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ABSTRACT

The problem of determining linear models of structures from
seismic response data is studied using ideas from the theory of system
identification. The investigation employs a general formulation called
the output-error approach, in which optimal estimates of the model
parameters are obtained by minimizing a selected measure-of-{it
between the responses of the structure and the model. The question
of whether the parameters can be determined uniquely and reliably in
this way is studied for a general class of linear structural models.
Because earthquake records are normally available from only a small
number of locations in a structure, and because of measurement noise,
it is shown that it is necessary in practice to estimate parameters of
the dominant modes in the records, rather than the stiffness and damp-
ing matrices.

Two output-error techniques are investigated. Tests of the
first, an optimal filter method, show that its advantages are offset by
weaknesses which make it unsatisfactory for application to seismic
response. A new technique, called the modal minimization method,
is developed to overcome these difficulties. It is a reliable and effi-
cient method to determine the optimal estimates of modal parameters
for linear structural models.

The modal minimization method is applied to two multi-story
buildings that experienced the 1971 San Fernando earthquake. New
information is obtained concerning the properties of the higher modes
of the taller building and more reliable estimates of the properties of

the fundamental modes of both structures are found. The time-varying



character of the equivalent linear parameters is also studied for both
buildings. It is shown for the two buildings examined that the optimal,
time-invariant, linear models with a small number of modes can re-
produce the strong-motion records much better than had been supposed

from previous work using less systematic techniques.
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I. INTRODUCTION

1.1 Structural Identification, Introduction and Previous Work

Broadly speaking, system identification is the process of try-
ing to deduce a model of a real system from its output and possibly
its input. In this definition, a model is any mathematical represen-
tation of the system which allows a good approximation to its output
to be computed. * An important aspect of system identification is to
allow for the fact that measurements made on the system are inevi-
tably contaminated by noise. Some survey articles on system iden-
tification in general are those by Cuenod and Sage (1968), Bekey
(1970), Nieman, Fisher and Seborg (1971), Astrdm and Eykhoff
(1971), Bowles and Straeter (1972), and Sage (1972). ©* The book by
Eykhoff (1974) also has an extensive bibliography.

This dissertation is concerned with the application of system
identification ideas to structural systems such as buildings, bridges
and dams. In this context, the output of the system refers to the
histories of response quantities measured at points within the struc-
ture. These quantities could be the displacement or its time deriva-

tives, velocity and acceleration, or even the stress or strain.

However, it is rare for the latter to be measured in structures and

5
L

The terms input and output are used here in a technical sense to de-
scribe the observad portions of the excitation and response, respec-
tively. Theyneednot correspond to the complete excitation and re-
sponse of the system,

ads ufs

‘References are given at the end of each chapter.



and the term ''response at a point' will be used to refer to the dis-
placement or its derivatives unless otherwise specified. The input to
the system refers to the measured portion of the excitation producing
the structural response.

Some survey articles on different areas of structural identi-
fication are those by Schiff (1972), Collins, Young and Kiefling (1972),
Rodeman and Yao (1973) and Hart and Yao (1977). Hudson (1977) has
reviewed the means by which structural response data can be produced.
We shall first consider two widely-used sources, steady-state har-
monic tests and ambient vibrations, and then concentrate on the major
concern of this dissertation, which is the use of seismic response

records.

1.1.1 Steady-State Harmonic Tests

Steady-state harmonic tests are performed by shaking a struc-
ture with special mechanical vibrators which effectively exert a sin-
usoidal point-force on the structure. In this area, structural identi-
fication with linear models has been applied quite extensively. The
basic approach, as in most frequency-domain methods, is to estimate
the amplitude and phase components of the transfer function,

H(iw), between the location of the response measurement and the
location of the excitation. Because of both the steady-state charac-
ter and the monochromatic frequency content of the input and output,
these functions can be evaluated directly from the amplitude and phase

of the response, relative to the exciting force, for each frequency of



excitation.

In practice, the phase information is often ignored and the
modal parameters ‘are estimated from resonant peaks of |ﬁ(iw) l s
the amplitude of the estimated 'transf‘er function. The modal fre-
qﬁencies aré estimated from the location of these peaks; ’che modal
damping factors are estimated from their half;power bandwidth; and
the (unscaled) modeshape values are estimated from their heights.
Some consideration of the phase is required to determine the correct
sign of each modeshape value. In some cases, the pérameter esti-
mates obtained by this resonant-peak technique are strongly affected A
by modal interference, fhat is, by the contribution to the reéponée of
other modes in the neighborhood of a given modal frquency. - This 4‘
can make the damping estirﬁates particularly unreliable: .Hoerner>and
Jennings (1969) have investigated a particular case of modal interfer-
ence.

A deficiency of the resonant-peak technique is that only a small
number of point;s of \fl(iw)] are used to estimate the modal param- |
eters, so much of the data is ignored or, at best, used ohiy »quali-b o
tatively. This makes the estimates sensitive to measurement noise
and to model error, where the latter refers to errﬁrs arising béééuse
the structure is not a time-invariant linear system ‘With uncoupleéi
modes as assumed in the model, Neve'rtheless, the épp.roac'h_hasb
proved successful with low-amplitude forced vibration tests because
the noise levels involved are small for the léwer modes of vibration.

However, as discussed later, the same technique applied to' ]H(im)l



estimated from seismic response records leads to unreliable para-
meter estimates because the noise levels and model error are much
greater.

IbaBez (1972) has pointed out the above deficiency in the context
of steady-state harmonic tests and proposes a technique which uses
all the frequency-domain data. This procedure, which he calls YFIT,
estimates the parameters by minimizing an output-error functional.
It is essentially a frequency-domain version of the general system
identification approach adopted in this work.

The above discussion has been concerned with identification
using linear models. The identification of structures using nonlinear
models and steady-state harmonic data has been investigated by
several authors, including Ibdfiez (1972), Jennings (1967) and Novak

(1971).

1,1,2 Ambient Vibrations

Structural identification has also been carried out by utilizing
ultra low-level ambient vibrations induced by wind and microtremors.
Techniques for this application generally assume that the system is
linear, the excitation is (band-limited) white-noise and that the re-
sponse is an ergodic random process. The stochastic hypotheses
are necessary because the actual excitation, which is spatially-dis-
tributed, is not recorded,

By treating each individual modal response as that of a singledegree-

of-freedom oscillator, itis possible to determine an effective transfer



function using an approach based on the equation:

PO(UU) = |H(iw) | 2Pi(uu)

where Po ‘and Pi are the powebr spectral density of the output and
mput réspectively of a linear system. For ambient vibrations, P,
must bé estimated from the recorded response whereas - Pi is un-
known but, by hypothesis, assumed constant. In practice, because
oﬁly records of finite length are used, the stochastic hypotheses above
have the same effect as making the deterministic assumption that the
average over the records of the Fourier amplitude spectrum of each
point-excitation does not vary greatly with frequency. The average
spectrum of the records can then be used directly as an estimate
of lH(iw)‘ in the neighborhoodnof eéch modal frequency. This allows
the efficient Cooley-Tukey FET algorithm to be used.

Once |H(iw)| has been .estimated, the parameters can be
determined by the resonant-peak technique discussed in the previous
section. Again, difficulties arise because of modal interference and
the use of only a few data points, which are accentuated in this appli-
cation because of the more variable character of the estimated
transfer function. In addition, the assumption that the avefage spec-
trum of the excitation is approximately constant is often violated.
This can be caused by strong wind gusts for example. A furtherv '
consideration relates to the frequeﬁcy resolution. In steady-state
harmonic tests the frequency resolution depends on the frequency

control of the shaker. With modern equipment, a frequency



resolution of 0.01 Hz or less can be achieved. However, when the
transfer function is estimated from ambient data the frequency reso-
lution is given by 1/T where T is the record length, so that very
long records are required to adequately define the resonant peaks of
the low modes.

Schiff and his colleagues (1972, 1973) give a discussion of the
difficulties which arise when the modal parameters are estimated
from an estimate of the transfer function made under the assumption
of white-noise excitation. Schiff proposes applying a parametric
curve-fitting method to lI:I(iu))‘ which considers all the frequency-
domain information in the neighborhood of a modal frequency in order
to get more reliable estimates of the corresponding modal parameters.
In the second paper, the authors carry out some tests by applying this
technique and Vanmarcke's method of moments (1970) to simulated
data. They were interested in investigating whether these techniques
could successfully estimate the damping from short-duration records
so that they could be used with seismic response data. The results
indicate that for a single-degree-of-freedom linear oscillator at
least ten cycles from a stationary response are required to get rea-
sonable damping estimates from either of the methods mentioned
above. Furthermore, nonstationarity of the response has a strong
influence on the accuracy of the damping estimates. By way of
comparison, one of the time-domain techniques discussed later gives
nearly exact results in an analogous situation, even when only half of

a cycle of nonstationary response, together with the corresponding



noﬁstationary excitation, are used in the identification process; This

iilustrates the importance of using input records if they a_fe ‘avail'able.
The discussion so far has concentrated on frequeziéy;domain

identification methods for ambient vibration data and the attendant

o _b difficulties. Gersch and his colleagues (1974, 1976) have developed

a time-domain technique which is based on an auto-regressive i;no.vi'ng‘—

average model of a discrete time-series. This technique appears to

be a promising one for ambient vibration applications, particularly

since it gives some idea of the accuracy of the computed estimates

of the parameters.

1.1.3 Seismic Response Data

It has long been recognized that an earthquake can be viewed
as a full-scale, large-amplitude experiment on a structure, and that
if the structural motion is recorded, it offers an opportunit;y to make
a quantitative study of the behavior of the strﬁcture at dynamic force
and deflection levels directly relevant to earthquake-resistant design.
However, the time and location of a strong-motion earthquake can
not be predicted with confidence so the acquisition of such data
requires an extensive deployﬁent of dedicated instrumentation, which
must be capable of remaining operational over long periods of time.
For these reasons, response data of good quality were not readily
available until recently, so there was little motivation to develop
systematic techniques for structural identification from earthquake

records,



The 1971 San Fernando earthquake in California dramatically
changed this situation. Seismic response records from about 50
buildings in the Los Angeles area were obtained (Jennings, 1971;
California Institute of Technology, 1971-1974). ‘None of the instru-
mented buildings was heavily damaged but the peak acceleration
response in some buildings approached % g and many of the buildings
exhibited nonlinear behavior, at least to the extent of lengthening N
fundamental periods.

To date, the ideas of system identification have not been fully
utilized in the interpretation of these records. A common approach
has been to compare the recorded response of a building with the
response of a synthesized linear model subjected to the recorded
base excitation., This comparison has been followed by some trial-
and-error adjustment of the model parameters to achieve better
visual matching of the theoretical and recorded response. (Wood,
1972; Blume and Associates, 301-443, Gates, 445-574, Martin and
Associates, 575-596, in Murphy, 1973). -Such an approach can be
viewed aé a rudimentary scheme for estimating parameters in the
time domain. One of the aims of this work is to investigate system-
atic versions of this procedure which give the best possible response
vmatching in a well-defined sense.

Systematic techniques for structural identification from
earthquake records must contend with the transient nature of the
excitation and response records. However, in contrast to ambient

vibrations excited by wind and microtremors, most of the excitation



can be recorded.

If a building is suéported solely by a rigid foundation then the - 7
excitation would be completely specified by recording the motion in
the six rigid-body degrees of freedom of the base. In the past, only
the three translational components at one point on the base have been
- "r’é'cdfded so that it is éifficult to separate the rocking and twisting
components of the base motion from the translational components.
Nevertheless, in the absence of strong soil-structure interaction,
.f.:hé éomina.nt contribution to thé lateral response of the structure Will.v
arise from the horizontal motion of the base. It is also often assumed
that the building axes define two orthogonal horizontal directions’:in
which the total horizontal l;eéponse can be decomposed so that the
compdnént in each direction is due only to the base motion in that
direction; ‘This leads to the commonly assumed planar structural
models. One limitation of these models is that they do not treat
p'gépefly aﬁy torsional response of the structure. | |

Several authors have applied frequency—-domain -idéntificatioﬁ
to data from the San Fernando earthquake (Hart, 597-‘607, in Murphy,

1973; Udwadia and Trifunac, 1974; Hart et al, 1975; Hart and
Vasudevan,' 1975). For a planér linear model the response history
vy (aCceleration, velocity or displacement) at any point is related in
the freq.ﬁeﬁcﬁ; domain to the base ?cceleration history Z by the

transformed Duhamel equation:

Y(w) = H(w) Z () (1.1.1)
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where H(iw) is the appropriate transfer function. In theory, this
relation could be applied to estimate H(iw) and then any of the rele-
vant techniques discussed in the previous sections could be applied

to estimate the modal parameters, although the half-power band-width
method for estimating damping is generally replaced by an approach
based on the height of the resonant peak. This approach requires a
prior estimate of the corresponding modeshape so that the participa-
tion factor can be evaluated.

In practice, difficulties arise because the estimated transfer
functions are characterized by extreme variability with numerous
peaks which appear to be a function of measurement noise and model
error and are not related to resonant peaks. Smoothing of lY(w)l
and ‘Z (w)l before taking their quotient, or smoothing of ‘I:I(iw)l
after division, can reduce the variability and therefore make the
resonant peaks more apparent, but this leads to a loss of information
which can result in the damping being overestimated. Generally,
past work suggests that the only modal parameters which can be re-
liably estimated from II:I(iw)l by current techniques are the fre-
quencies of the first few modes and possibly the damping factor of the
fundamental translational modes.

A further complication in any frequency-domain approach
arises from the typical short duration of earthquake records. This
leads to a frequency resolution which is inadequate for long-period
structures when the Cooley-Tukey FFT algorithm is used to determine

the Fourier spectra of the base motion and structural response.
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Spectral ordinates can be calculated at intermediate frequency pointé
either by adding zeros to the digi‘cized time-history data or by eval- .
uating the Fourier transform integral at selected frequencies. This
will produce valid estimates of the true Fourier spectrum only if the |

: :najb_r portion of the complete excitation and response histOrieé_ are :
iR 1';éed in the spectral analysis. This same requirement is also nec—
‘es sary of course for the transformed Duhamel equation (1.1.1) to “
‘be a valid approximation, ﬁnless it is modified to include nonzero initial
and firia.l conditions. Because of these considerations; there are |
difficulties in any frequency-domain approach which must be overcome
if short time segments of the full response are to be used.

Some of the above difficulties can be avoided by using the

time-domain version of' the nonparametric identification pro.cédure-
based on equation (1.1.1), that is, the impulse resi)ovnse function h(t)

is estimated from the Duhamel or superposition integral equation:

t
y(t) = | h(r)z(t- T)dr | (1.1.2)
| . |

where it is assumed that there is no motion until t.ime t=0. The
modal parameters are then estimated from the computed h(t).
Torkamani and Hart (1975) have estimated the impulse re-
sponse function by discretizing equation (1. 1.2), which leads to a set
of ill-;:_on&itioned linear equations. They apply a smoothing criterion
duriné :t.he estimation of h(t) to help overcome this problem. Udwadia

and Marmarelis (1976) have estimated h(t) from equation (1.1.2) by
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using a correlation technique based on the assumption that the base

- motion is white noise. They used the basement and roof records
produced in the Millikan Library building at the California Institute

of Technology during the San Fernando earthquake. In a companion
paper, these authors have also applied the correlation technique to
determine the second-order Wiener kernel of the Millikan Library
from this earthquake data to attempt to gain some insight into the
nonlinear processes which occurred in the building (Marmarelis and
Udwadia, 1976). The Wiener kernels give a nonlinear, nonparametric
model which is based on a representation of the response as a sum of
integral terms that is valid for a general class of nonlinear systems.
The first-order kernel is analogous to the impulse response function
because the corresponding integral term in the representation of the
response has the same form as the right-hand side of equation (1. 1. 2),
One problem in identifying Wiener models from earthquake records '
is that the excitation is not band-limited white noise and it is difficult
to determine the effect of this on the estimated kernels.

In the cited papers by Udwadia and Marmarelis, the authors
point out the nature of the compromise that must be made in the
selection of the record length to be analyzed. On one hand this should
be long so that the statistical variability of the estimates is reduced but
on the other hand it should be short enough that the structural prop-
erties can be considered stationary. This is a major difficulty for
non-parametric identification of structural systems because many

cycles of response are required to give reliable estimates.
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Iemura and Jennings (1973) have developed a novel nonpara-
metric technique based on the general form of the equation of motion
for a single degree-of-freedom oscillator. They used their approach
to ‘esti:rnate the global hysteresis loops from the roof response of the
- ,.'Millikan Library du:.ring the San Fernando earthquake., The same
o .a}p.proach has recently been applied to some seismic' response records
| for an earth dam (Abdel—Ghaffé.r et al, 1977).- The hysteresis loops

identified by this technique appear to be contam.inated‘by considerable
noise unless the original data are severely band-pass filtered about
the fundamental frequency of the structure.
In general, the performance of nonparametric identiﬁcation

- methods when applied to earthquake records has not been completely
satisfactory. It is felt that these difficulties may stem from the lack
- of model constraints during identification in the presence of high
levels of measurement noise and model error, particularly the latter.
'For example, in the nonparametric procedures based on equation

b(l. 1, 1) or (1. 1. 2), the only assumptions made about the structural
model is that it is linear and time-invariant. Much useful informa-
tion, such as the fact that the dynamics satisfy Newton's Second Law,
is ignored. A parametric model is imposed only after the transfer
function H(iw) or the impulse response function h(t) is estimated,

so the prior information contained in this model is not used in the
critical first stage of the identification where it would facilitate the
extraction of the signal information from the noise. It would appear

to be advantagéous to impose the parametric model right from the
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start when such a model is available. Prior knowledge can then be
utilized more efficiently to reduce statistical variability and hence

to enable the structural parameters to be estimated more reliably

from short records.

Most of the work in structural identification using parametric
models has been based on variations of the response-matching idea
mentioned earlier. This is referred to as the output-error approach
to parameter estimation and it is the basis of the techniques inves-
tigated in this dissertation. The model parameters are estimated by
minimizing an integral (continuous data) or sum (discrete data) of the
squared response error. Althoughpastwork has favored the time domain,
linear parametric models can also be determined in the frequency do-
main by applying the output-error approach using the square of the trans-
formed response error. If the complete records are used, then by
Parseval's identity the parameter estimates should be equal to those
obtained by minimizing in the time domain.

Many authors have tested identification techniques for para-
metric models by employing simulated seismic response data.
Distefano and Rath (1974) have applied two output-error techniques,
one based on an optimal filter and the other on a Gauss-Newton
procedure (which is also known as the modified Newton-Raphson
method). They use these techniques to estimate the parameters of
some single degree-of-freedom nonlinear models from simulated

data. The same optimal filter approach is used in this work with
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linear models. Beliveau (1975) has also used the Gauss-Newton
method to estimate the parameters of a single-mass linear soil-
structure system and a single degree-of-freedom nonlinear system
on a rigid foundation. Udwadia and Shah (1975) estimated the stiff-
ness distribution of a continuous shear beam. They found it necessary
for this continuous case to add derivative terms to the integral squared
response error to provide smoothing constraints during minimization,
which was done by a mixed gradient technique (steepest descent fol-
lowed by conjugate gradient near the minimum). Finally, a discrete
equation-error technique has been developed by Caravani et al (1977)
to estimate the stiffness and damping matrices for a linear chain
model. In contrast to output-error techniques, this technique requires
a response record for each degree of freedom and so it has limited
potential as far as seismic data is concerned.

Several authors have applied time-domain techniques to de-
termine parametric models from both simulated and real data.
Raggett (1974) has employed an output-error approach to estimate
modal parameters. He uses the simulated seismic response of a
three degree-of—‘freedom linear chain system and response data from
a real structure. His technique is described more fully in Chapter 5
because the technique discussed there has several similar features.
Distefano and Pena-Pardo (1976) have used the optimal filter tech-
nique to estimate the parameters of a linear three degree-of-freedom
chain model and the same model with cubic softening added. They

tested the algorithm with simulated data and then applied it to records
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obtained from a three-story steel-frame structure, which was shaken
by simulated earthquakes on the large shaking-table at the Richmond
Field Station, University of California, Berkeley. This facility has
also been used by Matzen and McNiven (1976, 1977) to generate
"seismic' response records for a single-story steel-frame, They
then use these recorded data, after some prior testing with simulated
data, to estimate the parameters of a single degree-of-freedom
model with a Ramberg-Osgood hysteresis law. They employed a
Gauss-Newton procedure to minimize the integral squared response
error, Finally, Beck and Jennings (1977) tested an optimal filter
algorithm on a single degree-of-freedom linear oscillator and then
applied this algorithm to short time-segments of the response to
investigate the changes in the equivalent linear parameters of the

i

fundamental mode of the Union Bank building during the San Fernando

earthquake.

1.2, OQutline of This Work

The principal aim of this work was to devise a practical ap-
proach which would allow the best estimates of parameters of linear
structural models to be determined systematically from records of
barse motion aﬁd response during an earthquake.

Linear models were chosen partly because they are a natural
starting point for identification of structures and partly because they
are easily formulated. In addition, the identification of time-invar-

iant linear models is of practical importance because these are the
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models commonly used in dynamic de sign. This is either through
their use in the response spectrum approach (Hudson, 1956; Housner,
1959), which is based on the modal decomposition of linear structural
models, or through the use of synthesized models and particular
ground motion records to compute full reéponse histories. One of

- the aims of this work was to jnvestigate how well time—invarianf
linear models can reproduce the strong-motion response of a build-

‘ -iﬁg.

The general features of parametric and nonparametric models
for structural identification are discussed in Chapter 2, and it is
concluded that the former models are more useful in earthquake
engineering, It‘ is noted that empirical parametric models obtained
by the identification of existing structures can be used to evaluate the
accuracy of techniques for synthesizing models from structural plans,
In addition, empirical models can be used to estimate parameters,
such as those describing structural damping, which are difficult to
determine by synthesis.

These remarks in Chapter 2 are followed by the formulation
of what is termed the output-error approach to parameter estimation.
This approach is based on the idea of estimating the parameters by
calculating those values which optimize the match between the re-
corded andzﬁodel responses. It is noted that any technique which
implements this formulation will not only l:;rovide a means for deter-
mi.I.l_ing the optimal estimates of the parameters of specified models,

but in the case where measurement noise is known to be small, it
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will also allow the mathematical form of the model to be evaluated.
The remainder of Chapter 2 contains a discussion of the reliability
of the estimates of the parameters obtained by an output-error
method.

In Chapter 3, the question of identifiability of a general class
of linear structural models is examined. This involves an investi-
gation into whether the values of the parameters of the model are
specified uniquely by its input and output, which is a necessary condi-
tion for uniqueness of the optimal estimates given by an output-error
method. An investigation of identifiability is particularly important
when the measured output from a system does not corre spond to the
history of the complete state of the model used in the identification.
This is the situation when earthquake records are used in structural
identification because on one hand, kthe response is typically measured
at only a small number of locations in the structure, while on the
other hand, it is desirable to have a large number of degrees of
freedom to model adequately the distribution o‘f stiffness.

| Two results of importance are proved in Chapter 3 relating
to the identifiability of the class of linear structural models con-
sidered. The first shows which parameters are specified uniquely
by the input and output of 2 model. These are the modal periods,
damping factors and effective participation factors. The second
result shows that to determine the stiffness and damping matrices

| uniquely within the general class of linear models with N degrees
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of freedom, it is necessary to measure the response at no less than
£N of the degrees of freeaom. This assumes that sufficiently good
prior information about these parameters is available so that the
appropriate values can be chosen from a finite number of possible
values, If this is not the case, uniqueness is strictly guaranteed

only if the response is measured at every degree of freedom.

The class of models may be further restricted to ensure identi-
fiability. However, it is concluded that even if the models are identi-
fiable, the stiffness and damping matrices generally cannot be esti-
mated reliably in applications because of noise in the records., A
practical strategy is. then suggested for structural identification using
linear models and earthquake records, in which the parameters of
the dominant modes are estimated by performing a series of identi-
fications.

An investigation is made of two output-error techniques to
estimate modal parameters of linear models from seismic records,
The first, described in Chapter 4, is an optimal filter method which
was adapted from the literature on state estimation. This technique
processes the data sequentially and leads to sequential estimates of
the parameters, The seceond method, described in Chapter 5, is
an iterative approach which uses all the data at each iteration. It
is referred to as the modal minimization method and it was developed
in this work to provide a reliable technique to estimate the modal

parameters after certain weaknesses of the optimal filter technique
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became apparent when it was applied to seismic records. Both
methods were initially tested by using simulated seismic response
records,

The modal minimization method was applied to seismic rec-
ords from two multi-story buildings and the results are reported in
Chapter 6. Optimal estimates of the parameters of the first few
dominant modes are presented and their reliability is discussed, It
is shown that the optimal time-invariant linear models for the build-
ings can reproduce their strong-motion response remarkably well.
In addition, time-varying linear models are used to examine changes
in the structural properties of the buildings during their earthquake

response,.
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II. IDENTIFICATION USING PARAMETRIC MODELS

Some of the features of two principal categories of models,
parametric and nonparametric, are discussed in this Chapter and the
advantagbes derived from using the former in earthquake engineering
are given,. The output-error approach to parameter estiznation is
thén formulated and several assocjated problems are examinéd,
including the reliability of the estimates of the parameters. Except
for §2.1.1 and parts of §2. 1. 2, the discussion in this Chapter has
general applicability in system identification. In later Chapters,

several aspects will be specialized to linear structural models.

2,1, Parametric and Nonparametric Moé.els in System Identification

A model is defined here to be any mathematical representation
which approximates the relation between the input and output of a
system. The models employed in system identification can be clas-
sified into two principal categories:

(2) Parametric models. Here a particular mathematical

form is chosen to describe the essential features of the input-output
relation of the system under study; but certain parameters must be
assigned values before the model is completely specified. Often prior
information is available to assist in this step, but in general some of
the parameters must be estimated from the input and output of the
system. As an example, a single degree-of-freedom model could be

represented in the time domain by the differential equation:
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x + f(t,x,x;a) = z(t) (2.1.1)

where x(t) is the output of the model; =z(t) is the input to the model;
the restoring force f is a prescribed function or functional and a
is a vector of unknown parameters to be estimated. If the model is
linear and time-invariant, an equivalent representation in the fre-

quency domain (Fourier-transform space) is:
X(w) = Hiwa)Z(w) (2.1.2)

where H is a prescribed function of ( containing unknown param-
eters a to be estimated.

(b) Nonparametric models. Here the unknown parts of the

model are functions rather than parameters, and so they are like
infinite-dimensional ""parameters'' for identification. The only as-
sumptions that need be made about the system are that it has finite
memory and is time-invariant, although linearity is also often as-
sumed. The system is treated as a ""black box'' since the aim is to
determine a functional relationship between the input and output with-
out recourse to any prior information about the internal structure

of the system. For example, a time-invariant linear model with a
single input and a single output could be characterized by the impulse

response function h(t) and the associated input-output relation:

o0
x(t) = Io h(1)z(t - T)dr (2.1.3)
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The corresponding model in the frequency domain would be given by
the transfer function H(iw), the Fourier transform of h(t), and the

input-output relation:
X(w) = H(iw) Z(w) . (2.1.4)

Note that in the nonparametric formulation, h(t) and H(iw) are arbi-
trary functions to be estimated from the input and output, whereas in
(2) these functions are of a prescribed form but with unknown param-
eters. Different identification procedures are therefore required in
the two cases. |

In view of the preceding discussion of models, system identi-
fication can be considered as the process of:

1) specifying the mathematical form (input-output re-
lation) of the model for the system under study,

2) estimating the unknown parameters for a paré.metric
model, or the unknown functions for a nonparametric model, using
input and output data from the system,

3) evaluating the capability of the selected model to

describe the essential features of the system.

2.1,1. Parametric and Nonparametric Models in Earthquake

Engineering

The prime motivation to engage in system identification re-
search in earthquake engineering is to provide the design engineer

with more accurate models with which to predict the seismic response
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of a proposed structure during its design. Nonparametric models
suffer from several disadvantages for this application which stem
from the fact that they neglect prior knowledge about the system.

Firstly, the identification of nonparametric models for struc-
tural systems is inevitably followed by a parametric interpretation,
whenever this is possible. For example, the estimated transfer
function }%(iw) completely characterizes a linear nonparametric
model for a structure, but without imposing some parametric model
it is difficult to give a physical interpretation of the information in
this model. This is the reason for the common practice of subse-
quently estimating the parameters of a linear parametric model from
the estimated transfer function. It has already been pointed out in
Chapter 1 that if parametric models based on prior information are
available, it would be better from the point of view of reducing sta-
tistical variability to use these models from the beginning of the
identification process. This is particularly the case when linearity
is assumed because the parametric form of linear structural models
is well known.

Possibly the greatest disadvantage of truly nonparametric
models in earthquake engineering is that they are empirical models
which cannot be constructed by synthesis. Successful identification
from records at a number of points in a structure leads to a relation
between the excitation and response at only those points. The be-
havior at other points in the structure, or the seismic response of

different structures, cannot be predicted from a purely nonparametric
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model. In particular, these models are not useful in the process

of designing for earthquake resistance wherein the seismic behavior

of a proposed structure must be predicted.

These disadvantages of nonparametric models can be avoided

- by using empirical and synthesized parametric models, so that the

latter models are more useful in earthquake engineering. In the
remainder of this dissertation, the emphasis will therefore shift to
parametric models and the adjective ""parametric! will often be

oritted.

2,1.2, Empirical and Synthesized Parametric Models

To predict realistically the seismic response of a structure
é.uring its design, theoretical modelsg are required for which the
péranieters can be estimated from the properties of the structural
subcomponents and their interaétions. The resulting parametric

models will be called synthesized models to distinguish them from

empirical models for which the parameters are estimated from

records of the structural response. Synthesized models are some-

times called theoretical models, but in this work a theoretical model

will mean a general mathematical form describing the internal struc-
ture of a system, without specification of values of the parameters.

To illustrate these definitions, consider the equation

Mx + C

(Mo

T Kx = £(t) | (2.1.5)

which will be used later as a theoretical structural model. Its
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mathematical form is based on Newton's Second Law and the cons-
titutive laws for a linear viscoelastic solid. If the unknown parameters
in this theoretical model are estimated by synthesis using the plans of

a structure, it becomes a synthesized model, whereas if the unknown
parameters are estimated from structural records, it becomes an em-
pirical model. A useful interpretation of a theoretical model is that it
is a generic form defining a whole class of models., Each model has
the same mathematical form and is given by a particular set of values
for the parameters.,

Despite recent advances, which include the development of the
finite element method and great improvements in computer technology,
synthesis of structural models has only met with partial success. One
of the reasons for this is that it is extremely difficult to estimate sys-
tem damping from the damping of each subcomponent. Raggett (1975)
has made a contribution in this area. However, even the values of the
significant modal periods for linear models are often not predicted
well (Wood, 1972; Murphy, 1973), and these are the most important
parameters in predicting the seismic response to a given ground-
motion history.

The lack of complete success with structural synthesis could be
due to a number of factors which include the uncertainties associated

with the properties of the structural and nonstructural components, the
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simplification necessary to ensure the model is computationally fea-
sible, and the difficulties in selecting a theoretical model which is
capable of realistically modelling the physics of the strong-motion
response of a structure. As a consequence of these problems, it be-
comes necessary to complement the a priori knowledge used in a syn-

thesized model by the a posteriori knowledge derived from empirical

models,

Empirical models of existing structures have some intrinsic
value of their own. However, it is the interplay between synthesized
and empirical models based on the same theoretical model which is of
greatest value in earthquake engineering. Generally, the empirical
model will be a reduced form of the full theoretical model because it
must be identifiable from records at only a few positions in the struc-
ture (§2. 4, 1) and because of the limited resolution of the parameters
in the presencé of noise (§2.4.1), For example, an empirical struc-
tural model correspondiﬁg to a 1inea.r theoretical model should be
based on parameters of the dominant modes and not upon the equation
of motion in physical coordinates which involves all the parameters of
the mass, stiffness and damping matrices (see Chapter 3). Thus,
when identification is performed on a structure in the field, the em-
pirical model cannot be expected to give the same level of detail as a

synthesized model, but it will impose constraints on that model,
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These empirically-determined constraints can be used to modi-
fy a synthesized model of the structure to ensure that such a model is
consistent with the observed behavior. For a linear model, the mod-
ification could be as simple as scaling the synthesized stiffness matrix
to match the observed fundamental frgquency or it could be the small-
est possible change in the elements o; the stiffness matrix necessary
to give the observed values for all of the related modal quantities.

