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I. Introduction

It is well-known that most of the environmental loadings

(threats) to offshore platforms are statistical in nature.

Because of the serious consequence of structural failure, the

reliability analysis of the offshore platforms has attracted

increasing attention recently [e.g., Refs. 1-4]. The relia­

bility analysis technique used for the offshore platforms is

essentially the application of the principles of classical

structural reliability [e.g., Refs. 5-9] in conjuction with

appropriate design criteria [e.g., Refs. 10-13]. Basically,

two environmental threats are most important; (i) the storm

waves (hurricanes), and (ii) the strong earthquakes. Exten­

sive investigations have been made with regard to the storm

waves [e. g., Re.fs. 14-23, 3] and the strong earthquakes [e. g. ,

Refs. 24-29, 2J in application to the analysis and design of

offshore platforms. In addition, almost all of the literature

in the area of earthquake engineering [e.g., Refs. 30-35] is

useful to the reliability analysis of offshore structures under

strong earthquakes.

The investigation of the dynamic response of the structures

to the above-mentioned environmental loadings is an important

segment in the process of reliability analysis. Most of the

literature available to,';";date [e.g., Refs. 36-43] uses the

method of equivalent linearization [e.g., Refs. 44-45J.

Furthermore, the failure modes and the associated resisting

strengths of the offshore platforms have also been investigated

re •g., Ref.s. 1, 13, etc.].
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they are random variables. The statistical distributions of

these random variables are available fro:al past records at some

potentially oil-rich sites, such as the Gulf of Alaska, the

Gulf of Mexico, the North Sea, etc. This information has been

used in the present analysis.

A nonlinear vibration analysis of the offshore structure

under stochastic storm waves and earthquakes is carried out,

following essentially the approach employc~ by Penzien et al

[Refs. 36-40], to obtain the response statistics of the shear

forces and the bending moments induced in the structure.

The resisting strength of the platform associated with

each failure mode is a random variable assumed to follow the

Weibull distribution. with all the information described

above, a first passage failure analysis tEl.g., Refs. 44, 46­

48] is performed to estimate the probability of failure of the

structure during its design service life.

It is shown that for deep water offshore platforms, the

storm waves dominate the design criteria in the Gulf of Alask~,

while the earthquake loadings and the joint occurrences of both

the storm waves and the earthquakes are not important. The

importance of the earthquake design relative to the storm wave

design is--expectedtbincrease as-the- waterdepth decieases~-- 'It:--.nr

further shown that the nonlinear drag force is extremely impor-

tant in the design of deep offshore platforms and it must not be

neglected.
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II Reliability of Structures in Design Service Life

The offshore tower is considered to be subjected to three

types of stochastic loadings (processes) in its design service

life, {i} the storm waves Xl{t}, (ii) the earthquakes X2 {t},

and {iii} the simultaneous occurrences of both the storm waves

and the earthquakes X
3

{t}. Other types of loadings, such as

current, tsunami, etc., will be discussed later. A schematic

diagram for these loadings are displayed in Fig. 1.

Let Ll{t}, L2 (t} and L3 (t} be the reliabilities of the

offshore tower in the service time interval (O,t), respectively,

due to the storm waves, Xl(t}, the earthquakes, X2 {t}, and the

simultaneous occurrence of both, X3 (t}. Then, with a reasonable

assumption that the occurrence of the storm waves Xl(t} is

statistically independent of the occurrence of the earthquakes,

X2 (t}, the reliability of the structure in the service t.ime

interval (O,t) is

(l)

{i} Structural reliability Ll{t} Under Storm Waves Xl(t}

The storm waves Xl(t} is modeled as a homogeneous Poisson

process with an average occurrence rate AI'per year (or return

period l/A l years). It is written mathematically as

;:
i=l

-4-
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in which flO is the unit step function, ,2\1' (t) is the wave
. ~

height process of the ith storm occurring at t li with a duration

TI .. The wave height process AI' (t) is assumed to be a sta-
~ . ~ ,

tionary Gaussian radom process with zero mean. A schematic

representation of Eq. 2is displayed in Fig. 1.

The intensity of the ith storm (wave height), Ali(t), is

specified by its power spectral density that is a function of

the storm wind velocity. Since Xl(t) is a Poisson process, Ali(t)

(i=1,2, .•. ) is statistically independent of Alj(t) for i~j.

The duration of each storm, T1i (i=1,2, ••• ), is a statistically

independent and identically distributed random variable with

the same average duration TI .

In Eq. 2, NI is the number of storms that occurr in the

service time interval co,t). It is a random variable with the

Poisson distribution,

(3)

Let PI be the probability of failure of a tower under a

single storm, and E
I

be the event that the structure will survive

such a storm. Then, the structural reliability, Ll(t), under

the application of the storm waves, Xl(t), in the service time

interval (O,t) is

00

~ P[ElINl=k] P[Nl=k]
k=O
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Assuming that the resisting strength of the structure

does not change with time (i.e., neglecting the strength

degradation due to fatigue crack propagation), one obtains

(5)

Substituting Eq. 3 and 5 into Eq. 4 and carrying out the

summation, one obtains

00

L:
k=O

(6)

in which PI is the probability of failure under a single storm,

and it will be estimated later.

The fact that the occurrence of the storm waves, XI(t), is

assumed to be ahomogeneous Poisson process implies that the

storm occurrence is a chance event. Hence the distribution

function of the time intervals between successive storms in

negative exponential. Available storm data [e.g., Ref. 3]

indicates that the interarrival times between successive storms

follow the negative exponential distribution reasona};)ly well,

thus justifying the assumption of the homogeneous Poisson

process for XI(t).

(ii) Structural Reliability L2 (t) under Strong Earthquakes X2 (t)

The earthquake process X2 (t) is again modeled as a homoge­

neous ?oisson process with an average occurrence rate A2 per

year (or return period I/A 2 years),

-6-



in which A2 , (t) is the ground motion pr~cess of the ith
1 .

earthquake occurring at t 2i with a finite duration T2i .A2i (t)

"
can represent the ground acceleration Ug(t), or the velocity

Ug(t), or the displacement Ug(t), depending on the design cri­

tera. A2i (t) is assUmed to be a stationary Gaussian random

process with zero mean, and hence it is specified by its power

spectral density. A schematic figure for the ground accelera­

tion is shown in Fig. 1. Since X2 (t) is a Poisson process,

the intensity of each earthquake is a statistically independent

and identically distributed random variable. Furthermore, the

duration of each earthquake, T2i (i=1,2, •.. ), is also a sta­

tistically independent and identically distributed random

variable having the same average duration T2 .

Let P2 be the probability of failure of the structure

under a single earthsuake. Then, in a similar fashion as for

the case of storm waves, one obtains L2 (t) as follows;

(8)

(iii) Structural Reliability,L3 (t), Under Simultaneous

Occurrence of Earthquake and Storm, X3 (t).

Since x1Ct) and X2 (t) are homogeneous Poisson process,

it can be shown that the simultaneous occurrence of both

processes, Xl(t) and x2(t), denoted by X3 (t),

-7-



is again a homogeneous Poisson process with an average occurence

rate A3 per year (or return period 1/A 3 years).

The average occurrence rate A3 can be obtained from the

average occurrence rates Al and A2 as well as the average

durations Tl and T2 of both Xl(t) and X2 (t) as follows [see

derivations in Appendix I]

(9 )

Let P3 be the probability of structural failure under a

single occurrence of X3 (t} (see Fig. I). Then, in a similar

manner, one obtains the probability of surviving X3 (t} in the

service time interval (O,t) as follows;

(10)

Substituting Eqs. 6, 8 and 10 into Eg. 1, one obtains

the reliability, L(t), and the probability of failure, P(t},

of the offshore towers in the service time interval (O,t) as,

(11)
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It is observed from Eq. 11 that the re1iabi1ity,L(t),

of the structure in (O,t) depends on the probabilities of

failure Pl' P2 and P3 under the single occurrence of storm

waves Xl(t), earthquakes X2 (t» and both X3 (t), respectively.

These quantities will be estimated in the next section.

-9-



III. First Passage Failure Analysis

Since the applied loads to the structures resulting from

a single occurrence of storm, Ali(t), earthquake, A2i (t),

and both, A3i (t), are random processes, the dynamic structural

responses, such as shear forces and bending moments, are also

random processes. The estimation of the failure probability

of the structure is within the scope of the first passage (or

first excursion) analysis in random vibration [e.g., Refs. 44,

Since Ali(t), A2i (t) and A3i (t) are assumed to be stationary

Gaussian random processes, the structural responses are

approximated by the stationary Gaussian random processes. Let

Zl(t) be the response (either the shear force or the bending

moment) at the critical location of the structure due to the

storm waves Ali(t). Then, the response Zl(t) is completely

specified by its power spectral density, denoted by Sz Z (w;W'),
1 1

where W is the average storm wind velocity appearing in the ex-

pression of the wave height spectrum as will be discussed later.

The average number of upcrossings per unit time, denoted

by vI' for the response process Zl(t) over a strength level

R is [e . g. , Re f. 44],

(12)

in which ai(w) is the variance of the response process Zl(t),

00

ai (W) = f
-·00

--1"1-

Sz Z (w;W) dw
1 1

(13)



and wI is the apparent frequency of Zl(t),

2
W =1

00

f
-00

Sz Z (wiW)dw
1 1

(14)

Previous and current studies [Refs. 36-40] indicate that

the apparent frequency of the response of the deep offshore towers

can be approximated by the fundamental frequency wa of the

tower, since the response spectrum Sz Z (w;W) is narrow-banded.
1 1

Since the strength of the structure R is designed to be

much larger than crl(W) , the failure rate hl(or risk function)

per unit time can be approximated by 2v l

h ~ 2v
1 1

(15)

in which wa is the fundamental natural frequency of the tower.

Eq. 15 indicates that failure occurs when Zl(t) exceeds IRI

(two-sided th~esholds). The approximation given in Eq. 15 is

referred to as the Poisson approximation in random vibration

[e.g., Refs. 44, 46-48], implying that the crossings (or excur­

sions) over the strength IRI are statistically independent.

This type of approximation is consistent with the Poisson

models assumed for the storm waves X1 (t) and the earthquakes

X2 (t).

The total conditional failure rate during the ith storm

(given the storm duration T1i=t1 ) is h l t
1

• Since Tli(i=1,2~••• )

is a statistically independent and identically distributed

random variable with a probability density function f T (t),
1

-11-



the total failure rate, denoted by HI' is

I
o

(16 )

in which Tl is the average storm duration.

Thus, the probability of first passage failure under a

single storm with the average storm wind velocity, W, and the

structural strength, R, is

**PI (R,w) -H I= 1 - e 1 = 1 - exp -
e -Ro/2a~ (w)I (17 )

in which Eqs. 15 and 16 have been used. Eq. 17 is referred to

as the exceedance probability per storm.

