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I. Introduction

It is‘well*knoﬁn that most of the.environmehtal loadings
(threats) to offshore platforms are statistical‘in nature.
Because of the serious consequencé of structural failure, the
reliability analysis of thg offshore platforms has attracted
'increasing attention recently [e.g., Refs. 1-4].' The relia-
bility’analysis techniqge used for the coffshore platforms is
essentially the application of the principles of classical
structural reliability [e.g., Refs. 5-9] in conjuction with
appropriate design criteria [e.q., Refs. 10-13]. Basically,
two environmental threats afe most important; (i) the storm
waves (hurricanes), and (ii) the strong earthquakes. Exten-
.sive investigatioﬁs have‘beén made with regard to the storm
waves [e.qg., Refs; 14-23, 3] and the strong earthquakes [e.g.,
Refs. 24429{'2] in application to the analysis‘and design of
offshore platforms. In addition,‘almost.all of the literature
in the area of earthqﬁake engineering [e.g., Refs. 30-35] is
useful to the reliability analysis of offshore structures under
strong earthquakes. |

The investigation of the dynamic response of the st:ucturés
to the above-mentioned environmental 1oadiﬁgs is an important |
segment in the process of reliability analysis. Most of the
literature available £o@date [e.g.,.Refs._36-43] uses the
‘method of equivalent linearization [e.g., Refé. 44-45].
Furthermore, the failure mbﬁes andlthé aséociated resisting
strengths of the offshore platforms have also been investigated

[e.g., Refs. 1, 13, etc.].



It is the purpose of this paper to present a method of
reliability analysis and design for the offshore platforms
under stochastic dynamic loads during their design service
life. The present approach éombines the analyses of non-
linear random vibration and the first passage probability
‘[e.g., Refs. 36~40, 44, 46-48], and hence it is more accurate
than the conventional equivalent static or quasi-static design
procedures. The reliability design is then examined to
establish the conditions under which the design for one loading
condition (such as storm waves) is sufficient, as well as the
conditionslunder which both the storm waves and the earthquakes
are eéually important.

The structure has to survive the stochastic storm waves,
earthquakes; and the simultaneous occurrences of both during its
désign service life. The occurrences of the storm waves and
the earthquakeé are modeled as homogeneoustisson processes,
resPectively.i The simultaneous occurrence of_both the‘storﬁ
waves and the earthguakes is shown to be aﬁother:homogeneous
Poisson process; the occurrence rate of which is a function
of the occurrence rates and the average durations of both the
storm waves and the earthquakes.

The applied loads due to storm waves and earthquakes, once
they occur, are modeled as stationary Gaussian random processes
with zero mean and finite duration. In this connection, the
Pierson-Moskowitz wave height spectrum and an empirical ground
acceleration spectrum have been used [e.g., Refs. 14, 30, 36-
40]. The maximum wave height and the maximum ground mofion
(acceleration or velocity) vary from one storm and earthquake

to another in the course of the design service life; hence
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they are random variables. The statistiéal distributions of
these random variables are available froa paét records at some
potentially oil-rich sites, such as the Gulf of Alaska, the
Gulf of Mexico; the North Sea, etc. This information has been
used in the present anaiysis.

A nonlinear vibration analysis of the offshore structure
under stochastic storm waves and earthquakes is  carried out,
folldwing essentially the approach employed by Penzien et al
[Refé. 36-40], to obtain the response statistics of the shear
forces and the bending moments induced in‘the structure.

The resisting streﬁgth of the platform associated_with‘
each failure mode is a random. variable assumed'io follow the
Weibull distribution. With all the information described
above, a first passage failure analysis |[e=.g., Refs. 44, 46-

48] is performed4to estimate the probability of failure of thé
structure during.its desién.service life.

It is shown that for deep water offshore platforms, the
storm waves dominate the désign criteria in the Gulf of Alaska,
while the.earthquake.loadings and the joint occurrences of both
thé storm waves and the.éarthquakes are not important.  The
importance of the earthquakeldesign relative to the storm wave -
design ismexpéctéd”to increase as the water depth decredses.” It is-
further shown that the nonlinear drag force is extremely impor-
tant in the design of deep offshore‘platforms and it must not be

neglected.



IT Reliability of Structures in Design Service Life

‘The of fshore tower is considered to be subjected to three
types of stochastic loadings (processes) in its‘design service
‘life, (i) the sﬁorm waves Xl(t), (ii) the earthquakes X2(t),
-and (iii) the simultanecus occurrences of both the storm waves
and the earthqguakes X3(t)o Other types of loadings, such as
current, tsunami, etc., will be discussed later. A schematic
diagram for these loadings are displayed in Fig. 1.

Let Ll(t), Lz(t) and L3(t) be the reliabilities of the
offshore tower in the service time interval (0,t), respectlvely,'
due to the storm waves, X (t), the earthquakes, X (t}, and the
simultaneous occurrence of both, X3(t). Then, with a reasqnable
assumptionrthat the occurrence of the storm waves Xl(t) is
statistically.independent of the occurrence of the earthquakes,
Xz(t), the reliability of the structure in the service time

interval (0,t) is
L(t)y Ly(t) Ly(t) Ly(t) (1)

(i) Structural reliability L, (t) Under Storm Waves X, (t)

The storm waves X, (t) is modeled as a homogeneous Poisson
process with an average occurrence rate kl'per year (or return

period 1/xl vears). It is written mathematically as

N

X (8) = Zl Ali(t)[H(t”tli)_ H(t-ty; - Tli).] (2)

i=1



in which H() is the unit step function, Ali(t)'is the wave

1i with a duration

The wavé height process Ali(t) is assumed to be a sta-

height process Qf the ith storm occurring at t
Tli'
tionary Gaussién radom process with zero mean. A schematic
representation of Egq. 2 is displayed in Fig. 1. | |

The intensity of the ith storm (wave height), Ali(t), is
specified by its power spectral density thét ig a funétion of
the storm wind velocity., Since Xl(t) is a Poisson process, Ali(tj'
(i=1,2,...) is statistically ;ndependent'of A 4 (6) for iF3.
The duration of each storm, Tli(i=l,2,...), is a statistically
independent and identically distributed rahdom variable‘with
the same averége durétion_fl. | |

In Eg. 2, N, is the number of storms that occurr in the

1
~service time interval (0,t). It is a random variable with the

Poisson distribution,

| (% t)k e Mt
p[N,=k] = 2L
1

k! (3)

Let pl_be thg probabiliﬁy of failure of a tower under a
single storm, and El be‘the event that the structure will survive
such a storm. Then, the structural reliability,-Ll(t), under
the application oflthe‘storm anes,.Xl(t), in the service time .

interval (O,t) is

Lp(8) = éé%-P[EllNlék} PN, =k] (4)



Assuming that the resisting strength of the structure
does not change with time (i.e., neglecting the strength
dégradation due to fatigue crack propagation), one obtains
- - k (5)
P[E, |N;=k] = (1-p,)

Substituting Egq. 3 and 5 into Eg. 4 and carryiﬁg out the
summation, one obtains

R X 1 B 1Py
Ly(e) = k§=:0' (1-P;) g = e

in which Py is the probability of failure under a single storm,
and it will be estimated later,

The fact that the occurrence of the storm waves, Xl(t), is
assumed to be ahomogeneous Poisson process implies that the
storm occurrence 1s a chance event, Hence thekdistfibution
function of the time intervals between successive storms in
negatiﬁe exponential.. Available storm data [e.g., Ref. 3]
indicates that the interarrival times between successive. storms
follow the negative exponential distribution reasonably well,
thus justifying the assumption of the homogeneous‘Poisson

process for Xl(t).

{(ii) Structural Reliability L2(t) Under Strong Earthquakes Xz(t)

The earthquake process X2(t) is again modeled as a homoge-.
nédus Poisson process with an average occurrence rate AZ per

vear (or returh period l/A2 years),
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in which Aéi(t) is thé ground motion process of the 1th

earthquake occurring at t with a finite duration T2i (t)

21
' can represent the ground acceleration ag(t), or the veloc1ty
ﬁg(t), or the displacement Ug(t), depending on the design cri? .
tera. AZi(t) is assumed to be a stationary Gaussian ranéam“
process with zero mean, and hence it is sPeCified‘by its pbwer
spectral aensity. A‘schematic figure-for the groun& acceleta;
tion is shown in Flg. 1. Since Xz(t) is a Poisson process,_"\
:the 1nten51ty of each earthquake is a statistically 1ndependent
and 1dentlcally dlstrlbuted random variable. Furthermore, the
duration of each earthquake, T2i(;=1,2,...),>is also a sta-
tisticallyvindepéndent‘apd identicaliy distributed random
variable having tha‘saﬁe aVerage duration fé.

Let p, be the probablllty of fallure of the structure

under a 31ngle earthquake.' Then, in a similar fashion as for

the case of storm.waves,-one obtains Lz(t)'as follows;

“AgPpt - (8)

(i1i) Structural Reliability, L,(t), Under Simultaneous .

Occurrence of Earthquake and Storm, X3(t).

Since xl(t) and Xz(t) are homogeneous Poisson process,
it can be shown that the simultaneous occurrence of both

processes, Xi(t) and Xz(t), denoted‘by‘X3(t),,



is again a homogeneous Poisson process with an average occurence

rate A3,per year (or return period‘l/)\3 years) .,

The average occurrence rate k3 can be obtained from the
average occurrence rates Al and 12 as well as the average

durations T, and 7. of both X, (£) and X,(t) as follows [see

1 2
derivations in Appendix 1]

Ay = A1}‘2(T1 + Tz) | (9)

Let p3‘be the probability of structural failure under a
single occurrence of‘X3(t) (see Fig. 1). Then, in a similar
manner, one obtains the probability of surviving X3(t) in the
service time interval (0,t) as follows:

: =A,P,t e (T + T)p t {10)
Ly(t) = e 3730 "1t2\1 2/53 .

Substituting Egs. 6, 8 and 10 into Eg. 1, one obtains‘
the reliability, L(t), and the probability of failure, P(t),

of the offshore towers in the service time interval (O,t) as,

L(t) = exp(—klplt—thzt—k3p3t)
| (11)

P(t)

l"L(t) = l-eXp(—-Klplt‘?\zpzt")\3p3t)



It is observed from Eg. 11 that the reliability,_L(t),
of the structuré in (0,t) depends. on the probabilitiesbof
failure Py Py and P3 under‘the single occurrence of storm
waves Xl(t), earthgquakes Xz(tL and both X3(t), respectiVely.,

These guantities will be estimated in the next section..



III. First Passage Failure Analysis

Since the applied loads to the structures resulting from
a single occurrence of storm, Ali(t)' earthquake , Azi(t)’
and both, A3i(t), are random processes, the dynamic structural
responses, such as shear forces and bending moments, are also
random processes. The estimation of the failure probability
of the structure is within the scope of the first passage {or

first excursion) analysis in random vibration [e.g., Refs. 44,
46~438].