To lead to improvements in the earthquake-resistant design
process, the identification of an empirical model for an existing struc-
ture may best be viewed as having three functions:

1) The estimated parameters may be used to evaluate the ac-
curacy of. the techniques used to synthesize the parameters for a cor-
responding theoretical model. For example, for linear models the
accuracy of the modal periods and participation factors obtained by
synthesis can be determined.

2) For those parameters of a theoretical model which cannot
be reliably estimated by synthesis, the corresponding estimated pa-
rameters of the empirical model can be used to determine typical values
for a given type of structure. For example, modal damping factors
determined empirically can be used with linear theoretical models
during design.

3) Some evaluation can be made of the mathematical form of
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the theoretical model from the degree to which the empirical mdael'

’ﬁatches the structural response, For example, the ability of linear

“structural models toc describe the response of structures to strorig

ground motion can be examined in this way.

One of the fundamental problems arising during the identifi— P
éation of an empirical model is whether the parameter estimates are
reliable. Different aspects of this problem are discussed after the -
output-error approach to system identifi?ation is introduced in the ° o

next section,

2.2, Output-error Approach to System Identification

The output-error approach (Bekey, 1970; Bowles and Straeter,

. 1972) to the estimation of parameters of dynamic models is used in

thls dissertation. The equation-error approach (BoVWles and Straeter,.
} l‘.f)'.’i‘z';vDistefano and Rath, p. 16 and 51, 1974) was investigated for
1:1;168.1' single degree-of-freedom models but its accuracy in several
_éa;ses was found to be inferior to the output-error approach., Fur-
Eﬁérmore, it is well known that this approach is not usgfui for multi-

: dégree-of-freedom models because it either requires measurements
at every degree of freedom, or measurement at one degree -of freedon{
ioof each modal contribution if a modal approach is taken,

The idea behind the output-error method, illustrated in Fig. 2;,,1',' ,
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T is to ‘estimate the parameters of a model by determining those values
which give an optimal match of the output of the model and the output
of the real system, when both are subjected to nominally the same
) 1nput The quality of the output match is determined by some scalar
'ﬁéésure-of-fit, J, which is a positive-definite function of the Qutpu_@-l:"
error. Either a continuous form or a discrete form can be chosen for
the measure-of-fit, In the applications in this dissertation, continuousff'
] récords are used which are obtained by linear interpolation between =
" discrete data points, and so an integral mean-sqguare output-error is- -
: ‘;v_hosen for J. Finally, the purpose of the parameter-adjustment algo—'
- rithm, shown in a schematic way in Fig. 2.1, is to‘select the optirriai,
parameter values by minimizing the measure-of-fit J in a systeméﬁiré
manner, A»pp}ropriate algorithms are discussed later in §2. 2. 4.

It is convenient to formulate the output-error approach in four
parts: state equation, output equation, criterion for optimalitsr, .gnd. o

minimization (or parameter-adjustment) algorithm,

2.2.1, State Equation

It is assumed that a theoretical model is available which is
spatially discretized, so that its dynamics may be described by a

state equation expressed in the general first-order form:

x(t) = £(x, z, t;a) (2.2.1)
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Here x is the state vector of the model. For structural models, it
will consist of the generalized displacements and velocities for every
degree of freedom of the model, It is not necessary for the state vec-
tor to correspond to physical coordinates; for example, it may cor-
respond to modal coordinates if a linear model is used. The vector
function or functional f describes the mathematical form of the theo-
retical model and its argument z represents the input history to the
model, The vector o consists of the parameters of the model.

Notice that the history of the state is not uniquely defined by
Eq. (2, 2.1) unless the initial state, E(Ti) , is prescribed., However,
this is likely to be unknown in many applications, For example, when
using seismic records to identify structures, it is generally not pos-
sible to take advantage of the fact that the structure starts from rest,
The reason for this is that the initial start-up motion is usually lost
because a certain threshold motion is required before recording occurs.
If the time interval used in the identification is only a portion of the full
history of the response, _>_<_(Ti) is still likely to be unknown because ob-
servations of the state will be contaminated by noise., Furthermore,
the complete state is typically not observed anyway.,

The value chosen for the initial state will influence the estimated
values for the model parameters., Both sets of unknown quantities are

therefore combined into one vector a and all the components are
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treated as "'model parameters' which are to be estimated from avail-

able data, that is,

It should also be noted that what is to be considered as the input
z is model—depend:ént and that this model input may not include all the
excitation of the real system, as indicated in Fig, 2.1, For example,
for planar structural models the seismic input corresponds to one
component of the horizontal acceleration at one point on the base of
the structure, whereas the real structural motion parallel to a vérti—
cal plane may also be caused partly by out-of-plane excitation and ro;

tation of the base,

2.2.2. Output Equation and Output-error
Y

The output equation describes how the output of the model is

related to the state of the model. It is sufficient for most purposes
. to take a linear relation between the model output m and the state

. and its rate of change, so that:

m =T x+T,% (2.2.2)

where 1"1 and PZ are constant rectangular matrices. The elements
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of these matrices might be chosen, for example, to be either zero or
unity in such a way that they select those components of x and x
which contribute to the output.

The output-error v is the difference between the output meas-

urements y of the real system and the model output m, that is,

v(t;a) = y(t) -m(t;a, z) (2.2.3)

where the implicit dependence of the model output on the parameters
of the model and the input to the model has been shown., There are
two contributions to v, measurement noise and model error, which
are discussed in §2.4.3. Also, the dimension of y, m and v will
in general be smaller than the dimension of x because the number of
output records will be less than the desired number of degrees of
freedom in the model,

In structural identification, <the output vector y will be the
recorded response (displacement, velocity or acceleration) at various
points in the structure. The term ]_"23;._ is included in (2. 2. 2) so that
it is possible to use acceleration records. Although the acceleration
may be integrated to provide displacement and velocity histories, this
process accentuates the long-period errors in the digitized data, which
in some cases may cause difficulties in the identification. It also

lowers the signal-to-noise ratio at high frequencies, which can be an
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v .advantage when determining the properties of the lower modes but not

" if the higher modes are of interest,

' 2.2.3. Optimality Criterion

For a given recorded input z and recorded output y over a
_time interval [Ti’ 'I'f] » the optimal estimates of the parameters are

defined to be the values which minimize the measure-of-fit:

T
oo £ 2

J(a) = JT ¥ tsillv

1

dt + ||a - (2.2.4)

1)
A

subject to the constraints of Eqs. (2.2.1), (2.2.2) and (2. 2 3). The
vector of optimal estimates is denoted by é. It is assumed for the
preéent thé.t _é‘_. is defined uniquely by the minimization.

In Eq. _ (2.2.4), _3_.0 is an a priori estimate of the parameters,
and A and V(t) are prescribed symmetric positive semi—definite and
positive definite matrices réspectively, which allow weighting of the

.p;rémeters and output-error based on prior knowledge, Some judg-
‘ment is required in selecting these quantities., The norms in Eq.(2.2.4)

are the weighted Euclidean norms:



and (2. 2.5)

”-a'_- éO”i :ZZA(a’ _3’0,1)(a3 _3’0,3)

The weighting matrices are commonly taken diagonal so that, for
2 N 2

example, ”X” reduces to Lvii(t)v' .
V(t) 1 ’

Instead of viewing the output-error approach as estimating the
parameters of a theoretical model, it is often useful to take an alter-
nate point of view: a class of models is defined, then the recorded
input and output from the system under study are used to determine
the optimal model within the class, The class is defined by the theo-
retical model chosen to represent the system, together with the output
equation, Each model in the class is given by assigning values to the
parameters of the theoretical model from within a set of allowable
values; the optimal model being given by 3.

The optimal model is essentially that model with the smallest
weighted integral-squared output-error but with some constraints,

governed by the size of the elements of A, which prevent too large

a departure from the prior estimates é

0° For example, if Aii is

relatively large, a, will be constrained to remain close to 30 i
H

during the minimization of J. It is desirable in many structural
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' ’léﬁplications to set A equal to zero so that the parameters are not
‘constrained by prior estimates., However, for reasons explained later,
this cannot be done with one group of output-error techniques, the filter
‘methods.,

It is apparent that in the case A =0 the output-error approach’
allows the chosen theoretical model to be evaluated, when there is‘ prior
information available which indicates that measurement noise has only
a small influence on the optimal output-error. In this case, since the
mean-square output-error is minimized, if the agreement between the
response of the real system and the optimal model is not satisfactory,
then the theoretical model must be at fault.

The optimality criterion has been given in a deterministic set-
ting where the presence of noise in the data is acknowledged but no
statistical assumptions are made about its form. It is possible i:ovrgivve
a stochastic interpretation o—f the optimality criterion, because the same
minimization problem can be derived by assuming the output-error v
is Gaussian white noise with zero mean and covariance matrix V-l(t).
In this case, if A =0, é is the maximum likelihood estimate of a.

On the other hand, if the parameters are assumed to be Gaussian ran-
dom variables with mean _a:O and covariance A-l, then é is the
Bayesian maximum probability estimate., These ideas for a diggrete

measure-of-fit are discussed in Bowles and Straeter (1972), while
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Jazwinski (p. 150, 1970) treats both discrete and continuous cases.

2.2.4., Minimization Algorithms

The problem of identifying the optimal model from system
data has been reduced to minimi;ing the function J(a) in Eq. (2.2.4)
where v is subjected to the constraints of Eqs. (2.2.3), (2.2.2) and
(2.2.1). This minimization could be tackled by directly solving the

condition for the stationarity of J with respect to a:

vJ =0 . (2.2.6)

a=4
although this usually leads to a set of simultaneous nonlinear algebraic
equations in a which cannot be solved analytically. The nonlinearity
arises because the model response is almost always a nonlinear function
of the parameters, even if the model itself is linear in the state and
linear in the parameters (Eykhoff, p. 113 and p.446; 1974). Most
techniques actually carry out the minimization by other means although
the Gauss-Newton minimization method is equivalent to applying to
Eq. (2.2.6) a modification of the classical Newton-Raphson method for
finding the zeros of a multi-variable vector function,

Two major groups of methods for determining the minimum of
J can be distinguished andlthese will be considered briefly, A number

of authors, including Bekey (1970), Bowles and Straeter (1972) and
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- Eykhoff (p. 151, 1974), have given a more extensive review of minimi-

- zation techniques.

(a) Filtering methods: These are based on state estimation

. -theory (assuming no '"process' or ''plant' noise) and the minimization

is‘ a:c_hieved in an indirect manner by solving an initial-value 'pvr.oblem.
Eit‘.h.ér“a deterministic setting (invariant-imbedding filter) or é

' ‘s‘t‘o.c’hastic setting (extended Kalman filter) can be used but the final
equations to be solved are formally equivalent.

A characteristic feature of these methods is that they process
the data sequentially and give rise to sequential estimates of both the
parameters and the state. One drawback of these methods for param-
eter estimation is that they give only anapproximation to the optimal

“estimates,

The invariant-imbedding filter is discussed in more detail in

Chapter 4.

(b) Déscent methods: These are iterative methods which use

all the data over a given time segment at each iteration, They may be
interpreted geometrically as finding the minimum by a search in the
multi-dimensional space represented by the allowable values of the

parameter vector a. An initial estimate 'é is required to start the

0
‘algorithm, even if A is zero in (2.2.4). A

Some techniques in this category which have been used in
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structural identification have been given in §1. 1.3 and include the
Gaués-Newton method (also called the modified Newton-Raphson
method), the method of steepest descent and the conjugate gradient
method, The first procedure is a modification of the classical
Newton-Raphson method, The Hessian matrix %VVJ[ S in (2. 3. 8)]is
modified by neglecting the term containing the second derivatives of
the model response with respect to the parameters (Matzen and
McNiven, p. 17, 1976; Distefano and Rath, p. 16, 1974), Bard (1970)
has compared several descent methods for their application to param-
eter estimation,

A new descent method called the modal minimization method is
introduced in Chapter 5. This was specifically developed to provide

a reliable technique for the identification of linear multi-degree-of-

freedom models,

2.3. Some Useful Definitions and Shorthand Notation

It is convenient to introduce the scalar product <*, *> defined

on the space of continuous vector functions by:

T
<b,e>=] f(bt), Vite()at 2.3.1)
T,

1

where V is a prescribed continuous matrix function which is symmetric

and positive definite and b,c are any continuous vector functions
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- defined on the given time interval [T;,T;]. The notation (*,*) r’éfer? s

to the usual Euclidean (or vector) scalar product, so that:

(b(t), V(e(t) =), ). V,.(0b; (e (6) | (2.3.2)
ij
and (2-5g A -3p) =ZZ Ajiles-3g (@8 3)
2
=la-2,1" . L (2.3.3)
~ s o

from Eq. (2.2.5). It is easy to show from (2. 3.7) that <=+, > sat-

isfies the required properties (symmetry, linearity and positivé de‘-A

finiteness) to make it a scalar product. |
With this shorthand notation, Eqgs. (2. 2.4) and»l(Z. 2. 3) may

bé written as:

J@) =< v, v>+(2-3,,A-3,) (2.3.4)
and v(a) =y - m(a, z) (2. 3. 5)
It is also useful for later work to define:
JQ(E):<X’X>' ' (2.3.6)

From the properties of a scalar product, it can be shown that Egs.

(2.3.4) and (2. 3. 5) imply:

A 8T

VI(@)], = 5

(V3 () ba, (2.3.7)

om . A

:-2<v,—=>+2(__ Al -2,.))
T Ba,_ Le 29
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where _1.k is the unit vector Qk)j = éjk , and:
Al Al 82'J
= =VV = o e
Sic(2) 12 J(i)].k 2 9a0a_
J J ) (2.3.8)
o9m Om A o m
<=, —_— 4 " - <Z.’ —
Baj aak ik 8aj8ak

The symmetric matrix S =S(§._) is called the sensitivitymatrix. It

plays an important role in the application of any output-error approach
and it will be discussed in more detail later. It is also convenient to

introduce a reduced sensitivity matrix-function §(i) defined by:

s om Om 2.3
Spl@) =<ga - (2.3.9)
j k

The matrix §(g) is symmetric and at least positive semi-definite,

It can easily be shown that S is positive definite if and only if the

om

a—;’— (the sensitivity coefficients) are linearly independent over the time

in‘f;]erval [Ti’ Tf] (see Appendix A).

Several technical points are to b‘e noted in relation to these
definitions. First, the output-error v(a), and hence J(a) and S(a),
are also functions of the input and output records, z and y respec-
tively, while g(g) depends on m(a,z) and so it is a function of z
(but not y). These arguments have been omitted in the above notation
and the time dependence of y, z, m and v is also not denoted
explicitly. Second, it is assumed that there is sufficient continuity and

differentiability for all the quantities involved to be meaningful and for
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the manipulations carried out on these quantities to be valid.

The dvefinitions above are useful for two reasons. The first
reas’;on is that they are a convenient shorthand which makes the
analysis in subsequent discussions more economical. The second and " N
most important reason is that they.give wide generality to the a':t.'gq—‘
‘ments developed in the remainder of this chapter. Thus, the dis-
cussion need not be restricted to the particular measure-of-fit J
defined in (2. 2. 4), It will apply to any measure-of-fit which has the
form of Eq. (2.3.4), where <+ *> is now to be interpreted as an-
arbitrary scalar product and the time interval [Ti’ Tf] is to be ir:l'terl-i
preted as the appropriate data interval. The discussion which foliows
can therefore be applied to measures-of-fit which are integrals (coﬁ—' :
tinuous data) or sums (discrete data) in ejther the time domain or
- frequency domain. The model does not even have to be dynamic; it
could be a "'static' model, that is, m(a,z) could be simply an al-
gebraic relation between the "output'" m and '"input" z involving »
unknown parameters a. With a suitable interpretation, the output-
error approach and the discussion in the following sections are
therefore applicable to structural identification using the data from

steady-state harmonic tests.

2,4, Reliability of Optimal Estimates of Parameters

There are a number of questions relating to the reliability of e

the optimal estimates of the parameters which should be conside»redl »

when applying an output-error algorithm to a theoretical model of a
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system.

One important question is whether the values of the parameters
of the theoretical model can be expected to be defined uniquely by the
input and output for the system. The first step is to examine whether
the corresponding class of models is identifiable., = This concept is
discussed in §2, 4.1 and its relation to the resolution of the internal
structure of the system is given.

Identifiability of the models is necessary for meaningful results
but it does not ensure that the optimal estimates of the parameters are
unique. Conditions for uniqueness are considered in §2. 4. 2 along with
the question of convergence of the algorithm, that is, whether the
values of the parameters returned by the algorithm actually give the
global minimum of J.

The next question considered is how the accuracy of the
optimal estimates is affected by measurement noise. A fundamental
difficulty is that there are no true or exact values for the parameters
because every theoretical model gives only an approximation to the
physical processes occurring in the real system. This problem is
considered in §2. 4. 3 where the concept of an ideal model is introduced
to act as a basis for judging the accuracy of the optimalvmodel. In
§2.4. 4, a deterministic error analysis is carried out to investigate
the accuracy of the optimal estimates of the parameters with respect
to the ideal values, Only limited resullts can be obtained unless

quantitative assumptions are made about the level of measurement
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“noise and ideal model error. In §2.4.5, some properties of the
sensitivity matrix desirable for good accuracy are discussed and a
geometrical interpretation of these properties is mentioned.

In §2. 4. 6, attention is drawn to the fact that the optimal esti-
mates of the parameters can be expected to change as different por-
tions of the data from a system are used because of limitations of the
theoretical model. This is followed by a section containing some
final remarks on the problem of assessing the reliability of the param- |

eter estimates,

2; 4, 1. Identifiability and Resolution:

Let M denote the class of models corresponding to a theoretical -
vmodel to be used in the identification of a system. The first question
considered in this subsection is whether knowledge of the input and
oquut of any model in I gives sufficient information to allow the
values of the parameters for that model to be determined. To show
that this need not be the case, an example is given which is based oﬁ
some work by Udwadia and Sharma (1978), but given from a slightly
different pointvof view,

Consider a theoretical structural model which is a linear chain
model with two degrées of freedom (Fig.2.2). To begin with, suppose
that the output m corresponds to the response of the top mass m,,

so that a class of models is defined by the state equations:

myX, + kZXZ - kle =-m,z
m X, + (k1 +k2)Xl - kZXZ =-m,Z

(2. 4. 1)
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mz —_— X2
3 K
C 2

m| ———.—.xl

Figure 2.2. Linear chain model with two degrees of freedom
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and the output equation:
(2.4.2)

where the parameters k1 and kZ can have only positive values.
The masses my and m, are assumed to be known and equal, and are

denocted by m It is also assumed that the model is initially at rest

o
so that the initial conditions X, (0) =0 :;{i(O), i=1,2 are known. Thus,
the vector of parameters is i=[k1,k2]t and the set of allowable va_lueg:b.j-:'v;'
a :{i:k1>0:kz>o}-

The input-output relation for the models can be given in an

explicit form, rather than as a differential equation, by using

Duhamel's integral:

2 @ .t
m(t;a, z) =-Z L | sinw_(t- TE(T)dT (2. 4.3)
— w r
r=1 T 0
Here the modal frequencies Wy and Uuz(uu1 <w2) are given by the
positive roots of:
2, 2.2 2
- = 4
mo(w ) mo(kl+2k2)w +klk2 0 (2. 4. 4)
and the modal participation factors @, r= 1,2, are given by:
LT
TCpg )
o = (2. 4. 5)

2
Loy ]
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where cp(r) =1- (2. 4.6)
The model output m is controlled by the four derived

parameters ®©;, W,, % and @, which are functions of the model

parameters k1 and k,. It may be shown by substitution that these

2

derived parameters have the same values for the two models given by:

k, =k¥>0 , k,=k¥>0
171 2 2 (2.4.7)
ES _ l 5k
and kl = Zk2 » ky = Zkl
(The algebra is shortened if the numerator of the difference
sk sk S l sk . .
ar(kl,kz) - ozr(ZkZ,Zkl) is shown to vanish,) Thus, these two models

will have the same output regardless of the input z and so the values
of the parameters for any model in the prescribed class of models
are not specified uniquely by the input and output unless k1 = Zkz. It
should be noted, however, that the response of mass my will be
different in the two models.

Suppose the output Eq. (2. 4. 2) was changed to:
m=x (2. 4. 8)

so that the output now corresponds to the response of the bottom mass

m For this new class of models, it turns out that the parameters

1
are defined uniquely by any input-output pair if the input z has finite

duration. This is because in this case the four derived parameters
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| .-Zcont‘rolling the output, Wy, W5, cp(ll)ctl and Cp(lz)ozz are specified

" uniquely (sée Chapter 3), and these in turn specify k; and k,

uniquely,

Definitions of Identifiability

 Consider a class of models I and a class of inputs C, then:

A model in I is globally identifiable for C if the values of its

parameters are specified uniquely by each input in C and the corre-
sponding output.

A weaker property can be defined which is implied by the above
' but which is motivated by the fact that local uniqueness may be all
that is required if sufficiently good prior knowledge of the parameters
is available: |

If the values of the parameters are speéiﬁed uniquely by each
' i:flput and output only in»some neighborhood of the actual parameter

. values, the model will be said to be locally identifiable for C.

Prior to identification, it is not known which particular model
in a class will be determined by the input and output so it is useful to
inves.‘cigate the identifiability of the whole class:

.b The class M is globally (or locally) identifiable if éach model
in M is globally (or locally) identifiable. The adjective ''globally"

) will sometimeé be omitted.

With this terminology, the first class of models in the example,

which used the response of the top mass as output, is not globally

identifiable for any input, although it is locally identifiable for any
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input of finite duration. The second class of models, which used the
response of the bottom mass as output, is globally identifiable for
the class of inputs with finite duration.

Other definitions of identifiability have appeared in the liter-
ature. It is shown in Appendix A that the definitions used here are
equivalent to the concepts of global and local identifiability introduced
by Bellman and Astrém (1970), except for an essential change in their
definition of global identifiability. In addition, the definitions used
here have been generalized from the delta-function input used by
Bellman and Astrdm to a prescribed class of inputs, so that the inputs
expected in applications can be included. Another definition of iden-
tifiability has been given by Beck and Arnold (1977) in their recently
"~ published book on parameter estimation. It is shown to be a stronger
form of localidentifiability in Appendix A,

It is emphasized that identifiability as defined here relates to
the unique determination of the parameters of a model from the input
and output of the model. An obvious question to be asked is what

happens when input and output records from a real system are used to

determine the optimal model within an identifiable class of models.
The situation is now complicated by noise in the records and the
limitations of the class of models in describing the behavior of the
system, and minimizing J might not lead to unique optimal estimates
of the parameters. However, it is easily seen that global and local

identifiability of an optimal model are necessary conditions for global
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~and local uniqueness, respectively, of the corresponding optimal
estimmates of the parameters based on minimizing ‘TO' The difficulty
in finding sufficient conditions for uniqueness is that the ou‘tput—error
is unknown prior to identification. A partial result is given in § 2 42

where it is shown that linear independence of the sensitivity coefficients
aaj is sufficient for local uniqueness of the optimal estimates, pro- =

vided the optimal output-error is sufficiently small.

When a class of models based on some theoretical model is
used in the identification of a system, unique determination of the
optimal estimates of the model parameters may be viewed as reA—:>
solving the internal structure of the system, as it is portrayed by th.e.
theoretical model. If too much detail is asked for, the class of model's '
may not Be identifiable and the desired resclution will be unattainable, ,‘

Even if the desired resolution is attain‘e‘d, some of the model
paramefers might be estimated inaccurately because of noise. The
accuracy of the parameter estimates is governed by the sensitivity of
the model output to each parameter and by the characteristics of the |
noise in the records from the system. In general, as the resolution
is increased by refining the models, the optimal model becomes more
sensitive to the particular noise content of the records used. A
compromise must therefore be made between the amount of resolution
asked for and the variance of the optimal estimates of the parameters.

- This trade-off between resolution and variance is well-known in the

literature relating to the geophysical inverse problem (see, for
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example, Jackson, 1972).

In Chapter 3, the ideas in this subsection are applied to a class
of linear structural models, It is shown that these models are typi-
cally not identifiable if the unknown parameters of the theoretical model
are the elements of the stiffness and damping matrices, the mass
matrix being assumed known. It is aiso shown that certain parameters
of each mode give all the information about the stiffness and damping
distributions that is contained in the input and output. Furthermore,
as a compromise between the resolution of this information and the
accuracy of the estimates, only the parameters of the dominant modes

should be estimated.

2.4,2. Convergencé and Uniqueness of the Optimal Estimates

Recall that an optimal parameter vector gives the global mini-
mum of J(a) in Eq. (2.3.4), subject to the constraints of (2. 3. 5)
and the input-output relation (state equation and output equation) for
the class of models being used. Two questions which should be con-
sidered are whether the minimization algorithm has converged to the
global minimum of J and whether this minimum defines unique opti-
mal estimates, Convergence cannot be confirmed simply by examin-
ing the output because the effect of lack of convergence on the output-
error cannot be distinguished from the effects of measurement noise
and model error (82.4.4). Also, uniqueness is not implied, of course,
by the existence of the global minimum.

A technical point requires clarification. Recall that a class
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o _'.ofbbn'-lc;aels is defined by a theoretical model, an output equation and

a setv VG of allowable values for the parameters of the theoretical

'model. The allowable set G will usually be determined on physical

i grounds and, for example, might correspond simply to each param-

eter being positive. The global minimum of J is strictly associated

. . with the region of allowable values in the parameter space defined by
FG,. However, if the parameters are constrained during the minimij-

- zation, the algorithm must be written to cope with the case where the
g>loba1 minimum may lie on the boundary of the region. Alternatively,
one can leave the minimi zation unconstrained and check the final
estimates; this is the approach used in the applications in this dis-
sertation, If the values returned as the optimal estimates by the min-

'i;ﬁization algorithm lie outside the allowable set, it is clearly indic-
ative of either trouble with the algorithm or inadequacy of the chosen
= '}c':lla’s‘.s of mhodels to represent the system.

| Let & be the parameter vector calculated by the minimization »

) _algorith:m, then for é to be an optimal parameter vector, it must

satisfy successively:

1) VJ@,_) =0 (stationary point)
2)’ J(é_)SJ(_a_._) for all a in some neighborhood of é
(local minimum)
3)" I(3)<J(a) for all a (global minjmum)
Note that in general there is at least one point in parameter space at

»lk.vvhich the conditions 1), 2)' and 3);’ are satisfied because J(a) isa
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continuous function of a and it is bounded below by zero. The excep-
tional case is where the global minimum occurs as ]|g_l| tends to
infinity, which should not occur in practice.

To identify a system unambiguously, unique optimal estimates
are necessary. This requires a refiﬁement of 2){ and 3)‘ to give:

2) J(a)<J(a) for all a#a in some neighborhood of a (strict

local minimum)
3) J(§)<J(_a_) for all a # é (unique occurrence of global mini-
mum)

The condition 2) excludes the possibility that é is just one of a
continuum of points giving the same minimum value of J, while 3)
also excludes the possibility that the global minimum occurs at other
local minima. Notice that the results of Appendix A imply that 2)
and 3) would be guaranteed if the optimal model were locally identi-
fiable and globally identifiable, respectively, and if the optimal output-
error vV were zero. Unfortunately, measurement noise and model
error make the latter a most unlikely event.

Ideally, the parameter vector é calculated by the minimiza-
tion algorithm should be required to satisfy conditions 1), 2) and 3),
each successive condition being more restrictive than its predecessor.
Each of these conditions is discussed in turn.

1) Stationary point:

Define the algorithm error by:

e. =

e;=5YI(@) (2. 4.9)

f =
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then 'EJ

Its effect on the accuracy of 2 is shown in §2. 4, 4.

should ideally be zero but in practice it need only be small,

If VJ is not used explicitly in the algorithm, the algorithm
error can be calculated separately by using Eqgs. (2.3.7) and (2. 3. 5),

that is:

" 812 { - A A L) 2 1
“"'<X’ ga"'];>—r_(_11(3 (9‘_'3’0)) ( . 4. O)

a o dm om
where v=y-m(2,z) and T " Ba |
k kla

A small algorithm error can always be expected because of
round-off errors when evaluating the quantities J, VJ, etc, in the
algorithm and because the minimum is always an approximate one.
The latter situation arises either because only a finite number of
iterations are performed (descent methods) or because of an approxi-
mation in the theory (filter methods). |

'2) Local minimum and local uniqueness

Assume Ej =0, then from a result in advanced calculus, _é_i_
gives a strict local minimum of J if the sensitivity matrix S =S(&)
is positive definite [see, for example, Eq. (2. 4.32)]. This is a suf-
ficient condition for a strict local minimum, but not a necessary one.
However, it is necessary that S be positive semi-definite for a mini-
mum at a. The sensitivity matrix can always be evaluated by sub-
stituting é given by the algorithm into Eq. (2. 3. 8).

If the sensitivity coefﬁcients 5o are linearly independent and

N I\J has
the output-error v corresponding to a is sufficiently small, then S
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will be positive definite. This follows from (2. 3. 8) and (2. 3.9)

because:
S(@) =S(2) +A - B(a) (2.4.11)
82111 2 12
where BJk(i) =<V, -83—78_5{{-> (2. 4. )

The weighting matrix A is positive semi-definite by definition and if

the F?" are linearly independent, §(§_) is positive definite
jla=

(Appendi}?A). Thus, if B(§._) is sufficiently small, §=S(§_) will be

o>

positive definite,

Equation (2, 4. 11) also suggests that S could be made positive
definite by a suitable choice of the weighting matrix A, at the risk
of possibly biasing the estimates (see §2.4.3 and $2.4.4). Thus,
prior knowledge could be used to force the parameter estimates to
be locally ﬁnique.

3) Global minimum and global uniqueness:

Assuming that conditions 1) and 2) are satisfied, the remain-
ing questions are whether the strict local minimum given by é is
also the global minimum of J and whether it is the only local mini-
mum to give the global minimum. These questions are difficult to
answer affirmatively, although if the model corresponding to é is
not globally identifiable, there is at least one other point in param-

eter space which gives the same minimum of JO as a.

The difficulties can be traced back to the nonlinear dependence
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of the model output m(a,z) on the parameters a (§2.2.4). If the
‘model output was a linear function of 2, then B(2) would be identi-
. cally zero in (2. 4. 11) and thus S :§+A would be positive definite for
all parameters a, if the class of models were locally identifiable |
(see Appendix A), In this case, J(2) would have a unique stationary
‘ ‘point and this would give a minimum, so that once this point was lo-
cated by the minimization algorithm, it would be guaranteed to give
the global minimum and to be the only point to do so.
On the other hand, when the model output m(a,z) is a non-
iin'ear function of a, B(a) is no longer identically zero. In gen-
éral, S(a) is not positive definite for all a and it is possible for

J to have more than one local minimum. Thus, the global property

of any calculated minimum cannot be ascertained, unless all of

‘the local minima are found, or one of those which are found gives
.T(g) =0, Dboth conditions being unlikely to be satisfied in p:cactice;
Similarly, the unique occurrence of the global minimum cannot
be ascertained without determining all of the local minjima,

unless a minimum is found which gives J(2) =0 and it is known that
the class of models is globally identifiable,

To illustrate the difficulties which can arise, consider an
R-mode model of a linear structural system with N ‘degrees of free-
dom (N>R). The measure-of-fit J(a) will have a global minimum
where the parameters of the R modes of the model are- close to the
parameters of the first R dominant modes of the linear system.

However,. J(a) will also have other local minima where parameters
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of the model are close to the parameters of any R modes of the
linear system. Since most minimization algorithms will give a local
minimum close to the initial estimates of the parameters, if the ini-
tial estimates of the modal parameters were not particularly good,
the algorithm may converge only to a local minimum and thereby miss
some of the important modes.

