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ABSTRACT 

The probleITl of deterITlining linear ITlodels of structures froITl 

seisITlic response data is studied using ideas froITl the theory of systeITl 

identification. The investigation eITlploys a general forITlulation called 

the output-error approach, in which optiITlal estiITlates of the ITlodel 

paraITleters are obtained by ITliniITlizing a selected ITleasure-of-fit 

between the responses of the structure and the ITlodel. The question 

of whether the paraITleters can be deterITlined uniquely and reliably in 

this way is studied for a general class of linear structural ITlodels. 

Because earthquake records are norITlally available froITl only a SITlall 

nUITlber of locations in a structure, and because of ITleasureITlent noise, 

it is shown that it is necessary in practice to estiITlate paraITleters of 

the dOITlinant ITlodes in the records, rather than the stiffness and daITlp-

ing ITlatrices. 

Two output-error techniques are investigated. Tests of the 

first, an optiITlal filter ITlethod, show that its advantages are offset by 

weaknesses which ITlake it unsatisfactory for application to seisITlic 

response. A new technique, called the ITlodal ITliniITlization ITlethod, 

is developed to overCOITle these difficulties. It is a reliable and effi-

cient ITlethod to deterITline the optiITlal estiITlates of ITlodal paraITleters 

for linear structural ITlodels. 

The ITlodal ITliniITlization ITlethod is applied to two ITlulti- story 

buildings that experienced the 1971 San Fernando earthquake. New 

inforITlation is obtained concerning the properties of the higher ITlodes 

of the taller building and ITlore reliable estiITlates of the properties of 

the fundaITlental ITlodes of both structures are found. The tiITle-varying 
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character of the equivalent linear parameters is also studied for both 

buildings. It is shown for the two buildings examined that the optimal, 

time-invariant, linear models with a small number of modes can re

produce the strong-motion records much better than had been supposed 

from previous work using less systematic techniques. 
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1. INTRODUC TION 

1. 1 Structural Identification, Introduction and Previous Work 

Broadly speaking, system identification is the process of try-

ing to deduce a model of a real system from its output and possibly 

its input. In this definition, a model is any rna thematical represen-

tation of the system which allows a good approximation to its output 

* to be computed. An important aspect of system identification is to 

allow for the fact that measurements made on the system are inevi-

tably contaminated by noise. Some survey articles on system iden-

tification in general are those by Cuenod and Sage (1968), Bekey 
c 

(1970), Nieman, Fisher and Seborg (1971), Astrom and Eykhoff 
... ' ..... 1 ... 

(1971), Bowles and Straeter (1972), and Sage (1972). -.--.- The book by 

Eykhoff (1974) also has an extensive bibliography. 

This dissertation is concerned with the application of system 

identification ideas to structural systems such as buildings, bridges 

and darns. In this context, the output of the system refers to the 

histories of response quantities measured at points within the struc-

ture. These quantities could be the displacement or its time deriva-

tives, velocity and acceleration, or even the stress or strain. 

However, it is rare for the latter to be measured in structures and 

-,,,-

:::~.:{~ 

The terms input and output are used here in a technical sense to de-
scribe the observed portions of the excitation and response, respec
tively. Theyneednot correspond to the complete excitation and re
spans e of the system. 

References are given at the end of each chapter. 
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and the term "response at a point" will be used to refer to the dis

placement or its derivatives unless otherwise specified. The input to 

the system refers to the measured portion of the excitation producing 

the structural response. 

Some survey articles on different areas of structural identi

fication are those by Schiff (1972), Collins, Young and Kiefling (1972), 

Rodeman and Yao (1973) and Hart and Yao (1977). Hudson (1977) has 

reviewed the means by which structural response data can be produced. 

We shall first consider two widely-used sources, steady- state har

monic tests and ambient vibrations, and then concentrate on the major 

concern of this dissertation, which is the use of seismic response 

records. 

1. 1. 1 Steady-State Harmonic Tests 

Steady-state harmonic tests are performed by shaking a struc

ture with special mechanical vibrators which effectively exert a sin

usoidal point-force on the structure. In this area, structural identi

fication with linear models has been applied quite extensively. The 

basic approach, as in most frequency-domain methods, is to estimate 

the amplitude and phase components of the transfer function, 

H(iw), between the location of the response measurement and the 

location of the excitation. Because of both the steady-state charac

ter and the monochromatic frequency content of the input and output, 

these functions can be evaluated directly from the amplitude and phase 

of the response, relative to the exciting force, for each frequency of 
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excitation. 

In practice, the phase information is often ignored and the 

modal parameters are estimated from resonant peaks of I H(iw) I, 
the amplitude of the estimated transfer function. The modal fre

quencies are estimated from the location of these peaks; the modal 

damping factors are estimated from their half-power bandwidth; and. 

the (unscaled) modeshape values are estim.ated from their heights. 

Some consideration of the phase is required to determine the correct 

sign of each modeshape value. In some cases, the parameter esti

mates obtained by this resonant-pea~ technique are strongly affected 

by modal interference, that is, by the contribution to the response of 

other modes in the" neighborhood of a given modal frequency .. This 

can make the damping estimates particularly unreliable~ Hoerner and 

Jennings (1969) have investigated a particular case of modal interfer-

ence. 

A deficiency of the resonant-peak technique is that only a small 

nu:mber of points of I H(iw) I are used to estimate the modal param

eters, so much of the data is ignored or, at best, used only quali-

tatively. This makes the estimates sensitive to measurement noise 

and to model error, where the latter refers to errors arising because 

the structure is not a time-invariant linear system with uncoupled 

m.odes as assumed in the m.0del. Nevertheless, the approachhas 

proved successful WITh low-amplitude forced vibration tests because 

the noise levels involved are small for the lower modes of vibration. 

However, as discussed later, the same technique applied to lH(iw) I 
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estimated from seismic response records leads to unreliable para-

meter estimates because the noise levels and model error are much 

greater. 

b '''' ( ) I anez 1972 has pointed out the above deficiency in the context 

of steady-state harmonic tests and proposes a technique which uses 

all the frequency-domain data. This procedure, which he calls YFIT, 

estimates the parameters by minimizing an output-error functional. 

It is essentially a frequency-domain version of the general system 

identification approach adopted in this work. 

The above discussion has been concerned with identification 

using linear models. The identification of structures using nonlinear 

models and steady-state harmonic data has been investigated by 

several authors, including Ib~nez (1972), Jennings (1967) and Novak 

(1971). 

1. 1.2 Ambient Vibrations 

Structural identification has also been carried out by utilizing 

ultra low-level ambient vibrations induced by wind and microtremors. 

Techniques for this application generally as surne that the system is 

linear, the excitation is (band-limited) white-noise and that the re-

sponse is an ergodic random process. The stochastic hypotheses 

are necessary because the actual excitation, which is spatially-dis-

tributed, is not recorded. 

By treating each individual modal response as that of a single degree-

of-freedom oscillator, it is possible to determine an effective transfer 
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function using an approach based on the equation: 

where P and P. are the power spectral density of the output and o 1 

input respectively of a linear system. For ambient vibrations, P 
o 

must be estimated from the recorded response whereas P. is un-
1 

known but, by hypothesis, assumed constant. In practice, because 

only records of finite length are used, the stochastic hypotheses above 

have the same effect as making the deterministic assumption that the 

average over the records of the Fourier amplitude spectrum of each 

point-excitation does not vary greatly with frequency. The average 

spectrum of the records can then be used directly as an estimate 

of I H(iw) I in the neighborhood of each modal frequency. This allows 

the efficient Cooley-Tukey FFT algorithm. to be used. 

Once I H(iw) I has been estimated, the parameters can be 

determined by the resonant-peak technique discussed in the previous 

section. Again, difficulties arise because of modal interference and 

the use of only a few data points, which are accentuated in this appli-

cation because of the more variable character of the estimated 

transfer function. In addition, the assumption that the average spec-

truro. of the excitation is approximately constant is often violated. 

This can be caused by strong wind gusts for example. A further 

consideration relates to the frequency resolution. In steady-state 

harmonic tests the frequency resolution depends on the frequency 

control of the shaker. With modern equipment, a frequency 
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resolution of 0.01 Hz or les s can be achieved. However, when the 

transfer function is estimated from ambient data the frequency resO

lution is given by 1 IT where T is the record length, so that very 

long records are required to adequately define the resonant peaks of 

the low modes. 

Schiff and his colleagues (1972, 1973) give a discussion of the 

difficulties which arise when the modal parameters are estimated 

from an estimate of the transfer function made under the as sumption 

of white-noise excitation. Schiff proposes applying a parametric 

curve-fitting method to I H(iw) I which considers all the frequency

domain information in the neighborhood of a modal frequency in order 

to get more reliable estimates of the corresponding modal parameters. 

In the second paper, the authors carry out some tests by applying this 

technique and Vanmarcke's method of moments (1970) to simulated 

data. They were interested in investigating whether these techniques 

could successfully estimate the d.amping from short-duration records 

so that they could be used with seismic response data. The results 

indicate that for a single-degree -of-freedom linear oscillator at 

least ten cycles from a stationary response are required to get rea

sonable damping estimates from either of the methods mentioned 

above. Furthermore, nonstationarity of the response has a strong 

influence on the accuracy of the damping estimates. By way of 

comparison, one of the time-domain techniques discussed later gives 

nearly exact results in an analogous situation, even when only half of 

a cycle of non stationary response, together with the corresponding 
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nonstationaryexcitation, are used in the identification process. This 

illustrates the importance of using input records if they are available. 

The discussion so far has concentrated on frequency-domain 

identification methods for ambient vibration .data and the attendant 

difficulties. Gersch and his colleagues (1974, 1976) have developed 

a time-domain technique which is based on an auto-regressive moving-

average model of a discrete time- series. This technique appears to 

be a promising one for ambient vibration applications, particularly 

since it gives some idea of the accuracy of the computed estimates 

of the parameters. 

1. 1. 3 Seismic Response Data 

It has long been recognized tllat an earthquake can be viewed 

as a full-scale, large-amplitude experiment on a structure, and that 

if the structural motion is recorded, it offers an opportunity to make 

a quantitative study of the behavior of the structure at dynamic force 

and deflection levels directly relevant to earthquake-resistant design. 

However, the time and location of a strong-motion earthquake can 

not be predicted with confidence so the acquisition .of such data 

requires an extensive deployment of dedicated instrumentatlon, which 

must be capable of remaining operational over long periods of time. 

For these reasons, response data of good quality were not readily 

available until recently, so there was little motivation to develop 

systematic techniques for structural identification from earthquake 

records. 
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The 1971 San Fernando earthquake in California draITlatically 

changed this situation. SeisITlic response records froITl about 50 

buildings in the LosAnge1es area were obtained (Jennings, 1971; 

California Institute of Technology, 1971-1974). None of the instru

ITlented buildings was heavily daITlaged but the peak acceleration 

response in SOITle buildings approached ~ g and ITlany of the buildings 

exhibited nonlinear behavior, at least to the extent of lengthening 

fundaITlental periods. 

To date, the ideas of systeITl identification have not been fully 

utilized in the interpretation of these records. A COITlITlon approach 

has been to COITlpare the recorded response of a building with the 

response of a synthesized linear ITlodel subjected to the recorded 

base excitation. This cOITlparison has been followed by SOITle trial

and-error adjustITlent of the ITlodel paraITleters to achieve better 

visual ITlatching of the theoretical and recorded response. (Wood, 

1972; BlUITle and Associates, 301-443, Gates, 445-574, Martin and 

Associates, 575-596, in Murphy, 1973). Such an approach can be 

viewed as a rudiITlentary s cheITle for estiITlating paraITleters in the 

tiITle dOITlain. One of the aiITls of this work is to investigate systeITl

atic versions of this procedure which give the best possible response 

ITlatching in a well-defined sense. 

SysteITlatic techniques for structural identification froITl 

earthquake records ITlust contend with the transient nature of the 

excitation and response records. However, in contrast to aITlbient 

vibrations excited by wind and ITlicrotreITlors, ITlost of the excitation 
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can be recorded. 

If a building is supported solely by a rigid foundation then the 

excitation would be completely specified by recording the motion in 

the six rigid-body degrees of freedom of the base. In the past, only 

the three translational components at one point on the base have been 

. recorded so that it is difficult to separate the rocking and twisting 

components of the base motion from the translational components. 

Nevertheless, in the absence of strong soil-structure interaction, 

the dominant contribution to the lateral response of the structure will 

arise from the horizontal motion of the base. It is also often aSSlLTlled 

that the building axes define two orthogonal horizontal directions in 

which the total horizontal response can be decomposed so that the 

component in each direction is due only to the base motion in that 

direction. This leads to the commonly assumed planar structural 

models. One limitation of these models is that they do not treat 

properly any torsional response of the structure. 

Several authors have applied frequency-domain identification 

to data from the San Fernando earthquake (Hart, 597-607, in Murphy, 

1973; Udwadia and Trifunac, 1974; Hart et aI, 1975; Hart and 

Vasudevan, 1975). For a planar linear model the response history 

y (acceleration, velocity or displacement) at any point is related in 

the frequency domain to the base acceleration history z by the 

transformed Duha:m.el equation: 

Y(w) = H(iw) .'? (w) (1. 1. 1) 
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where H(iw) is the appropriate transfer function. In theory, this 

relation could be applied to estimate H(iw) and then any of the rele-

vant techniques discussed in the previous sections could be applied 

to estimate the modal parameters, although the half-power band-width 

method for estimating damping is generally replaced by an approach 

based on the height of the resonant peak. This approach requires a 

prior estimate of the corresponding modeshape so that the participa-

tion factor can be evaluated. 

In practice, difficulties arise because the estimated transfer 

functions are characterized by extreme variability with numerous 

peaks which appear to be a function of measurement noise and model 

error and are not related to resonant peaks. Smoothing of I Y(w) I 

and I Z (w) I before taking their quotient, or smoothing of I B(iw) I 
after division, can reduce the variability and therefore make the 

resonant peaks more apparent, but this leads to a los s of information 

which can result in the damping being overestimated. Generally, 

past work suggests that the only modal parameters which can be re

liably estimated from IB(iw) I by current techniques are the fre-

quencies of the first few modes and possibly the damping factor of the 

fundamental translational modes. 

A further complication in any frequency-domain approach 

arises from the typical short duration of earthquake records. This 

leads to a frequency resolution which is inadequate for long-period 

structures when the Cooley-Tukey FFT algorithm is used to determine 
.'" .; 

the Fourier spectra of the base motion and structural response. 



Spectral ordinates can be calculated at interm.ediate frequency points 

either by adding zeros to the digitized tim.e-history data or by eval-

uating the Fourier transform. integral at selected frequencies. This 

will produce valid estim.ates of the true Fourier spectrum. only if the 

major portion of the com.plete excitation and response histories are 

used in the spectral analysis. This sam.e requirem.ent is also nec-

es sary of course for the transform.ed Duham.el equation (1. 1. 1) to 

. be a valid approxim.ation, unles s it is m.odified to include nonzero initial 

and final conditions. Because of these considerations, there are 

difficulties in any frequency-dom.ain approach which m.ust be overcom.e 

if short tim.e segm.ents of the full response are to be used. 

Som.e of the above difficulties can be avoided by using-the 

tim.e-dom.ain version of the nonparam.etric identification procedure 

based on equation (1. 1. 1), that is, the im.pulse response function h{t) 

is estim.ated from. the Duham.el or superposition integral equation: 

t 
yet) = S h('f)z (t - 'f)d'f (1. 1. 2) 

o 

where it is as sum.ed that there is no m.otion until tim.e t = O. The 

m.odal param.eters are then estim.ated from. the com.puted h(t). 

Torkam.ani and Hart (1975) have estim.ated the im.pulse re-

sponse function by discretizing equation (1. 1. 2), which leads to a set 

of ill-conditioned linear equations. They apply a sm.oothing criterion 

during the estim.ation of h(t) to help overcom.e this problem.. Udwadia 

and Marm.arelis (1976) have estim.ated h(t) from. equation (1. 1. 2) by 
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using a correlation technique based on the assumption that the base 

motion is white noise. They used the basement and roof records 

produced in the Millikan Library building at the California Institute 

of Technology during the San Fernando earthquake. In a companion 

paper, these authors have also applied the correlation technique to 

determine the second-order Wiener kernel of the Millikan Library 

from this earthquake data to attempt to gain some insight into the 

nonlinear proces ses which occurred in the building (Marmarelis and 

Udwadia, 1976). The Wiener kernels give a nonlinear, nonparametric 

model which is based on a representation of the response as a sum of 

integral terms that is valid for a general class of nonlinear systems. 

The first-order kernel is analogous to the impulse response function 

because the corresponding integral term in the representation of the 

response has the same form as the right-hand side of equation (1 . 1. 2). 

One problem in identifying Wiener models from earthquake records 

is that the excitation is not band-limited white noise and it is difficult 

to determine the effect of this on the estimated kernels. 

In the cited papers by Udwadia and Marmarelis', the authors 

point out the nature of the compromise that must be made in the 

selection of the record length to be analyzed. On one hand this should 

be long so that the statistical variability of the estimates is reduced but 

on the other hand it should be short enough that the structural prop

erties can be considered stationary. This is a major difficulty for 

non-parametric identification of structural systems because many 

cycles of response are required to give reliable estimates. 
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Iemura and Jennings (1973) have developed a novel nonpara

metric technique based on the general form of the equation of motion 

for a single degree-of-freedom oscillator. They used their approach 

to estimate the global hysteresis loops from the roof response of the 

Millikan Library during the San Fernando earthquake. The same 

approach has recently been applied to some seismic response records 

for an earth dam (Abdel-Ghaffar et aI, 1977). The hysteresis loops 

identified by this technique appear to be contaminated by considerable 

noise unles s the original data are severely band-pass filtered about 

the fundamental frequency of the structure. 

In general, the performance of nonparametric identification 

methods when applied to earthquake records has not been completely 

satisfactory. It is felt that these difficulties may stem from the lack 

of model constraints during identification in the presence of high 

levels of measurement noise and model error, particularly the latter. 

For example, in the nonparametric procedures based on equation 

(1. 1. 1) or (1. 1. 2), the only assumptions made about the structural 

model is that it is linear and time-invariant. Much useful informa

tion, such as the fact that the dynamics satisfy Newton! s Second Law, 

is ignored. A parametric model is imposed only after the transfer 

function H(iw} or the impulse response function h{t) is estimated, 

so the prior information contained in this model is not used in the 

critical first stage of the identification where it Wluld facilitate the 

extraction of the signal information from the noise. It would appear 

to be advantagt:;ous to impose the parametric model right from the 
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start when such a model is available. Prior knowledge can then be 

utilized more efficiently to reduce statistical variability and hence 

to enable the structural parameters to be estimated more reliably 

from short records. 

Most of the work in structural identification using parametric 

models has been based on variations of the response -matching idea 

mentioned earlier. This is referred to as the output-error approach 

to parameter estimation and it is the basis of the techniques inves

tigated in this dissertation. The model parameters are estimated by 

minimizing an integral (continuous data) or sum (discrete data) of the 

squared response error. Although past work has favored the time domain, 

linear parametric models can also be determined in the frequency do

main by applying the output-error approach using the square of the trans

formed response error. If the complete records are used, then by 

Parseva1' s identity the parameter estimates should be equal to those 

obtained by minimizing in the time domain. 

Many authors have tested identification techniques for para

metric models by employing simulated seismic response data. 

Distefano and Rath (1974) have applied two output-error techniques, 

one based on an optimal filter and the other on a Gauss-Newton 

procedure (which is also known as the modified Newton-Raphson 

method). They use these techniques to estimate the parameters of 

some single degree -of-freedom nonlinear models from simulated 

data. The same optimal filter approach is used in this work with 
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linear :models. Beliveau (1975) has also used the Gauss-Newton 

method to esti:mate the para:meters of a single-:mass linear soil

structure syste:m and a single degree-of-freedo:m nonlinear syste:m 

on a rigid foundation. Udwadia and Shah (1975) esti:mated the stiff

ness distribution of a continuous shear bea:m. They fotmd it necessary 

for this continuous case to add derivative ter:ms to the integral squared 

response error to provide s:moothing constraints during :mini:mization, 

which was done by a :mixed gradient technique (steepest descent fol

lowed by conjugate gradient near the :minilnu:r:n). Finally, a discrete 

equation-error technique has been developed by Caravani et al (1977) 

to esti:mate the stiffness and da:mping :matrices for a linear chain 

:model. In contrast to output-error techniques, this technique requires 

a response record for each degree of freedo:m and so it has li:mited 

potential as far as seis:mic data is concerned. 

Several authors have applied ti:me-do:main techniques to de

ter:mine para:metric :models fro:m both si:mulated and real data. 

Raggett (1974) has e:mployed an output-error approach to esti:mate 

:modal para:meters. He uses the si:mulated seis:mic response of a 

three degree-of-freedo:m linear chain syste:m and response data fro:m 

a real structure. His technique is described :more fully in Chapter 5 

because the technique discussed there has several si:milar features. 

Distefano and Pena-Pardo (1976) have used the opti:mal filter tech

nique to esti:mate the para:meters of a linear three degree-of-freedo:m 

chain :model and the sa:me :model with cubic softening added. They 

tested the algorithm with si:mulated data and then applied it to records 



-16-

obtained from a three-story steel-frame structure, which was shaken 

by simulated earthquakes on the large shaking-table at the Richmond 

Field Station, University of California, Berkeley. This facility has 

also been used by Matzen and McNiven (1976, 1977) to generate 

"seismic" response records for a single-story steel-frame. They 

then use these recorded data, after some prior testing with simulated 

data, to estimate the parameters of a single degree-of-freedom 

model with a Ramberg-Osgood hysteresis law. They employed a 

Gauss-Newton procedure to minimize the integral squared response 

error. Finally, Beck and Jennings (1977) tested an optimal filter 

algorithm on a single degree-of-freedom linear oscillator and then 

applied this algorithm to short time-segments of the response to 

investigate the changes in the equivalent linear parameters of the 
I 

fundamental mode of the Union Bank building during the San Fernando 

earthquake. 