Since Ali(t), AZi(t) and A3i(t) are assumed to be stationary
Gaussian random processes, the structural responses are
approximated by the stationary Gauséian rahdom pfoceSSes. Let
Zl(t) be the responSe (either the shear force or the bending
moment) at the critical location of the structure due to the
stofm waves A,. (t). Then, the response Zl(t) is completely

1i

specified by its power spectral density, denoted by S (w:W),

len

where W is the average storm wind velocity appearing in the ex-

'preésion of the wave height spectrum as will be discussed later.
The average number of upcrossings per unit time, denoted

by Vs for the reéponse process Zl(t) over a strength level

R is [e.g.,Ref. 44},

-R%/26% (w)

vy = 3 e | o (12)

in which oi(w) is the variance of the response process Zl(t),

Gi(W) = f szlzl(m;wy du (13)



and w, is the apparent frequency of Zl(t),

W, = w S (w:W)dw S {(w;W)dw (14)
1 m-!; ‘ ZlZl _:'; lel |

Pfevious and curremnt studies [Refs. 36-40] indicate that
the apparent frequency.of the response of the deep offshore towers
can be approximated by the fundamental frequency w4 of the
tower, since the response spectrum Szlzl(w;w) is narrow-banded.
Since the strength of the structure R ik designed'to be
much larger‘thén Gl(W), the failure rate hl(or‘risk function)
per uni£ time can be approximated by 2v,
L% esz/Zoi(W) o (15)
1 1 m S
in which w_ is the fundamental natufél f:equehcy of the tower.
Eg. 15 indicates that failure océurskwhen Zl(t) exceeds |R|
(two-sided th:esholds)“‘The app?oximation given in Eq. 15 is
referred to as the Poissoh approximation in random vibration
[e.g., Refs. 44, 46~-48], iﬁplying that the crossings (6r excur-
sions) over the strength |[R| are statistically independent.
This type of épproximatioh is consistent with the PoiSSon
models assumed for the storm waves Xl(t)_and thé earthquakes
X, (£) . | | |
The total conditional failure rate during the ith storm'

=tl) is h Since Tli(i=1,2,...)

, 1i 151
is a statistically independent and identically distributed

(given the storm duration T

random variable with a probability density function fT (),
_ -1

-11-



the total failure rate, denoted by Hl' is

H, = .g hlth{t)dt = n,T, | (16)

in which T, is the average storm duration.

Thus, the probability of first passage failure under a
single storﬁ.with the average storm wind velocity, W, and the
.structural‘strehgth, R, is

" ~H T, -’/ 22| an
P. (Ryw) = 1 - e =1 - exp {~ e

in which Egs. 15 and 16 have been used. Eqg. 17 is referred to
as the exceedance probability per storm.

Since the resisting strength of the structure, R, is a
random variable with a probability density.function fR(x),
the probability of first passage failure per storm, given an

average storm wind velocity W=y, is

. g w T, ~x 20 (w=y) (18)
P (wey) = °£ Fo(x) { 1-exp |- 2= o  dat

Let Ug(S=Z) be the variance of the structural response
due to the earthquake ground motion, A2i(t), With an intensity
S=z, and 0§(W=y, S=z) be the variance of the structural response
due to the joiht‘occurrence,-A3i(t), of the storm (with an
average storm wind velocity W=y) and the earthquake (with an
'intensity S=z), Then, in a similar fashion, the probabilities

- * *
of first passage failure, pz(S=z) and p3(w=y, $=z), per earth-

-12-



quake (given S=z) and per joint occurrence of both (given

W=y and S=z), respectively, can be shown as follows:

_ _ 2 2 _
w w_T -xX“ /207 (S=2)
P;(S=z) = % fR(x) {l~exp [} a2 e 2 ‘] ]dx

™
(19)

o=}

. .
P,(W=y, S=z) = ,g. fR(x) 1 - exp[— dx

w_ T ~x2/202(W=y, S=z)
a3 e 3 . :]
T

in which 53 is the average duration of the joint occurrence

A3i(t), 1.e.,T3= mini. (Tl, TZ) 3.

The exceedance probability per earthquake, denoted by

* & ' :
P2 (R,S}, follows from Eg. 17 as

- 2,, 2
. w, T, -R°/205(8) | (19-a)

* :
P2 (R,8) =1 - exp{ =~ = e

It should be‘mentionéd that the probabilities of failure, -
p;(w=y), P;(S=z) and-p;(w=y, S=;), per occurrence of storm,
earthquake, and both, respectively, are conditional proba-
bilities under the condition that the.évetage storm wind Velccity
and the earthquake intensity are, respectively, W=V,‘S=z. ‘The .
variances 012(W=y), 622(S=z) and 032(W=y, S=z) of the Structﬁral'res—
ponse appearing in Eqs._l8 and 19 will be obtained from the .
random vibration analysis of ﬁhe dffshore towers in the |

next section.
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" IV. Response Statistics to stochastic Storm Waves

and Strong Earthguakes.

The equations of motion of an offshore tower con-
sidered as a‘lumped mass model is given by Eqg. B-1 or B-4
of Appendix II. 1In Eq. B-=4, {GO] is thé water particlé
velocity vector and {66} is the ground accelefation vector

[see Appendix II]}. The statistical characterization of

these excitations is discussed in the following:

(i) Spectra for Wave Height and Water Particle Velocity

The wind induced storm waves have been modeled as a
stétionary Gaussian random process with zero mean and
finite duration, indicating that both the wave height énd
the waterxr par;icle velocity are stationary Gaussian random
~ processes. They are completely defined by their power
spectral densities. In the present investigation, the
" Pierson-Moskowitz wave height spectrum [e.g.; Ref. 14,

36-40] will be used

2 .
. g
I - 9 14! . _ecy<w
5 ©XP { 81(w—w} } PoTecws (20)

S, . (w) =

in which «. and Bl are nondimensional constants assumed to

1
be 8.1X 1073 and 0,74, respectively; g is the acceleration
of gravity; and W is the average storm wind velocity at a

height of 64 f+ above the sea surface.

~-14=-



The following cross-power spectral density of the

water particle velocity vector {Vo} (Eq. B-4) is used

[e.g.,Refs, 36-40];

5 coshR (D-Y.) coshK(D—Yk)
Sﬁ v (w) = w Shh(m) 32 (21)
i’k e sinh”"KD : ‘

in which D=depth fo water, w=gKtanhKD, and Yj=coordinate of
jth lumped mass of the tower measured ffom the sea surface
as shown in Fig. 2.

Eg. 20 indicate#,that the wave heighﬁlspectrum depends
on the average storm wind velocity W at 64' above the sea
level. Since the wave height spectrum and hence the average
storm wind velocity W vafy from one storm to another in the
design service life of the structure, W is a random variable.
Since the storm waves Xl(t) is a Poigson process, the average
storm wind velocity W for each storm is a statistically
independént and idéntically distributed random variable
with a probability dehsity fuﬁctioh fiy(x). This pfobability
density function will be derived fromvaVailable‘(measured)‘

maximum wave height data in Seciton V.

(ii) Earthquaké Ground Motion

A mentioned previocusly, the ground motion, AZi(t)’ such
as the ground acceleration ﬁg{t), velocity ﬁg(t) and dis-
placement Ug(t), has been modeled as a stationary Gaussian

random process with zero mean and finite duration,.

=15~



The power spectral density of the horizontal ground
acceleration Ug(t) suggested in Ref. 30 and used in Refs.
36-40 will be employed herein.

5 2
1+4z_;g (8—}
S.. g 2

u_i (w) = 2712 " 2
S [ o et o
g BA Ne®

in which mg=characteristic ground frequency, Cq=characteris-

(22)

tié ground damping ratio, and Sz=intensity of the power
spectral density. For a firm soil condition,‘wg=15.6 rad/
sec and §g=0.6 was suggested in Ref. 30. Note that 82 in
Eq. 22 is equal to SO used in Ref. 36. It will be shown
later that S is the intensity of the earthguake ground
acceleration ﬁg(t).

Since the earthqguake intensity (or magnitude) varies
from one earthquake to another in the design service life
of the structure, S is a random variable. Since the earth-
guake process Xz(t) is assumed to be a Poisson process, S
for each earthquake is a statistically independent and
identically distributed random variable with a probability

density function fs(x), fs(x) will be derived from available

(measured) earthquake records in Section V.

(iii) Response Varianées di(W=y), U%(S=Z), and 0%(W=y, S=z)
With the imput information given above, e.g., the sarth-

quake ground acceleration spectrum (Eq. 22), the wave height

spectrum (Eg. 20) and the cross—power spectral density of the

water particle velocity (BEg. 21),

16~



the system éf equations of motion of the tower given by
Egs. B-13 and 14 is solved using the method of equivalent
linearization technigue discussed by Penzien et al [Refs.
36-40] in Appendix II. The variances of the shear force
and the bending moment at each level of the lumped mass
(see Fig. 2) are obtained in Eg. B-38 of the Appendix II.
These response variances are associated with a particular
averagé wind velocity, W=y, and a grouhd acceleration in-
tensity, S=2z. As a result, the response variances Gi(W=y),
ci(s=z), and 0§(W=y, S=z) required for the computation of.
the probabilities of failure given by Egs. 18 and 19 are
obtained from Eg. B-38 of the Appendix II.

It should be mentioned that the equations of motion of
the offshore tower are nonlinear (Eq. Bélf,.which-come Exrom
“the effect of the drag force. ‘It is time éonsumming to
solve thé nonlinearsproﬁlem,'since the itératiVe procedures
should be used. Unfoftunately, the‘effect of the drag force
{or nonlinea;ity) iS‘very_importénfbin,the risk and reliabi-
lity analysis of the offshore towers.

Under storm wave loading, the effect of drag force is neg-
ligible when the average storm wind velocity W is below 50
ft/sec.. The nonlinear effect increases as the average storm
wind velqcity W (or wave height) increases, and its effect
is to increase the strﬁdtural responses. The structural
responses increases sigﬁificantly at the high avérage,storm
wind velocity (or high wave height), by which the probability

of failure of the structure is essentially contributed.

_17;



Under the earthquake loading, the nonlinear effect
also increases és the intensity S of the gfound acceleration
increases. However, the nonlinear effect (drag force) under
earthquake loading is to redﬁce (or retard) the structural
response as will be shown later,

Although the response variance 0§(W=y, S=z) under the
simultaneous occurrence of the storm and the earthquake has
been obtained in the Appendix I7, the numerical computations
(including equivalent linearization, iteration and numerical
integration) are quite time consumming. This comes from
the fact that the peak frequencies of the ground acceleration
spectrum and the water particle velocity spectrum usually
lie on both sides of the fundameﬁtal frequency of the deep
tower. Consequently, the response spectrum has to be computed
at a large number of frequency points in the frequency domain
in brder to achieve a reasonable level of accuracy. Since
the earthguakes are statiétically independent of the storm

waves, we have
gg(wﬁy, S=z) = Ui(W=y) + Gg(s=z) (23)

prbvided fhat the equations of motion of the structure are
linear. Eq. 23 is‘not valid when the equations of motion are
" nonlinear. However, our numerical resulté indicate fhat

Eq. 23 can reasonably be used as an approximation. The
maximum error associated with Eg. 23 is within 2%.for large
values of 8 and W. For small values of § and W, the error

is within 0.5%. Hence, Eg. 23 will be used herein,

~18~



{iv) Unconditional Failure Probabilitiés.

