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,1. INTRODUCTION 

For years engineers have been using differential equations to explain and 
predict the behavior of building frames when they are subjected to dynamic loads. 
Most of the attention has been directed to linear behavior and for these problems 
the form of th'e'differential equations has been accepted and the parameters in the 
equations, representing physical quantities, have~ by various means, been fden-~ ~ 
tified accurately. The equations, together with the parameters they contain, form 
a mathematical model of a physical structure. 

When the model of a frame is linear, it implies that the frame will respond' 
el as ti ca lly to the imposed dynami c loads. Earthquake ground moti ons ~ hm'lever, can 
be very intense and it is generally accepted that a design of the frame that would 
ensure an elastic response would be economically unrealistic. When a w~re realis
tically designed frame responds to an earthquake, yielding will occur at several 
locations of the frame. To predict this kind of response, the mathematical model 

. of the building must reflect this yielding, rendering at least some of the equa
tions nonlinear . 

. When the mathematical model becomes nonlinear, it is much more difficult to 
.construct. One is:no longer so ,confident about the form of the differential 
equation: that is how the nonlinearity should be incorporated, and it is by no 
means certain what values the parameters should have. Accordingly, it is impor
tant~ when constructing a mathematical model of a particular structure, to have a 
method for appraising the model in light of the behavior of the structure itself. 
Further, to ,modify the model sensibly it is necessary to be able to appraise its 

'b/O parts, t:he parameters and the equati on i tsel f, separately. 
, 

To achieve this kind of apprai-sal ~ we feel that the method-should -havetvlO 
ingredients. The first is an experimental capability by \>Ihich a phys.ical model 
of the structure can be subjected earthquake forcing functi ons. Thi s capabil ity 
introduces two distinct advantages. The experimental response can be used for 
the estimatio~ of the parameters. The other has to do with the appraisal of the 
~odel. When the mathematical model of a particular frame is appraised, one is 
able~ from physical experiments, to compare _thE!ce.5poT]~e.JJ.)::cdtctep_by the r.lJth
ematical model with the experimental response of the physical 'model, when both are 
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subjected to the same earthquake input. This is the ultimate test ofa m~thematical 
model, short of being able to test an actual structure .. 

We are fortunate at the Earthquake Engineering Research Centef at the 
University of California at Berkeley, in having a shaking table capable of imposing 
on a large-scale model of a building, arbitrary base motions. It is possible to 
perform experiments under controlled conditions in ~,hich accurate records are made 
of the tabl~ input and frame responses at any number of chosen locations. Having 
this capability, \':e have been able to carry out this kind of appraisal of one 

; model. In another papef at this conference such an appraisal is m~de for a single 
story steel frame~ . 

The other quality the method should have is a program for estimating the 
parameters of the equation, that will allo'l' for a separate appraisal of the form 
of the equat"ion. This is best understood by discussing a method that does not 
have this ab.i1ity. If, for example, the parameters are found by trial and error, 
with recourse to physical insight, a model is formed. ~~hen the response of this 
model is compared to a physical response it may be inadequate. For such a case, 
one is unable to decide whether to attribute the inadequacy to poor parameters or 
to a poor equation. 

To overcome this dile~ma we use System Identification to estimate the 
parameters in the equation. Using this method, the estimated set of parameters is, 
by definition, the set that \l/i11 give the best mathematical model Hithin the 
lirnitatiGn of the differential equation." If the match of the responses using 
System Identification, is inadequate, the fault can be laid to the form of the 
equation. 

The construction of a mathematical model of a single story steel frame, when 
subjected to earthquake inputs, usi ng System Identi fieati on is the subject of 'thi s 
paper . 

. 2. SYSTEM IDENTIFICATION 

System identification consists of three parts. The first, and most important, . 
is the mathematical model. Thi~ consists of the differential equation, (or 
equationsL vlhich here reflects the physics of the system and vlhich contains a set 
of parameters. The second is the error function. The error reflects the dif~ 
ference in the behavior of the struct~re and that predicted by the model. In our 
c~se the error is the squared differences between the responses of the structure 
and the model at each time step, accumulated over the period of exposure of each 
to the same earthquake input. The third part is the algorithm by which the 

. parameter spflce is searched to find the set \'/hich minimizes the error function . . 
I. 