In conclusion, it is generally not possible to determine whether
the global minimum of J has been found and whether it occurs at a
unique point, unless an exhaustive search is made through the param-
eter space. The computation involved in such a search would, in many
cases, be prohibitively expensive. It is common practice to be satis-
fied with finding a strict local minimum near the initial estimate éO
of the parameter vector a. This approach is also taken in the appli-

cations described later.

2.4.3., Measurement Noise and the Ideal Model

In this subsection, the effect of measurement noise on the
accuracy of the optimal estimates of the parameters is considered.

The term measurement noise is used to describe all those errors, both

systematic and random, which lead to a difference between the history
of the actual excitation or response at a point and the processed record
of this used in the identification. Measurement noise thereforeincludes
all those errors whicharisein measuring, recording and digitizing which
are not removed by subsequent data processing (see Fig. 2. 1).

It is instructive to start with the hypothetical, ideal situation
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where the records are noise-free and the chosen class of models, 0,
is capable of modelling the behavior of the real system exactly, that
is, the system has the same behavior as some model in M with the
parameter values g_*, say. In this case, the optimal estimates of
the parameters, determined by mini:cnizing. J O(gl_) defined in Eq.
(2.3.6), are equal to the true valuesof the parameters of the system, and
J'O(é) is zero because a perfect output match is achieved. The equality

ats
R

of é and a” follows from a result given in Appendix A, under the
assumption that the class I is identifiable. On the other hand, if

the optimal estimates were determined by minimijzing J(a) instead

of Jo(i) , they would generally be biased, because from (2. 3. 7):

-~

v *) =v * *_
T(a*) =3, (2" +2A* - 4,)

(2. 4. 13)

whereas vI(@E) =0 .

A step towards the real situation can be taken by admitting
that the theoretical model used will not represent the dynamics of the
real system exactly., The expression 'the true values of the param—‘
eters of the system' is therefore meaningless. However, an ideal
‘model within the class M can be postulated which is the optimal
model using J 0 and the true system input and output, zZ, ~and ¥
which are not affected by measurement noise (¥Fig. 2. 3). The param-

eter values i* corresponding to the ideal model are called the ideal

parameter values and the difference SV Il_’_l(i*, EO)’ between

the true system output and the output of the ideal model, is called
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the ideal model-error.

To arrive at the real situation, input and output mea"su.re'ment—‘
noise must also be considered (Fig.2.3). In general, the optimal
parameter values _3;, determined by minimizing Jo(i), are :qow‘ldif_
ferent from the ideal parameter values _a;*. The reason fo'x’;’t»];'l‘is':_dif'.- o
ference is that if any portion of the combination of measureméﬁ% V‘nbiSe
plus model error in the output-error of the ideal model can be treated
as a possible model signal, the parameters will be changed fron;fchei_r_
ideal values to cancel this portion. The effect is to reduce the output—
error and thus Jo(é) is less than Jo(g,_*). These ideas are illustrated
in more detail in the next section where an error analysis is performed,

In a sense, the ideal model given by a* is the best model
within the class ofmodels because its definition isin terms of the true
system input and oﬁ.‘cput (g_o ana XS), so it is not influenced by mea’?_-
urement noise. However, it is only a conceptual device because its
determination would require complete knowledge of the measurement
noise. In practice, one must be content with the optimal model, which
is the best model within the given class for the records of the iniout
and output (z and y).

It is the ideal model which indicates how well the theoretical
model can approximate the behavior of the real system over a given
time segment [Ti’ Tf]. - To be able to judge the theoretical model from
the quality of the optimal ocutput-match, one must have confidence thaf
measurement noise has not greatly affected the accuracy of the opti-

mal estimates of the parameters. To gain this confidence, processing
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of the data may be necessary to improve the signal-to-noise ratijo.
Of course, some prior knowledge of the characteristics of the noise
and of the system are necessary to distinguish noise from signals in
the records.

Consideré.ble work has been done with strong-motion seismic
records to identify the various sources of errors contributing to
measurement noise, and to develop data-processing techniques to
reduce their effects (Trifunac et al, 1970, 1971). It is believed that
when these techniques are applied to the records obtained from stand-
ard accelerographs, the final processed records are of good quality
over most of the frequency range of interestin structural engineering.
For structural identification, the corrected data should be adequate
over the frequency range from approximately 0.2 Hz to approximately
10Hz. Difficulties can arise from méasurement noise during identi-
fication of the fundamental modes of long-period structures (periods
of the order of 5 seconds or more), and during identification of modes
with short periods (periods of the order of 0.1 second or less). The
difficulties in the latter case are partly due to the size of the typical

sample interval, 0. 02 second.

2.4.4, Deterministic Error Analysis

The following error analysis shows how measurementnoise and
the algorithm error (§2.4.2) affect the accuracy of the optimal parameter
estimates. Theideal parameter valuesdefined inthe previous subsection
areused to judge the accuracy of the optimal estimates.

The notation used is as follows (Fig. 2.3):
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J@ 4&?’

a = (vector of) parameter values
a® = ideal parameter values
'é_ = optimal parameter estimates given by the minimi-
zation algorithm
= a priorj estimate of 5&_* [Eq. (2.3.4)]
= error in response of ideal model due to the trans-
mission of e, through the model
&5 = %VJlé , the error of the minimization algorithm
(§2. 4. 2)
M = ideal model error
€9 = output measurement-noise
e, = inpﬁt measurement-noise
m(a,z) = output of a model with parameters a subjected to

an input z

als

151(_3;"‘,50): output of ideal model subjected to the true input
I_I_]:(é, z) = output of optimal model subjected to the input record
v(za) = y-m(a,z), the output-error for a model with

parameters a

= K@:*)’ the output-error for the ideal model

ff_ = z(é) , the output-error for the optimal model

y oo = output record corresponding to Y.

Yo = true system output: response of system at the lo-
cation of the output transducers

Zz = input record corresponding to Z,

Zg = true system input: excitation of system at the loca-

tion of the input transducers
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z, = excitation of system which affects its response

but which is ignored in the models

Consider the output-error of a general model within a pre-

scribe& class, then:

v(2) =y -m(a, z)

(2. 4. 14)
=gy ty, - m(a, z)

This shows that v(a) consists of the output measurement-noise 2y
. plus the model error [Xs -m(a,z)] and that the model output m (a, z)
will attempt to match the combination of output measurement noise and

true system output when J =<v,v> is minimized. The output-error

0
of the ideal model:

v' =v(@®) =y-m@’,z) (2. 4. 15)

-e (2. 4. 16)

where eMm =XS -m(a ,50) is the ideal model error; ey =L-y, 1s the

output measurement noise; and & =m(a",z)- 111(1'",50) is the trans-

mitted input measurement-noise, defined to be the difference be-
tween the outputs of the ideal model when it is subjected to the re-

corded input z and the true input z, respectively. If a linear model

is used, the output m is a linear function of the input, so that

e =m(a* is therefore the response of the ideal

e;=m(a”, e ). Inthis case, e

1
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model to the input measurement noise &, =% 2,

Subtracting (2. 4. 14) and (2. 4. 15) leads to:
v(2) =v*+m(2¥,2) -m(a, z) (2. 4. 17)

- This equatjon indicates that the value of J'O(i) =< v(a), v(2)> nught :
be reduced from its value JO(-B-‘-*) =<v¥,v¥*> by changing the param-
eters from their ideal values so that the difference in the output can-

cels a portion of the combination of measurement noise and ideal =

model error. In the presence of measurement noise, JO(é} Wo@il'd R

therefore be expected to be less than JO(_E}_*) and the optimal esti-
>' mates of the parameters would not be equal to the ideal values. The
~ aim is to derive an '""error equation' for the difference é'i*'.
To arrive at the error equation, a truncated Tax}lor series of i

%VJ about é is made:

FVIEH = 7I@) +3vIEEH- D +0(l2-8)7) @41y

where the last term accounts for the truncation error, with

N 2 -~ ~ )
la-2|"=(a-4,2-8). If Egs. (2.3.7), (2.3.8) and (2.4.9) are sub-

stituted into (2. 4. 18), the following equation can be derived:

3@ -2%=a*+0(la-2%) (2. 4.19)
~ N ' AN
h § .=s () <8@ 81f£l>'A <V o m > (2. 4.20)
where =S, (B) =<— LA L =
= ? Ba. o3 da. .=
ki Tkj aak aJ kj aak aJ
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sk % 81’_1_1’“ . * A
d k=(_e_J)k+<_Y_ ’-a—a.;>_(—1'k’A(2- —_?._0)) (24.21)
sk ~ 2 2
dm 8rn(a,z)| om 81’n(a,z)| dm 9'm(a,z)
and STt | 4’ Fa.  Ba |’ Ba 03, " Oa da.
k k Igf k k Ig i " B " I

These equations show how the accuracy of the optimal estimates _3_,
with respect to the ideal parameter values a*, depends on the sen-
- sitivity matrix §, the algorithm error e., the input and output mea-
surement-noise & and Y the ideal model error oM and the
weighting term in J involving the a priori estimates 2, of the param-
eters,
If ers & _90 and A are all set to zero, §=g_* should be
a solution of (2. 4. 19) regardless of e’ because model error affects
the accuracy only in the presence of noise, This is the case because
e

k. . I_I}‘ _ % 311’_1(1,20)
d.k immediately reduces to <EM’ -aTk—-> -<Xs—r_r_1@_ ’-Z—O)’ _—‘ﬁ;— a* s
which is zero because, by the definition of _a_*, it minimizes JO— when

y and z are replaced by Y and Zy

The practical use of (2. 4. 19) is limited because d* involves
the unknown ideal parameter values and it is therefore difficult to
bound. A bound which is useful to compare the accuracy of each esti-
mate on a relative basis can be derived directly from (2. 4. 17), which

implies:
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8m Lt o oA

+o(llg”‘-§|lz) | (2.4.22)

This can be expressed in the matrix-vector form:

S@-2%=a+oz-2%%) (2.4.23)
o . b od
where Skj :Skj(i) :<7:)'3E s E.-> | (2. 4. 24).‘.‘:

d_k:<v"‘_x , §> . (2. 4.25)

The matrix S(a) was defined in §2. 3 and it is positive definite, and
hence nonsingular, if the sensitivity coefficients are linearly inde-
pendent (Appendix A), If it assumed that the errors are sinéil enough
fqr the second-order terms in Eq. (2. 4. 23) to be neglected, btheri this

equation implies:

A o =1
—a¥| <
lak akl z |(S L | (2. 4. 26)
J
By the Schwarz inequality for scalar products:

i" e A oA 8;(_':%_1 81:1} —-% »
ldjl < |<¥-v.v '_‘{><aaj , BTLj>_| 2. 4.27)

This gives the following bound:
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Ak C el m
ak—akISGZI(S )kJ.ISJ.j (2. 4.28)

where o =<y, vi-v> (2. 4.29)

The quantity ¢ is unknown because z* is unknown -and it does not
appear likely that 0 can be bounded by known quantities without mak-
ing some assumptions about the level of measurement noise and model
.error. However, (2. 4.28) does indicate relative bounds on the errors
in the optimal estimates because the matrix S can always be calcu -
lated from (2. 4. 24).

If it should happen that the parameters are '""orthogonal', in

the sense that §kj =0 if k#j, then (2.4.28) becomes:

1
|3, -a¥| < G/-S—lfk

- (2. 4. 30)

This indicates that for good accuracy, the diagonal terms of S should
be large. This point of view is taken up again in $2. 4. 5,

A statistical approach might also be taken to investigate the
effect of measurement noise on the accuracy of the parameter estimates,
In such an approach, one could imagine a series of hypothetical exper-
iments where the same system input and output, EO(t) and Y (t) ,
t€ [Ti’ Tf], were repeatedly measured, rgcorded and processed. For
each such experiment at least a portion of the measurement noise
would be different and hence the input and output records, z(t) and

y(t), te€ [Ti’ Tf], would also be different. Over a large number of
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experiments, a distribution of the optimal estimates of the parameters
would be obtained.

The applicability of a statistical approach depends on the vali-
dity of the stochastic model used for the random portion of the mea-
surement noise and whether the systematic portion can be identified
properly. If the measuring and recording of data can be done oﬁl}} oglic‘e"_r'
for akgix»ren excitation of the system, it is difficult to test 2 hypothesized
stdchastic niodel for the measurement noise. This is the case when
vseismic records are used.

If a series of independent excitations were used to develop sté;
tistical information, the dependence of the ideal model on the excitation
should also be taken into account (see §2.4.6). This would appear to
require that the statistical approach be extended to include the exci-
tation, th‘e ideal model error and the ideal parameter values as random
quantities. The difficult task of simultaneously identifying a dynamic
model and stochastic models for the measurement noise and ideal model
error would then be required.

In this dissertation, attention is focussed on the identification
problem[where the records used are from only one excitation of the
system. - No hypotheses are made about the detailed nature of the
random or systematic portions of the measurement noise and ideal
model error because, on the basis of one sample, it is unlikely that
there is sufficient independent information to properly verify these

assumptions.
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2.4.5. Sensitivity Analysis

In the absence of assumptions about the level of measurement
noise and ideal model error, one cannot expect to determine bounds on
the error in each estimate of the parameters. Recognizing this fact,
an alternative approach can be made which leads to partial but useful
information about the accuracy of the estimates of the parameters.
This approach is based on the sensitivity of the measure-of-fit J to
variations in each parameter about its optimal estimate.

Suppose J is sensitive to a change in the value of a parameter

a The change in J from its value J(g._*) for the ideal model to its

K
value J(_él) for the optimal model, because of measurement noise,

should then correspond to only a relatively small change in ay from

al"(‘ to - Thus, if each error (ak- al’g) is 'bounded by applying a

sensitivity analysis for an assumed difference (J(i*) -J(3)), this
will give a qualitative idea of the accuracy of the optimal estimates on
a relativebasis. Such a sensitivity analysis cannot be expected to

give bounds on the actual error for each estimate since J(a™) is an

unknown quantity. From Eq. (2.3.4):

J(@*) =<y*,v*> + (a¥-3,,A@%-3))) (2. 4.31)

and hence, with (2. 4. 16) in mind, J(g*) depends on the measurement

noise, th(f, ideal model error and the a priori estimate éO'

A Taylor series expansion of J(a) about §_ gives:
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J(2¥) =J(@)+(2e,2%*- &)
(2. 4.32)

+(@*-8,8(2*-3)) +0(|la*-2)|°)

where | S =S(§) (Eq. (2. 3.8)). If itis assumed that e5 is negligible,
then (2. 4. 32) shows that the sensitivity of J to variations about the
optimal estimates _'a_‘._ is governed by the seunsitivity matrix 8.

The sensitivity matrix S can always be calculéted after the
optimal estimates have been obtained. It is useful to do so from sev-
eral points of view. First, if it is positive definite, aé assumed he.re,
then é is locally unique (§2. 4.2). Furthermore, itis desirable thatv
é be approximately diagonal and that the diagonal elements, which are
necessarily positive, be large with respect to J(é).

The first property ensures that the parameters are "orthogonal!!,
that is, that a large error in one parameter does not produce large
errors in the other parameters. If two parameters a and aj are
not nearly "orthogonal', so that ékj is comparable in magnitude with
ékk and gjj’ then it is possible for both ﬁk and §.J. to be in error by
a considerable amount but for the combined effect of these errors on J
to cancel. Thus, it would be expected that these parameters would be
difficult to estimate accurately by minimizing J.

On the other hand, if g is approximately diagonél, then for a

fixed J'(g*), the parameter errors will be governed directly by the

size of the §

L’ since from (2. 4. 32):



~-76-

Y 8,6 -a%° ~1a®) -1@) (2. 4.33)

which implies that:

8, -apl = 3" -3@)17/

N (2. 4. 34)

kk

For good accuracy, the diagonal terms §kk should therefore be large.
This bound is analogous to the one in Eq. (2. 4,30). In fact, the ma-
trices S (Eq. (2. 4. 24)) and é (Eq. (2. 4. 20)) are approximately equal
when A =0. This is because the optimal output-error i is normally
relatively small so that in most cases the third term in (2. 4. 20) is
negligible.

When A #0, Eqs. (2.4.20) and (2. 4. 34) appear to imply that

by taking A large, the accuracy can be improved. However, this

kk
is not necessarily the case since (J(g*) -J(a)) also depends on A,

In fact, in the limitas A, = oo, ak—»ao’k while, from the definition
of a,l‘{ in §2. 4. 3, the latter is independent of A. Thus, the error in
the optimal parameter estimate 3k approaches the initial error

(30, " al":).

Many of the above comments can be given a geometrical inter-
pretation. If the sensijtivity matrix S is positive definite, the contours
of J in parameter space for constant J(i*) close to J(_él) are hyper-
ellipses centered at the point _éi and given by the quadratic form as-
sociated with S. Although a® will be unknown, it must lie on the

hyperellipse given by J(g_*) and so the accuracy of the optimal param-

eter estimates will be governed by the shape and overall size of this
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hyperellipse, which in turn is controlled by the properties of .the
sensitivity matrix. | |

It S is diagonal, the axes of the hyperellipse are parallel to
the axes of the parameter space and it can be seen that the semi-axes
 of the hyperellipse give bounds on the errors lék— af; . This leads
directly to the bounds given in (2. 4. 34).

On the other hand, if S is not diagonal, the hyperellipse is
oriented "obliquely!, so that its axes are not parallel to the axes of
the parameter space. However, the length of the axes of the hyper-
ellipse continue to control the accuracy of the parameters. Since these
lengths are inversely proportional to the square root of the eigenvalues
of é, the accuracy is ultimately controlled by these eigenvalues. In
the "orthogonal' case, the eigenvalues of é are equal to the diagonal
elements énd the present interpretation reduces to the earlier one.
It is clear from this geometrical interpretation that if any eigenvalue
A of S is almost zero, so that S is ill-conditioned, the corresponding
:.aX‘:L'S of the hyperellipse is relatively large. Thus, all those parameters

" which have a significant component in the principal direction (eigen-

vvect”or) associated with A will be poorly estimated in general.

2.4.6. Effect of Model Limifations on Parameter Estimates

If the chosen theoretical model was capable of giving an exact |
- description of the dynamic behavior of a system, the ideal model
- would be invariant with respect to the particular data used in the identi-

fication of the system, and the optimal model would change as different
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data samples were used only to the extent of a change in the measure-
ment noise. In practice, the theoretical model describes the behavior
of the system only approximately, so that both the ideal and optimal
models will change as different data from the system are used. For
example, if a linear theoretical model is used to identify a nonlinear
system, the estimated parameters can be expected to change as the
level of the response changes,

In general, the optimal model can only be expected to predict
the output of a system for an excitation with similar characteristics
to that producing the data used to determine the model. Tests can be
made to examine how well the optimal model determined from one
sample of data is able to predict the output for other samples of data.
Also, the optimal model can be determined from different samples
to examine whether it is unduly sensitive to £he particular data used.
With each of these approaches, there is a fundamental difficulty in
determining how much of the observed‘differenc es are due to limitations
of the theoretical model in representing the behavior of the system and
how much are due to measurement noise., The degree to which these
effects can be separated depends on the amount of prior knowledge

which is available about the characteristics of the noise and the system.

2.4.7., Final Remarks

One of the most difficult parts of system identification is as-
sessing whether the parameter estimates are reliable, When an out-

put-error approach is taken, it is suggested that this problem be
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tackled in a number of steps, so that intermediate results may be’
‘examined. These steps may be summarized as follows: |

1) The models used should be at least locally identifiable
(§2.4.1).

2) The estimates returned by the output-error algorithm should
be checked to determine whether they are the optimal estimates. A
fundamental difficulty arises here in ensuring that a global minimum
is found (8§2.4.2).

3) The accuracy of the optimal estimates should be assessed.
One difficulty is that there is no exact model to act as a basis for
judging accuracy, so an ideal model is introduced as a substitute for an
exact model (§2.4.3). Another difficulty is that often only limited daté '
care availabie which makes it difficult to confirm assumptions about the
character of the noise in the records land to estimate its level. How-
ever, the accuracy of each estimate may be compared on a relative
basis by an error analysis (§ 2. 4. 4) or a sensitivity analysis (§2.4.5).

4) The final problem which should be considered is whether the -
optimal estimates are unduly sensitive to the particular data used tob
determine them because of the limitations of the model in describing
the behavior of the system (§ 2. 4.6). |

In making an assessment of the parameter e‘stimatés as above,
experience with the system or other similar systems is a great advan-
tage. When using linear structural models, for example, there is a
considerable amount of_accumulated information which can be used to

assess whether the estimates are reasonable. This is not the case for
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the identification of nonlinear structural models, which is one of sev-
eral reasons that make this a much more difficult problem.

It should also be mentioned that there are other ways of look-
ing at the problems discussed above., One alternative to the ideal model
is to assume that the system dynamics are described by the state equa-
tion of the theoretical model with an additive term called the equation-

error (also called the plant noise or process noise in a stochastic set-

ting. See, for example, Bowles and Straeter, 1972), A combined
output-error/equation-error approach can then be used to estimate

the parameters of the theoretical model, as in the filtering problem of
state estimation theory. The ideal model error and the equation-error
are two different treatments of the same problem, which is that any
theoretical model will provide only an approximation to the dynamics
of a real system, but the ideal model error is the appropriate concept
to use in an output-error approach.

The approach to parameter estimation in this dissertation is
primarily a deterministic one where noise is acknowledged but no
assumptions are made about its character. There are a number of
papers and books on system identification which provide a stochastic
treatment. Eykhoff (1974) and Beck and Arnold (1977) are two ex-
amples which have been cited earlier. |

When using seismic records, the sample base is so limited that
there are inherent difficulties in verifying statistical assumptions and
in judging the validity of the error estimates, | However, for such

cases, a deterministic framework can be used to derive the
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équivalent of :ﬁn.any of the results based /o:n stochastic theory. This was
pointed out, for example, in §_2. 2.3 with regafd to the minimization
problem [Eq. (2. 2. 4)] of the output-error approach. Again, the filters
arising in the theory of state estimation, which may be specialized as
output-error methods, can be derived on a deterministic basis (invar-
iant-imbedding filter) or a stochastic basis (extended Kalmaﬁ filter).

A final example is that the sensitivity matrix (32. 4. 5); which plays an
important role in determining the accur‘acy of the parameter e.stimates
Within a deterministic setting, plays an equally important role in a
stochastic error-analysis, where it is known as the (Fisher) infor-

mation matrix.
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oI, LINEAR STRUCTURAL MODELS

The identifiability of a class of linear structural models is
considered in this chapter. It is shown that certain modal parameters

‘are determined uniquely by the input and output of a model in this

- class, but that the stiffness and damping matrices are not determined

uniquely in typical situations. A discussion is made of other diffi-
culties arising in the application of these models to the identification of
structures from seismic records. It is concluded that when linear
models are used, they should be based on the dominant modes in the

records of the response and not on the stiffness and damping matrices.

3.1, A Class of Linear Structural Models

Recall from $2. 2, 3 that the class of models used in an identi-
fication process is defined by a theoretical model, which determines
the equation for the state of the model; an output equation, which re-
lates the output of the model to the state; and a set of allowable values
for the parameters of the models. Each aspect will be considered in
turn for a claés of linear structural models with N degrees of free-

dom, which is denoted by mN for convenience,

3.1.1. Theoretical Model

A discrete theoretical model is used which has the following

eciuation of motion:

Mk +Cx+Kx = -Mb¥(t) (3.1.1)
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This model has had a long history in analysis and design in structural
dynamics. For a physical interpretation, it may be imagined that it
represents a physical model consisting of a three-dimensional dis-
tribution of lumped masses linked by linear, massless springs and
dashpots (viscous dampers), with the model sitting on a rigid base
which moves in only one direction. The vector x =[x1,x2, R xN]t
then consists of the generalized displacement relative to the base of
each degree of freedom of each lumped mass of the model, and %

is the acceleration of the base. To emphasize that each component
of x has a specified direction associated with it, the x5 will be
called the coordinates of the model. The components of the vector

b= [bl’b . ,bN]t are the so-called pseudo-static jnfluence coef-

22
ficients which depend only on the geometry of the model (Ch. 27,

Clough and Penzien, 1975). If z is a displacement of the base,
X +bz represents the corresponding total or absolute displacement
of the masses. It will be assumed that the geometry of the model is
prescribed so that b is known. The NXN matrices M, C and K
are the mass, damping and stiffness matrices respectively and are
parameters of the model. Equation (3.1.1) may be interpreted as
expressing the balance between the inertia M(X+ bZ) of the physical
model, its elastic restoring force -Kx and its viscous damping
force -C}é, in accordance with Newton's Second Law.

The theoretical model given by Eq. (3. 1.1) is often used as
a planar model for buildings. In this case, the vector x is taken to

represent the horizontal displacement at points in the structure,with
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all displacements parallel to a fixed vertical plane, and % is taken
to be the horizontal component of base motion parallel to this plane.
All the components of b are therefore unity. The theory in this
chapter can be specialized to the planar interpretation by choosing

- these special values for the components of b; indeed, this is done

later with some illustrative examples.

The three-dimensional interpretation of x in (3.1.1) is empha-
sized here because ultimately a reduced form of this model based on
the dominant modes of response is used, The planar interpretation is
then unnecessarily restrictive because it precludes torsional response
whereas the mbdel based on modes does not. However, it is shown
below that the simplified way in which the seismic excitation is repre-
sented by a single input in the model may cause some difficulties in
identifying torsional modes, |

There are several simplifications in the way that the seismic
excitation is defined in the model. These include:

1) treating the base of the structure as rigid,

2) neglecting the three rotational components of motion of the
base,

3) neglecting two of the translational components, one vertical
and one horizontal, of the motion of the base.

The first two simplifications should lead to good approximations if
there is no pronounced soil-structure interaction. Furthermore, the
presént data do not allow these features of the model to be improved

because existing basement records consist of three orthogonal -
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translational components of motion at only one point of the base.

The effect of neglecting one horizontal component of the base
motion is considered for the case in which the structural output consists
of the horizontal motion‘in a fixed direction at certain points within the

structure. Even though the output is "planar', the state x of the

model can be treated as three-dimensional to include torsional re-
sponse. The horizontal base motion in the given direction should rep-
resent the principal contribution of the seismic excitation to the output.
This component of the base motion would therefore be used as the mod-
el input Z. However, the horizontal base motion orthogonal to the
given direction can also contribute to the output of the structure by
being part of the excitation of either the torsional modes or any trans-
lational modes which have a pronounced three-dimensional character.
Some of the problems arising in the applications in Chapter 6
are attributed to inadequate modelling of the torsional contributions to
the translational motion at the location of the accelerograph. To treat
this feature, it will be necessary to extend the theoretical model to
include both horizontal components of the base motion. This will
introduce another participation factor for each mode, but the methods
presented in this dissertation should remain applicable after some

modifications.

3.1, 2, Output Equation

The output m of each model in the class mN is taken to be

a vector consisting of the response at certain coordinates in the model.

To determine identifiability, it is unnecessary to prescribe which
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quantity % ;ii or ii is actually observed., It is therefore conven-
ient to define the form of the output for each model by a set J, a
subset of the integers 1 to N, corresponding to those coordinates

1 3

at which the response is measured. For example, if X, X and X

are measured, then d={1,31},

3.1.3, Allowable Values of the Parameters

The parameters of the theoretical model are the elements of
the matrices M, K and C and the initial conditions. There are
certain physical properties which the mathematical model should
imitate and which are commonly used to place restrictions on M, K
and C. These restrictions will be used in defining the allowable
values of the parameters for the class mN.

1) Mass Matrix: The x, are assumed to correspond to the

degrees of freedom of each lumped mass. The mass matrix M is

therefore diagonal and positive definite, that is:

M = : , m, >0 (3.1.2)

0 Cm

)

N-

In this chapter, the mass matrix will be assumed known when trying to
resolve the internal structure of the model from the input and output.
The mass matrix for an assumed discretization of a structure is

easier to determine a priori, using structural plans, than either the
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stiffness or damping matrix. Furthermore, it is obvious from Eq.
(3. 1. 1) that without some constraint on M, the stiffness and damping
matrices cannot be determined from the input and output.

2) Stiffness Matrix: The stiffness matrix K :[kij] is required

to be symmetric and positive definite:

K=K' or k. =k, (3.1.3)
1] n

and xKx>0 , vx#0 (3. 1. 4)

The symmetry follows from Betti's reciprocity law (Ch.11, Clough and
Penzien, 1975). Thenecessityfor (3. 1. 3) canalso be shown by applying
Newton's Third Law to each. massless spring in the physical model of
§3.1.1, noting that kij is the force in the direction of Xj given by
unit displacement of x, with all the other coordinates zero. The
positive definiteness is imposed so that the equilibrium state of each
model is stable.

3) Damping Matrix: The damping matrix C =][c ij] is re-

quired to be symmetric and positive semi-definite:

C:Ct or c,.=cC., (3.1.5)
ij i

and xcx=0 , vx (3. 1. 6)

The symmetry is imposed for a similar reason to that in 2). The
positive semi-definiteness is imposed so that the rate of energy dis-

sipation by the viscous damping forces is non-negative,
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Itis also assumed thatthe viscous damping is distributed through-
out themodel in sucha way that''classical, oscillatory''modes exist. The
“!classical' partmeans thatthemodeshapes are the same inthe damped and
undamped cases, éo they are the generalized eigenvectors of both K and C
with respectto M. Thispropertyisequivalenttothe following relation

between M, K and C (Caughey and O'Kelly, 1965):

CM_IKzKM_lC C(3.L.7)

The "oscillatory' part means that each mode is less than critically
damped.

4) Initial Conditions: Recall from §2. 2.1 that the initial con-

ditions are also treated as parameters of the model. Unrestricted

paremeters %, and Y, are therefore required such that:

x(0)=x, and %0)=y, ' (3.1.8)

3.2, Modal Form of Theoretical Model

It will become apparent as the theory develops that a modal
formulation plays an essential role in identification using linear
theoretical models. In this section, the standard transformation of
Eq. (3.1.1) to the uncoupled modal form is described, and a converse
result is given. An equivalent formulation in terms of transfer func-
tions is also presented.

3.2.1. Uncoupled Equations of Motion

Let ¥ =[_‘-IL(1),£( 2), ce ,lU_(N)] denote the modeshape matrix

whose columns are the generalized eigenvectors of K, so:
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qu(r) —wiMl(r) , __1, ,N
2

or KY=MY¥Q (3.2.1)

[ 2 T

® 2 0

2
where Qzé
2
L0 wN

and the wr>0 are the modal frequencies. The modes are labelled in
order of increasing frequency. By an assumed property of C, each

modeshape 1(1‘) also satisfies:

ey = ™, ra1,.l N

or CY¥ =MV¥D (3.2.2)
d o | |2¢. 0
1 g L o w
R 2 2,
p2 : -
0 ay| [0 20,y
L J LU J

Here, the modal damping factors Gr have been introduced by defining:

d
£ =5 (3.2.3)

Since C is positive semi-definite, each dr20 and hence each
QTZO. Furthermore, the modes are assumed to be oscillatory so

each §r<1 [see Eq. (3.2.9)].
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Since the E(r) are linearly independent (or can be chosen to
be such in the case of equal frequencies and damping factors), the
matrix ¥ is nonsingular. A vector function £ can therefore be

defined by:
-1
8(t) =¥ "x(t)

so that: : x(t) =Y §(t)

N (3.2.4)

or =)=y ¥ 1), i=1,...,N
r=1
Substituting (3. 2. 4) into (3. 1. 1) and pre-multiplying by ‘i‘t:
(i) E + (ron)E + (YR Y)E = - viMbE() (3. 2. 5)
Define the generalized mass matrix by:
M=vive (3. 2. 6)
then substituting (3. 2. 1), (3.2.2) and (3. 2. 6) into (3. 2, 5):
" . 2 .
S+DE+Q 5 = -oE(t) (3.2.7)

a Lyt =‘£’19 (3.2.8)

where é

is a vector of modal participation factors. In component form, (3.2.7)

becomes:

. ‘ . 2 .
g +2grmr§r+wr‘§r :—ozrz(t) ,r=1,,..,N (3.2.9)
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The magnitude or norm of each E(r) is so far arbitrary and
so the scaling of each §r is also arbitrary. It is useful for our pur-
poses to express (3. 2. 4) and (3. 2. 9) in forms which are invariant
with respect to the normalization introduced for each i(r). This can
be done by defining Xi(r), the contribution to x; from the rth mode,

by:
=) =4 (1 (3. 2. 10)

i

so that (3. 2. 4) may be written:

N
x, (1) = Z xir)(t) (3.2.11)
r=1
and (3. 2. 9) leads to:
(1) o(r), 2 (r)_ ,(r),
X +2grwrxi + wrxi = —Bi Z(t) , (3.2.12)
where psi(r) :qjér)ar (3.2.13)

The parameter Bﬁr) will be called the effective participation factor

for the rth mode at the ith coordinate.