It has'béen mentioned previously that the probabilities
of first passage failure, pI(W=y), p;(séz) and p;(wzy, S=z),
ate conditional, under the condition that the average stOrm‘
wind velocity W isrequal'to y and the earthquake ground.
acceleration intensity S is equal to z, ﬁhere both W and S
are random variables. The ﬁncbnditional probabilities of
first paséage failure (pl, p, and p3) due to a single
occurrence of storm waves, earthgquake, and both, res-
”pectively, can be obtéined from the conditional probabilities

le.g., Refs. 7-9] as follows;
Py = ,g py (W=y) £,(y)dy
Py, = f' pz(s=z)fs(z)dz
0 : .
o o * ‘
py = J J pytwmy, s=2)f (y)fs(z)ay dz (24)
00 o ‘ S
in which fw(y) and fg(z) are the probability density functions
' * * : *
of W and S, respectively, and pl(w=y),‘p2(s=z) and p3(W=y,
S=z) are given by Egs. 18 and 19.
Finally, the probability of failure or the feliability

of the offshore tower in the service time interval (0,t) is

obtained by substituting Eg. 24 into Eg. 1l.

: -19-



V. Statistical Distribution of Wave Height, Storm Wind

Velocity, Ground Motion Intensity and Structural Strength

From Egs.ll and 24, it is clear that in order to estimate
the reliébility of the offshore tower during its design
service life, it is necessary to have the following infor-
‘mation; (i) the average occurrence rates.)\1 and AZ aﬁd

average durations, T, and T., of the storms and the earth- .

L 2’
quakes, respectively, and.(ii) the probability density functions
of the structural strength fR(x), the storm wind velocity
fw(y), and the earthquake intensity fS(z). These information
depend on the particular site of the structure (such as the
North Sea, the Gulf‘of Alaska, the Gulf of Mexico, etc.) as
well as the faiiure modes of the structure. 'They should be

obtained or derived from available (measured) data as will

be discussed in the following; .

(i) Statistical Distribution of Structural Stxength

An offshore platform can fail due to a variety of failure
modes. Typical examples are deck leg faiiure, axial pile~
soil failure includiﬁg bearing failure or pull-out failure,
'lateral s0il failure, pile bending failgre, brace buckling,
joint failure, pile-jacket connection failure, etc, - A
detailed discﬁssion of various failure modes as well as the
statistical distribution of the resisting strength associated
with each failure mode has been presented for instance in
Réfs. 1-2. From the.data presented in Ref. 1, the statis-

tical dispersion (coefficient of variation) of the resisting



strength associated with various failure modes varies from
about 5% for deck leg failure to about 20% for axial pile-
soil failure. The statistical distribution of the resisting
strength associated with'each'failure mode 1is assumed herein

to be Weibull, i.e.,

£f(x) = % (£ . - £\ | 25
‘R¥ =g \g) o 8 | (23)

in which 8 is the characteristic stréngth (or scale parameter)
and o is the shape parameter that is a measure of the coef-
ficient of variation of the resisting sﬁrength. Hence, the
probabilities of failure Pyr Py and P3 appearing in Eq. 11
should be the summation of all the failure probabilities for

all the failure modes in series [see Ref. 1].

(ii)  Statistical Distribﬁtion of Expected Maximum Wave

Height and Average Storm Wind Velocity
From the Pierson-Moskowitz wave height spectrum given
by Eq. 20,'the peak.frequency, wp, occurs at

1/2

W, = (48175777 (g/m) | o (26)

P
indicating that the peak frequency depends on the average
storm wind velocity W. It is noticed that the wave height
spectrum is narrow-banded [see figures in Ref. 41].
The variance of the wave height, denoted by oﬁ, is

obtained by integrating the wave height spectrum to yield
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From the extreme value theory, the statistical dis-
tribution of the maximum wave height can be approximated by
the first asymptotic distribution of maximum value, with
the expected maximum wave height, ¥

1m’ given bw [e.g., Refs.

49-50, 31, 36].
{28)
K, = (2lnv Tl)l/z + [o 577%/(2lnv Tl)l/z] (29)

in which Vi is the rate of upcrossings of zero mean (or the

number of upcrossings over zero mean per unit time) given by

1/2
| p
v, = o [f' o shh(w) duw _f hh(m)d%]ﬁ £ (30)

Although mp and Vi depend on W, K given by Eg. 29 is
not sensitive to the variation of W. Therefore, using W=100
ft/sec and T1=4 hours, we have K1z3.85. Furthermore, substi-

tution of Eg. 27 into BEg. 28 yields

¥ = CyW . _ (31)

1lm
in which
o 1/2 ‘
_ 3.85 1 1
Cl~ - 3 —I 3 (32)
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Eg. 31 relates the expected maximum wave height, Ylm’

to the average (expected) storm wind velocity W at 64' above

the sea surface. This relationship is plotted in Fig; 3.
Since both Ylm and W vary from one storm to anofher,

they are random variables. ’The distribution function of

the expected maximum wave height Y denoted by FY (%),

1m’
. 1m
can be established from past records or hindcast, and is
available,e.qg.,in Refs. 1-3, 15-18. Therefore, the
distribution function of W, denoted by FW(x), can be obtained

from Fy (x) through the transformation of Eg. 31 as follows;
Im : :

Fo(x) =P [W<x] =P [\_Jyl'“m"'/_cl < x] = F,

(c;x%) (33)
1m

where Cl is given by Eq. 32. The probability density function
fw(x) can then be obtained from Fw(x) by differentiation
with respect to 2. |

It should be menfioned-that in most of the literature;
the significant wave height HS is equal to 40h, i.e., K1=4.0
in Egq. 29 [e.g., Refs; 18,19]. As a result, the average

storm wind velocity W is related to the significant wave

- * *
height through the relationship, HS=C1W2 where Cl=2(al/81)l/2/g.
¥ (x), for the
1
m
in (i) the Gulf of Alaska,

Some available distribution functions, F
expected maximum wave height Ylm
(ii) the North Sea, -(iii) the Gulf of'Mexico,_and‘(iv) the

Mustang Island, are-givén in Fig. 4 [from Refs. 2, 3, 11, 17, 18].
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The distribution functions of the expected maximum wave

height ¥ in both the Gulf of Alaska and the North Sea

1m

have been characterized by the lognormal distribution in

Refs. 2 and 11 (See Fig. 4). As a result, the distribution
function of ¥, can be written analytically as
‘logx—uw
Fo (x) =29 — : (34)
lm V4

in which ¢( ) is the standardized normal distribution function.
In Eg. 34, it is found that p, =1.823 and ¢ =0.095 for the
Gulf of Aléska, while My =1,867 and O =0,043 for the North
Sea (see Fig. 4) Curve (A), and Mo =1.762 and O =0.1 for
the North Sea Curve (B).

According to the transformation of Eq. 33, the proba-

bility density function of W can be shown as

lo?é y2 - u 2
fuly) = 2loge exp =3 1 w (35)

/2ﬂcwy 2 w

The corresponding probability density functionsfw(y) given‘
by Eg. 35 are‘presented in Figs. 5(a)-5(b).

On the other hand, however, the statisticgl distribution
of the maximum wave height at some locations, e.g., the
Mustang Island [Refs. 3, 18, 19] and the Gulf of Mexico
Ref. 17] has been characterized by the first asymptotid dis~-
ﬁribution of maximum value,

—%—;(y-u*)

F& (y) = exp { ~ e _ (36)
im :
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in which it is found that p* =25.9é4 ft and o* =9.2 ft for
the Mustang Island, while p* =41,53 fﬁ and o* =7,67 ft for
the Gulf of Mexico, In the case of Mustang Island, y¥* and
o* are estimated from the probability plot displayed in
Fig. 4(d). From the transformation of Eq. 33, the pro-
bability density function can be written as

£,(y) = —2;%{ exp {,—n —e’”}

(37)

1 2
n = oF (ClY - u¥)

The corresponding probability density functions, fW(y),
are displayed in Figs. 5(c) and 5(d).

lIt is observed that from Figs. 4 and 5 that the storm
wave is most severe in the Gulf of Alaska and least serious
in the Mustang Islénd. The storm waves in the North Sea
are also quite severe. Two different procedures have been
used to estimate the frequenéy distribution of the maximum:
wave height in the North Sea thus resulting in two different'
distribution functions ieferred to as éurve (A} and Curve (B)
[see Ref. 111, respectively. These two distributions will
be used later to investigate their sensitivity with respect

to the design of the offshore platforms.

(iii) Statistical Distribution of Expected Maximum Ground

Acceleration and Earthguakes Intensity S.

The statistical distributions of the expected maximum

ground acceleration, velocity and displacement are available

-25-



from past eafthquake records in some areas [e.g.,Refs. 2,
24-30]1. These distribution functions can be used to derive
.thelprobability density, fs(x), of the intensity S of the
ground acceleration as follows;

The variance of the ground acceleration Ug, denoted

2

by Oy is obtained from the integration of the power

g.
spectral density given by Eg. 22

2
1T(l+4cg )wg 5

af = .[ Sy y (w)dw = 5z S (38)
g == “gg g

inh which the contour iﬁtegration technique in the complex
plane has been used.

From the extreme value theory, the statistical dis-
tributibn of the maximum ground acceleration can reasonably
be apprbximated by the first asymptotic distribution of the
maximum value [e.g., Refs. 31-36]. Hence, the expected

maximum ground acceleration, denoted by Y2m' is

- d (39)

K, = (2 In v, Té)l/z + 0.5773/121npgﬁé)1/%]

in which vg is the rate of zero crossings, including up and

down crossings, and is approximated by

Vg o (,Ug/'fT ‘ . (40)
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Substitution of Eg. 38 into Eq, 39 leads to the rela-
tionship between the earthquake intensity S and the expected

maximum ground acceleration Y

2m*
s =Y, /C, (41)
in which
1/2
[n(1+4 Cé)“g:‘ | (42)

where the factor 2.54x12 is used to convert Y2m from cm/sec2

to ft/sec?

Eg. 41 relates the expected maximum ground acceleration,

Y, ., to the earthguake intensity, S. This relationship is

2m
displayed in Fig. 6. Furthermore, available distribution
function of the expected maximum grbund acceleration and
velocity in the Gulf of Alaska are given in Fig. 7(a) and
7(b) [from Ref. 2], respectively.

When the distribution function, F (x), of the expected

Y

maximum ground acceleration is availablim(see Fig. 7), the
distribution function, Fs(x), of the earthquake intensity S
can be obtained from FYzm(k) through the transformation of
Eq. 41 as follows; '

Fo(z) = P[S-S z] - P[YZm < sz] = FYZ(czz) (43)
_ m |

The probability density, fS(z), of S can then be obtained
from the distribution function, Fs(z), by differentiation

with respect to z.
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Frequently, the records of the expected maximum ground
motion may not be available, but the records of the earth-
quake magnitude in Richter scale are available. Under this
circumstance, it is possible to derive the distribution
function FYZm(X) from the statistical distribution of the
earthguake magnitude in Richter scale [see, e.g., Ref. 31],
and then FS(X) can be derived using Eg. 43.

