
cycles relative to cycles of lesser amplitude, and associated
forces. The development of a "representative loading history"
for critical regions in structures which can be used in testing
large-size specimens under slowly applied reversing loads 1is
one of the more important results that can be obtained from
dynamic inelastic analyses.

In developing a procedure for determining design force lev-
els discussed in Ref. 8, the correlation between calculated
demands and measured capacities is based on critical (maximum)
values. It was implicitly assumed, in undertaking the correla-
tion, that the loading program used in the laboratory to obtain
capacity values was either representative of or more conserva-
tive than the loading associated with dynamic response to strong
ground motion. The loading program used in testing the first
series of isolated wall specimens was characterized by loading

cycles of progressively increasing amplitude, with the moment,



shear and rotation all in phase. This type of loading has been
commonly used(g—zg) to simulate earthquake loading conditions.

A preliminary examination of response histories indicated,
however, that the sequence of load cycles used in this loading
program was not typical of the deformation history of the hing-
ing region in isolated walls subjected to strong ground motion.
In undertaking the correlation, it was thus necessary to assume
that any difference between this loading and earthquake loading
had no significant effect on the behavior of the isolated wall
specimens. This assumption relates mainly to the number of
large-amplitude deformation cycles and the sequence in which
these cycles are applied to a specimen, It is worth noting that
the cumulative measures of deformation discussed in Ref., 8% re-
flect, to some degree, the number of cycles of significant am-
plitude. However, they do not provide a definite indication of
the number of such large-amplitude deformations which can be
used as a basis for laboratory tests.

In view of the importance of ensuring that the loading pro-
gram used in laboratory tests represent realistic loading con-
ditions, it was decided early in the investigation to develop a
representative loading history. Such a loading history, to be
used 1in the laboratory testing of isolated structural walls
under slowly reversing loads, would have to be based on analyt-

ical dynamic response data.

*i.e. cumulative rotational ductility and cumulative rotational
energy.



The principal objective of this study is the character-
ization of the typical response history of the critical region
at the base of isolated structural walls in quantitative terms,
particularly as these affect structural behavior. The deforma-
tion of major interest is the total rotation occurring in the
hinging region of walls. An adequate characterization of the
deformation history will have to include the following:

(1) The maximum amplitude of deformation that can be ex-
pected for a particular combination of structure pe-
riod and yield level and earthquake intensity.

(2) The number of such large-amplitude cycles that can be
expected for a reasonable duration of the ground mo-
tion; and

(3) The sequence of such large-amplitude cycles relative
to cycles of lesser amplitude.

Of equal importance as the deformation history are the ac-

companying forces, i.e., moments and shears, and their varia-

tion relative to the deformation.



DESCRIPTION OF DATA

Parameters Represented

The raw data used for this study include results of dynamic
response ahalyses undertaken in connection with the work re-
ported in Refs. 7 and 8.

The dynamic response data used correspond to multistory
isolated structural walls ranging from 10 to 40 stories in
height and subjected to 10 different input motions. Figure 1
shows the type of structure considered and the lumped 1l2-mass
model used in the analysis of 20-story walls. Note that the
masses are spaced closer together near the base of the model.
This was done in order to obtain a better indication of the
deformation in the c¢ritical region near the base. Corres-
ponding models for the 10-, 30- and 40- story walls are shown
in Fig. 2.

Table 1 gives the ranges of values of the different struc-
tural parameters characterizing the isolated wall models as well
as the ground motion parameters used in this study. A detailed
description of these parameter variations is given in Refs. 7
and 8.

The basic moment-rotation relationship assumed for the
hinging regions in the walls is a bilinear idealization of the
primary curve typical of reinforced concrete structures. The
hysteresis loop is characterized by unloading and reloading
branches whose slopes decrease for response cycles subsequent
to yield. This is shown in Fig. 3a, where the unloading and

reloading parameters are denoted by aand B , respectively. An



example of a moment-rotation loop for an isolated wall with
fundamental period, Tl = 1.4 sec., @ = 0.10, and B = 0, is
shown in Fig. 3b.

Of the ten different input motions used, six were of
10-second duration. The other four had 20-second durations.
These were synthesized by repeating the first 10-second strong-
motion portion of four records. In all cases, the input motion
was assumed applied directly to the base of the structure,

The six 1l0-second accelerograms used for most of the analy-
ses are shown in Fig. 4. These include the first 10 seconds of
five recorded motions, as digitized at the California Institute

of Technology(30)

and one artificially generated accelerogram
obtained by using the program described in Ref. 31. The acce-
lerograms shown have been normalized with respect to intensity
so that the spectrum intensity* of each one is equal to 1.5
times the spectrum intensity corresponding to the first 10 sec-
onds of the N-S component of the 1940 El Centro record (denoted

here by SI ) . The 5%~damped velocity response spectra for

ref,
these six accelerograms are shown in Fig. 5. The four 20-second
composite accelerograms used are shown in Fig. 6, and the cor-
responding 5%-damped velocity response sgspectra are shown in
Fig. 7. The portions of each record used for the second ten
seconds of the composite accelerograms are indicated in Table

2. Also shown in Table 2 are the corresponding 5%-damped spec-

trum intensities.

*Spectrum intensity - defined as the area under the relative
velocity response spectrum (for a single-degree-of-freedom
system) corresponding to the first 10 seconds of ground motion,
between periods 0.1 and 3.0 seconds.

-10-



The dynamic inelastic analyses were carried out using the

(32)

computer program DRAIN-2D developed at the University of

California, Berkeley, as modified at the Portland Cement Asso-

ciation(33).