Each ortne three parts \'Iill be rev;ei',ed separately 

(a) The Differential Equation 

In many identification problems nothing is known about the system, so that it 
takes on the name of a "black box". In other systems, such as ours, various 
cl~~~~2S of insight 2r~ avail~~12 0 ~~lp in cnnstru~t~0n of th~ ~ad21. In our case, 
~.:~ j";~,Gr: ef ; P;'lj'sfc::.; fin,: cr'J-j;122r' r:-; 2;iJ dr2~ (!b-I2 ·tJ c«p:~·i·t- ~/,:h:tt~ ~s ~;::n(~ral1i~ 

accepted to be the major response mechanisms of a single story steel frame. In' 
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the formulation we account for linear viscous damping and hysteretic energy absorp~ 
tion. The equation that results is: 

In Eq. (1), . 

. , , 
• .-!. 

N x + C X + P(x} . (1) 

x. is the; displacement 

C is the viscous damping coefficient' 

Xg is the ground (or table) acceleration . 

P(x) refl ects thegl oba 1 inel asti c behavior during response. . As P does not 
accommodate rate dependent behavior, it is limited to modeling elastic and plastic 
behavi.or. Except for the special case of a linearly elastic material, P{X) will 
render th~ equation nonlinear . 

. . For mild steel, subjected to bending~ there are blo major. forms for P{x). The 
first is a bilinear model, the second is the Ramberg-Osgood model. Both char-. 
acterizations are popular but the choice here is Ramberg-Osgood. 

The choice is made on the bases of two considerations. The first is physical 
and is based on the accuracy ltJith \'lhich the model is able to represent the behavior 
of structural steel assemblages, subjected to quasi-static loading tha~ induces 
bend; ng in the members. Thi s accuracy has been reported by Popov and Bertero (l). 
in tests conducted on a variety of assemblages subjected to an array of cyclic 
loading histories . 

. The sec'ond rea.son is mathemati ca 1. The Ramberg-Os'good model has many pro
perties that simplify the solution of the differential equation. The solution of 
the equation will nrit be discussed here~ even though it is important to the ~uccess 
of the identification program, as a report exclusively devoted to the solution \'Iil1 
b/~ issured shortly. . . 

In thismathemaiical context, it should be pointed out that the Ramberg-Osgood 
equations have the disadvantage that they do not express P 'as a function of x, 
which is desirable, but rather express x as a function of P. The equations are 

(2) 

for skel etal curves, and 

P-PRE [ ) .P-PR~ \R- ll 
x(p) - xRF:(P) = K 1 + A.I 2K (3) 

for branch curves. 
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Even though the equation is derived using physical knowledge of the system, 
preconceived ideas of the valu2s of the parameters C, A,' K and R are abandone~, 
and their values are left to the mercy of the identification process. There is 
one notable exception to this. The optini~ation algorithm for estimating para
meters requires a first estimate, and the more realistic this first estimate is, 
the shorter the search for the best estim~te vlill be. A method for gaining insight 
into this first estimate of the parameters from the physical response is described 
in another paper at this conference. 

(b) The Error Function 

The gen~ral form of the error function adopted here is that used in the large 
. majority of jdentification problems. It is the accumulated squared error of the 
. responses' between the blo systems, physical and mathematical . 

. ' In this: study, as we measure the response of the physical model in terms of 
accelerations and displacements, the error function has the following form: 

.' where 

T 

J(S,T) = f. {[x(s,t) y(t)]2 + [x(S,t)'~ y(t)]2} dt 

o 

S is a vector in four dimensional parameter space 

x(S,t) describes the motion of the mathematical model 

yet) describes the motion of the physical'model, and· 

(4) 

T is an i nterva 1 of time during \'Ihi eh both model s are exposed 
to an earthquake input. It may represent the total exposure 
of the input or a ehosenpart of it. 

(e) . The Optimization Algorithm. 

The final part of the identification problem is the estimation the parameters. 
It is a minimization problem in that it requires the deter~ination of a four 
dimensional vector S, S £ R4 .• \·Jhich minimizes the error function J(S). It is 
convenient to think of the error function J(S) as a four-dimensional surface 
imbedded in five dimensional space and to note that we seek the point at which the 
surface has its global minimum . . . 

The method used here is a "gradient method," that is a method in which the 
direction along which we search the terrain from a particular point is a function 
,of ,the ,g,r-2.di.ent-2.t:that{101-Rt. 

The method is generated by expanding the error function in a Taylor Series 

(5) 
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- - th-where s· represents S at the i iteration and V is the usual del operator, 
here use~ in four dimensional param2ter space. We do in fact truncate the series 
to include only terms of order two or less. The r.esulting equation becomes 
increasingly accurate as the terms of order three and higher become increasingly 
less signifi~ant, or as the surface representing the error function becomes' 
increasingly quadratic. 

To minimize the error function, \'Ie set the gradient of J(S}, with respect to " 
Si+l equal to the zero vector. Carrying out this operation on Eq. (5) leads to 
the ve.ctor equation 

-or . ! 