It can be observed from Figs. 7(a) and 7(b) that the
statistical distribution of the expected maximum ground
acceleratioﬁ is characterized by the lognormal distribution
[Ref. 21, |

logx - ug

FY (x) = ¢ — (44)
2m s

in which x is in cm/sec?, and u_ =1.758, o =0.297.
Since the relationship between S and Y2m is linear
(Eq. 41), the probability density function of S, denoted

by fs(z), is again lognormal.

2
‘ logC,z - u
.. loge _ 1 2 s
fS(z) = To_z exp > oo (45)

The probability dehsity function of the earthquake intensity

S ié the Gulf of Alaska‘given by Eg. 45 is displayed in Fig. 8.
It should be mentioned that there are uncertainties involved

in predicting the frequency distributions of both the expected

maximum wave height and the expected maximum ground acceleration.

These uncertainties should be accoﬁnted for if possible [e.g.,

Ref. 1], although the problem is not treated herein.
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VI. Numerical Examples and Case Studies

Three deep offshore towers with the height of 1075 ft, -
675 ft, and 475 ft, respectively, have been considered. These
structures are modeled as lumped mass systems with 7 masses
[Refs. 36-41]. A typical model is shown in Fig. 2.

The properties of each tower including (i) the mass [M},
the volume [V],‘the area [A], and the depth Y associéted with
each node, (ii) the flexibility matrix [K]~1, (iii) the total
weight G, and (iv) the first three natural frequencies, are
given in Tables 1-3. The damping matrix is chosen in sﬁch a
- way that the damping coefficient associated with each vibra-
tional mode is 5%. The inertia coefficient K

M
coefficient K, are assumed to be 2.0 and 0.7 , respectively

and the drag

[Ref. 36].
With the input loading information of the wave height

spectrum Shh(w)(Eq; 20), the cross-power spectral density of

3k

spectral density of the ground acceleration Sy i (w) (Eg. 22),

_ g g
the standard deviations of both the shear force and the bend-

the water particle velocity 8y 5 (w) (Egq. 21), and the power

ing moment at each mass level have been computed using the
solution given by Eq. B-38 of the Appendix II. Only the
standard deviations of the shear force and the bending moment
at the base are presented herein. These quantities are dis%
played in Figs. 9 and'lO, respectively,'associated with 4dif-
ferent values of the average storm wind veiocity W and the

earthquake intensity 8. The results neglecting the nonlinear
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drag force (called linear solution) are alsc given for the pur-
pose of comparison. It is observed that under earthquakes the
effectlof the nonlinear drag force is to reduce (retard) the
structural response, and that the effect increaseé as the earth-
quake intensity or the depth of the tower increases. Furthermore,
under storm waves the nonlinear drag force significantly‘increases
thé structural response at high storm wind velocity (large waﬁe
height).

From the available literature [e.g., Refs. 2,4], it
appears that the base shear is an acceptable characterization
of the gross effect on the structures, and it will be used
herein. As mentioned previously, various failure modes should
be considered in the reliability analysis. This, however,
would involve the detail design of the towers as well as the
load transfer mechanisms to each joint and detail. Therefore,
it is assumed expediently that the base shear is a piime de-
sign quantity and other failure modes are designed accordingly.

The resisting strength, R, to the base shear is expréssed
in terms of the total weight (force), G, of the entire plat-
form structure. The average duration Tl per storm is assumed
to be 4 hours and the average duration Tz per earthquake is
assumed to be 30 seconds for illustrative purposes.

The probabilities of failure, p;*(R,W)(Eq‘ 17), pexr storm
for specific values of the resisting strength, R, and specific
values of the average storm wind velocity, W, are plotted in
Figs. 1l1l(a) and 11(b) for 1075' and 475f towers, respectively.
The probabilities of faiiure, p;* (R;S) [Eg. 19(a)], per earth-
quake associated with specific values of the resisting strength,

R, and specific values of the earthquake intensity, S, are
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plotted in Figs. 12(a) and 12(b). The curves shown in Figs.
11 and 12 are referred to as the exceedance curves. For in-
“stance, if the average storm wind velocity W is 120 ft/sec.,
(i.e., equivalent to 90' expected maximum wave height, see
Fig. 3 and Eq. 31), and if the base shear resisting strength
is 0.3G, the probability of failure per storm given by Fig.‘
"1l1(a) is 0.2%. Note that the exceedance curves, Egs. 17 and
19(a), are extremely easy to compute and they do provide a
lot of information for the analysis and design purpose. Such
information is very important in designing the aeronautical
.engineering structures.

The resisting strength R to the base shear is a random
variable and is assumed to follow the Weibull distribution
given by Eg. 25. The strength data associated with various
failure nodes given in Ref. 1 vary from about 5% for deck leg
failure to about 20% for axial pile-soil failure. For illus-
trative purposes, the coefficient of variation of the resisting
strength R to the base shear is assumed to be 10%, indicating
that the shape parameter o is appfoximately 12 (see Eg. 25).
The design characteristic strength B (or scale parameter),
that is a cenfralvmeasuré of the distribution depends on a
particular design.

The probabilities of failure per storm, p*(W=y) given by
Eg. 18, for different values of average storm wind velocities
W and different design characteristic strength B (in terms of
G) are plotted in Fig. 13. The probabilites of failure per
earthquake, p;(s=z) given by Egq. 19, for different values of

earthguake intensities S and design characteristic strength
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B are élsc displayed in Pig. l4. For instance, if the average
storm wind velocity W is 120 ft/sec., (i.e., 90 feet expected
maximum wavé-height), the probability of failure for a design
characteristic strength B=0.3G is found from Fig. 13a as 6.92%,

It has been shown previously that if the resisting
strength is aeterministic and is equal to 0.3G, the probabil-
ity of failure under the same storm is 0.2%. The probability
of failure increases to 6.92% when the étatistical distribution
of the resgisting étrength is accounted for (with 10% dispersion).

The probabilities of failure per storm Pyr Per earthquake
P,. and per joint occurrence of both p;(see Eq. 24) dépend on
the frequency distributions of both the earthquake intensity
fs(z)(or the expected maximum ground,acceleration) and the
average storm wind velocity fw(y)(or the expected maximum wave
height). These frequency distributions depend entirely on the
géological location of the platform site, for instance, the
Gulf of Alaska, the North Sea, the Gulf of Mexico, etc.

Using the probability density functions fW(y) and fS(z)
obtained ih Figs. 5 and 8 in the Gulf of Alaska, along With
pI(W=y) and p;(S=z) presented in Figs 13 and‘14, one obtains
from Eg. 24 the probabilities of failure under one occﬁrence
of (i) storm pl,‘(ii) earthquake Poyr and (iii) both storm and
earthquake Pj- The results are displayed in Fig. 15.

In the‘Gu;f of Alaska, that is a severe earthguake prone
area, it is observed that the probébility of failure due to a
‘storm is several orders of magnitude larger than that due to
an earthquake for three towers. This observation indicates

that for the deep water platforms (e.g., above 300 ft. platform),
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the earthquake loading is not important as compared to the
storm waves and hence design for the storm ﬁave will be
sufficient for the earthquake loading. .However, as the depth
of the water decreases the storm wave spectrum that depends
on the depth of the water will decrease and the importance of
the earthquake loading will increase. Although we do not have
enough structural data on short towers, it is expected that
thé earthquake loading may be as important as the storﬁ waves
when the water depth is less than 100 ft. The methodology of
the analysié presented herein,_however, can be applied to
short towers as well.

It should be noticed that although the earthquake intensity
S and the average storm wind velocity W, which appear in the

earthquake ground acceleration spectrum SU‘U {(w) and the wave
' ‘ 9]
height spectrum Shh(w), are used in the computation, they are

related to the expected maximum ground accelération and the
‘expected maximum wave height through Egs. 31 and 41, respect-
ively (see also Figs. 3 and 6).

Another interesting observation is that alfhough the join£
occurrence of both the earthquake and the storm results in a
larger structural response, i.e., 62(W=y, S=z);02(w=y)+02(s=z),
the probability of failure due to the joint occurrence, Pys is
smaller than that due to the storm waves Pq- The reason is

that the average duration T, of the joint occurrence is T3=mini.

3 .
(Tl,fz) = Té = 30 sec., while the average duration of the storm
Tl is 4 hours. The significant difference in the loading
duration is the only reason why p, may be smaller than Pq-

on the other hand, however, Pi is always greater than Po
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because of egual average duration. It should be noticed that
when the storm waves and the earthqﬁake occur simultaneously,

the structure continues to vibrate even after the earthquake
stops. However, the probability of failure after the earthguake
stops, has been accounted for in the Poisson process Xl(t) of the
storm wave already-

Consequently, it follows that}p3 is always greater than
Py but py may or may not be greater than Py depending on the
‘relative magnitude of p; and p,. 2s observed previously, if
Py is severallorders of magnitude smaller than Py then Py may
be smaller than pg otherwise py may be greater than py- As
wiil be observed later that even if p, is greater than p;
and Py it may not be important in the design, because its
occurrence rate A3is at least three orders of magnitude smal-
ler than the occurrence rates Al and Az.

Furthermore, the probabilities of failure per storm Py
vs. the design strength B in G (or design load) at various
geological locations, i.e., the Gulf of Alaska, the Gulf of
Mexico, the North Sea, and the Mustang Iéland, are presented
in Fig. 16.

Having computed Pyr Py and Py, We are now in the position
to compute the probability of failure of the offshore platforms
as a function of service time (0,t) using Eg. 11. For the Gulf
of Alaska, the North Sea, and the Gulf of Mexico, the probability
' density functions fw(y) and fs(z) are the annual density functions,
and hence A1=X2=l. For the Mustang Island, the occurrence rate

of the storm AZ is 0.22[Ref. 3}.
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For the Gulf of Alaska, the probabilities of failure for
the design strength #=0.4G are plotted in Fig, 17. The solid
curves, designated by "wave", indicate the probability df
failure due to the stoim waves Xl(t) alone, and the ordinate
is given on the left hand side. The dashed curves, designa-
ted by "earthquake" and "joint", represent the probabilities
of failure due to earthquakes X,(t}, and the joint occurence
X3(t), respectively. The ordinate of these two dashed curves
are shown on the right hand éide. Furthermore, the probabil- .
ity of failure for the design strength B=0.5G due to the storm
waves Xl(t) alone is also plotted as solid curve in Fig. 17
with the ordinate on the left hand side. It is observed that
the probabilitiés of failure due to the earthquakes Xz(t) and the
joint occurrence X3(tﬁ are several orders of magnitude smaller
than that due to the storm wave X, (t), and hence they are
negligible. |

It is further noticed that although the probability of
failure, Pas due to a joinﬁ occurrence is ohe to two orders
of magnitude greater than that due to an_earthqgake, Py the
probabiiity of failure in service due to the joint occurfehce,
X3(t), in the design service life is one ordér of magnitude
smaller than that due td the earthquakes Xz(t), This comes
from the fact that the average occurrence ratefA3 is much
smaller than‘AZ(see Eg. 9). It follows from Eq; 9 that if

MY

Tl=4 hogrs, T2=30 sec., Al=1 and A2=1, then‘k3éAlA2(Tl+T2)
4/365x24 = 0.457x107 3,
A conclusion can therefore be drawnvfrom the present

analysis that for the deep water offshore platforms, the design
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for storm waves predominates, while the design for the earth-
quakes or the joint occurrences of both the earthquakes and
storm waves 1s not important at all. For shallow water plat-
forms (e.g., less than 100 ft.), the earthquake design may be
of equal importance as the design for the storm waves in the
severe earthquake areas. This will be investigated further.
Howeverxr, the joint occurrence of both thé earthquakes and the
storm waves is generally not important, because its occurrence

rate A, is about 3 orders of magnitude smaller than the occur-

3
rence rate Az of the earthquakes. It may become important
‘onlyvif the eérthquake design is important and at the same
time the probability of failure of the offshore platform is
specified to be very stringent, e.g., smaller than 1% in 20
years of design service life. Such a situation, however, is
very unlikely. It is noticed that even in the severe earth-
quake zone of the Gulf of Alaska, the probability of failure
dué to the storm waves predominétes for the deep water plat-
forms (long period towers). Therefore, only the probabilities
of failure due ﬁo the storm waves within 25 years of service
life (t=25) vs. different design strength B are plotted in
Fig. 18 for varibﬁs geological locations.