1.2. Outline of This Work 

The principal aim of this work was to devise a practical ap-

proach which would allow the best estimates of parameters of linear 

structural models to be determined systematically from records of 

base motion and response during an earthquake. 

Linear models were chosen partly because they are a natural 

starting point for identification of structures and partly because they 

are easily formulated. In addition, the identification of time-invar-

iant linear models is of practical importance because these are the 
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models commonly used in dynamic design. This is either through 

their use in the response spectrum approach (Hudson, 1956; Housner, 

1959), which is based on the modal decomposition of linear structural 

models, or through the use of synthesized models and particular 

ground motion records to compute full response histories. One of 

the aims of this work was to investigate how well time-invariant 

linear models can reproduce the strong-motion response of a build

ing. 

The general features of parametric and nonparametric models 

for structural identification are discussed in Chapter 2, and it is 

concluded that the former models are more useful in earthquake 

engineering. It is noted that empirical parametric models obtained 

by the identification of existing structures can be used to evaluate the 

accuracy of techniques for synthesizing models from structural plans. 

In addition, empirical models can be used to estimate parameter s, 

such as those describing structural damping, which are difficult to 

determine by synthesis. 

The s e remarks in Chapter 2 are followed by the fo rmulation 

of what is termed the output-error approach to parameter estimation. 

This approach is based on the idea of estimating the parameters by 

calculating those values which optimize the match between the re

cordedandmodel responses. It is noted that any technique which 

implements this formulation will not only provide a means for deter

mining the optimal estimates of the parameters of specified models, 

but in the case where measurement noise is known to be small, it 
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will also allow the mathematical form of the model to be evaluated. 

The remainder of Chapter 2 contains a discussion of the reliability 

of the estimates of the parameters obtained by an output-error 

method. 

In Chapter 3, the question of identifiability of a general class. 

of linear structural models is examined. This involves an investi

gation into whether the values of the parameters of the model are 

specified uniquely by its input and output, which is a necessary condi

tion for uniqueness of the optimal estimates given by an output-error 

method. An investigation of identifiability is particularly important 

when the measured output from a system does not correspond to the 

history of the complete state of the model used in the identification. 

This is the situation when earthquake records are used in structural 

identification because on one hand, the response is typically measured 

at only a small number of locations in the structure, while on the 

other hand, it is desirable to have a large number of degrees of 

freedom to model adequately the distribution of stiffness. 

Two results of importance are proved in Chapter 3 relating 

to the identifiability of the class of linear structural models con

sidered. The first shows which parameters are specified uniquely 

by the input and output of a model. These are the modal periods, 

damping factors and effective participation factors. The second 

result shows that to determine the stiffness and damping matrices 

uniquely within the general class of linear models with N degrees 
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of freedom, it is necessary to measure the response at no less than 

tN of the degrees of freedom. This assumes that sufficiently good 

prior information about these parameters is available so that the 

appropriate values can be chosen from a finite number of possible 

values. If this is not the case, uniqueness is strictly guaranteed 

only if the response is measured at every degree of freedom. 

The class of models may be further restricted to ensure identi

fiability. However, it is concluded that even if the models are identi

fiable, the stiffness and damping matrices generally cannot be esti

mated reliably in applications because of noise in the records. A 

practical strategy is then suggested for structural identification using 

linear models and earthquake records, in which the parameters of 

the dominant modes are estimated by performing a series of identi

fications. 

An investigation is made of two output-error techniques to 

estimate modal parameters of linear models from seismic records. 

The first, described in Chapter 4, is an optimal filter method which 

was adapted from the literature on state estimation. This technique 

processes the data sequentially and leads to sequential estimates of 

the parameters. The second method, described in Chapter 5, is 

an iterative approach which uses all the data at each iteration. It 

is referred to as the modal minimization method and it was developed 

in this work to provide a reliable technique to estimate the modal 

parameters after certain weaknesses of the optimal filter technique 
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became appar~nt when it was applied to seismic records. Both 

methods were initially tested by using simulated seismic response 

records. 

The modal minimization method was applied to seismic rec

ords from two multi- story buildings and the results are reported in 

Chapter 6. Optimal estimates of the parameters of the first few 

dominant modes are presented and their reliability is discussed. It 

is shown that the optimal time-invariant linear models for the build

ings can reproduce their strong-motion response remarkably well. 

In addition, time-varying linear models are used to examine changes 

in the structural properties of the buildings during their earthquake 

response. 
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II. IDENTIFICATION USING PARAMETRIC MODELS 

Some of the features of two principal categories of models, 

parametric and nonparametric, are discussed in this Chapter and the 

advantages derived from using the former in earthquake engineering 

are given. The output-error approach to parameter estimation is 

then formulated and several associated problems are examined, 

including the reliability of the estimates of the parameters. Except 

for § 2. 1. 1 and parts of § 2. 1. 2, the discus sion in this Chapter ha s 

general applicability in system identification. In later Chapters, 

several aspects will be specialized to linear structural models. 

, 
2. 1. Parametric a:q.d Nonparametric Models, in System Identification 

A model is defined here to be any mathem.atical representation 

which apprC?ximates the relation between the input and output of a 

system.. The models employed in system identification can be clas-

sHied into two principal categories: 

(a) Parametric models. Here a particular m.athematical 

form. is chosen to describe the essential features of the input-output 

relation of the system. under study, but certain parameters must be 

as signed values before the model is completely specified. Often prior 

information is available to assist in this step, but in general some of 

the parameters must be estimated from. the input and output of the 

system. As an example, a single degree-of-freedom model could be 

represented in the time dom.ain by the differential equation: 
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i + f(t,x,~;~) = z(t) (2.1.1) 

where x(t) is the output of the model; z(t) is the input to the model; 

the restoring force f is a prescribed function or functional and ~ 

is a vector of unknown parameters to be estimated. If the model is 

linear and time-invariant, an equivalent representation in the fre-

quency domain (Fourier-transform space) is: 

X(w) = H(iw;~)Z(w) (2. 1. 2) 

where H is a prescribed function of w containing unknown param-

eters a to be estimated. 

(b) Nonparametric models. Here the unknown parts of the 

model are functions rather than parameters, and so they are like 

infinite-dimensional "parameters ll for identification. The only as-

sumptions that need be made about the system are that it has finite 

memory and is time-invariant, although linearity is also often as-

sumed. The system is treated as a Ilblack boxll since the aim is to 

determine a functional relationship between the input and output with-

out recourse to any prior information about the internal structure 

of the system. For example, a time-invariant linear model with a 

single input and a single output could be characterized by the impulse 

response function h(t) and the associated input-output relation: 

00 

x(t) = J h(T)Z(t - T)dT 
o 

(2.1.3) 
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The corresponding model in the frequency domain would be given by 

the transfer function H(iw), the Fourie r transform of h{t), and the 

input-output relation: 

X(w) = H(iw)Z(w} . (2. 1. 4) 

Note that in the nonparametric formulation, h(t} and H(iw} are arbi

trary functions to be estimated froIn the input and output, whereas in 

(a) these functions are of a prescribed form but with unknown param

eters. Different identification procedures are therefore required in 

the two cases. 

In view of the preceding discussion of models, systeIn identi

fication can be considered as the process of: 

l} specifying the mathematical form (input-output re

lation) of the model for the systeIn under study, 

2) estimating the unknown parameters for a parametric 

model, or the unknown functions for a nonparametric model, using 

input and output data from the system, 

3} evaluating the capability of the selected model to 

describe the essential features of the system. 

2. 1. 1. Parametric and Nonpararnetric Models in Earthquake 

Engineering 

The prime motivation to engage in system identification re

search in earthquake engineering is to provide the design engineer 

with more accurate models with which to predict the seismic response 
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of a proposed structure during its design. Nonparametric models 

suffer from several disadvantages for this application which stern 

from the fact that they neglect prior knowledge about the system. 

Firstly, the identification of nonparametric models for struc

tural systems is inevitably followed by a parametric interpretation, 

whenever this is possible. For example, the estimated transfer 

function H(iw) completely characterizes a linear nonparametric 

model for a structure, but without imposing some parametric model 

it is difficult to give a physical interpretation of the information in 

this model. This is the reason for the common practice of subse

quently estimating the parameters of a linear parametric model from 

the estimated transfer function. It has already been pointed out in 

Chapter 1 that if parametric models based on prior information are 

available, it would be better from the point of view of reducing sta

tistical variability to use these models from the beginning of the 

identification process. This is particularly the case when linearity 

is assumed because the parametric form of linear structural models 

is well known. 

Possibly the greatest disadvantage of truly nonparametric 

models in earthquake engineering is that they are empirical models 

which cannot be constructed by synthesis. Successful identification 

from records at a number of points in a structure leads to a relation 

between the excitation and response at only those points. The be

havior at other points in the structure, or the seismic response of 

different structures, cannot be predicted from a purely nonparametric 
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model. In particular, these rrlOdels are not useful in the proces s 

of designing for earthquake resistance wherein the seismic behavior 

of a proposed structure must be predicted. 

These disadvantages of nonparametric models can be avoided 

by using empirical and synthesized parametric models, so that the 

latter models are more useful in earthquake engineering. In the 

remainder of this dissertation, the emphasis will therefore shift to 

parametric models and the adjective Ilparametric" will often be 

omitted. 

2. 1. 2. Empirical and Synthesized Parametric Models 

To predict realistically the seismic response of a structure 

during its design, theoretical models are required for which the 

parameters can be estirrlated from the properties of the structural 

subcomponent s and their inte rac tions . The resulting parametric 

m.odels will be called synthesized m.odels to distinguish them from 

empirical models for which the parameters are estirrlated from 

records of the structural response. Sy-tlthesized models are som.e

tim.es called theoretical models, but in this work a theoretical model 

will mean a general m.athem.atical form describing the internal s truc

ture of a system., without .specification of values of the param.eters. 

To illustrate thes e definitions, consider the equation 

Mx + ci + K~ = i(t) (2. 1. 5) 

which will be used later as a theoretical structural m.odel. Its 
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mathematical form is based on Newton's Second Law and the cons-

titutive laws for a linear viscoelastic solid. If the unknown parameters 

in this theoretical model are estimated by synthesis using the plans of 

a structure, it becomes a synthesized model, whereas if the unknown 

parameters are estimated from structural records, it becomes an em

pirical model. A useful interpretation of a theoretical model is that it 

is a generic form defining a whole class of models o Each model has 

the same mathematical form and is given by a particular set of values 

for the parameters o 

Despite recent advances, which include the development of the 

finite element method and great improvements in computer technology, 

synthesis of structural models has only met with partial success. One 

of the reasons for this is that it is extremely difficult to estimate sys

tem damping from the damping of each subcomponent. Raggett (1975) 

has made a contribution in this area. However, even the values of the 

significant modal periods for linear models are often not predicted 

well (Wood, 1972; Murphy, 1973), and these are the most important 

parameters in predicting the seismic response to a given ground

motion historyo 

The lack of complete success with structural synthesis could be 

due to a number of factors which include the uncertainties as sociated 

with the properties of the structural and nonstructural components, the 
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simplification neces sary to ensure the model is computationally fea

sible, and the difficulties in selecting a theoretical model which is 

capable of realistically modelling the physics of the strong-nwtion 

response of a structure. As a consequence of these problems, it be

comes necessary to complement the a priori knowledge used in a syn

thesized model by the a posteriori knowledge derived from em.pirical 

models. 

Empirical models of existing structures have some intrinsic 

value of their OiiVIl. However, it is the interplay between synthesized 

and empirical models based on the same theoretical model which is of 

greatest value in earthquake engineering. Generally, the empirical 

model will be a reduced form of the full theoretical model because it 

must be identifiable from records at only a few positions in the struc

ture (§ 2.4. 1) and because of the limited resolution of the parameters 

in the presence of noise (§2. 4.1). For example, an empirical struc

tural model corresponding to a linear theoretical model should be 

based on parameters of the dominant modes and not upon the equation 

of motion in physical coordinates which involves all the parameters of 

the mass, stiffness and damping matrices (see Chapter 3). Thus, 

when identification is performed on a structure in the field, the em

pirical model cannot be expected to give the same level of detail as a 

synthesized model, but it will impose constraints on that model. 
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These empirically-determined constraints can be used to modi-

fy a synthesized model of the structure to ensure that such a model is 

consistent with the observed behavior. For a linear model, the mod-

ification could be as simple as scaling the synthesized stiffness matrix 

to match the observed fundamental frequency or it could be the small-
6 

est possible change in the elements of the stiffness matrix necessary 

to give the observed values for all of the related modal quantities. 

To lead to improvements in the earthquake- resistant design 

process, the identification of an empirical model for an existing struc-

ture may best be viewed as having three functions: 

1) The estimated parameters may be used to evaluate the ac-

curacy of the techniques used to synthesize the parameters for a cor-

responding theoretical model. For example, for linear models the 

accuracy of the modal period s and participation factors obtained by 

synthesis can be determined. 

2) For those parameters of a theoretical model which cannot 

be reliably estimated by synthesis, the corresponding estimated pa-

rameters of the empirical model can be used to determine typical values 

for a given type of structure. For example, modal damping factors 

determined empirically can be used with linear theoretical models 

during design. 

3) Some evaluation can be made of the mathematical form of 
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the theoretical model from the degree to which the empirical model 

m:atches the structural response. For example, the ability of linear 

structural models to describe the response of structures to strong 

ground motion can be examined in this way. 

One of the fundamental problems arising during the identifi

cation of an empirical model is whether the parameter estimates are 

reliable. Different aspects of this problem are discussed after the 

output-error approach to system identification is introduced in the 

next section. 

2. 2. Output-error Approach to System Identification 

The output-error approach (Bekey, 1970; Bowles and Straeter, 

1972) to the estimation of parameters of dynamic models is used in 

this dissertation. The equation-error approach (Bowles and Straeter,. 

1972; Distefano and Rath, p. 16 and 51, 1974) was investigated for 

linear single degree-of-freedom models but its accuracy in several 

cases was found to be inferior to the output-error approach. Fur-

.. thermore, it is well known that this approach is not useful for multi

degree- of-freedom models because it either requires measurements 

at every degree of freedom, or measurement at one degree of freedom 

.of each modal contribution if a modal approach is taken. 

The idea behind the output- error method, illustrated in Fig. 2.1, 
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is to estiITlate the paraITleters of a ITlode1 by deterITlining those values 

which give an optiITla1 ITlatch of the output of the ITlode1 and the output 

of the real systeITl, when both are subjected to nOITlinally the saITle 

. input. The quality of the output ITlatch is deterITlined by SOITle scalar 

ITleasure-of-fit, J, which is a positive-definite function of the output

error. Either a continuous forITl or a discrete forITl can be chosen for 

the ITleasure- of- fit, In the applications in this dis s ertation, continuous 

records are used which are obtained by linear interpolation between. 

discrete data points, and so an integral ITlean- square output-error is 

chosen for J, Finally, the purpose of the paraITleter-adjustITlent a1go

ritlrrn, shown in a scheITlatic way in Fig, 2. 1, is to select the optiITla1 

paraITleter values by ITliniITlizing the ITleasure-of-fit J in a systeITlatic 

ITlanner, Appropriate a1goritlrrns are discussed later in §2, 2,4. 

It is convenient to forITlu1ate the output-error approach in four 

parts: state equation, output equation, criterion for optiITlality, and 

ITliniITlization (or paraITleter-adjustITlent) a1goritlrrn. 

2. 2, 1. State Equation 

It is assuITled that a theoretical ITlodel is available which is 

spatially discretized, so that its dynaITlics ITlay be described by a 

state equation expressed in the general first-order forITl: 

~(t) = i(~,~, t;~) (2.2.1) 
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Here x is the state vector of the model. For structural models, it 

will consist of the generalized displacements and velocities for every 

degree of freedom of the model. It is not necessary for the state vec-

tor to correspond to physical coordinates; for example, it may cor-

respond to modal coordinates if a linear model is used. The vector 

function or functional f describes the mathematical form of the theo-

retica1 model and its argument ~ represents the input history to the 

model. The vector Q:. consists of the parameters of the model. 

Notice that the history of the state is not uniquely defined by 

Eq. (2. 2. 1) unless the initial state, x(T.) , 
- 1 

is prescribed. However, 

this is likely to be unknown in many applications. For example, when 

using seismic records to identify structures, it is generally not pos-

sible to take advantage of the fact that the structure starts from rest. 

The reason for this is that the initial start-up motion is usually lost 

because a certain threshold motion is required before recording occurs. 

If the time interval used in the identification is only a portion of the full 

history of the response, x(T.) is still likely to be unknown because ob
- 1 

servations of the state will be contaminated by noise. Furthermore, 

the complete state is typically not observed anyway. 

The value chosen for the initial state will influence the estimated 

values for the model parameters. Both sets of unknown quantities are 

therefore combined into one vector ~ and all the components are 
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treated as "model parameters" which are to be estimated from avail

able data, that is, 

It should also be noted that what is to be considered as the input 

z is model-dependent and that this model input may not include all the 

excitation of the real system, as indicated in Fig. 2. 1. For example, 

for planar structural models the seismic input corresponds to one 

component of the horizontal acceleration at one point on the base of 

the structure, whereas the real structural motion parallel to a verti

cal plane may also be caused partly by out-of-plane excitation and ro

tation of the base. 

2. 2. 2. Output Equation and Output-error 

The output equation describes how the output of the model is 

related to the state of the model. It is sufficient for most purposes 

to take a linear relation between the model output m and the state 

and its rate of change, so that: 

(2.2.2) 

where r 1 and r 2 are constant rectangular matrices o The elements 
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of these matrices might be chosen, for example, to be either zero or 

unity in such a way that they select those components of x and x 

which contribute to the output. 

The output-error v is the difference between the output meas-

urements y of the real system and the model output ~, that is, 

~(t;~) = y(t) - IE(t;~,~) (2.2.3) 

where the implicit dependence of the model output on the parameters 

of the model and the input to the model has been shown. There are 

two contributions to v, measurement noise and model error, which 

are discussed in §2. 4. 3. Also, the dimension of y, m and v will 

in general be smaller than the dimension of ~ because the number of 

output records will be less than the desired number of degrees of 

freedom in the model. 

In structural identification, the output vector y will be the 

recorded response (displacement, velocity or acceleration) at various 

. 
points in the structure. The term r 2~ is included in (2. 2. 2) so that 

it is possible to use acceleration records. Although the acceleration 

may be integrated to provide displacement and velocity histories, this 

process accentuates the long-period errors in the digitized data, which 

in some cases may cause difficulties in the identification. It also 

lowers the signal-to-noise ratio at high frequencies, which can be an 
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advantage when determ.ining the properties of the lower m.odes but not 

if the higher m.odes are of interest •. 

2. 2. 3. Optim.ality Criterion 

For a given recorded input ~ and recorded output y over a 

tim.e interval [Ti , T f] , the optim.a1 estim.ates of the param.eters are 

defined to be the values which m.inim.ize the m.easure-of-fit: 

T 
" f 2 

= J II~( t;aJJ dt + 
T. V(t) 

1 

(2. 2. 4) 

subject to the constraints of Eqs. (2.2.1), (2.2.2) and (2.2.3). The 

vector of optim.a1 estim.ates is denoted by a. It is assum.ed for the 

present that a is defined uniquely by the m.inim.ization. 

In Eq. (2.2.4), a
O 

is an a priori estim.ate of the param.eters, 

and A and V(t) are prescribed sym.m.etric positive sem.i-definite and 

positive definite m.atrices respectively, which allow weighting of the 

param.eters and output-error based on prior knowledge. Som.e judg-

m.ent is required in selecting these quantities. The norm.s in Eq. (2. 2. 4) 

are the weighted Euclidean norm.s: 
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and 

11~112 = \' '\' V .. (t)v.v. 
V(t) f r IJ 1 J 

(2.2.5) 

II~- ~1I2 =LIA .. (a. -an .)(a. -an .) 
-v A .. IJ 1 , 1 J , J 

1 J 

The weighting matrices are commonly taken diagonal so that, for 

2 
example, "~,, 

V(t) 
reduces 

;-> 2 
to ) V .. (t)v .. 

L., 11 1 
i 

Instead of viewing the output-error approach as estimating the 

parameters of a theoretical model, it is often useful to take an alter-

nate point of view: a clas s of models is defined, then the recorded 

input and output from the system under study are used to determine 

the optimal model within the class. The clas s is defined by the theo-

retical model chosen to represent the system, together with the output 

equation. Each model in the class is given by assigning values to the 

parameters of the theoretical model from within a set of allowable 

values; the optimal model being given by a. 

The optimal model is essentially that model with the smallest 

weighted integral-squared output-error but with some constraints, 

governed by the size of the elements of A, 

'" a departure from the prior estimates a
O

• 

which prevent too large 

For example, if A.. is 
11 

'" relatively large, a. will be constrained to remain close to a
O 

. 
1 , 1 

during the minimization of J. It is desirable in many structural 
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applications to set A equal to zero so that the parameters are not 

constrained by prior estimates. However, for reasons explained later, 

this cannot be done with one group of output-error techniques, the filter 

methods. 

It is apparent that in the case A = 0 the output-error approach 

allows the chosen theoretical model to be evaluated, when there is prior 

information available which indicates that measurement noise has only 

a small influence on the optimal output-error. In this case, since the 

mean-square output-error is minimized, if the agreement between the 

response of the real system and the optimal model is not satisfactory, 

then the theoretical :rrlOdel must be at fault. 

The optimality criterion has been given in a deterministic set-

ting where the presence of noise in the data is acknowledged but no 

statistical assumptions are made about its form. It is pos sible to give 

a stochastic interpretation of the optimality criterion, because the same 

minimization problem can be derived by assuming the output-error v 

is Gaussian white noise with zero mean and covariance matrix V-l(t). 

In this case, if A = 0 , i is the maximum likelihood estimate of a. 