Basic Data

Of the information necessary to describe a loading history
for a particular set of structural and ground motion parame-
ters, the maximum amplitude of deformation and the accompanying
shears and moments are discussed in detail in Ref. 8. Some 300
analyses were used as bases for these. The major question con-
sidered here concerns the number of large-amplitude cycles of
deformation in the hinging region as well as the sequence of
such large-amplitude cycles relative to cycles of lesser am-
plitude.

The data considered consist of response history plots of
the total rotation in the hinging region at the base of each
wall. The rotational deformation in the hinging region is taken
as equal to the nodal rotation at a height above the base re-
presenting the hinging length, as shown in Fig. 8.

Rotation histories for nodes at the first and second floor
levels of a particular 20-story wall subjected to the first 10
seconds of the E-W component of the 1940 E1 Centro record are
shown in Fig. 9. Note the similarity in shape between the re-
sponse history curves for nodes located at the first and second
floor levels. This is generally true for nodes near the base of

the wall and is due mainly to the predominance of the fundamen-

-11-



tal mode of response. Also shown in this figqure is the hori-
zontal displacement history for the floor at midheight.

Examples of the rotational response histories considered in
this investigation are shown in Appendix A. These plots were
examined to determine the number and sequence of such large-
amplitude cycles. For this particular purpose, the rotation
history of any node near the base of the wall will provide
essentially the same information with respect to number of
cycles and sequence. The plots shown in Appendix A all
correspond to the node nearest to the base in the models of

Fig. 2.

=12~



ANALYSIS OF DATA

Maximum Amplitude of Rotational Deformation and Accompanying

Shears

In Ref. 8, the critical value of rotational ductility de-
mand is obtained as a function of the fundamental period and
the flexural yield 1level, for selected values of ground motion
intensity and wall height. Plots such as Fig. 10 give the ro-
tational ductility, U e’ that has to be developed at the base
of an isolated wall of a particular height, fundamental period,
Tl' and flexural yield level, My, when subjected to an input
motion of sgpecific intensity.

The tendency of the ductility demand to decrease with an
increase in the assumed hinging length, as indicated in Fig.
11, should be noted. This figure shows the calculated duc-
tility ratios based on nodal rotations at the first and second
floor 1levels for 20-story walls, both divided by the corre-
sponding value at the second floor 1level (Fig. 1l). The data
points are shown connected by straight lines, on the assumption
of a linear variation of the ratio between the two assumed
hinging 1lengths from 20.75 ft to 12.0 ft. Results of ex-

periments on isolated walls(9’36)

suggest a hinging 1length,
i.e., the length over which most of the inelastic deformation
in a member occurs, equal to the width of the wall.

Another important set of results of the study reported in
Ref. 8 are plots, such as shown in Fig. 12, giving the critical
shear at the base of isolated walls as a function of ﬂﬁ_ and

M for particular values of the input motion intensity.

yl
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Since the rotational ductility of a reinforced concrete wall or
other element can be significantly affected by shear, this fac-
tor has to be considered in developing a loading program. It
will be noted in Fig. 12 that the critical shear at the base
increases with increasing yield level, My’ but does not vary
significantly with changing values of the fundamental period,
Tl'

Plots of critical rotational ductility demand and shears
for other wall heights are also shown in Figs. 10b,c,d and
12b,c,d. All these plots correspond to a ground motion inten-

sity of 1.5 SI Response data for input motion intensities

ref.

of 0.75 SIr and 1.0 SIr have also been generated(s).

ef ef

The maximum amplitude of deformation and the accompanying
shears to be used in any loading program will depend on the
range of values of the structure period, vyield 1level, height
and earthquake intensity represented by the loading program.
It is evident from the charts shown in Figs. 10 and 12 that the
greater the ductility demand wused in a loading program, the
broader the range of parameter combinations that can be con-
sidered as 'represented' by the test. 1In Fig. 10, for example,
a maximum loading amplitude corresponding to a rotational duc-
tility ratio of 5, would represent the demand on all 20-story
isolated walls having combinations of the fundamental period,
Tl’ and yield level, My, for which the associated curves
lie below the horizontal line W, = 5.

It will be noted from Figs. 10 and 12 that while an in-

crease in yield level generally results in a decrease in duc-

tility demand, it 1is also accompanied by an increase in the

-1l4-



(9,36) have indicated that

maximum shear force. Experiments
the presence of high shears can limit the rotational capacity
(or ductility) of the hinging region in walls subjected to re-

versed loading.

Shear Stress Levels. In determining the magnitude of the

rotational deformation requirements associated with response to
strong ground motions, it is important to ascertain the magni-
tude of the accompanying shear forces. These can have a sig-
nificant effect on both the flexural strength and deformation
capacity of reinforced concrete elements. Results of experi-

(16,17)and Walls(9,10,34,36)

ments on beams have clearly de-
monstrated the major influence that shear can have on the
behavior of reinforced concrete structures. This is particu-
larly true of structures subjected to reversed loading with de-
formations well into the inelastic range.

An indication of the 1level of the maximum nominal shear
stress that can be expected for earthquakes with intensities

equal to 1.5 (SI ), is given in Tables 3a and 3b. Table 3a,

ref
for example, shows the maximum nominal shear stress corres-
ponding to rectangular wall sections of various heights. The
walls considered were chosen such that their initial fundamental
period would each be equal to 0.6 N, where N is the number of
stories in the building. The section dimensions shown in the
table were calculated on the basis of the gross areas of the
gsections. The wall stiffnesses corresponding to each value of

the fundamental period were determined using the curves of Fig.

13. Flexural yield level (My) values were chosen for each

~-15-



section corresponding to a rotational ductility demand at the
base equal to 4.0. For this purpose, curves such as shown in
Fig. 14 (based on Fig. 10), determined on the basis of dynamic
inelastic analyses(s), were used. The critical shear values
corresponding to each structure were obtained £from Fig. 15
(based on Fig. 12), also developed in Ref. 8. Similar data for
flanged sections are shown in Table 3b.