Since the resisting strength of the structure, R, is a

random variable with a probability density function fR(x) ,

the probability of first passage failure per storm, given an

average storm wind velocity W=y, is

*PI (w=y)
00

= { ll-exp
[-

WaTl
'IT

-X2j20i (w=y)] 1 (18)e . dx

2
Let O2 (S=Z) be the variance of the structural response

due to the earthquake ground motion, A2i (t), with an intensity

2
S=z, and 03 (w=y, S=z) be the variance of the structural response

due to the joint occurrence, A3i (t), of the storm (with an

average storm wind velocity W=y) and the earthquake (with an

intensity S=z). Then, in a similar fashion, the probabilities

* *of first passage failure, P2(S=z) andp3(w=y, S=z), per earth-

-12-



quake (given S=z) and per joint occurrence of both (given

W=y and S=z), respectively, can be shown as follows:

2 2-x /20
3

(W=y,
e

*P2 (S=z) =

* fooP3 (W=y, S=z) -- 0

i fR(x) /l-exp [_ W
a: 2

- elOpt

e _x
2/2"~ (s=z~

in which T3 is the average duration of the joint occurrence

A3i (t), i.e. ,T3= mini. (Tl , T2 ) = T2 •

The exceedance probability per earthquake, denoted by

**P2 (R,S), follows from Eq. 17 as

(19-a)

It should be mentioned that the probabilities of failure,

* * *Pl(W=y), P2(S=z) and P3(W=Y' S=z), per occurrence of storm,

earthquake, and both, respectively, are conditional proba-

bilities under the condition that the average storm wind velocity

and the earthquake intensity are, respectively, W=y, S=z. The

. 2() 2( . 2
var~ances 01 W=y , 02S=z) and 03 (W=y, S=z) of the Structural res-

ponse appearing in Eqs. 18 and 19 will be obtained from the

random vibration analysis of the offshore towers in the

next section.
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IV. Response Statistics to stochastic Storm Waves

and Strong Earthquakes.

The equations of motion of an offshore tower con-

sidered as a lumped mass model is given by Eq. B-1 or B-4

of Appendix II. In

velocity vector and

[see Appendix II].

Eq. B-4, {vol is the water particle

{~ } is the ground acceleration vectorg

The statistical characterization of

these excitations is discussed in the following:

(i) Spectra for Wave Height and Water Particle Velocity

The wind induced storm waves have been modeled as a

stationary Gaussian random process with zero mean and

finite duration, indicating that both the wave height and

the water particle velocity are stationary Gaussian random

processes. They are completely defined by their power

spectral densities. In the present investigation, the

Pierson-Moskowitz wave height spectrum [e.g., Ref. 14,

36-40] will be used

-oo<w<oo (20)

in which a l and 61 are nondimensional constants assumed to

-3be 8.1X 10 and 0.74, respectively; g is the acceleration

of gravity; and W is the average storm wind velocity at a

height of 64 ft above the sea surface.

-14-



2 COshK(D-Y j ) coshK(D-Yk )
= w Shh(w) 2

sinh KD
( 21)

in which D=depth fo water, w=gKtanhKD, and Y.=coordinate of
J

jth lumped mass of the tower measured from the sea surface

as shown in Fig. 2.

Eq. 20 indicates that the wave height spectrum depends

on the average storm wind velocity W at 64' above the sea

level. Since the wave height spectrum and hence the average

storm wind velocity W vary from one storm to another in the

design service iife of the structure, W is a random variable.

Since the storm waves Xl(t) is a Poisson process, the average

storm wind velocity W for each storm is a statistically

independent and identically distributed random variable

with a probability density function fW(x). This probability

density function will be derived from available (measured)

maximum wave height data in Seciton v.

(ii) Earthquake Ground Motion

A mentioned previously, the ground motion, A2i (t), such·

as the ground acceleration Ug(t), velocity 'Ug(t) and dis­

placement u (t), has been modeled as a stationary Gaussiang

random process with zero mean and finite duration.

-15-



The power spectral density of the horizontal ground

(22)S.. .. (w)u ug g

acceleration U (t) suggested in Ref. 30 and used in Refs.g

36-40 will be employed herein.

1+4z:2(~)2-g W

= -=-F--(~---:JJ 2+4c~kr

in which wg=characteristic ground frequency, ~g=characteris­

tic ground damping ratio, and s2=intensity of the power

sec and ~ =0.6 was suggested in Ref. 30.g

Eq. 22 is equal to So used in Ref. 36~

spectral density. For a firm soil condition, w =15.6 rad/g

Note that s2 in

It will be shown

later that S is the intensity of the earthquake ground..
acceleration Ug(t).

Since the earthquake intensity (or magnitude) varies

from one earthquake to another in the design service life

of the structure, S is a random variable. Since the earth-

quake process X2 (t) is assumed to be a Poisson process, S

for each earthquake is a statistically independent and

identically distributed random variable with a probability

density function fs(x). fs(x) will be derived from available

(measured) earthquake records in Section v.

(iii) 222
Response Variances °1 (W=y), O2 (S=Z), and 03 (W=y, S=z)

With the imput information given above, e.g., the earth-

quake ground acceleration spectrum (Eq. 22), the wave height

spectrum (Eq. 20) and the cross~power spectral density of the

water particle velocity (Eq. 21),

-16-



the system of equations of motion of the tower given by

Eqs. B-13 and 14 is solved using the method of equivalent

linearization technique discussed by Penzien et al [Refs.

36-40] in Appendix II. The variances of the shear force

and the bending moment at each level of the lumped mass

(see Fig. 2) are obtained in Eq. B-38 of the Appendix II.

These response variances are associated with a particular

average wind velocity, W=y, and a ground acceleration in­

tensity, 5=z. As a result, the response variances cr~(w=y),

cr~(5=Z), and cr~(w=y, 5=z) required for the computation of

the probabilities of failure given by Eqs. 18 and 19 are

obtained from Eq. B....38 of the Appendix II.

It should be mentioned that the equations of motion of

the offshore tower are nonlinear (Eq. B-1) 1 which come from

the effect of the drag force. It is time consumming to

solve the nonlinear problem,since the iterative procedures

should be used. Unfor'tunately, the effect of the drag force

(or nonlinearity) is very important in the risk and reliabi-

lity analysis of the offshore towers.

Under storm wave loading, the effect of drag force is neg-

ligible when the average storm wind velocity W is below 50

ft/sec •. The nonlinear effect increases as the average storm

wind velocity W (or wave height) increases, and its effect

is to increase the structural responses. The structural

responses increases significantly at the high average storm

wind velocity (or high wave height), by which the probability

of failure of the structure is essentially contributed.

-17-



Under the earthquake loading, the nonlinear effect

also increases as the intensity S of the ground acceleration

increases. However, the nonlinear effect (drag force) under

earthquake loading is to reduce (or retard) the structural

response as will be shown later.

Although the response variance o~(w=y, S=z) under the

simultaneous occurrence of the storm and the earthquake has

been obtained in the Appendix II, the numerical computations

(including equivalent linearization, iteration and numerical

integration) are quite time consumming. This comes from

the fact that the peak frequencies of the ground acceleration

spectrum and the water particle velocity spectrum usually

lie on both sides of the fundamental frequency of the deep

tower. Consequently, the response spectrum has to be computed

at a large number of frequency points in the frequency domain

in order to achieve a reasonable level of accuracy. Since

the earthquakes are statistically independent 6f the storm

waves, we have

(23)

provided that the equations of motion of the structure are

linear. Eq. 23 is not valid when the equations of motion are

nonlinear. However, our numerical results indicate that

Eq. 23 can reasonably be used as an approximation. The

maximum error associated with Eq. 23 is within 2% for large

values of Sand W. For small values of Sand W, the error

is within 0.5%. Hence, Eq. 23 will be used herein.

-18-



(iv) Unconditional Failure Probabilities.

It has been mentioned previously that the probabilities

* * *of first passage faillJ.re, Pl(W=y), P2(S=z) and P3(w=y, S=z),

are conditional, under the condition that the average storm

wind velocity W is equal to y and the earthquake ground

acceleration intensity S is equal to z, where both Wand S

are random variables. The unconditional probabilities of

first passage failure (PI' P2 and P3) due to a single

occurrence of storm waves, earthquake, and both, res-

pectively, can be obtained from the conditional probabilities

[e.g., Refs. 7-9] as follows;

*PI (W=y) fW(y) dy

(24)

in which fw(y) and fs(z) are the probability density functions

* * *of Wand S, respectively, and Pl(W:O=Y), P2(S=z) and P3(w=y,

S=z) are given by Eqs. 18 and 19.

Finally, the probability of failure or the reliability

of the offshore tower in the service time interval (O,t) is

obtained by substituting Eq. 24 into Eq. 11.

-19-



V. Statistical Distribution of Wave Height, Storm Wind

velocity, Ground Motion Intensity and Structural Strength

From Eqs.ll and 24, it is clear that in order to estimate

the reliability of the offshore tower during its de~'ign

service life, it is necessary to have the following infor­

mation; (i) the average occurrence rates Al and A2 and

average durations, Tl and T2 , of the storms and the earth­

quakes, respectively, and (ii) the probability density functions

of the structural strength fR(x), the storm wind velocity

fW(y), and the earthquake intensity fs(z). These information

depend on the particular site of the structure (such as the

North Sea, the Gulf of Alaska, the Gulf of Mexico, etc.) as

well as the failure modes of the structure. They should be

obtained or derived from available (measured) data as will

be discussed in the following;

(i) Statistical Distribution of Structural Strength

An offshore platform can fail due to a variety of failure

modes. Typical examples are deck leg failure, axial pile­

soil failure including bearing failure or pull-out failure,

lateral soil failure, pile bending failure, brace buckling,

joint failure, pile~jacket connection failure, etc. A

detailed discussion of various failure modes as well as the

statistical distribution of the resisting strength associated

with each failure mode has been presented for instance in

Refs. 1-2. From the data presented in Ref. 1, the statis~

tical dispersion (coefficient of variation) of the resisting



strength associated with various failure modes varies from

about 5% for deck leg failure to about 20% for axial pile­

soil failure. The statistical distribution of the resisting

strength associated with each failure mode is assumed herein

to be Weibull, i.e.,

( 25)

in which B is the characteristic strength (or scale parameter)

and a is the shape parameter that is a measure of the coef­

ficient of variation of the resisting strength. Hence, the

probabilities of failure PI' P2 and P3 appearing in Eq. 11

should be the summation of all the failure probabilities for

all the failure modes in series [see Ref" 1].

(ii) Statistical Distribution of Expected Maximum Wave

Height and Average Storm Wind Velocity

From the Pierson-Moskowitz wave height spectrum given

by Eq. 20, the peak frequency, wp , occurs at

( 26)

indicating that the peak frequency depends on the average

storm wind velocity W. It is noticed that the wave height

spectrum is narrow-banded [see figures in Ref. 41].

