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.Strength Design of Structural Walls
with Particular Reference to Shear and Cyclic Loading*

By S. K. Ghosh' and Mark Fintel®

INTROBUCTION

The height-to-depth ratio is often regarded as the parameter governing
the mode of response of a structural wall (shear wall). Short, stocky
structural wails are supposed to be mostly governed by their shear
strength, whereas slender walls are supposed to act very much like beam-

columns controlled by flexure and axial load.

The Canadian code for the design of concrete structures for buildings
(CSA Standard A23.3~1973)(1) was one of the first codes to introduce
specific seismic provisions for structural walls to ensure that the
structural properties required during extreme seismic conditions would
be avajlable. It went a step further in distinguishing between walls
which respond primarily in a flexural mode and those which behave
primarily in a shear manner. To quantify the difference in behavior,
the deflections at the top of a linearly elastic homogeneous cantilever
structure due to bending and due to shear were compared. Accordingly, a
cantilever structure in which the deflection due to bending is at least

10 times the deflection caused simultaneously by shear was termed a

“flexural wail". The dimensjons of a flexural wall were thus required
to be such that: (2]
hw ‘ 1
R e R (1)

where hW is total height of wall from its base to its top, Qw is hori-
zontal length of wall, and v is the ratio of flange width to total
horizontal Tength. The factor v recognizes the relative importance of
shear distortions in flanged sections.
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It is eviden® that for sections with a particular shape (i.e,, with a
fixed value of v ), relation (1) reduces to a limitation on the hW/Qw
ratio. For instance, flexural walls with a rectangular section {y = 0)
must have hw/QW§§~J10 . Flexural walls having a flanged section with
Y = 1 must have hW&LVETJBD.

As has been pointed out by Paulay and Uzumeri,(z) requirements such as
the one represented by Eq. (1) are not likely to serve the intended
purpose of separating flexural behavior from shear type response. The
reason is that the predominance of a particular mode of behavior of an
jdealized elastic structure has little, if any, relevance to the mode of
energy dissipation in the actual structure. In general, the relation of
the simuTianeous flexural and shear distortion to each cother in an
elastic structure is significantly different from that during post-
elastic response of the same structure. The reduction in shear stiff-
ness of uncracked members due to diagonal cracking is much more than the
corresponding reduction in flexural stiffness caused by flexural crack-

ing, as shown by Park and Pau]ay.(3)

This paper intends to show that the parameters most directly governing
the mode of response (flexural or shear) of a structural wall are the
applied moment and shear at the critical section, the moment capacity of
this section, and the shear capacity of a segment containing the section.
A design approach based on this observation is suggested. This approach
should make it possible to eliminate the probabiltity of occurrence of
brittle shear failure, whenever this is judged to bhe a necessary design
criterion.
2]
The possible failure types of reinforced concrete members are first
broadly defined in this paper. The prediction of failure type under
proportional loading is next discussed. A design approach hased on such
prediction and applicable to situations of non-proportional earthquake
type loading is suggested. The approach requires reasonable estimates
of the shear capacity of a member segment under variable reversing
loads. A discussion of such capacity and possible estimates of it are
included.



TYPES OF FATLURE OF REINFORCED CONCRETE MEMBERS

The following broad definiticns of failure types are based on considera-
tions of strength. Failure modes, conventionally defined in terms of
the type of cracking and the vesulting crushing and splitting of the
concrete, constitute subclasses of the following failure types:

1. Flexural--The failure of a member segment by the exhauétion of
the moment carrying capacity of its criticallsection(s), while
there is still some reserve shear capacity, may be termed as
flexural fajlure. This is a familiar failure type, and is
usually subdivided into tension, balanced and compression

fajilures.

Z. Flexure~Shear--This type of failure implies the more or less
simultanecus attainment of the flexural and shear capacities
of the member segment and exhibits the characteristics of both
a flexure and a shear failure.