Tables 3a and 3b show the maximum nominal dynamic shear
stress in terms of /fg for fé = 4000 psi and fé = 6000 psi.

The results shown in these tables indicate that for the
range of fundamental period and ductility demand considered,
maximum nominal dynamic shear stress values in the range of
4.0 /fg' to 7.0 /fz‘can be expected.

It is important to note, however, that there is a signifi-
cant difference between the dynamic shear force and the shear
normally associated with quasi-static laboratory tests to simu-~
late earthquake loading. The major difference lies in the var-
iation of the shear force with time, particularly in relation
to the accompanying moment and rotation. This is discussed in

detail under "Comments on Character of Shear Loading."

Number of Cycles of Large Amplitude Corresponding to 20 Seconds

of Strong Ground Motion

As discussed in Ref. 6, a duration of 20 seconds of the
strong-motion portion of an accelerogram should provide rea-
sonably conservative estimates of cumulative deformation re-
quirements. This observation applies similarly to the number

of large-amplitude cycles of response. Since the number of ap-

-16-



plications of reversed cycles of 1loading can significantly
affect the behavior of reinforced concrete elements, a reliable
assessment of this aspect of the deformation demand is
important.

To estimate the number of large-amplitude cycles of res-
ponse to strong ground motion, response history plots of the
nodal rotations of the first two nodes closest to the base, as
shown in Fig. 2 were prepared and examined. An example of these
response plots is shown in Fig. 9. Since the response of the
wall is dominated by the first or fundamental mode, in which all
parts of the wall remain on the same side of the original
vertical position at any instant, the calculated rotations of
nodes near the base represent essentially the total rotations
occurring in the segments of wall between the base and the
particular nodes (Fig. 8). Because the response histories for
the two nodes closest to the base are generally similar and
yield essentially the same information with respect to number
of cycles of response, as shown in Fig. 9, only the response of
the node closest to the base was considered in detail. Plots
of rotation history for the node closest to the base for some
170 cases considered in Refs. 7 and 8 were examined. The cases
considered represent a broad range of values of the significant
structural and ground motion parameters, as indicated in Table
1. Figure 15 shows examples of rotational response history
plots. The nodal rotations in these plots have been normalized

by dividing these by the corresponding yield rotations. A

-17-



number of normalized rotation history plots representing sam-
ples from the 170 cases considered have been assembled in
Appendix A.

Most of the analyses, and hence response plots, were done
using a 10-second duration of the input motion. However, to
allow for motions of 1longer duration, particularly as these
affect cumulative response quantities such as the number of
large—-amplitude cycles, a few analyses were performed using
20-second composite accelerograms. As mentioned earlier, these
accelerograms were synthesized from the same records that pro-
vided the 10-second motions of Fig. 4. This was done by ap-
pending to the latter another 10 seconds of the strong-motion
portion of the corresponding accelerogram. The four composite
accelerograms used in this study are shown in Fig. 6. The cor-
responding 5%-damped velocity response spectra are shown in
Fig. 7. The portion of each record used for the second ten
seconds of the composite accelerograms is indicated in Table
2. Also shown in Table 2 are the corresponding calculated
5%-~damped spectrum intensities.

Comparison of the cumulative measures of deformation for
the 20-second analyses and the 10-second analyses indicated
that a good estimate of the 20-second cumulative rotational
ductility could be obtained from 1l0-second analyses by mnmulti-
plying the results of the latter by a factor of 2.0.(9)

Figure 16 shows that when the regponse is inelastic, the
amplitude of deformation rarely remains the same for both half-

cycles of a response cycle. In recognition of this fact and to

-~18-



have a basis for classifying response cycles according to their
relative severity, the following definitions were introduced:

Relative Amplitude of Peaks

a. A "large-amplitude" peak is an inelastic half-cycle of
deformation having a magnitude between 0.75 and 1.0 of
the corresponding calculated maximum amplitude;

b. A "moderate-amplitude"” peak 1is a deformation between
0.50 and 0.75 of the corresponding maximum.

Large-Amplitude Cycles:

a. "Fully reversed" cycles are complete cycles (+ and =)
with at least one large-amplitude peak and the other
peak, on reversal, of at 1least moderate amplitude.
This is illustrated in Fig. lé6a;

b. "Partially reversed" cycles are cycles with one large-
amplitude peak and the other 0.50 or less of the cal-
culated maximum amplitude. Thigs ig 1illustrated in
Fig. 16b.

"Moderate" amplitude cycles are those with one peak
value between 0.50 and 0.75 of the maximum (i.e., mod-

erate amplitude) and the other 0.50 or less.

In the plots of nodal rotation history, shown in Fig. 15 and
Appendix A, the rotations have been normalized by dividing these
by the corresponding nodal rotation when yielding first occurred
at the base. Thus, the two horizontal dotted lines on each side
of the zero axis (i.e., through ordinates +1.0 and ~-1.0) repre-

sent the initial yield rotation for all cases. Rotations ex-

-19-



ceeding the initial yield values on each side of the zero axis
were considered inelastic.

The procedure used in determining the number of fully re-
versed and partially reversed large-amplitude cycles can best
be explained with reference to a particular nodal rotation his-
tory, such as shown in Fig. 17. 1In this figure, the maximum

calculated amplitude of deformation 1is denoted by #© A

max”
deformation cycle in which one peak was inelastic (either of
large or moderate amplitude) and the other less than the yield
amplitude was counted as 1/2 of an inelastic cycle. A few cases
where the maximum amplitude was only slightly greater than the
yvield amplitude or cases of cycles in which both peaks were
elastic (i.e., less than the yield amplitude) but which would
otherwise qualify as either large or moderate amplitude peaks
relative to the maximum, were also counted as 1/2 of an in-
elastic cycle.