! 

~ 

. . . 

~J(ii} ~ v2J(ii}(~i+l ~.) =0 
1 . 

In Eq.- (7) VJ(Si) represents the gradient of the surface J(S) at the point 
representing the ith iteration. The term v2 J(Si) is the Hessian matrix 
calculated at the same point. Space does not permit the development of these 
expressions . 

. The gradient is . 

(6) 

(7) 

v,J(li'= 2111<("B, tnl - y(tnll;~i (If, tnl + [;(s,tnl - y(tn) 1 :~/B' tnl ! I1t (81 

:rhe Hessian matrix can be \vritten as the sum of· two matrices 

where 

and 

r '1 r '" .- I I") 1 fl 
l !. c. '-1 J • \ (..J ., I ~, 

t'ir:lt; steps. 

V~ • J ( e) :: A .. ( 8) ~ B •. ( 8 ) 
lJ lJ lJ. 

1 1 1 ) 1" n" p. r' . -:1 , .. ]" C I' 0. ~ (j ,I :~ -. j ( . (~ l . I 
r 
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He adopt the usual m2thod associated \'Jith the Gauss-Nev/ton scheme and neglect 
the B matrix. We npw return to Eq. (7) and rewrite it ~s 

(12) 

where 

(13) _ 

The heart of the optimization method appears in these tv/O equations. The step 
by which the-:parameter vector is improved requires both direction and step size. 
The A(S) matrix affects both. The direction given by Eq. (13) is not in fact the 
direction of: the gradient, but this direction modified by A-l on. The A(B"} -
matrix also influences the step size, but it is expedient to introduce the factor 
a so that the step size can be chosen independently. -

The search of the terrai~ representing the surface J(~) begins at a point 
which is the first estimate. The gradient and the A matrix are found for this 
point and the step direction is established according to Eq. (13). Having the 
direction, a one dimensional search is made in this direction to find the minimum 
point~ or a point close to the minimum, along this unknown profile.- To this end, 
we set a equal to one and find the coordinates of the point which this step 
represents. If none of the coordinates violates a constraint (here C, A, K>O, R>l)-" 
the slope of the surface is found at this point. The slope at the initial point 
is by definition downward and, if the slope at the point a = 1 is opposite, the 
minimum lies betv!een them. _A cubic polynomial is constructed along the search -
line which passes through the t\':o end points with the correct slopes. The minimum 
point of this polynomial.is found. At this point the values of the cost function 
and slope in the search direction are found. 

- - -
_ If the slope in the search direction is less than a specified tqlerance the 

one-dimensional search ends and the next iteration is started. If the slope is 
greater, the cubic interpolation is repeated, using two points on either side of 
the minimum, until the slope is tolerated establishing the mitimum. 

It is not clear how demanding to be in a one-dimensional search. There is a 
trade off behveen an exacti ng one-dirr:ensiona 1 search \'1ith fevler steps to the _ 
minimum point, and a more 'casual one-di~ensional search entailing more steps to the 
minimum. Our one-dimensional searches have started out with fairly large slope 
tolerances at points remote from the minimum, with the searth becoming more 
exacting as the minimum point is approached. -. . 

When a ~tep size of a equal to one viola~es a constraint.one g~ts back into 
the acceptable domain in the follo..,Jing Hay_ He study the vector bet\'leen the 
two end points of the interval and, using linear interpolation, scale back 
to find the intersection of this vector and the constraint. We establish the 
acceptable end point of the adjusted interval by moving an additional ten percent 
of the shortened vector length back fro~ the constraint. 

;t CJ:.~:·:.:?n~ ';-s 2pp·(·u~;:i{.tt.2 CG~~:~.2(n:!:J Lt)(~~r:tinill~!wz2ti;)f1--Pl\)C2:;'S.;· 52-tis-ruction 
of Eq. (6) could lead to an array of stationary points, but with the terrain 
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representi~gJ(~) with which we have had experience, and with the physical 
insight into the possible values of the parcrneters, the stationary point \'thich vie 
have located is al\:rays a minimum and represents a likely so1ution. For the 
simulated data~ \'/hich \'/e 'dill discuss later, the stationary point identified is 
the one assigned a priori, YJhich by definifion is the global minimum, and for the 
point derived from the physical response the coordinates of this point identified 
as the mi nimum represent parameters for whi ch the response is enti rely satisfactory. 

The search~ as was pointed out, begins with the calculation of the elements of 
the gradient and the A matrix at the initial point on the surface. Examination 
of Eqs. (8) and (10) shows that these values depend on finding the derivatives 
ax/at3i.etc. ~hich are called the sensitivity coefficients . 