On the other hand, if the parameters are assumed to be Gaussian ran-

dom variables with mean !o -1 
and covariance A , then a is the 

Bayesian maximum probability estimate. These ideas for a discrete 

measure-of-fit are discussed in Bowles and Straeter (1972), while 
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Jazwinski (p. 150, 1970) treats both discrete and continuous cases. 

2. 2. 4. Minimization Algorithms 

The problem of identifying the optimal model from system 

data has been reduced to minimizing the function J(~) in Eq. (2. 2. 4) 

where v is subjected to the constraints of Eqs. (2.2. 3), (2. 2. 2) and 

(2. 2. 1). This minimization could be tackled by directly solving the 

condition for the stationarity of J with respect to a: 

'i7JI ... =0 a=a 
(2.2.6) 

although this usually lead s to a set of simultaneous nonlinear algebraic 

equations in ~ which cannot be solved analytically. The nonlinearity 

arises because the model response is almost always a nonlinear function 

of the parameters, even if the model itself is linear in the state and 

linear in the parameters (Eykhoff, p. 113 and p.446; 1974). Most 

techniques actually carry out the minimization by other means although 

the Gauss -N ewton minimization method is equivalent to applying to 

Eq. (2.2.6) a modification of the classical Newton-Raphson method for 

finding the zeros of a multi-variable vector function. 

Two major groups of methods for determining the minimum of 

J can be distinguished and these will be considered briefly. A number 

of authors, including Bekey (1970), Bowles and Straeter (1972) and 
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. Eykhoff (pc 151, 1974), have given a more extensive review of minimi

zation techniques. 

(a) Filtering methods: These are based on state estimation 

. theory (assuming no !!process!! or !!plant!! noise) and the minimization 

is achieved in an indirect manner by solving an initial-value problem. 

Either a deterministic setting (invariant-imbedding filter) or a 

stochastic setting (extended Kalman filter) can be used but the final 

equations to be solved are formally equivalent. 

A characteristic feature of these methods is that they process 

the data sequentially and give rise to sequential estimates of both the 

parameters and the state. One drawback of these methods for param-

eter estimation is that they give only an approximation to the optimal 

estimate s. 

The invariant-imbedding filter is discussed in more detail in 

Chapter 4. 

(b) Descent methods: These are iterative methods which use 

all the data over a given time segment at each iteration. They may be 

interpreted geometrically as finding the minimum by a search in the 

multi-dimensional space represented by the allowable values of the 

parameter vector a. An initial estimate a
O 

is required to start the 

algorithm, even if A is zero in (2. 2c 4). 

Some techniques in this category which have been used in 
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structural identification have been given in § 1. 1. 3 and include the 

Gauss-Newton method (also called the modified Newton-Raphson 

method), the method of steepest descent and the conjugate gradient 

method. The first procedure is a modification of the clas sical 

N ewton-Raphson method. The Bes sian matrix -}VV J [ S in {2. 3. 8)]is 

modified by neglecting the term containing the second derivatives of 

the model response with respect to the parameters (Matzen and 

McNiven, p.17, 1976; Distefano and Rath, p.16, 1974). Bard (1970) 

has compared several descent methods for their application to param-

eter estimation. 

A new descent method called the modal minimization method is 

introduced in Chapter 5. This was specifically developed to provide 

a reliable technique for the identification of linear multi-degree- of-

freedom models. 

2. 3. Some Useful Definitions and Shorthand Notation 

It is convenient to introduce the scalar product <', • > defined 

on the space of continuous vector functions by: 

T 
< E., £.> = J f (E.(t) , V(t)£.(t))dt 

T. 
1 

(2.3.1) 

where V is a prescribed continuous matrix function which is synunetric 

and positive definite and E., £. are any continuous vector functions 
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defined on the given tim.e interval [Ti , T f J. The notation (0, 0) refers. 

to the usual Euclidean (or vector) scalar product, so that: 

and 

(b(t), V(t)c (t) = \' )' V .. (t)b. (t)c .(t) 
- - ~ L:-' 1J 1 J 

1 J 

(a - ao' A(a - ao» =» A .. (a. - ao .)(a. - ao .) 
- - - - ':-' i.:-' 1J 1 , 1 J , J 

1 J 

(2.3. 2) 

(2.3.3) 

from. Eq. (2. 2. 5). It is easy to show from. (2. 3. 7) that < 0,"> sat-

isfies the required properties (sym.m.etry, linearity and positive de-

finiteness) to m.ake it a scalar product. 

With this shorthand notation, Eqs. (2.2.4) and (2. 2. 3) m.ay 

be written as: 

J(a) =< v, v> + (a - ~o' A(~ - ~» (2. 3. 4) 

and (2. 3. 5) 

It is also useful for later work to define: 

(2.3.6) 

From. the properties of a scalar product, it can be shown that Eqs. 

(2.3.4) and (2.3. 5) im.ply: 

[VJ(a)] ~ ~ 
- k 3ak (2. 3. 7) 

=-2<v, 33m. >+2(L ,A(a -~}) 
-~ -k --v 
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where ~ is the unit vector (i
k

)· =6.
k

, 
- J J 

and: 

(2.3.8) 

'" '" The sym.metric matrix S = S(a) is called the s ensitivity matrix. It 

plays an :i.Inportant role in the application of any output-error approach 

and it will be discussed in more detail later. It is also convenient to 

introduce a reduced sensitivity matrix-function S(~) defined by: 

'" om om 
S·k(a) =< <:I - , <:I - > J - ua

j 
uak 

(2. 3. 9) 

The matrix S(~) is sym.metric and at least positive semi-definite. 

It can easily be shown that S is positive definite if and only if the 
om 
<:I - (the sensitivity coefficients) are linearly independent over the time 
ua. 

J 
interval [T

i
, T

f
] (see Appendix A). 

Several technical points are to be noted in relation to these 

definitions. First, the output-error ~(~), and hence J(~) and S(~), 

are also functions of the input and output records, ~ and Y... respec

tively, while S(~) depends on IE-(~'~) and so it is a function of ~ 

(but not Y...). The se arguments have been omitted in the above notation 

and the t:i.Ine dependence of Y..., ~, IE- and v is also not denoted 

explicitly. Second, it is assumed that there is sufficient continuity and 

differentiability for all the quantities involved to be meaningful and for 
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the manipulations carried out on these quantities to be valid. 

The definitions above are useful for two reasons. The first 

reas'on is that they are a convenient shorthand which makes the 

analysis in subsequent discussions more economical. The second and 

most important reason is that they give wide generality to the argu

ments developed in the remainder of this chapter. Thus, the dis

cussion need not be restricted to the particular measure-of-fit J 

defined in (2.2. 4)G It will apply to any measure-of-fit which has the 

form. of Eq. (2. 3. 4), where <',' > is now to be interpreted as an 

arbitrary scalar product and the time interval [T
i
, T

f
] is to be inter

preted as the appropriate data interval. The discussion which follows 

can therefore be applied to measures-of-fit which are integrals (con

tinuous data) or sums (discrete data) in either the time domain or 

frequency domain. The model doe s not even have to be dynamic; it 

could be a "static" model, that is, m(a,~) could be simply an al

gebraic relation between the "output" m and "input" ~ involving 

unknown parameters a. With a suitable interpretation, the output

error approach and the discussion in the following sections are 

therefore applicable to structural identification using the data from 

steady-state harmonic tests. 

2.4. Reliability of Optimal Estimates of Parameters 

There are a number of questions relating to the reliability of 

the optimal estimates of the parameters which should be considered 

when applying an output-error algorithm to a theoretical model of a 
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system. 

One important question is whether the values of the parameters 

of the theoretical model can be expected to be defined uniquely by the 

input and output for the system. The first step is to examine whether 

the corresponding class of models is identifiable. Thi s conc ept is 

discussed in §2. 4. 1 and its relation to the resolution of the internal 

structure of the system is given. 

Identifiability of the models is necessary for meaningful results 

but it does not ensure that the optimal estimates of the parameters are 

unique. Conditions for uniqueness are considered in §2. 4. 2 along with 

the question of convergence of the algorithm. that is. whether the 

values of the parameters returned by the algorithm actually give the 

global minimum of J. 

The next question considered is how the accuracy of the 

optimal estimates is affected by measurement noise. A fundamental 

difficulty is that there are no true or exact values for the parameters 

because every theoretical model gives only an approximation to the 

physical processes occurring in the real system. This problem is 

considered in §2. 4. 3 where the concept of an ideal model is introduced 

to act as a basis for judging the accuracy of the optimal model. In 

§2. 4. 4. a deterministic error analysis is carried out to investigate 

the accuracy of the optimal estimates of the parameters with respect 

to the ideal values. Only limited results can be obtained unless 

quantitative assumptions are made about the level of measurement 
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noise and ideal model error. In §2. 4. 5, some properties of the 

sensitivity matrix desirable for good accuracy are discussed and a 

geometrical interpretation of these properties is mentioned. 

In § 2. 4. 6, attention is drawn to the fact that the optimal esti

mates of the parameters can be expected to change as different por

tions of the data from a system are used because of limitations of the 

theoretical model. This is followed by a section containing some 

final remarks on the problem of assessing the reliability of the param

eter estimates. 

2. 4. 1. Identifiability and Resolution: 

Let In denote the class of models corresponding to a theoretical.· 

model to be used in the identification of a system. The first question 

considered in this subsection is whether knowledge of the input and 

output of any model in In gives sufficient information to allow the 

values of the parameters for that model to be determined. To show 

that this need not be the case, an example is given which is based on 

some work by Udwadia and Sharma (1978), but given from a slightly 

different point of view. 

Consider a theoretical structural model which is a line ar chain 

model with two degrees of freedom (Fig. 2. 2). To begin with, suppose 

that the output m corresponds to the response of the top mass m 2 , 

so that a class of models is defined by the state equations: 

m 2x2 + k 2x 2 - k 2x I = -m2 Z 

m l
x

l 
+ (k

l 
+k2 )x

l 
- k 2x 2 = -m

l 
Z 

(2.4. 1) 
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.. .. 
z (t) 

Figure 2. 2. Linear chain model with two degrees of freedom 
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and the output equation: 

m =x 
2 

(2.4.2) 

where the parameters kl and k2 can have only positive values. 

The mas ses m l and m 2 are assumed to be knowil and equal, and are 

denoted by mO. It is also assumed that the model is initially at rest 

• 
so that the initial conditions x. (0) = 0 =x. (0), i = I, 2 are known. Thus, 

1 1 

the vector of parameters is 
t· .. 

a =[kl ,k2 ] and the set of allowable values.: 

The input-output relation for the models can be given in an 

explicit form, rather than as a differential equation, by using 

Duhamel' s integral: 

2 

I 
ct rot 

m(t;a, z) = - -.E. J sin W (t-- w r 
r=l r 0 

T)Z(T)dT (2. 4. 3) 

Here the modal frequencies wI and w2 (wl <w2 ) are given by the 

po siti ve roots of: 

and the modal participation factors ct, r=I,2, 
r 

ct = r 

I +cpir ) 

(r) 2 
1+[CPI ] 

(2. 4. 4) 

are given by: 

(2. 4. 5) 
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where (2.4.6) 

The model output m is controlled by the four derived 

parameters wI' w2 ' OIl and 012 which are functions of the model 

parameters kl and k
2

. It may be shown by substitution that these 

derived parameters have the same values for the two models given by: 

and 

kl = ki > 0 , k2 = k~ > 0 

kl = 2k~ , k2 = ~ ki~ 

(The algebra is shortened if the numerator of the difference 

(2. 4. 7) 

... 1... ...1... ...' ... 1 ... 1.-

O!r(ki,ki) - O!r(2ki'Zk i'} is shown to vanish.} Thus, these two models 

will have the same output regardle ss of the input z and so the values 

of the parameters for any model in the prescribed class of models 

are not specified uniquely by the input and output unless kl = 2k2 . It 

should be noted, however, that the response of mass m l will be 

different in the two models. 

Suppose the output Eq. (2.4. 2) was changed to: 

m=x 
I 

(2. 4. 8) 

so that the output now corresponds to the response of the bottom mass 

mI. For this new class of models, it turns out that the parameters 

are defined uniquely by any input-output pair if the input z has finite 

duration. This is because in this case the four derived parameters 
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.. controlling the output, wI' wz, cp(l)Q' and cp(Z)Q' are specified 
III Z 

uniquely (see Chapter 3), and these in turn specify kl and k Z 

uniquely. 

Definitions of Identifiability 

Consider a class of models tn and a class of inputs C, then: 

A model in tn is globally identifiable for C if the values of its 

parameters are specified uniquely by each input in C and the corre-

sponding output. 

A weaker property can be defined which is implied by the above 

but which is motivated by the fact that local uniqueness may be all 

that is required if sufficiently good prior knowledge of the parameters 

is available: 

If the values of the parameters are specified uniquely by each 

. input and output only in some neighborhood of the actual parameter 

. values, the model will be said to be locally identifiable for C. 

Prior to identification, it is not known which particular model 

in a clas s will be determined by the input and output so it is useful to 

in ve s tiga te the identifia bili ty of the whole clas s: 

The class tn is globally (or locally) identifiable if each model 

in tn is globally (or locally) identifiable. The adjective Ilgloballyll 

will sometimes be omitted. 

With this terminology, the first class of models in the example, 

which used the response of the top mass as output, is not globally 

identifiable for any input, although it is locally identifiable for any 
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input of finite duration. The second class of models, which used the 

response of the bottom mass as output, is globally identifiable for 

the clas s of inputs with £inite duration. 

Other definitions of identifiability have appeared in the liter-

ature. It is shown in Appendix A that the definitions used here are 

equivalent to the concepts of global and local identifiability introduced 
o 

by Bellman and Astrom (1970), except for an essential change in their 

definition of global identifiability. In addition, the definitions used 

here have been generalized from the delta-function input used by 

o 
Bellman and Astrom to a prescribed class of inputs, so that the inputs 

expected in applications can be included. Another definition of iden-

tifiability has been given by Beck and Arnold (1977) in their recently 

published book on parameter estimation. It is shown to be a stronger 

form of local identifiability in Appendix A. 

It is emphasized that identifiability as defined here relates to 

the unique determination of the parameters of a model from the input 

and output of the model. An obvious question to be asked is what 

happens when input and output records from a real system are used to 

determine the optimal model within an identifiable class of models. 

The situation is now complicated by noise in the records and the 

limitations of the class of models in describing the behavior of the 

system, and minimizing J might not lead to unique optimal estimates 

of the parameters. However, it is easily seen that global and local 

identifiability of an optimal model are necessary conditions for global 
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and local uniqueness, respectively, of the corresponding optimal 

estimates of the parameters based on minimizing J o. The difficulty 

in finding sufficient conditions for uniqueness is that the output-error 

is unknown prior to identification. A partial result is given in§ 2~ 4. 2 

where it is show-.a that linear independence of the sensitivity coefficients 
am 
oa. is sufficient for local uniqueness of the optimal estimates, pro

J 

vided the optimal output- error is sufficiently small. 

When a class of models based on some theoretical model is 

used in the identification of a system, unique determination of the 

optimal estimates of the model parameters may be viewed as re-

solving the internal structure of the system, as it is portrayed by the 

theoretical model. If too much detail is asked for, the class of models 

may not be identifiable and the desired resolution will be unattainable. 

Even if the desired resolution is attained, some of the model 

parameters might be estimated inaccurately because of noise. The 

accuracy of the parameter estimates is governed by the sensitivity of 

the model output to each parameter and by the characteristics of the 

noise in the records from the system. In general, as the resolution 

is increased by refining the models, the optimal model becomes more 

sensitive to the particular noise content of the records used. A 

compromise must therefore be made between the amount of resolution 

asked for and the variance of the optimal estimates of the parameters. 

This trade-off between resolution and variance is well-know-.a in the 

literature relating to the geophysical inverse problem (see" for 
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example, Jackson, 1972). 

In Chapter 3, the ideas in this subsection are applied to a clas s 

of linear structural models. It is shown that these models are typi

cally not identifiable if the unknown parameters of the theoretical model 

are the elements of the stiffnes s and damping matrices, the mas s 

matrix being as sumed known. It is also shown that certain parameters 

of each mode give all the information about the stiffness and damping 

distributions that is contained in the input and output. Furthermore, 

as a compromise between the resolution of this information and the 

accuracy of the estimates, only the parameters of the dominant modes 

should be e stima ted. 

2. 4. 2. Convergence and Uniqueness of the Optimal Estimates 

Recall that an optimal parameter vector gives the global mini

mum of J(~) in Eq. (2.3. 4), subject to the constraints of (2. 3. 5) 

and the input-output relation (state equation and output equation) for 

the class of models being used. Two questions which should be con

sidered are whether the minimization algorithm has converged to the 

global minimum of J and whether this minimum defines unique opti

mal estimates. Convergence cannot be confirmed simply by examin

ing the output because the effect of lack of convergence on the output

error cannot be distinguished from the effects of measurement noise 

and model error (§2. 4. 4). Also, uniqueness is not implied, of course, 

by the existence of the global minimum. 

A technical point requires clarification. Recall that a class 
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of m.odels is defined by a theoretical m.odel, an output equation and 

"a set G of allowable values for the param.eters of the theoretical 

m.odel. The allowable set G will usually be determ.ined on physical 

grounds and, for exam.ple, m.ight correspond si:rnply to each param.

eter being positive. The global m.inim.um. of J is strictly associated 

with the region of allowable values in the param.eter space defined by 

G. However, if the param.eters are constrained during the m.inim.i

zation, the algorithm m.ust be written to cope with the case where the 

global m.inim.um. m.ay lie on the boundary of the region. Alternatively, 

one can leave the m.ini:rni zation unconstrained and check the final 

estim.ates; this is the approach used in the applications in this dis

sertation. If the values returned as the opti:rnal estim.ates by the m.in

im.ization algorithm lie outside the allowable set, it is clearly indic

ative of either trouble with the algorithm or inadequacy of the chosen 

"Class of m.odels to represent the system.. 

Let a be the param.eter vector calculated by the m.inim.ization 

algoritlun, then for a to be an optim.al param.eter vector, it m.ust 

satisfy successively: 

1) 'i7J(~) =.Q. (stationary point) 

2)' J(~)::;; J(a) for all ~ in som.e neighborhood of a. 

(local m.inim.um.) 

3)' J(a.)::;; J(~) for all ~ (global m.inim.um.) 

Note that in general there is at least one point in param.eter space at 

which the conditions 1),2)' and 3)f are satisfied because J(a) isa 
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continuous function of ~ and it is bounded below by zero. The excep

tional case is where the global minimum occurs as Iiall tends to 

infinity, which should not occur in practice. 

To identify a system unambiguously, unique optimal estimates 

are necessary. This requires a refinement of 2) I and 3) I to give: 

2) J(a)<J(~) for all ~I=§:.. in some neighborhood of §:.. (strict 

local minimum) 

3) J(a) < J(~) for all a:/: a (unique occurrence of global mini-

mum) 

The condition 2) excludes the possibility that a is just one of a 

continuum of points giving the same minimum value of J, while 3) 

also excludes the possibility that the global minimum occurs at other 

local minima. Notice that the results of Appendix A imply that 2) 

and 3) would be guaranteed if the optimal model were locally identi-

Hable and globally identifiable, respectively, and if the optimal output-

" error v were zero. Unfortunately, measurement noise and model 

error make the latter a most unlikely event. 

Ideally, the parameter vector a calculated by the minimiza-

tion algorithm should be required to satisfy conditions 1), 2) and 3), 

each successive condition being more restrictive than its predecessor. 

Each of these conditions is discussed in turn. 

1) Stationary point: 

Define the algorithm error by: 

1 " ~J = "2 'V J(~) (2. 4. 9) 
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then e
J 

should ideally be zero but in practice it need only be small. 

Its effect on the accuracy of a is shown in §2. 4. 4. 

If 'iTJ is not used explicitly in the algorithm., the algorithm. 

error can be calculated separately by using Eqs. (2.3. 7) and (2. 3. 5), 

that is: 

(2. 4. 10) 

am Om. 
where ~ =y -IE(a,~) and --=-<:\

oak vak a 
A small algorithm. error can always be expected because of 

round-off errors when evaluating the quantities J, 'iT J, etc, in the 

algorithm. and because the minimum is always an approximate one. 

The latter situation arises either because only a finite number of 

iterations are performed (descent methods) or because of an approxi-

mation in the theory (filter methods) . 

. 2) Local minimum and local uniquenes s 

" Assume e
J 

=2,., then from a result in advanced calculus, a 

gives a strict local minim.um of J if the sensitivity matrix S =S(a) 

is positive definite [see, for example, Eq. (2.4. 32)]. This is a suf-

ficient condition for a strict local minim.um, but not a necessary one. 

" However, it is necessary that S be positive semi-definite for a mini-

mum at a. The sensitivity matrix can always be evaluated by sub-

stituting a given by the algorithm into Eq. (2. 3. 8)0 

am 
If the sensitivity coefficients <:\ - are linearly independent and va. 

" J " the output-error v corresponding to a is sufficiently small, t.h.en S 
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will be positive definite. This follows from (2.3. 8) and (2.3.9) 

because: 

S (a) = S (~) + A - B (a) (2. 4. 11) 

where (2. 4. 12) 

The weighting matrix A is positive semi-definite by definition and if 

the ~m I are linearly independent, S(~) is positive definite va. ,. 
J ~=~ ,. ,. 

(Appendix A). Thus, if B(a) is sufficiently small, S =S(~) will be 

positive definite. 
,. 

Equation (2. 4. 11) also suggests that S could be made positive 

definite by a suitable choice of the weighting matrix A, at the risk 

of possibly biasing the estimates (see §2. 4.3 and §2. 4.4). Thus, 

prior knowledge could be used to force the parameter estimates to 

be locally unique. 

3) Global minimum and global uniqueness: 

Assuming that conditions 1) and 2) are satisfied, the remain-

ing questions are whether the strict local minimum given by ~ is 

also the global minimum of J and whether it is the only local mini-

mum to give the global minimum. These questions are difficult to 

answer affirmatively, although if the model corresponding to ~ is 

not globally identifiable, there is at least one other point in param-

eter space which gives the same minimum of J 0 as ~. 