Results of the examination of response histories to deter-
mine the number of large-amplitude cycles, etc. are listed in
Table A-1 of Appendix A. Included in the tabulation are the
maximum amplitude of deformation, the total number of large and
moderate amplitude peaks, the number of fully reversed and par-
tially reversed cycles and the total number of inelastic cycles.
The "Total No. of Inelastic Cycles" 1listed in the last column
of Table A-1 include both "large-amplitude" and "moderate-
amplitude" cycles,

Figure 18a shows a histogram indicating the distribution of

cases, in terms of the percentage of the total number con-
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gsidered, having a gspecific number of fully reversed cycles.
Another way of presenting the data of Fig. 18a is the percentage
exceedance plot shown in Fig. 18b, which is the complement of
the associated cumulative frequency plot. This plot gives the
percentage of the total number of cases having fully reversed
cycles exceeding a specific number (as indicated in the
abscissa).

It is significant to note in Fig. 18 that for the broad
range of parameter values represented, the number of fully re-
versed cycles corresponding to 20 seconds of strong ground
motion rarely exceeds six. Figure 18b indicates that for more
than 95% of the cases considered, the number of fully reversed
large-amplitude cycles of response is less than 4.

Histograms and percentage exceedance plots for the number of
"large—-amplitude" peaks (i.e., half cycles) and the total number
of inelastic cycles (not necessarily all "large-amplitude" as
defined above) are given in Figs. 19 and 20, respectively.
These figures indicate that for the range of parameter values
considered, both the number of large-amplitude peaks and the
total number of inelastic cycles of response under a 20-second
strong motion excitation rarely exceed ten. Figure 20b also
indicates that for more than 95% of the cases considered, the
number of inelastic cycles of response, corresponding to 20
seconds of strong ground motion, is less than eight.

The values plotted in Fig. 18 through 20 correspond to a

20-second duration of strong ground motion. As mentioned, most
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of the analyses used only 10 seconds of input motion. The re-
sults of these 10-second analyses (i. e., those relating to
cumulative measures of deformation) were then multiplied by 2.0
to obtain values for the 20-second input motions. The factor of

(8)

2.0 was based on a comparison of the cumulative rotational
ductility for a limited number of cases analyzed using the
20-second composite accelerograms shown in Fig. 6, with the
corresponding l0-second values. Table 4, from Ref. 8, shows
the average ratios of the cumulative cyclic rotational ductility
and the cumulative rotational energy (these terms are defined in
Fig. 21) associated with the 20-second composite accelerograms
to the corresponding 10-second results. Ratios for nodal rota-
tions at the first and second floor levels are listed in Table
4, The ratios listed represent the average of 12 cases, all for
20-story walls, with fundamental periods ranging from 0.8 sec.
to 2.4 sec. and yield levels from 500,000 to 1,500,000 in.-kips.

A total of some 170 cases were considered in preparing
Figs. 18 through 20. These represent fundamental period values
from 0.5 to 3.0 seconds, yield levels from 300,000 to 2,500,000
in.-kips and wall heights from 10 to 40 stories. Six input
motions with intensities varying from 0.75 to 1.5 of the refer-

ence intensity, SIr were considered.

ef.

Sequence of Large-Amplitude Cycles

To obtain detailed data on specimen behavior for design ap-
plications, the loading program most commonly used in tests of
large-size specimens under slowly reversed loads consists of

deformation cycles of progressively increasing amplitudes until
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failure occurs(9-29).

This type of loading program is shown
schematically in Fig. 22. The maximum forces and deformations
sustained are then noted as indicating capacity. It has been

suggested by Bertero (37738)

that such a loading program may
not be as conservative as a program in which the peak defor-
mation is imposed early in the test.

An examination of response histories of nodal rotations
near the base of isolated walls indicates that in many cases,
the maximum amplitude, or an amplitude of deformation close to
the maximum, occurs early in the response, with hardly any in-
elastic cycle preceding it. Large-amplitude cycles also occur
later in the response. This is evident in Fig. 15, which shows
nodal rotation histories for walls having different fundamental
periods, yield levels and stiffness degrading characteristics
subjected to the E-W component of the 1940 E1 Centro record.
Because this observed early occurrence of the maximum amplitude
cycle differs from the usual sequence of loading, it was decided
to examine the response histories obtained in the course of this

(8)

investigation in greater detail. Rotation histories were
obtained for the two nodes closest to the base of the models
used, as well as the horizontal displacement histories of nodes
located at or near midheight of the walls. Figure 9 shows a
plot of all three response quantities for a particular case.
Since the time variation of these three response quantities are

very similar, it was decided to consider in detail only the

rotation history of the node closest to the base.
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In examining the sequence of large-amplitude cycles, atten-
tion was focused on the first response peak of large amplitude,
i.e., with a value between 0.75 and 1.0 of the calculated maxi-
mum. Particular emphasis was placed on the number and relative
magnitude of the inelastic cycles preceding this large—amplitude
peak.

For the purpose of this examination, the deformation cycles
preceding the first large-amplitude peak are referred to as "B
cycles". "Fully reversed cycles", in relation to B-cycles, are
defined as complete cycles (+ and ~) with the amplitude of the
greater peak denoted by B and the other, on reversal, between
0.5 and 1.0 of B. "Partially reversed cycles" are cycles with
one peak amplitude equal to at least 0.75 of B and the other 0.5
or less of B.

The results of this examination are listed in Tables A5
through A8 for the 170 casesg considered. Data on "fully re-
versed" and "partially reversed" inelastic B-cycles preceding
the first large-amplitude response peak are listed under the
last two columns of these tables.

