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INTRODUCTION

The height-to-depth ratio is often regarded as the parameter governing

the mode of response of a structural wall (shear wall). Short, stocky

structural walls are supposed to be mostly governed by their shear

strength, whereas slender walls are supposed to act very much like beam­

columns controlled by flexure and axial load.

The Canadian code for the design of concrete structures for buildings

(CSA Standard A23.3-1973)(1) was one of the first codes to introduce

specific seismic provisions for structural walls to ensure that the

structural properties required during extreme seismic conditions would

be available. It went a step further in distinguishing between walls

which respond primarily in a flexural mode and those which behave

pri mari ly ina shear manner. To quanti fy the di fference in behavi 0)',

the deflections at the top of a linearly elastic homogeneous cantilever
structure due to bending and due to shear were compared. Accordingly, a

cantilever structure in which the deflection due to bending is at least

10 times the deflection caused simultaneously by shear was termed a

"flexural viall ". The dimensions of a flexul'al ~vall were thus required
to be such that:(2)

h 2
(-~)
Q

~v

1
T + 4y > 10 (1)

where h is total height of wall from its base to its top, Q is hori-
Iv \'I

zontal length of Viall, ane! y is the ratio of flanSje Ilidth to tota"1

horizontal length. The factor y recognizes the relative importance of

shear distortions in flanged sections.
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It is evident that for sections v/ith a particular shape (i .e., with a

fixed value ofy), relation (1) reduces to a limitation on the h\/Q w
ratio. For instance, flexural walls with a rectangular section (y = 0)

must have h /£ > .JIG. Flexural \'Ialls having a flanged section with
\'J VJ--

Y = 1 must have h,,./Q\'{ ~ .J50.

As has been pointed out by Paulay and Uzumeri ,(2) requirements such as

the one represented by Eq. (1) are not likely to serve the intended

purpose of separating flexural behavior from shear type response. The

reason is that the predominance of a particular mode of behavior of an

idealized elastic structure has little, if any, relevance to the mode of

energy dissipation in the actual structure. In general, the relation of

the simultaneous flexural and shear distortion to each other in an

elastic structure is significantly different from that during post­

elastic response of the same structure. The reduction in shear stiff­

ness of uncracked members due to diagonal cracking i~ much more than the

corresponding reduction in flexural stiffness caused by flexural crack­
ing, as shown by Park and Paulay. (3)

This paper intends to show that the parameters most directly governing

the mode of response (flexural or shear) of a structural wall are the

applied moment and shear at the critical section, the moment capacity of

this section, and the shear capacity of a segment containing the section.

A design approach based on this observation is suggested. This approach
should make it possible to eliminate the probability of occurrence of

brittle shear failure, I'ihenever this is judgod to be a necessary design

criterion.

ilJ

The possible failure types of t'einforced concrete members ate first

broadly defined in this paper. The prediction of failure type under
proportional loading is next discussed. A design approach based on such

prediction and applicable to situations of non-proportional earthquake

type -I oadi ng is suggested. The approach requi res reasonable estimates

of the shear capacity of a member segment under variable reversing

loads. A discussion of such capacity and possible estimates of it are

included.
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TYPES OF FAILURE OF REINFORCED CONCRETE MEMBERS

The following broad definitions of failure types are based on considera­

tions of strength. Failure modes, conventionally defined in terms of

the type of cracking and the resulting crushing and splitting of the

concrete, constitute subclasses of the following failure types:

1. Flexural--The failure of a member segment by the exhaustion of

the moment carryi ng capacity of its criti ca 1 secti on (s), whil e

there is still some reserve shear capacity, may be termed as

flexural failure. This is a familiar failure type, and is

usually subdivided into tension, balanced and compression

failures.

2. Flexure-Shear--This type of failure implies the more or less

simultaneous attainment of the flexural and shear capacities

of the member segment and exhibits the characteristics of both

a flexure and a shear failure.

3. Shear--The failure of a member segment by the exhaustion of

its shear capacity before the attainment of the full flexural

strength may be defined as shear failure. This may be in

various modes, depending upon a large number of factors, and

has been discussed in more detail elsewhere. (4)

The above definitions of failure types can be complete only if flexural

strength (capacity) and shear strength (capacity) are properly defined.