. 
The sensitivities~ vlhich are found at each time increment, are derived by 

. 'returning to; Eq. (1). If we differentiate Eq. (1) with respect to a particular 
Parameter ~~ 'tIe have - . 

. ~ 

a~. ai. . aPn M n +. C·--.!!. + = 
13f3. as- aiS· 

-ae . 
aiS. xn 

J 
. (14) 

J J J 

where the n indic~tes the time step and Bj(j = 1-4) = C, K, A2 R. 

As was pointed out earlier, the form of the Ramberg-Osgood equations is un
fortunate, giving the term a Pn/aSj wh·ich is not a sensitivity. This minor 
problem is resolved by returning to Eqs. (2) and (3) and differentiating both sides 
with respect to Sj. a Pn/aSj is established from the resulting .equations, and 
substituted in Eqs. (14). The resulting set of equations, from Eq.(2) is 

. . ai . ax axn· n ·n 
M . ac + C ac + TSn ~ = -x n 

. ax ax . 
M ,_n + C aRn + TS : aR n 

• 

governing the sensitivities. 

aXn 

-p /Ka . n 

p IP I R-l 
n n TS 

n KR 

p Ip I R-l 
n n = . TS 

~ n KR 
A In I P; I, (15) 

In Eqs.: (15) the Pn at the nth time step is known from the solution of Eq~ 
(1), the l'tangent stiffness ll at the Pn is knO'.1n from 

r 1 AR I{-11 -1 
TS -- .;- . tY'-l' ---r--' ._- -- -- _ ... 

l 1/ C) 

'n J n ~ K" 
(1 S) 
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A set of equations, comparable to Eqs. (15), for branch curves is derived 
from Eq. (3) .. The sensitivities, 'ilnich are the dependent variables in Eqs. (15)' __ -
are those corresporiding to a particular' point on the surface J(S) so that the 
values of the paran,eters appearing in Eqs. (15) and Eq. (16) are the corrdinates 
of that point. Eqs. (15) are therefore a set of uncoupled, nonhomogeneous, -
differential equations \,lith constant coefficients for time step "n" '.',hose solution 
offers no particular problem. 

3. ESTH-tATION OF THE PARJ.'\HETERS 

The program for estimating the parameters must be- tested. It is first sub
jected {a a numerical experiment, that is one using simul~ted data. The input is 
the acceleration time history of a recorded earthquake, but response data is 
generated by-assigning values to each of the four parameters and obtaining the 
solution of ~he r~su1ting equation. The p~ogram can be considered to be successful 
if the optimization algorithm,in a reasonable number of iterations, identifies the 
minumum point of the error function surface, as having the coordinates of the 
assigned values, \'1hen the search is begun at a variety of points in the remote' 
terrain. . 

T~e first search used four seconds for the 'error function of a full earthquake 
duration of twelve seconds. The path converged on the minimum point, from each -
beginnl ng point, in very fe\'1 iterations (see Fi gure -1) _ The search was repeated 
using ·only--one second exposure. The same set of parameters vJas found (the assigned 
set}, but surprisingly, in even f~wer iterations. 

Even though the numerical experiments were useful, certain problems arose, 
using physical data, that iv2 had not anticipated. The surface representing the 
cost function was "badly behaved II particularly in the neighborhood of the minimum. 
The surface vias not convex in much of the regi on explored and it di d not begi n to 
become quadratic until the immediate neighborhood of the minimum was reach. Further 
the minimum was very close to a constraint. As a result, a large number of 
~terations \'lere needed to identify the minimum (see Figure 2). 

4. FUTURE STUDY 

, Even though the mathematical model of the single story steel frame,obtCl,ined 
bj th.e identification method described, predicts a response close to the physical 
response of the structure (revealed in another paper at this conference) we feel 
that there are t\·/o major vJays iri whi ch the estimati on of the parameters cou'l d be 
improved. 

The error function would be improved if the influence of the displacement was 
increased relative to the acceleration. This can easily be done by associating a 
weighting fa~tor with the term representing the difference in displacements. 

. ! ~' 
I 

. The second area of modification is the method of choosihg the directibn from 
one point to the next on the error function surface in the optimization algorithm. 
Du-e to the unusual nature of the terrian, Vi2 fee1 that it might be ~'Jel1, at points 
remote fro~ the minimum, to choose the direction of the steepest descent, and to 
increase the influence of the A matrix on this direction as the minimum is 
approached, until,in the neighborhood of the minimum,the matrix assumes its full 
influence. 
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