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1. INTRODUCTION |

For years engineérs have been using differential equations to explain and
predict the behavior of building frames when they are subjected to dynamic Toads.
Most of the attention has been directed to linear behavior and for these problems
. the form of the differential equations has been accepted and the parameters in the
~equations, representing physical quantities, have, by various means, been jden-’ -

- tified accurately. The equations, together with the parameters they conta1n, form
~a mathematical model of a physical structure.

When the'model of a frame is linear, it implies that the frawo will respond
elastically to the imposed dynamic loads. Earthquake ground motions, however, can
be very intense and it is generally accepted that a design of the frames that wou]d
ensure an elastic response would be economically unrealistic. When a more realis-
tically designed frame responds to an earthquake, yielding will occur at several
locations of the frame. To predict this kind of response, the mathematical model

.- of the building must reflect this yielding, rendering at Ieast some of the equa~-
t1ons nonlinear.

Yhen the mathematical model bacomes nonlinear, it is much more difficult to
construct. One is:no longer so confident about the form of the differential
equation: -that is how the nonlinearity should be incorporated, and it is by no
means certain what values the parameters should have. Accordingly, it is impor- -
tant, when constructing a2 mathematical model of a particular structure, to have a
method for appraising the model in 1ight of the behavior of the structure itself.
Further, to modify the model sensibly it is necessary to be able to appraise its
-two parts, the parameters and the equation itself, separately.

To -achieve this kind ot appraisal, we feel that the method should have two
ingredients. The first is an experimental capability by which a physical model
of the structure can be subjected earthquake forcing functions. This capability
introduces two distinct advantages. The experimental response can be used for
.~ the estimation of the parameters. The other has to do with the appraisal of the
model. When the mathematical model of a particular frame is appraised, ons s
able, from physical experiments, to compare the response_predicted by the math-
ematical model with the experimental response of the physical model, when both are
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subjected to the same earthquake input. This is the ultimate test of a mathematical
mode}, short of be1ng ab]e to test an actual structure.

Ve are fortunate at the Earthqua?e Engineering Research Center at the
University of California at Berkeley, in having a shaking table capable of imposing
on-a large-scale model of a building, arbitrary base motions. It is pdssible to
perform experiments under controlled conditions in -which accurate records are made
of the table input and frame responses at any number of chosen locations. Having
this capability, we have been able to carry out this kind of appra1sa] of one

~model. In another paper at thxs conference such an appra1sa] is made for~a single
story steel frame.

, “The othe“ qua11ty the method should have is a program for estimating Lhe

-parameters of the equation, that will allow for a separate aeppraisal of the form
of the equation. This is best understood by discussing a method that does not
have this ability. If, for example, the parameters are found by trial and error,
with recourse to physical insight, a model is formed. When the response of this
model is compared to a physical response it may be inadequate. For such a case,

one is unable to decide whether to attribute the inadequacy to poor parameters or
to a poor equat1on

_ To overcéme this dilemma we use System Identification to estimate the
parameters in the equation. Using this method, the estimated set of parameters is, .
by definition, the set that will give the best mathematical model within the
Timitatica of the differential equation. If the match of the responses using

System Identification, is 1nadequate the fault can be laid to the form of the
equation.

The construction of a mathematical model of a single story steel frame, when

subjected to earthquake inputs, us1ng System Ident1f1catlon is the subject of this
paper _

2. SYSTEM IDENTIFICATIO‘4

~ System 1dent1.1cat1on consists of three parts. The first, and most important,
is the mathematical model. Thi+s consists of the differential equation, (or
equations), which here reflects the physics of the system and which contains a set
of parameters. The second is the error function. The error reflects the dif-
ference in the behavior of the structure and that pred1cted by the model. In our
case the error is the squared differences between the responses oT the structure .
and the model at each time step, accumulated over the period of exposure of each
to the same earthquake input. The third part is the algorithm by which the
parameter space is searched to find the set which minimizes the error function.