3. Shear--The failure of a member segment by the exhaustion of
its shear capacity before the attainment of the full flexural
strength may be defined as shear failure. This may be in
various modes, depending upon a large number of factors, and

has been discussed in more detail e?sewhere.(d)

The above definitions of failure types can be complete only if flexural
strength (capacity) and shear strength (capacity) are properly defined.
This is done here with reference to Fig. 1. Figure 12 is a schematic
representation of the failure surface of a reinforced concrete membér
segment in axial load-bending moment-shear force space, failure being
defined by the attainment of maximum strength {load carrying capacity).
The axial Tload, bendihg moment and shear asscciated with any point on
this surface may be termed the axial load at failure (Pf), the failure
moment (Mf), and failure shear (Vf), respectively. For the purpose of
this study, the axial Toad capacity is defined as the axial load at

failure in the absence of any moment or shear:



Peap T Peym=o0,v -0 - (2)

Moment capacity'is defined as the failure moment in the ahsence of any
shear and is thus a function of axial load:

Mcap B Mf[ V=0 Mcap(P) (3)

Shear capacity is defined as the failure shear, with one impcrtant
qualification. It should be noted that the failure surface is novmal to
the P-M plane, as long as shear does not exceed a certain Timiting
value. In this region the axial load-moment interaction diagrams are
essentially the same as those under no shear, and failure is by the
attainment of Mcap' To define shear capacity as the failure shear in
this region of flexural failure is largely meaningless. Thus, shear
capacity is defined as:

Vean = vf{ M, _Vcap(P, M) (4)

p

It is understood that M < Mcap in Eq. {4) impiiesﬂmoment along the

ascending branches of secticnal moment-curvature diagrams as shown in
Fig. -1b. ‘

PREDICTION OF FAILURE TYPE, ASSOCIATED MOMENT AND SHEAR

A reinforced concrete member segment will fail in flexure, flexure--
shear, or shear, depending on whether it satisfies the greater than,
equal to, or less than sign in the following relationship:

MWV >, =, or < Mcap/vcap (5)
where M and V are the moment and shear at the most critical section
within the segment, Mcap is the moment capacity of the seclion and VCa
is the shear capacity of the segment under the M/V ratio on the left
hand side. Relation (5) implies a given amount of axial lToad on the
section, which is reasonably invariant.

4.



Relation (5) also implies Toading under which moment at a section is
proportional to shear at the section, so that the M/V ratio is fixed,
j.e,, proportional loading--be it monotonic or cyclic. Under variable
loads which cause nenproporticnal moments and shears, the satisfaction
of relation (5) is to be checked only when either M or V is at a maximum
and is equal to Mcap or Vcap’ respectively. '
The current state of the knowledge of material properties, and the
available anaiytical taols,(S) permit a fairly accurate estimate of
Mcap' Unfortunately, the same is not true of Vcap' It is, therefore,
advisable in the prediction of failure types to use a reasconable lower-
"bound value of Vcap in relation (5). The vright hand side, then, will be
smaller in reality than estimated. This would ensure that a predicted
flexural failure will always be flexural, although a predicted flexure-
shear failure may also turn out to be flexural, and a predicted shear.
failure may actually be in flexure-shear, or even in flexure. Since a
flexural failure is more desirable than a shear failure, any under-

estimate of Vca may be considered to be "on the safe side".

p

It is apparent from the above discussion that at failure the moment and
shear at a section must be as follows:

In the event of flexural failure,

Py

Mo = Mcap, Ve = Mcap/(M/V') | (6)
In the event of flexure-shear failure,

Mf - Mcap’ Vf 5 Vcap (7)
In the event of shear failure,

Me = (M/V) Vcap’ V{ = VCap (8)



Relations (6), (7), and (&) imply that the moment and shear at a section
at failure can be determined with the same accuracy with which Vca can

be estimated, if the M/V ratio is known or can be calculated, and if an
accurate estimate of Mcap is available.