For the purpose of determining the number of fully reversed
and partially reversed inelastic B-cycles, a cycle where one
peak was inelastic and the reverse c¢ycle was elastic (i.e.,
with amplitude less than the initial yield rotation) was con-
sidered as equivalent to one-half of an inelastic cycle. Cycles
where both peaks were elastic wesre not counted. However, even
when the only B-cycles occurring were all elastic (i. e., No.

of inelastic B-cycles = 0), the ratio of the amplitudes, B/A,
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was still noted. In this case, B 1is the largest applicable
amplitude. In Fig. 23 for example, the ratio of the amplitude,
B, of the inelastic cycle preceding the first large-amplitude
peak, A (here, A is equal to the maximum), is 3 6y/7 ey =
0.43. 1In this case, the number of fully reversed B-cycles is
zero and of partially reversed cycles is 1/2, since the B-cycle
does not reverse itself. It will be noted in Tables A5 through
AB that in most of the cases considered, there are no fully
reversed inelastic B-cycles.

The data on number of inelastic B-cycles listed in Tables
A5 through A8 are summarized in Fig. 24. The abscissa in Fig.
25 indicates the sum of fully reversed and partially reversed
inelastic cycles noted in the last two columns of Table A5
through AS. In Fig. 24, data points along the wvertical line
corresponding to zero inelastic B-cycles represent cases where
the largest amplitude B-half cycle was elastic. The figure
shows that in the majority of cases, there are no inelastic
cycles preceding the first large-amplitude response peak. 1In a
number of cases, mainly for those where the first 1large-
amplitude peak, A, is itself close to the yield amplitude,
(indicating low ductility demands), the ratio B/A exceeds 0.50.

The information relating to the number of inelastic
B-cycles preceding the £first large-amplitude peak in Fig. 24
has been replotted in the form of a histogram in Fig. 25. The
important thing to note in Figs. 24 and 25, with particular
reference to the question of sequence of load cycles, is that

in many instances, the maximum deformation (or a deformation

~25-



close to the maximum) can occur early in the response, with
hardly any inelastic cycle preceding it. Because of the prob-
able sensitivity of structural behavior under reversed loading
with high shears to the manner in which the maximum deforma-
tion is approached, i.e., whether through progressively in~-
creasing amplitudes of loading or by a relatively sudden in-
crease to the maximum, this observation is significant and
should be considered if a realistic loading program is to be
developed.

Preliminary results of tests at PCA to verify the effect of

(36)

sequence of loading indicate that under shearing stresses
of the order of 8 /Eg or greater, a loading program where the
maximum deformation is imposed early in the test can be more
severe than when the loading is progressively increased to the
maximum.

The tests involved two companion isolated wall specimens.
The first of these was loaded following the usual program of
progressively increasing amplitudes of deformation as shown in
Fig. 26a and 26b. The second, essentially identical specimen,
was loaded using a program based on the results of this study
as shown in Fig. 26c and 26d. For this specimen, the maximum
deformation was imposed early in the test, with only one small
inelastic cycle preceding it.

Results indicate that the first specimen could sustain a
particular maximum deformation through at least three cycles

when this maximum deformation was imposed after a series of

progressively increasing load cycles. However, the second,
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essentially identical, specimen could not sustain the same
maximum deformation through three cycles when the maximum defor-
mation was applied early. Details of the tests are described
in Ref. 36. While no definite conclusions can be drawn on the
basis of a comparison of only two specimens, this subject is
certainly one that merits further investigation.

The observed difference in behavior between the two speci-
mens can be explained in major part by the greater deformation
capacity under the same lateral load, or the lesser stiffness,
of a specimen that has been appreciably cracked and "softened"
by earlier cycles of loading when compared to a "stiff" speci-
men that has only a few cracks. A specimen with well-distri-
buted flexural and diagonal cracks produced by earlier cycles
of loading can accommodate a particular total rotation by in-
elastic deformations over a longer hinging length than a speci-
men that has less cracking. 1In one case, the rotation in the
critical region is spread over a longer hinging length. 1In the
second case the inelastic rotation tends to be concentrated
over a much shorter length with consequent high curvatures and

strains.
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REPRESENTATIVE LOADING HISTORY - AN EXAMPLE

The procedure for selecting a loading program to be used in
testing isolated structural wall specimens under slowly reversed
loads will be illustrated below. Such a loading can be consid-
ered as "representative" of conditions associated with struc-
tures having fundamental periods and yield levels within certain
ranges when subjected to a particular ground motion intensity.
The loading is representative in the sense of being as severe or
more severe than the response that might be expected in a par-
ticular group of structures to the specific ground motion

intensity.

Number of Fully-Reversed Large-Amplitude Cycles and Sequence

It was shown in the preceding section that for a 20-second
duration of strong ground motion and a wide range of values of
the fundamental period and yield level, the number of "fully-
reversed" cycles of response (or loading) rarely exceeds six.
The maximum total number of inelastic cycles, both large and
small, is ten. For over 95% of the cases considered, the cor-
responding values are four and eight, respectively. Examina-
tion of a large number of response histories also showed that
the occurrence of the first large-amplitude cycle very early in
the response is a very strong possibility. In view of the ad-
verse effect that early occurrence of a large-amplitude cycle
can have on the behavior of reinforced concrete walls, a repre-
sentative loading history for use in testing should incorporate

this aspect of response.
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Figure 27 shows a rotational deformation loading program for
the hinging region of isolated walls incorporating aspects of
response relating to number and sequence of large~amplitude
cycles.