It is observed from Fig. 18 that for a specified level
of platform reliability in 25 years of service life, a higher
design strength B (or design_ioad) should be used in the Gulf
of Alaska. For instance, if the platform reliability is
specified to be 99% for the 1075' tower, the design character-
istic strength 8 should be 0.467 G, 0.419 G, 0.392 G, 0.298 G

and .22 G, respectively, for the Gulf of Alaska, the North
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Sea (A),:the North Sea (B),‘the Gulf of Mexico, and the Mustang
Island. The results have been expected because Of‘the-relative
severity of the frequency distribution function of the expected
maximum wave height discussed previously énd presented in Figs.
4 and 5.

Another observation from Fig. 18 is that:fdr a specified
level of réliability, the difference in the finalidesign is
rather small between two different ffequency distributions of.
the expected maxiﬁum wave height at the Nbrth Sea, i.e., Curve
A and Curve B. Both frequency distributions are estimated
using two different proéedures. Fu:thermore, the difference
in the final design vanishes as the required level of reliabil-
ity decreases. For instance, there is practically no differ-
ence in the design strength 8 (or‘load) if the specified relia~
bility in 25 years of service life is smaller than 85% [see

Fig. 18]. Even if the required level of reliability is high,
‘sﬁch as 99. %, the diffefence in the design strength B (or load)
is hot substantial. As a result, it appears that the
.final design does not seem to be sénsitive to the procedure
for estimating the‘frequency distribution of the maximum wave
height, if the probabilistic design procedure is employed. |
This conclusion may be of practical importance,léihce it has
been of concern regarding the prediction procedures for the
frequency distribution as well as the introduction of uncer-
tainties (additional random variables) in the frequency dis-
tribﬁtions of the expected maximum wave height [Refs. 2, 11].

It has been observed from Figs. 11 to 18 that in order

to maintain the same level of platform reliability, the design

-37-



strength B8 (or load), in terms of the total structural weight
G, 1s much larger for the shallqw towers than for the deep
towers. For instance, if the platform reliability is speci-
fied to be 90%‘in the Gulf of Alaska, it follows from Fig. 18
that the design strength 8 is 0.375 G for the 1075 tower,
while it is 0.7 G for the 475°' tower.

FPurthermore, the same situation holds not only for the
SﬁOrm wave loadings [see Figs. 11, 13, 15-18] but also for the
earthquake loadings [see Figs. 12, 14-15]. For instance, the
‘probabiliﬁy of failure per earthquake at an intensity of S= |
0.234 ft/sec.2 radl/2 {(that is equivalent to the El Central
earthquake) is 0.56x10"3 for the 1075' tower at the design
strength B=0.22G [see Fig. 1l4{(a)]l. To achieve the same level
of failure prébability for the 475' tower under the same
carthquake, a design strength 8 should be0.43 G [see Fig. 14
(b) 1. |
| Such a difference in design of the deep water platforms
"is of practical importance, and the reasons are explained in

the following;

Under the wave loadings, the horizontal wave force is
produced by the water particle velocity [see Eg. 1l1-1 of the
Appendix II] which is specified by the cross-power spectral

density S. - (w)(see Eq. 21). S. . {(w) is the product of the
V.V ‘ V.V

1k : Jk

wave height spectrum Shh(w) and an exponentially decay function

of the distance from the sea surface for deep towers. An

examination of the spectrum Sﬁ v (w) indicates that, for a
| ik
given wave height spectrum Shh(m)(see BEg. 21), it is almost
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the same at the sea surface for all deep towers. However, it
decreases rapidly (exponentially) as the distance from the sea
surface increases. AConsequently, a large‘portion of the total
hofizontal_wave forces is contributed by the water near the
sea surface. This portion of the horizontal force does not
differ much for deep towers of different height. Since the
wave force decreases rapidly as the disténce from the sea sur-
face increases, the total horizontal wave force acting on the
structure between 500' and 1000' from the sea surface is much
smaller.than.that between 0' and 500' from the sea surface.
This is the reason why the base shear of the tower does not
increase pfoportionally with respect to its height and weight,
and instead the shallow tGWer is subjected to large base shear
force [see results presented in Fig. 9].

Under the earthquake loading, the excitation is applied
to the base of the tower. The drag resiétance (or retardation)
of the water to the vibration of the tower depends on the velo-
city difference between the structure and the water particles.
As a result, a deeper tower is subjécted to a larger drag re-~
tardation than a shallow tower will experience, beqausé of the
depth of the water and the fundamental frequency of the tower
[see Fig. 10].

The structural response of both the base shear and the
bending moment undef the storm waves and the earthquake load-
ings, respectively, have been presented in Figs. 9 and 10 in
which both the linear solutions (neglecting the drag
effect) and the nonlinear solutions (including the

nonlinear drag effect) are displayed..
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Fig. 10 clearly demonstrates that.the 1075' tower experiences a
.substanﬁial reduction in the base shear due to the beneficial
drag retardation effect, while the 475' tower gains onlj a very
small reduction in base shear from the drag effect. TFurthermore,
Pig. 9 indicates a tremendous increase in the structural response
due to the nonlinear drag force under severe storm waves, e.d.,’
W>100 ft/sec. Unfortunately, the structural response in this
region is extremely important in the reliability analysis as
will be discussed later.

This appears to be the significant difference between
the design of structures in water, such as the offshore plat-
forms, and of structures on land, such as buildings. Under
earthguake loadings, the buildings on land do not have the
significant beneficial drag retardation effect (drag effect of
air is negligible) and hence the response is reasonably linear,
Consequently, the design in G loading (either design load or
design strength) can be identical for both tall and short build-
ings. However, for the offshore platforms where the drag effeét
increases with respect to the height_of the tower, a smaller
design.G lecading can be used for the deeper tower and a larger
design G léading shoﬁld be used for the shallow tower in order
to achieve the same level of reliability.

In £he Gulf of Alaska it follows fromTig. 4(a) that the expected
maximum wave height associated with a return period of 12.5 years
is appfoximately 90 ft that is equivalent to the average storm
wind Velocity W=120 ft/sec [see Fig. 3]. Moreover, it follows
from Fig. 7 that the expected maximum ground acceleration for a

return pericd of 12.5 years is approximately 105 cm/sec2 that

corresponds to an earthquake intensity S=0.1031
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ft/seczradl/2 [see Fig. 6]. The standard deviations of the
base shears under the storm waves W=120 ft/sec and the earth-

quake intensity S$=0.1031 )‘St/Seczradl/2

» respectively, are given
in Table 4 for both nonlinear solutions and linear solutions
(neglecting the drag force). These values are obtained from
Figs. 9 and 10.

For the same return period, Table 4 clearly indicates
that for the nonlinear solutions, the standard deviations of
the base shear forces under sotrm waves are approximately 1.5
times that due to the earthquake. Hence, £he design for storm
waves predominates as discussed previously. However, if the
nonlinear drag force is neglectea (iinear solutionsi the
standard deviations of the base shears under the earthquake
is very close to those due to the sform waves {see Table 4).
Consequently, the relafive importance of the earthguake design
.increases drastically, although the design for the storm waves
is still moie important because of its long average duratien
TB.
the nonlinear drag force is neglected, the design is very un-

It is extremely important to notice from Table 4 that if
conservative and dangerous. As a result, it is concluded that

the nonlinear drag force is extremely important in the design

of deep offshore platforms.
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VII. Conclusion and Discussion

A method of reliability assessment and design for the
offshore platforms has been presented which combines the anal-
yses of.nonlinéar random vibration and the first passage fail-
ure probability. The method‘presented herein is more rigorous
than Ehe conventional equivalent static or quasi statié loading
analyses.

In the present approach the storm waves and the earth-
gquakesare modeled as homogeneousPoisson processes, while the
joint occurrences of both the earthquakes and the storm waves
is shown to be another homogeneousPoisson process with differ-
ént occurrence rate. These three loading proceéses have been
taken into account in the present analysis.

Historical data on the statistical distribution of the
expected maximum wave height in the (i) Gulf oﬁ Alaska, (ii)
Gulf of Mexico, (iii) North Sea, and (iv)} Mustang Island, along
with the earthquake data in the Gulf of Alaska have been
employed to carry out the method of analysis presented herein.
The probability of failure within any design service life'has
been obtained as a function of the designed load (or design
strength )) as well as many other variables, such
as the statistical dispersion of the structural strength,
the statistical distributions of the intensities and durations .

of both the storm waves and the earthquakes, etc.

For deep water offshore platforms (taller than 300 ft.),

it is shown that the storm waves dominate the design criteria,
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while the.eérthquake loading and the joint occurrence of both
are hot important. However, if the nonlinearAdrag force is
neglected, ﬁhe design becomes very unconservative and
dangerous. It is, therefore, concluded that the

nonlineai drag effect is extremely importarnt in

the design of deep offshore platforms and it must not be
neglected.

The importance of the earthquake design relative to the
wave design is expected to increase as the offshore tower becomes
shorter. This is because the wave height spectrum will become
less severe as the depth of the water decreases. The earthquake
design may'bé as important as the Wave design for the water depth
less than 100 ft.

The join£ occurrence of both the storm waves énd the earth-
quakes is found to be unimportant in the design of deep offshore
platforms, Thié is because the occurrence rate A3 is.at least

3 orders of magnitude smaller than the occurrence rates A, and

2
Al of the‘earthquakés and the storms, respectiﬁely. Although
the joint occurrence produces a largef structural response,
its dﬁration is rather short (equal to the duration of the
earthquake), and hence the failure probability per occurrence
may be smaller than that due to the storm waves alone. -
It has.fﬁrther been shown that unlike the.structures on-
land, the design load (or design strength) in G loading

(where G is the total weight of the structure) for the offshore
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platforms should vary with respect to the depth of the tower
in order to achieve the same level of reliability. For off-
shore platforms, the shorter tower should be designed at a
much higher G loading than the taller tower.v This situation
is true whether the storm waves or the earthquakes dominate
the design criteria.