This is done here with reference to Fig. 1. Figure la is a schematic

representation of the failure surface of a reinforced concrete member

segment in axial load-bending moment-shear force space, failQre being

defined by thp attainment of maximum strength (load carryin9 capacity).

The axial load, bendin9 moment and shear associated \,;ith any point on

this surface may be termed the axial load at failure (Pf ), the failure

moment (Nf ), and failure shear (V f ), respectively. For the purpose of

this study, the axial load capacity is defined as the axial load at

failure in the absence of any moment or shear:
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Pf I t~ -. 0, V 0

t~oment capacity is defined as the failure moment in the absence of any

shear and is thus a function of axial load:

(2)

::: (3)

Shear capacity is defined as the failure shear, with one important

qualification. It should be noted that the failure surface is normal to

the P-M plane, as long as shear does not exceed a certain limiting

value. In this region the axial load-moment interaction diagrams are

essentially the same as those under no shear, and failure is by the

attainment of Mcap ' To define shear capacity as the failure shear in

this region of flexural failure is largely meaningless. Thus, shear

capacity is defined as:

::: ::: (4)

It is understood that M< Mcap in Eq. (4) implies moment along the

ascending branches of sectional moment-curvature diagrams as shown in

Fig. ·lb.

PREDICTION OF FAILURE TYPE, ASSOCIATED MOMENT AND SHEAR

A reinforced concrete member segment will fail in flexure, flexUre-·

shear, or shear, depending on whether it satisfies the greater than,

equal to, or less than sign in the following relationship:

(5)

where Mand V are the moment and shear at the most critical section

wi thi n the segment, t~cap is the moment ci1pacity of the sect"i on and Vcap
is the shear capacity of the segment under the t·1/V ratio on the left

hand side. Relation (5) implies a given amount of axial load on the

section, which is reasonably invariant.
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Relation (5) also implies loading under which moment at a section is

proportional to shear at the section, so that the M/V ratio is fixed,

i.e., proportional loading--be it monotonic or cyclic. Under variable

loads which cause nonproportional moments and shears, the satisfaction

of relation (5) is to be checked only when either Mor V is at a maximum

and is equal to Mcap or Vcap ' respectively.

The current state of the knowledge of material properties, and the
available analytical tOOls,(5) permit a fairly accurate estimate of

M Unfortunately, the same is not true of V It is, therefore,cap cap
advisable in the prediction of failure types to use a reasonable lower-

bound value of Vcap in relation (5). The right hand side, then, will be

smaller in reality than estimated. This would ensure that a predicted

flexural failure will always be flexural, although a predicted flexure­

shear failure may also turn out to be flexural, and a predicted shear

failure may actually be in flexure-shear, or even in flexure. Since a

flexural failure is more desirable than a shear failure, any under-

estimate of V may be cons·idered to be "on the safe side".cap

It is apparent from the above discussion that at failure the moment and

shear at a section must be as follows:

In the event of flexural failure,

In the event of flexure-shear failure,

Mf
:::: Mcap ' Vf

:::: Vcap

In the event of shear failure,

Mf (rVV) Vcap' Vf Vcap

(6)

(7)

(8)
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Relations (6), (7), and (8) imply that the moment and shear at a section

at failure can be determined with the SDme accuracy with \'Ihich V cancap
be estimated, if the MjV ratio is known or can be calculated, and if an

accurate estimate of Mcap is available.

The above approach to the prediction of failure types, and the associated

moment and shear, was tried on three series of structural wall specimens
tested over the years at the Portland Cement Association laboratories(6-8)

(Fig. 2). The geometric and material properties of these specimens are

given in Refs. 6-8, and are not reproduced here. Six out of eight

specimens in Barda's test series,(8) one specimen in Cardenas' test

series,(l) and all the specimens in a current PCA investigation on

structural walls(6) were tested under (essentially static, proportional)

cyclic loading. The rest of the specimens were tested under propor­

tional, monotonic loading. The flexural capacities listed in Table 1

were calculated by using the computer program described in Ref. 5. The

shear capacities listed in Tables la, c, and d were calculated according

to the provisions of Section 11.16 of the current ACI Code. (9) The

ratios of these calculated moment and shear capacities are compared in

Column 4 of each table with the actual moment-to-shear ratios to which

the base sections of the test specimens are subjected. The failure

types predicted on the basis of such comparison are listed in Column 5.
There were two cases of anchorage failure in Cardenas' test series