Equations (3. 2. 11), (3.2.12) and (3. 2. 13) play an important
role in both the theory and applications in this dissertation. Notice
that the response X, produced by Z depends on the parameters

(r) _(r) (r) _ (r) _:(x)
{wr’gr’pi » X (O)’Vi (0): r=1,...,N} where vl ER
The final points to be discussed relate to the generalized mass

matrix M of Eq. (3.2.6). Itis a standard result that M is diagonal
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because the modeshapes are orthogonal with respect to the mass
matrix M. Furthermore, the modeshapes can be normalized so that

Eg. (3.2.6) may be rewritten as:

vhyiy =1

N (3. 2. 14)

or Z: mill!‘i(.r)\[yés) =8
i=1

rs

where I is the identity matrix of order N. This relation expressing
orthogonality and normality is convenient for later use.

As a final remark, it can be shown that if there areno repeated
modes (modes with a common frequency and damping factor), ¥
satisfying (3.2.1), (3.2.2) and (3. 2. 14) is unique to within a change of

y() |

sign of each column in

3.2.2 Construction of a Model from Modal Parameters

Given a model in the class mN, the modal parameters can be
determined by solving an eigenvalue problem as in §3.2. 1. Conversely,
it is shown in this subsection that a unique model in mN can be deter-
mined if modal quantities with the requisite properties are available.

Suppose the quantities @ Qi_ and ¢5(Lr) are known for
i,r=1,...,N and satisfy wr>0, OS§r<l and Eq. (3.2.14). As
suggested by (3. 2. 1), (3.2.2) and (3. 2. 14), take a linear model with
the known mass matrix M and stiffness and damping matrices given

by:
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K =My vim
¢ (3.2.15)
and C =MYDY¥"M
In component form, these equations become:
N
kl Sﬂ w \[I(r)lll )
J
r::
N (3. 2.16)
d =2mm, Y} ¢ (r)
an CiJ L r I'qu qj

r=1

It is easy to show that this linear model is in mN because K and C

defined by (3. 2. 15) satisfy the conditions of §3.1.3. Furthermore,

this is the only model in M which has the given modal parameters

N

~

because if some other model with stiffness and damping matrices K
and C has the same modal parameters, then from (3, 2.1) and

(3. 2. 14):
® -mvalviv =k

and similarly, C=cC.

3.2.3., Transfer Function Formulation:

It is convenient in proving the results of the next section to use
the equivalent form of Eqs. (3.2.11) and (3.2, 12) obtained by applying
Laplace's transformation,

Let Xi(s) and é(s) denote the Laplace transforms of the dis-

placement x, and base motion z, that is:
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@ -st
Xi(s):.[o Xi(t)e dt

QO
Zs) =] B e

where s may be complex, For later theory, it is necessary to de-
termine a region in the complex plane where Xi(s) and Z(s) are
analytic functions,. If f(t) is piecewise continuous on (0, o), .and of
exponential order as t— oo, say f(t)= O(eCt), then the Laplace trans-
form F(s) of f(t) exists and is an analytic function of s in
Re{s)>c. It is assumed that %(t) has finite duration, so the above
reéuit implies that 2(5) is analytic on the whole s-plane. A However,
after the base motion has finished, the model will undergo free vibra-
tions so Xi(s) will have poles in the left-half plane. But from the
result above it will be analytic on the right half-plane

;(.l+: {s:Re(s)>O}A, since xi(t) must remain bounded as t~ . The

proofs of the results in 3.3 rely on the fact that Xi(s) (or f(s)) on

+

8 are equivalent representations of Xi(t) (or %(t)) on the time in-
terval (0, ).

From the transforms of Eqgs.(3.2.11) and (3. 2. 12):
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N
= z x{¥)
1

r=1

sngr)(s) ( )0) - v( )(0)+2g w_ sX( )(s)

-2¢ _w x( )(O)+w X(r)(s)— ﬁ(r)Z( s)

Combining (3. 2. 19) and (3, 2. 20):

X, (s) =G;(s) +Hi(s)2'( s), vs€at

N
where Gl s) 2 z (r)(o +2( w xir)(0)+ sx( (0)JEtF)

N
Hi(s)é X Br)H(r)

r=1

o) £ 2 1 2
s“+2C w stw
r r r

(s)

(3.

(3.

.19)

.20)

.21)

. 22)

. 23)

. 24)

The function H,(s) is the transfer function between the base motion
i

z and the corresponding response x_,
i

Each H(r)(s) has a pole at s and its complex conjugate ;r

where:

-

Y5 w

BN

s, :—Crwr+ i(l1-¢

(3.2.25)
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These poles are simple because Cr<1' The poles of Gi(s) are those

s, and ;r for which X§r) 0)70 or Vgr)(O) # 0, and the poles of Hi(s)v

are those s, and ;r for which ﬁj(‘r)# 0. Assuming that all the 5.

are distinct, the residue at 5. of Gi(s) is:

1 x(")0) - L (o) +c w oy (3.2.26)
T 2(1 —Qi)%wr i £l '

and the residue at 5. of H,l(s) is:

p{™)
2\5 .2
2(1 -gr)z W

(3.2.27)

The residues at -;r are the complex conjugates of (3.2.26) and (3. 2. 27).
The points {sr,_s-r: r=1,...,N} are distinct unless there are
repeated modes with the same frequency and damping factor. For an
N degree-of-freedom model with R modes having a commeon fre-
quency and damping factor, the R modes will appear as a single mode
(r) (z)

which has values of x.! '(0), vgr)(O) and Bi

1 equal to the sum of

these quantities for the repeated modes, To be consistent with the
theory to be developed, it is assumed that (R-1) modes are '"missing"
from the response. This is achieved by taking xgr)(O) = v§r)(0) = ﬁgr):O

for (R-1) values of =,
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303, Uniqueness of Some Modal Parameters

In this section, some results are proved which form the basis
of the approach suggested for identification using linear models, It
is shown that certain modal parameters of any model in mN are de-
termined uniquely by the input and output of the model. The proofs
do not give a practical way of actually determining the values of these
parameters, This is left to later chapters,

It is first assumed that the models are initially at rest,

Proposition 1

Consider any model in the class M__ which is initially at rest

N
but is then excited by a known base history Z of finite duration. If
the output {xi(t) or ki(t) or Sii(t): t=z0 and i€d)} is known, then:
1) the [3?), r=1,...,N and i€d, are determined uniquely,
2) w and Cr are determined uniquely if the rt mode makes

a contribution to the output, that is, if Bgr) #0 for some i€d,

The converse is also true,

Proof:
The proof is given for the case in which the output is the res-
ponse at the single coordinate X It can be generalized immediately

to an arbitrary set of coordinates, Furthermore, only knowledge of
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x, is considered because the proof is almost identical for fci and ﬁii
if the relations }.Ci(s) = in(s)' and ii(s) = sin(s) are used, For
brevity in the development, some statements enclosed in brackets are
included., These are standard results from the theory of complex
variables, e.g. Churchill et al (1974).

Notice that under the hypothesisthat the model is initially é,t
rest, GiEO in Eq. (3.2, 21); The proof of the converse is therefo;e
immediate because if 1) and 2) of the proposition hold, the transfer
function I—I,l(s) ‘in (3.2.21) is known., The converse was inclﬁded to .' :_';'
emphasize that the values of the parameters given in 1) and 2) give
all the information about the model that is contained in the response

x.. Thus, the parameters listed are a complete set from this point

of view,

The main result of the propositionis nowproved, Suppose that

Xi(t)’ t=0, isknownand suppose that {&r,gr,pgr): r=1,...,N} and

{wr’ Cr, ﬁ;r): r=l,...,N} arebothpossible sets of values for the param-
eters of the model under study. Thismeansthateach setofvaluesiscon-
sistent withmeasured inputand output, Z and % - Let I:Ii(s) and ﬁi(s)
be the transfer functions corresponding to the two sets of values [Eqgs,
(3.2.23) and (3. 2.24)]. The basic idea is to show that ]Z:‘IiEIf—IVi and

to find the conditions under which this implies that (fi)r =w_,C :Cr’
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) 500
1

and
1
.
By the hypotheses and Eq., (3.2.21), ¥s€d :
X.(s) =H. (s)Z(s)
b 1 (3.3.1)
and X, (s) =Hi(s)2(s)
Subtracting: 0 =AH.1(s)Z(s) (3.3.2)
As
where AI—Ii = H.1 - Hi (3. 3.3)

Since the zeros of an analytic function are isolated, there exists a

domain QO in 39+ over which Z(s)#0, This implies from (3. 3. 2)

that AHi= 0 on &8 which in turn implies that AHi= 0 everywhere

0’
in the complex plane except possibly at the poles of ﬂi and ‘ﬁi' [If

F is analytic on a domain D and F=0 on DOCD, then F=0

on D], It therefore follows that AHi is analytic and zero everywhere,
[1f F(s) is bounded and analytic throughout a domain

{s:0< I s - sol <6}, then either F is analytic at 5, OF else 5o is
a removable singular point of F]. Each pole of ﬁi must therefore
be cancelled by a pole of ﬁi and vice versa, Recalling the results

of $3.2.3, in particular (3, 2.25) and (3. 2.27), this can occur if and
only if for each r such that Bgr) 70, the following equalities hold

(relabelling if necessary):

mr:&r’zrzér’3§r) =B§r) (3. 3. 4)
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(r)

i

=0, then .'E'gr) =0, This proves the proposition,

and if ﬁ

It should be noted that the condition that the input be of finite
duration guarantees that it contains all but a countable number of fre-
quencies, This is because a finite duration ensures that the Laplace
transform of the input is analytic everywhere énd so it has only iso-
lated zeros. The f‘ourier transform, being the Laplace transform
evaluated along the imaginary axis, therefore has the latter property
also, Proposition 1 shows that, in theory, this prdperty is sufficient
to ensure unique determination of the modal parameters which control
the output. In practice, the input would have to have a sufficiently
strong signal over the bandwidth containing the modal frequencies so
that the signal-to-noise ratio of the modes in the output would allow
the modal parameters to be estimated reliably,

The theory can be extended to include the case of nonzero
initial conditions, This situation is pertinent to the case where the
initial portions of the base motion and response are not observed and
()

so the initial values of the modal contributions Xi

are unknown,
A complication in this case is that it is possible for the base motion
to interact with the initial motion in such a way that two completely
different models in mN can have the same response for that base

motion, This problem does not arise when the base motion z of the

models belongs to the class CL of piecewise-linear time histories with
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finite duration, This is the case in later applications where the input
to the model is given by a linear variation between successive discrete

data points,

Proposition 2

Consider any model in the class I which is excited by a

N

known base motion history Z in the class of piecewise-linear functions
CL. If the output {xi(t) or fci(t) or B'ci(t): t=20 and i€ J} is known,
then:

1) the ﬁgr), xgr)(O) and vgr)(O), r=1,...,N and i€d, are
determined uniquely,

2) w and Q are determined uniquely if the rth mode makes

(r )(0) #0 or

a contribution to the output, that is, if either B( )9‘0 or x
vg )(0) #0 for some i€ d,

The converse is also true,

Pfdéf:
As before, the proof is given for one component Xi(t)’ tz0.
It is snnllar for x and x if X, (s) =sX, (s) X§r)(0) and
T - r=l
X(s)—s X(s)-syx zv are used,
r=1 r=

The proof is basically t he same as that for Proposition 1., The

main difference is that instead of Eq. (3. 3.2), subtraction of the two
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expressions for Xi(s) leads to:

. + ‘ B .
0 =AG,(s) +AH,(s)Z(s) , Vs €8 . (3.3.5)
where AG. = G, -G, . (3.3.6)
1 1 1 SRR Lo . '
and Al 2 H -H 6Ty
R R | coiPese f)

If it is as sume‘d that AH.l is not idventically zero on its Wlﬁeie domeinv
of analyticity, its zeros are isolated arlid:'v(v3._3.» '5)‘lleads to an expres‘-
sion for 2(5) which is not consistent w1th1ts ferin for z in -CL°
It can therefore be concluded that AHi is zero ev‘eryf\'xvr'ile:'cﬁe except L
possibly at the poles of ﬁi and ﬁi’ Repeating the eréuiﬁents in the .b » _ '
proof of Proposition 1 leads to the same res(ul.ts as in Eq‘s. (3. 3. 4).
Equation (3. 3. 5) therefore implies th‘a'.t‘ AGl is zero on 39+.
Repeating previous arguments, AGi is zero everywhere and each
pole of éi is cancelled by a pole of 6i '?.l.i.'d vice versa. Re}ealli‘ng

theresults of §3.2.3, in particular (3. 2.25) and (3. 2. 26), - this can.

occur if and only if for each r such that ;{gr)(o) #0 or G(ir)(O) #0, the

following equalities hold (relabelling if necessary):v

¥, =0, =0 =x"0),570) = ¥ o) |
‘ (3. 3. 8)
endit  27(0)=0=3{"(0), then ¥ (0) =0 =7 (0) .

The results due to A.I—Ii and AGi being identically zero are
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combined to complete the proof of the proposition,

3.4, Identifiability of Models in mN

In this section, the identifiability of the class mN of linear
models is investigated, Recall that the identifiability of a model is
determined by examining whether noise-free input and output of the
model specify the parameters uniquely. Recall also that at least local
identifiability is necessary to give unique optimal estimates when
minimizing JO during the identification of a structure since, if the
models are locally but not globally identifiable, it may be possible
to use prior information about the parameters to choose the appro-
priate model from the finite number of solutions for an optimal model,
This cannotbe done if the models are not locally identifiable because
there is then a continuum of solutions.

The main result of this section is that, in general, the models
in mN are neither globally nor locally identifiable unless the re-
sponse is measured at half or more of the coordinates., Thus, the
stiffness and damping matrices of a linear model of a structure
typically cannot be determined from seismic records,

The approach taken in establishing these results is to find

conditions under which the modal parameters of Proposition 1 deter-

mine the model, since these parameters give all the information about
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the internal structure of the model that is contained in the input and
output, It is assumed that the complete histories of the input and
output are used and that the input has finite duration, because these
were hypotheses of Proposition 1, Clearly, if a model is not identi-
fiable when the complete histories are used, it is not identifiable when
a portion of these histories are used. By applying Proposition 2, the
results in this section can be shown to remain valid when the initial
portions of the input and output are not available, provided the iﬁputs o

to the models can be taken as piecewise-linear functions.

3.4.1., Identifiability, Controllability and Observability

It is assumed that a model in mN is initially at rest and is

then excited only by base motion., If [3?) =0, foreach i in &, the
rth mode will be missing from the output. Thus, the condition
6§r) #0 at some measurement point is necessary if w and Cr‘ are to
be determined from the input and output. This is also a sufficié‘rlé con-
dition according to Proposition 1, This condition, which can be
written: Yr=1,...,N, & i€Jd such that ﬁ:(lr) #0, is equivalent to the
three conditions:.

(2) the model has no repeated modes;

(b) there are no modes with a zero participation factor;

(¢) no mode has a node at each coordinate at which the
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response is measured,

Conditions (a). and (b) are equivalent to the model being controllable
and conditions (a) and (c) are equivalent to it being observable (Kalman,
1963). Thus, a necessary and sufficient condition for all of the modal
frequencies and damping factors of a model to be determined from its
input and output is that it be controllable and observable, Notice that
if the input and output of a model show that it is not controllable and
observable, then it is not possible to determine which of conditions

(a), (b) and (c) are violated on the basis of these data alone,

It follows from the above that a necessary condition for both
global and local identifiability of mN is that each model be control-
lable and observable., Since there are obviously models in mN which
do not satisfy these conditions, the class of models is neither global-
ly nor locally identifiable for any input. However, only the subclass
of controllable and observable models is of interest for applications
using data from actual structures. This is because the optimal model
for the class mN identified from structural data will always be con-
structed with N contributing modes, The optimal model is therefore
automatically controllable and observable.

Recall that a model in mN can be specified uniquely if all of

its modal parameters are known (see $3.2.2). If a model is control-

lable and observable, its modal frequencies and damping factors can
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be determined, but this still leaves the modeshapes, Propds}i‘tion’ 1

A

indicates that the only other information in the output relating to the

(r)

internal structure of the model is the fsi

for r:l,...,,'N and for
each i in &, Thus, the output only directly specifies all tl;lé.'mddé-
shape components ll!l(:) when &= 1{1,2,...,N}, that is, ti{e output
corresponds to the complete state x of the model, In all other cases,
the modeshapes are not defined by the input and output alone, How-

ever, they must satisfy orthogonality, that is, satisfy the constraint

(3. 2. 14) where the mass matrix M is known. It is therefore pos-

sible that this information, together with the values of the ﬁgr) de-

termined by the input and output, may be sufficient to determine the

modeshapes. This is examined in the next two subsections, first fo'r_f'

local identifiability and then for global identifiability;

3.4.2., Local Identifiability

The following result is proved in this subsection:

Proposition 3

Consider the subclass of controllable and observable models

in % and let N_<N be the number of coordinates at which the re-

0

sponse is measured, which is equal to the number of integers in the

output set I, then:
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The subclass is locally identifiable if and only if NOZ%N’
that is, the response is measured at no less than half the coordinates

in a model,

Proof:

Suppose the input and output of a model in the subclass is
measured, then from $3,4.1, all the modal frequencies and damping
factors are determined. Consider the equations which are satisfied
by the N2 unknown modeshape components 411(:), First, there are
p¢?)

the equations given by the fact that is determined by the input

and output for each of the N modes and for each i in J. From

(3.2.8) with M= I, and from (3.2.13), this gives N XNO quadratic
equations:
N
Y b 0705 <plE) 6. 4.1)
k=1

However, only N _ X (N-1) of these equations are independent since

0

for each i:

N N
2 ﬁi(r){ wgr)ar:wgﬁ)i:bi (3.4.2)

r=1 r=1

The constraint (3.2, 14) gives 3N(N + 1) independent quadratic
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equations after symmetry is taken into account:

N
z mkllfl({r)\lfl({s) :6rs , 821 (3. 4. 3)
k=1 :

There are therefore NZ + (No-%N)(N - 1) independent quadratic
equations for i:he N2 unknowns in the modeshape matrix Y.

. Notice that for any solution for ¥, there are 2N _ 1 cor-
responding solutions in which the signs of the columns are changed,
but all these solutions give the same model in mN. In particular,
there are at least ZN solutions of the eéuations, each corresponding
to a modeshape matrix of the observed model. |

it NO<’J§N, there are more unknowns than equations., Thus,
there are free unknowns which can be arbitrarily assigned V;alues and
this leads, in general, to a whole contiﬁuum of real solutions for the
modeshape matrix, and hence for K and C through Eqgs. (3.2.15).
Thus, if N0< N, the subclass of controllable and observable models
is not locally identifiable, However, there can be exceptional models
which are locally identifiable, For these models, only a finite set of
valuesjfor the free unknowns leads to real solutions for ¥: all other
values lead to complex solutions, This can be shown by using the

theorem introduced in the next subsection.

If N0 =3N, which can only occur if N is even, there are the
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same number of unknowns as independent equations, From a stand-
a1:d result of algebraic geometry, this implies that there are only a
finite number of real solutions for Y. Thus, the stiffness and damp-
ing matrices are locally unique since, for a finite number of solutions,
each solution must be isolated in the parameter space, The subclass
of controllable and observable models is therefore locally identifiable,
If N0>%N, there are fewer unknowns than equations, so the
l‘number of solutions must certainly remain finite and the subclass
must again be locally identifiable, It might be thought that in this
case there should be a unique solution for ¥, to within an inconse-
quential change of sign of each column, and hence a unique solution
for K and C. 'However, because of the nonlinearity of the equations,

there are exceptional cases which prevent the whole subclass of models

from being globally identifiable unless No =N,

3.4.3. Global Identifiability

Because of the nonlinearity of the equations, conditions for
global identifiability of the subclass of controllable and observable
models in mN cannot be determined by simply counting unknowns and
equations, Instead, the equations must be solved to determine whether

there is a unique real solution. The approach taken here is based on

a theorem which is proved in Appendix B. The question posed is:
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How many models in ITIN would give rise to the same output as a
known controllable and observable model when subjected to the same
input? Notice that any model consistent with the input and output of the -
observed model must also be controllable and observable.  The theorem
reduces the above problem to solving a matrix problem which is easier
to treat than the equations in §3. 4. 2.

Let ¥ =[£(1),. .. ,l{J_(N)] be 2 modeshape matrix of a model in
mN, then it is‘ convenient to introduce the transformed modeshape

matrix & :[c_p_(l), ce ,g( N)] by defining:

EY
[

3 =M=y (3. 4. 4)

The transformed modeshapes g(r) therefore satisfy:

NOTENE
. (3. 4. 5)
By Eq. (3. 2. 14):
5% =1 (3. 4.6)

Since the left-hand inverse and right-hand inverse are always equal,
this equation implies that g1 =§t, The transformed modeshape
matrix @ is therefore a real, unitary (or orthogonal) matrix, The

roles of @ and Y are equivalent since the mass matrix M is as-

sumed known.
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Theorem

Consider a controllable and observable model in mN whose
output for a known input is measured. ILet J be the output set de-
fining the coordinates at which the response is measured. Let 2 be
a transformed modeshape matrix of the observed model. The number
of rﬁodels in mN which are consistent with the observed data is equal

to the number of solutions of the following matrix problem:

Find a nonsingular, real matrix B such that:

(i) Btii e, , Vi€ J (3. 4.7)
(ii) Bp=p (3. 4. 8)
(i) (Bo™hiBel®y=0 , r#s | (3. 4.9)

where e, is the unit vector given by (g.l)k =5ik and p 1is a known

vector of dimension N with elements given by:

1
_ 2
Py = by (3.4.10)

Furthermore, for each solution B, the transformed mode-
shapes @(r) of the model in mN which has the same output as the

observed model are given by:

Bo!) (3. 4. 11)

where v2 = BolFhBe! ) (3. 4. 12)
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The proof of this theorem is presented in Appendix B,

The the‘or.ém. caﬁ Be used to prove a number of results con-
cerning the determination of models from their input and output.
Notice that once the modeshape matrix ¥ is determined from Egs,
(3.4.11), (3. 4. ‘12') and (3. 4. 4), the corresponding model can be deter-
mined from Egs. (3. 2. 15) since it must have the same modal fre-

quencies and damping factors as the observed model.

Proposition 4

Consider the subclass of controllable and observable models

in mN and let N, be as defined in Proposition 3, then:

0
The subclass is globally identifiable if and only if NO=N, that

is, the response is observed at every coordinate of a model.

If NO=N, then Eq. (3. 4.7) in the theorem holds for all
i=1,...,N and so the only solution of the matrix problem is B =1I,
the identity matrix., The subclass is therefore globally identifiable,
Notice that the hypothesis that the models are observable is redundant
when NO=N since a mode cannot have a node at every coordinate,

To show that N,=N is a necessary condition for global identi-

0
fiability, it is sufficient to show that if N0 =N -1, there are models
which are not determined uniquely by their iliput and output.

Without loss of generality, the coordinates can be labelled so

that the output setis Jd= {1,2,...,N-1}. According to the theorem,

the number of models consistent with the input and output of a given
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model is equal to the number of nonsingular solutions to Eqs. (3. 4. 7),
(3.4.8) and (3.4.9). From (3.4.7), the first (N-1) rows of

B :[bij] are the same as the identity matrix and hence:

Bo™) =[o{", 0l el e, (3.4.13)
N

where p. 2 (B_cg(r))N - Zleicpi(r) (3. 4. 14)
i=

The first (N -1) equations in (3. 4. 8) are satisfied identically and the

last equation gives:

N
Zleipi =Py (3. 4. 15)
i=

From the orthogonality condition (3. 4. 9):

p.p._ = -z mgr)wgs)ﬂpg)cpl(\f) , ris (3. 4. 16)

where the last equality follows from the orthogonality of the _cg(r),

To determine B, the bNi’ i=1,...,N, could be determined
from Eqgs. (3. 4. 14), (3.4.15) and (3. 4. 16). However, it is sufficient
to determine the solutions for the Por T= 1,...,N, because there is
a one-to-one correspondence between these unknowns and the bNi'

. This follows from (3. 4. 14), which can be written:

p=2%

by (3. 4.17)
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. L .
where R=[pl,p2,. .. ,pN] and ENz[le,sz,. .. ’bNN] . Inverting

this relation:

b, =3p (3. 4.18)

—

Equation (3. 4. 15) may therefore be written:

t .
PNy =LBy=R%p _ (3.4.19)

But from (3. 2.8), (3.4.5) and (3. 4. 10):

a=8tp (3. 4.20)
ancf'l‘so- o o =t
: . N _E_
N
or Y @ b, =p (3. 4. 21)
r=1

Equations (3.4.: 16) and (3. 4. 21) give the p,. in terms of the mode-

(s)
N

shépe components .Cp and the participation factors @ of the

. 1
: _ 2
observed model, together with the constant pN _bNmN for the class
of models.
The equations for the p, can be uncoupled as follows. Mul-

tiply (3. 4.21) by P and then use (3.4.16) to get the quadratic

equation:

N
2 (r) (s)_ _ o
¥sPs “PNPs T Z @ Oy =0 8=l N (3. 4.22)

r=1

r#s
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This can be simplified since from (3. 4. 20):

ba=p
N
(r) _ L
or Y eolD oo, i1, N (3. 4.23)
r=1
Substituting into (3. 4. 22):
- (), _ (s), _
O,sz PaPs TP (P~ %P ) =0 (3. 4.24)

This gives two solutions for each Pt

(s)
(s) PN~ Y%PN

() pg=oyy’ » or (i) p= g (3. 4.25)

Note that o #0 because, by hypothesis, the observed model is
controllable,

If solution (i) is taken for each s=1,...,N, itis easily
verified using (3. 4. 23) that this gives a solution of (3. 4. 16) and
(3. 4.21). Furthermore, from (3. 4.13), (3. 4. 11) and (3. 4. 12), this
solution corresponds to the observed model. Uniqueness therefore
depends on whether it is possible to have another solution for p
where some of the pg are given by (i) and some by (ii). This
amounts to checking what combinations of (i) and (ii) can satisfy
Eqgs. (3.4.16) and (3. 4.21), Because of the conditions on the pgr) for
controllability and observability, it turns out that another solution is

possible if and only if all but two modes have a node at coordinate N,
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the only coordinate whose response is not measured. If q.and r

are such that:

CQ(NG-*);EO, cp(Nr);éo but cpl(\;")=o for all other s=1,...,N  (3.4.26)

then the other solution for p is given by:

pq:;-chf\?,_pr =§%cpf\qi:) and p_=0forallothers=l,...,N (334.27)
The corresponding transformed modeshapes Eé(r) can be found from
(3.4.13), (3.4.11) and (3. 4. 12) and then the corresponding model can
be constructed as in §3. 2. 2.

There are obviously models in the subclass of controllable and
observable models which satisfy the conditions (3. 4. 26), so the sub-

class is not globally identifiable when N_,.=N- 1, and hence when

0
O<N. This completes the proof of Proposition 4.,

N
It is unlikely that an optimal model determi:aeé during the
identification of a structure would satisfy the requirements in (3. 4. 26)
if N was large, although for small N, the requirement could be
satisfied by '"reasonable'' models. As N0 is reduced, it is expected
that the conditions for nonuniqueness will become less stringent.
As an illustration of the results given by Eqs. (3. 4. 26) and
(3. 4.27), consider the case where N =3 and N0=2. In particular,

suppose that the observed model is an undamped chain model (Fig. 3. 1).

Damping consistent with m3 is not considered because its inclusion
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is a trivial extension as far as uniqueness is concerned, since the
damping matrix is constructed from the modeshapes in the same way
as the stiffness matrix (83.2.2). Taking m1=2m, m, =m,=m and

k. =k, =k, =k, the model has a node at Xy in its second mode. Thus,

1 72 73
conditions (3. 4, 26) are satisfied if the response is measured only at
coordinates Xy and X, Recall that the pseudostatic influence coef-
ficients are fixed by the prescribed geometry of the coordinates
(§3.1.1), and in this case b1=b2:b3 =1, Starting with the substitu-
tion of the transformed modeshapes and the participation factors of
the chain model into Eq. (3. 4.27), the stiffness mat.rix of the other
model with the same output can be calculated by following the steps

given above. The calculations show that the stiffness matrices of

the original model and its counterpart are given by:

K=k| 2 -1 0

A1 2 -1
0 -1 1
(3. 4. 28)
and K=k | 1.4545 0.09095 -0.5455

0. 09095 2.8183  0.09095
-0. 5455 0, 09095 0. 4546

Their common frn:,quencies are: w; =0. 4208 Wy » w, =Wy, Wy= 1, 6802 Wy

where Wy = (k/m)—z_,v and their common effective participation factors
2

are: pl)=0.6483, 8{*)0.3333, p)=0. 0184, pll=1. 2966, p\°)= 0. 3333,

6%3)= 0.0367. Notice that although the second model must lie in m3

and have the same geometry for its coordinates, it is not another
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E n
Myn—| —= XN —|

: i+

Figure 3. 1. Undamped linear chain model with N degrees
of freedom.
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chain model because K is not tridiagonal.

3.4. 4. Identifiability of Linear Chain Models

The previous work demonstrates that the class of models mN
is too general to guarantee unique determination of a model from its
input and output unless the complete state is measured, If the class
is further restricted, the chances of it being identifiable can be en-
hanced, although this may also reduce the capabilities of adequately
modelling an actual structure. One possibility is to restrict the
models to the subclass of mN given by the clvass of linear chain models
(Fig. 3.1). In this case, the stiffness and damping matrices have the
additional property of being tridiagonal, However, they are even
further restricted because a general symmetric, tridiagonal matrix
of order N has 2N-1 independent parameters but K and C for
a chain model each have N independent parameters,

The question of uniqueness in the determination of linear chain
models from their input and output has been studied by Udwadia and
Sharma (1978) for models without damping, and Udwadia, Sharma
and Shah (1978) for models with damping. Their damped models do
not necessarily belong to mN because they do not assume uncoupled
modes; in fact, their work does not involve a modal approach.
Udwadia and his colleagues consider the problem of determining the
unknown stiffnesses ki’ i=l,...,N or unknown damping coefficients
c,, i=1l,...,N, from knowledge of the base motion and the response

1

at one coordinate or "floor'. Their results show that the class of
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linear models is globally identifiable if the output is the response of ' i
‘the first floor but it is only locally identifiable if the output is the
| response of any other floor,
The first result can be demonstrated by a simpler argument
than the original proof by Udwadia and his colleagueé. Consider the 'I
vundamped case, Let w, denote the absolute displacément of mass
m, which corresponds to the ith "floor", In the notation of Fig.3.1,
Wi=Xi+Z and, for convenience, set Wq = 2. Consider the situation in
the frequency domain as w— oo and denote Fourier transforms by
capital letters. The motion of each mass must be much smaller than
that of the mass below it because the inertia of each mass restricts =
the transmission of the high-frequency motion up the model. In fact:
Wi(w) k_1 i -
-“r—i_—i-(—w)ﬁv-n—l{;?as w=co _ (3.4.29)
becéuse thé'iﬁértia of each mass is balanced to the lowest order by
the s_‘éring force set up by the motion of fhe ma ss below. | Thus, at

high frequenéies, there is a progressive decrease of the order of —1-7?

w
in the motion at each successive mass higher up in the model.
From (3. 4.29);
2
iy Wl(w)
kl = -ml lim —'Z—(@—- (3. 4, 30)

W=

Since the base displacement z and the firstfloor response w;=x;+z

are known by hypothesis, kl

can be determined., From the equation
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of motion for mass mlz

m,w, =-k1(W1-WO) —kz(wl-wz) (3.4.31)
But Wz(w)/Wl(w) =0<i2-> as W— o, and so as W™ oo:
w
2
-m, W Wl(w) =- kz[Wl(w) - Wo(w)] -kz Wl(w)
Thus, the stiffness of the second spring is given by:
. 2
1<2 = —kl + lim [mlw Wl(w), +k1Z(w)]/W1(w) (3. 4.32)

W= o

where all the quantities on the right-hand side are known. This allows

w5 to be determined from (3. 4. 31), that is:

1 .
w, —E—Z-[rnlw1 +k;(w; - 2) +k2w1] (3. 4.33)

Since Wy and W, are now known, the arguments can be repeated to
determine ks, and Wi and so on.