The variance of the wave height, denoted by o~, is

obtained by integrating the wave height spectrum to yield

-21-



,.,.2 = fco
vh

o
Shh(w}dw = (27)

From the extreme value theory, the statistical dis-

tribution of the maximum wave height can be approximated by

the first asymptotic distribution of maximum value, with

( 28)

in which V
w

is the rate of upcrossings of zero mean (or the

number of upcrossings over zero mean per unit time) given by

(30)

Although wp and Vw depend on W, K
l

given by Eq. 29 is

not sensitive to the variation of W. Therefore, using W=lOO

ft/sec and Tl =4 hours, we have Kl~3.85. Furthermore, substi­

tution of Eq. 27 into Eq. 28 yields

in which

c = 3.85
1 -2-

-22-
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Eq. 31 relates the expected maximum wave height, Ylm'

to the average (expected) storm wind velocity W at 64' above

the sea surface. This relationship is plotted in Fig. 3.

Since both Ylm and W vary from one storm to another,

they are random variables. The distribution function of

the expected maximum wave height Ylm ' denoted by Fy (x),
. 1m

can be established from past records or hindcast, and is

available,e.g.,in Refs. 1-3, 15-18. Therefore, the

distribution function of W, denoted by FW(X)' can be obtained

from Fy (x) through the transformation of Eq. 31 as follows;
1m

= p [W ::; x] (33)

where Cl is given by Eq. 32. The probability density function

fw(x) can then be obtained from FW(X) by differentiation

with respect to x.

It should be mentioned that in most of the literature,

the significant wave height Hs is equal to 4o h , i.e., Kl =4.0

in Eq. 29 [e.g., Refs. 18,19]. As a result, the average

storm wind velocity W is related to the significant wave

* 2 * 1/2height through the relationship, Hs=ClW where Cl =2(al !Sl) /g.

Some available distribution functions, Fy (x), for the.
1m

expected maximum wave height Ylm in (i) the Gulf of Alaska,

(ii) the North Sea, (iii) the Gulf of Mexico, and (iv) the

Mustang Island, are given in Fig. 4 [from Refs. 2, 3, 11, 17, 18].

-23-



The distribution functions of the expected maximum wave

height Ylm in both the Gulf of Alaska and the North Sea

have been characterized by the lognormal distribution in

Refs. 2 and 11 (see Fig. 4). As a result, the distribution

function of Ylm can be written analytically as

(
lOgX- lJW )

F y (x) = <1>

1m Ow
(34)

in which <1>( ) is the standardized normal distribution function.

In Bg. 34, it is found that lJw =1.823 and Ow =0.095 for the

Gulf of Alaska, while lJ =1.867 and ° =0.043 for the Northw w

Sea (see Fig. 4) Curve (A), and lJ =1.762 and cr =0.1 forw w

the North Sea Curve (B).

According to the transformation ofEg. 33, the proba-

bility density function of W can be shown as

f (y) _ 210ge exp !_~ (lOg~~y2 - ~w) 2 \ (35)
W l2Tro y

w

The corresponding probability density functiorE fw(Y) given

by Eg. 35 are presented in Figs. 5(a)-5(b).

On the other hand, however, the statistical distribution

of the maximum wave height at some locations, e.g., the

Mustang Island [Refs. 3,18, 19] and the Gulf of Mexico

Ref. 17] has been characterized by the first asymptotic dis-

tribution of maximum value,

Fy (y)
1m

1
0* (y - ~*) \

( 36)
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in which it is found that )1* =25.944 ft and 0* =9.2 ft for

the Mustang Island, while )1* =41.53 ft and 0* =7.67 ft for

the Gulf of Mexico. In the case of Mustang Island, )1* and

0* are estimated from the probability plot displayed in

Fig. 4(d). From the transformation of Eq. 33, the pro-

bability density function can be written as

exp [-n _e-nI
(37)

1
n = 0*

The corresponding probability density functions, fW(y) ,

are displayed in Figs. 5(c) and Sed).

It is observed that from Figs. 4 and 5 that the storm

wave is most severe in the Gulf of·Alaska and least serious

in the Mustang Island. The storm waves in the North Sea

are also quite severe. Two different procedures have been

used to estimate the frequency distribution of the maximum

wave height in the North Sea thus resulting in two different

distribution functions referred to as Curve CA) and Curve (B)

[see Ref. 11], respectively. These two distributions will

be used later to investigate their sensitivity with respect

to the design of the offshore platforms.

(iii) Statistical Distribution of Expected Maximum Ground

Acceleration and Earthquakes Intensity 8.

The statistical distributions of the expected maximum

ground acceleration, velocity and displacement are available
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from past earthquake records in some areas [e.g.,Refs. 2,

24-30J. These distribution functions can be used to derive

the probability density, fs(x), of the intensity S of the

ground acceleration as follows;

The variance of the ground acceleration U , denotedg

by a& ' is obtained from the integration of the power
g

spectral density given by Eq. 22

00

= f
_00

Su n (w)dw =
g g

(38)

in which the contour integration technique in the complex

plane has been used.

From the extreme value theory, the statistical dis-

tribution of the maximum ground acceleration can reasonably

be approximated by the first asymptotic distribution of the

maximum value {e.g., Refs. 31-36J. Hence, the expected

maximum ground acceleration, denoted by Y2m' is

Y2m = E [~Xi I u IJ = K2 aUg g (39)

K2 = (2 In T )1/2 + [0. 577 y'(2InV<rT2YI2]vg 2

in which vg is the rate of zero crossings, including up and

down crossings, and is approximated by

v ~ wg /7fg
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Substitution of Eq. 38 into Eg. 39 leads to the rela-

tionship between the earthquake intensity S and the expected

maximum ground acceleration Y2m'

in which

1/2

C
7r (1+4 s2)w J

C
2

= K g g (2.54x12)
2 2sg

(41)

( 42)

2where the factor 2.54x12 is used to convert Y2m from cm/sec

to ft/sec~

Eq. 41 relates the expected maximum ground acceleration,

Y2m ' to the earthquake intensity, S. This relationship is

displayed in Fig. 6. Furthermore, available distribution

function of the expected maximum ground acceleration and

velocity in the Gulf of Alaska are given in Fig. 7(a) and

7{b) [from Ref. 2]) respectively.

When the distribution function, Fy (x), of the expected
2m

maximum ground acceleration is available (see Fig. 7), the

distribution function, FS(X), of the earthquake intensity S

can be obtained from Fy (x) through the transformation of
2m

Eq. 41 as follows;

= (43 )

The probability density, fs{z), of S can then be obtained

from the distribution function, FS(Z), by differentiation

with respect to z.
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Frequently, the records of the expected maximum ground

motion may not be available, but the records of the earth-

quake magnitude in Richter scale are available. Under this

circumstance, it is possible to derive the distribution

function Fy (x) from the statistical distribution of the
2m

earthquake magnitude in Richter scale [see, e.g., Ref. 31],

and then FS(X} can be derived using Eq. 43.

It can be observed from Figs. 7(a} and 7(b} that the

statistical distribution of the expected maximum ground

acceleration is characterized by the lognormal distribu1:ion

[Ref. 2],

(
lOg:S- ]1S)Fy (x) = <i> v

2m

in which x is in cm/sec~, and]1 =1.758, 0 =0.297.s s

(44)

Since the relationship between Sand Y2m is linear

(Eq. 41), the probability density function of S, denoted

by fS(z}, is again lognormal.

1
1 ~lOgC2Z - ]1s)2 'jexp - -2 (J

s
(45)

The probability density function o£ the earthquake intensity

S in the Gulf of Alaska given by Eq. 45 is displayed in Fig. 8.

It should be mentioned that there are uncertainties involved

inpredicting the frequency distributions of both the expected

maximum wave height and the expected maximum ground acceleration.

These uncertainties should be accounted for if possible [e.g.,

Ref. ll, although the problem is not treated herein.
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VI. Numerical Exam:eles and Case ·Studies

Three deep offshore towers with the height of 1075 ft,

675 ft, and 475 ft, respectively, have been considered. These

structures are modeled as lumped mass systems with 7 masses

[Refs. 36-41]. A typical model is shown in Fig. 2.

The properties of each tower including (i) the mass [M],

the volume [V], the area [A], and the depth Y associated with

each node, (ii) the flexibility matrix [K]-l, (iii) the total

weight G, and (iv) the first three natural frequencies, are

given in Tables 1-3. The damping matrix is chosen in such a

way that the damping coefficient associated with each vibra-

tional mode is 5%. The inertia coefficient KM and the drag

coefficient Kn are assumed to be 2.0 and 0.7 , respectively

[Ref. 36].

With the input loading information of the wave height

spectrum Shh(w) (Eq. 20), the cross-power spectral density.of

the water particle velocity SVjV
k

(w) (Eq. 21), and the power

spectral density of the ground acceleration Su U (w) (Eq. 22),
g g

the standard deviations of both the shear force and the bend-

ing moment at each mass level have been computed using the

solution given by Eq. B-38 of the Appendix II. Only the

standard deviations of the shear force and the bending moment

at the base are presented herein. These quantities are dis-

played in Figs. 9 and 10, respectively, associated with dif­

ferent values of the average storm wind velocity Wand the

earthquake intensity s. The results neglecting the nonlin~ar
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drag force (called linear solution) are also given for the pur-

pose of compa.rison. It is observed that under earthquakes the

effect of the nonlinear drag force is to reduce (retard) the

structural response, and that the effect increases as the earth-

quake intensity or the depth of the tower increases. Furthermore,

under storm waves the nonlinear drag force significantly increases

the structural response at high storm wind velocity (large wave

height) .

From the available literature [e.g., Refs. 2,4J, it

appears that the base shear is an acceptable characterization

of the gross effect on the structures, and it will be used

herein. As mentioned previously, various failure modes should

be considered in the reliability analysis. This, however,

would involve the detail design of the towers as well as the

load transfer mechanisms to each joint and detail. Therefore,

it is assumed expediently that the base shear is a prime de-

sign quantity and other failure modes are designed accordingly.

The resisting strength, R, to the base shear is expressed

in terms of the total weight (force), G, of the entire plat-

form structure. The average duration Tl per storm is assumed·

to be 4 hours and the average duration T2 per earthquake is

assumed to be 30 seconds for illustrative purposes.

**The probabilities of failure, Pl (R,W) (Eq. 17), per storm

for specific values of the resisting strength, R, and specific

values of the average stO]~ wind velocity, W, are plotted in

Figs. 11(a) and ll(b) for 1075' and 475' towers, respec1:ively.

**The probabilities of failure, P2 (R,S) [Eg. 19(a)], per earth-

quake associated with specific values of the resisting strength,

R, and specific values of the earthquake intensity, S, are
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plotted in Figs. 12(a) and 12(b). The curves shown in Figs.