(Table Ie), and one specimen in the same series actually failed in

flexure, rather than in flexure-shear as predicted (\~hich is in accord­
ance with prior discussion in this section). Apart from this, the

actual fai 1ure types exactly matched the predi cted ones. In cases of

flexural failure, the failure shears predicted on the basis of Eq. (6)

are compared with the actual shears at failure in Column 6. In the case

of Cardenas' monotonically loaded specimens (Table Ie), the agreement is

exce"l] ent, ilncl ren eets the (lccuracy 0 f thl' fl cxura1 capaci ty os t-ill1i1tes.

The cyclically loaded specimens in the current PCA test series failed to

attain the predicted flexural capacities due to premature buckling of

the flexural reinforcement. This is reflected in the actual shears at

failure being less than the failure shears predicted on the basis of

Eq. (6). The actual moments at shear or flexure-shear failure are

compared with moments predicted on the basis of Eq. (8) in Column 7.
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The fairly large discrepancies reflect inaccuracies in shear capacity

prediction. It should be noted that Table 1b is the same as Table la,

except that the shear capacities are calculated using the provisions of

Section 11.9 (special provisions for deep beams), rather than those of
Section 11.16 (special provisions for walls) of ACI 318-71.(9) It can

be seen that shear capacity estimates have improved somewhat in Table 1b,

which implies that the proportions of Barda1s specimens(8) make Section

11.9 more applicable perhaps than Section 11.16.

Table 1 demonstrates the validity of the present approach to prediction

of failure type as well as the moment and shear associated \''iith failure.

DESIGN UNDER VARIABLE REVERSING LOADS

In multi-degree of freedom systems subject to variable reversing loads

(e.g., seismic excitations), the relationship between moment and shear

at a given section is variable, due to the effect of the various modes

of vibration. Figure 3a, which is a composite representation of the

variation with time of the moment and shear at the base of an isolated

structural wall subject to earthquake input motion, demonstrates clearly

that the moment and shear are not in phase with each other. Thus, the

MjV ratio varies continuously during the motion, as indicated in Fig. 3b.

The various moment-shear combinations to which the critical section at

the base is subjected during the motion may be plotted as shown in

Fig. 3c. The envelope of these plotted points contains the critical
moment-shear combinations that must be considered in design. On the

basis of a preliminary analytical study conducted at Portland Cement
Association, it has been determined(10) that for design purposes the

critical portion of the envelope is covered if the following moment­

shear combinations are considered:

1.

2.

The maxi mum moment, H ,and the correspondi n9 shear, V'1max I'

(point A, F-ig. 3c).

The maxi mum shea r, V ,and the corres pond i ng moment, r"Vmax
(point B, Fig. 3c).
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3. The combination of ~nax and Vmax assumed to occur simulta­

neously (this combination approximates points intermediate

between A and B).

The problem considered here is that of designing a structural wall,

given M , V
tA

and MV' Vm . Two procedures are suggested--one formax 'I ax
intended failure in flexure and another for cases where the wall pro-

portions and other factors make it impractical and unnecessary to aim

for a flexural failure.

If ~lcap' Vcap ' are the design moment capacity of the critical section
and the design shear capacity of the crit'i ca1 segment, respecti ve ly,

then it is suggested that for intended flexural failure one ought to

have:

and (9)

This would ensure, as required by relation (5), that

(0)

where Vcap must be the shear ca.pacity available under the moment-to­

shear ratio, Mmax/Vmax (Vcap is known to be a function of the moment-to­
shear ratio(4)). Relations (9) should also ensure that

(11 )

Any possible decrease in Vcap due to an increase in the moment-to-shear

ratio from M IV to t~ IV r1 must be considered in checking themax JlIax max'
satisfaction of relation (11). It should be noted that to ensure

flexural failure it is not necessary to satisfy the relation

(12 )

except when MV Mmax ' in which case (12) reduces to (10) which is
satisfied.