This confirms that every undamped chain model is determined
uniquely by knowledge of the base motion and the first floor response,
and so in this case the class of chain models is identifiable for inputs
of finite duration. However, it should be noted that the algorithm to
construct the stiffnesses requires accurate knowledge of the motion
at high frequencies where in earthquake records the signals are very
small. (The limit process can be approximated by taking any w much

greater than the highest modal frequency of the model.) In

wN,



-123-

almost all practical applications, high-frequency noise would prex}rent

accurate determination of the stiffnesses. In fact, only the lower mode
properties will be determined with reasonable accuracy (see §3. 5).
Consequently, the uniqueness result should not be used to govern the
placement of a transducer in a building, as has been suggested, be-
cause the first floor will usually have the lowest signal-to-noise ratio

for the response of each mode.

3.4.5, An Example: Two Degree of Freedom Models

To illustrate some aspects of nonuniqueness in the determina-
tion of models from their input and output, the class mz of linear
models having two degrees of freedom is considered in detajl. Sup-
pose that the geometry of the coordinates %, is given by b1=b2=1
and that the output is the response at Xq» then a general model in
mz can be depicted as a lumped-mass system connected by springs
(Fig. 3.2). No special significance should be attached to the spatial
arrangement of the masses in Fig. 3. 2, although the coordinate direc-
tions must always be consistent with bl:bzzl. Also, damping is not
included because it»does not provide additional insight into the non-
uniqueness.

To revert temporarily to a more general situation, Kij(i £3)
is used to denote the stiffness for relative motion between coordinates
Xiv and‘ gj when all other coordinates are fixed, and %ii is used to
denote the stiffness for relative motion between coordinate %, and the

base, again when the other coordinates are fixed, For a class of
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Figure 3.2. Undamped linear model with two degrees of freedom
and pseudostatic influence coefficients b1=b2:1.
The symbol X indicates that the response is measured
at that mass.
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simple geometries, %ij will be the stiffness of the spring»corzmectiz.lg
x, and Xj' If there is no spring between the coordinates, then- .%ij
is set to zero. The M. are to be distinguished from the elenients
kij of the stiffness matrix K. The following useful relation can be
proved by deriving the equations of motion of the general mass-spring

system using Lagrange's equations:

k..=-%,. , i#]j

1] 1]
(3. 4. 34)
N
k.. = z A, .
ii ij
j=t

The inverse relation, which will also be used in this subsection, has

the same form:

ij ij
(3. 4. 35)
N .
.., = Z k..
ii ij
j=1

Equations (3. 4.34) are useful for constructing the stifiness matrix for
a general arrangement of point masses connected by linear, massless
springs. The point masses can be replaced by finite, rigid lumped-
masses provided they have no rotational degrees of freedom., There
are also similar equations to (3. 4. 34) and (3. 4, 35) which give the
relation between tl;.e &ashpot coefficients and elements of the damping

matrix.
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Returning to the class [Ilz, consider a model which is control-

lable, then W, and p(lr);éo, r=1,2, are determined by its input and

output, the latter being the response at x Two points to be noted

1°
are that this is a case with NO =N -1 and that a coupled model with
two degrees of freedom must be observable because it cannot have
repeated modal frequencies and it cannot have a node at a coordinate.
This last result also ensures that the conditions (3. 4. 26) for non-
uniqueness are always satisfied because in the present case, the
conditions reduce to Cp(zl) #0 and Cpgz)f-O. Let ® =[ge(l),gg(2)] be the
transformed modeshape matrix of the observed model. From (3. 4. 27),

(3.4.13) and (3.4.11), there is one other model consistent with the

observed data, called the companion model , which is given by the

transformed modeshape matrix [ @(1),?9-(2)] where:

cp(11) Cp(lz)
g - ,gle. L (3. 4. 36)
Y1 « - Yol o
2 (2) 1 (1)
@ %2 o, %2
L _ | ]

and Yy and Y, areto be selected so that 5(1)

)

have unit

(r)

and @ 2
magnitude. Evaluating the Yo and using the orthogonality of the Eé
and (3. 4. 20) to simplify (3. 4. 36), it can be shown that ¢ can be

expressed in the form:
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¢ =vd
‘ (3. 4.37)

P P2
where v =__2_1__2__I
(p7 +05)2

1 2 p2 -p1

. | N
Recall from (3. 4, 10) that pi: bim: , so that in the present case
o ok : 2, o2)h :
= = -+ = +
ST s PZ m2 and (pl PZ) (ml mZ) .
» According to (3. 2. 15) and (3. 4. 4), the stiffness matrices of

the observed and companion models are given by:

-

1
& =MZ 80%etm
(3. 4. 38)

1
23025t T

"M

and K =M
Thus, from (3.4.37) and (3. 4. 38):

3

t (3. 4.39)

~ i1 i
K=M*VM ) )KM*VM ?

Observe that:

and so:
1 1
(3. 4. 40)
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where r=m,/m. . Substituting (3.4, 40) into (3. 4. 39) gives the fol-

1.
lowing relation between the stiffness elements of K and K:

~ 1
Ky =1y g 12k

11 +k

12 22]

~ ~ 1

K, =k21=m[rk11+(r-1)k12—kzz] (3. 4. 41)
~ 1 .2
Kyp =737 [F kyp - 21k, tky,]

These relations can be interpreted in terms of spring stiffness in the

two models by using (3. 4. 34) and (3. 4. 35):

n =%

11 11

~

1
2 =177 (%22 - r%ll) (3. 4. 42)

% =AU

22 1+(1+r)%

1 12

Notice that the spring between mass m, and the base is the same in

each model, This is consistent with a general result which can be

proved using the theorem in Appendix B: if bk =1, k=1,...,N, and

the response is measured at X, then the stiffness Kii for relative
motion between X, and the base is determined uniquely.

One interesting case is given by setting # . =0, so that the

11

observed model is a chain model with the response measured at the

"roof', In this case:
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Ry, =0
P (3. 4. 43)
12°T+r 22 e
%22=(1+r)%12

The companion model is therefore a chain model as well, This is a

more general case of the example given in §2.4.1 which had m1=m2,

so r=1,

Another interesting case is given by setting #_, =0, so that

22

the observed model is now a chain model with the response measured

at the first "floor'. In this case:

“11 7%

~

-t 4
125 T¥7 M1 (3. 4. 44)

hoo =(1+r) “i2

Notice that the companion model is _n_c_;ﬁ a chain model, This is as it
should be, because the result proved by Udwadia and his colieagues
(83. 4. 4) states that a chain model is determined uniquely by its first
floor response,

This last example also illustrates another feature in the iden-
tification of general linear models; since 74.11>0, (3. 4. 44) shows

that %12 <0, so that the companion model has a spring with a negative

stiffness. Indeed, the companion model is physically unreasonable if
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one insists on interpreting its stiffness distribution in terms of physi-
cal springs between coordinates, However, this interpretation is too
rigid because there are physically reasonable systems which require
negative stiffnesses if their stiffness distribution is modelled by
springs. The governing requirement is only that the stiffness matrix
be positive definite,

For example, consider a uniform cantilever beam undergoing
lateral deflection. Let x. be the deflection half-way along the beam

1

and X, the deflectionatthe free end (Fig. 3. 3a). Using elementary

beam theory, the corresponding stiffness matrix is:

16 -5
K* =% (3. 4. 45)
0 -5 2
_48EI . . ~ .
where ko =T The system of springs which has the same stiffness
7L

matrix (Fig. 3. 3. b) is given by applying (3. 4. 35) to (3.4.45). This

gives:
"1y llk0 >0
niy = 5k, >0 (3. 4. 46)
KZZ = —3k0 <0

A spring with a negative stiffness is therefore required in order to

model correctly the bending in the beam. Furthermore, three springs
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Figure 3, 3. (a) Uniform cantilever beam (b) System of springs

with the same stiffness matrix for the coordinates ’
30 and x,. '
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are required; two springs can model shear but not bending,

As a final comment on this point, Eq. (3.4.35) can be used to
prove the following result‘:l

If K is a symmetric, positive definite matrix, then it cor-
responds to the stiffness matrix of a spring system with every spring
stiffness positive if and only if all the off-diagonal elements of K are

nonpositive and K is weakly diagonally dominant, that is,

SN REES B
j=1

3.5, Determining Linear Models of Structures from Earthquake

Records

The application of the class of linear models mN to the identi-
fication of a structure from seismic records is considered in this
section. It is shown that reliable estimates of the stiffness and damp-
ing matrices typically cannot be made from records of earthquake
response because of basic limitations of the data. A practical strategy
is then suggested for structural identification using linear models,
which consists of two stages. In the first stage, parameters of the
dominant modes in the records are estimated., In the second stage,

these parameters are used to improve synthesized models, which are

capable of giving more detailed estimates of the structural response,
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3.5.1, Limitations of the Data and Models

The first limitation to be considered arises because the seis-
mic response is usually measured at only a few points in a structure.
In order for the optimal est';mates of the, stiffness and damp-
ing matrices, K and C, tobeatleast locally unique, the class mN
must be locally identifiable, From $3.4.2, the response must there-
fore be measured at 3N or more of the coordinates. This require-
ment will, in general, impose a severe réstriction on the number of
degrees of freedom allowable in the models. For example, if only
one response record is available, which is the case for the two build-
ings examined in Chapter 6, the models cannot have more than two
degrees of freedom, Thus, if the matrices K and C are taken as
the parameters to be estimated uniquely, the number of degrees of
freedom of the models in mN will typically be so small that the mass,
stiffness and damping distributions in the structure will be modelled
very poorly.

On the other hand, the modal parameters for the structure, as
given in Proposition 1, can theoretically be determined for models
with any number of degrees of freedom, Furthermore, within the

framework of a linear model, these parameters contain all the infor-

mation about the structural properties that can be estimated directly
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from the input and output records. It is therefore recommended that
these modal parameters be estimated, rather than K and C.
Another important limitation is due to noise in the records
which places an upper bound on the number of modes that can be esti-
mated reliably, This relates back to the discussion in 82,4, 1 of the
compromise that must be made between resolution and variance of the
parameter estimates, Experience with a few applications to multi-
story buildings suggests that the bound will generally be of the order
of ten modes or less, This is due to several factors which cause a
deterioration in the signal-to~noise ratio of the higher modes. The
fact that the distributed inertia forces induced by the earthquake
motion all act in the same direction, but the modeshapes of the higher
modes change sign up the building, limits the energy fed into these
modes, This effect is seen in the linear models as a decrease in
participation factor with mode number. In addition, the energy con-
tent of the ground motion falls off at high frequencies, These two
factors result in a smaller signal for the higher modes. There is
also a decrease in the signal-to-noise ratio due to an increase in the
noise levels at higher frequencies because of limitations in the mea-
suring, recording and data-manipulation processes, In terms of the

modal approach recommended above, these factors imply that only the
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dominant modes of the response can be estimated reliably from
earthquake data,

These factors also imply that the higher-mode information in
the stiffness and damping matrices will be unreliablé if attempts are
made to estimate these matrices from seismic records. Since Eqgs.
(3.2, 16) show that it is the properties of the higher modes which dom-
inate the values of K and C, the stiffness and damping matrices
will be estimated poorly from structural data, even if in theory théy
can be determined uniquely by the input and output records. This is
a general conclusion for structural identification using linear models,
irrespective of whether the class mN or some other class such as
chain models is used.,

Since the stiffness matrix cannot be estimated reliably from
records of the earthquake response of a structure, the distribution of
forces also cannot be estimated reliably, This is particularly unfor-
tunate because the forces are of great interest to the earthquake
engineer,

Two approaches are suggested to enable the forces to be deter-
mined or estimafged. A purely empirical approach is to use appropri-

ate transducers to measure directly the stress or strain in structural

members. There are obviously practical limitations on the number of
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such transducers which could be distributed throughout a structure,
but they could be used to check the other approach to determine the
forces. This is the one suggested in $2, 1.2 in which the parameters
of a synthesized model, such as a finite-element model, are adjusted
so that the properties of its lower modes are equal to the same pro-
perties estiméted from the structural data (see,. for example, Collins
et al, 1974), This will ensure that the output of the model is consis-
tent with the recorded motion of the structure., The altered model
may then be used to estimate the earthquake forces and also the struc-
tural motion at points where it was not recorded,

The final limitation to be mentioned is a consequence of the

approximations inherent in the models in M Properties such as

N
linearity, time-invariance and uncoupled modes are not features of
real structures, which can exhibit amplitude nonlinearities, struc-
tural deterioration and other complications during an earthquake,
The simplificé.tions inherent in the linear modelling may be adequate
at low levels of excitation, but for strong ground-motion they can be
expected to lead to a pronounced dependence of the estimates of the
parameters on the particular data sample chosen, as discussed in a

general way in 82,4, 6. However, there is still value in determining

how well linear models can be made to fit the data because of their
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They also serve as a

useﬁil first step towards the problems involved in using nonlinear

models in structural identification,

The limitations discussed in this section are summarized

in Table 3.1, together with suggestions to avoid these difficulties,

. Limitation

Consequence

Suggested Approach

Limited number of re-

cords compared with

desired number of co~

ordinates in model

Limits resolution be-
cause modeshape in-
formation missing
from data, Matrices
K and C typically
cannot be determined
uniquely

Determine the modal
parameters of Prop-
ositions 1 or 2,
which contain all the
information in the
records

Noise in the records

Limits resolution be-
cause higher-mode in-
formation is strongly
influenced by noise,
Matrices K and C
estimated poorly,
even if they are iden-
tifiable

Must be content with
estirnéting param-
eters of dominant
modes in records of
response

Model is only an
approximation

Optimal model depends

on data used to deter-
mine it and it may not
predict response well
for other excitations

Future research to
identify more real-
istic models.

TABLE 3.1, Limitations when using linear models and earthquake re-

cords for structural identification,
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3.5.2., Models Based on Dominant Mades

In the previous subsection, it was suggested that the practical
strategy for structural identification with linear models is to take a
modal approach wherein the parameters wr, Cr, (3§r),x§r)(0) and
vgr)(O) are estimated for the dominant modes in the seismic response
records., This amounts to using a class of models defined by the

theoretical model [Eq, (3. 2, 12)] :i

§§T)+2Crwr;;§.r)+w X](.r) :_6i(.r)'z'(t), r :1’. .., N (3' 5, 1)

with the i.nitié.l displacement and velocity, xgr)(O) and vgr)(O), also

treated as parameters, together with the output equation [Eq. (3. 2. 11)]:

N
x, = 2 =), vies (3. 5. 2)

where the output set J defines the coordinates (points and directions)
é.t whi;:h the response X );i or >'<'i is measured.

In this approach, the structural data areused to determine the
number'of modes, N, of the model as follows, A small number of
modes is taken initially and the optimal estimates of the modal param-

eters are determined from the recorded input and output, Another

mode is then added to the model and all of the modal parameters are
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again estimated, This is continued until the change in the optimal
measure-of-fit, Jmin’ with the addition of another mode, indicates
that the output match is no longer significantly improved,

Cleérly, some judgment is involved in determining the best
x}alue of N, so it is not a precisely defined quantity,- but the above
approach does give some indication of the resolution which can be
achieved in the presence of the noise in the records. The parameters
of the N modes included in the model by using the above criterion
based on Jmin are not necessarily estimated accurately because this
‘ depends on the nature of the noise., However, if additional modes
were included, they would have such a small effect on the output that
it is likely that the estimates of their parameters would be completely
unreliable,

Some of the advantages of using models based on fhe dominant
modes in structural identification are:b

1) They deal directly with the parameters that control the
structural oufput, as it is interpreted by a linear model,

2) The models are controllable, ob.servable and identifiable,
from the results of §3,3 and §3, 4. 1,

3) The order of the model is not arbitrarily defined, but is

determined from the structural data,
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4) The estimated parameters can be used to alter any synthe-
sized linear model, whether it be discrete or continuous, to ensure
that it is consistent with the structural data.

In the remaining chapters of this dissertation, attention will
shift to structural models based on the dominant modes of the output.
In Chapters 4 and 5, techniques are described which allow the modal
parameters to be estimated from seismic records. The results
obtained when these techniques were applied to seismié reéords from

two buildings are discussed in Chapters 4 and 6.
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IV. OPTIMAL FILTER METHOD

4,1, Introduction

The concept of an optimal filter plays an important role in mod.--
ern control theory. Although a number of optimal filters can be de-
fined, depending on the criterion for optimality, they all share the
same basic property of estimating the state of a prescribed model for
a system. At each instant of time, the filter gives the optimal estimate
of the state based on the histories of the input and output of the system
up until that time. If the values of parameters of the model are not
known, the state and parameters can be estimated simultaneously by
combining them into an augmented state and then determining the opti-
mal filter for this new state. In this case, by a suitable choice of the
optimality criterion, determination of the optimal filter is an output-
error method for parameter estimation.

A deterministic, least-squares filter has been developed by
Bellman et al (1966), and extended by Detchmendy and Sridhar (1966),
by using the concept of invariant imbedding. Several investigations
have recently been made to determine v;/hether this filter is a useful
technique to identify structures from seismic records (Distefano and
Rath, 1974; Distefano and Pena-Pardo, 1976; Beck and Jennings, 1977).
The method has several attractive features, including the ability to
- treat ﬁoﬁlinear models and to show how the estimates of the parameters
change with time. The work with simulated response data, generated

by calculating the response of a model to recorded ground motion, was
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promising. However, applications to real seismic data reported later
in this chapter show that there are weaknesses in the method when
there is significant measurement noise or model error.

The contents of this chapter are as follows. A general formu-
lation of the invariant-immbedding filter is gigfen in §4 2 for the problem
of estimating simultaneously the state and parameters. It isvpossible
to introduce this as a special case of an output-error approach to state
estimation, but the formulation given here emphasizes the similarities
with the general output-error approach to parameter estimation which
was given in §2.2. The filter equations are derived in §4. 3.for a gen-
eral tyi)e of model and are then specialized in §4. 4.1:'01: a single degree-
of-freedom linear model. The latter section also contains some re-
sults and conclusions from tests of -the filter using simulated response

records and seismic response records from a multi-story building.

4.2. Formulation

Recall from §2. 2 that when the usual outputéeri'bj; approach

to parameter estimation is applied, if the initial state is unknown, it

is included along with the unknown model parameters in the vector a
to be estimated from the input and output of the system. The approach
is then strictly one to estimate simultaneously the state, x, and the
parameters, @, because once a is estimated, the complete history
of the state can be determined from (2.2.1). The optimal filter method
also estimates the state and parameters but it does so by combining

the parameters and the final state into one vector c. By estimating
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c for a continuous succession of increasing subintervals of the com-

plete data interval, sequential estimates of the parameters are obtain-

ed.
To be specific, the augmented state is defined by:
x(t)
u(t) = (4.2.1)

ko4

With this definition, the state Eq. (2.2.1) can be rewritten as:

3(t) =g(u, )2 (4.2.2)

o

since the model parameters are constants. Also, to simplify the nota-
tion, the input z to the model has been omitted as an argument of g.
It is assumed that f allows the complete history of x to be determined
from the value of u at any point.

Suppose 1 lies in the interval [Ti’ Tf] corresponding to the
portion of the data from the system which is tolbe used in the estimation.
A vector c¢ is defined by c=u(r), then for the subinterval [Ti,q-], the

measure-of-fit defined by (2. 2. 4) can be rewritten as:

2

A (4. 2.3)

.
J(e, ) =JT ly(t) - Tyu() - rzg(t)ni(t)dﬁ la(T) -8,

1
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since, by hypothesis, u is completely determined by the final-value
problem given by (4. 2. 2) and the end condition u(r)=c. Notice that
a in the last term of (2. 2. 4) has been replacbed by the equivalent vector

. A
has been rewritten as u

T 3 .
uf i) and 2 0

0 Notice also that ‘_r'l and I‘Z
are modified forms of the matrices appearing in Eq, (2. 2.2) in which
columns of zeros have been added so that the model output m is given
by I‘lg +I"22 .

The optimal estimates of the final state and parameters for the

subinterval [Ti’ 1] of the data are given by the value of ¢ which mini-

mizes J(c,T). If this value is denoted by e(r), thatis,

J(e(r), 1) =min J(c, T) (4.2.4)
C

then e(T) is the optimal filter of u evaluated at time T1. The history
of the optimal filter e(7), Te[Ti, Tf] ," éi&es sequential optimal esti-
mates of the state and parameters based on increasing portions of the
observed data.

Notice that initially, when ¢ is close to Ti’ the term in
(4. 2. 3) containing the initial estimates ﬁ 0 will dominate J and the
optimal estimates will be biased towards the initial estimates. If the
elements of A are small enough, or the interval [Ti’ Tf] is large

enough, however, the integral term in J will eventually dominate as

7 is increased. The optimal filter will therefore begin with the initial
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estimates and "converge'' to values which are controlled primarily by
the data from the system, and the rate of '""convergence' can be changed
by altering the size of the elerﬁents of A, In the absence of model error
and measurement noise, this behavior would represent an asymptotic
approach to the true values of the parameters, In applications to real
data the optimal filter need not converge to constant values of the pa-
rameters because the optimal estimates based on the data may change
as more data are used, for the reasons discussed in §2. 4. 6.

Finally, it should be noted that the optimal estimates of the pa-
rameters in é._ and e (Tf) are equal if the same measure-of-fit is
used [equations (2.2.4) and (4.2.3)]. The only difference between the
two output-error approaches is that one finds the minimum of J by
defining the complete history of the state x in terms of an initial-

value problem and the other uses a final-value problem.

4,3, Invariant-imbedding Filter Equations

The original derivation of the equations for the invariant-im-
bedding filter was given by Bellman et al (1966) and this was extended
by Detchmendy and Sridhar (1966) to inclﬁde an equation-error term in
the state Eq. (4. 2.2). Only the output-error approach is considered in
this work and a similar derivation to that of Bellman et al is given.

The problem addressed is to solve the series of minimizations



-147-

of J(c,T) as 7 ranges over the interval [Ti’ Tf] . This is equivalent
to determining the history of the optimal filter on this interval, The
first step is to derive a partial differential equation for J{c,T). Since
u is defined on the interval [Ti’T] by the state Eq. (4. 2. 2) ana the
end condition u(T)=c, the notation u(t;T,c) is used. Attime T,

u(t; T, c) has the value c¢ and at time T+§7, it has the value c+ 8¢

where:
. 2
8c =u(t;7,¢) 8T +O0( 8T )
2
=glc, 7) 8T +0(57 ) (4.3.1)
But:
u(t;t,c) =ultsT+ 87, +8¢c) (4.3.2)

on the interval [Ti’ T]. Apply a Taylor series expansion to the right-

hand side of (4. 3. 2) and substitute (4. 3. 1); then let §7t—-0. This leads

to:
gT(t;fr,g) = —u_c__(t;T,_c_) gle.T) (4.3.3)
ou,
where u_is the vector with elements _81-1 and _u:c is the matrix with

ou, -
elements f . By differentiating J and using (4. 3. 3), the following

linear partial differential equation can be derived:

2
JT(g, TV (T (e, 7). gles T))=|IX(T)-I‘13-F23(_C_, Sl )
= T
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where (s,+) is the Euclidean scalar product. The initial condition as-

sociated with (4. 3. 4) is given directly by (4. 2. 3):
(4. 3.5)
A Taylor series expansion is used to solve Egs. (4. 3. 4) and

(4.3.5), Thus, with T as a parameter, J and g may be expanded

about c=¢(T) to get:

e, M =3le(m, I+l -emll® +... (4.3.6)
R(T)
and glc, T) =gle(m), 1] +g [e(T), T][c -e(M] +. .. (4.3.7)

There is no first-order term in (4. 3. 6) because ¢(T) minimizes

J(c, T) and this implies that:

J le(m),1]=0 (4.3.8)

The symmetric matrix R(T) in (4.3.6) is defined by:

[R(M];= 7 5oga-7 (e T) (4.3.9)

i c=e(T)
It is the sensitivity matrix of J(c, T) with respect to ¢, the counter-
part of S=S(8) defined by (2.3.8). If R(T) is positive definite, e(T)
gives a strict local minimum of J(c, 7).
If the infinite expansions (4. 3. 6) and (4. 3.7) are substituted

into (4. 3. 4), an infinite hierarchy of coupled ordinary differential
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. th . .
equations is obtained in which the n equation governs the behavior of
an array of dimension (n- 1), The first three equations of this hier-
archy are the scalar equation giving the measure-of-fit of the optimal

estimate:

' T
minJ(g_,T)éJ'[_e_(T),T].—.I ly(t)-T E(t)-Tz_g(E,t)HZ dt  (4.3.10)
T v(t)

< i
the vector equation:

&(m=gle, N+QME e, NV(D[y(1)-T;e(M)-Togle, M (43.11)
and the matrix equation:

Q(m)=g (e, NRT+QT)g. (e, TH+Q(TIK(e, TIQ(T)
= B (4.3.12)
-Q(T)Ht(g, T)V(T)H(e, T)Q(T)- Q(T)E(T)Q(T)
Here Q(T) =R-1(T) is introduced to avoid numerical inversion of the

matrix R(T) and the matrices H,K and E are defined by:
=) — -~ 4
H(e, T) —Tl +I‘Zgg(g, T) (4. 3.13)

K, (e T)= (1‘2511 (e ’T), V(T)[X(T) Lie(m-Tgle, N (4.3.14)

B, (T) ZzaJ(c ,T)

xeral (e ) | (4.3.15)

=¢(T)

An approximate solution for the optimal filter can be calculated
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if the terrn E(T) is dropped in (4. 3. 12). The first three equations

of the hierarchy are then decoupled from the remaining equations. The
approximate optimal filter, referred to from now on as the invariant-
imbedding filter, is therefore defined by the initial-value problem
given by Eqgs.(4.3.11) and (4. 3. 12) with E=0, together with the ini-

tial conditions:

1

e(T,) =i, ; Q(T,)=A" (4. 3.16)

which are derived by substituting (4. 3. 6) into (4. 3.5). Notice that
(4. 3. 16) implies that A must be nonsingular and, in particular, that
it cannot be set to zero in (4. 2.3). The initial estimates will there-
fore always have some influence during the minimization of J(c, T)
when T is close to Ti°

The optimal filter e(T) gives the optimal estimate of u(T)
using the subinterval [Ti,’r] of the data, If the associated optimal
estimate of the history of the augmented state is required, which is
denoted by l'i_(t;'r), tE[Ti, T], it must be determined by the state Eq.

(4. 2. 2) and the end condition:

G(T;7) =e(T) (4.3.17)

The two time-parameters in the notation for { are therefore inter-

preted as follows: t indicates the time at which the state u(t) is
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estimated and T indicates low much of the available data over the in-
terval [T, Tf] has been used in the estimation, . In view of these

i
comments, (4.3.10) is an interesting result because it states that the

minimum of J(c, T), which, according to (4.2.3), is given by:

T'
mmJ(E,T)=J ly)-T g(t;rr)-l‘zg@,t)llz dt
c T. V(t)

N ~ 2
+H&(T,;m)- 4, (4.3.18)
-1 =0
B A
is also given by replacing ﬁ(t;’r) by é(t). However, it is clear from
their respective definitions that these latter quantities are not equal,
In fact, _Aq and e satisfy different differential equations, Egs. (4.2, 2)
and (4. 3. 11) respectively.
In general, the invariant-imbedding filter is only an approxi-

mation to the optimal filter, However, the truncated équations are

exact if the equation for the augmented state u is linear, that is,

u(t) =g(u,t) =B(t)u +b(t) (4.3.19)

where the matrix B(t) and vector b(t) are known. In this case E
is identically zero because J(c, T) is a quadratic function of c. How-
ever, for parameter estimation, the equation for the augmented state

is nonlinear for any nontrivial problem [see, for example, Eq. (4. 4. 3)].
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In the above linear case, Eqs. (4.3.11) to (4, 3.16) are formally
equivalent to the equations for the stochastic filter of Kalman and Bucy
(1961) if process noise is neglected. The Kalman-Bucy filter is in this
case the minimum variance estimator of the state u of a linear system,
whose parameters are known, in the presence of Gaussian white noise
in the observations. For this filter, Q(t) corresponds to the covar-
iance matrix of uf(t).

In the nonlinear case, the equations foi' the invariant-imbedding fil-
ter are formally equivalent to those for the extended Kalman filter if the
term involving K in (4.3.12) is omitted. The presentderivationofthein-
variant-imbedding equations does notinclude an equation-error term, cor-
responding to the process noise of the extended Kalman filter, but this term
can be included (Detchmendy and Sridhar,1966). The extended Kalman fil -
ter and other approximations for a stochasticnonlinear filter are discussed

by Jazwinski (1970).

4,4, Single Degree-of-freedom Linear Model

The general filter equations of the last section are specialized
in this section for the problem of estimating the state and parameters
using a linear model with a single degree of freedom. This model is
.then used to examine the behavior of the invariant-imbedding filter for
one of the simplest models useful in structural identification.

Consider the model given by the equations:
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v +azv+alx = -a3z(t)

(4. 4. 1)
v =x

where a1=w2, a2=2gw, va3=p and @w=2%/T; x and v aré the dis-
placement and velocity of the model; Z is the input; T is the undainp—
ed natural period of the model; ( is its viscous damping factor; and
the input multiplier p is called the participation factor of the model,
Notice that the model Eq. (4. 4. 1) has the same form as the modal
Eq.(3.5.1), In fact, the model is used later to estimatéthe corre-

sponding parameters of the fundamental mode of a building.

From (4. 2.1), the augmented state vector is given by:
t
u(t) =[=(t), v(t),a;,2,,2.] (4. 4.2)

and the corresponding state equation is:

S(t) =g(u,t) =[v, -a;x -2, v-a,%(1),0,0,0]° (4. 4. 3)

This last equation is nonlinear in u, even though the original model
is linear in the response quantities and in the parameters.
It is assumed that the histories of the input Z and the relative

v, Oor a are avail-

displacement, velocity or acceleration, XO, 0 0’

able over some time interval [Ti’ Tf] . The output can therefore be

described by:
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t
y = [klxo,kzvo,k3a0] (4. 4. 4)

where ki: 1 if the corresponding response quantity is to be used in

the estimation, otherwise it is zero. The model output is:

ot
m =[k1x, kzv,k3v] (4. 4. 5)
or m :I‘12+l—‘211 (4. 4.6)
where r1=kl 0 000 andT2=0 0 00O (4.4.7)
0 k3 0 0O 0 0 000
0 0 00O 0 k, 0 0O

The measure-of-fit J which is to be minimized by the optimal

filter becomes:

: T T
2 2
J(c, 'I')=1<1V11 IT [XO— x]"dt +k2V22 JT [VO— v]~dt

1 1

T
o2 ~ 2
tkVag JT [ao-v] dt +A11[X(Ti) —xo]

1 (4. 4. 8)

a 12 ~ 2
+A22[V(Ti) - vo] +A33[c3 -3 0]

N2 N2
tA g le -3, ol tAggleg-a5 4

where the weighting matrices A and V(t) have been taken diagonal

and constant, and x and v satisfy (4.4.1) with x(T)=c¢ (T)=c,,

1’ 2



-155-

= = = . Th . : .
a.l €3 az Cye a3 cg e Vii are used to normalize each integral

so that the effects of the different magnitudes of the response quantities
are reduced., This is achieved by taking:

-1 v 2]
V11 = (Tf— Ti)l:max lXO(‘F)l _I (4. 4. 9)

. Lo

with similar expressions for V and V

29 33° and with the maximum

taken over [Ti’ Tf]. Alternatively, the integral-square response could
have been used:
1t 2

= t) dt (
11 X
T

v

>

.4.10)

With similar expressions for VZZ and V33. The square root of each
integral term in (4. 4. 8) can be interpreted‘as the ratio of the roof-
mean-square (r.m, s.) response-error to the maximum response if

(4, 4.9) is used, and as the ratio of the r,m. s response;error to the
r.m, s. response if (4.4, 10) is used.