The difficulties can be traced back to the nonlinear dependence 
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of the m.ode1 output m.{a,~) on the param.eters a (§ 2.2.4). If the 

m.ode1 output was a linear function of a, then B{~) would be identi

cally zero in {2. 4. ll} and thus S =S+A would be positive definite for 

all param.eters a, if the class of m.odels were locally identifiable 

(see Appendix A). In this case, J{a} would have a unique stationary 

point and this would give a m.inim.um., so that once this point was lo

cated by the m.inim.ization algorithm., it would be guaranteed to give 

the global minimum. and to be the only point to do so. 

On the other hand, when the m.odel output IE(a,~) is a non-

linear function of ~, B(a) is no longer identically zero. In gen

eral, S(a) is not positive definite for all ~ and it is possible for 

J to have m.ore than one local m.inimum.. Thus, the global property 

of any calculated m.inim.um. cannot be ascertained, unless all of 

the local m.inim.a are found, or one of those which are found gives 

J(~) = 0, both conditions being unlikely to be satisfied in practice. 

Sim.ilarly, the unique occurrence of the global m.inim.um. cannot 

be ascertained without determ.ining all of the local m.inim.a, 

unless a m.inim.um. is found which gives J(a) =0 and it is known that 

the class of m.odels is globally identifiable. 

To illustrate the difficulties which can arise, consider an 

R-m.ode m.odel of a linear structural system. with N degrees of free

dom. (N)R). The m.easure-of-fit J(a) will have a global m.inim.um. 

where the param.eters of the R m.odes of the m.odel are close to the 

param.eters of the first R dom.inant m.odes of the linear system.. 

However, J(~) will also have other local m.inim.a where param.eters 
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of the model are close to the parameters of any R modes of the 

linear system. Since most minimization algorithms will give a local 

minimum close to the initial estimates of the parameters, if the ini

tial estimates of the modal parameters were not particularly good, 

the algorithm may converge only to a local minimum and thereby mis s 

some of the important modes. 

In conclusion, it is generally not possible to determine whether 

the global minimum of J has been found and whether it occurs at a 

unique point, unless an exhaustive search is made through the param

eter space. The computation involved in such a search would, in many 

cases, be prohibitively expensive. It is common practice to be satis

fied with finding a strict local minimum near the initial estimate a
O 

of the parameter vector a. This approach is also taken in the appli

cations described later. 

2. 4. 3. Measurement Noise and the Ideal Model 

In this subsection, the effect of measurement noise on the 

accuracy of the optimal estimates of the parameters is considered. 

The term measurement noise is used to describe all those errors, both 

systematic and random, which lead to a difference between the history 

of the actual excitation or response at a point and the processed record 

of this used in the identification. Measurement noise therefore includes 

all those errors which arise in measuring, recording and digitizing which 

are not removed by subsequent data processing (see Fig. 2.1). 

It is instructive to start with the hypothetical, ideal situation 
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where the records are noise-free and the chosen .class of :models, In, 

is capable of :modelling the behavior of the real syste:m exactly, that 

is, the syste:m has the sa:me behavior as so:me :model in In with the 

para:meter values a ~\ say. In this case, the optimal estimates of 

the para:meters, deter:mined by:minimizing J O(a) defined in Eq. 

(2.3.6), are equal to the true values of the para:meters of the syste:m, and 

J 0 (a) is zero because a perfect output :match is achieved. The equality 

of a and ~~:~ follows fro:m a result given in Appendix A, under the 

assu:mption that the class In is identifiable. On the other hand, if 

the opti:mal estimates were deter:mined by:minimizing J(a) instead 

of JO(a), they would generally be biased, because fro:m (2.3.7): 

(2.4.13) 

whereas 'ilJ(a) = Q. • 

A step towards the real situation can be taken by admitting 

that the theor etical :model us ed will not repre sent the dyna:mic s of the 

real syste:m exactly. The expression Ilthe true values of the para:rn-

eters of the syste:m ll is therefore. meaningless. However, an ideal 

:model within the clas s In can b~ postulated which is the opti:mal 

:model using J 0 and the true syste:m input and output, ~. and Y.
s

' 

which are not affected by :measurement noise (Fig. 2. 3). The param

eter values a* corresponding to the ideal :model are called the ideal 

para:meter values and the difference eM =Y.
s 

- :m(a*,~), between 

the true syste:m output and the output of the ideal :model, is called 
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the ideal model-error. 

To arrive at the real situation, input and output measurement

noise must also be considered (Fig. 2. 3). In general, the optimal 

parameter values a, determined by minimizing JO(a), are now dif

ferent from the ideal parameter values a*. The reason for this dif

ference is that if any portion of the combination of measurement noise 

plus model error in the output-error of the ideal model can be treated 

as a possible model signal, the parameters will be changed from their 

ideal values to cancel this portion. The effect is to reduce the output

error and thus J O(a) is les s than J O(a *). These ideas are illustrated 

in more detail in the next section where an error analysis is performed. 

In a sense, the ideal model given by a* is the best model 

within the class ofmodels because its definition is in terms of the true 

system input and output (~ and ys), so it is not influenced by meas

urement noise. However, it is only a conceptual device because its 

determination would require complete knowledge of the measurement 

noise. In practice, one must be content with the optimal model, which 

is the best model within the given class for the records of the input 

and output (~ and y). 

It is the ideal model which indicates how well the theoretical 

model can approximate the behavior of the real system over a given 

time segment [T
i

, T
f
]. To be able to judge the theoretical model from 

the quality of the optimal output-match, one must have confidence that 

measurement noise has not greatly affected the accuracy of the opti

mal estimates of the parameters. To gain this confidence, processing 
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of the data may be necessary to improve the signal-to-noise ratio. 

Of course, some prior knowledge of the characteristics of the noise 

and of the system are neces sary to distinguish noise from signals in 

the records. 

Considerable work has been done with strong-motion seismic 

records to identify the various sources of errors contributing to 

measurement noise, and to develop data-processing techniques to 

reduce their effects (Trifunac et aI, 1970, 1971). It is believed that 

when these techniques are applied to the records obtained from stand

ard accelerographs, the final processed records are of good quality 

over most of the frequency range of interest in structural engineering. 

For structural identification, the corrected data should be adequate 

over the frequency range from approximately O. 2 Hz to approximately 

10 Hz. Difficulties can arise from measurement noise during identi

fication of the fundamental modes of long-period structures (periods 

of the order of 5 seconds or more), and during identification of modes 

with short periods (periods of the order of O. 1 second or les s). The 

difficulties in the latter case are partly due to the size of the typical 

sample interval, O. 02 second. 

2.4.4. Deterministic Error Analysis 

The following error analysis shows how measurementnoise and 

the algorithm error (§2.4.2) affect the accuracy ofthe optimal parameter 

estimates. The ideal parameter values defined in the previous subsection 

are used to judge the accuracy of the optimal estimates. 

The notation used is as follows (Fig. 2.3): 
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a = (vector of) param.eter values 

a ~~ = ideal param.eter values 

" a = optim.al param.eter estim.ates given by the m.inim.i-

e -z 

zation algorithm 

= a priori estim.ate of a ~~ [Eq. (2. 3. 4)] 

= error in response of ideal m.odel due to the trans-

m.ission of e through the m.odel -z 
1 

= 2" \lJ I" , the error of the m.inim.ization algorithm. 
a 

(§2. 4. 2) 

= ideal m.odel error 

= output m.easurem.ent-noise 

= input m.easurem.ent-noise 

m.(.§:.,~) = output of a m.odel with param.eter s a subj ected to 

an input ~ 

m.(a *,~) = output of ideal m.odel sUbjected to the true input 

m.(a, z) = output of optimal m.odel subjected to the input record 

v(a) = y. - m.(~, z), the output-error for a m.odel with 

param.eters ~ 

v~~ = v(a~~), the output-error for the ideal m.odel 

v = v(~), the output-error for the optim.al m.odel 

z 

= output record corresponding to y. . 
s 

= true system. output: response of system. at the 10-

cation of the output transducers 

= input record corresponding to ~ 

= true system. input: excitation of system. at the loca-

tion of the input transducers 
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z = excitation of system which affects its response 
-u 

but which is ignored in the models 

Consider the output-error of a general model within a pre-

scribed class, then: 

(2.4. 14) 

This shows that ~(a) consists of the output measurement-noise ~ 

. plus the model error [1.s -IE(~ . .' z)] and that the model output IE (~,~) 

will attempt to match the combination of output measurement noise and 

true system output when J 0 = <v, v> is mini:mized. The output-error 

of the ideal model: 

(2.4.15) 

can be expres sed in the form: 

(2.4.16) 

where ~M =Y
s 

- IE(a*,~) is the ideal model error; ~ =1. - Ys is the 

output measurement noise; and ~I =~(a>:\~) - IE(~*'~) is the trans

mitted input measurement-noise, defined to be the difference be-

tween the outputs of the ideal model when it is subjected to the re-

corded input ~ and the true input ~ respectively. If a linear model 

is used, the output IE is a linear function of the input, so that 

~I =IE(~>:\~z)· In this case, ~I is therefore the response of the ideal 
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model to the input measurement noise e
z 

= ~ - ~. 

Subtracting (2. 4. 14) and (2.4. 15) leads to: 

(2. 4. 17)· 

This equation indicates that the value of JO(a) =< v(a),v(a» :might· 

be reduced from its value J O(a~:~) =<v~~, v~~ > by changing the para:rn-' 

eters from their ideal values so that the difference in the output can-

cels a portion of the combination of measurement noise and ideal 

model error. In the presence of measurement noise, JO(~) would 

therefore be expected to be less than JO(~~~) and the optimal esti": 

mates of the parameters would not be equal to the ideal values.· The 

aim is to derive an "error equation" for the difference a - a~~. 

To arrive at the error equation, a truncated Taylor series of 

!. 'VJ about a is made: 2 

(2. 4. 18) 

where the last term accounts for the truncation error, with 

Iia - al1
2 

= (a - a,a - a). If Eqs. (2.3.7), (2.3.8) and (2.4.9) are sub-

stituted into (2.4. 18), the following equation can be derived: 

(2.4.19) 

where (2. 4. 20) 
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om* 
d* ( ) + * - > (" A( >:< '" )) k = ~j k < ~ 'aa - ~, ~ -~ 

k 
(2.4.21) 

and 

These equations show how the accuracy of the optimal estimates ~, 

with respect to the ideal parameter values a*, depends on the sen-

"-
sitivity matrix S, the algorithm error e

J
, the input and output mea-

surement-noise e
i 

and ~, the ideal model error eM and the 

weighting term in J involving the a priori estimates ~ of the param-

eter s. 

If ~J' e
I

, ~ and A are a11 set to zero, a =a~~ should be 

a solution of (2.4.19) regardless of ~M' because model error affects 

the accuracy only in the presence of noise. This is the case because 
n ~'< ~I ) _,_ um J _,_ v"u,,\a,~ 

d:J' immediately reduces to < eM' a=-> = < y. - m(a:J-,~), -0- > , 
-k - a k s - - a k a* 

which is zero because, by the definition of it minimizes J o- when 

y. and ~ are replaced by Y.s and ~. 

The practical use of (2. 4. 19) is limited because d~:< involves 

the unknown ideal parameter values and it is therefore difficult to 

bound. A bound which is useful to compare the accuracy of each esti-

mate on a relative basis can be derived directly from (2.4. 17), which 

implies: 
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(2. 4. 22) 

This can be expressed in the matrix-vector form: 

Sea - a*) =d+ Q.(lIa _ a':~112) (2.4.23) 

where - ""'" am om 
Sk' =Sk·{a) =<!:\ - , !:\ -> J J - vak vaj 

(2. 4. 24) 

(2. 4. 25) 

The matrix S(~ was defined in §2. 3 and it is positive definite, and 

hence nonsingular, if the sensitivity coefficients are linearly inde-

pendent (Appendix A). If it assumed that the errors are small enough 

for the second-order terms in Eq. (2. 4. 23) to be neglected, then this 

equation implies: 

(2. 4. 26) 

By the Schwarz inequality for scalar products: 

(2.4.27) 

This gives the following bound: 
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(2.4.28) 

where 2 ,', '" v>l<_ v .... > 
0" = < v"'-~, (2. 4. 29) 

The quantity 0" is unknown because v>:< is unknown ·and it does not 

appear likely that 0" can be bounded by known quantities without m.ak-

ing som.e assum.ptions about the level of m.easurem.ent noise and m.odel 

error. However, (2.4.28) does indicate relative bounds on the errors 

in the optim.al estim.a tes because the m.atrix S can always be calcu-

lated from. (2.4. 24). 

If it should happen that the param.eters are Ilorthogonal ll , in 

the sense that Skj = 0 if k /:. j, then (2. 4. 28) becom.es: 

(2. 4. 30) 

This indicates that for good accuracy, the diagonal term.s of S should 

be large. This point of view is taken up again in § 2.4. 5, 

A statistical approach m.ight also be taken to inve stigate the 

effect of m.easurem.ent noise on the accuracy of the param.eter estim.ates. 

In such an approach, one could im.agine a serie s of hypothetical exper-

im.ents where the sam.e system. input and output, ~(t) and Ys (t) , 

t E [T
i

, T
f
], were repeatedly m.easured, recorded and processed. For 

each such experim.ent at least a portion of the m.easurem.ent noise 

would be different and hence the input and output records, ~(t) and 

y(t), t E [T
i

, TfL would also be different. Over a large n um.ber of 
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experiments, a distribution of the opthnal estimates of the parameters 

would be obtained. 

The applicability of a statistical approach depends on the vali-

dity of the stochastic model used for the random portion of the mea-

surement noise and whether the systematic portion can be identified 

properly. If the measuring and recording of data can be done only once 

for a given excitation of the system, it is difficult to test a hypothesized 

stochastic model for the measurement noise. This is the case when 

seismic records are used. 

If a series of independent excitations were used to develop sta-

tistical information, the dependence of the ideal model on the excitation 

should also be taken into account (see §2. 4. 6). This would appear to 

require that the statistical approach be extended to include the exci-

tation, the ideal model error and the ideal parameter values as random 

quantities. The difficult task of simultaneously identifying a dynamic 

model and stochastic models for the measurement noise and ideal model 

error would then be required. 

In this dissertation, attention is focussed on the identification 

I 
problem'where the records used are from only one excitation of the 

system. No hypotheses are made about the detailed nature of the 

random or systematic portions of the measurement noise and ideal 

model error because, on the basis of one sample, it is unlikely that 

there is sufficient independent information to properly verify these 

assumptions. 
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2.4. 5. Sensitivity Analysis 

In the absence of as sumptions about the level of measurement 

noise and ideal model error, one cannot expect to determine bounds on 

the error in each estimate of the parameters. Recognizing this fact, 

an alternative approach can be made which leads to partial but useful 

information about the accuracy of the estimates of the parameters. 

This approach is based on the sensitivity of the measure-of-fit J to 

variations in each parameter about its optimal estimate. 

Suppose J is sensitive to a change in the value of a parameter 

a
k

. The change in J from its value J(~.*) for the ideal model to its 

value J(~) for the optimal model, because of measurement noise, 

should then correspond to only a relatively small change in ~ from 

a~ to a
k

. Thus, if each error (a
k 

- a~) is bounded by applying a 

sensitivity analysis for an assumed difference (J(~:.~:~) - J(a», this 

will give a qualitative idea of the accuracy of the optimal estimates on 

a relative basis. Such a sensitivity analysis cannot be expected to 

give bounds on the actual error for each estimate sinc e J(~~:~) is an 

unknown quantity. From Eq. (2. 3. 4): 

(2.4.31) 

and hence, with (2.4. 16) in mind, J(~~:~) depends on the measurement 

noise, the ideal model error and the a priori estimate ~. 

A Taylor series expansion of J(~) about a gives: 
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(2. 4. 32) 

( -,- ,. SA ( -,- "')} 0 (II -'- A 11 3 ) + ~-"-~, a"'- ~ + ~ ..... - a 

where S =S(a} (Eq. (2. 3. 8}). If it is assumed that ~J is negligible, 

then (2.4. 32) shows that the sensitivity of J to variations about the 

optimal estimates a is governed by the sensitivity matrix S. 
A 

The sensitivity matrix S can always be calculated after the 

optimal estimates have been obtained. It is useful to do so from sev-

eral points of view. First, if it is positive definite, as assumed here, 

then ~ is locally unique (22.4. 2). Furthermore, it is desirable that 

'" S be approximately diagonal and that the diagonal elements, which are 

necessarily positive, be large with respect to J(a). 

The first property ensures that the parameters are I!orthogonall!, 

that is, that a large error in one parameter does not produce large 

errors in the other parameters. If two parameters ~ and a
j 

are 

not nearly Iforthogonal lf
, so that ~j is comparable in magnitude with 

Skk and S .. , then it is possible for both a
k 

and a. to be in error by 
JJ J 

a considerable amount but for the combined effect of these errors on J 

to cancel. Thus, it would be expected that these parameters would be 

difficult to estimate accurately by minimizing J. 

'" On the other hand, if S is approximately diagonal, then for a 

fixed J(~~<), the parameter errors will be governed directly by the 

size of the Skk' since from (2. 4. 32): 
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(2.4.33) 

which implie s that: 

(2. 4. 34) 

,.. 
For good accuracy, the diagonal terms Skk should therefore be large. 

This bound is analogous to the one in Eq. (2. 4. 30). In fact, the ma

trices S (Eq. (2. 4. 24)) and S (Eq. (2. 4. 20)) are approximately equal 

when A = O. This is because the optimal output-error .2:. is normally 

relatively small so that in most cases the third term in (2.4.20) is 

negligible. 

When A f:. 0, Eqs. (2. 4. 20) and (2. 4. 34) appear to imply that 

by taking Akk large, the accuracy can be improved. However, this 

is not necessarily the case since (J(~*) - J(~) ) also depends on A. 

In fact, in the limit as ~k'" 00, ~ -+ aO, k while, from the definition 

of { in §2. 4. 3, the latter is independent of A. Thus, the error in 

the optimal parameter estimate ~ approaches the initial error 

(aO,k - a~). 

Many of the above comments can be given a geometrical inter-

pretation. If the sensitivity matrix S is positive definite, the contours 

of J in parameter space for constant J(~>:<) close to J(~) are hyper

ellipses centered at the point ~ and given by the quadratic form as

sociated with S. Although ~>:< will be unknown, it must lie on the 

hyperellipse given by J(~ >:<) and so the accuracy of the optimal param-

eter estimates will be governed by the shape and overall size of this 



-77-

hyperellipse, which in turn is controlled by the properties of the 

sensitivity matrix. 

" If S is diagonal, the axes of the hyperellipse are parallel to 

the axes of the parameter space and it can be seen that the semi-axes 

of the hyperellipse give bounds on the errors 1 a
k 

- a~ I. This leads 

directly to the bounds given in (2. 4. 34). 

On the other hand, if S is not diagonal, the hyperellipse is 

oriented I I obliqu ely II , so that its axes are not parallel to the axes of 

the parameter space. However, the length of the axes of the hyper-

ellipse continue to control the accuracy of the paramet ers. Since these 

lengths are inversely proportional to the square root of the eigenvalues 

of S, the accuracy is ultimately controlled by these eigenvalues. In 

A 

the " orthogonal" case, the eigenvalues of S are equal to the diagonal 

elements and the present interpretation reduces to the earlier one. 

It is clear from this geometrical interpretation that if any eigenvalue 

A " 

A of S is almost zero, so that S is ill-conditioned, the corresponding 

axis of the hyperellipse is relatively large. Thus, all those parameters 

which have a significant component in the principal direction (eigen-

vector) associated with A will be poorly estimated in general. 

2.4.6. Effect of Model Limitations on Parameter Estimates 

If the chosen theoretical model was capable of giving an exact 

description of the dynamic behavior of a system, the ideal model 

would be invariant with respect to the particular data used in the identi-

fication of the system, and the optimal model would change as different 
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data samples were used only to the extent of a change in the measure

ment noise. In practice, the theoretical model describes the behavior 

of the system only approximately, so that both the ideal and optimal 

models will change as different data from the system are used. For 

example, if a linear theoretical model is used to identify a nonlinear 

system, the estimated parameters can be expected to change as the 

level of the response changes. 

In general, the optimal model can only be expected to predict 

the output of a system for an excitation with similar characteristics 

to that producing the data used to determine the model. Tests can be 

made to examine how well the optimal model determined from one 

sample of data is able to predict the output for other samples of data. 

Also, the optimal model can be determined from different samples 

to examine whether it is unduly sensitive to the particular data used. 

With each of these approaches, there is a fundamental difficulty in 

determining how much of the observed differences are due to limitations 

of the theoretical model in representing the behavior of the system and 

how much are due to measurement noise. The degree to which these 

effects can be separated depends on the amount of prior knowledge 

which is available about the characteristics of the noise and the system. 

2.4.7. Final Remarks 

One of the most difficult parts of system identification is as

sessing whether the parameter estimates are reliable. When an out

put- error approach is taken, it is suggested that this problem be 
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tackled in a number of steps, so that intermediate results may be 

examined. These steps may be summarized as follows: 

1) The models used should be at least locally identifiable 

(§ 2. 4. 1). 

2) The estimates returned by the output-error algorithm should 

be checked to determine whether they are the optimal estimates. A 

fundamental difficulty arises here in ensuring that a global minimum 

is found (§ 2. 4.2). 

3) The accuracy of the optimal estimates should be assessed. 

One difficulty is that there is no exact model to act as a basis for 

judging accuracy, so an ideal model is introduced as a substitute for an 

exact model (§2. 4. 3). Another difficulty is that often only limited data 

are available which makes it difficult to confirm assumptions about the 

character of the noise in the records and to estimate its level. How

ever, the accuracy of each estimate may be compared on a relative 

basis by an error analysis (§ 2. 4. 4) or a sensitivity analysis (§ 2.4.5). 

4) The final problem which should be considered is whether the 

optimal estimates are unduly sensitive to the particular data used to 

determine them because of the limitations of the model in describing 

the behavior of the system (§ 2. 4. 6). 