-8-



When a design failing in shear appears to be the only practicable

solution, one should make

and Mmax
(13) ,

It can be easily checked that (13) ensures the satisfaction of the

conditions for shear failure, as expressed by relation (5), with respect

to load combinations 2 and 3 above. The condition need not be satisfied

with respect to combination 1, except when VM= Vmax .

It should be noted that as Vcap approaches Vmax in relation (9), or Mcap
approaches Mmax in relation (13), the mode of failure is going to

approach flexure-shear. It is apparent that as far as strength is

concerned, a design which fails in the flexure-shear mode"is the most

effi ci ent and economi ca1. However, if one cons i ders deformabil ity

beyond failure (without a substantial loss of strength), a flexural

failure may be more desirable than a flexure-shear failure. In such a

case, it may be necessary to keep V be 10'11 the shear whi ch causesmax
yielding of the shear reinforcement. This aspect of design for

ductility is left to be discussed in a subsequent paper.

It is expected that in most design situations it will be fairly obvious

\'Jhether it is necessary to aim for a flexural failure, or whether

conditions are such (e.g., the case of a low, stocky wall) that a shear

failure is not only permissible, but is about the only choice.

As to the determination of Mmax ' VMand MV' Vmax ' the most direct way of
estimating them is of course through realistic analyses (including

dynamic inelastic analysis if and when necessary) of the structure to be

designed under the most probable input motion(s). Apart from this, an

extensive investigation of earthquake-resistant structural walls cur­

rently under way at Portland Cement Association will hopefully result in

design aids which would guide a designer to reasonable estimates of

Mmax ' VM, MV' Vmax ' in the absence of refined analyses. It should be

apparent, though, that unless one is "in the range of njV ratios (very

low values) where V is very much dependent on it, all that is neces-cap
sary in design is a reasonable estimate of t'lmax and Vmax
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SHEAR CAPACITY UNDER VARIABLE, REVERSING LOADS

The design approach outlined in the preceding section requires reason­

able estimates of the shear capacity of a structural \."all segment under

variable reversing loads. Such estimates in turn require a clear

understanding of the mechanism of shear resistance in structural walls

subject to variable reversing loads, as well as of the various modes in

which the resistance mechanism might fail.

Mechanism of Shear Resistance

The crack patterns in high rise, as well as (indirectly loaded) low rise

structural walls subject to lateral loads reveals the formation of

diagonal struts bound by the diagonal tension cracks (Figs. 4a and b).

In the case of reversing loads, these struts are intersected by diagonal

cracks formed by loading in the other direction, and are thus essentially

discontinuous.

In high rise walls (directly as well as indirectly loaded), following

the formation of diagonal cracks, much of the shear is resisted by truss

action, with the diagonal struts acting in compression and the hori­

zonta 1 shear rei nforcement actually carryi ng mos t of the hori zonta1

shear. The horizontal shear reinforcement is thus extremely important

in \'/alls of this type. Vertical vleb reinforcement, if present, does not

appear to play much of a role except in physically restraining the

concrete in the compression struts from disintegrating at advanced
stages of deformation.

In directly loaded low rise walls, the shear is disposed of along the

shortest possible route (from load point to support) by arch act'ion.

Sti rrups cross i ng the main di agona1 crack, formi ng betvleen load poi nt

and support, are not engaged in efficient shear resistance because no

compression struts can form behleen stirrup ancho~ages.(3) This type of

loading and the consequent shear carrying mechanism are uncommon in

practice, and are therefore excluded from consideration in the remainder

of this paper.
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For the common structural wall in a building, the load is introduced

along the joint between floor slabs and walls as a line load. No

effective arch action can develop with this type of loading, even when

the height is small. The crack pattern reveals the formation of

diagonal struts (hence the engagement of stirrups), as sketched in Fig.

"4c.(3) From consideration of equilibrium of the triangular free body,

marked 1, it is evident that horizontal stirrups are required to resist

the shearing stress applied along the top edge. The diagonal ~ompres­

sion forces set up in the free body also require vertical reinforcement.