11 and 12 are referred to as the exceedance curves. For in-

stance, if the average storm wind velocity W is 120 ft/sec.,

(Le., equivalent to 90' expected maximum wave height, see

Fig. 3 and Eq. 31), and if the base shear resisting strength

is 0.3G, the probability of failure per storm given by Fig.

ll(a) is 0.2%. Note that the exceedance curves, Eqs. 17 and

19(a), are extremely easy to compute and they do provide a

lot of information for the analysis and design purpose. Such

information is very important in designing the aeronautical

engineering structures.

The resisting strength R to the base shear is a random

variable and is assumed to follow the Weibull distribution

given by Eq. 25. The strength data associated with various

failure modes given in Ref. 1 vary from about 5% for deck leg

failure to about 20% for axial pile-soil failure. For illus-

trative purposes, the coefficient of variation of the resisting

strength R to the base shear is assumed to be 10%, indicating

that the shape parameter a is approximately 12 (see Eq. 25).

The design characteristic strength S (or scale parameter),

that is a central measure of the distribution depends on a

particular design.

*The probabilities of failure per storm, p (W=y) given by

Eq. 18, for different values of average storm wind velocities

Wand different design characteristic strength B (in terms of

G) are plotted in Fig. 13. The probabilites of failure per

*earthquake, P2(S=z) given by Eq. 19, for different values of

earthquake intensities S and design charact.eristic strength
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S are alsc displayed in Fig. 14. For instance, if the average

storm wind velocity W is 120 ft/sec., (i.e., 90 feet expected

maximum wave height), the probability of failure for a design

characteristic strength B=0.3G is found from Fig. l3a as 6.92%.

It has been shown previously that if the resisting

strength is deterministic and is equal to 0.3G, the'probabil-

ity of failure under the same storm is 0.2%. The probability

of failure increases to 6.92% when the statistical distribution

of the resisting strength is accounted for (with 10% dispersion).

The probabilities of failure per storm PI' per earthquake

P2' and per joint occurrence of both P3(see Eq. 24) depend on

the frequency distributions of both the earthquake intensity

fS(z) (or the expected maximum ground ,acceleration) and the

average storm wind velocity fw(y) (or the expected maximum wave

height). These frequency distributions depend entirely on the

geological location of the platform site, for instance, the

Gulf of Alaska, the North Sea, the Gulf of Mexico, etc.

Using the probability density functions fw(y) and fS(Z)

obtained in Figs. 5 and 8 in the Gulf of Alaska, along with

* *PI (W=y) and P2(S=z) presented in Figs 13 and 14, one obtains

from Eq. 24 the probabilities of failure under one occurence

of (i) storm PI' (ii) earthquake P2' and (iii) both storm and

earthquake P3. The results are displayed in Fig. 15.

In the Gulf of Alaska, that is a severe earthquake prone

area, it is observed that the probability of failure due to a

storm is several orders of magnitude larger than that due to

an earthquake for three towers. This observation indicates

that for the deep water platforms (e.g., above 300 ft. platform),
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the earthquake loading is not important as compared to the

storm waves and hence design for the storm wave will be

sufficient for the earthquake loading. However, as the depth

of the water decreases the storm wave spectrum that depends

on the depth of the water will decrease and the importance of

the earthquake loading will increase. Although we do not have

enough structural data on short towers, it is expected that

the earthquake loading may be as important as the storm waves

when the water depth is less than 100 ft. The methodology of

the analysis presented herein, however, can be applied to

short towers as well.

It should be noticed that although the earthquake intensity

S and the average storm wind velocity W, which appear in the

earthquake ground acceleration spectrum So 0. (w) and the wave
g J

height spectrum Shh(w), are used in the computation, they are

related to the expected maximum ground acceleration and the

expected maximum wave height through Egs. 31 and 41, respect-

ively (see also Figs. 3 and 6).

Another interesting observation is that although the joint

occurrence of both the earthquake and the storm results in a

2 ~ 2 2
larger structural response, i.e., cr (W~y, S=z)=cr (W=y)+cr (S=z),

the probability of failure due to the joint occurrence, P3' is

smaller than that due to the storm waves Pl. The reason is

that the average duration T
3

of the joint occurrence is T3=mini.

(T
l

,T2 ) = T2 = 30 sec., while the average duration of the storm

T
l

is 4 hours. Th~ significant difference in the loading

duration is the only reason why P3 may be smaller than Pl·

On the other hand, however, P3 is always greater than P2

-33-



because of equal average duration. It should be noticed that

when the storm waves and the earthquake occur simultaneously,

the structure continues to vibrate even after the earthquake

stops. However, the probability of failure after the earthquake

stops, has been accounted for in the Poisson process Xl(t) of the

storm wave already.

Consequ~ntly, it follows that P3 is always greater than

P2' but P3 mayor may not be greater than Pl depending on the

relative magnitude of PI and P2' As observed previously, if

P2 is several orders of magnitude smaller than PI then P3 may

be smaller than P l otherwise P3 may be greater than Pl' As

will be observed later that even if P3 is greater than P l

and P2' it may not be important in the design, because its

occurrence rate A
3
is at least three orders of magnitude smal­

ler than the occurrence rates Al and A2 ·

Furthermore, the probabilities of failure per storm PI

vs. the design strength B in G (or design load) at various

geological locations, i.e., the Gulf of Alaska, the Gulf of

Mexico, the North Sea, and the Mustang Island, are presented

in Fig. 16.

Having computed Pl , P 2 and P 3 , we are now in the position

to compute the probability of failure of the offshore platforms

as a function of service time (O,t) using Eq. 11. For the Gulf

of Alaska, the North Sea, and the Gulf of Mexico, the probability

density functions fw(y) and fs(z) are the annual density functions,

and hence Al =A 2=1. For the Mustang Island, the occurrence rate

of the storm A2 is O.22[Ref. 3].
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For the Gulf of Alaska, the probabilities of failure for

the design strength 8=O.4G are plotted in Fig. 17. The solid

curves, designated by "wave", indicate the probability of

failure due to the storm waves Xl (t) alone, and the ordinate

is given on the left hand side. The dashed curves, designa~

ted by "earthquake"and "joint", represent the probabilities

of failure due to earthquakes X2 (t), and the joint occurence

X
3

(t), respectively. The ordinate of these two dashed curves

are shown on the right hand side. Furthermore, the probabil-

ity of failure for the design strength 8=O.5G due to the storm

waves Xl(t) alone is also plotted as solid curve in Fig. 17

with the ordinate on the left hand side. It is observed that

the probabilities of failure due to the earthquakes X2 (t) and the

joint occurrence X3 (t) are several orders of magnitude smaller

than that due to the storm wave Xl(t), and hence they are

negligible.

It is further noticed that although the probability of

failure, P3' due to a joint occurrence is one to two orders

of magnitude greater than that due to an earthquake, P2' the

probability of failure in service due to the joint occurrence,

X
3

(t), in the design service life is one order of magnitude

smaller than that due to the earthquakes X2 (t). This comes

from the fact that the average occurrence rateA 3 is much

smaller than A2 (see Eq. 9). It follows from Eq. 9 that if

- - --tV
T l =4 hours, T 2=30 sec., Al=l and A2=1, thenA3=AIA2(Tl+T2)=

-34/365x24 = O.457xlO •

A conclusion can therefore be drawn from the present

analysis that for the deep water offshore platforms, the design
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for storm waves predominates, ~hile the design for the earth­

quakes or the joint occurrences of both the earthquakes and

storm waves is not important at all. For shallow water plat­

forms (e.g., less than 100 ft.), the earthquake design may be

of equal importance as the design for the storm waves in the

severe earthquake areas. This will be investigated further.

However, the joint occurrence of both the earthquakes and the

storm waves is generally not important, because its occurrence

rate A3 is about 3 orders of magnitude smaller than the occur­

rence rate A2 of the earthquakes. It may become important

only if the earthquake design is important and at the same

time the prob~bility of failure of the offshore platform is

specified to be very stringent, e.g., smaller than 1% in 20

years of design service life. Such a situation, however, is

very unlikely. It is noticed that even in the severe earth­

quake zone of the Gulf of Alaska, the probability of failure

due to the storm waves predominates for the deep water plat­

forms (long period towers). Therefore, only the probabilities

of failure due to the storm waves within 25 years of service

life (t=25) vs. different design strength S are plotted in

Fig. 18 for various geological locations.

It is observed from Fig. 18 that for a specified level

of platform reliability in 25 years of service life, a higher

design strength B (or design load) should be used in the Gulf

of Alaska. For instance, if the platform reliability is

specified to be 99% for the 1075' tower, the design character­

istic strength B should be 0.467 G, 0.419 G, 0.392 G, 0.298 G

and .22G, respectively, for the Gulf of Alaska, the North
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Sea (A), the North Sea (B)1 the Gulf of Mexico, and the Mustang

Island. The results have been expected because of the relative

severity of the frequency distribution function of the expected

maximum wave height discussed previously and presented in Figs.

4 and 5.

Another observation from Fig. 18 is that·for a specified

level of reliability, the difference in the final design is

rather small between two different frequency distributions of

the expected maximum wave height at the North Sea, i.e., Curve

A and Curve B. Both frequency distributions are estimated

using two different procedures. Furthermore, the difference

in the final design vanishes as the required level of reliabil­

ity decreases. For instance, there is practically no differ­

ence in the design strength S (or load) if the specified relia­

bility in 25 years of service life is smaller than 85% [see

Fig. 18]. Even if the required level of reliability is high,

such as 99. %, the difference in the design strength S (or load)

is not substantial. As a result, it appears that the

final design does not seem to be sensitive to the procedure

for estimating the frequency distribution of the maximum wave

height, if the probabilistic design procedure is employed.

This conclusion may be of practical importance, since it has

been of concern regarding the prediction procedures for the

frequency distribution as well as the introduction of uncer­

tainties (additional random variables) in the frequency dis­

tributions of the expected maximum wave height [Refs. 2, 11].

It has been observed from Figs. 11 to 18 that in order

to maintain the same level of platform reliability, the design
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strength S (or load), in terms of the total structural weight

G, is much larger for the shallow towers than for the deep

towers. For instance, if the platform reliability is speci-

fied to be 90% in the Gulf of Alaska, it follows from Fig. 18

that the design strength B is 0.375 G for the 1075' tower,

while it is 0.7 G for the 475' tower.