In making an assessment of the parameter estimates as above, 

experience with the system or other similar systems is a great advan

tage. When using linear structural models, for example, there is a 

considerable amount of accumulated information which can be used to 

assess whether the estimates are reasonable. This is not the case for 
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the identification of nonlinear structural models, which is one of sev

eral reasons that make this a much more difficult problem. 

It should also be mentioned that there are other ways of look-

ing at the problems discussed above. One alternative to the ideal model 

is to assume that the system dynamics are described by the state equa

tion of the theoretical model with an additive term called the equation

error (also called the plant noise or process noise in a stochastic set

ting. See, for example, Bowles and Straeter, 1972). A combined 

output-error/ equation-error approach can then be used to estimate 

the parameters of the theoretical model, as in the filtering problem of 

state estimation theory. The ideal model error and the equation-error 

are two different treatments of the same problem, which is that any 

theoretical model will provide only an approximation to the dynamics 

of a real system, but the ideal model error is the appropriate concept 

to use in an output-error approach. 

The approach to parameter estimation in this dissertation is 

primarily a deterministic one where noise is acknowledged but no 

assumptions are made about its character. There are a number of 

papers and books on system identification which provide a stochastic 

treatment. Eykhoff (1974) and Beck and Arnold (1977) are two ex

amples which have been cited earlier. 

When using seismic records, the sample base is so limited that 

there are inherent difficulties in verifying statistical assumptions and 

in judging the validity of the error estimates. However, for such 

cases, a deterministic framework can be used to derive the 



-81-

equivalent of many of the results base<i/on stochastic theory. This was 

pointed out, for example, in §2. 2. 3 with regard to the minimization 

problem [Eq. (2.2. 4)] of the output-error approach. Again, the filters 

arising in the theory of state estimation, which may be specialized as 

output-error methods, can be derived on a deterministic basis (invar-

iant-iInbedding filter) or a stochastic basis (extended Kalman filter). 

A final example is that the sensitivity matrix (§2. 4.5), which plays an 

important role in determining the accuracy of the parameter estimates 

within a deterministic setting, plays an equally iInportant role in a 

stochastic error-analysis, where it is knovm as the (Fisher) infor-

rna tion matrix. 
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III. LINEAR STRUCTURAL MODELS 

The identifiability of a clas s of linear structural models is 

considered in this chapter. It is shown that certain modal parameters 

are determined uniquely by the input and output of a model in this 

class, but that the stiffness and da!nping !natrices are not deter!nined 

uniquely in typical situations. A discussion is !nade of other diffi

culties arising in the application of these !nodels to the identification of 

structures fro!n seismic records. It is concluded that when linear 

!nodels are used, they should be based on the dominant !nodes in the 

records of the response and not on the stiffness and da!nping !natrices. 

3. 1. A Class of Linear Structural Models 

Recall from §2. 2. 3 that the class of !nodels used in an identi

fication process is defined by a theoretical !nodel, which determines 

the equation for the state of the !nodel; an output equation, which re

lates the output of the !nodel to the state; and a set of allowable values 

for the paranleters of the !nodels. Each aspect will be considered in 

turn for a class of linear structural !nodels with N degrees of free

dom, which is denoted by tnN for convenience. 

3. 1. 1. Theoretical Model 

A discrete theoretical !nodel is used which has the following 

equation of !notion: 

Mx+C~+Kx = -M~z(t) (3. 1. 1) 
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This model has had a long history in analysis and design in structural 

dynamic s. For a physical interpretation, it may be imagined that it 

represents a physical model consisting of a three-dimensional dis-

tribution of lumped masses linked by linear, massless springs and 

dashpots (viscous dampers), with the model sitting on a rigid base 

t 
which moves in only one direction. The vector x = [xl ,xz,· .. x

N
] 

then consists of the generalized displacement relative to the base of 

each degree of freedom of each lumped mass of the model, and z 

is the acceleration of the base. To emphasize that each component 

of x has a specified direction associated with it, the x. will be 
- 1 

called the coordinates of the model. The components of the vector 

~ = [b
l

, b Z' ... , bN]t are the so-called pseudo-static influence coef

ficients which depend only on the geometry of the model (Ch. Z7, 

Clough and Penzien, 1975). If z is a displacement of the base, 

~ + ~z represents the corresponding total or absolute displacement 

of the masses. It will be assumed that the geometry of the model is 

prescribed so that ~ is known. The N X N matrices M, C and K 

are the mass, damping and stiffness matrices respectively and are 

parameters of the model. Equation (3. 1. 1) may be interpreted as 

expressing the balance between the inertia M(x+ ~z) of the physical 

model, its elastic restoring force -Kx and its viscous damping 

force -C;&, in accordance with Newton's Second Law. 

The theoretical model given by Eq. (3. 1. 1) is often used as 

a planar model for buildings. In this case, the vector x is taken to 

represent the horizontal displacement at points in the structure, with 



-85-

all displacements parallel to a fixed vertical plane, and z is taken 

to be the horizontal component of base motion parallel to this plane. 

All the components of ~ are therefore unity. The theory in this 

chapter can be specialized to the planar interpretation by choosing 

these special values for the components of b; indeed, this is done 

later with some illustrative examples. 

The three-dimensional interpretation of ~ in (3. 1. 1) is empha-

sized here because ultimately a reduced form of this model based on 

the dominant modes of response is used. The planar interpretation is I 

then unnecessarily restrictive because it precludes torsional response 

whereas the model based on modes does not. However, it is shown 

below that the simplified way in which the seismic excitation is repre-

sented by a single input in the model may cause some difficulties in 

identifying torsional modes. 

There are several simplifications in the way that the seismic 

excitation is defined in the model. These include: 

1) treating the base of the structure as rigid, 

2) neglecting the three rotational components of motion of the 

base, 

3) neglecting two of the translational components, one vertical 

and one horizontal, of the motion of the base. 

The first two simplifications should lead to good approximations if 

there is no pronounced soil-structure interaction. Furthermore, the 

present data do not allow these features of the model to be improved 

because existing basement records consist of three orthogonal· 
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translational components of motion at only one point of the base. 

The effect of neglecting one horizontal component of the base 

motion is considered for the case in which the structural output consists 

of the horizontal motion in a fixed direction at certain points within the 

structure. Even though the output is IIplanarll, the state ~ of the 

model can be treated as three-dimensional to include torsional re

sponse. The horizontal base motion in the given direction should rep

resent the principal contribution of the seismic excitation to the output. 

This component of the base motion would therefore be used as the mod

el input z. However, the horizontal base motion orthogonal to the 

given direction can also contribute to the ou1put of the structure by 

being part of the excitation of either the torsional modes or any trans

lational modes which have a pronounced three-dimensional character. 

Some of the problems arising in the applications in Chapter 6 

are attributed to inadequate modelling of the torsional contributions to 

the translational motion at the location of the accelerograph. To treat 

this feature, it will be neces sary to extend the theoretical model to 

include both horizontal components of the base motion. This will 

introduce another participation factor for each mode, but the methods 

presented in this dissertation should remain applicable after some 

modification s. 

3. 1. 2. Output Equation 

The output IE- of each model in the class tn.N is taken to be 

a vector consisting of the response at certain coordinates in the model. 

To determine identifiability, it is unnecessary to prescribe which 
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quantity x., x. or x. is actually observed. It is therefore conven-
111 

ient to define the for:rn of the output for each model by a set .9, a 

subset of the integers I to N, corresponding to those coordinates 

at which the response is measured. For example, if xl' ~l and x3 

are measured, then .9 = [1,3 }. 

3. 1. 3. Allowable Values of the Parameters 

The parameters of the theoretical model are the elements of 

the matrices M, K and C and the initial conditions. There are 

certain physical properties which the mathematical model should 

imitate and which are commonly used to place restrictions on M, K 

and C. These restrictions will be used in defining the allowable 

values of the paramete rs for the clas s th
N

. 

1) Mass Matrix: The x. are assumed to correspond to the 
1 

degrees of freedom of each lumped mass. The mass matrix M is 

therefore diagonal and positive definite, that is: 

m l 0 
m 2 

M= , m. >0 
1 

(3. 1. 2) 

0 mN 

In this chapter, the mass matrix will be assumed known when trYL1'1g to 

resolve the internal structure of the model from the input and output. 

The mass matrix for an assumed discretization of a structure is 

easier to deter.m.ine a priori, using structural plans, than either the 
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stiffness or damping matrix. Furthermore, it is obvious from Eq. 

(3.1. 1) that without some constraint on M, the stiffness and damping 

matrices cannot be determined from the input and output. 

2) Stiffness Matrix: The stiffness matrix K =[k..J is required 
1J 

to be symmetric and positive definite: 

or k .. =k .. 
1J J1 

(3.1.3) 

and 
t 

x Kx> 0 , '\fx f:. 0 (3. 1. 4) 

The sym.metry follows from Betti's reciprocity law (Ch.ll, Clough and 

Penzien, 1975). The necessity for (3. 1. 3) can also be shown by applying 

Newton's Third Law to each. massless spring in the physical model of 

§ 3. 1. 1, noting that k.. is the force in the direct ion of x. given by 
~ J 

unit displacement of x. with all the other coordinates zero. The 
1 

positive definiteness is imposed so that the equilibrium state of each 

model is stable. 

3) Damping Matrix: The damping matrix C = [c .. J is re-
1J 

quired to be sym.metric and positive semi-definite: 

or c .. =c .. 
1J J1 

(3.1.5) 

and -t -x Cx~O 
• 

\Ix (3.1.6) 

The symmetry is imposed for a similar reason to that in 2). The 

positive semi-definiteness is imposed so that the rate of energy dis-

sipation by the viscous damping forces is non-negative. 
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It is also assum.ed that the viscous damping is distributed through-

out the model in sucha way that "classical, oscillatory" modes exist. The 

. "classical" partmeans thatthemodeshapes are the same in the damped and 

undamped cases, so they are the generalized eigenvectors of both K and C 

with respectto M. This property is equivalent to the following relation 

between M, K and C (Caughey and O'Kelly, 1965): 

(3. 1. 7) 

The "oscillatory" part means that each mode is less than critically 

damped. 

4) Initial Conditions: Recall from §2. 2.1 that the initial con-

ditions are also treated as parameters of the model. Unrestricted 

paremeters ~ and ~ are therefore required such that: 

x(O) = ~ and ~(O) =~ (3. 1. 8) 

3. 2. Modal Form of Theoretical Model 

It will become apparent as the theory develops that a modal 

formulation plays an essential role in identification using linear 

theoretical models. In this section, the standard transformation of 

Eq. (3. 1. 1) to the uncoupled modal form is described, and a converse 
" 

result is given. .t;>.n equivalent formulation in terms of transfer func-

tions is also presented. 

3. 2. 1. Uncoupled Equations of Motion 

Let \f =[1(1) ,1( 2), ..• ,1(N)] denote the modeshape matrix 

whos'e columns are the generalized eigenvectors of K, so: 
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or K'f =M'frl (3.2.1) 

2 
wI 2 

o 

02~ 
w2 

where 

0 

and the w > 0 are the modal frequencies. The modes are labelled in 
r 

order of increasing frequency. By an assumed property of C, each 

modeshape 1( r) also satisfies: 

CIjr(r)=d MIjr(r) , r=I, ... ,N 
- r-

or C'f =M'fD (3.2.2) 

d
l 

0 2C l wi 
d 2 2C 2w2 

D~ = 

o 

0 d
N 

0 

Here, the modal damping factors C have been introduced by defining: 
r 

d 
,. = -2 r (3. 2. 3) 
'Q r W 

r 

Since C is positive semi-definite, each d ;;:: 0 and hence each 
r 

C ;;:: O. 
r 

Furthermore, the modes are as sumed to be oscillatory so 

each C < I [see Eq. (3.2. 9)]. 
r 
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Since the l(r) are linearly independent (or can be chosen to 

be such in the case of equal frequencies and damping factors), the 

matrix 'f is nonsingular. A vector function ~ can therefore be 

defined by: 

so that: x(t) = '1' ~(t) 

N 
(3. 2.4) 

or x.(t) = \" *~r)S (t) , i =1, ... ,N 
1 L 1 r 

r=l 

Substituting (3.2.4) into (3.1. 1) and pre-multiplying by '1:\ 

(3.2.5) 

Define the generalized mass matrix by: 

(3.2.6) 

then substituting (3.2.1), (3.2.2) and (3.2.6) into (3.2.5): 

.• • 2 
~+D~+O ~= -O!z(t) (3. 2. 7) 

where (3.2.8) 

is a vector of modal participation factors. In component form, (3.2. 7) 

becomes: 

.• • 2 
S + 2 C w S + wS = -O! it (t) , r = 1,. . . ,N r r r r r r r (3. 2. 9) 
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The magnitude or norm of each l(r) is so far arbitrary and 

so the scaling of each S is also arbitrary. It is useful for our pur
r 

poses to express (3.2.4) and (3.2.9) in forms which are invariant 

with respect to the normalization introduced for each l(r). 

be done by defining x~r), the contribution to x. from the 
1 1 

by: 

so that (3. 2. 4) may be written: 

N 

x. (t) = \" x~r) (t) 
1 L 1 

r=l 

and (3.2.9) leads to: 

.• (r)+2 r e(r)+ 2 (r)= _A(r)"(t) x. '" W x. W x. t-'. Z 
1 rrl rl 1 

where 

This can 

th d r mo e, 

(3.2. 10) 

(3.2. 11) 

(3.2. 12) 

(3.2.13) 

The parameter (3~r) will be called the effective participation factor 
1 

for the rth mode at the ith coordinate. 

Equations (3.2. 11), (3.2. 12) and (3.2.13) play an important 

role in both the theory and applications in this dissertation. Notice 

that the response x. produced by z depends on the parameters 
1 

[ (r) (r) (r) } (r)_o(r) 
w,~ ,(3. ,x. (O),v. (0): r=l, ... ,N where v. =x .. 

r rl 1 1 1 1 

The final points to be discussed relate to the generalized mass 

matrix 1\1 of Eq. (3.2.6). It is a standard result that 1\1 is diagonal 
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because the :modeshapes are orthogonal with respect to the :mass 

:matrix M. Further:more, the :modeshapes can be nor:m.alized so that 

Eq. (3. 2.6) :may be rewritten as: 

(3. 2. 14) 

or 

where I is the identity :matrix of order N. This relation expressing 

orthogonality and nor:mality is convenient for later use. 

As a final re:mark, it can be shown tha t if there are no repeated 

:modes (:modes with a co:m:mon frequency and da:mping factor), :r 

satisfying (3.2. l), (3.2.2) and (3.2.14) is unique to within a change of 

sign of each colu:m.n in l(r). 

3. 2. 2 Construction of a Model fro:m Modal Para:meters 

Given a :model in the class rnN, the :modal para:meters can be 

deter:mined by solving an eigenvalue proble:m as in §3. 2.1. Conversely .. 

it is shown in this subsection that a unique :model in rnN can be deter

:mined if :modal quantities with the requisite properties are available. 

Suppose the quantities w, ~ and *~r) are known for 
r r 1 

i .. r=I, ... ,N and satisfy w >0, O::;~ <1 andEq. (3.2. 14}. As 
r r 

suggested by (3.2.1), (3.2.2) and (3.2.14), take a linear :model wi.th 

the known :mass :matrix M and stiffness and da:m.ping :matrices given 

by: 
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K =M'f02'ftM 

C =M'fD'ftM 

In co:mponent for:m, these equations beco:me: 

and 

k .. =:m.:m. 
1J 1 J 

N 

) w21[!~r)l[!~r) 
"-' rl J 
r=1 

N 

c .. = 2:m.:m. \" , w l[!~r)l[!~r) 
IJ 1 J L.. r r 1 J 

r=1 

(3.2.15) 

(3. 2. 16) 

It is easy to show that this linear :model is in inN because K and C 

defined by (3. 2. 15) satisfy the conditions of § 3. 1. 3. Further:more, 

this is the only :model in inN which has the given :modal para:meters 

because if so:me other :model with stiffness and da:mping :matrices K 

r..-

and C has the sa:me :modal para:meters, then fro:m (3. 2. 1) and 

(3.2. 14): 

r..-

and si:milarly, C = C. 

3. 2. 3. Transfer Function For:mulation: 

It is convenient in proving the results of the next section to use 

the equivalent for:m of Eqs. (3. 2. 11) and (3.2. 12) obtained by applying 

Laplace's transfor:mation. 

Let X.(s) and Z(s) denote the Laplace transfor:ms of the dis-
1 

place:ment x. and base :motion z, that is: 
1 
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00 

S 
-st 

x. (s) = x. (t)e dt 
10 1 

00 

2(s) = S z(t)e -stdt 
o 

where s may be complex. For later theory, it is necessary to de-

termine a region in the complex plane where x.(s) and 2(s) are 
1 

analytic functions. If f(t) is piecewise continuous on (O,oo), and of 

exponential order as t-t 00, 
ct 

say f(t) = O(e ), then the Laplace trans-

form F(s) of f(t) exists and is an analytic function of s in 

Re(s) > c. It is assumed that z(t) has finite duration, so the above 

.. 
result implies that Z(s) is analytic on the whole s-plane. However, 

after the base motion has finished, the model win undergo free vibra-

tions so X.(s) will have poles in the left-half plane. But from the 
1 

result above it win be analytic on the right half-plane 

J... 

~I= [s:Re(s»O} , since x. (t) must remain bounded as t -t 00. The 
1 

proofs of the results in § 3.3 rely on the fact that X. (s) (or Z (s» on 
1 

+ 
~ are equivalent representations of x.(t) (or z(t» on the time in-

1 

terval (0, (0). 

From the transforms of Eqs. (3. 2. 11) and (3.2. 12): 
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N 

X.(s) = ~ X~r)(S) 
1 ~ 1 

(3.2.19) 

r=1 

(3. 2. 20) 

Combining (3. 2. 19) and (3.2. 20): 

X.(s)=G.(s)+H.(s)Z(s), VsEd9+ 
1 1 1 

(3.2.21) 

N 

where G.(s) ~ \' [v~r)(O) + 2~ ill x~r)(O) + sx~r)(O)]H(r)(s) 
1 L 1 rrl 1 

(3.2.22) 

r=1 

N 

Hi ( s) ~ - I !3 ~ r )H (r ) ( s) (3.2.23) 

r=1 

(3. 2. 24) 

The function H.(s) is the transfer function between the base motion 
1 .. 

z and the corresponding response x .• 
1 

Each H(r)(s) has a pole at s and its complex conjugate s 
r r 

where: 

(3.2.25) 
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These poles are simple because c < 1. The poles of G.(s) are those 
r 1 

s 
r 

and s for which x~r)(O) =I 0 
r 1 

or v~r)(O) =I 0, and the poles of H.(s) 
.1 1 

are those sand s for which (3~r) =I O. Assurn.ing that all the s 
r r 

are distinct, the residue at 

1 r 

s of G.(s) 
r 1 

is: 

(3.2.26) 

and the residue at s of H.(s) is: 
r 1 

(3. 2. 27) 

The residues at s are the complex conjugates of (3.2.26) and (3. 2. 27). 
r 

The points [s ,-; : r = 1, ••• , N} are distinct unless there are 
r r 

repeated modes with the same frequency and damping factor. For an 

N degree-of-freedom model with R modes having a common fre-

quency and damping factor, the R modes will appear as a single mode 

which has values of x~r)(O), 
1 

v~r)(O} and (3~r) equal to the sum of 
1 1 

these quantities for the repeated modes. To be consistent with the 

theory to be developed, it is assumed that (R-1) modes are I!:rnissingl! 

from the response. This is achieved by taking x~r)(O)=v~r)(O)=(3~r)=O 
1 1 1 

for (R-1) values of r. 
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30 30 Uniqueness of Some Modal Parameters 

In this section, some results are proved which form the basis 

of the approach suggested for identification using linear models. It 

is shown that certain modal parameters of any model in inN are de-

termined uniquely by the input and output of the model. The proofs 

do not give a practical way of actually determining the values of these 

parameters. This is left to later chapters. 

It is first as sumed that the models are initially at rest. 

Proposition 1 

Consider any model in the class inN which is initially at rest 

but is then excited by a known base history z of finite duration. If 

the output [x.{t) or x.{t) or x.{t~ t ~ 0 and i E J} is known, then: 
1 1 1 

(r) _ 
1) the 13. , r - 1, ••• ,N and i E J, are determined uniquely, 

1 

2) w and ~ are determined uniquely if the rth mode makes 
r r 

a contribution to the output, that is, if f3~r)::f 0 for some i E J. 
1 

The converse is also true. 

Proof: 

The proof is given for the case in which the output is the res-

ponse at the single coordinate x.. It can be generalized immediately 
1 

to an arbitrary set of coordinates. Furthermore, only knowledge of 
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. .. 
x. is considered because the proof is alm.ost identical for x. and x. 

]. ]. ].. 

. . - 2 
if the relations X.(s) = sX.(s) and X.(s) = s X.(s) are used. For 

]. ]. ]. ]. 

brevity in the developm.ent, som.e statem.ents enclosed in brackets are 

included. These are standard results from. the theory of com.plex 

variables, eo go Churchill et al (1974). 

Notice that under the hypothesis that the m.odel is initially at 

rest, G. == 0 in Eqo (302021)0 The proof of the converse is therefore 
]. 

inunediate because if 1) and 2) of the proposition hold, the transfer 

function H.(s) in (3.2.21) is known. The converse was included to 
]. 

em.phasize that the values of the param.eters given in 1) and 2) give 

all the inform.ation about the m.odel that is contained in the response 

X.. Thus, the param.eters listed are a com.plete set from. this point 
]. 

of view. 

The m.ain result of the proposition is now proved. Suppose that 

x. (t), 
1 

[ " " "(r) } t~O, isknow-nandsupposethat w,C ,{3. : r=l, .•. ,N and 
r r 1 

'" '" ""( r) } [W
r

' C
r

, {3i : r=l, ... , N are bothpossible sets of values for the param.-

eters ofthem.odel under study. This means that each set ofvalues is con-

" sistentwithmeasuredinputandoutput, z andx .. Let H.(s) and H.(s} 
1 J. 1 

be the transfer functions corresponding to the two sets of values [Eqs. 