The above approach to the prediction of faijure types, and the associated
moment and shear, was tried on three series of structural wall specimens
‘tested over the years at the Portiand Cement Association Taboratories(6—8)
(Fig. 2). The geometric and material properties of these specimens are
given in Refs. 6-8, and are not reproduced here. Six out of eight
specimens in Barda's test series,(g) one specimen in Cardenas' test

(7)

structural walls

series, and all the specimens in a current PCA investigation on

(6) were tested under (essentially static, proportional)
cyclic loading. The rest of the specimens were tested under propor-
tional, monotonic loading. The flexural capacities listed in Table 1
were calculated by using the computer program described in Ref. 5., The
shear capacities listed in Tables la, ¢, and d were calculated according
to the provisions of Section 11.16 of the current ACI Code.(g) The
ratios of these calculated moment and shear capacities are compared in
Column 4 of each table with the actual moment-to-shear ratios to which
the base sections of the test specimens are subjected. The failure
types predicted on the basis of such comparison are listed in Column 5.
There were two casés of anchorage failure in Cardenas' test series
(Table 1c), and one specimen in the same series actually failed in
flexure, rather than in flexure-shear as predicted (which is in accord-
ance with prior discussion in this section). Apart from this, the
actual failure types exactly matched the predicted ones. In cases of
flexural failure, the failure shears predicted on the basis of Eq. (6)
are compared with the actual shears at failure in Column 6. In the case
of Cardenas' monotonically icaded specimens (Table 1c), the agreement is
exceltlent, and reflects the accuracy of the flexural capacily cestimates.
The cyclically loaded specimens in the current PCA test series failed to
attain the predicted flexural capacities due to premature buckling of
the flexural reinforcement. This is reflected in the actual shears at
failure being less than the failure shears predicted on the basis of

£q. (6). The actual moments at shear or flexure-shear failure are
compared with moments predicted on the basis of Eq. (8) in Column 7.

-6~



The fajrly large discrepancies reflect inaccuracies in shear capacity
prediction. It should be noted that Table 1b is the same as Table la,
except that the shear capacities are calculated using the provisions of
Section 11.9 (special provisions for deep beams), rather than those of
Sectfon 11.16 (special provisions for walis) of ACI 318-?1.(9) It can

be seen that shear capacity estimates have improved somewhat in Table 1b,
which impiies that the proportions of Barda's specimens(g) make Section
11.9 more applicable perhaps than Section 11.16.

Table 1 demonstrates the vaiidity of the present approach to prediction
of failure type as well as the moment and shear associated with failure.

DESIGN UNDER VARIABLE REVERSING LOADS

In multi-degree of freedom systems subject to variab?e‘reversing loads
(e,g., seismic excitations), the relationship between moment and shear
at a given section is variable, due to the effect of the various modes
of vibration. Figure 3a, which is a composité representation of the
variation with time of the momenl and shear at the base of an isolated
structural wall subject to earthquake input motion, demonstrates clearly
that the moment and shear are not in phase with each other. Thus, the
M/V ratio varies continuousty during the motion, as indicated in Fig. 3b.
The various moment-shear combinations to which the critical section at
the base is subjected during the motion may be p]dtted as shown in

Fig. 3c. The envelope of these plotted points contains the critical
moment-shear combinations that must be considered in design. On the
basis of a preliminary analytical study conducted at Portland Cement
Association, it has been determined(la) that for design purposes the
critical portion of the envelope is covered if the following moment-
shear combinations are considered:

1. The maximum moment, M , and the corresponding shear, V

max 1
{point A, Fig. 3¢).

2. The maximum shear, Vmax’ and the corresponding moment, M

v
(point B, Fig. 3c).



- inati C M a med i ~
3. The combination of 1max and Vmax assu to occur simulta

neously (this combination approximates points intermediate
between A and B).

The problem considered here is that of designing a structural wall,

given Mmax’ VM and MV’ Vmax'

intended failure in flexure and another for cases where the wall pro-

Two procedures are suggested--one for

portions and other factors make 1t impractical and unnecessary.to aim
for a flexural failure.

if Mcap’ Vcap’ are the design moment capacity of the critical section
and the design shear capacity of the critical segment, respectively,
then it is suggested that for intended flexural failure one ocught to

have:

MCap = {K) M ax and Vcap > Vmax (9)

This would ensure, as required by relation (5), that

/v > Mo /Y

Mmax max cap’ ‘cap (10)
vhere Vcap must be the shear capacity available under the moment-to-
shear ratio, M ___/V (v is known to be a function of the moment-to-

(g)max’ ‘max - cap
shear ratio® /). Relations (9) should also ensure that

Moo/ Vi = Mcap/vcap (11)