Furthermore, the same situation holds not only for the

storm wave loadings [see Figs. 11, 13, i5-18] but also :Eor the

earthquake loadings [see Figs. 12, 14-15]. For instance, the

probability of

2
0.234 ft/sec.

earthquake) is

failure per earthquake at an intensi.ty of S=

radl / 2 (that is equivalent to the El Central

0.56xlO- 3 for the 1075' tower at the design

strength 8=0.22G [see Fig. 14(a)]. To achieve the same level

of failure probability for the 475' tower under the same

earthquake, a design strength 8 should beO.43 G [see Fig. 14

(b)] •

Such a difference in design of the deep water pla'tj:orms

is of practical importance, and the reasons are explained in

the following;

Under the wave loadings, the horizontal wave force is

produced by the water particle velocity [see Eq. 11-1 of the

Appendix II] which is specified by the cross-power spectral

density S. . (w) (see Eq. 21). S· . (w) is the product of the
vjvk vjvk

wave height spectrum Shh(w) and an exponentially decay function

of the distance from the sea surface for deep towers. An

examination of the spectrum S· . (w) indicates that, for a
vjvk

given wave height spectrum ShhCw) (see Eg. 21), it is almost
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the same at the sea surface for all deep towers. However, it

decreases rapidly (exponentially) as the distance from the sea

surface increases. Consequently, a large portion of the total

horizontal wave forces is contributed by the water near the

sea surface. This portion of the horizontal force does not

differ much for deep towers of different height. Since the

wave force decreases rapidly as the distance from the sea sur­

face increases, the total horizontal wave force acting on the

structure between 500' and 1000' from the sea surface is much

smaller than that between O' and 500' from the sea surface.

This is the reason why the base shear of the tower does not

increase proportionally with respect to its height and weight,

and instead the shallow tower is subjected to large base shear

force [see results presented in Fig~ 9].

Under the earthquake loading, the excitation is applied

to the base of the tower. The drag resistance (or retardation)

of the water to the vibration of the tower depends on the velo­

city difference between the structure and the water particles.

As a result, a deeper tower is subjected to a larger drag re~

tardation than a shallow tower will experience, because of the

depth of the water and the fundamental frequency of the tower

[see Fig. 10].

The structural response of both the base shear and the

bending moment under the storm waves and the earthquake load-
---"_ .._._.-_.. _-

ings, respectively, have been pr~sented in Figs. 9 and 10 in

which both the linear solutions (neglecting t.hedrag

effect) and the nonlinear solutions (including the

nonlinear drag effect)·· are displayecL
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Fig. 10 clearly demonstrates that the 1075' tower experiences a

substantial reduction in the base shear due to the beneficial

drag retardation effect, while the 475' tower gains only a very

small reduction in base shear from the drag effect. Furthermore,

Fig. 9 indicates a tremendous increase in the structural response

due to the nonlinear drag force under severe storm waves, e.g.,

W~lOO ft/sec. Unfortunately, the structural response in this

region is extremely important in the reliability analysis as

will be discussed later.

This appears to be the significant difference between

the design of structures in water, such as the offshore plat­

forms, and of structures on land, such as buildings. Under

earthquake loadings, the buildings on land do not have the

significant beneficial drag retardation effect (drag effect of

air is negligible) and hence the response is reasonably linear.

Consequently, the design in G loading (either design load or

design strength) can be identical for both tall and short build­

ings. However, for the offshore platforms where the drag effect

increases with respect to the height of the tower, a smaller

design G loading can be used for the deeper tower and a larger

design G loading should be used for the shallow tower in order

to achieve the same level of reliability.

In the Gulf of Alaska it follows from Fig. 4(a) that tne expected

maximum wave height associated with a return period of 12.5 years

is approximately 90 ft that is equivalent to the average storm

wind velocity W=120 ft/sec [see Fig. 3]. Moreover, it follows

from Fig. 7 that the expected maximum ground acceleration for a

return period of 12.5 years is approximately 105 cm/sec 2 that

corresponds to an earthquake intensity 8=0.1031
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ft/sec 2radl / 2 [see Fig. 6]. The standard deviations of the

base shears under the storm waves W=120 ft/sec and the earth­

quake intensity 8=0.1031 ft/sec 2rad1/ 2 , respectively, are given

in Table 4 for both nonlinear solutions and linear solutions

(neglecting the drag force). These values are obtained from

Figs. 9 and 10.

For the same return period, Table 4 clearly indicates

that for the nonlinear solutions, the standard deviations of

the base shear forces under sotrm waves are approximately 1.5

times that due to the earthquake. Hence, the design for storm

waves predominates as discussed previously. However, if the

nonlinear drag force is neglected (linear solutions) the

standard deviations of the base shears under the earthquake

is very close to those due to the storm waves (see Table 4).

Consequently, the relative importance of the earthquake design

increases drastically, although the design for the storm waves

is still more important because of its long average duration

T2 • It is extremely important to notice from Table 4 that if

the nonlinear drag force is neglected, the design is very un­

conservative and dangerous. As a result, it is concluded that

the nonlinear drag force is extremely important in the design

of deep offshore platforms.
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VII. Conclusion and Discussion

A method of reliability assessment and design for the

offshore platforms has been presented which combines the anal­

yses of nonlinear random vibration and the first passage fail­

ure probability. The method presented herein is more rigorous

than the conventional equivalent static or quasi st:atic loading

analyses.

In the present approach the storm waves and the earth-

quakes are modeled as homogeneousPoisson processes, while the

joint occurrences of both the earthquakes and the storm waves

is shown to be another homogeneousPoisson process with differ­

ent occurrence rate. These three loading processes have been

taken into account in the present analysis.

Historical data on the statistical distribution of the

expected maximum wave height in the (i) Gulf of Alaska, (ii)

Gulf of Mexico, (iii) North Sea, and (iv) Mustang Island, along

with the earthquake data in the Gulf of Alaska have been

employed to carry out the method of analysis presented herein.

The probability of failure within any design service life has

been obtained as a function of the designed load (or design

strength )) as well as ~any other variables, such

as the statistical dispersion of the structural strength}

the statistical distributions of the intensities and durations

of both the storm waves and the earthquakes, etc.

For deep water offshore platforms (taller than 300 ft.),

it is shown that the storm waves dominate the design criteria,
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The joint occurrence of both the storm waves and the earth­

quakes is found to be unimportant in the design of deep offshore

platforms. This is because the occurrence rate A3 is at least

3 orders of magnitude smaller than the occurrence rates >"2 and

Al of the earthquakes and the storms, respectively. Although

the joint occurrence produces a larger structural response,

its duration is rather short (equal to the duration of the

earthquake), and hence the failure probability per occurrence

may be smaller than that due to the storm waves alone.

It has further been shown that unlike the structures on

land, the design load (or design strength) in G loading

(where G is the total weight of the structure) for the offshQre
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platforms should vary with respect to the depth of the tower

in order to achieve the same level of reliability. For off­

shore platforms, the shorter tower should be designed at a

much higher G loading than the taller tower. This situation

is true whether the storm waves or the earthquakes dominate

the design criteria.

The reason for such a difference cOme from the fact:s that

(i) under the earthquake loading, the taller tower is subjected

to a much larger nonlinear drag retardation in structural

response from the water than the shorter tower, and (ii) under

the wave loading, the wave forces acting on the structure

diminish rapidly as the distance from the sea surface increases.

Two different procedures have been used in estimating the

frequency distribution of the expected maximum 'wave height at

the North Sea thus resulting in two different frequency dis­

tributions, referred to as Curve (A) and Curve (B) [see Figs.

4 and 5] (Ref. 11). However, it is found that the design based

on two different frequency distribution is negligible if the

reliability within 25 years of service life is specified to

be smaller than 90%.

In the development of the present analysis, various

assumptions and restrictions have been made which can be re­

moved or relaxed in a more extensive subsequent study. Never­

theless, it is believed that the results presented herein are

representative, and would not undergo major qualitative changes

if these assumptions and restrictions are removed or relaxed,

although quantitative changes would be expected as will be

discussed in the following;
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For simplicity of analysis, we consider only the firm

soil foundation so that the interaction of the soil-pile­

structure can be neglected. Such an interaction can be taken

into account without any difficulty [e.g., Refs. 2, 4, 42,

etc.]. However, the numerical computation for the random

structural response will be much more involved, since the

interaction is nonlinear.

The general effect of the soil-pile-structure interaction

is to reduce the structural response under either the earth­

quakes or the storm waves or both. This is because the soil

flexibility will absorb certain amount of energy of the

applied loads thus alleviating the structural responses.

Consequently, the numerical results presented in this report

are conservative.

In the present analysis, the statistical distribution of

the expected maximum ground acceleration of the earthquake

records has been used [e. g., Ref. 2]. The information may

not be available from the historical data which may contain

only the statistical distribution of the earthquake magnitude

in Richter scale [e.g., Refs. 24-33]. It has been mentioned

previously, however, that the earthquake magnitude in Richter

scale can be converted into the expected maximum ground

motion [e.g., Ref. 31].

For a long period offshore platform, such as the deep

water tower discussed herein, under earthquake excitations,

it has been indicated in various papers [e.g., Refs. 2, 4, 25,

etc.] that the structural responses computed based on the

maximum ground velocity are more reasonable, and that the
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be changed accordingly. Furthermore, the wave height spectrum

becomes less severe as the water depth decreases.

It has been of concern that the sea wave spectrum may not

be continuous such as Eq. 20. It may contain discrete com­

ponents in the frequency domain as observed from the measured

data. The effect of discrete sea wave spectrum on the struc­

tural response will be discussed in the next report.

It has been discussed in the literature that there are

uncertainties associated with the estimation of both the wave

and the earthquake spectra. These uncertainties may be contri­

buted by the incomplete histroical data, hindcast techniques,

and others. They should be taken into account if possible

Ie. g., Ref. 1].

Under severe storm waves or strong earthquakes, some

parts of the structure may yield. The effect of the inelastic

behavior under severe environmental loads should be investiga­

ted. Furthermore, the resisting strength of the structure to

the earthquake loading may be different from that of the

structure to the storm waves. This problem should be investi­

gated based on the detailed design of the towers.

The earthquake loading has been modeled as a stationary

random process with a finite duration because of simplicity

in analysis Ie.g., Refs. 28-43]. It is well-known, however,

that the earthquake ground motion is nonstationary. The non­

stationary effect and·the effect of yielding on the response of

the offshore platforms has also been investigated I Ref. 51].

The Pierson-Moskowitz spectrum used in the analysis is
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a fully developed sea spectrum. However, the storm waves are

developed gradually in time. It has been noticed that when

the wave trains hit a member that is at rest, a signifi-

cant impact loading on the structure has been observed. Such

an impact loading may be of practical importance in the design

of platforms and it is a subject of our further study.

We have not investigated the wave loadings induced by

earthquakes or tsunami. However, the effect of current on

the structural response has been investigated recently [Ref.

52]. It is shown in Ref. 52 that the effect of current may not

be important.

The most serious assUmption of the present investigation

in assessing the offshore platform reliability is that the

fatigue failure mode has been neglected. Fatigue is an impor­

tant problem and it has received considerable attention. Even

under the moderate sea waves, the fatigue cracks at some Joints

may propagate thus resulting in local failure, if not catastro­

phic failure due to the redundancies of the structure. How­

ever, as local failure occurs due to fatigue, tne residual

strength of the entire structure decreases thus increasing the

failure rate (risk function) and the probability of catastro­

phic failure Ie.g., Refs. 53-54]. This is a subject of our

further investigation.