(3.2. 23) and (3.2. 24)]. 
" '" The basic idea is to show that H. ==H. and 

1 J. 

to find the conditions under which this implies that OJ =: W , C = 2 , r r r -r 



-100-

and 
"(r) _ ""'(r) 
13. -13. • 

1 1 

By the hypotheses and Eq. (3. 2. 21), 

" x. (s) =H. (s)Z(s) 
1 1 

and X. (s) =H. (s)2(s) 
1 1 

Subtracting: o =~H. (s)2(s) 
1 

where 
,6." ""' 

~H. = H. -H. 
1 1 1 

+ 'VsEJ) : 

(3.3.1) 

(3. 3. 2) 

(3.3.3) 

Since the zeros of an analytic function are isolated, there exists a 

dom.ain J)O in J) + over which 2(s) =/0. This im.plies from. (3.3.2) 

that ~H. = 0 on J)O' which in turn im.plies that ~H. = 0 everywhere 
1 1 

in the com.plex plane except possibly at the poles of H. and 'fl .. [If 
1 1 

F is analytic on a dom.ain D and F = 0 on DO CD, then F = 0 

on D]. It therefore follows that ~H. is analytic and zero everywhere. 
1 

[If F(s) is bounded and analytic throughout a dom.ain 

[ s: 0 < I s - sOl < 6}, then either F i s analytic at So or els e So is 

" a rem.ovable singular point of F]. Each pole of H. m.ust therefore 
1 

""' be cancelled by a pole of H. and vice versa. Recalling the results 
1 

of § 3. 2. 3, in particular (3. 2. 25) and (3. 2. 27), this can occur if and 

only if for each r such that ~~r) =/0, the following equalities hold 
1 

(relabelling if neces sary): 

""' " ""' " ""'( r ) " (r ) W =W , =, 13· =13· r r' r r' 1 1 
(3. 3. 4) 
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then~r) = o. 
1 

This proves the proposition. 

It should be noted that the condition that the input be of finite 

duration guarantees that it contains all but a countable num.ber of fre-

quencies. This is because a finite duration ensu..res that the Laplace 

tra..11.sform. of the input is analytic everywhere and so it has only iso-

lated zeros. The Fourier transform., being the Laplace transform. 

evaluated along the im.aginary axis, therefore has the latter property 

also. Proposition 1 shows that, in theory, this property is sufficient 

to ensure unique determ.ination of the m.odal param.eters which control 

the output. In practice, the input would have to have a sufficiently 

strong signal over the bandwidth containing the m.odal frequencies so 

that the signal-to-noise ratio of the m.odes in the output would allow 

the m.odal param.eters to be estim.ated reliably. 

The theory can be extended to include the case of nonzero 

initial conditions. This situation is pertinent to the case where the 

initial portions of the base m.otion and response are not observed and 

so the initial values of the m.odal contributions x~r) are unknown. 
1 

A com.plication in this case is that it is possible for the base m.otion 

to interact with the initial m.otion in such a way that two com.pletely 

different m.odels in In N can have the sam.e response for that base 

m.otion. This problem. does not arise when the base m.otion z of the 

m.odels belongs to the class C
L 

of piecewise-linear tim.e histories with 
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finite duration. This is the case in later applications where the input 

to the model is given by a linear variation between successive discrete 

data points. 

Proposition 2 

Consider any model in the c.lass rn. N which is excited by a 

known base motion history z in the class of piecewise-linear functions 

If the output [x.(t) or x.(t) or x.(t): t ~o and i E J} is known, 
1 1 1 

then: 

1) the !3~r), x~r)(O) and 
1 1 

determined uniquely, 

v~r)(O), r=l, ••• ,N and iEJ, 
1 

are 

2) wand , 
r r 

th 
are determined uniquely if the r mode makes 

a contribution to the output, that is, if either !3 ~r) =10 
1 

v~r)(O)=lO for some iEJ. 
1 

The converse is also true. 

Proof: 

or 

As before, the proof is given for one component x.(t), t~ O. 
1 

It is similar for X. and X. if *.(s) = sX.(s)- ~ x~r)(O) and 
NI IN IlL 1 

. r=l 
X.(s) = s2X .(s) - s \' x~r){O)_ \' v~r){O) are used. IlL 1 L 1 

r=l r=l 
The proof is basically the same as that for Proposition 1. The 

main difference is that instead of Eq. (3.3.2), subtraction of the two 
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expressions for X.(s) leads to: 
1 

where 

and 

.. .L 

O=.6G.(s)+.6H.(s)Z(s), 'v'sE.\9' 
1 1 

.6" ,..., 
.6G. = G. -G. 
111 

.6" ,..., 
.6H. = H. -H. 

1 1 1 

(3. 3. 5) 

(3.3.6) 

·.(3.3.7) 

If it is assumed that .6H. is not identically zero on its whole domain 
1 . 

of analyticity, its zeros are isolated and (3. 3.5) leads to an expres-

sion for 2(s) which is not consistent with its form for z in C
L

" 

It can therefore be concluded that .6H. is zero everywhere except 
1 .. 

possibly at the poles of H. and H.. Repeating the arguments in the 
1 1 

proof of Proposition 1 leads to the same results as in Eqs. (3. 3. 4) • 

.L 

Equation (3.3.5) therefore implies that .6G. is zero on .\9'. 
1 

Repeating previous arguments, .6G. is zero everywhere and each 
1 

pole of G. is cancelled by a pole of G. and vice versa. Recalling 
1 1 

the results of § 3.2. 3, in particular (3.2. 25) and (3. 2.26), this can 

occur if and only if for each r such that ~~r) (0) =10 or 
1 

following equalities hold (relabelling if necessary): 

,..., " ,..., "" ""'(r) "(r) "-'(r) "(r ) 
W =W C =C x. (O)=x. (0) v. (0) = v. (0) r r' r r' 1 1 '1 1 

and if 

~~r)(O) =I 0, the 
1 

(3. 3. 8) 

The results due to .6H. and .6G. being identically zero are 
1 1 
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combined to complete the proof of the proposition. 

3.4. Identifiability of Models in lh N 

In this section, the identifiability of the class lh N of linear 

models is investigated. Recall that the identifiability of a model is 

determined by examining whether noise-free input and output of the 

model specify the parameters uniquely. Recall also that at least local 

identifiability is necessary to give unique optimal estimates when 

minimizing J 0 during the identification of a structure since, if the 

models are locally but not globally identifiable, it may be possible 

to use prior information about the parameters to choose the appro

priate model from the finite number of solutions for an optimal model. 

This cannot be done if the models are not locally identifiable because 

there is then a continuum of solutions. 

The main result of this section is that, in general, the models 

in In N are neither globally nor locally identifiable unless the re

sponse is measured at half or more of the coordinates. Thus, the 

stiffnes s and damping matrices of a linear model of a structure 

typically cannot be determined from seismic records. 

The approach taken in establishing these results is to find 

conditions under which the modal parameters of Proposition 1 deter

mine the model, since these parameters give all the information about 
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the internal structure of the :model that is contained in the input and 

output. It is assu:med that the co:mplete histories of the input and 

output are used and that the input has finite duration, because these 

were hypotheses of Proposition 1. Clearly, if a :model is not identi-

fiable when the co:mplete histories are used, it is not identifiable when 

a portion of these histories are used. By applying Proposition 2, the 

results in this section can be shown to re:main valid when the initial 

portions of the input and output are not available, proVided the inputs 

to the :models can be taken as piecewise-linear functions. 

3.4. 1. Identifiability, Controllability and ObservabiIity 

It is assu:med that a :model in lhN is initially at rest and is 

then excited only by base :motion. If !3~r) = 0, for each i in c9, the 
1 

r th :mode will be :mis sing fro:m the output. Thus, the condition 

!3~r) :f 0 at so:me :measure:ment point is necessary if ill and 'r are to 
1 r 

, 
be deter:mined fro:m the input and output, This is also a sufficient con-

dition according to Proposition 1. This condition, which can be 

written: V r = 1, ••• ,N, ~ i E c9 such that !3 ~r) :f 0, is equivalent to the 
1 

three conditions: 

(a) the :model has no repeated :modes; 

(b) there are no :modes with a zero participation factor; 

(c) no :mode has a node at each coordinate at which the 
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response is measured. 

Conditions (a) and (b) are equivalent to the model being controllable 

and conditions (a) and (c) are equivalent to it being observable (Kalman, 

1963). Thus, a necessary and sufficient condition for all of the modal 

frequencies and damping factors of a model to be determined from its 

input and output is that it be controllable and observable. Notice that 

if the input and output of a model show that it is not controllable and 

observable, then it is not possible to determine which of conditions 

(a), (b) and (c) are violated on the basis of these data alone. 

It follows from the above that a necessary condition for both 

global and local identifiability of lhN is that each model be control

lable and observable. Since there are obviously models in lhN which 

do not satisfy these conditions, the class of models is neither global

ly nor locally identifiable for any input. However, only the subclas s 

of controllable and observable models is of interest for applications 

using data from actual structures. This is because the optimal model 

for the class lhN identified from structural data will always be con

structed with N contributing modes. The optimal model is therefore 

automatically controllable and observable. 

Recall that a model in lhN can be specified uniquely if all of 

its modal parameters are known (see §3. 2. 2). If a model is control

lable and observable, its modal frequencies and damping factors can 
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be determined, but this still leaves the modeshapes. Proposition 1 

indicates that the only other information in the output relating to the 

internal structure of the model is the J3~r) for r = 1, ••• ,N and for 
1 . 

each i in J. Thus, the output only directly specifies all the mode-

(r) _ [ } shape components 1Vk when J - 1, 2, ••• ,N , that is, the output 

corresponds to the complete state ~ of the model. In all other cases, 

the modeshapes are not defined by the input and output alone. How-

ever, they must satisfy orthogonality, that is, satisfy the constraint 

(3.2. 14) where the mass matrix M is known. It is therefore pos

sible that this information, together with the values of the J3~r) de
l 

termined by the input and output, may be sufficient to determine the 

modeshapes. This is examined in the next two subsections, first for 

local identifiability and then for global identifiability. 

3.4. 2. Local Identifiability 

The following result is proved in this subsection: 

Proposition 3 

Consider the subclass of controllable and observable models 

in ~ and let N 0 ~N be the number of coordinates at which the re-

sponse is measured, which is equal to the number of integers in the 

output set J, then: 
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The subclas s is locally identifiable if and only if N ~ iN, o 
that is, the response is measured at no les s than half the coordinates 

in a model. 

Proof: 

Suppose the input and output of a model in the subclass is 

measured, then from §3. 4. 1, all the modal frequencies and damping 

factors are determined. Consider the equations which are satisfied 

2 (r) 
by the N unknown modeshape components *k • First, there are 

the equations given by the fact that f3~r) is determined by the input 
1 

and output for each of the N modes and for each i in J. From 

(3.2. 8) with M= I, and from (3.2. 13), this gives N X NO quadratic 

equations: 

N 
\' b ,d r ) ,d r ) = R. (r ) 
L ~ k'l'i 'I'k I-'i (3.4.1) 

k=l 

However, only NO X (N -1) of these equations are independent since 

for each i: 

N N 

I !3y) = I 1jI~r)ev = ('1'ev). =b. 
1 r - 1 1 

(3. 4. 2) 

r =1 r =1 

The constraint (3.2. 14) gives ~(N + 1) independent quadratic 
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equations after syrrunetry is taken into account: 

, s;;:: r (3.4.3) 

2 l. 
There are therefore N + (NO-E"N)(N - 1) independent quadratic 

equations for the N
2 

unknowns in the modeshape matrix 1fo 

Notice that for any solution for 1f, N there are 2 - 1 cor-

responding solutions in which the signs of the columns are changed, 

but all these solutions give the same model in tn
N

, In particular, 

N 
there are at least 2 solutions of the equations, each corresponding 

to a modeshape matrix of the observed modeL 

1. 
If NO <:aN, there are Inore unknowns than equations, Thus, 

there are free unknowns which can be arbitrarily assigned values and 

this leads, in general, to a whole continuum of real solutions for the 

modeshape matrix, and hence for K and C through Eqs. (3.2. 15). 

Thus, if N
O

< ~"'\f, the subclass of controllable and observable models 

is not locally identifiable. However, there can be exceptional models 

which are locally identifiable o For these models, only a finite set of 

values for the free unknowns leads to real solutions for 1f; all other 

values lead to complex solutions. This can be shown by using the 

theorem introduced in the next subsection. 

1. 
If NO =E"N, which can only occur if N is even, there are the 
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same number of unknowns as independent equations. From a stand

ard result of algebraic geometry, this implies that there are only a 

finite number of real solutions for '1'. Thus, the stiffness and damp

ing matrices are locally unique since, for a finite number of solutions, 

each solution must be isolated in the parameter space. The subclass 

of controllable and observable models is therefore locally identifiable. 

If N 0 >~N, there are fewer unknowns than equations, so the 

number of solutions must certainly remain finite and the subclass 

must again be locally identifiable. It might be thought that in this 

case there should be a unique solution for '1', to within an inconse

quential change of sign of each column, and hence a unique solution 

for K and C. However, because of the nonlinearity of the equations, 

there are exceptional cases which prevent the whole subclass of models 

from being globally identifiable unles s NO = N. 

3.4. 3. Global Identifiability 

Because of the nonlinearity of the equations, conditions for 

global identifiability of the subclass of controllable and observable 

models in inN cannot be determined by simply counting unknowns and 

equations. Instead, the equations must be solved to determine whether 

there is a unique real solution. The approach taken here is based on 

a theorem which is proved in Appendix B. The question posed is: 
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How m.anym.odels in inN would give rise to the sam.e output as a 

kno"W.a controllable and observable m.odel when subjected to the sam.e 

input? Notice that any m.odel consistent with the input and output of the 

observed m.odel m.ust also be controllable and observable. The theorem 

reduces the above problem. to solving a m.atrix problem which is easier 

to treat than the equations in §3. 4. 2. 

Let 1f =[l(l}, ... ,1(N}] be a m.odeshape m.atrix of a m.odel in 

inN' then it is convenient to introduce the transformed m.odeshape 

m.atrix @ =[cp(l), ... ,cp(N)] by defining: 

The transform.ed m.odeshapes cp(r) therefore satisfy: 

or 

By Eq. (3. 2. 14): 

~(r) =Mi l(r) 

cp~r) =m. ~ t!r ~r} 
111 

~t~ =1 

(3. 4. 4) 

(3. 4. 5) 

(3.4.6) 

Since the left-hand inverse and right-hand inverse are always equal, 

this equation im.plies that ~ -1 = ~t. The transform.ed m.odeshape 

m.atrix ~ is therefore a real, unitary (or orthogonal) m.atrix. The 

roles of ~ and 1f are equivalent since the m.ass m.atrix M is as-

sum.ed known. 
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Theorem 

Consider a controllable and observable model in thN whose 

output for a known input is measured. Let J be the output set de-

fining the coordinates at which the response is measured. Let ~ be 

a transformed modeshape matrix of the observed model. The number 

of models in thN which are consistent with the observed data is equal 

to the number of solutions of the following matrix problem: 

Find a nonsingular, real matrix B such that: 

(3. 4. 7) 

(ii) B..e. = .e. (3. 4. 8) 

(3. 4. 9) 

where e. is the unit vector given by (eo)k = oOk and _p is a known 
-]. -1 1 

vector of dimension N with elements given by: 

Furthermore, for each solution B, the transformed mode

shapes i(r) of the model in thN which has the same output as the 

observed model are given by: 

cp (r) =.!. Bcp(r) 
- y-

r 
(3. 4. 11) 

where (3. 4. 12) 
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The proof of this theorem is presented in Appendix B. 

The theorem can be used to prove a number of results con

cerning the determination of models from their input and output. 

Notice that once the modeshape matrix 1 is determined from Eqs. 

(3.4. 11), (3. 4. 12) and (3. 4. 4), the corresponding model can be deter

mined from Eqs. (3. 2. 15) since it must have the same modal fre

quencies and damping factors (;l.S the observed model. 

Proposition 4 

Consider the subclass of controllable and observable models 

in ihN and let NO be as defined in Proposition 3, then: 

The subclass is globally identifiable if and only if NO=N, that 

is, the response is observed at every coordinate of a model. 

Proof: 

If NO =N, then Eq. (3. 4. 7) in the theorem holds for all 

i =l, ... ,N and so the only solution of the matrix problem is B =1, 

the identity matrix. The subclass is therefore globally identifiable. 

Notice that the hypothesis that the models are observable is redundant 

when NO=N since a mode cannot have a node at every coordinate. 

To show that NO=N is a necessary condition for global identi

fiability, it is sufficient to show that if NO =N - 1, there are models 

which are not determihed uniquely by their input and output. 

Without loss of generality, the coordinates can be labelled so 

that the output set is J = [1, 2, ... ,N - l}. According to the theorem, 

the number of models consistent with the input and output of a given 
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model is equal to the number of nonsingular solutions to Eqs. (3. 4. 7), 

(3.4. 8) and (3. 4. 9). From (3. 4. 7), the first (N - 1) rows of 

B = [b .. J are the same as the identity matrix and hence: 
lJ 

where 

(3.4.13) 

(3.4. 14) 

The first (N - 1) equations in (3.4.8) are satisfied identically and the 

last equation gives: 

N 

I bNiPi = PN 
i=l 

From the orthogonality condition (3. 4. 9): 

N-l 

p r P s = - I cp ~ r) cp ~ s) = CP~ ) CP~ ) , r f s 
i= 1 

(3.4.15) 

(3.4.16) 

where the last equality follows from the orthogonality of the T.(r). 

To determine B, the b
Ni

, i = I, ... ,N, could be determined 

from Eqs. (3.4.14), (3.4.15) and (3.4.16). However, it is sufficient 

to determine the solutions for the Pr ' r = 1, ... ,N, because there is 

a one-to-one correspondence between these unknowns and the b
Ni

. 

This follows from (3.4. 14), which can be written: 

t 
E. = ~ b -N (3. 4. 17) 
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where E=[Pl,P2"" ,PN]t and b N =[bN l'bN2 ' ... ,bNN]t. Inverting 

thi s r ela tion: 

b =~E -N 

Equation (3.4. 15) may therefore be written: 

P = P~ = pt~E N --N -

But from (3. 2. 8), (3.4.5) and (3.4.10): 

and so: 

or 

t 
Ct=iJi .e. 

t 
P =CtE N -

(3.4. 18) 

(3. 4. 19) 

(3. 4. 20) 

(3.4.21) 

Equations (3.4. 16) and (3.4.21) give the p in terms of the mode
r 

shape components cp~) and the participation factors Ct
s 

of the 
b 

observed model, together with the constant PN =b~ for the class 

of models. 

The equations for the p can be uncoupled as follows. MuI
r 

tiply (3.4.21) by Ps and then use (3.4.16) to get the quadratic 

equation: 

·N 

- P p + \' Ct rli(r)m(s) =0 sIN N s L r't'N 't'N ,= ,... , (3. 4.22) 

r=l 
rfos 
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This can be simplified since from (3. 4. 20): 

N 

or \' Q' cp~r) =p., i =1, ... ,N L r 1 1 

r=l 

Substituting into (3. 4. 22): 

2 P + rn ( S ) ( p _ Q' rn ( S » = 0 
Q' P - NP s 't'N N s't'N 

s s 

This gives two solutions for each p : 
s 

p _ Q' cp(s) 

(i) p =cp(s) , or (U) p = N s N 
s N s Q' 

S 

(3. 4.23) 

(3. 4. 24) 

(3.4.25) 

Note that Q' 1= 0 because, by hypothesis, the observed model is 
s 

controllable. 

If solution (i) is taken for each s = 1, ... , N, it is easily 

verified using (3. 4. 23) that this gives a solution of (3. 4. 16) and 

(3.4.21). Furthermore, from (3.4.13), (3.4.11) and (3.4.12), this 

solution corresponds to the observed model. Uniquenes s therefore 

depends on whether it is possible to have another solution for £. 

where some of the p are given by (i) and some by (H). This 
s 

amounts to checking what combinations of (i) and (ii) can satisfy 

Eqs. (3. 4. 16) and (3. 4. 21). Because of the conditions on the l3~r) for 
1 

controllability and observability, it turns out that another solution is 

possible if and only if all but two modes have a node at coordinate N, 
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the only coordinate whose response is not measured. If q. and r 

are such that: 

co(q).LO rr\(r).LO but rn(s)=o for all other s-l N 'N t- ''t'N r 't'N - , ... , (3.4.26) 

then the other solution for E. is given by: 

O! O! 

P =-Ern(r) .p =-9.rn(q) andp =Oforal1 0thers=1 N (~,4.27) q O! 't'N' r O! 't'N s ~ , ... , . 
q r 

The corresponding transformed mode shapes cp(r) can be found from 

(3.4.13), (3.4.11) and (3.4.12) and then the corresponding model can 

be constructed as in § 3.2. 2. 

There are obviously models in the subclass of controllable and 

observable models which satisfy the conditions (3.4. 26), so the sub-

clas s is not globally identifiable when NO =N - 1, and hence when 

NO <N. This completes the proof of Proposition 4. 

It is unlikely that an optimal model determined during the 

identification of a structure would satisfy the requirements in (3.4. 26) 

if N was large, although for small N, the requirement could be 

satisfied by "reasonablell models. As NO is reduced, it is expected 

that the conditions for nonuniqueness will become less stringent. 

As an illustration of the results given by Eqs. (3.4. 26) and 

(3. 4. 27}, consider the case where N =3 and N
O

=2. In particular, 

suppose that the observed model is an undamped chain model (Fig. 3. 1). 