Each of the three parts will be reviewed separately

(a) The D1fferent1a1 Equation

In many identification prob1ems nothing is known about the system, so that it

takes on the name of a "black box" In other systems, such as ours, various
dacroes of dnsight arn availabla o 1\1n in construction of tha moda21.  In our case;
W runnro o ophysics and enyin2ering and ara ebldio expiodt whal-is gonerally

accepted to be the major response mechanxsms of a single story steel frama. In~
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the formulation we account for linear viscous damping andhysteretic energy absorp~
tion. The equation that results is:

MX+Cx+P(x)=-M%x_ o )

- In Eq. (1),
x;_is the displacement
c is the viscous damping coefficient’

- ‘ig is the ground (or tab]e),acceXeration.'
P(x) ref]ecf% fhe-gioba] inelastic bshavior during response."-As P VaOéS not -
accommodate rate dependent behavior, it is limited to modeling elastic and plastic

behavior. Except for the special case of a linearly elast1c naterlal P(x)'will
render the equation non]xnear , - :

o .For mx]d,stee1 subgected to bendxng, there are two major. forms for P(x) Tﬁe
- first is a bilinear roda] the second is the Ramberg-Osgocd model. Both char-
~acterizations are popu]ar but the choice here is Ramberg-Osgood.

" The choice is made on the bases of two considerations. The first is physical
and is based on the accuracy with which the model is able to represent the behavior
of structural steel assemblages, subjected to quasi-static loading thdt induces
bending in the members. This accuracy has been reported by Popov and Bertero (1).
in tests conducted on a variety of assemblages subgec;ed to an array of cyclic
1oad1ng histories.

- The second reason is mathematical. The Ramberg-Osgood model has many pro-
perties that simplify the solution of the differential equation. The solution of
the equation will not be discussed here, even though it is important to the success

- of the identification program, as a report exc]us1va]y dnvoted to the so]ut1on w111
~ be 1ssured shortly. _

In this mathemat1ca1 conuext, it shouid be pointed out that the Ramberg Osgood
equat1ons have the disadvantage that they do not express P "as a function of x,
wnich 15 desirable, but rather express X as a function of P. The equations are

| x(P) = %-[1 +A l [R' } - @
for ské1eta1:curvgs, and - '
P-P p-p__ [R-1] ‘
x(P) - XRE(P) = —~RB§-{1 + A EE } | (3)

for branch curves. ST T T -






Even thougnh the equation is derived using physical knowledge of the system,.
preconceived ideas of the valuss of the parameters C, A, K and R are abandoned, ~
and their values are left to the mercy of the identification process. There is
one notable exception to this. The optimization algorithm for estimating para-
meters requires a first estimate, and the more realistic this first estimate is,
the shorter the search for the best estimate will be. A method for gaining insight
into this first estimate of the parameters from the physical response is descr1bed
in another paper at this conference.

(b) The Error Funct1on

The general form of the error. funct1on adopted here is that used in the ]arge ,
.majority of identification problems. It is the accumulated squared error of the
.responses between the two systems, physical and mathematical.

- In thisrsLudy, as we measure the response of the physical model in terms of
acce]erat1ons and displacements, the error funct1on has the following form:

CaGm - | {6, —-y<t)12 LGB - ywolfe @
N e T

‘where
g 1is a vector in four d1rens1ona} parameter space

' x(é,t) descr1bes the motion of the mathematical mode1

- y(t) descrlbes the motion of the physical’ mode }, and

T 1is an interval of time during which both models are-exposed
to an earthquake input. It may represent the tota. exposure
of the input or a chosen part of it.

~{c) - The Optimizatioh Algorithm.

-2

The final part of the identification problem is the estimation the parameters.
It is a minimization problem in that it requires the determination of a four
dimensional vector B, B ¢ R%, which minimizes the errvor function J(B). It is
convenient to think of the error function J(8) as a four-dimensional surface
imbedded in five dimensional space and to note that we seek the po1nt at which the
surface has 1ts global minimum. :

The nethod used here is a “"gradient method " that is a method in which the
direction along which we search the terrain from a particular point is a .function
of the gradqeqf at.that point.

The method is generated by expanding the error function in a TayiorASeries

L

BRGNS I I M I L I | | _
+ 5 (B, ~s)Tvu@Maﬂ-épﬁown (5)
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where . represents g at the ith jteration and ‘v 1is the usual del operator,

here usaé in four dimensional paramater space. Ve do in fact truncate the series
to include only terms of order two or less. The resulting equation becomes
increasingly accurate as the terms of order three and higher becoms increasingly
Tess significant, or as the surface representing the error functlon becomas
1ncreas1ng1y quadratic.