As the fatigue damage accumulation increases and the

local joints damaged, the repair proc.edure has t:o be

developed in order to maintain the prescribed level of struct­

ural reliability and integrity. The inspection and repair

maintenance procedures may be expensive. This is a subject

-4H-



of further investigation with respect to the cost optimization

[e.g., Refs. 55-56].

In the present investigation, the total weight G and the

stiffness lnatrix of the structure are considered to be constant,

independent of the design strength S(or design load). This

is only an approximation, since the total stru~tural weight

and stiffness will increase slightly as the design strength

(or load) increases. It is a classical iterative process.

However, the investigation of such an iterative procedure can

only be made for a particular structure in the stage of the

detail design, which is not the purpose of the present paper.

Preceding page blank

-50-



-49-



References

1. Stahl, B., "Probabilistic Methods For Offshore Platforms,"
presented at the 1975 Annual Meeting, Division of Produc­
tion, American Petroleum Institute, Texas, April 1975,
API paper No. 364-J.

2. Bea, R.G., "Earthquake Criteria for Platforms in the Gulf
of Alaska," Offshore Technology Conference, Dallas,
Texas, Paper Number OTC 2675, 1976.

3. Schueller, G.I., "On the Risk Assessment of Offshore
Structures," Offshore Technology Conference, Dallas,
Texas, Paper Number OTC 2334, 1975.

4. Marshall, P.W., "Risk Evaluations for Offshore Structures,"
Journal of t~e Structu.ral Division, ASCE, Vol. 95, No.
ST12, Dec. 1969.

5. Freudenthal, A.M., "Safety and the Probability of Structural
Failure," Trans.actions ASCE, 1956.

6. Freudenthal, A.M., "Safety, Reliability, and Structural
Design," Journal of the Structural Division, ASCE, March
1961.

7. Freudenthal, A.M., Gauelt, J .M., and Shinoznke, M., "The
Analysis of Structural Safety," Journal of structural
Division, ASCE, Vol. 92, No. STl, 1966, pp. 267-325.

8. Benjamin, J.R., and Cornell, C.A., Probability, Statistics
and Decision Fo~C.i.'ZilEngineers, McGraw-Hill, 1970, "New York.

9. Ang, A.H.S., and Tang, W.H., probability Concept in
Engine~ing Planning and Design, John Wiley and Son, New
York, 1975.

10. Freudenthal, A.M., and Gaither, M.S~; "Design Criteria for
Fixed Offshore Structures," Preprints, Offshore Technology
Conference Paper No. 1058, 1969.

11. Bea, R.G., "Selection of Environmental Criteria for Offshore
Platform Design," Paper OTC 1839, Offshore Technology
Conference, Houston, Texas, 1973; also, Journal of Petro­
leum Technology, Vol. XXV~ 1974.

12. Bea, R.G., "Development of Safe Environmental Criteria for
Offshore Structures," presented at the 1975 Oceanology
International Exhibition, Brighton, England, March 1975.

13. Marshall, P.W., and Bea, H.G., "Failure Modes of Offshore
Platforms," presented at the ASCE-EMD Speciality Confer­
ence on Probabilistic Methods in Engineering, Stanford
University, June 1974.

-51-



14. Pierson, W.J. Jr., and Moskowitz, L.A., "A Proposed
Spectral Form For Fully Developed Wind Seas Based on
Similarity Theory of

15. Hsu, F.H., "Hindcast Storm Waves for Compilation of Wave
Statistics," Paper SPE 4324, Second Annual European
Meeting of the Society of Petroleum Engineers of AIME,
London, England, 1973.

16. Nolte, K.G., "Statistical 1v1ethods for Determining Extreme
Sea States", Second International Conference on Port
and Ocean Engineering Under Artic Conditions, University
of Iceland, August 1973.

17. Bea, R.G., "Gulf of Mexico Hurricane Wave Heights," Paper
OTC 2110, Offshore Technology Conference, Houston, Texas,
1974.

18. Russell, L.R., and Schueller, G.I., "Probabilistic Models
for Texas Gulf Coast Hurricane Occurrences," J. Petroleum
Techn.) March 1974. ' ,

19. Ourning, P.J., "Prediction of Maximum Wave Height from
Historical Data," Preprints, Offshore Technology Confer­
ence Paper No. 1343, April, 1971.

20. Jahns, H.O., and Wheeler, J.D., "Long Term Wave Probabili­
ties Based on Hindcasting of Severe Storms," Preprints,
Offshore Technology Conference, Paper No. L590, May 1972.

21. Quayle, R.G. and Fulbright, D.C., "Extreme Wind and Wave
Return Periods for the U.S. Coast," Mariners Weather Log,
Nat. Oceanic and Atmos. Admin., March, 1975.

22. Thom, H.C.S., "Extreme Wave Height Distributions Over Oceans,IV
J. <2,f Wa!.erwaxs, Ha'!..£,ors'and Coasta~l..Eng. Div., ASCE, 1973.

23. Cardone, V.J., Pierson, W.J., and Ward, E.G., "Hindcasting
the Directional Spectra of Hurricane ~enerated Waves,"
Offshore Technology Conference, paper No. OTC 2332, 1975.

24. Wiggins, H.H., Hasselman, T.K., and Chrostowski, H.D.,
"Seismic Risk Analysis for Offshore Platforms in the Gulf
of Alaska," Offshore Technology Conference, Dallas, Texas,
Paper Number OTC 2669, 1976.

25. Cornell, C.A. and Vanmaroke, E.H., "Seismic Risk Analysis
for Offshore Structures," Offshore Technology Conference,
Dallas, Texas, Paper Number OTC 2350, 1975.

26. Page, R.A., "Evaluation of Seismicity and Earthquake Shaking
at Offshore Sites," Offshore Technology Conference, Paper
NO. OTC 2354, 1975.

-52-



27. Idriss, I.M., Dobry, R., and Power, M.S., "Soil Response
Considerations in Seismic Design of Offshore Platforms,"
Offshore Technology Conference, Paper No. OTC 2355, 1975.

28. Hassekman, T.K., Bronowicke, A., and Chrostowski, J.
"Probabilistic Response of Offshore Platforms to Seismic
Excitation," Offshore Technology Conference, Paper No.
OTC 2353, 1975.

29. Kirkley, C.M. and Murtha, J.P. "Earthquake Response Spectra
for Offshore Structures," Offshore Technology Conference,
Paper No. OTC 2356, 1975.

30. Kanai, K., "Semi-Empirical Formula For the Seismic Charac­
teristics of the Ground," Bull Earthquake Research Insti­
tute, Tokyo, Japan, Vol. 35, June 1967, pp. 308-325.

31. Shinozuke, M., "Method of Safety and Reliability Analysis,"
International Conference on Structural Safety and Relia­
bility, Edited by A.M. Freudenthal,' Pergamon Press, 1969.

32. Tajimi, H. "A Structural Method of Determining the Maximum
Response of a Building Structure During an Earthquake,"
~ro., Second World Conf. Earthguake Engineering, Tokyo
and Kyoto, Japan, July, 1960.

33. Housner,. G.W., "Strong Ground Motion," Earthquake Engineering
(Edited by R.L. Wiegel), Prentice Hall (1970).

34. Clough, R.W., "Earthquake Response of Structures," Chapt. 4,
pp. 75-91. Ea'rthquake En,g:i,nei:,ring, Edited by R.L. Wiegel,
Chapt. 12, pp. 307-334, Prentice Hall 1970.

35. Page, R.A., Boore, B.M., Joyner, W.B., and Coulter, J.W.,
"Ground Motion Values for Use in the Seismic Design of the
Trans-Alaska Pipeline System," Geological Survey Circular
672, 1972.

36. Penzien, J., Kaul, M.K., and Borge, B., "Stochastic Response
of Offshore Towers To Random Sea Waves and Strong Motion
Earthquakes," Journal of Computer and Structures, Vol. 2,
1972, pp. 733-756.

37. Malhotra, A.K., and Penzien, J., "Nondeterministic Analysis
of Offshore Structures," Journal of Engn.Mech. Div., ASCE,
Dec. 1970, pp. 985-1003.

38. Malhotra, A.K., and Penzien, J., "Response of Offshore Struc­
tures to Random Wave Forces," Journal of' structural Div.,
ASCE, Oct. 1970, pp. 2155-3273.

39. Malhotra, A.K., and Penzien, J., "Response of Offshore Towers
To Earthquake Excitation," Pro'c. Civil Ehgipeering in? the
Oceans II, ASCE, bec. 1969, pp. 65-76.

-53-



40. Penzien, J., and Liu, S.C., "Nondeterminis·tic Analysis of
Nonlinear Structures Subjected To Earthquake Excitations,"
Pro~~4th World Conference on Earthguake Engineering, 1969.

41. Shinozuka, M., Yun, C., and Vaicaitis, R. "Dynamic Analysis
of Fixed Offshore Structures Subjected To Wind Generated
Waves," Technical Report No.7, Columbia Uni.versity,
prepared for NSF Under Grant No. NSF GK 3727lX, March 1976.

42. Penzien, J. (1970), "Soil-Pile Foundation Interaction,"
~hquak~ Engineering" R.L. Wiegel Editor, Prentice-Hall.

43. Penzien, J., "Seismic Arialysis of Platform Structure-Founda­
tion Systems," Offshore Technology Conference, Paper No.
OTC 2352, 1975.

44. Lin, Y.K., "probabilistic Method in Structural Dynamics,"
McGraw-Hill, 1967. .

45. Kryloff, N., and Bogoliuboff, N., Introduction To Nonlinear
Mechanics: "Approximate Asymoptotic Nethods," Princeton
university' Press, 1947.

46. Lin, Y. K., "On the First Excursion Probability of Randomly
Excited structures: II," AIM Journal, Vol. 8, No. 10,
1970, pp. 1888-1890.

47. Yang, J. N., and Shinozaka 1 M., "On the First Excursion
Probability in Stationary Narrow-Band Random Vibration
II," Journal of Applied Mechanics, ASME, Vol. 39, No.3,
1972, pp. 733-738.

48. Yang, J. N., "Approximation To First Passage Probability,"
Journal of Engineering Mechanism Di.vision, ASCE, Vol. 101,
No. EM4, 1975, pp. 361-372.

49. Davenport, A. G., "Note on the Distribution of the Largest
Value of a Random Function with Application to Gust
Loading," Proc. of Inst. Civil Engineers, 1963.

50. Gumbel, E.J., Statistics of Extremes, Columbia University
Press, New York, 1958.

51. Kaul, M. K., and Penzien, J.,"Stochastic Seismic Analysis of
Yielding Offshore Towers, "_._J. of Eng. Mech ._.Q!Vi ..• _~$QE.__
Vol. 100, No. EMS, 1974, pp. 1025-1037

52. Wu, s. C., "The Effect of Current on Dynamic Response of
Offshore Platforms," Offshore Technology Conference,
Dallas, Texas, Paper No. OTC 2540, 1976.

53. Yang, J. N., and Heer, E., "Reliability of Randomly Excited
structures,"AIM Journal, Vol. 9, No.7, 1971, pp. 1262­
1268.