Dam.ping consistent with 1h3 is not considered because its inclusion 
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is a trivial extension as far as uniqueness is concerned, since the 

damping matrix is constructed from the mode shapes in the same way 

as the stiffness matrix (§ 3.2.2). Taking m l = 2m, m 2 =m3 =m and 

kl =k2=k3 =k, the model has a node at x 2 in its second mode. Thus, 

conditions (3.4.26) are satisfied if the response is measured only at 

coordinates xl and x
3

' Recall that the pseudostatic influence coef

ficients are fixed by the prescribed geometry of the coordinates 

(§3.1.1), and in this case b l =b2 =b
3 

=1. Starting with the substitu

tion of the transformed modeshapes and the participation factors of 

the chain model into Eq. (3.4.27), the stiffness matrix of the other 

model with the same output can be calculated by following the steps 

given above. The calculations show that the stiffness matrices of 

the original model and its counterpart are given by: 

and 

K =k 2 -1 0 

-1 2-1 

o -1 1 

K =k [ 1. 4545 0.09095 

0.09095 2.8183 , 

-0.5455 0.09095 

-0. 5455 ~ 
O. 09095 

0.4546 

(3. 4. 28) 

Their common frequencies are: wI = O. 4208 wo' w2 = wo' w3 = 1. 6802 Wo 
l. 

where Wo = (k/m)"2, and their common effective participation factors 

are: 13i
l
)=o. 6483,13i

2
)=0. 3333,13i

3
)=0. 0184,13~1)=1. 2966,13~2)=-0. 3333, 

13~3)=0. 0367. Notice that although the second model must lie in rrt3 

and have the same geometry for its coordinates, it is not another 
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/ 

Figure 3. 1. Unda.m.2ed linear chain model with N degrees 
of freeaom. 
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chain model because K is not tridiagonal. 

3. 4. 4. Identifiability of Linear Chain Models 

The previous work demonstrates that the class of models inN 

is too general to guarantee unique determination of a model from its 

input and output unless the complete state is measured. If the class 

is further restricted, the chances of it being identifiable can be en-

hanced, although this may also reduce the capabilities of adequately 

modelling an actual structure. One possibility is to restrict the 

models to the subclass of inN given by the class of linear chain models 

(Fig. 3.1). In this case, the stiffness and damping matrices have the 

additional property of being tridiagonal. However, they are even 

further restricted because a general symmetric, tridiagonal matrix 

of order N has 2N -1 independent parameters but K and C for 

a chain model each have N independent parameters. 

The question of uniqueness in the determination of linear chain 

models from their input and output ha s been studied by Udwadia and 

Sharma (1978) for models without damping, and Udwadia, Sharma 

and Shah (1978) for models with damping. Their damped models do 

not necessarily belong to inN because they do not assume uncoupled 

modes; in fact, their work does not involve a modal approach. 

Udwadia and his colleagues consider the problem of determining the 

unknown stiffnesses k., i=1, ... , N or unknown damping coefficients 
1 

c., i=1, ... , N, from knowledge of the base motion and the response 
1 

at one coordinate or "floor". Their results show that the class of 
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linear m.odels is globally identifiable if the output is the response of 

'the first floor but it is only locally identifiable if the output is the 

response of any other floor. 

The first result can be dem.onstrated by a sim.pler argum.ent 

than the original proof by Udwadia and his colleagues. Consider the 

undam.ped case. Let w. denote the absolute displacem.ent of m.ass 
1 

m.. which corresponds to the ith "floor". In the notation of Fig. 3.1, 
1 

w. =x. + z and, for convenience, set Wo =z. Consider the situation in 
1 1 

the frequency dom.ain as w~ CX) and denote Fourier transform.s by 

capital letters. The m.otion of each m.ass m.ust be m.uch sm.aller than 

that of the m.ass below it because the inertia of each m.ass restricts 

the transm.ission of the high-frequency m.otion up the m.odel. In fact: 

W.(w) k. 1 
W 1 (),..... __ 1 -2 as W~CX) (3.4.29) 

i-I w m. iw 

because the inertia of each m.as s is balanced to the lowest order by 

the spring force set up by the m.otion of the m.ass below. Thus, at 

1 
high frequencies, there is a progressive decrease of the order of 2 

W 

in the m.otion at each successive m.ass higher up in the m.odel. 

From. (3. 4. 29): 

(3. 4. 30) 

Since the base displacem.ent z and the first floor response WI =xl +z 

are known by hypothesis, kl can be determ.ined. From. the equation 
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of m.otion for m.as s m.
l

: 

(3.4.31) 

But W 2 (w) / WI (w) = 0 ( ~ ) as w'" co, and so as w'" co: 
W 

2 
-m. l W WI (w) = - k 2[W 1 (w) - W O(w)] - k2 WI (w) 

Thus, the stiffness of the second spring is given by: 

k2 = - kl + lim. [m. l w
2

W 1 (w) +k l Z(w)]/W 1 (w) (3.4.32) 
w'" co 

where all the quantities on the right-hand side are known. This allows 

w 2 to be determ.ined from. (3.4.31), that is: 

(3.4.33) 

Since wI and w 2 are now known, the argum.ents can be repeated to 

determ.ine k3 and w 3 ' and so on. 

This confirm.s that every undam.ped chain m.odel is determ.ined 

uniquely by knowledge of the base m.otion and the first floor response, 

and so in this case the class of chain m.odels is identifiable for inpu ts 

of finite duration. However, it should be noted that the algorithm. to 

construct the stiffnesses requires accurate knowledge of the m.otion 

at high frequencies where in earthquake records the signals are very 

sm.all. (The liInit proces s can be approxiInated by taking any w m.uch 

greater than w
N

' the highest m.odal frequency of the m.odel.) In 
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almost all practical applications, high-frequency noise would prevent 

accurate determination of the stiffnesses. In fact, only the lower mode 

properties will be determined with reasonable accuracy (see §3. 5). 

Consequently, the uniqueness result should not be used to govern the 

placement of a transducer in a building, as has been suggested, be-

cause the first floor will usually have the lowest signal-to-noise ratio 

for the response of each mode. 

3.4. 5. An Example: Two Degree of Freedom Models 

To illustrate some aspects of nonuniqueness in the determina-

tion of models from their input and output, the clas s 1h2 of linear 

models having two degrees of freedom is considered in detail. Sup-

pose that the geometry of the coordinates xi is given by b i =b2 = 1 

and that the output is the response at xl' then a general model in 

1h
Z 

can be depicted as a lumped-mass system connected by springs 

(Fig. 3.2). No special significance should be attached to the spatial 

arrangement of the masses in Fig. 3. 2, although the coordinate direc-

tions must always be consistent with b
l 

=b2 = 1. Also, damping is not 

included because it does not provide additional insight into the non-

uniquene s s. 

To revert temporarily to a more general situation, i{. •• (i f. j) 
1J 

is used to denote the stiffnes s for relative motion between coordinates 

x. and x. when all other coordinates are fixed, and i{... is used to 
1 J 11 

denote the stiffness for relative motion between coordinate x. and the 
1 

base, again when the other coordinates are fixed. For a class of 
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Figure 3.2. Undamped linear model with two degrees of freedom 
and pseudostatic influence coefficients b

1 
=b

2 
= 1. 

The symbol ~ indicates that the response is measured 
at that mass. 
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ft .. will be the stiffness of the spring connecting 
1J 

x. and x.. If there is no spring between the coordinates, then ft .• 
1 J 1J 

is set to zero. The ft.. are to be distinguished fronrr the elenrrents 
1J 

k.. of the stiffness nrratrix K. The following useful relation can be 
1J 

proved by deriving the equations of nrrotion of the general nrrass-spring 

systenrr using Lagrange l s equations: 

k..=-ft .. , i=Jj 
1J 1J 

N 

k ii = I \j 
j=l 

(3. 4. 34) 

The inverse relation, which will also be used in ,this subsection, has 

the sanrre fornrr: 

ft .• = - k .. , i #j 
1J 1J 

N 

ftU = L k ij 
j=l 

(3.4.35) 

Equations (3.4. 34) are useful for constructing the stiffness nrratrix for 

a general arrangenrrent of point nrrasses connected by linear, nrrassless 

springs. The point nrrasses can be replaced by finite, rigid lunrrped-

nrras ses provided they have no rotational degrees of freedonrr.There 

are also sinrrilar equations to (3.4.34) and (3. 4. 35) which give the 

relation between the dashpot coefficients and elenrrents of the danrrping 

nrratrix. 
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Returning to the clas s tD.Z' consider a model which is control

lable, then wr and !3ir ) -f 0, r = 1, Z, are determined by its input and 

output, the latter being the response at xl' Two points to be noted 

are that this is a case with NO =N - I and that a coupled model with 

two degrees of freedom must be observable because it cannot have 

repeated modal frequencies and it cannot have a node at a coordinate. 

This last result also ensures that the conditions (3. 4. Z6) for non-

uniqueness are always satisfied because in the present case, the 

conditions reduce to cp~I)-fO and cp~Z)f:.o. Let ~=[~(I),cp(Z)] be the 

transformed modeshape matrix of the observed model. From (3.4. Z7), 

(3.4.13) and (3.4.11), there is one other model consistent with the 

observed data, called the companion model, which is given by the 

transformed modeshape matrix 1 =@(l), 'CP(Z)] where: 

(Z) 
CPz 

f
cp(Z) 

, cp( Z)= .!...ll 
- YZ Oi 

I 
OiZ 

(I) 
CPz 

(3.4.36) 

and Yl and Y
Z 

are to be selected so that cp(l) and i( Z) have unit 

magnitude. Evaluating the Y r and using the orthogonality of the i(r) 

and (3. 4. ZO) to simplify (3. 4.36), it can be shown that ~ can be 

expressed in the form: 
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~ =V~ 

(3.4.37) 

PI P2 
where V= 

1 

(Pi + p~r~ 
P2 -PI 

~ 
"2 

Recall from (3.4. 10) that p. = b.m., so that in the present case 
t 1 1 

1,. 1,. 2 2 1,. 1,. 

Pl=m~ , P2=m~ and (P
1

+p
2
)2=(m

1
+m

2
)2. 

According to (3.2. 15) and (3.4.4), the stiffness matrices of 

the observed and companion models are given by: 

(3.4. 38) 

and 

Thus, from (3. 4.37) and (3.4.38): 

(3.4. 39) 

Observe that: 

o 

o P2 

and so: 

[

1 
~ ~ 

M"2 VM-"2= 1 ~ 
(1 + r)"2 

r 

(3. 4. 40) 
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where r = m
2 
Im

l
• Substituting (3.4.40) into (3.4.39) gives the fol-

,-v 

lowing relation between the stiffness elements of K and K: 

(3.4.41) 

These relations can be interpreted in terms of spring stiffness in the 

two models by using (3.4.34) and (3.4.35): 

1 
rt12 = 1 + r (rt22 - rrtll ) (3. 4.42) 

'it'22 = rrtll + (1 + r) rt12 

Notice that the spring between mass m
l 

and the base is the same in 

each model. This is consistent with a general result which can be 

proved using the theorem in Appendix B: if b
k 

= 1, k = 1, ••• ,N, and 

the response is measured at X., then the stiffness rt.. for relative 
1 11 

motion between x. and the base is determined uniquely. 
1 

One interesting case is given by setting rtll = 0, so that the 

observed model is a chain model with the response measured at the 

"roof". In this case: 
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"-J 

f{.U =0 

(3. 4. 43) 

7tZZ = (l + r) f{.lZ 

The companion model is therefore a chain model as well. This is a 

more general case of the example given in § Z. 4. 1 which had m
l 
= m

Z
' 

so r = L 

Another interesting case is given by setting f{.ZZ = 0, so that 

the observed model is now a chain model with the response measured 

at the first IIfloorll. In this case: 

(3. 4. 44) 

Notice that the companion model is not a chain model. This is as it 

should be, because the result proved by Udwadia and his colleagues 

(§3. 4.4) states that a chain m.odel is determined uniquely by its first 

floor response. 

This last exam.ple also illustrates another feature in the iden-

tification of general linear m.odels; since f{.ll > 0, (3. 4. 44) shows 

that f{.lZ < 0, so that the com.panion m.odel has a spring with a negative 

stiffness. Indeed, the com.panion m.odel is physically unreasonable if 
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one insists on interpreting its stiffnes s distribution in term.s of physi-

cal springs between coordinates. However, this interpretation is too 

rigid because there are physically reasonable system.s which require 

negative stiffnes ses if their stiffnes s dis tribution is m.odelled by 

springs. The governing requirem.ent is only that the stiffness m.atrix 

be positive definite. 

For exam.ple, consider a uniform. cantilever beam. undergoing 

lateral deflection. Let xl be the deflection half-way along the beam. 

and x
2 

the deflectionatthefree end (Fig. 3. 3a). Using elem.entary 

beam. theory, the corresponding stiffness m.atrix is: 

(3. 4.45) 

48EI 
where kO = --3-. The system. of springs which has the same stiffness 

7L 
m.atrix (Fig. 3. 3. b) is given by applying (3.4.35) to (3.4.45). This 

gives: 

1{i~2 = 5k
O 

> 0 

1{~2 = -3kO <0 

(3.4.46) 

A spring with a negative stiffness is therefore required in order to 

m.odel correctly the bending in the beam.. Furtherm.ore, three springs 
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E, I 
.-....;-,----L/2 -- L/2 --~ 

(a ) 

( b) 

Figure 3.3. (a) Unifor:m cantilever bea:m (b) Syste:mof springs 
with the sa:me stiffnes s :matrix for the coordinates 
xl' and x Z· 
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are required; two springs can model shear but not bending. 

As a final comment on this point, Eq. (3.4.35) can be used to 

prove the following result: 

If K is a symmetric, positive definite matrix, then it cor-

responds to the stiffness matrix of a spring system with every spring 

stiffness positive if and only if all the off-diagonal elements of K are 

nonpositive and K is weakly diagonally dominant, that is, 
N 

k .. ~ \' Ik .. I, i= 1, •.. ,N. 
11 L 1J 

3=:1 
rf:.i 

3.5. Determining Linear Models of Structures from Earthquake 

Records 

The application of the class of linear models tnN to the identi-

fication of a structure from seismic records is considered in this 

section. It is shown that reliable estimates of the stiffness and damp-

ing matrices typically cannot be made from records of earthquake 

response because of basic limitations of the data. A practical strategy 

is then suggested for structural identification using linear mod els, 

which consists of two stages. In the first stage, parameters of the 

dominant modes in the records are estimated. In the second stage, 

these parameters are used to improve synthesized models, which are 

capable of giving more detailed estimates of the structural response. 
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3.5. 1. LiITlitations of the Data and Models 

The first liITlitation to be considered arises because the seis-

ITlic response is usually ITleasured at only a few points in a structure. 

In order for the optiITla1 estiITlates of the stiffness and daITlp-

ing ITlatrices, K and C, to be at least locally unique, the class tnN 

ITlust be locally identifiable. FroITl §3. 4. 2, the response ITlust there

fore be ITleasured at ~N or ITlore of the coordinates. This require

ITlent will, in general, iITlpose a severe restriction on the nUITlber of 

degrees of freedoITl allowable in the ITlode1s. For exaITlp1e, if only 

one response record is available, which is the case for the two build

ings exaITlined in Chapter 6, the models cannot have ITlore than two 

degrees of freedoITl. Thus, if the ITlatrices K and C are taken as 

the paraITleters to be estiITlated uniquely, the nUITlber of degrees of 

freedoITl of the ITlode1s in tnN will typically be so sITlall that the ITlass, 

stiffnes sand daITlping distributions in the structure will be ITlodelled 

very poorly. 

On the other hand, the ITloda1 paraITleters for the structure, as 

given in Proposition 1, can theoretically be deterITlined for ITlodels 

with any nUITlber of degrees of freedoITl. FurtherITlore, within the 

fraITlework of a linear ITlodel, these paraITleters contain all the infor

ITlation about the structural properties that can be estiITlated directly 
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from the input and output records. It is therefore recommended that 

these modal parameters be estimated, rather than K and C. 

Another important limitation is due to noise in the records 

which places an upper bound on the number of modes that can be esti

mated reliably. This relates back to the discussion in 92.4. 1 of the 

compromise that must be made between resolution and variance of the 

parameter estimates. Experience with a few applications to multi

story buildings suggests that the bound will generally be of the order 

of ten modes or les s. This is due to several factors which cause a 

deterioration in the signal-to-noise ratio of the higher modes. The 

fact that the distributed inertia forces induced by the earthquake 

motion all act in the same direction, but the modeshapes of the higher 

modes change sign up the building, limits the energy fed into these 

modes. This effect is seen in the linear models as a decrease in 

participation factor with mode number. In addition, the energy con

tent of the ground motion falls off at high frequencies. These two 

factors result in a smaller signal for the higher modes. There is 

also a decrease in the signal-to-noise ratio due to an increase in the 

noise levels at higher frequencies because of limitations in the mea

suring, recording and data-manipulation processes. In terms of the 

modal approach recommended above, these factors imply that only the 
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dominant modes of the response can be estimated reliably from 

earthquake data. 

These factors also imply that the higher-mode information in 

the stiffness and damping matrices will be unreliable if attempts are 

made to estimate these matrices from seismic records. Since Eqs. 

(3.2. 16) show that it is the properties of the higher modes which dom

inate the values of K and C, the stiffness and damping matrices 

will be estimated poorly from structural data, even if in theory they 

can be determined uniquely by the input and output records. This is 

a general conclusion for structural identification using linear models, 

irrespective of whether the class inN or some other class such as 

chain models is used. 

Since the stiffness matrix cannot be estimated reliably from 

records of the earthquake response of a structure, the distribution of 

forces also cannot be estimated reliably. This is particularly unfor

tunate because the forces are of great interest to the earthquake 

engineer. 

Two approaches are suggested to enable the forces to be deter

mined or estimated. A purely empirical approach is to use appropri

ate transducers to measure directly the stress or strain in structural 

members. There are obviously practical limitations on the number of 
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such transducers which could be distributed throughout a structure, 

but they could be used to check the other approach to determine the 

forces. This is the one suggested in §Z. 1. Z in which the parameters 

of a synthesized model, such as a finite- element model, are adjusted 

so that the properties of its lower modes are equal to the same pro

perties estimated from the structural data (see, for example, Collins 

et aI, 1974). This will ensure that the output of the model is consis

tent with the recorded motion of the structure. The altered model 

may then be used to estimate the earthquake forces and also the struc

tural motion at points where it was not recorded. 

The final limitation to be mentioned is a consequence of the 

approximations inherent in the models in lh N. Properties such as 

linearity, time-invariance and uncoupled modes are not features of 

real structures, which can exhibit amplitude nonlinearities, struc

tural deterioration and other complications during an earthquake. 

The simplifications inherent in the linear modelling may be adequate 

at low levels of excitation, but for strong ground-motion they can be 

expected to lead to a pronounced dependence of the estimates of the 

parameters on the particular data sample chosen, as discussed in a 

general way in §Z. 4. 6. However, there is still value in determining 

how well linear models can be made to fit the data because of their 
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dominant role in present structural design. They also serve as a 

useful first step towards the problems involved in using nonlinear 

models in structural identification. 

The limitations discussed in this section are summarized 

in Table 3. 1, together with suggestions to avoid these difficulties. 

~ Limitation 

Limited number of re
cords compared with 
desired number of co
ordinates in model 

Noise in the records 

Model is only an 
approximation 

Consequence 

Limits resolution be
cause modeshape in
formation missing 
from data. Matrices 
K and C typically 
cannot be determined 
uniquely 

Limits resolution be
cause higher-mode in
formation is strongly 
influenced by noise. 
Matrices K and C 
estimated poorly, 
even if they are iden
tifiable 

Optimal model depends 
on data used to dete,r
mine it and it may not 
predict response well 
for other excitations 

Suggested Approach 

Determine the modal 
parameters of Prop
ositions 1 or 2, 
which contain all the 
information in the 
records 

Must be content with 
estimating param
eters of dominant 
modes in records of 
response 

Future research to 
identify more real
istic mod els. 

TABLE 3. 1. Limitations when using linear models and earthquake re
cords for structural identification. 
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3. 5. 2. Models Based on Dominant Males 

In the previous subsection, it was suggested that the practical 

strategy for structural identification with linear models is to take a 

(r) (r) 
modal approach wherein the parameters w, C ,13. ,X. (0) and 

r r 1 1 

v~r)(O) are estimated for the dominant modes in the seismic response 
1 

records. This amounts to using a class of models defined by the 

theoretical model [Eq. (3. 2. 12)]: 

,,(r) + 21" ·(r) + 2 (r) = _A(r)"(t) 1 x. 'b W X. W x. 1"" Z ,r = , •.• , N 
1 rrl rl 1 

(3.5.1) 

with the initial displacement and velocity, also 

treated as parameters, together with the output equation [Eq. (3. 2. 11)]: 

N 

Xi = I x~r) , Vi E J 

r=l 

(3.5.2) 

where the output set J defines the coordinates (points and directions) 

at which the response X.,~. or x. is measured. 
111 

In this approach, the structural data are used to determine the 

number of modes, N, of the model as follows. A small number of 

modes is taken initially and the optimal estimates of the modal param-

eters are determined from the recorded input and output. Another 

mode is then added to the model and all of the modal parameters are 
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again estimated. This is continued until the change in the optimal 

measure-of-fit, J . , with the addition of another mode, indicates 
nun 

that the output match is no longer significantly improved. 

Clearly, some judgment is involved in determining the best 

value of N, so it is not a precisely defined quantity, but the above 

approach does give some indication of the resolution which can be 

achieved in the presence of the noise in the records. The parameters 

of the N modes included in the model by using the above criterion 

based on J . are not necessarily estimated accurately because this 
nun 

depends on the nature of the noise. However, if additional modes 

were included, they would have such a smal1 effect on the output that 

it is likely that the estimates of their parameters would be completely 

unreliable. 

Some of the advantages of using models based on the dominant 

modes in structural identification are: 

1) They deal directly with the parameters that control the 

structural output, as it is interpreted by a linear model. 

2) The models are controllable, observable and identifiable, 

from the results of § 3.3 and § 3.4. 1. 