To minimize the error funct1on, we set the gradient of J(B), with respect to.

X E1+] equal to the zero vector. Carrying out this operation on Eq. (5) leads to
the vector equation : '

Cor ) ’EA | _ R L
R Y A J(B S R ) R )

In Eq (7) VJ(81) represents the gradient of the surface J(B) at the po1nt

representing the ith jteration. The term v2 J(BT) is the Hessian matrix -
calculated at the same po1nt. Space does not permit the development of these

-.expressxous : - - - : :

"NThe grad1eht is
) - z ime) - 3e)] & @) + [x@e) - vie)] 28 = Gt )f it (2)
_ j | | :

The Héssian matrix can be written as the sum of~two matrices

o o - . i e
T O S C I G I )
where
A (-')=2.:§ X (st) ‘ (B,t ) + 3" (Bt)a" ('Bt) .t.v '(m;'
PigtP £ 128, aB >*n 283 |
and
; . N o 8221‘ o | L
@ sl Y[ -ve) g% |
_ azx ) . )
+ [X(B,tn) - Y(tn)] 55;“@@3‘5 At - (11)
In £93.{8,10 and 11)intenration has been replaced.by summation over dncremental

time sceps.
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We adopt the usuval method associated with the Gauss-Newton scheme and neglect
the B matrix. We now return to Eq. {7) and rewrite it as

where ‘ ‘
A e- e ATE Wm0

The hearb of the opt1m1zat.on method appears in these two equat1ons‘ The step
by which the’ “parameter vector is improved requires both direction and step size. -
The A(B) matrix affects both. The direction given by Eq. (13) is not in fact the
direction of" the grad1ent but this direction modified by A 1(8). The A(E)
matrix also influences the step size, but it is expedient to 1ntroduce tne factor
. @ so that tho step s1ze can be chosen 1ndependent1y. :

The search of the terrain representing the surface J{(3) begins at a point

- which is the first estimate. The gradient and the A wmatrix are found for this
point and the step direction is established according to Eq.(13). Having the
direction, a one dimensional search is made in this direction to find the wminimum
point, or a point close to the minimum, along this unknown profile. To this end,

- we set a equal to one and find the coordinates of the point which this step

represents. If none of the coordinates violatesa consiraint (here C, A, K>0, R>1) --
the slope of the surface is found at this point. The slope at the initial point
is by definition downward and, if the slope at the point o =1 is opposite, the
minimum lies between them. A cubic polynOﬂxal is consiructed along the search
Tine which passes through the two end points with the correct slopes The minimim
point of this polynomial.is found. At this point the va]ues of the cost functicn
-and slope in the search direction are found. :

If the slope in the search direction is less than a specified to1erance the
one-dimensional search ends and the next iteration is started. If the slope is
greater, the cubic 1nt°rp01atwon is repeated, using two po1nts on either side of
the m1n1mum, unt11 the slope is tolerated estab1lsh1ng the m1n1mum

It is not clear how demanding to be in a one- diwens1onal search There is a
trade off between an exacting one-dimensional search with fewer steps to the
minimum point, and a more casual one-dimensional search entailing more steps to the
minimum. Our one-dimensional searches have started out with Tairly large slope
tolerances at po1nus remote from the minimum, with the search becomtng more
exacting as the minimum point is approached. p

When a step size of « equal to one violates a constraint,one gets back into
the acceptable domain in the following way. We study the vector between the
two end points of the interval and, using Tinear interpolation, scale back
to find the intersection of this vector and the constraint. We establish the
acceptable end point of the adjusted interval by moving an additional ten percent
of the shortened vector length back from the constraint.

A comvant ds apuronriaio concorning dhe-rdinimizetian-peocess. - Satisfaction
of Eq. (b) could lead to an array of stationary points, but with the terrain

6






representing J(8) with.which we have had experience, and with the physical

insight into the possible values of the parameters, the stationary point which we
have located is always a minimum and represents a likely solution. For the
simulated data, which we will discuss later, the stationary point identified is

the one assigned apriori, which by definition is the global minimum, and for the
point derived from the physical response the coordinates of this point identified

as the minimum represent parameters for which the response is entirely satisfactory.