Examination of a rotation response history such as shown in
Fig. 16 shows that the positive and negative peaks of any re-
sponse cycle generally are not of the same amplitude. Also, the
"fully-reversed" cycle as defined in this study may have the
higher peak ranging from 0.75 to 1.0 of the calculated maximum
deformation. The other peak, on reversal, may be anywhere bet-
ween 0.50 and 1.0 of the maximum. To reflect these variations
in amplitude of response cycles, the five fully-reversed cycles
in Fig. 27 have been divided into three cycles with amplitudes
equal to the maximum deformation and two cycles with amplitude
equal to 0.80 of the maximum. The first large-amplitude cycle
occurs after a single inelastic cycle with amplitude close to
yield. Smaller inelastic cycles equal to about 1.5 to 2 times
the yield amplitude occur between the fully-reversed large-
amplitude cycles. The effect of these small-amplitude inelastic
cycles on structural behavior is generally not significant
(9'36). In all cases, the cycles are made up of positive and
negative peaks of the same amplitude.

The loading program shown in Fig. 27 applies generally to
the entire range of isolated walls considered in this study.
It is important to note, however, that a particular loading

history, in all its details, cannot be thought of as being
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generally applicable. The actual magnitude of the maximum rota-

tion, © as well as the maximum shear, will vary depending

max’
upon the combination of parameter values represented by the
loading. These parameters include earthquake intensity and

structure period and yield level.

Maximum Rotation, emax’ and Maximum Shear

To determine the wvalue of the rotational ductility require-

ment, W = 0 /6

max to be wused in a particular loading

yield’
program, a decision has to be made on the range of values of the
structure period and yield level as well as the earthquake in-
tensity represented by the test. Referring to Fig. 10, for in-
stance, a maximum rotational ductility of 4.0 would represent or
cover 20-story isolated walls with periods ranging £from about
1.0 sec. or greater and yield levels of about 1,500,000 in.-kips
or greater when subjected to an earthquake with intensity SI =

1.5 (sI Also covered are walls with periods ranging

ref.)”
from about 1.7 sec. or greater and yield levels of 1,000,000
in.-kips or greater. Walls with My = 750,000 in.-kips will
be covered by the same ductility requirement provided the period
is 1.8 sec or greater. It is clear from Fig. 10 that the higher
the ductility ratio used in a test, the broader the range of
parameter values represented or covered by the results.

Similar observations apply to the maximum shear which should
accompany the imposed deformations. Figure 12 can be used as a

guide in selecting the appropriate shear force. Here again, the

distinction must be made between the maximum dynamic shear and

-30-



the shear applied to specimens in quasi-static tests which is
in phase with the accompanying moment and rotation., As indi-
cated in the subsequent section on "Comments on Character of
Shear Loading," some adjustment may be required in either the
dynamic shears or the shear capacity obtained from gquasi-static
tests before a valid comparison can be made between these two
quantities.

Laboratory tests using a loading program based on dynamic
analysis results, such as shown in Fig. 27, with specific values
of emax and the accompanying maximum shear, will have the
character of proof tests. A specimen that sustains such a load-
ing program without significant loss of strength can be said to
be adequate with respect to design and details for the particu-
lar combination or range of values of the significant parameters

represented by the loading program.
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COMMENTS ON CHARACTER OF SHEAR LOADING

In correlating capacity values obtained from experiments
with demands estimated from dynamic inelastic analyses(s), it
is essential that the capacity wvalues be derived under condi-
tions closely approximating those prevailing under dynamic con-
ditions. This, of course, assumes that the mathematical ideal-
ization used in the dynamic analyses represents a realistic
approximation of the actual structure, i.e., with the signifi-
cant variables adequately modelled.

The need for close correspondence between laboratory test
conditions and those obtaining under dynamic conditions is
particularly important with respect to factors that have sig-
nificant influence on the behavior of reinforced concrete ele-
ments, The wvalidity of any correlation between demand as
determined from analysis and capacity as obtained from labora-
tory tests will depend on how representative the test condi-
tions are of actual dynamic response. While there are many
aspects to the problem(38), only one, related to loading his-
tory as used in quasi-static tests to simulate earthquake load-
ing, will be discussed here,. This has to do with the time
variation of the shear force relative to that of the accom-
panying moment and rotational deformation. The question is im-
portant because of the significant influence shear can have on
specimen behavior.

As far as the shear force used in tests is concerned, two
aspects have to be considered. First is the magnitude of the

maximum shear force. The second is its variation with time,
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and particularly in relation to the accompanying moment and
deformation. Most quasi-static tests that have been conducted
to date have been concerned mainly with the magnitude of the
expected shear forces. The loading imposed on test specimens
has been characterized by the moment, shear and deformation in
the critical region being all in phase. This results from the
application of a single horizontal load or a series of propor-
tionally changing horizontal loads to a specimen.

Dynamic response studies of isolated structural walls
undertaken at PCA(8), however, indicate that the shear in the
critical region at the base is more sensitive to higher mode
response and thus fluctuates more rapidly with time than either
the moment or the rotation. This is illustrated in Fig. 28a
through 28d which show time-~history plots of the shear, rota-
tion and moment in the first story of an isolated wall subjected
to four different input motions.

It is significant to note in Fig. 28 that the shear force
in the critical region fluctuates more rapidly than either the
moment or the rotation. The maximum shear generally acts over
a shorter duration relative to the accompanying moment. In
addition, the direction of the shear force reverses itself
several times during a single half-cycle of moment and rota-
tional response.

The behavior of the sghears shown in Fig. 28 may be partly
due to the fact that the model of the hinging region allowed
yielding in flexure only, while remaining 1linearly inelastic
with respect to shear throughout the response. Experimental

(9,36)

studies have shown that this is generally not the case.
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The shear distortion in the hinging region can be significant
and contributes appreciably to the total displacement at the
top(9’36) even before the onset of flexural yielding. What-
ever the effect of this modelling assumption may be*, it is
important, in correlating experimental data on capacity with
analytical data on demand, to allow for any differences in the
manner in which shear is induced under dynamic response condi-
tions and in the typical quasi-static test. It is believed
that a shear force that fluctuates rapidly and reaches its peak
value only for very short durations relative to the associated
moment and rotation represents a less severe loading condition
than one in which the shear, moment and deformation are all in
phase.