The reason for such a difference come from the facts that
(1) under the earthquake loading, the taller tcwer is subjected
to a much larger nonlinear drag retardation in strﬁctural
. response from the water than the shorter tbwer, and (ii) under

the wave loading, the wave forces acting on the strﬁcture
‘diminish rapidly as the distance'from the sea surface increases.

Two different procedures have been used in estimating the
frequency distribution of the expected maximum wave height at
the North Sea thﬁs resulting in two different frequency dis-
tributions, referred to as Curve (A) and Curve (B){éee Figs.

4 and 5] (Ref. 11). However, it is Ffound that the design based
on two different frequency distribution is negligible if the
reliability within 25 yeafs of service life is spécified to

be smaller than 90%.

In the development of the present analysis, various
assumptions and restrictions have been made which can be re-
noved or relaked in a more extensive subSequent study. Never~
theléss, it is believed that the results presented herein are
representative, and would not undergo major qualitative changes
if these assumptions and restrictions aré removed or relaxed,
although quantitative changes would be expected as will be

discussed in the following;
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For simplicity of analysis, we consider only the firm

soil foundation so that the interaction of the soil-pile-

structure can be neglected. Such an interaction can be taken

into account without any difficulty [e.g., Refs. 2, 4, 42,

_ étc.]. However, the numerical computation for the random
structural response will be much more involved, since the
interaction is nonlinear.

The general effect of the soil-pile-structure interaction
is to reduce the structural response under either the earth-
quakes or the storm waves or both. This is because the soil
flexibility will absorb certain amount of energy of the
applied loads thus alleviating the structural responses.
Consequently; the numerical results presented in this report
are consérvative. |

In the present analysis, the statistical:distribution of
the expected maximum'ground acceleration of the earthquake
records has been used [e.g., Ref. 2]. The information may
not be available from the historical data which may contain
only the statisticél distribution of_the earth@uake magnitude
in Richter scale [e.g., Refs., 24-33]. It has been mentioned
previously, however, that the earthquake magnitude in Richter
scale can be converted into the expected maximungrouﬁd
motion [e.g., Ref. 31].

For a long period offshore platform, such as the deep
water tower discussed herein, under earthquake excitations,
it has been indicated in wvarious papers [e.g;, Refs. 2, 4, 25,
etc.] Ehat the structural responses computed.based on the

maximum ground velocity are more reasonable, and that the
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structural responses computed based on the maximum ground
acceleration input are too conservative. As a result, the
numerical results presented herein are consistently conser-
vative and it would be more reasonable to use the frequehcy
distribution of the expected maximum ground Veloéity displayed
in Fig. 7(b). For expediency, we employed an empirical_ground
acceleration spectrum, Eg. 22, that has been used by many
researchers J[e.g., Refs. 30-40]. Unfortunately, when the
‘acceleration s@eCtrum, Eqg. 22, is converted into the wvelocity
spectrum, the variance of the velocity does not converge [Ref.
31]. Hence, another empirical ground velocity spectrum should
be used [e.g., Ref. 31] if the maximum ground velocity is to
be used for fhe design purpoSe;

It is very important to emphasize, however, that even
with the use of the ground acceleration‘spectrum along with
the frequency distribution of the maximum ground acceleration
[Fig. 7(a)] input for the earthquake excitations, which is too
conservative, we have shown that the earthquake design is not
important at all for the long period offshore platforms (i.e.,
deep towers) as compared to the wave deéign. This point is
oflsignificant importance.

The Pierson-Moskowitz wave height spectrum., Eg. 20, has
been used in the random vibration analysis to obtain the
structural responses. The wave height spectrum depends on
the water depth, the fetch length, the storm duration, etc.
The particular'parameter values of o, and B, used in Eq. 20
are appropriate for deep water in the open sea. For shallow

water with finite fetch length, the values of al»and Bl should

-4 6



be changed accordingly. Furthermore, the wave height spectrﬁm
becomes less severe as the water depth decreases.

It has been of concern that the sea wave spectrum may not
be continuous such as Eg. 20. It may contain discrete com-
ponents in the frequency domain as observed from the measured
data. The effect of discrete sea wave spectrum on the struc~
tural response wiil be discussed in the next report.

It has been discussed in the literature that there are
uncertainties associated with the estimation of both the wave
and the earthquake spectra. These.uncertainties may be contri-
buted by the incompiete histroical data, hindcast techniques,
and others. They should be taken into account if possible
te.g., Ref. 1]. |

Under severe storm waves or strong earthquakes, some
parts of the structure may yield. The effect of the inelastic
behavior under sevefe environmental loads should be investiga-
ted. Furthermore, the resisting streﬁgth of the‘structure to
the earthquake loading may be different from that of the
structure to the storm waves. This problem should be investi-~
'gated based on the detailed design of the towers.

The earthquake loading has been modeled as a etationary
random process with a finite duration because of simplicity
in analysis [e.g., Refs. 28-43]. It is'well-known, however,
that the earthquake ground motion is nonstaﬁiohary. The non-
stationary effect and the effect of yielding on the respbnée'ef“

the offshore platforms has also been investigated [ Ref. 51].

The Pierson-Moskowitz spectrum used in the analysis is
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avfully developed sea spectrum. However, the storm waves are
developed gradually in time. It has been noticed that when
the wave trains hit a member that is at rest, a signifi-
cant impact loading on the structure has been observed. Such
an impact loading may be of practical importance in the design
of platforms and it is a subject of our further study.

We have not investigated the wave loadings induced by
earthquakes or tsunami. However, the effect of current on
- the structural response has been investigated recently [Ref.
52]. It is shown in Ref. 52 that the effect of current may not
be important. |

The most serious assumption of the present investigation
in assessing the offshore‘platform reliability is that the
fatigue failure mode has been neglected; Fatigue is an impor-
tant problem and it has received considerable attention. Even
under the moderate sea waves, the fatigue cracks at some joints
may propagate thus resulting in local failure, if not catastro-
phic failure due tolthe redundancies of £he structure. How-
ever, as local failure occurs due to fatigue, tne residual
strength of the entire structure decreases thus increasing the
failure rate (risk function) and the probability of catastro-
phic failure fe;g., Refs. 53-543. This is a subjeét of our
further investigation.

| As the fatigue damage accumulation increases and the

local joints' daméged, ) the repair procedére has to be
developed in order to maintain the prescribed level of struct-
ural reliability and integrity. The inspection and repair

maintenance procedures may be expensive., This 1is a subject
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of further investigation with respect to the cost optimization
[e.g., Refs. 55-561].

In the present investigation, the total weight G and the
stiffness matrix of the structure are conSidered to be conétant,
independent of the design strength B (or design load). This
is only an approximation, since the total structural weight
and stiffness will increase slightly as the design strength
(or load) increases. It is a classical iterative process.
However, the investigation of such an iterative procedure can
~only be made for a particular structure in the stage of the

detall design, which is not the purpose of the present paper.

| Pret:eding page blank
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Appendix I: Derivation of Average Occurrence Rate A, For

3

Simultaneous Occurrence of Storm Waves and

Earthauakes

For the sake of simplicity in derivation, we first consider

the special case where the average duration of storm waves Tl is

much greater than that of the earthquake T,, i.e.,

Tl>>T2. Such a restriction will then be removed later. The

total duration in which Xl(t) occurs in the service interval

(0,t), denoted by D., is
T,. - (A-1)

in which Ny is a random variable denoting the total number of

occurrences of storms in (0,t), and T is the duration of the

13

ith storm. Dl.is recognized as a Compound Pcisson process

fe.g., Ref. 57]. The average value of D

1 is obtained from

Eg. A-l as

E[D;] = ATy (A-2)

- Let N3 be the total number of occurrences of earthquakes

X2(t) in the time interwval Dl {when the storm waves Xz(t)

occur). Then, N3 is the total number of simultaneous occur-

rences of X,(t). The average number of N3 can be obtained as

follows

EN;] = E{EIN,|D;1} = ElAgD,] (2-3)
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Substituting Eq. A~2 into Eg. A-3, one obtains
= A At T | | (A-4)

When the duration of the earthguakes Xz(t) is not small
compared to that of the storm waves Xl(t), it can be shown by

symmetry that
E[N3] =7A1A2t(Tl+T2) (A-5)

As a result, the average occurrence rate‘k3 for the
Poisson process X3{t) is
Ay = EINGI/E = X0, (Ty+T,) (A-6)
It is mentioned that in the design of nuclear reactor
structures, the joint occurrence of several loads may occur
and similar technique for the extreme load combination has

also been investigated [e.g., Ref. 58].

-57=



Appendix II: Random Vibration of Offshore Platforms

The analysis techniques for random vibration of the
offshore platforms used herein follow esséntially the same
approach presented by Penzien, et al, i.e., the method of
equivalent linearization [Refs. 36-45]. However, some
modifications have been made from the view point of frequency
domain analysis, and the solution is expressed in terms of
matrix operation for convenience in computer coding. ‘It is
mentioned that the numerical results obtained using the méthod
of equivalent linearizétion have been shown recently to be
‘reasonably accurate as compared to the fesults obtained by
the method of Monte Carlo simulation [Ref. 41)}. Furthermore,
thé excitation due to current has also been shown to be un~
important recently [Ref. 51]; hence it will be neglected in

the present analysis.

(i) Equations of Motion and Linearization
For an offshore tower modeled as a lumped mass system
with N degrees of freedom, the dynamic equations of motion

can be written in the matrix form [Ref. 36-40]

1 {o, }+ e L{O}+ 1K1 (U] = o (xy-1) (VI{Vy-U, )+ pIvI{V,)
+pKp, [A] {({ro-t}t) [éo—ﬁtl'} (B~1)

in which vectors {VO} and {VOI represent waterxr particie
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velocities and accelerations, respectively; vectors {U and

s : t}

{Ut} represent the total structure velocities and accelerations,
respectively, from a fixed reference; vectors {é} and {U} represent
the structure velocities and displacements, reépectively, as
measured relative to its moving base; diagonal matrices [M],
[vl, and [A] represent the structural lumped masses, volumes,
and areas, respectively; matrices [C] and [K] represent
structural damping'and stiffness coefficients, respectively
(foundation effects may be included); and p, KM and KD aie‘
scaler quantities representing the mass density of the water,

the inerfia coefficient, and the drag coefficient, respectively.
While coefficients KM and KD are normally considered constants
having values in the ranges 1.4§KM§2.0 and 0Q5ﬁ3b59.7, they may
vary considerably for oscillating structures and may be fre-
quency aependent [Ref. 46]. In this particular investigation

KM and KD are assumed constant and equél.to 2.0 and 0.7,
respectively; és_used in Ref. 46.