Any possible decrease in Vcap due to an increase in the moment-to-shear
ratio from M . /V . toM . /V, must be considered in checking the
satisfaction of relation (11). 1t should be noted thal to ensure

flexural failure it is not necessary to satisfy the relation

Mv/vmax > MCdp/vCap (12)

except when My = Moo in which case (12) reduces to (10) which is
satisfied. »



When a design failing in shear appears to be the only practicable
solution, one should make

= (<t) Vmax and M (13)

Vcap cap =~ Mmax

It can be easily checked that (13} ensures the satisfaction of the
conditions for shear failure, as expressed by relation (b), with respect
to load combinations 2 and 3 above. The condition need not be satisfied
with respect to combination 1, except when VM = Vmax'

nax 11 relation (9), or Meq
approaches Moax in relation (13), the mode of failure is going to
approach flexure-shear. 1t is apparent that as far as strength is _
concerned, a design which fails in the flexure-shear mode is the most

It should be noted that as Vcap approaches V b

efficient and economical. However, if one considers deformabitity
beyond failure (without a substantial loss of strength), a flexural
failure may be more desirable than a flexure-shear failure. 1In such a

case, it may be necessary to keep V below the shear which causes

ma X
yielding of the shear reinforcement. This aspect of design for

ductility is left to be discussed in a subsequent paper.

It is expected that in most design situations it will be fairly obvious
whether 1t is necessary to aim for a flexural failure, or whether
conditions are such (e.g., the case of a low, stocky wall) that a shear
failure is not only permissible, but is about the only choice.

As to the determination of Mmax’ VM and MV’ Vmax, the most direct way of
estimating them is of course through realistic analyses (including
dynamic inelastic analysis if and when necessary) of the structure to be
designed under the most probable input motion(s). Apart from this, an
extensive investigation of earthquake-resistant structural walls cur-
rently under way at Portland Cement Association will hopefully result in
design aids which would guide a designer to reasonable estimates of
Mmax’ V[, MV’ Vmax’ in the absence of refined analyses. It should be
apparent, though, that unless one is in the range of M/V ratios (very

Tow va?ues) where Vcap is very much dependent on it, all that is neces-

sary in design 1 reasonable estima v and V .
Y sign 1s a re te of Mmax max

-9



SHEAR CAPACITY UNDER VARIABLE, REVERSING LOADS

The design approach outlined in the preceding section requires reason-
able estimates of the shear capacity of a structural wall segment under
variable reversing loads. Such estimates in turn require a clear
understanding of the mechanism of shear resistance in structural walls
subject to variable reversing loads, as well as of the various modes in
which the resistance mechanism might fail.

»

Mechanism of Shear Resistance
The crack pattérns in‘high rise, as well as (indirectly loaded) low rise
structural walls subject to Tateral loads reveals the formation of
diagonal struts bound by the diagonal tension cracks (Figs. 4a and b).
In the case of reversing loads, these struts are intersected by diagonal
cracks formed by loading in the other direction, and are thus essentially
discontinuous.

In high rise walls (directly as well as ihdirect?y Joaded), following
the formation of diagonal cracks, much of the shear is resisted by truss
action, with the diagonal struts acting in compression and the hori-
zontal shear reinforcement actually carrying most of the horizontal
shear. The horizontal shear reinforcement is thus extremely important
in walls of this type. Vertical web reinforcement, if present, does not
appear to play much of a role except in physically restraining the
concrete in the compression struts from disintegrating at advanced
stages of deformation.

In directly loaded Tow rise walls, the shear is disposed of along the
shortest possible route (from load point to support) by arch action.
Stirrups crossing the main diagonal crack, forming between load point
and support, are not engaged in efficient shear resistance because no
compression struts can form between stivrup anchofages.(B) This type of
loading and the consequent shear carrying mechanism are uncommon in
practice, and are thercfore excluded from consideration in the remainder
of this paper.