The optimal filter is the value of ¢ which minimizes J(c, T)

and it leads to the sequential optimal estimates e(T):
() =[£(137), ¥(T37), 8, (7),8,(7), &,(M)] (4. 4.11)

as T ranges over the interval [Ti’ Tf]. Equations (4, 3.11) and

(4. 3.12) for the invariant-imbedding filter become:
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e.(T)=g.(e,T)+k,V

j J 1 11 (T)[XO(T) 'el(T)]

(4.4, 12)

+k2VZZQ.2(T)[VO(T) - e,(T)] tkyVisPoole, Mlay(1)-g,(e, ]

and Q) =Py(e, B, fe, 7)-k; V) QMG -k, V55 QMG 5 (7)
(4.4.13)

where ij :QjZ , if k=1

= -(e3le+e4Qj2+ ele3+ e, QJ4+'Z'QJ5), ifk=2

= 0, otherwise (4. 4. 14)
and Njk :leQk3+ Qj3Qk1+Qj2Qk4+ Qj4Qk2 (4. 4. 15)

The initial conditions are given by Eqs. (4. 3. 16), which become:

e(T,) = [x (4. 4. 16)

5, 0.8, oIf
O’ l ,0°72,0°73,0
where the vector on the right-hand side contains the prescribed initial

estimates, together with:

(T ) —Kl—- (4. 4.17)

JJ

ik

The last term in (4. 4. 13) arises from the matrix K defined by
(4. 3. 14) and it makes a contribution only if k3 =1, that is, acceleration

matching is included in J. The term is shown here for completeness

but it was not included in the results reported below. With the term
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omitted, the equations are identical to those for the extended Kalman

filter,

4,4,1., Tests: Simulated Data

Numerous tests of the filter method were made using response
data generated by numerically solving‘the equations of motion (4..4:° 1).
The oscillator was taken to be initially at rest and Z was taken to be
the first 10 seconds of the N-_S component of the 1940 El Centro earth-
quake record (Figure 4. 1).

A normalized version of the initial value problem for the in-
variant-imbedding filter given by Eqs. (4.4.12) to (4.4.17) was solved
using a standard subroutine for systems of first-order differentia;l
equations.. It is only necessary to solve the Ricatti equation for Q
for each Qij with j2i because Q is symmetric. The gu_.broutine
used is based on the Adams-Moulton predictor-corrector élgorithm
with a variable time-step capability, The time-step is selected so
that the local truncation error in the numerical solution of the equations
is nominally less than a prescribed amount, which was 'taker} as 1% of
the current calculated solution, The subroutine therefore seiécts small
time-steps when the matrix Q(t) is init;ié.lly changing rapidly and then
automatically increases the time-stepras the rate of change of Q(t)

decreases,
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The filter equations were solved in a normalized, nondimen-
sional form given by scaling e(t) and Q(t) by the initial estimates of
the parameters and by the maximum of the recorded response. This
helps Vx}hen selecting appropriate values for Q(0) or A. In addition,
the relative sizes of the diagonal terms of the inverse sensitivity ma-
trix Q(t) then give an indication of the accuracy of the estimates rel-
ative to one another,

The first illustration of the results obtained uses the relative
displacement of a 1ineé.r oscillator with T - 1.0 sec., {(=5% and
p=1.0. To investigate the performance of the filter when both the
parameters and the initial conditions are unknown, the estimates of

the initial displacement and velocity were taken to be 10% of Xm and

=

0= respectively, where = is the "recorded' peak displacement,
m
The values of the QJ,J,(O) in the normalized version of (4.4, 17) were

chosen to be:

-1 2
0. =2tz [104, 5=1,2
530 =855 ]

10% | j=3,4,5 (4.4,18)
The initial estimates of the model parameters and the estimates
given by the filter after the first 5 seconds of the data have been used
are shown in Table 4. 1. The corresponding estimates of the period,

damping factor and participation factor are also shown., It took
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approximately 15 seconds of CPU time on an IBM 370/158 to compute
the first 5 seconds of the filter, which are typical figures for all the
computer runs with a single-degree-of-freedom model, The behavior
of the sequential estimates of the parameters, which are given by the
filter components eS(t), e4(t) and e5(t), are shown in Flg 4,2, The
estimates have essentially converged to the true values in about 3%
cycles. The slower rate of convergence for the damping coefficient in
Fig. 4.2 is typical of all the results obtained with lightly-damped os-
cillators and it is presumably due to the fact that the response is less
sensitive to the damping. The estimates of the response converge
much more rapidly. Figure 4.3 shows that the filter component el(t)
converges to the actual displacement in a quarter of a cycle. The
velocity component, ez(t), took ‘one cycle to converge.

It was found that using any of the relative displacement, veloc-
ity and acceleration of the single~-degree-of-freedom oscillator leads to
almost the same rate of convergence and accuracy of the filter, pro-~
vided the normalized filter equations are used. This is illustrated in
Table 4. 2 which shows the estimates of the physical parameters after
using the first 6,5 seconds of the response of a linear oscillator with
T=1,0 sec., (=5% and p=1.0. The initial estimates of the model

parameters a a_ and a_ were taken to be 50% greater than the

1’ 2 3

true values, and the estimates of the initial displacement and velocity
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were set to zero. The values of the ij(O) were taken to be:

Q..(0)=a}= 107 , j=1,2
Jj i

A s j=3,4,5 (4. 4.19)

where A is given in Table 4.2. The case where the relative displace-
ment is used jllustrates that when the‘ ij(O) are relatively small, the
optimal estimates can be influenced by the initial estimates via their
terms in J, whereas once the QJ.J.(O) are sufficiently large, the op-
timal estimates are controlled by the response data via the integral
terms in J,

It was also found that the filter technique was capable of suc-
cessfully estimating the parameters of a linear oscillator over the range
of damping from (=0% to {=100%. Figure 4.4 (2) corresponds to
an oscillator with T=1.0 sec., (=5% and p=1.0 and Fig. 4, 4(b)
corresponds to an oscillator with the samé parameters except that the
damping is increased to {=50%. In both cases, the relative accelera-
tion was used as the oﬁtput to be matched by the model and the initial

estimates of the parameters a a_ and a, were taken to be 50%

1’ 2 3
greater than the true values, For the same initial values of the ij(O)
4
[Eq. (4.4, 19) with )\ =10"], the estimates of the parameters took about
1 1
2-—2- cycles (£ =5%) and Y cycle (=50%) to converge. The estimates of

the model parameters after 3 seconds of response data were accurate
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2.0
- —§,(1/5,(0
— - 62 (f)/az(o)
| = G5(1)/d4(0)
N (a)
0.0 { | 1 | i
0.0 1.0 2.0 3.0
Time (sec)
2.0
i — §,(0/4,(0)
B --- 8,(1/38,(0)
- a1/ a5(0)
1.0
o (b) \
0.0 1 | 1 ] 1
0.0 1.0 2.0 3.0
Time (sec)

Figure 4.4. Sequential estimates of the model parameters for two linear
oscillators, (a) T=1,0, {=5%, p=1.0 and (b) T=1,0,
€=50%, p=1.0, using the relative acceleration of each os-

cillator,
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to %% or less in each case.

It was observed that in every case where the initial matrix
Q(0) was taken diagonal, the sequential estimates of the parameters
approached constant values. If the filter correctly calcglg.ted the op-
timal estimates, it would converge to the true values of .the parameters
because there is no model error and no significant measurement noise,
The reasons for this were discussea in §4.2. However, it was found
that when the ij(O) were relatively small, the steady-state values
calculated by the filter were not always close to the true values of the
parameters. It appears that Q(T) approaches the singular solution
Q=0 of the Ricatti equation (4. 4. 13), regardless of Whethe‘r the filter
va.lués are optimal, so that ex;entually the data are not used to update
e(T) in (4.4.12). Notice from the examples in Table‘é.; 2 that the
approach to Q =0 is eventually independent of the initial conditions on
Q.

A similar behavior of Q(t) occurs when the Kalman-Bucy
filter is applied to a linear model of the form of (4. 3. 19), which can
lead to "divergence' wherein the filter output gradually departs from
the recorded output (Jazwinski, 1970). Although the same effect occurs
in the present case, it has a different cause. In the Kalman-Bucy
filter, it is due to model error. The filter values are always optimal

because the equations for the filter give the exact solution for a linear
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model of the form of (4. 3.19). In the present application, there is no
model error and the ''divergence' of the filter output, or the '"pseudo-
convergence'' of the estimates of the parameters, is due to the sub-

optimal nature of the nonlinear filter,

4,4,2 Tests: Real Data

The computer program employed above was next used to estimate
the parameters of the fundamental longitudinal mode of the Union Bank
Building, Los Angeles, from records obtained during the 1971 San
Fernando earthquake, The response of this building is studied in more
detail in the next chapter using a different technique, The purpose of
the present section is to show that the estimates of the parameters
calculated by the filter can be in considerable error compared with the
optirﬁal estimates when there is significant model error or measure-
meﬁt ne‘ise. This was originally discovered during an investigation of
the sen‘.sitivity of J with respect to the model parameters, but a dif-
ferent approach is taken here in order to demonstrate the magnitude
of the errors in the estimates given by the filter in specific cases,

o 'I/‘vhe' results presented in Table 4. 3 include the final estimates
given by the filter for time segments from 5 to 15 seconds and from 15
to 25 seconds of the longitudinal component of the relative displacement

L oth
at the 19 floor. The longitudinal component of the absolute
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acceleration in the sub-basement was taken aé the input to the models.
The two time-segments represent respectively the worst and best per-
formance of the filter in finding the optimal estimates for a number of
time segments. The optimal estimates in Table, 4.3 were obtained by
minimizing J, Eq. (4.4.8), using the technique to be described in
the next chapter, The value of J'O in the Table is the contribution to
J from the first integral term in (4. 4. 8) since here kl =1 and
k =k3 =0. The Table also shows that increasing ij(O) does not im-
prove the performance of the filter, in éontrast to the behavior of the
filter with simulated data.

To determiné the values of J or VJ for the estimates given
by the filter, the complete displacement history for the model is re-
quired. Thus, Eqgs. (4. 4. 1) must be solved backwards in time because
E(Tf) gives estimates of the final values of the displacement and veloc-
ity and not the initial conditions, Since this is equivalent to computing
a forward solution with negative damping, the solution can become un-
stable, The unstable nature of the backwards problem can also be un-
derstood by ';noting that the solution of (4.4.1) for a forward probiem in
time is eveﬁtually}_iﬁdependent of the initial conditions. The seﬁoqsnes_fs

of the instability depends on the size of the quantity (w T Tests showed

f.
that sufficient accuracy was obtained in the present problem because

the damping is small and the duration is just over two cycles. For
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larger damping or longer durations, the instability might cause diffi-
' culties in evaluating the performance of the filter.

The estimates given by the filter for the time segment of the
displacement record from 5 to 15 seconds were particularly Pbor. It
is shown in the next chapter thaf there is significaﬁt long-peﬁéd' 'noiéé
in this portion of the record, in addition tb the model er’ror due to ig-
nored higher modes and nonlinearities in the response of the building.
These effects are thought to explain why the filter had difficulty in es-
timating the da%nping coefficient, a%s-lsuggested by the large final values
of Q44 in Table 4. 3. The smaller vélue of J'O shows that these ef-
fects are not so pronounced in the time segmgnt from 15 to 25 seconds.
The optimal estimates of the displacement. of the fundamental mode,
given by minimizing JO .for each time segment using the method in the
next chapter, are giv%én in Figs, 4.5 and 4.6 1;0 indicate the magﬁitude
of the model error plﬁs measurement noise.

Figure 4.7 ivs in_cluded to show the behavior of the sequential
estimates of the model parameters in a case where the filter is pre-
sumé.bly giving optimal, or near optimal, estimates. The plots were
generated during the run of the filtér program which gave the results
in Table 4. 3 for the port@qn of the relative diéplacement record from
15 to 25 seconds. The variation of the estimates during the latter part

of the titne segment gshow that there is interaction between the estimates
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of the damping coefficient a2 and the participation factor ass these
estimates tending to increase or to decrease together. Plots such as
Fig. 4.7, together with the information given by the inverse sensitivity
matrix Q(t), are useful features of the filter method when it can be
relied upon to produce optimal estimates.

It was found that rerunning the filter using the final estimates
of the preceding run as the initial estimates of the new run led to some
impro&ement.in the estimates. This is illustrated in Téble 4, 4 for
two additional runs of the filter. If the filter was tr’dl'y optimal, re-
peating this process should produce convergence to thé optimal esti-

mates corresponding to J since the initial estimates should even-

0’
tually equal the final estimates and there should be no contribution to
the minimum of J from the terms weighting the initial estiﬁqates. The
results in Table 4, 4 show that the approximate filter neea not behave

in this manner,

The observed behavior of the filter during the tests with simu-
lated and real data is consistent with the expected behavior of the error
due to neglecting the term containing E in (4. 3. ’1'2).A From (4. 3.5)
and (4. 3. 15), this error is initially zero. Howevér, the terms
ST can be expected to become nonzero because the

model response is a nonlinear function of the parameters. Thus, E(T)

will also become nonzero and the approximation will deteriorate with
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time, unless the output of the exact filter converges rapidly to the re-
corded output. In this case, Eq. (4. 3.11) rapidly approaches é=g
and hence E quickly tends to zero. The term involﬁng E in (4. 3.12)
should therefore never get the chance to grow relatively large and the
approximate filter should have almost the same behavior as the exact
filter. The conditions for good performance of the approximate filter
therefore appear to be that the model output is capable of giving a good

- fit to the recorded output, and the weighting matrix A is small enough
that convergence of the model output to the recorded output is notbslow-
ed too much by the influence of the initial estimates,

The following conclusion is suggested by the above discussion
and by the tests of the filter: The method should produce optimal, or
near optimal, estimates if the model is capable of matching the record-
ed data well, but it can be unreliable if the optimum output-error is
large, either because of measurement noise or model error. Unfor-
tunately, significant model error is a possibility when linear models
are applied to identify structures using strong-motion records. Thus,
following the tests of the filter method, it was felt that a more reliable
technique was required for the desired applications. A technique was
therefore developed which involves no approximations in the theory. It
is both more reliable and more efficient numerically than the filter

method, although the useful feature of obtéining sequential estimates of
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the parameters is lost. The technique is introduced in the next chapter.
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V. MODAL MINIMIZATION METHOD

5.1. Introduction

Difficulties encountered in the application of the optimal filter
method to the earthquake response of the Union Bank building empha-
sized the need for a reliable technique which would be gu}ar‘énl‘:eed to
find a minimum of the measure-of-fit J while remaining numerically
efficient, This led to the development of the modal minimization method
for multi-;degree-of-freedom linear models.

The method is an extension of a well-known iterative approach
torminimizing a function J'(al, oo an), whereby a series of one-di-
mensioﬁal minimizations are performed with respect to each a; (Bekey,
p. 157, 1970). In the bas‘ic approach, one first solves the problem

a(zo), oo al(qo)) and then, with the minimizing argument de-

. (1) (0) (0), .
» min J(al_ s By085 seeesd ) is found and so on., After

2 (1) (1) (1)

one sweep through the parameters, giving new estimates ays gy’ ag,

(1)
n

zglln J'(al,

noted by a(ll)

coes @ for the minimizing poinf:.of -J', successive sweeps can be
performed until convergence is achieved.

Bekey (1970) points out that this method is slow td converge if
the axes of the contours of J near the minimum are not aligned closely
with the axes of the parameters, However, for the present problem of

estimating the modal parameters of linear structural models, the
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properties of the models can be exploited to reduce this effect and to
make other modifications of the basic method which lead to better
numerical efficiency.

In the next section, the output-error approach is specialized
for the class of problems treated in the applications. The modal mini-
mization method is then described. Finally, the results of applying

the method to simulated data are given.

5.2, Formulation of Problem

The modal minimization method is an output-error method for
éstirnati.ng the modal parameters of a linear model. The case con-
sidered here is that in which the input and output consist of one compo-
nent of the base excitation and the parallel component of the response
at some point in the structure respectively. The applications given
later are of this kind, but the method is easily extended to include mul-
tiple inputs and multiple outputs.

The parameters to be estimated are the modal parameters

— 4

a(r)=[a(lr),a(2r) agr),aﬁlr),a(sr)]t , r=1,2,,..,N, where:

2004 200500 4 {2000 2 o) 5y (5.2.1)
and x(r)(Ti) =alf) é(r)(Ti) =a{") (5.2.2)

This is the model given in §3. 5, 2 with:

2 =? 2P iagw , af) -pl®) (5.2.3)
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(r)

Also, the subscript i on each Xi has been omitted because the
response of only one coordinate is used.

The recorded output is assumed to consist of the history of

y=lk.x .,k k.2 1t

’ 4
170" 2Y0°"3%0 (5.2.4)

over some interval [Ti’ Tf]. Thus, any combination of the displace-
ment, velocity or acceleration records of one component of the struc-
tural response at a point can be used by choosing each ki as either 1

or 0, as in §4.4. The corresponding model output is:

m = [k, %, k%, k%" ©(5.2.5)
where, from (3.5.2):
N
X(t;g(l), . e ,E(N)) =Z X(r)(t;i( r)) (5.2.6)
r=1

The measure-of-fit to be used for the output matching is given

by Eqs. (2.2.3), (2.2.4), (5.2.4) and (5. 2. 5):

T

i

'ITf

+k,V (vo-;:)zdt (5.2.7)

T,
i

o T

£
-!-k?)VE,,3 S (2

1

0y 2
O-X) dt
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This has to be minimized subject to Egs. (5.2.1), (5.2.2) and (5. 2. 6).
Notice that the weighting matrix A in (2. 2. 4) has been set to zero and
V(t) has been taken diagonal and constant, although a more general
case could also be treated if desired. The Vii were chosen to nor-
malize each integral as in (4. 4. 9). This allows a comparison to be
made between the optimal values of J for different time segments
and for different fesponse quantities.

Some results of interest can be derived by using the notation of

§2.3, so that:

71, a®, My oy, v (5. 2. 8)

where X=X"IB(§(1)"' . ,a(N);z) : (5.2.9)

and y and m are given by Eqs. (5.2.4) and (5.2.5). At the global

minimum i(r)zé(r)’ r=1,,..,N, of J, VI =0 and hence from
(2.3.7):
. om :
<V, —F3 >=0,k=1,2,...,5and r=1,2,...,N (5.2.10)

The sensitivity coefficients are therefore orthogonal to the output-er-
ror at the optimal estimates of the parameters, This is true for any
model, linear or nonlinear, but an additional result can be derived for
linear models, From Eqgs. (5.2.5) and (5.2.6), and from Eqs. (5. 3.7)

and (5. 3. 8) given in the next section:
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N 5
Z Z (r) am
—_— (5.2.11)
%k Sa(r)
so that (5. 2. 10) implies:

<¥,m>=0 - (5.2.12)

The output of the optimal model and the optimal output-error are‘:'
therefore orthogonal under the scalar product <¢,*>. For example,
if only displacement matching is considered (klz 1, k2=0, k3=0),
then:
'I‘f .n
I (XO- x)x dt =0

T,
i

5.3. Minimization Method

| The method used to minimize J(a(l) .- ,Q(N)) is described in
four parts: modal sweeps, smgle-mode mmﬁnization, one-dimen-
sional (1-D) minimization, and numerical evaluati on of J.

1} Modal sweeps

(x)

Initial estimates are made for the a2/, r=1,...,N, then J

(1)

is minimized with respectto a' "/, the parameters of the first mode,

while the parameters of the other modes are held fixed. Using the

(1) (r)

and the initial estimates of the other a’’’, J is

@)

then minimized with respect to a

new estimate of a
By estimating one mode at a
time in this manner, new estimates of the modal parameters are

available after one sweep of the N modes. Successive sweeps are
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performed until J is no longer reduced significantly, From three to
five modal sweeps were usually sufficient to give adequate convergence
to the minimum of J.

The method may be summarized as consisting of repeated ap-
plications of the following sequence of minimizations:

J@:(l)’i(Z)’. B ,E(N)) =mllr)1 J(i(l):i(z),- ' ~',i(N))
a

J(é(l)’é(Z)!°" (N)) =min J("( ) ( ) "’E(N))
PO RN N ot 7601, 2 @),

Notice that this method of minimizing J can be considered as an ap-
plication of the basic approach outlined in §5. 1 except that it is at the
modal level instead of at the level of each parameter. The procedure
used to minimize J with respect to a given mode‘isvdescribed in the
next part.

2) Single-mode minimization

Consider the stage in a modal swéep where J is to be mini-
mized with respect tothe parameters of the rth mode. From (5.2.6)
and (5.2.7), itfollows thatthe latest estimates of the parameters of the

other modes are used to subtract all but the rth mode from the re-

corded response. The remaining portion of the response is then used

(¥),

to determine the new estimate of a Thus, the minimization of J

(r)

with respect to a is equivalent to minimizing the function:
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h

Jr(i( r)) =1<1V11 ) :X(()r)(t) - X(r)(t;g(r)): dt

i
N -2

i, Vpp | v -5 2 [ e (5.3.1)

T, ~
i

h

+k V33J‘ f[ 2Ty -2 g a(r))] at

1

subject to the constraints of (5. 2. 1) and (5. 2.2). Here,

N
Xgr) :XO - Z X(s)
1
T

nn

Ll

() R (5.3.2)

<A
°%
I
<
1
wn n
N

+(5)

%

1l

o

I
mmMZ

b

el
H

are all known quantities, because the modal contributions are given
by the latest estimates of the g(s), s#r.
The linearity of the model can"be' exploited in the minimization

of J (a( )) to enable the parameters a(r), a(:) and a(5r) to be
determined explicitly in terms of agr) ‘and agr). Define a linear
operator by:

)
(r)=d (r) d,_(r)
L=l mtal (5. 3. 3)

dt
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and define the functions sl(:)(t;a(lr),a(zr)), k=3,4,5, by:

L) =y, sgr)(Ti)=0 , 57T, =0 (5. 3. 4)
L(r)s‘(f)‘z o, sﬁf)(Ti) =1, éflr)('ri) =0 (5. 3. 5)
LM =0, $my =0, s my) =1 (5.3.6)

From these definitions, and the linearity of Eqgs. (5.2.1) and (5.2, 2):

5
2 a2 § alFs(F gl L00) (5. 3.7)
k=3
(r)
and )8 3,45  (5.3.8)
K (@
a
k
The term a(3r)s§r) is the forced vibration component of the modal
response x(r) and air)sir)+agr)sér) is the free vibration component

(r)

due to the initial conditions. For fixed a 1

(r)

and as % it follows from

(5.3.1), (5.3.7) and (5. 3. 8) that the global minimum of J_(a{™) is
(r) _(z) (r)

given by the solution for a3, ay and ag of the linear system of

equations:

Z bJ(l’i) ") - § ), §=3,4,5 (5.3.9)

T
(r) j f (r)_(r) J Ts. (r) (r)
where ka -k1V11 sj 1 dt+k2 22 S dt
i 1

T
+1<3v33j f§§r)'s']f<r)dt (5.3.10)

i
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T T
(r)_ J" f (r)_(r) J fo(r)_ (1)
and cj -klvll sj xo c‘H:+k2V22 sj VO dt
T, T,
1 i
T ..
1k V,, j"T f'éjfr)aff) at (5.3, 11)"

There is a unique solution to the equations given by (5.3.9)
since the 3X3 matrix [b;lz)] is non-singular, This follows from the
fact that this matrix corresponds to the matrix S defined by (2. 3.9),

Which,accdrding to Appendix A, is positive definite because the sen-

(r) (r)
3 ®4

sitivity coefficients s and s(5r) are clearly linearly inde-

2

pendent in view of (5.3.7), (5.2.1) and (5. 2. 2).

(r)

By using the solution to (5. 3. 9) for any given 23 and a‘(zr)

2

a function fr can be defined by:

Gefas e e e
(a3 284 s@pg )

‘
The original problem -of solving n%% Jr(i(r)) thérefore reduces to
finding the minimum of fr' Thisiis achieved by applying the basic
iterative approach outlined in §5.1. Thus, a series of 1-D min:';_
mizations are performed by minimizing ‘fr alternately with respect to
a(lr) and with respect to a(zr). This process, which is indicated
schematically in Fig. 5.1, is continued until a consecutive pair of 1-D
minimizations results in a fractional decrease in fr of less than ¢,

where € is specified., The procedure used to carry out each 1-D

minimization is described in the next part,
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Cl(r)'

Figure 5.1, Schematic diagram of contours of fr(a(lr),a(zr )) [Eq.
(5.3.12)] showing a path of convergence.

(r)



-189-

The criterion for convergence in terms of the relative change in
fr was chosen instead of the change in the estimates of the parameters
agr) and aér) because the latter can cause difficulties with the higher
modes. The response may be so insensitive to these parameters that
the changes in fr reach the roundoff level of the computer before the
parameters have converged to the specified accuracy, and this may
prevent the algorithm from '"converging''. The criterion in terms of
fr’ on the other hand, automatically takes into account the fact that
the resolution differs from one parameter to another. In the rgsults
reported later, € was set equal to 10_4 in the criterion for conver-
gence,

The parameters agr) and a(zr) can be replaced by the modal
period, Tr’ and damping factor, gr, in the algorithm to minimize
fr so that the 1-D minimizations are with respect to these latter pa-
rameters. This was done in the applications of the method because of

the convenience of working directly with the parameters of interest.

3) One-dimensional minimization

A method is given for the minimijzation of a function i(e) ofa
single parameter <o, The minimization of fr(agr),a;(zr)) is then
achieved by applying the method alternateiy to fv(oz) Efi'(a’ aér)) and

to f(a)=£ (2!

;). Notice that the gradient of fr(agr),a(zr )) is not
required to determine the direction of the search for the minimum of
fr because this direction is always parallel to one of the axes of the

parameters. A method to minimize f(¢) was therefore selected which

only involved evaluating the function.
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The method starts with an initial estimate, o:o, of the minimum
of f(@¢), and a step-size §6>0. Ii f(ao— 8) Zf(ozo), then @ is incre-
mented continually by &, thatis, « =a, +8, o, +26,..., butif
f(o:o - 6)<f(ozo), then o is decremented continually by 6. The value
of f is calculated at each step and the stepping is continued until f(x)
no longer decreases, showing the minjmum has been passed. The min-
imizing argument for a parabola through the last three values of f is

then calculated and this is taken as the minimizing argument of f.

A keyvpoint is the choice of 5. If it is too large, the estimate of
the minimum of f(xv) will be poor and an excessive amount of time may
be spent iterating on a(lr) and a(zr). On the other hand, it if is too
small, too much time may be spent in the stepping required to find the
minimum of f(a). A choice which was found to work well is the follow-

(lr), 5 is taken to be

(r)

half the change that occurred in the estimates of 2y given by the last

ing. If the 1-D minimization is with respect to a

two 1-D minimizations in this direction. A similar choice is made for

the value of § for the 1-D minimizations with respect to a.(zr). To

(r)

illustrate this choice of &, for the minimization determining ay to
locate point 5 in Fig. 5.1, & would be half the difference between the

values of a(lr) at points 1 and 3. To start the process during each

modal sweep, § is given an initial value é(lr) while determining point

1 and for point 3, § is set equal to %6(1r). Similarly, an initial value
6(2r) is used to start the 1-D minimizations with respect to: aér). For

the first modal sweep, 6&1’) and 6(2r) are prescribed for each mode
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and they are then halved for each successive modal sweep.

4) Evaluation of T

The only calculations required for minimizing J are those

(r) _(x)

involved in evaluating f (a 2, ). The algorith:fr‘l‘usedv is lfiisc.ussed
briefly here.

At the beginning of the minimization of J with respect to the
pérameters of the :c-th mode, the current contribution of t'his mode to
the response is added to the current output-error to form whichever

of the quantities in Eqgs. (5.3.2) are required. These quantities are

()

then kept fixed during the estimation of a' .

(r) ()

To evaluate fr(a.1 ,a. ') fora glven ay

(r) (z)

2
(5.3.4) to (5.3, 6) are first solved. The method used to solve all three

and a_, ', Egs.

linear equations is the efficieﬁt transition-matrix approach introduced

by Nigam and Jennings (1969). This turns out to give the exact solutions
at each time step, apart from the roundoff in‘the arithmetic calculations,
because of the way the continuous record z(t) is defined as a linear

interpolation of the digitized data. Equétions (5. 3.9) are then solved

Jx) (=) g ()

for a, "2, 5

using Gaussian elimination, and the new esti-

mate of the contribution of the rth mode is calculated from (5. 3. 7).

(=) ()

The value of f (a , ) is then calculated from (5. 3. 1) using

Simpson's rule for numerical integration, This procedure for evalua-

(r)() ()

ting £ (a s ) is repeated for each palr (a , ) arising in the
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minimization of fr by the method described in parts 2) and 3).

5.3.1 Comments on Method

The modal minimization method has several advantages in com-
parison with the optimal filter method of Chapter 4. The most impor-
tant advantage is its reliability., Convergence to a local minimum oc-
curred in every application of the method. Another advantage is that its
convergence is easy to examine by assessing J and the current esti-
mates of the parameters of the rth mode every time J, or equiva-
lently, fr(a(lr)’ a(zr)), is evaluated. In contrast, it is difficult to de-
termine whether the invariant-imbedding filter has given the optimal
estimates of the parameters because the effects of the approximation
in the theory are not easy to assess in a particular case.

Part 2) of the method is similar to the method used by Raggett
(1974). He examines one mode at a time by filtering the response using
a narrow band-pass filter centered on the estimated modal frequency.
A single-degree-of-freedom model is then used to estimate the modal
parameters from the filtered response. The advantage of the present
method in comparison to this approach is that the properties of a num-
ber of modes are estimated simultaneously by the minimization of J,
sothat modal interference can be reduced to\an acceptable level.,

Raggett's results using simulated data for a linear system with three
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degrees of freedom show that modal interference has a significant ef-
fegt on the accuracy of the estimates when using his épproach. Using
a three-degree-of-freedom model, the present approach is capable of
giving the exact values of the parameters from the simulated data used
by Raggett,

An interesting feature of the method for finding the minimum of

() _(x)

the function fr(‘a1 e,

) is that after the first 1-D Iﬁinimization has
been performed, it is equivalent to the method of steepest descént.
In the latter approach, the gradient of fr would be evalﬁatéd to deter-
mine the direction of steepest descent and then a 1-D minimization would
be performed in this direction. Referring to Fig.5. 1, for the method
éf part 2) the line from point 0 to point 1 must be tangential to the
contour of fr at point 1. The next 1-D minimization in tile direction
of a(zr) is therefore in a direction normal to the contour of fr at
point 1, which is the direction of steepest descent. All subsequent
directions of searc;h for the minimum also behave in this manner,
proving the original assertion.