- ,"-



54. Yang, J. N., and Trapp, W. J., "Reliability Analysis of
Aircraft Structures Under Random Loading and Periodic
Inspection," AI~. Journal, Vol.12, No. 12, 1974, pp.
1623-1630.

55. Yang, J. N.,. and Trapp, W. J., "Inspection Frequency
Optimization for Aircraft Structures Based on Relia­
bility Analysis, II Journal of Aircraft, AIAA,·Vol. 12,
No.5, 1975, pp. 494-496.

56. Yang, J. N., "Statistical Estimation of Service Cracks
and Maintenance Cost for Aircraft Structures," Journal
of Aircraft, AIAA, Vol. 13, No. 12, 1976, pp. 1041-1057.

57. Parzen, E., Stochastic Processes, Holden~Day, Inc., 1964.

58. Wen, Y. K., "Probability of Extreme Load Combination,"
Presented at the 4th International Conference on
Structural Mechanics in Reactor Technology, San Francisco,
August, 1977.

-55-



Appendix I: Derivation of Average Occurrence Rate A3 For

Simultaneous Occurrence of Storm Waves and

Earthquakes

For the sake of simplicity in derivation, we first consider

(A-I)

in which Nl is a random variable denoting the total number of

occurrences of storms in (O,t), and Tli is the duration of the

ith storm. Dl is recognized as a Compound Poiuson process

[e.g., Ref. 5~]. The average value of Dl is obtained from

Eg. A-I as

(A-2)

Let N3 be the total number.of occurrences of earthquakes

X2 (t) in the time interval Dl (when the storm waves X2 (t)

occur). Then, N3 is the total number of simultaneous occur­

rences of X3 (t). The average number of N
3

can be obtained as

follows

(A-3)
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Substituting Eq. A-2 into Eq. A-3, one obtains

(A-4 )

When the duration of the earthquakes X2 (t} is not small

compared to that of the storm waves Xl(t), it can be shown by

symmetry that

(A-5)

(A-G)

It is mentioned that in the design of nuclear reactor

structures, the joint occurrence of several loads may occur

and similar technique for the extreme load combination has

also been investigated [e.g., Ref. 58].
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Appendix II: Random Vibration of Offshore Platforms
" Q

The analysis techniques for random vibration of the

offshore platforms used herein follow essentially the same

approach presented by Penzien, et al, i.e., the method of

equivalent linearization [Refs. 36-45]. However, some

modifications have been made from the view point of frequency

domain analysis, and the solution is expressed in terms of

matrix operation for convenience in computer coding. It is

mentioned that the numerical results obtained using the method

of equivalent linearization have been shown reeently to be

reasonably accurate as compared to the results obtained by

the method of Monte Carlo simulation [Ref. 41]. Furthermore,

the excitation due to current has also been shown to be un-

important recently [Ref. 51]; hence it will be neglected in

the present analysis.

(i) Equations of Motion and Linearization

For an offshore tower modeled as a lumped mass system

with N degrees of freedom, the dynamic equations of motion

can be written in the matrix form [Ref. 36-40)

(B-1)

in which vectors {Vol and {~o} represent water particle
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velocities and accelerations, respectively; vectors {UtI and

{;t} represent the total structure velocities and accelerations,

respectively, from a fixed reference iveet:ors {u} and {u} represent

the structure velocities and displacements, respectively, as

measured relative to its moving base; diagonal matrices [M],

[V), and [A] represent the structural lumped masses, volumes,

and areas, respectively; matrices [C) and [K) represent

structural damping and stiffness coefficients, respectively

(foundation effects may be included); and p, KM and KD are

scaler quantities representing the mass density of the water,

the inertia coefficient, and the drag coefficient, respectively.

While coefficients KM and KD are normally considered constants

having values in the ranges 1.4.::.KM.2.2.O and 0.5~KD'::'0.7, they may

vary considerably for oscillating structures and may be fre-

quency dependent [Ref. 46). In this particular investigation

KM and K
D

are assumed constant and equal to 2.0 and 0.7,

respectively; as used in Ref. 46.

Let tUg} be a vector in which each component is the same

time history of horizontal ground displacement. Then,

(B-2)

Introducing a relative displacement vector{r}

(B-3)
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and substituting Eqs. B-2 and B-3 into Eq. B-1, bne obtains

[m]{;}+[C]{~}+[K]{r}+PKD[A]{~I~I}

= [M-PV]{Vo}+[C]{VO}+[K]{VO}-[C]{Vg}-[K]{Vg} (B-4)

in which

fm] = [M+P(KM-l)VJ (B-5)

is the modified mass matrix of the tower in water.

If each component of the nonlinear vector {;/;/} is

linearized by the .method of equivalent linearization [Refs.
.. .

36, 44-45] i.e., r·lr. I is replaced by a.r.,
] ] ] ]

e. resulting from such an approximation is
]

then the error

. I· I .e. - r. r. -a.r.
] J J J J

(B-6)

setting E[de. 2/
]

i.e.,

da.] = 0 and solving for a., one obtains
J 1

in which a. will be determined such that the mean square
J

error E[e.
2
Jis minimized.

J

Minimizing the mean square error,

• 2 . • 2
a. = E [r. Ir . j ] /E [r. ]

] J J J
(B-7)

Consequently, the vector {~I~I} in Eq. B-4 can be re­

placed by [a]{~}. This replacement results in an equivalent

(optimal) damping matrix [C],
A
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[C] (B-8)

Thus, one obtains the linearized equations of motion as

followSi

.
- [C] {U }- [K] {V } (B-9)g g

Since both the ground motion and the water particle

velocity are modeled as Gaussian random processes with zero

mean, the response of the linearized equations of motion

(Eq. B-9) is also a Gaussian process. Consequently, the

probability density function of r
J
. , denoted by f· (x) isr.

J

aid of f. (x), a. appearing in
r j J

as PKDA.a •• ;JS/rr'. As a result,
~ r.r.

J J

With thefunction.

Eg. B-7 can be evaluated

Gaussian with zero mean and standard deviation a. ~ i.e.,r.r.
J J

¢(xla . . ) where ¢() is the standardized Gaussianr.r.
J J

f. (x) =
r j

density

Eq. B-8 becomes

[C] = [C] + [C] (B-10)

in which

C ..
~J

i~j

i=j (B-11)
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Substitution of Eq. B-2 into Eq. B-3 yields

(B-12 )

We now substitute Eq. B-12 back into Eq. B-9 to obtain

the linearized equations of motion in {U}

in which

[mJ{u}+[C]{U}+[KJ{U} = {pet)}
A

(B-13)

Note that the components of [Cl and [el involve a ..
A r.r.

J J
(j=1,2, ... n) that is the solution of Eq. B-12 yet to be

determined. Therefore, an iterative procedure should be

employed starting with the linear solution a . . =0 (i.e.,r.r.
J J

neglecting the effect of drag force). The convergence of such

an iterative procedure appears to be very rapid.

(ii) Frequency Response Function

To calculate the response statistics, the normal mode

superposition is used

(B-lS)

in which {Y} is the normal coordinate vector, and rep] is the
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modal matrix obtained from the undamped homogenous equations

of Eq. B-13.

TPremultiplying Eq. B-13 by r¢] , and using Eq. B-1S and

the orthogonality conditions, one obtains the equations of

motion as follows;

(B-16 )

in which

[M*] = [¢] T em] [¢] = generalized mass matrix

[K*] = [¢]T[K][¢] = w2 [M*] = generalized stiffness

matrix

[CO] = [¢]T [~] rep] = coupled damping matrix

{p} = [¢]T{F(t)} = generalized force vector

It follows from equation B-10 that [CO] is not diagonal,

even though the original damping matrix [C] is chosen such

that [ep]T[C] [¢] is diagonal.

In order to uncouple Eq. B-16, another equivalent linear­

ization technique is used. The term [CO] {Y} is replaced by

[C*]{Y} where [C*] is. diagonal and the element of [C*] is de'"

termined by minimizing the mean equare error vector e
'"

It can be shown, after minimization, that

(B-17)

N
C.* = .E

J k=l
(B-18)
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Thus, Eq. B-16 is uncoupled and each equation can be

written as

M.*Y.+C.*Y.+K.*Y. =
J J J J J J

(B-19)

Note that Cj * in Eq. B-19 involves E[YjYk ] that is the

solution of Eq. B-19 yet to be determined. Consequently,

another iterative procedure should be used until the solution

for {Y} converges.

The frequency response function of Y. (t) due to the ex­
J

citation Fk(t») i.e., kth component of (F(t)} follows from

Eq. B-19 as

(B-20)

Let {yew)} be the Fourier transform for (yet)} , i.e.,

(B-21 )

[Then, the relationship between the Fourier transform of the

derivative of a function and the Fourier transform O::E--Ehe-------

function itself is

(B-22)

In what follows, a quantity with a bar will indicate the

Fourier transform of the quantity withotit-a bar, without

ambiguity.
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The response {yew)} is related to the excitation {F(w)}

through the transfer matrix [H(w)],

[yew)] = [H(w)J{F(w)} (B-23)

in which the element of (H(w)} is given by Eg. B-20 and

{F (w)} is the Fourier transform of {F (t)} .It follows from

Eg. B....14 that

(B-24)

in which the relationship between (~o (Wl! ' (;;0 (Wl! ' (Ug (Wl]
and {Ug(W)} similar to that of Eg. B-22 has been used.

Substitution of Egs. B-22 and B-24 into Eg. B-23 yields

in which
2­

(<Pv ] = [H(w)] (-w [PKMV]+iw[C])

[<Pg ] =-[H(w)] (iw(m]+[C])

(B-25)

(B-26)

The cross-power spectral density matrix of {yet)} is by

definition

(B-27 )
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in which the star indicates the complex conjugate and T

indicates the transpose of the matrix (or vector).

Using the definition of the cross-power spectral density

matrix (Eg. B-27) along with Eg. B-25, one obtains

[S •• (w)]
YY

(B-28)

in which the cross-power spectral density matr1.cs [S, . (w)]
vOvO

and [S (w)] of the wave partical velocity and the ground.... ... .
u ug g

acceleration, respectively, are given by Egs. 21 and 22.

The covariance matrix [a.~2] of the velocity vector {yet)}
yy

of the normal coordinate appearing in Eg. B-18 is obtained

from the integration of the j-kth element of [S.; (w)],
yy

[a ••
2

] =1co

[S·· (w) ]dw
YY -co YY

(B-29 )

in Eg. B-18 is the j-kth element of

that the element
2

[a ],
yy

where [S .. (w)] is given by Eg. B-28. Note
YY

E[YjYk ] appearing
. 2 •.
l..e., a • • =E[Y.Yk ]

YjYk J

The covariance matrix of the normal coordinate vector

where [S .. (w)] is given by Eg. B-28.
YY
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The covariance matrix of the displacement vector {Ul,
2denoted by [auu ], follows from Eqs. B-15 and B-30 as

(B-3l)

In the iterative procedure for the vector {~} (see Egs.