Let {Ug} be a vector in which each component is the same

time history of horizontal ground displacement. Then,

o} = {0} qugp (3-2)

Introducing a relative displacement vector({r)

frt = {voi-{u.} o (B;3).
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and substituting Egs. B-2 and B-3 into Eg. B-1l, one obtains
[m]{;}+[C]{£}+[K]{r}+pKD[A]{£I;[}

= m-ovi{vp b+ eyl ixifvgl-tei{v - x1{v_}  (-4)
in which
m] = [Mtp(Ky,~1)V] {(B-5)

" is the modified mass matrix of the tower in water.

If each component of the nonlinear vector {r[r[} is
linearized by the method of equivalent linearization [Refs.
36, 44-45] i.e., rjlrjl‘is replaced by 5Ty then the error
ej resulting from such an approximation is

e, =r.lr.|l-a.r. B-6

J J‘ J' 33 ( )
in which aj will be determined such that the mean square
error E[ejz] is minimized.

Minimizing the mean square error, i.e., setting E[Be.z/

J
aaj] = 0 and solving for a;, one obtains

_ o, - |
. = R .. . E . ' B~7
ay = Blr;"r, [1/BELe"T (B~7)
Consequently, the vector {r]r[} in Eq. B-4 can be re-

placed by [a]{r}. This replacement results in an equivalent

(optimal) damping matrix [C],
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[C] = IC] + pK,[A]la] (B-8)

~

Thus, one obtains the linearized equations of motion as

follows;

b+ ici{zb k1 e} = moviivg b+ eIV + K] {v,}

.

-[eH{u }- X1 {u } ~ (B-9)

Since both the ground motion and the water particle
velocity are modeled as Gaussian random processes with zero
mean, the response bf the linearized equations of motion

(Eq. B-9) is also a Gaussian process. Consequently, the

probability density function of rj , denoted by ff (%) is
| N J
Gaussian with zero mean and standard deviation 07 2 i.e.,
' . 373

ff (x) = ¢(x/cf 3 ) where ¢ () is the standardized Gaussian
J 33

density function. With the aid of ff (x),_aj appearing in
- 3
: - . o 4 . 4

Eq. B-7 can be evaluated as pLDAicfjrde/n.‘ As a result,

Eg. B-8 becomes

[C]

= [C] + [C] ' (B~10)-
in which
. 0 ;ixg
g, . = [
13 . e -
| pKDAjGijf5J8/ﬂ', i=3 o (B-11)
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Substitution of Eg. B-2 into Eqg. B-3 vields

{r} = {vo} - {u} - {Uy} , (B-12)

We now substitute Eq. B~12 back into Eq. B-9 to obtain

the linearized equations of motion in {u}
mi{obsrciiob+ x1{u} = {Fe)}  (B-13)

in which

{F)} = ervi{v}+ tE]{{rO}~[m]{Bg}~[E]{t} b(B-14)

g

Note that the components of [C] and [C] involve 0 &
| i3

(3=1,2,...n) that is the sclution of Eq. B-12 yet to be
déetermined. Therefore, an iterative procedure should be

employed starting with the linear sclution O & =0 (i.e.,

‘ | 373
neglecting the effect of drag force). The convergence of such

an iterative procedure appears to be very rapid.
_(ii)' Frequency Response Function

To calculate the response statistics, the normal mode

superposition is used

{U} - [¢]{Y} | | (B-15)

in which {(Y¥) is the normal coordinate vector, and [¢] is the
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modal matrix'obtained.from‘the undamped homogenous equaﬁions
of Eqg. B;l3.

Premultiplying Eq. B-13 by [¢], and using Eq. B-15 and
the orthogonality conditions, one obtains the equations of

motion as follows:

‘[M*1{§}+[C0]{§}+[K*}{Y} = {P}  (B-16)
in which
[M*] = [¢]T[m][¢] = generalizéd mass matrix
[K*] = [$]1 [KI[¢] = w’[M*] = generalized stiffness
matrix
[Co] =i[¢]T[g}[¢] = coupled damping matrix
{P} = [¢]T{F(t)} = generalized force vector

It fbllows from equatign B-10 that [Col is not diagonal,
even though the original damping matrix [C] is chosen such
that [¢]1T[CI[¢] is diagonal.

In order to uncouple Eg. B-16, another equivalent'linéar-
ization technique is used. The term [C0}{§} is‘replaced by
[C*]{%} where [C*j is diagonal and the element of [C*] is de-

termined by minimizing the mean equare error vector e
{6} = [CO]{Y} - [C*] {Y} ‘ (B~-17)

It can be shown, after minimization, that

. Cojkff [y_j_,ij (B-18)
1 E[Yj2]

N
Ci* =3
n
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‘Thus, Eg. B-16 1is uncoupled and each equetion can be

written as

- . N
Mj*yj+cj*yj+Kj*y. = kil¢j§ Fk(t) (B-19)
Note that C,* in Eq. B-19 involves E[ijik] that is the

‘solution of Eg. B-19 yet to be determined. Consequently,
anothef iterative procedure should be used until the solution
for {Y} converges.
| The frequency response function of Yj(t) due to the ex-
citation Fk(tL i.e., kth cbm@onent of {F(t)} follows from

Eg. B-19 as

. _
Kl (B-20)

(=M, *2+R %)+ inC.*
j i 0T =

ij(w) =
Let {Y(wﬂ be the Fourier transform for {Y(tﬂ , dl.e.,
(¥ (w)} =i[ (o)} e™29% qy ~ (B-21)

 Then, the relationship between the Fourier trancform of the
derivative of a function and the Fourier transform of the =~
function itself is

{i(w)}zi@{Y(wﬁ ; {é(wﬁ = iw{%(w%, | (B-22}

In what follows, a guantity with a bar will indicate the

Fourier transform of the quantity without a bar, without

ambiguity.
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The response {¥(w)} is related to the éxcitation {F (w)}

through the transfer matrix [H(w)],
[T(w)] = [H(w) {F(w} | | (B-23)

in which the element of [H{w)] is given by Eg. B-20 and :
{F(mﬁ is the Fourier transform of {F(t)} . It follows from
Eq. B-14 that |

{Flw)} = ([;_w [pK,VI+ [E}) {\}b (w)}

_([m]+ ia[al){ag(wﬂ | (B-24)

in which the relationship between {VO(wJ ' {Vo(w)], {Ug(w)}
and Ug(wﬁ similar to that of Eg. B-22 has been used.
Substitution of Egs. B-22 and B-24 into Eg. B-~23 yields

- — g ——

{:}m)} = [@vl{\}o(m)}+[¢g]{ﬁg(w)} | (B-25)
in which
[0, = [H(w)] (-0 [pKV]+ia[C])

[cpgi = -[H(0)] (iw[m]+[C]) (B-26)

The cross-power spectral density matrix of {f(tﬁ is by

definition

- % T

P N Ny

[S..(w)] = 1lin == E[‘Y(mﬁ {Y (w)} ] (B~27)
Yy P 2TT | |
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in which the star indicates the complex'conjugate and T
indicates the transpose of the matrix (or vector).
Using the definition of the cross-power spectral density

matrix (Eq. B-27) along with Eg. B-25, one obtains

[S-. ()] = [0, 10, | () 1le *1T+ [0 11S  (w)11e_*1"
YY VLV g vV g -
00 g g
(B~-28)
in which the cross-power spectral density matrics [S (w) ]
vOﬁO
and [S“ . (w)] of the wave partical velocity and the_ground
U u 4
g9

acceleration, respectively, are given by Egs. 21 and 22.

The covariance matrix,[ckuzlvof the velocity vector {Y(tﬁ'.
Yy :
of the normal coordinate appearing in Eg. B-18 is obtaired

from the integration of the j-kth element of [S,.(w)],
, vy

£

[o..%] =jr [Sei (w)lde (B-29)
. S 4 |

where [S_ _(w)] is given by Eq. B-28. Note that the element

. e YY .
E[Yij] appearing in Eg. B-18 is the j~kth element of [0,,2],
i.e., 0.2. =E[Y,Yk]

Y.Y J
ik

The covariance matrix of the normal coordinate veéctor

' . 2 .
{v(t)}, denoted by lo,,“1, is

o]

[OYYZJ = J' ‘[SYY(w)]dw = lj-Jr [S (w)]dw (B-30)
—o : 0" Ve oYY

where [S  (w)] is given by Eq. B-28.
YY
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The covariance matrix of the displacement vector {U},

denoted by [oUUZ], follows from Egs. B-15 and B-30 as

[ogg°] = [6][0gy°1 1817 C (e-31)

In the iterative procedure for the vector {r} (see Egs.
B-11 and B~-14), the quantity o. . has to be estimated in
r.r.
3

. order to determine E&j (Eq. B-11). We first obtain {r(mJ - by

taking the Fourier transform on Eq. B-12 and using Eqg. B-25.

— .

'{J‘:(m)} = {\.'Io(m)} —M]{'S’[(w)} -{talg(w)}'
= IAV]{VO(w)}~[Ag]{Ug(w)} - (B~32)
in which , |
;[AV] = [I] - I¢1[®V]
| 1 _ . , ‘ ‘
[Ag] = is [x1 - [¢l£¢g] S | v(B—BB)

where [I] is the unit matrix, and [@v] and [@g] are given by
ch B-260 .
Finally, using the definition of the cross-power spectral

density matrix (e.g., Eqg. B427)} one obtains from Eq. B-32,

99

S e
L0 1T TS, @1 1T

[s (W] = [A,JIs; .
, - 0o

Irr

(B-34)

and hence
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o 2 =}ﬁ S (wdw . (B-35)

(iii) Shear Force and Bending Moment
Tt follows from the equations of motion, Eqg. B-13, that
the shear force and the bending moment vectors, denoted by {Q}

and {L}_, reépectively, are given by

[61 {u}
myfu} | (B-36)

{2}

{nf

in which the i-jth elements of [G] and [R] are given by

: i ‘ i
G.,. = % K, . ; R Z

= L. = 2 . B-37
ij o1 ki 1) pe; kKkj ( )

=1
in which %, is the distance between node k-1 and node k.

From the covariance matrix of the displacement vector
(U} given by Eq. B-31, it is obvious that covariance matrices

of {Q) and {L} are

2
00 !

2, _ 2 T
lop“] = IR1I$] Lo, “11¢]" [R]

il

[G] [0] [oyy 1 1417 1617
.