It is well known that the rate of convergence of the method of
steepest descent can be very slow if there is significant interaction
between the parameters near the minimum, An illustration of this

problem can be seen in Fig, 5.1, where the interaction, or lack of

(z) (z)
1

5 has been

"orthogonality" (seel2. 4.5), between a and a
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exaggerated, In the applications of the method, the interaction between
'I'r and gr was not pronounced. The few times that convergence with
respect to Tr and Cr was slow were always cases where the model
was having difficulty interpreting the data for the higher modes, which
was reflected in unreasonable values returned for some of the modal
parameters,

(r)

The two parameters 2,

(r)

and a3 would cause slow conver-

gence if Jr(_a_(r)) was minimized by applying the method of steepest

descent to all five parameters in g(r)

, because there is strong inter-
action between these two parameters., The interaction arises because

the major effect of both a(zr) and agr) is to alter the amplitude of the
contribution of the rth mode to the response. The effect of this inter-
action is reduced by using the explicit method to determine the mini-
mizing value of agr).

Another source of interaction is that between the modes, which
could cause slow convergence during the modal sweeps. However,
this would not be expected to be a problem if the modes have widely-

spaced modal frequencies, The applications support this conclusion.

5.4, Tests with Simulated Data

5.4.1 Single Degree-of-freedom Linear Oscillator

The modal minimization method was first tested using the same
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model and data as in §4.4.1. The linear oscillator used to generate
the data numerically had values for its parameters of T =1,0 sec,
(=5% and p =1.0. It was found that the method gave nearly exact
values for the parameters from two cycles of data, regardless of :
whether the displacement, velocity or acceleration of the oscillator
were used in the measure-of-fit J. One cycle and a half-cycle of the
displacement were also used and were found to give nearly exact results.
The final estimates of the parameters are shown in Table 5. 1., to-
gether with the initial estimates. Because of the way the method works,
initial estimates of the participation factor, initial aisplacement and
initial velocity were not required. The portions of the excitation and
response which were used can be seen by examining Figs. 4.1 and 4. 3,
Of course, the results are for a special case in which the only source

‘of error is roundoff in the computations.
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) Estimates of Parameters
Time segment — — -
(seconds) T C(%) p
2,0 - 4.0 1.00000 4.9999 1.0000
3.0 -4.0 1. 00000 4,9994 0.9999
3.0 - 3.5 . 11.00000 4.9989 0.9998
Initial estimates {1.12 3,82 -
True values 1.0 5.0 1.0

TABLE 5,1. Optimal estimates of the parameters
using different portions of the dis-
placement of the linear oscillator,

5.4.2. Ten Degree-of-freedom Linear Chain System

The next tests of the modal minimization method used the '"roof"
response computed for a ten-degree-of-freedom linear chain system
(Fig. 3. 1) which was initially at rest and then subjected to a base ac-
celeration given by the first 10 seconds of the 1940 El1 Centro earth-
quake record (Fig.4.1). The modal properties of the uniform chain

system are given in Table 5.2. The modal participation factor P.. is

(r) (r)

3 10 [Eq. (3.2.13)] and it is in-

the quantity a [Eq. (5.2.1)] or B
dependent of the normalization of the modeshapes. If the modeshapes
are normalized to unity at the roof, P, is equal to the conventional

participation factor. Also shown in Table 5.2 are some of the peak

modal contributions to the relative displacement, velocity and
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acceleration at the roof.

Some of the results of applying the modal minimization method
to various portions of the simulated response records are shown in
Table 5.3, 5.4 and 5.5. The parameters and initial conditions were
estimated for each mode included in a model but only the results for
the modal parameters are given. The measure-of-fit J for each
model is also given, Recall that because of the normalization of J
by the Vii in Eq. (5.2.7), J% represents the ratio of the r.m. s,
output-error to the maximum response,

The errors in the parameters are primarily due to the model
error created by neglecting the higher modes of the chain system in
each model. For a given number of modes and for a given time seg-
ment, this model error is greatest when the acceleration is used and
hence the errors in the estimates tend to be the largest in this case.
There is also ""measurement noise' because the equations of motion
for the uniform chain system were solved only to w‘ithin an accuracy
of 1% of the exact response, This noise may therefore affect the ac-
curacy of those modes whose signals are relatively small.

Observe that the modal periods are always estimated very ac-
curately, at least for the six modes investigated, and the damping
factor and participation factor are estimated quite accurately for each

mode in a model except for the highest mode, which is most affected by
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Record used to estimate parameters
Modal Velocity Acceleration
parameter 0-10sec 2-4sec | 0-10sec 2-6 sec 2-4sec
fl -0.001 0.000 |-0.004 | 0.001 0.03
51 -0.04 0.1 -0.2 -0.2 2
B -0.05 -0.1 -0.2 -0.2 0.9
fz 0.006 | -0.07 0.02 -0, 04 -0.1
52 -0. 04 0.3 0.2 0.02 0.2
B, 0.2 1 0.5 -0.07 0.4
f3 0.01 -0.01 0.01 0.04 -0.01
s -1 -3 -2 -4 -4
b, -1 -6 -2 -5 -7
f4 0.2 0.02 0.2 0.1 0.1
§4 13 -18 -15 -13 26
§4 -10 -9 -11 -10 -14
Jx 106 2.5 10 140 260 420

TABLE 5,4, Relative errors (%) in the optimal parameter estimates
using a four-mode model of the uniform chain system
of Table 5. 2.
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the model error. Observe also that there is some interaction between
the estimates of the damping factor and participation factor of each
mode, With few exceptions, they are consistently both too large or
both too small in magnitude, and often by roughly the same percentage.
This might be expected since the height of the resonant peaks in the am-
plitude of the transfer function between the base and the roof are con-
trolled by the ratio pr/Z gr. The difference between the effects of P.
and Qr is that the former scales the forced vibration component of

the modal response uniformly in time, whereas the latter has an ac-
cumulative effect with time on both the forced and free fribrgtion cbr.ﬁ-

ponents.,

The initial estimates for the results given in the Tables for the
model with (R+1) modes were taken to be the optimal estimates for the
model with R modes. For the new mode, initial estimates are re-
quired only for the period and damping factor if the modal sweeps are
started with this mode instead of with the first mode. The initial esti-
mate for the period of the first mode was 1. 12 sec and the initial esti-
mate for the damping factor of all the modes was 3. 82%. These values
were chosento give unrounded numbers for initial errors. For the |
higher modes, the period ratios for a uniform shear beam were used to
give the initial estimates of the periods.

With these choices of the initial estimates, it was found that the

number of modal sweeps required to give convergence of J to within
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0. 01% was normally three to five sweéps for displacement matching and
velocity matching and three to seven sweeps for acceleration matching,
The number of modal sweeps required tended to increase as the length
of the record decreased. The computer time per _swéep f‘c;r:‘{:en secont_ﬂ.s_
of data ranged from 4 seconds for a two-mode modeltolésecondsfor
a six-mode model, using an IBM 370/158. These tii'nes are aisé re_p;
resentative for ti1e applications reported in Chapter 6 which u%ed earth-
quake records from buildings.

Figure 5.2 shows that the plots of the dis'ﬁlacieﬁm.ent at tl.l.;"'rqof
of the uniform chain system and the dispiacemént ‘of‘an op‘tin;.al model
with two modes are indistinguishable., The optimal.quel ié gix;en by
the parameters in the first column of Table 5.3, Figures 5.3 ;':Lnd 5.4
show a similar match of the velocity and acceleration is achieved by an
optimal model with four modes (see Table 5. 4, column 1). :'

An illustration is given in Fig.5.5 of a pzfofile.of tHe»ime»asure— _
of-fit J computed for a single-mode modei by ';fabrying theb_m_odal
period T while keeping the damping factor constanf at (=5%. The
acceleration record from 2.0 to 4.0 seconds was used in J' and the
plot is strictly one of fl(T, ¢) [Eq.(5.3.12)]. Local minima correspond-
ing to the first four modes can be observed. The local minimum at a
period of about T =0,6 sec is a spurious one due to the interaction of

the first and second modes, that is, a single-mode model with a period
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of about 0.6 sec and a damping factor of 5% is able to cancel enough
of both the first and second mode to produce a local minimum in J.
The spurious minimum disappears when the first mode contribution is
subtracted from the acceleration response, as it would be during the
identification of the second mode by the modal minimization method.
Furthermore, when the first mode is subtracted, the local minima
become sharper and another one appears in the plot of the profile of
J which corresponds‘to the fifth mode.

Encouraged by the results of applying the modal minimization
method to simulated data, the method was applied to earthquake records
from some multi-story buildings. The results are reported in the

next chapter.
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VI. APPLICATIONS TO BUILDINGS

The modal minimization method is used in this chapter to iden-
tify the modal properties of linear models for two multi-story buildings,
The records used were obtained during the 1971 San Fernando earth-.

quake, California.

6.1. Union Bank Building, Los Angeles

The Union Bank building is a 42-story steel-frame structure in
downtown Los Angeles which experienced peak accelerations at mid-
height of 20% g (transverse direction)and 13%g (1ongituéina1 direction)
during the 1971 San Fernando earthquake (ML= 6; 3)‘.' _' Oﬁly:'vininor
nonstructural damage occurred, Features of the building'énd its earth-
quake response are discussed by A, C, Martin and Associates (1973)
and by Foutch et al (1975). |

At the time of the San Fernando earthquake, strong-motion
accelerographs with synchronized timing were installed. in the sub-
basement, on the 19th floor and on the 39131‘l floor, but the instrument
on the 39th floor failed to record. The $38°W components of the
digitized relative acceleration, velbcity and displacement at the 19th
floor were used as the response data in the analysié. b. These com-
ponents correspond to the longitudinal direction of the building (Fig.

6.1). The sub-basement absolute acceleration, s38°wW component,
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was used as the input to the models (Fig. 6.2).

The Fourier amplitude spectrum for 40. 96 seconds of the ab-
solute acceleration at the 19th floor is shown in Fig.6.3 and the am-
plitude of the estimated transfer function is shown in Fig.6.4. The
first five dominant peaks of each plot are given in Tables 6.1 and 6. 2.
Only the frequency range 0,2-2.5Hz was used in counstructing the
Tables and the spectral amplitude ratios in Table 6.1 for the absolute
velocity and displacement were deduced by using the simple expression
for transforms of derivatives, The erratic behavior of the unsmoothed
transfer function in Fig. 6. 4 is typical for those estimated from seismic
records,

The interpretation of the peaks in Tables 6.1 and 6.2 is based
primarily on the period ratios for a uniform shear beam, since past
work with ambient and forced vibration tests has shown that these
ratios serve as a rough guide to identification of the resonant peaks
of the lower modes of tall framed structures. The absence of the
third longitudinal mode in Table 6, 2 might be expected since for this
mode the 19th floor should be close to a node. It appears in Table 6,1
because there is a relatively large peak in the Fourier amplitude spec-
trum of the sub-basement motion at a frequency of about 1Hz, The

tentative identification of the torsional mode is based on a simple
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Period | Period Ratio of spectral values(%) terpretation
(sec) ratio AccelerationVelocity {Displacement of mode
4.8 1.0 100 1%Yongitudinal
1.5 3.2 9 22 ongitudinal
1.25 3.8 5.5 antorsional
0.66 | 7.3 2.3 4P ongitudinal
1.0 | 4.8 3.1 3% ongitudinal

TABLE 6. 1. First five dominant peaks of the Fourier amplitude
spectrum of the S38°W component of the absolute
acceleration at the 19th floor of Union Bank building.

Period | Period Arnplitude ratio Interpretation
(sec) ratio (%) of mode
4.8 1.0 100 15Yongitudinal
1.5 3.2 54 2"%longitudinal
1.3 3.7 43 2% torsional
0.6 | 8.0 42 4 ongitadinal
0. 4> ' 12,0 30 ?
TABLE 6.2. First five dominant peaks of the amplitude of the

transfer function between the S38°W components
of the absolute acceleration in the sub-basement
and at the 19th fioor.
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model of the structure wherein the interstory stiffness of each mo-
ment-resisting frame is replaced by a single spring and the mass and
stiffness properties are assumed to be uniform with height, If it is
assumed that the motion of longitudinal modes is purely in the longi-
tudinal direction and the motion of the torsional modes is purely ro-
tational, and if the experimental observation of equal fundamental
translational periods is employed, the period of the rth torsional mode

h
can be shown to be about 80% of that of the rt longitudinal mode,

6.1.1, Time-invariant Models

The parameters were first estimated for the major segment of
the records, from 5 to 30 seconds. Following the general procedure
described in §3.5, a succession of models was taken in which the
number of modes was increased one at a time and the optimal estimates
from one model were used as the initial estimates for the next model,
As discussed in §5, 4,2, when this is done, initial estimates are re-
quired only for the period and damping factor of the new mode, The
initial estimates of the periods were those in Table 6.1 and the ini-
tial estimates of the damping factors were 4%.

The intention was to add the modes to the models in the order
of their dominance in Table 6.1, although some difficulties were en-

countered, The results for the optimal models determined by



-217-

displacement matching and by velocity matching are given in Table
6.3, while those for acceleration matching are given in Table 6. 4,
The p, are the effective participation factors at the 19th fioor [Eq.
(3.2.13)]. The measure-of-fit J for each model is also given.
Recall that J'%§~ represents the ratio of the r,m, s, output-error to the
maximum response, and the values in the Tables give this ratio as a
percentage, For example, Table 6,3 shows that for a single-mode
modell determined by velocity matching, the r.m.s, velocity;error is
9% of the peak velocity.

Only a one-mode model was determined by matching the recovrd-
ed and model displacements because the signal of the second mode was

so small, The quality of the match is shown in Fig. 6.5, The initial

displacement is not equal to the '"recorded" value because the initial

conditions for each modal contribution are estimated along with the

other modal parameters and these initial conditions are used in the
calculations of the response of an optimal model. The calculated
displacement and velocity for the two-mode model determined by
velocitj matching are compared with the actual displacement and »
velocity in Figs, 6.6a and 6.6b, Figure 6.6.a shows that a good.
displacement match is obtained even when the model is determined by

matching velocities,
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Modal Two-mode |Three-mode | Four-mode |Five-mode
parameter|{ model model model m odel

T, 4,59 4,62 4.62 4,61
¢ 3.5 4.4 4.4 4.2
51 0.74 0. 86 0. 87 0.84
T, 1.50 1.49 1,49 1,49
2, 4,2 4.6 5.7 5.8
B, 0.31 0.39 0.48 0. 46
5 1.2
3 7.7
85 -0. 12
T, 0.9 1.1 0.95
23 27 19 13
Py -0. 4 -0.29 -0.13
T, 0.66 0.66
2y 7.2 6.6
54 -0.17 -0, 15

T% (%) 10. 2 8.8 8.3 8.2

TABLE 6.4,

Optimal estimates of the paré&neters using the por-
tion from 5 to 30 seconds of the Union Bank accel-

eration record, longitudinal direction.

The tor-

sional mode is distinguished by the superscript t.
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An attempt was made to identify the second torsional mode by
using a three-mode model and velocity matching, However, for the
third dominant mode, the modal minimization metﬁod converged to a
period of 1,0 second and a very high damping factor of 35% (Table
6.3). A possible explanation for this behavior is that because the
signals in the velocity record corresponding to the higher modes are
small (Table 6. 1), the method chooses a local minimum of J which
arises from partial compensation by the model of up to three of the
higher modes in the velocity record with a period around 1 sec. The
high damping of 35% would allow the identified "mode'" to do this bé-
cause it Vproduces a resonant peak in the frequency domain with a
broad bandwidth.

The difficulties in identifying the torsional mode zalso occur-
red when the models were determined from the acceleration record
(Table 6.4). Even though the torsional period was included as an |
initial estimate for the new mode for the models with three and four
modes, the modal minimization method converged to one of the less
dominant modes of Table 6.1, It was only when a five-mode model
was taken that the second torsional mode appeared, Furthermore, it
produced only a small change in J. This suggests that the chosen
class of models is not capable of producing a torsional signal of com-

parable strength to that appearing in the actual records, possibly
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because the excitation of the torsional mode by the transverse base
motion is not considered in the modelling (§3.1, 1);

The calculated velocity and acceleration for the four-mode
model determined by matching accelerations are compared with the
actual records in Figs.6.7.a and 6, 7. b, The displacement of the
four-mode model was alrﬁost identical to the displacement of the two-
mode model determined by velocity matching (Fig. 6.6.a). Also, a
comparison of Figs. 6.6.b and 6.7, a shows that the velocities of the
four-mode model determined by matching accelerations and the two-
mode model determined by matching velocities produce nearly the
same agreement with the recorded velocity.

It is concluded from the results that a time-invariant linear
model with a small number of modes can reproduce the strong-motion
records at the 19th floor surprisingly well, The number of modes
required to give a very good approximation of the relative displace-
ment, velocity and acceleration are one, two and four modes respec-
tively, The respective optimal models give calculated response which
haveanr,m,s. error of about 8% or less of the peak response. The
quality of the match of recorded andmodel responses was not expected
prior to the identification; the match given by one of the two-dimen-
sional dynamic models used in the design of the building was not nearly

as good, as seen in Fig. 6,8 [from A, C.Martin and Associates (1973)].
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Figure 6.8. Absolute response at the 19th floor of Union Bank build-
ing during the 1971 San Fernando earthquake compared
with the calculated response of a structural model used
in the design of the building (from A. C. Martin and
Associates, 1973).
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Of course, a better fit of the response histories should be expected for
a model determined from the earthquake records than for a model
synthesized from structural plans,

The periodic nature of the difference between the displacement
record and the displacement of the optimal model in Fig. 6.5 or 6,6.a
suggests that the discrepancy between these two histories is primarily
due to long period errors of about 8 to 10 seconds in the record., This
conclusion is also consistent with the large peak in the estimated trans-
fer function in Fig, 6. 4 which is at a lower frequency than the funda-
mental frequency of the building.

An early study of long-period errors in accelerograms sug-
gested that the errors in the derived displacement records should be
relatively small up to a period of about 16 seconds (Trifunac, 1970b),
but a later study, using the large amount of data from the 1971 San
Fernando earthquake, showed that there were significant errors in
some records at periods less than 16 seconds (Hanks, 1973), Thus,
early records processed at the California Institute of Technology,
which include the Union Bank records, were high-pass filtered with a
cut-off frequency corresponding to a period of about 14 seconds,
whereas for most of the later records, the cut-off frequency corre-
sponded to a period of 8 seconds, To remove the long-period compo-

nents, the Union Bank records were filtered with a roll-off
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termination frequency of 0, 125 Hz and a roll-off bandwidth of 0., 05 Hz
and this led to a considerable improvement in the optimal displace-
ment match for a one-mode model, as can be seen by comparing Figs.
6..5 and 6.9. However, the estimates of the parameters using the fil-
tered displacement and a one-mode model changed only slibghtlgbfvfrom R

~

their values in column 1 of Table 6, 3 to the values: T1 = 4,61 sec,

&1 = 3‘., 4%, f’l =0.79. These results suggest that if.sgfficiently long
segmén‘cs of the records are taken, the method is not‘.',s'ensitive to mea-
surement noise which is at frequencies significantly d.iff'e?rrvent from the
modal frequencies, as might have been anticipated fro‘rnA the least-
squares nature of the approach,

The optimal estimates of the parameters of the four longitudinal
modes determined by matching the acceleration record V\}ith a five-
mode model are compared in Table 6,5 with other available values
for these parameters., The participation factors for the synthesized |
structural model and for the ambient vibration tests were calculated
from the known mass distribution of the building and the published
modeshapes, There was clearly a reduction in the stiffneés of the
strﬁcture during the San Fernando earthquake which was only partially
recovered after the earthquake. The degradation in stiffness is thought

to be due to changes in the nonstructural elements such as paftitionsa

Notice that the period ratios are roughly the same during the
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earthquake as before and after the event, suggesting that the reduc-
tion in stiffness was approximately uniform over the structure. Fur-
thermore, these period ratios are close to those for a uniform shear
beam,

The estimates of the damping factors from the seismic records
are much greater than those for the ambient vibration tests, This is
consistent with experience for other buildings and might be expected in
view of the much larger amplitudes of the structural motion during the
earthquake. The damping factors also increase slightiy with the higher
modes for this building. |

It is often assumed that the modeshapes, and hence the parti-
cipation factors, will not change appreciably as the amplitude of the
motion increases, This was the case with the participation factor of
the second mode, but the participation factor of the fundamental longi-
tudinal mode during the earthquake was quite different from its value
in the pre-earthquake ambient vibration tests. The corresponding
modeshape in the ambient tests was almost a straight line, The first
two values for P, in Table 6,5 suggest that the fundarr;ental mode-
shape may have been more like that for a uniform shear beam during
the earthquake,

On the basis of all the .results, it is believed that the optimal

estimates in Table 6,5 of the parameters for the first, second and
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fourth 1ongitﬁdinal modes are reliable values for the strong-motion
behavior of the building, as interpreted by a time-invariant linear
model. It is more difficult to assess the estimates for the parameters
of the second torsional mode and third longitudinal mode,  The periods
appear reasonable but the large damping estimate for the third mbvave“
is questionable, Furthermore, because the estimate of the damping '
factor is most probably too large, the magnitude of the participation

factor may also be too large.

6.1,2., Time-varying Models

The results presented in the previous subsection show thaf
there was a degradation in the stiffness of the Union Bank building
during the 1971 San Fernando earthquake. To further investigate this
effect, optimal linear models were determined for four successive,
ovérlapping subintervals in the time interval from 5 to 30 seconds.
The variation of the optimal estimates with each time segment then
shows how the equivalent linear parameters changed during the earth-
quake due to nonlineérities' in the structural response,

Time windows of ten seconds were used, moving the window by
five seconds each time, This gives time segments of just over two
cycles of the fundamental mode, This choice, suggested by the results

using simulated data, is a compromise between the desire to take a
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small interval so that the instantaneous structural properties can be
approximated, and the necessity to take a sufficiently large interval
for the parameters to be estimated reliably.

The optimal models were determined by matching displacements
(one mode) and by matching velocities (one and two modes). The rec-
ords used were those discussed above which were high-pass filtered

with a roll-off termination frequency of 0.125 Hz, corresponding toa pe‘-
riod of 8 seconds, The optimal estimates of the modal parameters‘an.d the
corresponding measure-of-fitare presented in Table6.6. The estimates
of the parameters for a given time segmentareingood agreement forl the
three differentmodels, exceptforthe low damping inthe first rowof Ta.ble
6.6. The reasonfor the latter discrepancy is notclear, althoughitmay be

due partly toth e small signal overhalf of the interval (see Fig. 6.10.a).
The greater variation in the estimates of Py for the last time segment
in Table 6,6 is to be expected since the determination of P, becomes
ill-conditioned for later portions of the records., This is because the
basement acceleration is small for these time intervals and the struc-
tural motion is dominated by the free-vibration components which do
not depend on the P..

The results in Table 6.6 and plots of the recorded and model
responses suggest that the lengthening in the period of the fundamental

longitudinal mode during the interval from 5 to 30 seconds was
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progressive rather than abrupt. The change in the fundamental period
from the first to the last time segment was 7% %, and the period of the
second mode changed by 7%. For the first three time intervals, the
damping factors of the fundamental and second modes were approxi-
mately 4% and 5% respectively, dropping to about 3% over the last time
interval.

A comparison is given in Figs., 6.10.a, b and ¢ of the recorded
response and the calculated response of the optimal model with two
modes determined by matching velocities over the interval from 5 to
15 seconds. A similar comparison is given in Figs. 6. 11. a,b.‘a.nd c
for the optimal model with two modes determined by again matqh‘mg
velocities, but over the interval from 20 to 30 seconds. The}two‘ca.ses
presented in Figs. 6.10 and 6, 11 represent respectively the worst and
best match of velocities for a two-mode model. Ignored higher modes
are evident in the velocity and acceleration comparisons in the

Figures.

6.1.3. Sensitivity Analyses, Union Bank Building

The full sensitivity matrix s [ the Hessian matrix, Eq. (2. 3. 8)]
and the reduced sensitivity matrix S [ the partial Hessian matrix,

Eq. (2. 3.9)], involving derivatives of J [Eq. (5.2.7)] with respect to
(r)

the model coefficients a.

; » were evaluated in several cases. It was

found that corresponding elements of S and § were similar because
the last term of Eq. (2. 3. 8) was small. Conclusions regarding the

(r)

sensitivity of J with respect to the a;”’ were therefore unchanged
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when S was used instead of S. The reduced sensitivity matrix was
also calculated in several cases by replacing derivatives with respect

to the model coefficients agr) and aér) [Eq. (5. 2. 3)] with derivatives

Al

Withvrespect to Tr and gr, since it is the latter parameters which
are of major interest. To calculate the seusitivity matrices, the
derivatives of the model response with respect to the parameters are
required. These are the so-called sensitivity coefficients and they
were determined by computing the r'esponse of a number of single-
degreé—of#free’dom linear systems, which include those given in Egs.
(5.3.4) to (5.3.6). Finally, the first derivatives of J Wer‘e':a'lso
evaluated at the optimal estimates as a check, and in each c‘:a:‘.sAe they
were found to be suitably small. o

The sensitivity matrices gave quantitative confirmation of
points which have already been noted and which can be inferred using
other arguments. These points are summarized below.

1) For a given mode, J is much more sensitive to thé period
than to the other modal parameters. |

2) The interaction between Tr and Cr’ and between Tr
and P> is generally small, but the interaction between gr and P.
is quite pronounced.

3) The interaction between the parameters of different modes
is generally small.

4) J . gets progressively less sensitive to the modal parameters
asg the mode number increases. The rate of decrease in the sensitivity

with mode number is greatest for displacement matching and least for
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acceleration matching.

5) For the fundamental mode, J is most sensitive to the
modal parameters when displacement matching is used. For the
second mode, the sensitivity of J is least for displacement match-
ing and about the same for velocity and acceleration matching. For
the third and higher modes, the sensitivity of J is greatest for
acceleration matching.

These conclusions regarding the sensitivity of J can be inter-
preted directly in terms of the expected accuracy of the estimates of
the parameters, as discussed in §2.4,5. For example, points 1 and
2 indicate that the modal periods will be estimé.ted much more ac-
curately than the damping and participation factors.

The diagonal elements of the reduced sensitivity matrix are
presented in (a) of Table 6.7 for the optimal estimates of the param-
eters given by a three-mode model determined by matching the velocity
record over the interval 5 to 30 seconds (column 5, Table 6. 3). These
values have been normalized by multiplying by the optimal estimates
so that the sensitivities can be directly compared, without regard to
the magnitude of the parameters., For example, Eq. (2. 4. 32) and the
values in Table 6.7 (a) show that an €% change in T, from its op-
timal value will produce a change of 22.9X (e/lOO)Z in J, whereas an
€% change in ¢, will produce a change of only 0. 03X (e/lOO)Z, or
almost T-Ol(_)-(T of the previoug change., In view of Egs. (2. 4. 30) and
(2. 4. 34), the square root of the diagonal elements are more indicative

of the accuracy of the estimates, For example, it can be deduced
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from the above that the bound on the relative error in T1 is about
4% and 10%, respectively, of the bounds on the relative error in 51
and 131.

Also shown in Table 6.7 are the interaction coefficients, which

are defined for two parameters a, and aj by the ratio - Sij/(siisjj)%'
These coefficients are introduced to indicate the extent of the inter-

action between the two parameters and they are the analog of cor-
relation coefficients in statistical theory. It can be shown that the
magnitude of the interaction coefficients cannot be greater than unity,
and the larger the magnitude, the greater the interaction between the
corresponding parameters. If an interaction coefficient has unit
magnitude, there is a straight line in parameter space along which the
two parameters can be varied without changing the value of J, all
other parameters remaining fixed. The values in Table 6. 7 support
point 2 given above.

To illustrate how the sensitivities are affected when the param-
eters are estimated by matching smaller segments of the record,
results for matching velocities over the time intervals from 5 to 15
secs and 20 to 30 secs are also presented in Table 6.7 in (b) and (c)
respectively. As was tobe expected, the sensitivities, and hence the
accuracy of the estimates, are decreased by taking smaller intervals
of data. Observe from the sensitivities that the parameters T2
and QZ of the second mode should be estimated more accurately
using the first ten-second time segment rather than the last, but the

opposite is true for the fundamental mode. This is because the
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higher-mode signals decrease in time compared with the fundamental
mode. The participation factors are estimated poorly in the last
time segment because their determination is ill-conditioned (86. 1. 2).
Finally, a profile of the measure-of-fit J, or more strictly
£,(T, ) [Eq. (5. 3. 12)], is presented in Fig. 6. 12 for matching of the
acceleration record over 5 to 30 seconds. The damping factor was held
constant at ( =4%»and the period was incremented in steps of 0. 025 sec.
Observe that the profile is very smooth and that local minima corres-
ponding to the first four longitudinal modes are apparent. The reason
for the spurious minimum at T =3 sec is similar to that given at the
end of Chapter 5. The absence of a minimum corresponding to the
second torsional mode is consistent with the discussion in §6. 1.1,
A small minimum did appear at 1.2 seconds when the profile of J
was replotted after subtracting the contributions of the first and

second mode from the acceleration record.

6.2. Building 180, Jet Propulsion Laboratory, Pasadena

Building 180 is a 9-story steel-frame structure on the campus
of the Jet Propulsion Laboratory, Pasadena, California, which is
located approximately 15 miles from the epicenter of the 1971 San
Fernando earthquake. The amplitude of the acceleration response of
the building during the earthquake was about twice that of the Union
Bank building, but damage was limited to minor nonstructural crack-
ing. Features of the design are discussed by Wood (1972) who also

developed two-dimensional models of the building. These analytical



-249-

models suggest that the peak stresses in the structural frame ap-
proached, but did not exceed, the yield point during the San Fernando
earthquake. Building 18'0 was investigated in this work because Wood's
study was available for comparison and, in addition, the peak acce}-
eration was among the largest recorded in a building during the Sanv 5
Fernando eérthquake.

Strong-motionaccelerographs with synchronized timing were
installied in the basement and on the roof (Fig. 6. 13)., The s82°E comi—
ponen.ts of the digitized relative acceleration, velocity and displace-
ment at the roof were used as the response data in the az;a‘lysis. |
These components corfespond to the longitudinal directi.on of the build-
ing, Thepeakacceleration in this direction during the San Fernando
earthquake was about 40% g compared with é peak in the transversé
direction of about 20%g. The basement absolute acceleration in the
longitudinal direction was used as the input to the models (Fig. 6. 14).

The Fourier amplitude spectra for 40. 96 seconds of the ab-
solute acceleration in the basement and at the roof are shown in Figs.
6. 15 and 6. 16 respectively, and their ratio is shown in Fig. 6. 17,

The first six dominant peaks in Fig. 6. 16 are presented in Table 6. 8
and the first four dominant peaks over the frequency range 0-4Hz in
Fig.6.17 are presented in Table 6. 9. There are several points to
note in regard to these Tables. First, it will be explained later why
both peaks with a period of about 0.4 sec are labelled as the second
longitudinal mode. Second, the fourth and fifth peaks listed in Table

6. 8 are not resonant peaks because they essentially vanish in the
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Period |Period Ratio of spectral values(%,)
(sec) ratio Acceleration|Velocity Displacemeht Interpretation
1.28 | 1.0 100 100 - 100 1%% ongitudinal
0.42 | 3.0 34 11 4 2% ongitudinal
0.38 | 3.4 25 7 2 2% ongitudinal
1.13 | 1.1 20 18 17 | emeee-
0.90 | 1.4 16 11 -
0.26 | 4.9 9 2 0.4 3™ ongitudinal]

TABLE 6. 8. First six dominant peaks of the Fourier amplitude
spectrum of the S820E component of the absolute
acceleration at the roof of Building 180.

Period |Period Amplitude ratio (%) Interpretation
(sec) ratio ' of mode
1.28 | 1.0 100 15 ongitudinal
0.43 | 3.0 21 2™ ongitudinal
0.39 | 3.3 22 2" ongitudinal
0.26 | 4.9 12 37 ongitudinal

TABLE 6. 9. First four dominant peaks of the amplitude of the

transfer function between the S82°E components
of the absolute acceleration in the basement and at
the roof.




-256-

transfer function. They apparently come from amplification by the
first mode of peaks in the Fourier amplitude spectrum of the base
motion. Finally, sharp peaks in the unsmoothed transfer function
a;ssociated with near zeros in the basement spectrum were ignored
because the calculation of the ordinate of the amplitude of the transfer

function is ill-conditioned in this case.