B-ll and B-14), the guantity a. . has to be estimated in
r.r.

{;(w)}c ..
J J

order to determine (Eq. B-ll). We first obtain by
JJ

taking the Fourier transform on Eg. B-12 and using Eg. B-25.

[A ] =v

in which

[A ]
9

[1] - (cp] [<P
v

]

= ~w [I] - [cpl[~g]

(B-32)

(B-33)

where [I] is the unit matrix, and [<PvJ and [<Pg ] are given by

Eg. B-26.

Finally, using the definition of the cross-power spectral

density matrix (e.g.,Eg. B-27), one obtains from Eg. B-32,

and hence

[5 (w) ]. ,
rr

= [A ] [5,,-,. ;,.(w) ] [A *] T+ [A ] [5 (w)] [A*J T
v Vo Yo V g U U· 9

g 9

(B-34 )



S. • (w) dw
r.r.

J J

(B-35 )

(iii) Shear Force and Bending Moment

It follows from the equations of motion, Eq. B-13, that

the shear force and the bending moment vectors, denoted by {o}
and {LI , respectively, are given by

{ol = [G]{ul

{L} = [R] {u} (B-36 )

in which the i-jth elements of [G] and [R] are given by

i i
G.. = l: Kkj ; R •. = l: £kKkj (B-3?)

1J k=l 1J k=l

in which £k is the distance between node k-l and node k.

From the covariance matrix of the displacement vector

{u} given by Eq. B-31, it is obvious that covariance matrices

of {Q} and {L} are

2
[CYQQ ]

2
[aLL]

= [G] [<»] [CYyy
2

] [<»]T [G]T

= [R][<»][a 2 ]C<»]T CR ]T
yy

(B-38 )

2where [ayy ] are given by Eq. B-30.



TABLE 1 : STRUCTURAL PROPERTY FOR 1075' TOWER

146 46875_._.__._.._,.--~_ ......-.._.. I------_._---_......-_.
383, 117750

o

A

33500

14643

19429

v

28750

M

101

--.....-.-.---.- -.------. r'-'---"- .-. -- --- .-.....- .......-.- .......-----------..---..---.-.--.-.--..--.----
I
!

NODES ! Y--.------t----..--...-.--
1 I -75 330 0

-.---.----r---.--.--.------... ~---- ..--._.--.. _--...~- -.----.----.-.
i

~
2 __._~__10

3 I 75
~---._....-.._._.__.~ ---~-_ .......-~

4 205

63071

46286

49857

189250537

665 245250

1191 448750

--_.__._~-- ._._------

._~._---_•._-----.---_._- --_.---------~._-"'---

5 400\-_._-_.__.._._-----_.~----------

I 6 600_ .._--_._-+-----_._-
I 7 800

Total weight G = 107,966.6 kips

First Three Natural Frequencies (rad/sec) 1.155, 2.201, 3.663

Flexibility Matrix [k]~1(10-6 ft/kip)! 756 ---~~~'_---.--·--~-;-~---·-;~~--I-.210-·--T-·--98~2-'-·l-·--}O-:8-·-

_____ . ._5~ __~.~~~:~ :~i~~=:t=~~~:_='C~:O!:1='3~:~___ .
--Synun~~i;:~:~-='· -=~=-=-:~~:~--J:-~~~::='=;1;=~=~

I 203 118 46~5
f---'-------.,,- .· _ ..c._.•__ ---·--_···"·-r·.._.,_ -.- ..- - _.. . _.-------.-

126 53.2

.-----+.-_.....-:-..._._--=[~=:_~~~ .._-' ---·-.----·-·--·-..····r--~·:_= -- 5 B-~··a-··-----
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TABLE 2 : STRUCTURAL PROPERTY FOR 675' TOWER

100712865089.2753

~NO~_E~~_~-==~=~_~~-~M--T-u~_V=~u_A _
1 -75 330 I 0 0

! Ir-+-----------.--I--·--.--------l
I 2 10 101 I 29950 11929
l-~--~--+---.-......-........_+--------+---.----+-----.

I
)

24000

26000

1650059600

103250

135250369

292

165

270

400

1404

6

5

1
1l-----+-----..-..---"~·· ....+--..........--+-------+------1
1
j

7 530 417 1 163000 31286
1- ..1- .--l... ."._.._1,,~. __ "' ..~ _ ~,,-,,~ _."..- .._._._-....;'

Total Weight G = 56,775 kips

"-"-'--'-.-.-
455 346 274 211 III 49.2 9.4

,
314 253 199 112 52 10.6

240 191 112 I 54.1 11.4i
I -

SyrnmetI ic 186 112 56.2 12.3
1

115 f 60.2 14.1

65.2 15.8

- ! 16.6--

First Three Natural Frequencies (rad/sec.) :1.851, 3.958- 7.273

Flexibility Matrix [k] -1{I06 ft/kip)
I
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TABLE 3 : STRUCTURAL PROPERTIES FOR 475' TOWER

........,_. -..__..__._-_..- _._._-- ._-_._-_ _ _.._.._ , __ __ _..-,_ _ __..•_- "._".--,'

NODES I Y M I V A
~-_.._----- 1------ ---".. . .

1 -75 330! 0 0
\-,--- ---i----·-·------·--I------·----------

2 10 101 I 29850 11786
:---.--.---t--------.<i----------.-{------+-------.

3 75 , 89.2 I 28650 10071
'--..----------~--'-------------l--.---.--.- ..,,~--.-.-r---_ ..----- --"-------1

4 140 105 133200 10714
I

5 205 126 I 43900 11286

I 6 270 151 53950 12357

! 7 335 256 118750 23214+---- _____ l--_

Total Weight G = 37,294 kips

First Three Natural Frequencies (rad/sec): 2.593, 6.074

Flexibility Matrix [k]-1(10-6 ft/kip)

10.55

,",~____'~-_W'~-"" ". f

288 207 149 , 101 60 29.8 9.4

189 140 97.5 61.5 32.3 11.3

136 96 62 34.7 12.7--_..__. --_._---
97 64 36.8 14.1

.. --
Symmet iric 67.5 40.3 15.4

- -_:-_-~.~,,- ._-....- ....-"'-- -_._-_..-
43.9 18.0

18.3
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TABLE 4: STANDARD DEVINI'IONS OF BASE SHEAR FORCES IN KIPS;
(RETURN PERIOD 12.5 ~EARS)

TOWER1075'

1

I
/. Nonlinear Solution Linear Solution

I - ---'-
Storm Earthauakes Storm Waves l1;arthquakes .. -"".

Waves
I:

I
ft/sec ft/sec 2 radII?W = 120 ft/sec 5=0 .10~J._.ftL$~::t92 r~rl/2. ~v =120 S=,O.1031

.~
5950 2125 2900 2630

I
I

j 475" Tower
1

Nonlinear Solution Linear Solution

Storm Waves Earthquakes Storm Waveli Earthquakes.W = 120 ft/sec
S=0.1031 ftLse~~rad1/:' W = 120 ft/aec

ln31ft:7i;ip{"'2"".:=In1/2~·;:::O

3680 1165 1430 1244
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Figure Captions

Fig. 5

Fig. 4

Fig. 1

Fig. 2

Fig. 3

Environmental Loads; Storm Waves Xl(t), Earthquakes

X2 (t}, and Joint Occurrences X
3

(t).

Lumped Mass Model of an offshore tower.

Relationship between the expected maximum wave height

Ylm and the average storm wind velocity W at 64' above

the sea surface.

Distribution functions of the expected maximum wave

height; (a) the Gulf of Alaska, (b) the Northern North

Sea, (c) the Gulf of Mexico, (d) the Mustang Island.

Probability density functions of the average storm wind

veloci ty f w(y); (a) the Gulf of Alaska., (b) the Nor­

thern North Sea, (c) the Gulf of Mexico, (d) the Mus­

tang Isalnd.

Fig. 6 Relationship between the expected maximum ground ac­

celeration Y2m and the earthquake intensity S.

Fig. 7 : Distribution functions of the expected maximum ground

Fig. 8

Fig. 9

Fig. 10

motion in the Gulf of Alaska (from Ref. 2); (a) Expected

Maximum Ground Acceleration, (b) Expect:ed Maximum Ground

Velocity.

Probability Density Function of Earthquakes Intensity,

S, in the Gulf of Alaska.

Standard Deviations of Responses vs. Average Storm Wind

Velocity W at 64' above the Sea surface, (a) Base Shear,

(b) Base Moment

Standard Deviations of Response vs. Earthquake Inten­

sity S, (a) Base Shear, (b) base moment
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Fig. 11

Fig. 12

Fig. 13

Exceedance curves per storm; (a) 1075 1 tower (b)

475 1 tower.

Exceedance curves per earthquake; (a) 1075 1 tower

(b) 475 1 tower.

Probability of failure per storm for various average

storm wind velocity and design charcc'teristic

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18

strength S (in term of G); (a) 1075 1 tower, (b) 675'

tower, (c) 475' tower.

Probability of failure per earthquake for various

earthquake intensity and design characteristic

strength S (in term of G); (a) 1075 1 tower, (b) 475 1

tower.

Probabilities of failure per occurrence of (i) storm

waves PI' (ii) Earthquake P2 , and (iii) both storm

waves and earthquakes P 3 , for various design charac­

teristic strength e in the Gulf of Alaska; (a) 1075

ft. tower, (b) 675 ft. tower, (c) 475 ft·. tower.

Probabilities of failure per Storm waves, PI' vs. the

design strength 13 at various geological locations;

(a) 1075 ft. tower, (b) 675 ft. tower, (c) 475 ft. tower.

Probabilities of failure vs. service time t in the

Gulf of Alaskaj (a)1075 ft. tower, (b) 475 ft. tower.

Probabilities of failure (and reliabilit.y) in 25 years

of service vs. design strength f;3; (a) 1075 1 tower,

(b) 675' tower, (c) 475 1 tower.
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Fig 0 1: Envi.ronmental Loads i Storm r.tlaves Xl (t) ,
Earthquakes X2 (tJ, and Joint Occurrences
X

3
(t).
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a) Offshore Tower b) Model
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Fig. 2: Lunped Mas.s Model of an offshore tm-;er.
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for various desian characteristic
strength S in the Gulf of Alaska; (a) 1075'
tower, (b) 675' tower, (0) 475' tower.
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Fig. 16: Probabilities of failure per storm waves,
PI' vs. the design strength e at various
geological locations; (a) 107.5' tower, (b)
675' tower, (c) 475' tower.
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Fi~. 17: Probabilities of failure vs. service time t
in the Gulf of Alaska; (a) 1075' tower~ (b)
475' tower.
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Fig. 18: Probabilities of failure (and reliability) in
25 years ofserviee vs. design strenath (3; Ca)
1075' tower, (b) 675' tower, (e) 475' tower.
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