The question involved here relates not only to the effects
of out-of-phase forces but also possible shear strain-rate
effects on the behavior of reinforced concrete members. The
determination of the sensitivity of reinforced concrete member
behavior to these differences in loading needs further investi-
gation. An indication of significant effects would suggest an
adjustment either in the dynamic shear demand or in the quasi-
statically determined shear capacity in order to allow a valid

comparison.

*A model which will allow yielding in shear in the hinging re-
gion, based on uncoupled behavior relative to moment, has been
developed to study this and related questions concerning shear
yielding.
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SUMMARY

A total of 170 rotational response history plots for
isolated walls, representing a broad range of structural and
ground motion parameter values, were examined in this study.
The primary objective of the examination was to determine the
number and sequence of large—-amplitude cycles of rotational
response in the hinging region of isolated structural walls.
Response corresponding to 20 seconds of strong ground motion is
suggested as adequate for the purpose of establishing design
requirements. This information is essential in developing a
representative loading program for testing laboratory specimens
under slowly reversed 1loads to simulate earthquake loading.
Such a loading program can be considered as representative of
the response of a particular group of structures to ground
motions of specific intensity.

In addition to the number and sequence of large-amplitude
cycles of rotation, other equally important parameters char-
acterizing the response history are the magnitudes of the total
rotation in the hinging region and the accompanying shear. In-
formation on the latter two parameters has been developed in
detail in Ref. 8. The relevant results have been reproduced
here for completeness.

Significant observations made in this study are summarized
below. These apply strictly to isolated walls having properties
within the ranges indicated in Table 1.

1. An estimate of the maximum amplitude of rotational

deformation, i.e., rotational ductility requirement,
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that can be expected for a particular earthquake in-
tensity and combination of structure period and yield
level may be obtained from charts such as shown in
Figs. 1l0a to 10d. These charts were developed in Ref.
8. For 20-story structural walls with fundamental
period of 0.8 sec. or greater, for example, a maximum
ductility requirement of about 5 is indicated provided
the yield level at 1least 1,500,000 in.-kips (170,000

kN .m) .

The maximum dynamic shears corresponding to a particu-
lar combination of earthquake intensity and structural
parameters (i.e., period and yield level) may be
estimated using Figs. 12a to 12d, also developed in
Ref. 8. For a rotational ductility demand of 4 and a
structure period equal to 0.06 N, where N is the number
of stories, the magimum nominal shear stress at the
critical section near the base can vary from 4 /fg to
7.5 /fg. These values correspond to an earthquake in-

tengity SI = 1.5 (81 Yy and vyield 1level values

ref.
ranging from 600,000 to 2,350,000 in.-kips.

Because the critical shears shown in Figs. 1l2a to
12d are often produced by ground motions that are not
the same as those producing the critical ductility
demand shown in Figs. 10a to 104, a conservatism
beyond that associated with using the 1largest value

for each response quantity is implied when using both

quantities and assuming that they occur simultaneously.
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3. The maximum number of "fully-reversed cycles of large
amplitude"* that can be reasonably expected for
strong ground motions of 20-second duration is six.
The maximum total number of inelastic cycles, of small
and large amplitude, for the same duration of strong
ground motion, is ten. More than ninety-five percent
of the casesgs considered had less than four fully re-
versed cycles of large amplitude. The corresponding

number of inelastic cycles was eight.

4. The study relating to sequence of loading indicates
that a realistic loading program must reflect the fact
that in a large number of cases, the first maximum
amplitude of deformation can occur fairly early in the
response, with hardly any inelastic cycles preceding

it.

5. A loading program incorporating conclusions (3) and (4)
is shown in Fig. 27. The value of the maximum rotation

in the hinging region, exn , and the maximum dynamic

ax
shears corresponding to a particular earthquake inten-
sity and combinations of structure period and yield
level may be obtained from Fig. 10 and Fig. 12 respec-
tively. In application, laboratory tests wusing a
loading history such as developed in this study will

have the character of proof tests. A specimen that

sustains such a loading program without significant

*See page 24 and Fig. 16 for definition.
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6.

loss of strength can be said to be adequate with re-
spect to strength and deformation capacity £for the
particular combination or range of values of the sig-
nificant design variables represented by the loading
program. These variables include earthquake inten-
sity, structure period and yield level,

A loading characterized by moments, shears and rota-
tions all occurring in phase, such as is commonly used
in laboratory tests under slowly reversed loading,
differs from typical dynamic inelastic response in re-
spect to the variation of the shear force with time.
Under dynamic conditions, the shears, which are more
sensitive to the higher modes of response, change
direction much more rapidly with time than the moment
and rotation. It is believed that in this particular
respect, the commonly used laboratory program repre-
sents a more severe loading condition when compared to
typical dynamic response.

Because of the difference in character of the
shear Joading under dynamic conditions and that ob-
taining under commonly used gquasi-static tests, some
adjustment may be required in either the estimated
dynamic shears or the shear capacities determined from
tests using slowly reversed loading before a valid

comparison can be made between these two quatities.
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APPENDIX A

This Appendix presents tables giving detailed data obtained
from an examination of the 170 response histories considered in
this investigation. The compiled data relate mainly to the
number and sequence of large-—amplitude cycles of response.

Also included is a sampling of the normalized rotation
histories for 10-, 20-, 30- and 40-story isolated walls. The
plots are for rotations of the nodes closest to the base in
each of the lumped-mass models shown in Fig. 2 of the main body
of this report. In each plot, the calculated nodal rotation
has been divided by the corresponding rotation at first yield.