6.2.1. Time-invariant Models

The parameters were first estimated for the time segment of
the records from 0 to 20 seconds. The general procedure of succes-
sively adding modes to the models was followed. The initial estimates
of the periods were taken from Table 6. 8 (with 'f’z =0, 42 sec) and the
initial estimates of the damping factors were 4%.

The results for the optimal models determined by matching the
relative displacement, velocity and acceleration records are pre-
sented in Table 6.10. The p, are the effective participation factors
at the roof [Eq. (3. 2. 13)], which are equal to the conventional parti-
cipation factors o for modeshapes normalized to unity at the roof.
The values in parentheses are explained later. In marked contrast
to the estimates for the Union Bank building (Tables 6. 3 and 6. 4), the
estimates of the damping factors and participation factors determined
from different response quantities are not in good agreement, Fur-
thermore, for the optimal models determined by matching displace-
ment and velocity, the measure-of;fit J is significantly greater for

a specified number of modes than its counterpart for the Union Bank
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building (Table 6.3). Part of the difference between the recorded
and model displacements appears to be a long-period error in the
record of period 6 to 7 seconds, which is apparent over the interval
from 10 to 20 seconds in the comparison of displacements. Another
part is due to a significant change in the fundamental period with time
which shows up most clearly in the displacement comparisons (see,
for example, Fig.6.18.a). A surprising result is that for a given
number of ‘;n.‘.qdes, the acceleration record can be matched better than
the displacbe‘ment and velocity records (see J'% in Table 6. 10), which
was not the case with the Union Bank building.

Other problems with the estimates in Table 6. 10 are apparent.
For example, the values 131 =0.9 and 1'51 =1,0 are suspect if judged
on the basis of their values for linear models. An examination of the
expression for «; [Eq. (3. 28)] shows that p; is greater than unmity
for a linear model if the modeshape of the fundamental mode has its |
greatest value at the roof. In fact, for a uniform shear beam,
Py =1,27. Furthermore, the estimate in Table 6. 10 for the partici-
pation factor of the third dominant mode has the opposite sign to what
would be expected for a third translational mode (for a uniform shear
beam, Ps =0.25). A curious result is that the period estimate for the
third dominant mode corresponds to a trough in Figs. 6. 16 and 6,17,
although its large damping would give the corresponding modal peak
a broad bandwidth which could account for contributions in the re-
sponse at nearby frequencies., Itis thought that the difficulty in identi-

fying the third longitudinal mode is partially due to its relatively small
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signal in the records (Table 6. 8).

The results in Table 6, 10 suggest strongly that there is a pro-
nounced interaction between f)r and ar in the calculations since the
small damping estimates are as soc;ated with émall participation_ A
factors and the large estimates are similarly correlated, This‘;izvlter- o
action could be suppressed by fixing the p,. on the basis of.priér
information during the minimization of the measure-of-fit J. Aiter-
natively, since there is reason to believe that the interaction is al-
most .linea'r,‘ ' a:c and ﬁr canbe scaled by the same factor so that ﬁr
is equal to some prior value. For example, if the Er and ﬁr in
Table 6. 10 are scaled to give the participation factoré from one of
Wood's synthesized structural models, the damping estimates are in
much better agreement, as shown by the values: in parentheses in
Table 6. 10, The high damping factor for the second mode may be
a consequence of the large change in its périod (86.2.2). In effect,
the method may attemiat to include the two broa& peaks at 2. 5Hz in
Fig. 6. 16,

A question of considerable interest is why the interaction of
the damping and participation factors is so pronounced compared
with the Union Bank results. A sensitivity analysis similar to §6.1.3
showed, somewhat unexpectedly, that the sensitivities were almost
the same for the two buildings, regardless of whether displacement,
velocity or acceleration matching were used. The interaction coef-

ficents involving Tr’ and the interaction coefficient for gz and PZ’



however, were larger for Building 180,

in Table 6. 11 which can be compared with their counterparts in (a)
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The results are illustrated

of Table 6. 7.
Sensitivity Sensitivity Sensitivity
r w.r.t. T w.r.t. C w. r.t. p
r r r
1 67.4 0.04 0.14
2 0.23 0.004 0. 005
r Interaction Interaction Interaction
Tr and Qr Tr and p.. Qr and P,
1 0.04 -0. 42 0.78
2 0.14 -0. 22 0.90
TABLE 6. 11. Results corresponding to Table 6.7 but

for the Building 180 velocity record over

the interval from 0 to 20 seconds. The

corresponding optimal estimates are

given in column 5, Table 6, 10,

It is thought that the above difficulties may be associated with

the much stronger response of Building 180. It is shown in §6.2,2
by using time-varying models that the structure exhibited a marked
nonlinear or time-varying behavior during the earthquake., The tem-
poral change of the equivalent linear parameters may possibly allow
more interaction to occur between the damping and participation
factors during the matching of the responses.

Despite the difficulties with the damping and participation

factors, the model responses were in good agreement with the records.
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The calculated response of the optimal model with two modes deter-
mined by matching velocities is compared in Figs. 6.18.a,b and ¢
with the recorded response.” The optimal estimates of the initial
displacement and velocity arenonzero because in. the presence of model
error (ignored higher modes andnonlinearities in the structural reséon'sé);
these values give the smallest value of J, although this is achievedﬂ
at the expense of a poor match over the first two seconds. A v’point
of interest is that the acceleration of this mb‘dél was very si:a;ilar to
that of the optimal model with two modes deteri‘ninéd by matching ac- "
celerations, but the velocities of these two models were si'g;iiﬁcantlf
different. The parameters for the two models are given in colurans
5 and 6 of Table 6. 10, |

The optimal estimates of the parameters of the three 1brigi— |
tudinal modes, which were determined from the felative 'ac>c>e{ieration -
record, are compared in Table 6, 12 with values from other sources.
The parameters of the first three modes of Wood's refined model
were determined by Wood (1972) as follows: the participation factors
were determined from a synthesized model; the periods were esti-
mated from the transfer function calculated from the earthquake rec-
ords; and the damping factors were estimated by attempting to match
through trial and error the resonant peaks of the Fourier aﬁplitude
épectra of the recorded and model accelerations. Difficulties were
encountered in the latter approach because the resonant peaks from the
records were muciq broader than those from the model response; pre-

sumably because of the change in time of the modal frequencies. Wood
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chose to keep the participation factors constant and to vary the damp-
ing until the spectral peaks of the second and third mode were about
30% higher than the corresponding peaks from the records. His
approach suppresses the interaction effects discussed above.

It was mentioned earlie;‘ that there are twin peaks in the
Fourier amplitude spectrum of the acceleration record at a period of
about 0. 4 sec (Fig.6.16). Wood chose the spectral peak at 0. 42 sec
as the period of the second longitudinal mode in his refined model,
whereas the modal minimization method chose a second-mode period
corresponding to the peak at 0. 38 sec. It is shown in the next section
that the second-mode period changed considerably during the earth-
quake response and that the value 'f‘z =0, 38 sec corresponds to the
initial strong-motion portion while the value 'f‘z =0. 42 sec corresponds
to the later portion of the response, which is almost free vibrations.

The match of the recorded acceleration given by the optimal
model with three modes (Tables 6, 10 and 6. 12) and the corresponding
match for the three lowest modes of Wood's refined model are pre-
sented in Figs. 6.19.a and b respectively, To allow the calculated
responses to be compared on the same basis, both models were
started from rest, although the estimates of the initial conditions for
the contribution of each mode in the optimal model were nonzero. The
calculated velocities for the same models are presented in Figs.
6.20.2 and b. The optimal model clearly gives a much better fit to
the recorded response than Wood's model. This is primarily because

the model response is very sensitive to the modal periods and the
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modal minimization method finds the values for the periods which
optimize the response match (acceleration in this case). It is of
interest that the velocity of this optimal model is also in good agree-
ment with the record.

In conclusion, the time-invariant models for Building 18.0'did
not perform as well as they did for the Union Bank building. There
are at least two possible reasons for this. First, the earthquake
response of Building 180 was cénsiderably stronger than that of the
Union‘Ba:ak and so effects not included in the linear models may be
more pronounced. The second reason relates to the number of cycles
of the record which were used to determine the time-invariant models.
For the Union Bank building, the 25-second portion used is only about
5% cycles of the fundamental longitudinal mode, whereas the 20-second
segment used for Building 180 corresponds to about 16 cycles of the
fundamental mode. Thus, even if the average relative change in the
modal parameters per fundamental cycle was approximately the same
in the two buildings, the overall change would be greater for Building
180. The change in the modal parameters with time is investigated
in the next subsection by determining the optimal estimates for a

succession of short time segments of the records,

6.2.2., Time-varying Models

In the initial investigation into how the equivalent linear param-
eters changed during the earthquake, time-windows of five seconds

were used, which corresponds to about 4 cycles of the fundamental
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mode. Over the first 10 seconds of response, the optimal estimates

of the damping and participation factors exhibited even greater inter-
action than for the time-invariant models and corresponding estimates
for velocity matching and for acceleration matching were not consist-
ent. However, the modal periods Wer.e consistentand gave interesting re-
sults, sotheseare presentedin Table6.13. Itcanbe seenthatover the
first 10 seconds or so of response, the fundamental period changed from

1.1 sectol.3 sec, or by about20%, and the period of the secondmode chang-
edfrom 0.33 secto0.42 sec, or byabout 30%. Thevalue 0.33 sec is the same
as thatdetermined by Nielsen (1964) from forced vibrationtests performed

on Building 180 before the architectural work was completed (Table 6, 12).

It was found that time-windows of ten seconds produced more
consistency between the various estimates of the damping and parti-
cipation factors. The results for these segments of the records are
presented in Table 6. 14, The damping of the fundamental mode ap-
parently decreased from about 5% in the first 10 seconds to about 3%
in the interwval from 10 to 20 seconds. The corresponding decrease
in the damping of the second mode was from about 12% to about 4%.
The high damping factor of the second mode in the first time segment
may be a spurious effect due to the considerable change in the period
of the second mode over this interval (Table 6. 13)

The calculated velocity and acceleration of the optimal model
with two modes determined by matching the first ten seconds of the
velocity record are compared with the correspohding recorded re-

sponses in Figs. 6.21.a and b, A similar comparison is given in
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Time Record T T T /T
interval used 1 2 L
0-5 Velocity 1.09
Acceleration 1,10
Velocity 1,08 0.33 3. 3‘
Acceleration 1.08 0.32 3.4
2-7 Velocity 1.19 .
Acceleration 1.19
Velocity 1.20 0.37
Acceleration 1.21 0. 37
4-9 - Velocity 1,24
Acceleration 1.25
Velocity 1,25 0. 38
Acceleration 1,25 0. 38
6-11 Velocity 1.27
Acceleration 1.28
Velocity 1.29 0.42 .1
Acceleration 1.29 0. 42 o
10-15 Velocity 1.26
Acceleration 1.26
Velocity 1.26 0.42
Acceleration 1.26 0.42
15-20 Velocity 1,27
Acceleration 1,27
Velocity 1,27 0. 42 .0
Acceleration 1,27 0.41 3.1

TABLE 6. 13. Optimal estimnates of the modal periods for different
segments of the records from JPL Building 180, San
Fernando earthquake., One-mode and two-mode models
were used.
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Figs. 6.22.a and b for the optimal model with two modes determined
by matching the segment of the velocity record from 10 to 2'0 seconds.
On the basis of all the results, it is thought that the optimal
estimates in Table 6. 12 of the periods of the fundamental and second
modes are reliable values, although it is to be remembered that
these are the best periods for a time-invariant model over mt_nst‘ of
the strong-motion portion of the response and that the periods actually
changed considerably during the earthquake. The damping factor of
4% in .Table 6. 12 for the fundamental mode is also considered to be
representative for the strong-motion response of Building 180 during ..
‘the San Fernando earthquake. There are difficulties in estimating the
damping of the second mode because of the marked change in its périod,
which is also thought to have produced the twin peaks in the Fourier
amplitude spectrum of the roofacceleration record. The estimates in
Table 6. 12 for the parameters of the third mode are considered to be
unreliable, This mode has little effect on the response, and for this
building,it is concluded that only two modes are required to give a
good approximation of the relative velocity and acceleration records,

and one mode is sufficient for the displacement.
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Vii. CONCLUSION

In this dissertation, a practical strategy has been devised and
implemented for systematically determining best estimates of param-
eters of linear structural models from records of base ﬁlotion and
response during an earthquake., The investigation was set within the
framework of a general output-error approach (Chai)ter 2), In this
approach, the model parameters are estimated by using a suitable
computer'algorithrﬁ which systematically varies the parameters until
some measure-of-fit between the structural output and model output,
such as the integral-squared difference, is minimized, The parameter
values so calculated are called the optimal estimates for the élass o.f
models employed.

The question of whether this approach allows the parameters to
be determined uniquely and reliably was studied for a general class of
linear structural models for which the mass matrix was assumed known
(Chapter 3). It was shown that reliable estimates of the stiffness and
damping matrices for these models usually cannot be made from rec-
ords of the earthquake response of a structure, because of several
basi?z 1imitations of the data., It was also shown that the modal periods,
modal damping factors and the effective participation factors at the

points of measurement give all the information about the stiffness and
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damping distributions that is contained in the structural records.
These modal parameters, rather than the stiffness and damping ma-
trices, should be estimated when identifying a structure from earth-
quake records. Furthermore, in order to obtain reasonable accuracy,
only the parameters of the dominant modes in the records should be
estimated, and this should be done by performing a series of identi-
fications in which modes are successively added to the models until
the measure-of-fit is no 1ong‘er significantly decreased., Otherwise,
the higher modes of the model may be primarily matching noise in the
records., It is also desirable to estimate the parameters by separate-
ly matching the displacement, velocity and acceleration records, so
that a check can be made on whether the linear models produce con-
sistent results,

It was concluded that the distribution of earthquake forces
throughout the structure generally cannot be estimated reliably from
a few records of the structural motion (§3.5). If estimates of the
forces experienced by a structure during a particular earthquake are
required, and records of the structural motion are available, the
forces can be estimated by using a synthesized model which has been
modified so that the parameters of its lower modes are equal to the
corresponding values determined from the records,

Two output-error techniques for determining the modal
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parameters from seismic response records were investigatéd. The
first technique studied was the optimal filter method (Chapter 4),
Advantages of this method are that it provides sequential estimates of
thé parameters, thergby showing how the estimates depend on the .
length of record used, and it can also be applied to nonlinear models.
It was found from tests of the method that because of approximations
which must be made in the theory in order to produce a feasible algo-
rithm, the estimates calculated by the filter can be .quite'di‘fferent
from the optimal estimates when there is significant measurement
noise or model error, It was concluded after the tests that a more
reliable technique is required when identifying linear models of struc-
tures from earthquake records.

A new outiaut-error technique is introduced for estimating the
modal parameters, which was called the modal minimization method
(Chapter 5). This method can be relied upon to find the optimal esti-
mates of the modal parameters and it is more efficient numerically
than the optimal filter method, but it is limited to linear structural
models,

The modal minimization method was employed to study the
strong-motion responée of two multi-story buildings during the 1971
San Fernando earthquake (Chapter 6). Within the framework of linear

models, new information was obtained from the records concerning

[N
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the properties of the higher modes and also the time-varying character
of the equivalent linear parameters,

The response in the longitudinal direction of a 40-story steel-
frame building was first studied. The building experienced a peak ac-
celeration at midheight of about 20% g but suffered no structural damage.
It was found that a time-invariant linear model with a small number of
modes could reproduce the strong-motion records remarkably well
over the 25-second interval investigated, The matching of the rec-
orded and model responses was considerably better than anticipat»ea on
the basis of other studies where less systematic techniques Wére Iap-
plied to attempt to achieve a good match with linear models. The
number of modes required to give a good approximation of the relative
displacement, velocity and acceleration records was one, two and four
modes respectively.

The modal minimization method also gave new information
about the higher-mode damping and participation factors for the build-
ing, as well as more reliable information about the modal periods.
The estimates of the modal damping factors from 25 seconds of the
acceleration record ranged from 4% for the fundamental longitudinal
mode to 7% for the fourth longitudinal mode. Although there was a
reduction in the stiffness of the structure during the earthquake, the

period ratios among the first four longitudinal modes were roughly the
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same as during ambient vibration tests before and after the seismic
shaking, This suggests that the degradation in stiffness was approxi-
mately uniform over the structure.‘ Furthermqre, the period ratios
during the earthquake remained close to those for a uniform shear
beam,

The other building studied was a 9-story steel-frar‘ﬁe‘structure
which experienced a peak acceleration of about 40% g, one of the
1argeét recorded in a building during the San femando earthquake,
Damage was limited to minor nonstructural cracking, A time-invar-
iant linear model was again able to match the response well over the
twenty-second interval of the longitudinal records which was studied,
The match was considerably better than that given by a previously
reported model which was essentially based on the traditional fre-
quency~-domain approach for determining the modal periods and damp-
ing factors, However, the optimal estimates of the modal damping
and participation factors from records of different response quantities
were less consistent than in the first building investigated. It is
thought that this may be due to the stronger nonlinear, or time-varying,
dynamic behavior of the 9-story structure,

The time variation of the structural properties during an earth-
quake can be studied by determining the optimal estimates of the modal

parameters for short time segments of the records. By using
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successive time windows, the results can show how the equivalent
linear parameters change because of nonlinear effects,

This approach was applied to both buildings described above.

It was found that the average increase of the periods per fundamental
cycle for the two lowest modes was about 1% for the taller building and
about 3% for the smaller building. For the latter structure, almost
all of the change occurred in the first 10 or so seconds, during which
the fundamental period increased from 1.1 sec to 1,3 sec, or by about
20%, while the period of the second mode increased from 0, 33 sec to
0.42 sec, or by about 30%. The latter change was thought to have pro-
duced the twin peaks at 0. 38 sec and 0, 42 sec in the Fourier amplitude
spectrum of the roof acceleration,

On the basis of the results for the two buildings, it is tentative-
ly concluded that when the optimal estimates of the modal parameters
are used, a time-invariant linear model based on a small number of
modes can adequatelyreproduce a building's strong-motion response if
structural damage does not occur. This is useful information for
structural design employing linear models, even though the best values
for the modal parameters are difficult to determine prior to measuring
the response to the earthquake, From the results of Chapter 6, it is
suggested that forv design calculations, this difficulty might best be

treated by using typical values for the damping factors obtained from
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studies of the eé,rthquake response of similar structures, and by using
participation factors from a synthesized structural model, since the
model response is not particularly sensitive to these parameters.
However, the r.esponse is very sensitive to changes in the modal
periods, which are difficult to synthesize accurately, It is tﬂérefore _
suggested that the overall stifiness of the structural model syhould be
varied so that the periods of the lowest modes, particularly the funda-
mental, cover a representative range of values,

In continuing research in this area, it is considered that it
would be most fruitful to concentrate on improving features of the
linear models and in applying the approach to recqrds from a wide
variety of buildings, In particular, the models could be modified
to include both horizontal componenlts of the translational motion of
the base because this might allow better modelling of any torsiqnal
response shown during an earthéuake. There may also be 'othe:c appli-
cations in earthquake engineering for which the method could be fruit-
fully employed, For example, the method may be applied to the re-
‘corded response of soil layers to'investigate local site effects, pro-
vided earthquake records, such as those from bore holes, are also
available to serve as input to the linear models, The method may also
be a useful approach to determine the dynamic properties of large

earth dams.,
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It is also desirable to investigate the identification of nonlinear
models so that structural properties such as strength and ductility
during an earthquake can be studied. Some other output-error tech-
nique, such as the Gauss-Newton method, is then required to determine
the optimal estimates of the parameters, but some of the difficulties
discussed in this work for linear models, such as those arising from
lack ofidentifiability and from limited resolution, will have their
counterparts in structural identification with nonlinear models.
Nonlinear modelling is a particularly challenging area of research
because it is difficult to formulate models which include such
observed phenomena as amplitude-dependent stiffness, hysteresis
and structural deterioration. In addition, the lack of experience in this
area will make it difficult to assess whether the estimates of the param-
eters are reliable. Research is also inhibited by the scarcity of re-
sponse records of structural motions well into the inelastic range or
approaching failure, and such data from tests employing large-scale
shaking tables can make a valuable contribution.

In conclusion, it is felt that the modal minimization method has
proven to be a useful technique to investigate the dynamic properties
of buildings from their strong-motion records. In particular, it has
shown that by using the optimal estimates of the modal parameters,
time-invariant linear models of the two buildings studied can reproduce

their strong-motion records surprisingly well,
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APPENDIX A: IDENTIFIABILITY

Consider a class of models I with its associated set of al-
lowable parameter values denoted by G, and let C be a class of.
inputs to the models. The class I is defined by the function m(a, z)
relating the output m of a model with parameters a to the inéut z
in C. In the following work, z and m will denote the histories c‘>‘f
the input and output over a specified time interval.

- Let M* be amodel in I given by the pé.rameters a®™ in @,

then the definitions in §2. 4. 1 may be written as:

(i) M* is globally identifiable for C
® vz€C,
m(a,z) fm(a* z) , va€G with a#a”
(ii) M* is locally identifiable for C
® vz €C, & a neighborhood W(g_*)CG such that:

als

m(a,z) fma™, z), Va€N(a¥) with ata®

In Fig.A.1l, the models corresponding to 212y and as are re-
spectively globally identifiable, locally identifiable, and neither
globally nor locally identifiable. In order for the whole class of
models to be globally or locally identifiable, the appropriate definition
above has to hold for each 2™ in G.

The following results have been used in this dissertation.

Recall the definition of J'O(i) given by (2. 3. 5) and (2. 3.6):



-290-

Figure A.1l. Schematic diagram illustrating identifiability in
terms of the mapping m(a,z) between the set of
allowable parameter values and the set of outputs,
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I, =<y-m(a; 2) , y-m(2,2)> (A. 1)

where <¢,*> is a scalar product and y is the output to be matched
by minimizing JO' The identifiability of a model can be expressed
in terms of the minimization of JO using the model output for y as

follows:

Theorern A. 1

(i) M* is globally identifiable for C
& vz €C, the global minimum of:

I,(@) =<m(a¥, z) -m(z, z), m(a¥,2) -mlz,2)>  (A.2)

occurs only at a=a¥, that is,

1o(2)>Ty@%), ¥2€GQ  with a#a®

(i1) M* is locally identifiable for C
® vz¢ c, J'O(i) has a strict local minimum at 3-—-3*, that
is, ¥ a neighborhood 7’2(3*) such that:

T,@)>T,@%), Ya€n(a¥)  with ata¥

The proof is given for (ii). It is easily modified for (i).

(2) Necessity: By hypothesis, M¥ "is locally identifiable, so
there is a neighborhood 72(3*) of _@._* such that m(a,z) #z;r_l(g*,g_) for
each ?;#i* in ??(g_*). Notice that ~‘TO(§-)2JO(§-*):O' Suppose there
exists a'#2® in 7(a¥) suchthat Jy(a)=J,(2¥), then J,(2)=0 andhence,

by the positive-definite property of <¢,¢>, 11.1(?:"?_):32(1*’5)’ which is
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a contradiction. Thus, J0(3)> JO(_a;*), VaE?Z(i*) such that g,_f:g*.
(b) Sufficiency: By hypothesis,
Jo(i)>Jo(i*):0, Va€N@®) with a#a¥

Suppose there exists a #£a* in 7(a*) such that m(a,z) =m(2*, z),

* is locally identi-

then Jo(g._) =0, which is a contradiction. Thus, M
fiable,

The results proved in Theorem A. 1l are used as definitions by
Bellman and Astrém (1970) except that they omitted to state in their
version of (i) that the global minimum must occur at only one point,
The advantage of the definitions given in §2. 4. 1 are that they make it
clear that identifiability is a property of the model and it is inde-
pendent of the particular scalar product chosen for JO. For example,
with continuous data, <¢,*> in Theorem A.1l could be defined in
terms of the quantities in the time domain or in terms of their trans-
forms in the frequency domain.

Another result related to identifiability which has been stated

in this dissertation is the following:

Theorem A, 2

I om(a, z) : :
The sensitivity coefficients —o—— are linearly independent
Tk
over the data interval if and only if the reduced sensitivity matrix

g(g, z) is positive definite.

Proof

From (2.3.9), for an arbitrary vector A of appropriate
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dimension:

=<y hs, Y o=, (&.3)

20

Thus, S is always positive semi-definite, Furthermore, using the
positive-definite property of a scalar product:

~ % om : :

X8(a,z))=0 @ LM Fa- =0 over the date intezval, from which
: j

the desired result follows,

The first part of the statement in Theorem A.2 is used as a
definition of identifiability by Beck and Arnold (1977). Itis a stronger

statement than local identifiability, as the following result shows:

Theorem A, 3

om . .
The sensitivity coefficients = . are linearly independent
: kla™
= M* is locally identifiable for z

Proof
First, from Eq. (A.2):
#y = 2
JO(_a_. )=0 and JO(_a_.) 0.
Thus, ‘TO has a local minimum at 3*. From (2. 3. 8) and (2. 3. 9),

£V 7, (2% =8@*,2)

since here v(a¥)=m(a*,z)-m(a*,2)=0. Thus, by hypothesis and
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and Theorem A. 2, VVJO(E*) is positive definite. From a result in
advanced calculus, this ensures that J'O has a strict local minimum

at a™ and hence the desired result follows from Theorem A. 1, part

(ii).

The converse of the theorem is not true in general. However,
it can be shown that the two statements in Theorem A. 3 are equivalent
in the special case where m(a,z) is a linear function of the param-
eters a. In this case, each statement is a necessary and sufficient
condition for uniqueness of the optimal estimates of the model param-

eters,.
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APPENDIX B: PROOF OF THEOREM IN §3.4.3

Theorem

Consider a controllable and observabie model in mN whose
output for a known input is measured. Let J be the output set defin-
ing the coordinates at which the response is measured, Let @ be .'
a transformed modeshape matrix of the observed model. The number
of models in mN which are consistenf with the observed data vis equal

to the number of solutions of the following matrix proble:m:

Find a nonsingular, real matrix B such that:

(1) Btgi=gi , Vi€d O (3.4.7)
(i) Bp=p (3. 4. 8)
1) Bo'ThiBe ) =0 , r#s (3. 4.9)

where e is the unit vector given by (gi)k =6i k

vector of dimension N with elements given by:

and P is a known

b

Py =by (3.4.10)

e

Furthermore, for éach solution B, the transformed mode-
shapes ZD_; r) of the model in mN which has the same output as the
observed model are given by:

o) = Lggel®) (3.4.11)

where v2 = @el™) Bel ) (3.4.12)
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Proof
Let SNC mN denote the set of all models which are consistent

with the observed data and let 03N denote the set of all matrices B
which satisfy the matrix problem given by Eqgs. (3. 4.7), (3. 4. 8) and
(3.4.9). To prove the theorem, it is shown that a one-to-one onto
mapping f can be constructed between ﬁ'iN and SN. This also
handles the case where the number of solutions is infinite, The proof
is in three steps: (a) f is defined, (b) f is shown to be onto, (c) f
is shown to be one-to-one.

(2) There are two preliminaries. First, the ’é(r) defined by

(3.4.11) and (3. 4. 12) are possible transformed modeshapes since:

Slrht ~s) _ _1 (r)
@) ¢ —YrYs(BEE )

¢ (BQ(S)) =0, 7

using (3. 4. 9) in addition to (3. 4. 11) and (3. 4. 12). Notice that yr¢0
since if Yr =0, then Bg(r)=0; since B 1is nonsingular, this implies
g(r)=_(_)_, which is a contradiction. Second, by Proposition 1, or
Proposition 2 with CL, a quel in mN is consistent with the mea-
sured input and output if and only if it has the same values of W, Qr
and Bgr) as the observed model, Vv r=1,...,N and Vvicd,

Define a mapping f from BN to SN as follows. Let B EEBN,
then define f(B) as that model in ﬂ'tN which has the transformed
modeshapes §(r) given by (3.4.11) and (3. 4. 12), and the modal

frequencies and damping factors w, and gr of the observed model.

From (3. 4. 5) and §3. 2, 2, the model is defined uniquely, Furthermore,
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the fact that the sign of Y. is arbitrary is consistent with the result
stated in §3. 2. 1 that the moaeshapes of a model are only unique to
within a change of sign.

To show £f(B)€ SN, it remains to prové that it has the correct
values of ijr), Vr=1l,...,N and Vi€d.

From (3. 2.13) and (3. 4. 5)

Ly~
B o F0 (B.1)

Consider first 'c'ﬁgr) where i isin d. From (3.4.7):

(Cﬂ(r))t Bt_e_i=(CP_(r))£ _e_l

and thus from (3. 4.11);

@(r ))tgi - ?1__(93( 3:))1:52'i
r
" H - Lol @2
r

Consider next fc;'r. Define a diagonal matrix A by:

Y1 0
Yo ‘
A= . : (B. 3)
0 YN
L J
then from (3. 4. 9) and (3. 4. 12):
st Bt ga-a® (B. 4)

Using the fact that & is unitary:
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Qt Bt B =A2§t
which, together with (3. 4. 8) leads to:

AZsto -t Bt ppoat Bt p

Thus, from (3.4.11):

v @ o =@ 5

or @ =y o (B. 5)

since from (3. 2. 8), (3. 4. 5) and (3. 4. 10):

N
L (I‘) _(g(r))tﬂ (B.6)

with a similar expression for '&‘r' Substituting (B. 5) and (B. 2) into

(B. 1) leads to:

Egr) =m., ECpir) =B§r),\7 r=l,...,Nand ¥i€d (B.7)

(b) It is now shown that f is onto, thatis, given any model

in £ there exists B in B.. such that the model is equal to £(B).

N’
Let the model in &

N

N have a transformed modeshape matrix

5', then V¥ r=1,...,N and Vi€ d:

Bl g o Eo ®. 8)

1ch1 r

Define Y=o e (B.9)

and define a matrix A by (B.3). Each ratio Y. is well-defined

since czr#O, otherwise [3]{1‘)=0, Vi€ d, which contradicts an original
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hypothesis, Similarly, Yr#O and so the matrix A is nomsingular,
Define ' - B=%A 3t (B. 10)

then the aim is to show that B belongs to £, and that £(B) is eQual

N
to the given model in S’N' First, B is real and nonsingular. Also

from (B. 8) and (B. 9)

3 = (r)_y ofF)
@, =Y %, and P Y

These results can be written in vector form using (B.6):

{r)t t ¢ ¢
@ o=y, @ ana @i =y @
In matrix form, they become:
Tro-adty  ana 8%, =aZle, , vieds (B. 11)
- - -1 -1

In view of the definition of B in Eq. (B. 10), and the fact that & and
T are unitary, (B.11) leads to (3. 4. 7) and (3. 4. 8). Furthermore,

from the definition of B:

% -gea!
or ) = L gefr) (B. 12)

Applying the unitary property (3. 4. 6) for the :VCQ_(I):

o' ™hEBol®)) =5 (B. 13)

YY

r' s

This shows (3. 4. 9) holds and, together with the earlier results,proves

that B belongs to ,@N'

Finally, from (B. 12) and (B. 13), the matrix B and the trans-
~( )

formed modeshapes © of the given model in & satisfy (3.4.11)

N
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and (3. 4.12). Thus, f(B) is equal to the given model.
(¢} The final result is to show that f is one-to-one, that is,

if B B2 in ﬁN are such that f(Bl):f(BZ), then B1=B2.

Since f(Bl) and f(Bz) are the same model in &£

17

N’ the trans-

formed modeshapes corresponding to B1 and B2 can be made equal

(rl) and Y(z). Thus:

by an appropriate choice of sign for Yy r

1 (r) _~(r) 1 (r)
(I)Blgg =@ _——-—Y (2)329 _ (B. 14)

r r

y

where the 'é(r) are the transformed modeshapes of the model

f(Bl) :f(BZ). The results in (a) show that:

1 ~ 2
ch )ar:ar :Yg: )ar
and so Y(l)-Y(Z) because o #0. Simplifying (B. 14):
r 'r r pltymg (. ’
B,o()-p ol
(B. 15)
or Blészé

Since ? is nonsingular, B, =B,.