The search, as was pointed out, begins with the calculation of the elements of -
the gradient and the A matrix at the initial point on the surface. Examination
of Eqs. (8) and (10) shows that these values depend on finding the derivatives
ax/38; etc. which are called the sensitivity coefficients.

o The senéitivities, which ére found af each time increment, are derived by'
- returning to! Eq. (1). If we differentiate Eq. (1) with respect to a particular
. parameter 53 we have o L R _

3X. 3%, aP S SR
May tCE towr s 0@
SO A I

" where the. n indicates the time step and Bj(j % 1-4) = C, K, A, R- :

As was pointed out earlier, the form of the Ramberg-Osgood equations is un-
- fortunate, giving the term 3 Pp/38j which is not a sensitivity. This minor
problem is resolved by returning to Egs. (2) and (3) and differentiating both sides
. with respect to gj. 3 Pn/333 is established from the resulting equations, and

- substituted in Egs. (14). The resuliing set of equations, from Eg.(2) is

n n noo_
Mge * Cse * By T %
& ax ax
. L i (R
ax_ ax ’ X P_|p_ |
n n n _ n' o
M 3A + CW'P TSn 'é*'A—' — TSR_WKR
. . R-1 .
ax% - - 3X P {P | p .
Mizgs + C zg= + TS =t = TS "KR" Aln | £ 1 (15)

-

governing the sensitivities.

In Egs.- (15) the Py at the 0t time step is known from the solution of Eq.
(1), the "tangent stiffness” at the Pp is known from :

AR p-11-1 )
TS, {‘ R e (1)






R set of eguations, comparable to Egs. (15), for branch curves is derivad
from Eq. (3). The sensitivities, which are the dependent variables in Eqs. (15), -
are those corresponding to a particular point on the surface J{§) so that the
values of the parameters appearing in Egs. (15) and Eq. (16) are the corrdinates
of that point. Egs. (15) are therefore a set of uncoupled, nonhomogen=ous,
differential equations with constant coefficients for time step "n" whose solution
offers no particular problem. .

3. [ESTIMATION OF THE PARAMETERS

The program for estimating the paraheters must be tested. It is first sub-
jected to a numerical experiment, that is one using simulated data. The input is
the acceleration time history of a recorded earthquake, but response data is-
generated by assigning values to each of the four parameters and obtaining the
solution of the resulting equation. The program can be considered to be successful
if the optimization algorithm,in a reasonable number of iterations, identifies the
minumum point of the error function surface, as having the coordinates of the
assigned va]ues, when the search is begqun at a variety of po1nts in the remote

" terrain.

The first search used four seconds for the error function of a full earthquake

~ duration of twelve seconds. The path converged on the minimum point, from each -
beg1nn1ng point, in very few iterations (see Figure .1). The search was repeated
“using only-one second exposure. - The same set of parameters was found (the ass1gned
set) but surpr151ng]y, in even fewer 1terat10ns. . )

, Even though the numerical exnorlrnnts ware usefu?, certain problems arose,
using physical data, that w2 had not anticipated. The surface representing the

cost function was "badly behayed" particularly in the neighborhood of the minimum.

. The surface was not convex in much of the region explored and it did not begin to

- become quadrat1c until the Tmmediate neighborhood of the minimum was reach. Further
the minimum was very close to a constraint. As a result, a large number of
iterations were needed to identify the minimum (see- Figure 2).

a. FUTURE STUDY

v Even though the mathemat1ca1 mode] of the single story steel frane, obtc1ned
by the jdentification method described, predicts a response close to the physical
response of the structure (revea]ed in another paper at this conference) we feel
that there are two major ways in which the estimation of the parameters could be
improved. :

The error function would be improved if the influence of the displacement was
increased relative to the acceleration. This can easily be done by associating a
weight1ng factor wwth the term representing the difference in d1sp1aceWQnts.

“ The second area of modification is the method of choosing the dxrection from
one point to the next on the error function surface in the optimization algorithm.
-Due to the unusual nature of the terrian, we feel that it might be well, at points
remote from the minimum, to choose the diraction of the steepest descent, and to
“increase the influence of the A matrix on this direction as the minimum is

approached, until,in the nexghborhood of the m1n1mum,the matrix assumes its full
influence.
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