In Tables Al through A8, the following abbreviations are
used under the column "Earthquake Input" to denote the corres-
ponding input accelerograms:

BEC-E - 1940 El Centro, E-W component (1l0-sec. duration)

EC-E** - 20-second composite accelerogram based on EC-E

EC-N ~ 1940 El Centro, N-S component (10-sec. duration)

EC-N** - 20-second composite accelerogram based on EC-N
P.D., - 1971 Pacoima Dam, S16E component (1l0-sec. duration)
P.D.** - 20-second composite accelerogram based on P.D.

H.0. - 1971 Holiday Orion, E-W component (l0-sec. duration)

H.O.** - 20-second composite accelerogram based on H.O.
T - 1952 Taft, S69E component (l0-sec. duration)
sl - Artificially generated accelerogram

The intensity £factor, £, shown in the tables, represents

the ratio of the 5%-damped spectrum intensity of the particular
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input motion to the reference spectrum intensity, SIref r i.e.,
the 5%-damped spectrum intensity - between periods 0.1 and 3.0
seconds -~ corresponding to the first 10 seconds of the N-S

component of the 1940 El Centro record.
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Table 1 Values of Parameters Characterizing
Isclated Wall Mcdels

FParameter

STRUCTURAL

No. of Stories
Fundamental Period, Tl
Yield Level, Mv

Yield Stiffness Ratio, rv*

Parameters characterizing

Hysteretic M-8 Curve:*
Unloading parameter, o
Reloading parameter, 8

Damping (stiffness~and mass=-
proportional)

Stiffness Variation with Height

Strength Variation with Height

Base Fixity Condition
INPUT MOTION
Intensity

Frequency Characteristics
("peaking" and "broad band")

Duration

10 - 40
0.5 - 3.0 sec.

16,950 - 339,000 kN'm
(150,000 - 3,000,000 in-kips)

0.05 for most

0.10 for most
0.0 for most -

0.05 of critical for initial
first and second modes

Uniform for most

Uniform, except for adjustments
to reflact effect of axial load
-for most

Fully fixed

SI = 1.5 (ST )4 for most

ref.
1940 El Centro, E-W

1940 =1l Centro, N=-S

1971 Pacoima Dam, S16E

1971 Holiday Oricn, E-W
1952 Taft, S69E

Artificial Accelersgram, Si

10 sec. for most
20 sec. for some

*See Fiqure 3.

o
#=SIret.

(reference spectrum intensity)=area under 5% damped velocity
response spectrum, between periods 0.1 and 3.0 seconds,

corresponding to the first 10 seconds of the N-S component
of the 1940 E1l Centro reccrd.
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SECTION A-A ~ 12- MASS MODEL
Fig. 1 Twenty-Story Building with Isolated Structural Walls
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Fig. 2 Lumped-Mass Models of Isclated Walls Investigated
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Fig. 3a Unloading and Reloading Parameters «. and B
Characterizing Hysteretic Loop of Decreasing
Stiffness Model
10
+ 100
T, = 14 sec.
1 M, =500000 in-k
6+ [940 E} Centro, E-W
Sl ={5 (Slref.) T 50

4 L

MEMBER END MOMENT (in-kips x 10°)
N
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T 80

15 1O
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Fig. 3b Base Moment versus Nodal Rotation at First Floor Level

- 20 Story Isolated Wall
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nodes /

> \2 8, nodal rotation

hinging
length
Plastic hinge (in model )

L7777 7777

Fig. 8 Nodal Rotation as a Measure of Total Rotation in
Hinging Region
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Fig. 10a
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Fig. 10b Critical Rotaional Ductility Ratio at Base as a Function
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20-Story Isolated Structural Walls
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(a) "FULLY REVERSED" CYCLE

(b) "PARTIALLY REVERSED"CYCLE

Fig. 16 "Fully Reversed" and "Partially Reversed" Large Amplitude
Cycles of Rotational Deformation Defined
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ROTATION IN HINGING REGION, 8
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Fig. 22 Typical Sequence of Loading Used In Testing
Specimens Under Slowly Reversed Loads
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ROTATION IN HINGING REGION, &
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Fig. 27 Representative Deformation History for Hinging
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APPENDIX A

This Appendix presents tables giving detailed data obtained
from an examination of the 170 response histories considered in
this investigation. The compiled data relate mainly to the
number and sequence of large-amplitude cycles of response.

Also included is a sampling of the normalized rotation
histories for 10-~, 20-, 30~ and 40-story isolated walls. The
plots are for rotations of the nodes closest to the base in
each of the lumped-mass models shown in Fig. 2 of the main body
of this report. In each plot, the calculated nodal rotation
has been divided by the corresponding rotation at first yield.

In Tables Al through A8, the following abbreviations are
used under the column "Earthquake Input" to denote the corres-
ponding input accelerograms:

EC-E - 1940 E1 Céntro, E-W component (l0-sec. duration)

EC-E** -~ 20-second composite accelerogram based on EC-E

EC-N -~ 1940 El Centro, N-S component (l0-sec. duration)

EC-N** - 20-second composite accelerogram based on EC-N
P.D. - 1971 Pacoima Dam, S16E component (l0-sec. duration)
P.D.** ~ 20~-second composite accelerogram based on P.D.

H.O0. - 1971 Holiday Orion, E-W component (l0-sec. duration)

H.O, ** ~ 20-second composite accelerogram based on H.O.
T - 1952 Taft, S69E component (l0-sec. duration)
Sl - Artificially generated accelerogram

The intensity factor, £, shown in the tables, represents

the ratio of the 5%-damped spectrum intensity of the particular

-86~



input motion to the reference spectrum intensity, SIref , l.e.,
the 5%-damped spectrum intensity - between periods 0.1 and 3.0

seconds - corresponding to the first 10 seconds of the N-S

component of the 1940 E1l Centro record.
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