[o

(B~38)

where IGYYZJ are given by Eq.VB-BO.
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TABLE 1 : STRUCTURAL PROPERTY FOR 1075' TOWER

NODES ? Y M v A
1 o 75 330 0 ' 0
2 10 101 28750 14643
3 75 146 46575 19429
4 205 383 117750 33500
5 400 - 537 189250 46286
6 600 . 665 245250 49857
7 goo | 1191 448750 | 63071

Total Weight G = 107,966.6 kips

First Three Natural FrequencieS(rad/sec) 1,155, 2.201, 3.663

o Flexibility Matrix [k]fl(1056 ft/kip)
756 622 | 531 374 | 210 | 98.2 | 30.8
;_Mwmwmw;mﬂ_mfﬁg 401 Kmﬁg;mmmmwwgééﬂ 102 | 33.6
| aea | sas | 207 | 105 | 35.8
ST 321 | 205 | 110 40.1
Symmetiric a
203 | 118 | 46.5
| g o et o
e e T
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TABLE 2 : STRUCTURAL PROPERTY FOR 675' TOWER

NODES Y M f v B
1 75 | 30 o I
2 10 101 ' 20950 11929
3 75 89.2 28650 10071
4 . 140 165 59600 16500
5 270 | 292 103250 24000
6 200 369 135250 26000
7 530 , 417 163000 31286

Total Weight G = 56,775 kips |
First Three Natural Frequencies (fad/sec.):l.SSl'; '3.958 » 7.273

Flexibility Matrix [k1_1(156 ft/kip)

455 346 274 211 111 49.2 | 9.4
314 253 199 112 | 52 | 10.6
240 191 112 ¢ 54.1 11.4

Symmetic | 186 | 112 | s6.2 | 12.3
115 ~ 60.2 14.1
5.2 15,8
16.6
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TABLE 3 : STRUCTURAL PROPERTIES FOR 475" TOWER
'-NODES Y M v A
1 =75 330 0 0
2 10 101 29850 11786
3 75 '89.2 28650 10071
4 140 105 33200 10714
5 205 126 43900 11286
6 270 151 53950 12357
7 335 256 1118750 23214
“Total Weight G = 37,294 kips
First Three Natural Frequencies (rad/sec): 2.593 , 6.074 ,. 10.55
Flexibility Matrix [k]™1(107® ft/kip)
288 | 207 149 101 60 29.8 9.4
189 140 97.5 | 61, 32.3 | 11.3
136 96 62 34.7 | 12.7
| 97 64 36.8 | 14.1
Symmetric 67. 40.3 15.4
| 43.9 | 18.0
18.3
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TABLE 4

-
-

STANDARD DEVIATIONS OF BASE SHEAR FORCES IN KIPS:

(RETURN PERIOD 12.5 YEARS)
1075°" TOWER
Nonlinear Solution Linear Sclution
. Storm Waves Earthquakes Storm Waves | Earthquakgg} o
W = 120 ft/sec §=0.1031 ft/sec? ragl/2|| W =120 ft/sec 1s=0.1031 ft/sec’ raal/?
5950 ' - 2125 ‘ 2900 2630
475¢" Tower
Nonlinear Solution. Linear Solution
Stfrm Waves Earthquakes : Storm Waves Earthguakes o
W = 120 ft/sec | _ 2 72|l w120 fereed uakes ...
_ $=0.1031 ft/sec’ragl/? $50.1031" £t /secradl/?
3680 1165 1430 ' 1244
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Figure Captions

Environmenﬁal Loads; Storm Waves Xl(t), Earthgquakes
Xz(t), and Joint Occurrencés X3(t).

Lumped Mass Model of an offshore tower.

Relationship between the expected maximum wave height
Ylm and the average storm wind velocity W at 64' above
the sea surface,

Distribution functions of the expected maximum wave

height;v(a) the Gulf of Alaska, (b) the Northern North

.Sea, (c¢) the Gulf of Mexico, (d) the Mustang Island.

Probability_density functions of the average storm wind
velocity fw(y); (a) the Gulf of Alaska, (b) the Nor-=
thern North.Sea,‘(c) the Gulf of Mexico, (d) the Mus-
tang Isalnd. | | |
Relationship between the expected maximum‘ground ac-
celeration Y, and the eérthquake intensity 8.
bisﬁribﬁtion functions of the expected masximum ground
motion in the Gulf 6f Alaska_(from'Ref. 2); (a) Expected
Méximum Giound Acceleration, (b) Eipectedeaximum Ground
Velocgity.

Probability Density Function of ﬁarthquakes Intensity,
S, in the Gulf of Alaska.

Standard Deviations of Responses vs. Average Storm Wind
Vélocity W at.64"above the Sea éurface, (a) Base Shear,
(b) Base Moment

Standard Deviations of Response vs. Earthquake Inten-

sity S, (a)‘Base Shear,‘(b) base moment

=73



‘Fig. 11
Fig. 12
fFig. 13
Fig., 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

LY}

Exceedance curves per storm; {a) 1075' tower (b)
475‘.tower. |
Exceedance curves per earthquake; (a) 1075' tower
(5) 4751 towér. |

Probability of faiiure per storm for various average
storm wind velocity and design characteristic
strength B {(in term of G); (a) 1075' tower, (b) 675°

tower, (c) 475' tower.

- Probability of failure per earthquake for warious

earthquake intensity and design  characteristic
strength B (in term of G); (a) 1075' tower, (b) 475
tower. ' |
Probabilities of failure per occurfence of (i) storm
waves Py, (ii) Earthquake‘pz, and (iii) both storm
waves and earthquakes Py for various design charac~
teristic strength 8 in the Gulf of Alaska; (a) 1075
ft. tower, (b} 675 ft. tower, {c) 475 ft. tower.:
Probabilities of failure perxr Storm waves, Pys VS. the
design strength B at various geological locations;
{(a) 1075 ft. tower, (b) 675 ft. tower, (c) 475 ft. tower.
Probabilities of failure vs. service time t in the
Gulf of Alaska; (a) 1675 ft. tower, (b) 475 ft. tower.
Probabilities of failure (and reliability) in 25 years
of service vs. désign strength B; (a) 1075' tower,

{b) 675' tower, (c) 475' tower.
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Xa(t)

Xa2(t)|

SERVICE TIME t

Fig. 1: Environmental Loads; Storm Waves Xj(t),
Earthquakes X, (t), and Joint Occurrences
X3 (k).
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Fig. 2: Lumped Mass Model of an offshore tower.
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Fig.

EXPECTED MAXIMUM WAVE HEIGHT Y, ft

.4or'

70
60 |

50 |

30}

20 ¢t

50 60 70 80 90 100 110 120
AVERAGE STORM WIND VELOCITY W,
" ft/sec.

Relationship between the expected maximum wave

height Yy, @nd the average storm wind velocity
W at 64' above the sea surface. |
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AVERAGE RETURN PERIOD-YEARS
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EXPECTED MAXIMUM WAVE HEIGHT-FT
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Fig. 4(a): Gulf of Alaska

Fig. 4: Distribution functions of thé-expecte& maximumn
- wave height; (a) the Gulf of Alaska, (b) the
Northern North Sea, (c¢) the Gulf of Mexice,
(d) the Mustang Island.
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AVERAGE RETURN PERIOD.YEARS
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Fig. 4(c): Gulf of Mexico
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Fig. 4(d): Mustang Island
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Fig. 5(a): ©Gulf of Alaska

‘Fig. 5: Probability density functions of the average

wind velocity fi(y); (a) the Gulf of Alaska,

~(b) the Northern North Sea, (¢) tie Gulf of
Mexico, (d} the Mustang Island. - -
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Fig. 5(c): Gulf of Mexico
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Fiag. 7: Distribution functions of the expected maxi=
munm ground motion in the Gulf of Alaska (from
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Fig., 8: Probability ﬁénsity‘Function'of Earthquake
Intensity, S, in the Gulf of Alaska.
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BASE SHEAR IN 10° KIPS

O L e

0 P
50 70 80 Ho i30
AVERAGE STORM WIND VELOCITY
w, ft/sec.-

Fig. 9(a): Base Shear Force

Pig. 9: Standard Deviations of Responses vs. Average .
Storm Wind Velocity W at 64' above the Sea
Surface, (a) Base Shear, (b) Base Moment.
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' BASE BENDING MOMENT IN (0° KIP-FT

fol . 1
50 70 90 o 130
AVERAGE STORM WIND VELOCITY
w, ft/sec.

Fig. 9(b): Base Moment .
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BASE SHEAR IN 10 KIPS

Pig. 10:

0 - 1 . i . I . i . 1
.03 09 A 21 .27 33

EARTHQUAKE INTENSITY S, ft./sec® rad'”/2

Fig. 10(a): Base Shear Force

standard Dewviations of Résponses vs. Earth-
quake Intensity S, (a) Base Shear, (b) Base
Moment.
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Fig. 10(b): Base Moment
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Fig. 12(a): 1075' Tower

Fig. 12: Exceedance curves per earthquake; (a) 1075
tower, (b) 475' tower.
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1075 TOWER
G=107,967 Kips

PROBABILITY OF FAILURE PER STORM p(W=y)

io"'? 3 1 1 A4
70 80 90 (o 1o R IT0) 120 130 140
AVERAGE STORM WIND VELOCITY W,
ft./sec.

Fig. 13(a): 1075' Tower

Fig. 13: Probability of failure per storm for variocus
- ayverage storm wind velocity and design -
characteristic strength 8 (in term of G);

{8e?73" tover, (b) 675' tower, (c) 475!
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(W=y)

PROBABILITY OF‘FAILUﬁE PER STORM
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Fig. 13(b): 675' Tower
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PROBABILITY OF FAILUR PER STORM p (W=y)
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Fig. 13(c): 475" Tower
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PROBABILITY OF FAILURE PER EARTHQUAKE p:(S=z)
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Fig. 14{(a): 1075' Tower
Probability of failure per earthquake for

- various earthquake intensity and design

characteristic strength B(in term of G);
{a) 1075' tower, (b) 475' tower.
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PROBABILITY

OF FAILURE PER EARTHQUAK p§(8=z)

: 7
475 TOWER
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1ot
0%
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lo's NN | N 1.
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Fig., 14(b): 475' Tower

101



' Pig. 15:

PROBABILITY OF FAILURE PER OCCURRENCE p,

! 1075' TOWER
- G=107,967 kips
10°!
10-?
0-3
Io"4 L l
O 02 0.3 0.4 05 0.6

DESIGN STRENGTH £ IN 6

Fig. 15(a): 1075 Tower

Probabilities of failure per occurrence of

(1) storm waves Pys (1i) Earthquake Py, and
(iii) both storm waves and earthquakes p3,

- for various design  characteristic

strength B in the Gulf of Alaska; (a) 1075!
tower, (b) 675" tower, (c) 475' tower.
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PROBABILITY OF FAILURE PER OCCURRENCE P,
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o. 0.2 0.3 04 05 06 07
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Fig. 15(b): 675' Tower
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PROBABILITY OF FAILURE PER:- OCCURRENCE p,
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Fig. 15(c): 475' Tower
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Fig. 1l6(a): 1075 Tower

ig. . propabilities of failure per Storm waves,
Fig. 16 pi, vs. the degign  strength B at various

geological locations; (a) 1075' tower, (b)
675t tower, (¢} 475' tower. ‘
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PROBABILITY OF FAILURE PER STCORM P,

10~
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Fig. 16(b):
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PROBABILITY OF FAILURE PER STORM p
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Fig. 16{(c);
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PROBABILITY OF FAILURE DUE TO STORM WAVES X, (1)

Fia.
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SERVICE TIME f, YEARS E
Fig. 17(a): 1075' Tower
17: Prokabilities of failure wvs. service time t

in the Gulf of Alaska; (a) 1075' tower. (b}

475' tower.
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IN 25 YEARS

PROBABILITY OF FAILURE

Fig.
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Fig. 18(a): 1075' Tower
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