In the free body bound by two diagonal cracks and marked 2, on the other

hand, only vertical forces, equal to the shear intensity, need be

generated to develop the necessary diagonal compression. (3) Figure 4c

thus illustrates the role of vertical and horizontal bars in resisting

shear forces in indirectly loaded low rise walls.

Modes of Shear Failure

Walls with no boundary element--In walls without boundary elements to

offer restraining action, shear failure appears to be precipitated most

often by sliding along a major diagonal crack after the shear reinforce­

ment has yielded, (Fig. 5a). This type of failure, also encountered

under monotonic loading, may be termed diagonal tension failure.

If and vJhen the shear reinforcement is able to prevent sliding of the

above kind, walls are observed to fail in direct sliding shear along

their critical support sections. This is because, in the final stages

of loading, irrespective of the amount of web reinforcement, the bulk of

the shearing force has to be carried into the foundations across the

concrete compression zone. However, by then the concrete in the com­

pression zone arc'as is cracked as il j'('sl(lt of the pr(~l:C~din~Jload cycles,

the cracks hav"j n9 opened and closee! severa"1 titnes; th,:,refore, the

capacity to transfer shear is drastically reduced. A sliding shear

failure of this kind, which is possible only under reversing loads, is

illustrated in Fig. 5b.
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~~all s vii th boundary e1ements--\~hen there are boundary elements. of

adequate stiffness to restrain sliding along ~iagonal cracks, the most

commonplace shear failure appears to be by crushing of the compression

struts. This type of failure must be distinguished from the usual web

crushing failure under monotonic loading which is caused by inadequate

thickness of the web. The failure being considered is the result of

progressive 'softening ' under repeated cycles of loading. When a

diagonal strut formed by loading in one direction is intersected by

diagonal cracks caused by "loading in the other direction, the (axial)

stiffness of the strut under loading in the first direction decreases.

The amount of this decrease is a function of sliding movements along the

intersecting cracks, which, in turn, are dependent on the shear rein­

forcement restra"ining this motion as well as the rigidities of the

restraining boundary elements. One result of this loss of rigidity is

that the force previously carried by the critically stressed compression

strut gradually spreads to other adjacent struts, until an entire area

of the web within intersecting diagonal struts is 'softened up' to the

extent that it starts disintegY'ating. Figures 6a, band dare inustra­

tions of this type of failure.

The above process of disintegration usually causes a drastic reduction

in the shear carrying capacity. However, depending upon the shear

reinforcement and other factors, some or most of the shear may be

sustained until the boundary elements fan, either in flexure (Fig. 6c)

or in direct shear (Fig. 6e). The latter happens when the compression

struts bearing against the compression flange cause a lateral bulging of

the flange at a section above the base, where there is less restraint to

such movement than at the base. This type of failure (also observed by
Bertero(11) in a recent test conducted at the University of California,

Berkeley) can be delayed with adequate stiffness and proper confinement

of the boundary elements) so that they retain their strength and rigidity

into advanced stages of deformation.
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Estimates of Shear Capacity

The preceding section underscores the difficulties involved in arriving

at reasonable estimates of the shear capacity of structural wall segments

subject to repeated reversing loads of large amplitudes. Indications

are that at least the following variables must be considered in a

realistic prediction equation: geometric proportions of the cross­

sections; concrete strength; axial load level; the amount, distribution

and strength of the horizontal shear reinforcement; the amount, distri­

bution and strength of the vertical web reinforcement; the moment-to­

shear ratio, including the manner of loading (direct/indirect); the

relative rig-idit1es of the boundary elements and the web, as vJell as the

strength and confinement of the boundary elements. An additional

difficulty stems from the fact that some of the above variables assume

more importance than others, depending upon the mode of failure. In

view of the scarcity of available test results, one cannot even begin to

develop a realistic prediction equation. For design purposes, the ACI

Code(9) does contain prediction equations (Section 11.16) which are

based on the monotonic loading tests carried out by Cardenas.(l) The

specimens in this test series ranged in nandimensional moment-to-shear

ratios (rVVQw) from 1 to 2.4, did not contain any boundary elements; and

the vertical web reinforcement was not considered as a variable. It is

apparent that careful consideration must be given before applying the

above provisions to situations not covered by Cardenas' tests.