-10-



For the common structural wall in a building, the load is introduced
along the joint between floor slabs and walls as a line load. No
effective arch action can develop with this type of loading, even when
the'height is small. The crack pattern reveals the formation of
diagonal struts {hence the engagement of stirrups), as sketched in Fig.
.4c.(3) From consideration of equilibrium of the triangular free body,
marked 1, it is evident that horizontal stirrups are required to resist
the shearing stress applied along the top edge. The diagonal compres-
sion forces set up in the free body also reguire vertical reinforcement.
In the free body bound by two diagonal cracks and marked 2, on the other
hand, only vertical forces, equal to the shear intensity, need be
geherated to develop the necessary diagonal compression.(3) Figure 4c
‘thus illustrates the role of vertical and horizontal bars in resisting

shear forces in indirectly loaded Tow rise walls.
Modes of Shear Failure

Walls with no boundary element--In walls without boundary elements to
offer restraining action, shear fatlure appears to be precipitated most
often by sliding along a major diagonal crack after the shear reinforce-
ment has yielded, (Fig. 5a}. This type of failure, also encountered
under monotonic Teading, may be termed diagonal tension failure.

1T and when the shear reinforcement is able to prevent sliding of the
above kind, walls are observed to fail in direct sliding shear along
their critical support secticns. This is because, in the final stages
of loading, irrespective of the amount of web reinforcement, the bulk of
Lhe shearing force has to be carried into the foundations across the
concrete Comﬁression zone, However, by then the concrete in the com-
pression zone avcas is cracked as a vesult of the preceding load cycles,
the cracks having opened and closed several times; therefore, the
capacity to transfer shear is drastically reduced., A sliding shear
failure of this kind, which is possible only under reversing loads, is
illustrated in Fig. 5b.

-11-



Walls with boundary elements--When there are boundary elements of
adequate stiffness to restrain sliding along Qiagona1 cracks, the most
commonplace shear failure appears to be by crushing of the compression
struts. This type of failure must be distinguished from the usual web
crushing fajlure under monotonic loading which is caused by inadeguate
thickness of the web. The failure bheing considered is the result of
progressive 'softening' under repeated cycles of leading. When a |
djagonal strut formed by 1oading in one direction is intersected by
diagonal cracks caused by loading in the other direction, the (axial)
stiffness of the strut under loading in the first direction decreases.
The amount of this decrease is a function of sliding movements along the
intersecting cracks, which, in turn, are dependent on the shear rein-
forcement restraining this motion as well as the rigidities of the
restraining boundary elements. One result of this loss of rigidity 1is
that the force previously carried by the critically stressed compression
strut gradualty spreads to other adjacent struts, until an entire area
of the web within intersecting diagonal struts is 'softened up' to the
extent that it starts disintegrating. Figures'ﬁa, b and d are illustra-

tions of this type of failure.

The above process of disintegration usually causes a drastic reduction
in the shear carrying capacity. However, depending upon the shear
reinforcement and other factors, some or most of the shear may be
sustained until the boundary elements fail, either in flexure'(Fig. 6c)
or in direct shear (Fig. 6e). The latter happens when the compression
struts bearing against the compression flange cause a lateral bulging of
the flange at a section above the base, where there is less restraint to
such mozﬁTint than at the base. This type‘of failure {also cbserved by
Berkeley) can he delayed wilh adeguate stiffness and proper confinement
of the boundary elements, so that they retain their strength and rigidity
into advanced stages of deformation.

Bertero in a recent test conducted at the University of California,
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Estimates of Shear Capacity

The preceding section underscores the difficulties involved in arriving
Vat reasonable estimates of the shear capacity of structural wall segments
subject to repeated reversing loads of large amplitudes. Indications
are that at least the following variables must be considered in a
realistic prediction equation: geometric proportions of the cross-
sections; concrete strength; axial Toad level; the amount, distribution
and strength of the horizontal shear reinforcement; the amount, distri-
bution and strength of the vertical web reinforcement; the moment-to-
shear ratio, including the manner of loading (direct/indirect); the
relative rigiditfes of the boundary elements and the web, as well as the
strength and confinement of the boundary elements. An additional
difficuity stems from the fact that some of the above variables assume
more importance than others, depending upon the mede of failure. 1In
view of the scarcity of available test results, one cannot even begin to
develcop a realistic prédiction equation. For design purposes, the ACI
Code(g) does contain prediction equations (Section 11.16) which are
based on fhe monotonic loading tests carried out by Cardenas.(7) The
specimens in this test series ranged in nondimensional moment-to-shear
ratios (M/VEW) from 1 to 2.4, did not contain any boundary elements; and
the vertical web reinforcement was not considered as a variable. It is
“apparent that careful consideration must be given before applying the
above provisions to situations not covered by Cardenas' tests.

It may be of interest to note here that the Japanese code for reinforced
concrete recognizes the importance of the boundary elements in the shear
transfer mechanism of stkuctura1 walls. 1In fact, the commentaries to
this code recommend certain minimum dimensions of the boundary elements

(12)

rigidity of the boundary elements relative to that of the web.

relative to those of the web, which are designed to ensure . a minimum

For the purposes of this paper it was thought worthwhile, instead of
just pointing out the difficulties of arriving at shear capacity esti-
mates, to check how the ACI code provisions, imperfect as they are,
compare with the few test results that are available for structural
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walls subject to cyclic loading. The ratios of the shear capacities,
as observed in tests and as computed according to Section 11.16 of ACI
318—71,(9)
- plotted against their M/VSZw ratios in Fig. 7. The only specimen with a
test capacity lower than the calculated strength was one of Barda's
walls containing no vertical web reinforcement. Such reinforcement has

of eleven test specimens subjected to cyclic loading are

been shown to be extremely important in squat walls. For another of
Barda's specimens, an unrealistically high ratio of test capacity to
calculated capacity was obtained. This wall contained no horizontal
‘reinforcement, so that the calculated capacity was very low. The
vertical reinforcement in the specimen, not considered in the ACI
equation, but in reality the principal shear carrying element in squat
walls, produced a much higher test capacity.

Overall, Fig. 7 appears to indicate that, pending the development of
more refined prediction equations, the ACI provisions may be used to
arrive at conservative lower bound estimales of Lhe shear capacity of

critical structural wall segments subject to repeated, reversing lateral
{oads.

CONCLUDING REMARKS

The strength design of structural walls with reference to high shear
under variable, earthquake-type loading has been discussed in this
‘paper. It has been pointed out that the parameters governing the mode
of response of such members are the moment and shear at, and the moment
capacity and shear capacity of, the critical segments. While the
moments and shears can be determined from analysis, given the input
motion(s) to be expected, and while realistic estimates of moment
capacity are not difficult to arrive at,(g) difficulties in estimating
the shear capacity leads to uncertainties and inaccuracies in the
prediction of response. Uncertainties in the design of such walls to
prevent shear failure under earthquake-type loading also stem from the
same difficulties. A strong case can and should thus be made for
further research directed towards the accurate determination of shear
capacities of structural wall segments under repeated, reversed loading,
particularly as such capacities are affected by the rigidities of
boundary elements restraining deformations caused by shear.

14~
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Table 1:
Fig. 1:
Fig. 2:
Fig. 3:
Fig. 4:
Fig. b:
Fig. G:
Fig. 7:

CAPTIONS

Prediction of type of failure, associated moment and shear-
comparison with 1ist results: (a,b) Barda's tests,(s) {c)
Cardena's tests,(]) (d) current PCA tests.(6)

Schematic representétion of: (a) an axial load-bending moment-
shear force interaction diagram, (b) moment-curvature diagrams
under different shear force levels.

Specimens and loading in various PCA test series: (a) Barda's
tests,(B) (b) Cardena's tests,(7)-(c) current PCA investiga-

tion.(6)

Results of inelastic dynamic anlaysis of an isolated structural
wall: {a) variations with time of bending moment and shear
force, (b) variations with time of moment-to-shear ratio, {c)

bending moment vs. shear force plot.

The formation of diagonal struts: (a) Barda's specimen BS~2,(8)

(b) current PCA specimen Fl,(ﬁ) (c) shear resistance. of low-
rise walls. 3

Shear failure of walls without boundary elements: (a) diagonal
tension fa11ure,(3) (b) s1iding shear fai]ure‘(g

Shear Titaure of walls with boundary elements:  (a) Barda's
specimen BB~2,(8) (b,c) current PCA specimen Fl,(G) (d,e)
current PCA specimen 82.(6

Comparison of shear capacities as measured in tests and as
given by ACI Code(g) provisions.
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