It may be of interest to note here that the Japan'ese code for reinforced

concrete recognizes the importance of the boundary elements in the shear

transfer mechanism of structural walls. In fact, the commentaries to

this code recommend certain minimum dimensions of the boundary elements

)'elative to those of the \'Ieb, (12) vlhich are c1esi~lnecl to ensure a l1rinililulll

rigidity of the boundary elements relative to that of the \'Jeb.

For the purposes of this paper it was thought worthwhile, instead of

just pointing out the difficulties of arriving at shear capacity esti­

mates, to check how the ACI code provision~, imperfect as they are,

compare with the few test results that are available for structural
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walls subject to cyclic loading. The ratios of the shear capa~ities,

as observed in tests and as computed according to Section 11.16 of ACT
318-71, (9) of eleven test specimens subjected to cyclic loading are

plotted against their M/VQw ratios in Fig. 7. The only specimen with a

test capaci ty 10\'ler than the cal cul ated strength was one of Barda IS

walls containing no vertical web reinforcement. Such reinforcement has

been shown to be extremely important in squat walls. For another of

Barda's specimens, an unrealistically high ratio of test capacity to

calculated capacity was obtained. This wall contained no horizontal

reinforcement, so that the calculated capacity was very low. The

vertical reinforcement in the specimen, not considered in the ACT
equation, but in reality the principal shear carrying element in squat

\'1a11 s, produced a much hi gher test capacity.

Overall, Fig. 7 appears to indicate that, pending the development of

more refined prediction equations, the ACI provisions may be used to

arrive at conservative lower bound estimates of the shear capacity of

critical structural wall segments subject to repeated, reversing lateral

loads.

CONCLUDING REMARKS

The strength design of structural walls with reference to high shear

under variable, earthquake-type loading has been discussed in this

paper. It has been pointed out that the parameters governing the mode

of response of such members are the moment and shear at, and the moment

capacity and shear capacity of, the critical segments. While the

moments and shears can be determined from analysis,given the input

motion(s) to be expected, and while realistic estimates of moment

capacity are not difficult to arrive at,(5) difficulties in estimating

the shear capacity leads to uncertainties and inaccuracies in the

prediction of response. Uncertainties in the design of such walls to

prevent shear fai 1ure under earthquake-type 1OilC!-j ng ill so stem from the

same difficulties. A strong case can and should thus be made for

further research directed towards the accurate determination of shear

capacities of structural wall segments under repeated, reversed loading,

particularly as such capacities are affected by the rigidities of

boundary elements restraining deformations caused by shear.
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CAPTIONS

Tab1e 1: Predi cti on of type of failure, associ ated moment and shear­
comparison with list results: (a,b) Barda's tests,(8) (c)
Cardena's tests,(7) (d) current PCA tests. (6)

Fi g. 1:

Fi g. 2:

Fi g. 3:

Fig. 4:

Fi g. 5:

Fi g. G:

Fi g. 7:

Schematic representation of: (a) an axial load-bending moment­

shear force interaction diagram, (b) moment-curvature diagrams

under different shear force levels.

Specimens and loading in various PCA test series: (a) Barda's
tests,(8) (b) Cardena's tests,(7) (c) current PCA investiga­
tion. (6)

Results of inelastic dynamic anlaysis of an isolated structural

wall: (a) variations with time of bending moment and shear

force, (b) variations with time of moment-to-shear ratio, (c)

bending moment vs. shear force plot.

The formation of diagonal struts: (a) Barda's specimen B3-2,(8)

(b) current PCA specimen Fl,(6) (c) shear resistance of low­
rise walls. (3)

Shear fai1ure of vlalls vdthout boundary elements: (a) diagonal
tension failure,(3) (b) sliding shear failure.(3)

Shedr rnaure of \valls vlitlJ bOlilldal'y elelllC'IlL(;: (it) Bllrcla's

specimen 83-2,(8) (b,c) current PCA specimen Fl)G) (d,e)

current PCA specimen 82.(6)

Comparison of shear capacities as measured in tests and as

given by ACI Code(9) provisions.
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