3) The order of the model is not arbitrarily defined, but is 

determined from the structural data. 
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4) The estimated parameters can be used to alter any synthe-

sized linear model, whether it be discrete or continuous, to ensure 

that it is consistent with the structural data. 

In the remaining chapters of this dis sertation, attention will 

shift to structural models based on the dominant modes of the output. 

In Chapters 4 and 5, techniques are described which allow the modal 

parameters to be estimated from seismic records. The results 

obtained when these techniques were applied to seismic records from 

two buildings are discussed in Chapters 4 and 6. 
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IV. OPTIMAL FILTER METHOD 

4. I. Introduction 

The concept of an optimal filter plays an important role in mod

ern control theory. Although a number of optimal filters can be de

fined, depending on the criterion for optimality, they all share the 

same basic property of estimating the state of a prescribed model for 

a system. At each instant of time, the filter gives the optimal estimate 

of the state based on the histories of the input and output of the system 

up until that time. If the values of parameters of the model are not 

known, the state and parameters can be estimated simultaneously by 

combining them into an augmented state and then determining the opti

mal filter for this new state. In this case, by a suitable choice of the 

optimality criterion, determination of the optimal filter is an output

error method for parameter estimation. 

A deterministic, least- squares filter has been developed by 

Bellman et al (1966), and extended by Detchmendy and Sridhar (1966), 

by using the concept of invariant imbedding. Several investigations 

have recently been made to determine whether this filter is a useful 

technique to identify structures from seismic records (Distefano and 

Rath, 1974; Distefano and Pena-Pardo, 1976; Beck and Jennings, 1977). 

The method has several attractive features, including the ability to 

treat nonlinear models and to show how the estimates of the parameters 

change with time. The work with simulated response data, generated 

by calculating the response of a model to recorded ground motion, was 
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prmnising. However, applications to real seismic data reported later 

in this chapter show that there are weaknesses in the method when 

there is significant measurement noise or model error. 

The contents of this chapter are as follows. A general formu

lation of the invariant-imbedding filter is given in § 4; 2 for the problem 

of estimating simultaneously the state and parameters. It is possible 

to introduce this as a special case of an output-error approach to state 

estimation, but the formulation given here emphasizes the similarities 

with the general output-error approach to parameter estimation which 

was given in §2. 2. The filter equations are derived in §4. 3 for a gen

eral type of model and are then specialized in §4. 4 fo~ a single degree

of-freedom linear model. The latter sec;:tion also contains .some re

sults and conclusions from tests of the filter using simulated response 

records and seismic response records from a multi- story bUilding. 

4.2. Formulation 

Recall from § 2.2 that when the usual output-error approach 

to parameter estimation is applied, if the initial state is unkno'NTI., it 

is included along with the unknoW".G. model parameters in the vector a 

to be estimated from the input and output of the system. The approach 

is then strictly one to estimate simultaneously the state, x, and the 

parameters, Ci, because once a is estimated, the complete history 

of the state can be determined from (2.2. 1). The optimal filter method 

also estimates the state and parameters but it does so by combining 

the parameters and the final state into one vector £. By estimating 
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.£ for a continuous succes sion of increasing subintervals of the com-

plete data interval, sequential estimates of the parameters are obtain-

ed. 

To be specific, the augmented state is defined by: 

[
X(t)] 

~(t) = Sf. (4.2.1) 

With this definition, the state Eq. (2. 2. 1) can be rewritten as: 

[ 

f(x, z, t;Q')] 
~(t) = K(~' t)~ 

o 
(4. 2.2) 

since the model parameters are constants. Also, to simplify the nota-

tion, the input ~ to the model has been omitted as an argument of K. 

It is assumed that f allows the complete history of x to be determined 

from the value of u at any point. 

Suppose 'f lies in the interval [T i' T f] corresponding to the 

portion of the data from the system which is to be used in the estimation. 

A vector .£ is defined by .£ = u( 'f), then for the subinterval [T., 'f], the 
1 

measure-of-fit defined by (2.2.4) can be rewritten as: 

(.1:.2.3) 
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since, by hypothesis, u is completely determined by the final-value 

problem given by (4. 2. 2) and the end condition u(,.r> = c. Notice that 

a in the last term of (2. 2. 4) has been replaced by the equivalent vector 

u(T i) and a
O 

has been rewritten as u
O

• Notice also that fl and r 2 

are m.odified forms of the m.atrices appearing in Eq. (2. 2. 2) in which 

columns of zeros have been added so that the model output m is given 

The optimal estimates of the final state and parameters for the 

subinterval [T., T] of the data are given by the value of c which mini-
1 

mizes J(.£, T). If this value is denoted by ~(T), that is, 

J(e( T), T) =min J<,~ .. , T) 
c 

(4.2.4) 

then ~(T) is the optimal filter of u evaluated at time T. The history 

of the optimal filter ~(T), TE[T i' T f]' gives sequential optimal esti-

mates of the state and parameters based on increasing portions of the 

observed data. 

Notice that initially, when T is close to T., thetermin 
1 

(4. 2. 3) containing the initial estimates Uo will dom.inate J and the 

optimal estim.ates will be biased towards the initial estimates. If the 

elem.ents of A are small enough, or the interval [T i' T f] is large 

enough, however, the integral term in J will eventually dominate as 

T is increased. The optimal filter will therefore begin with the initial 



-146-

estimates and "converge" to values which are controlled primarily by 

the data from the system, and the rate of "convergence" can be changed 

by altering the size of the elements of A. In the absence of model error 

and measurement noise, this behavior would represent an asymptotic 

approach to the true values of the parameters. In applications to real 

data the optimal filter need not converge to constant values of the pa

rameters because the optimal estimates based on the data may change 

as more data are used, for the reasons discussed in § 2.4.6. 

Finally, it should be noted that the optimal estimates of the pa

rameters in a and ~ (T f) are equal if the same measure- of-fit is 

used [equations (2.2.4) and (4.2.3)]. The only difference between the 

two output-error approaches is that one finds the minimum of J by 

defining the complete history of the state x in terms of an initial

value problem and the other uses a final-value problem. 

4. 3. Invariant-imbedding Filter Equations 

The original derivation of the equations for the invariant-im

bedding filter was given by Bellman et a1 (1966) and this was extended 

by Detchm.endy and Sridhar (1966) to include an equation-error term in 

the state Eq. (4. 2. 2). Only the output-error approach is considered in 

this work and a similar derivation to that of Bellman et a1 is given. 

The problem addressed is to solve the series of minimizations 



-147-

of J(c, T} as T ranges over the interval [T i' T f]. This is equivalent 

to determining the history of the optimal filter on this interval. The 

first step is to derive a partial differential equation for J(.£, T). Since 

u is defined on the interval [T .,T] by the state Eq. (4. 2. 2) and the 
1. 

end condition U(T} =.£' the notation u(t; T,.£} is used. At time T, 

u(t; T,.£) has the value c and at time T + 6 T, it has the value c + 6.£ 

where: 

(4.3. 1) 

But: 

(4. 3. 2) 

on the interval [T., T]. Apply a Taylor series expansion to the right-
1. 

hand side of (4.3. 2) and substitute (4.3.1); then let 6T~Oc This leads 

to: 

where u is the vector with elements 
-T au. 

(4.3.3) 

au. 
t and u is the matrix with aT -c 

1 
element s -a-. c. 

By differentiating J and using (4. 3. 3), the following 
J 

linear partial differential equation can be derived: 

(4.3.4) 
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where (.,.) is the Euclidean scalar product. The initial condition as-

sociated with (4. 3.4) is given directly by (4.2. 3): 

(4.3.5) 

A Taylor series expansion is used to solve Eqs. (4. 3.4) and 

(4.3.5). Thus, with T as a parameter, J and ~ may be expanded 

about E. = ~(T) to get: 

J(c, T) =J[e(T), T] +IIc - e(T)/l2 + ... 
- - - - R(T) 

(4.3.6) 

and gJ£, T) = gf~(T). T] + Ku[~(T), T][£ - ~(T)] + ... (4. 3. 7) 

There is no first-order term in (4.3.6) because ~(T) minimizes 

J(c, T) and this implies that: 

J [e(T),T]=O c - -
(4. 3. 8) 

The symmetric matrix R(T) in (4.3.6) is defined by: 

1 a2 
[R(T)] .. = -2 ~ ~ J(£, T) I 

1J uc.uc. (T) 
1 J £=~ 

(4.3.9) 

It is the sensitivity matrix of J(E., T) with respect to E., the counter-

"-

part of S = S(a) defined by (2.3.8). If R(T) is positive definite, ~(T) 

gives a strict local minimum of J(£, T). 

If the infinite expansions (4.3.6) and (4.3.7) are substituted 

into (4.3.4), an infinite hierarchy of coupled ordinary differential 
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equations is obtained in which the nth equation governs the behavior of 

an array of dim.ension (n - 1). The first three equations of this hier-

archy are the scalar equation giving the m.easure-of-fit of the optim.al 

estim.ate: 

(4. 3. 10) 

the vector equation: 

(4.3.11) 

and the m.atrix equation: 

(4. 3. 12) 

-Q(T)H\~., T)V{T)H(~, T)Q{T)- Q{T)E{T)Q(T) 

Here Q(T) = R - \T) is introduced to avoid num.erical inversion of the 

m.atrix R(T) and the m.atrices H, K and E are defined by: 

H(~, T) =r 1 +r 2~ (~, T) (4. 3. 13) 

Kij (e, T) = cr 2~. u. (~, T), V(T)[y(T) - r 1 e(T) - r2K(~' T)]) 
1 J. . •... 

(4. 3. 14) 

(4.3.15) 

An approxim.ate solution for the optim.al filter can be calculated 
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if the term E(r) is dropped in (4.3.12). The first three equations 

of the hierarchy are then decoupledfrom the remaining equations. The 

approximate optimal filter, referred to from now on as the invariant-

imbedding filter, is therefore defined by the initial-value problem 

given by Eqs. (4.3. 11) and (4.3. 12) with E == 0, together with the ini-

tial conditions: 

e(T.) =un - 1 --v 
Q(T.) =A -1 

1 
(4.3.16) 

which are derived by substituting (4.3.6) into (4.3.5). Notice that 

(4.3. 16) implies that A must be nonsingular and, in particular, that 

it cannot be set to zero in (4. 2. 3). The initial estimates will there-

fore always have some influence during the minimization of J(~, r) 

when r is close to T .• 
1 

The optimal filter ~(r) gives the optimal estimate of ~(r) 

using the subinterval [T .,r] of the data. If the associated optimal 
1 

estimate of the history of the augmented state is required, which is 

denoted by u(t;r), tE[T., r], it must be determined by the state Eq. 
- 1 

(4. 2. 2) and the end condition: 

§:.(r;r) =~(r) (4.3.17) 

The two time-parameters in the notation for u are therefore inter-

preted as follows: t indicates the time at which the state u(t) is 



-151-

estimated and T indicates row much of the available data over the in-

terval [T
i
, T

f
] has been used in the estimation •. In view of these 

corn.rn.ents, (4.3. 10) is an interesting result because it states that the 

minimum of J(.£, T), which, according to (4.2.3), is given by: 

is also given by replacing u(t;T) by ~(t). However, it is clear from 

their respective definitions that these latter quantities are not equal. 

In fact, U and e satisfy different differential equations, Eqs. (4.2. 2) 

and (4.3. 11) respectively. 

In general, the invariant-imbedding filter is only an approxi-

mation to the optimal filter. However, the truncated equations are 

exact if the equation for the augmented state u is linear, that is, 

~(t) =£(~, t) =B(t)u +~(t) (4.3.19) 

where the matrix B(t) and vector E.(t) are known. In this case E 

is identically zero because J(£. T) is a quadratic function of.£. How-

ever, for parameter estimation, the equation for the augmented state 

is nonlinear for any nontri vial problem [see, for example, Eq. (4. 4. 3)]. 
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In the above linear case, Eqs. (4. 3. 11) to (4. 3.16) are formally 

equivalent to the equations for the stochastic filter of Kalman and Bucy 

(1961) if proces s noise is neglected. The Kalman-Bucy filter is in this 

case the minimum variance estimator of the state u of a linear system, 

whose parameters are known, in the presence of Gaussian white noise 

in the observations. For this filter, Q{t) corresponds to the covar

iance matrix of u{t). 

In the nonlinear case, the equations for the invariant-imbedding fil

ter are formally equivalent to those for the extended Kalman filter if the 

term involving K in (4.3.12) is omitted. The present derivation ofthe in

variant-imbedding equations does not include an equation-error term, cor

responding to the proces s noise of the extended Kalman filter, but this term 

can be included (Detchmendy and Sridhar, 1966). The extendedKalmanfil

ter and other approximations for a stochastic nonlinear filter are discussed 

by Jazwinski (1970). 

4.4. Single Degree-of-freedom Linear Model 

The general filter equations of the last section are specialized 

in this section for the problem of estimating the state and parameters 

using a linear model with a single degree of freedom. This model is 

then used to examine the behavior of the invariant-imbedding filter for 

one of the simplest models useful in structural identification. 

Consider the model given by the equations: 
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• 
(4. 4. 1) 

v=X 

Z where a
l 

= W, a
Z 

= ZCw, a
3 

= p and W = ZTr/T; x and v are the dis-

placem.ent and velocity of the m.odel; z is the input; T is the undam.p-

ed natural period of the m.odel; C is its viscous dam.ping factor; and 

the input m.ultiplier p is called the participation factor of the m.odel. 

Notice that the m.odel Eq. (4. 4. 1) has the sam.e form. as the m.odal 

Eq. (3.5. 1). In fact, the m.odel is used later to estim.ate the corre-

sponding param.eters of the fundam.ental m.ode of a,- building. 

From. (4. Z. 1), the augm.ented state vector is given by: 

(4. 4. Z) 

and the corresponding state equation is:" 

• [ ..]t u(t) =g(~, t) = v, - alx - a Z v - a 3 z(t), 0, 0, 0 (4. 4. 3) 

This last equation is nonlinear in u, even though the original m.odel 

is linear in the response quantities and in the param.eters. 

It is assum.ed that the histories of the input z and the relative 

displacem.ent, velocity or acceleration, xo' v 0 or a
O

' are avail-

able over som.e tim.e interval [T i' T f] . The output can therefore be 

described by: 
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(4.4.4) 

where k. = 1 if the corresponding response quantity is to be used in 
1 

the estimation, otherwise it is zero. The model output is: 

• t 
m =[k l x,k2v,k

3
v] (4.4.5) 

. 
or m =r l~ +r 2u (4.4.6) 

where 

r
l =~l 0 0 0 ~] andr2=[~ 0 0 0 

~] 
(4.4.7) 

k3 0 0 0 0 0 

0 0 0 k3 0 0 

The measure- of-fit J which is to be minimized by the optimal 

filter becomes: 

+A 22 [v(T
i
) - vO]2 +A33[c 3 - aI, 0]2 

+A44[c 4 - a2 , 0]2 +A 55[c 5 - a3 , 0]2 

(4. 4. 8) 

where the weighting matrices A and V(t) have been taken diagonal 

and constant, and x and v satisfy (4.4. 1) with x('I") = c
l

' v('I") = c
2

' 
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The V.. are used to normalize each integral 
11 

so that the effects of the different magnitudes of the response quantities 

are reduced. This is achieved by taking: 

with similar expressions for V 22 and V 33' and with the maximum 

taken over [T i' T fJ. Alternatively, the integral-square response could 

have been used: 

(4. 4. 10) 

with similar expres sions for V 22 and V 33' The square root of each 

integral term in (4.4.8) can be interpreted as the ratio of the root-

mean-square (r. m. s.) response-error to the maximum response if 

(4.4.9) is used, and as the ratio of the r. m. s response-error to the 

r. m. s. response if (4.4. 10) is used. 

The optimal filter is the value of c which minimizes J(c, 'I) 

and it leads to the sequential optimal estimates ~('T): 

(4. 4. 11) 

as 'I ranges over the interval [Ti' TfJ. Equations (4.3. 11) and 

(4.3. 12) for the invariant-imbedding filter become: 
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(4.4. 12) 

+ k2 V 22Qj 2 (Tn v ° (T) - e 2 (T)] + k3 V 3 3P j 2 <,~, T)[ a O (T) -g2 (~, T)] 

and ~k(T) =ljk(~' T)+ Pkj(~' T) -k1 Vu ~l(T)~l(T) -k2 V22~2(T)~2 (T) 

(4.4.13) 

where 

= 0, otherwise (4.4. 14) 

and (4.4.15) 

The initial conditions are given by Eqs. (4.3. 16), which become: 

(4. 4. 16) 

where the vector on the right-hand side contains the prescribed initial 

estimates, together with: 

1 
Q·k(T.) =A-O'k J 1 .. J 

JJ 
(4. 4. 17) 

The last term in (4.4. 13) arises from the matrix K defined by 

(4.3. 14) and it makes a contribution only if k3 = 1, that is, acceleration 

matching is included in J. The term is shown here for completenes s 

but it was not included in the results reported below. With the term 
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om.itted, the equations are identical to those for the extended Kalm.an 

filter. 

4.4. 1. Tests: 8im.ulated Data 

Num.erous tests of the filter m.ethod were m.a.de using response 

data generated by num.erically solving the equations of m.otion (4.4. 1). 

The oscillator was taken to be initially at rest and z was taken to be 

the first 10 seconds of the N -8 com.ponent of the 1940 EI Centro earth-

quake record (Figure 4. 1). 

A norm.alized version of the initial value problem. for the in-

variant-im.bedding filter given by Eqs. (4.4. 12) to (4.4. 17) was solved 

using a standard subroutine for system.s of first-order differential 

equations .. It is only necessary to solve the Ricatti equation for Q 

for each Q,. with j;;:: i because Q is sym.m.etric. The subroutine 
1J 

used is based on the Adam.s-Moulton predictor-corrector algorithm. 

with a variable tim.e- step capability. The tim.e- step is selected so 

that the local truncation error in the num.erical solution of the equations 

is nom.inally less than a prescribed am.ount, which was taken as 1% of 

the current calculated solution. The subroutine therefore selects sm.all 

tim.e-steps when the m.atrix Q(t) is initially changing rapidly and then 

autom.atically increases the tim.e-step as the rate of change of Q(t) 

decreases. 
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The filter equations were solved in a normalized, nondimen-

sional form given by scaling ~(t) and Q(t) by the initial estimates of 

the parameters and by the maximum of the recorded response. This 

helps when selecting appropriate values for Q(O) or A. In addition, 

the relative sizes of the diagonal terms of the inverse sensitivity ma-

trix Q(t) then give an indication of the accuracy of the estimates rel-

ative to one another. 

The first illustration of the results obtained uses the relative 

displacement of a linear oscillator with T = 1. 0 sec., ,= 5% and 

p = 1. O. To investigate the performance of the filter when both the 

parameters and the initial conditions are unknown, the estimates of 

the initial displacement and velocity were taken to be 10% of x and 
m 

WOx respectively, where x is the "recorded" peak displacement. 
m m 

The values of the Q .. (0) in the normalized version of (4.4. 17) were 
JJ 

chosen to be: 

-1 { 2 Q .. (O)=A .. = 10, j=1,2 
JJ JJ 

10
4 

j=3,4,5 (4.4.18) 

The initial estimates of the model parameters and the estimates 

given by the filter after the first 5 seconds of the data have been used 

are shown in Table 4. 1. The corresponding estimates of the period, 

damping factor and participation factor are also shown. It took 
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approxim.ately 15 seconds of CPU tim.e on an IBM 370/158 to com.pute 

the first 5 seconds of the filter, which are typical figures for all the 

com.puter runs with a single-degree-of-freedom. m.odel. The behavior 

of the sequential estim.ates of the param.eters, which are given by the 

filter com.ponents e
3

(t), e
4

(t) and e
5

(t), are shown in Fig. 4. 2. The 

estim.ates have essentially converged to the true values in about 3~ 

cycles. The slower rate of convergence for the dam.ping coefficient in 

Fig. 4.2 is typical of all the results obt ained with lightly-dam.ped os-

cillators and it is presum.ably due to the fact that the response is less 

sensitive to the dam.ping. The estim.ates of the response converge 

m.uch m.ore rapidly. Figure 4.3 shows that the filter com.ponent e
l 

(t) 

converges to the actual displacem.ent in a quarter of a cycle. The 

velocity com.ponent, e
2

(t), took one cycle to converge. 

It was found that using any of the relative displacem.ent, veloc-

ity and acceleration of the single-degree-of-freedom. oscillator leads to 

alm.ost the sam.e rate of convergence and accuracy of the filter, pro-

vided. the norm.alized filter equations are used. This is illustrated in 

Table 4. 2 which shows the estim.ates of the physical param.eters after 

using the first 6. 5 seconds of the response of a linear oscillator with 

T = 1. 0 sec., ,= 5% and p = 1. O. The initial estim.ates of the m.odel 

param.eters aI' a
2 

and a
3 

were taken to be 50% greater than the 

true values, and the estim.ates of the initial displacem.ent and velocity 
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were set to zero. The values of the Q .. (0) were taken to be: 
JJ 

Q .. (O) =A~.l = ft:- 6 
, 

JJ JJ LI\. 
j = 1,2 

j=3,4,5 (4.4.19) 

where A is given in Table 4. 2. The case where the relative displace-

:ment is used illustrates that when the Q .. (0) are relatively s:mall, the 
JJ 

opti:ma1 esti:mates 'can be influenced by the initial esti:mates via their 

ter:ms in J, whereas once the Q .. (0) are sufficiently large, the op
JJ 

ti:mal esti:mates are controlled by the response data via the integral 

ter:ms in J. 

It was also found that the filter technique was capable of suc-

cessfully esti:mating the para:meters of a linear oscillator over the range 

of da:mping fro:m C = 0% to C = 100%. Figure 4.4 (a) corresponds to 

an oscillator with T = 1.0 sec., C = 5% and p = 1. 0 and Fig. 4. 4(b) 

corresponds to an oscillator with the sa:me para:metersexcept that the 

da:mping is increased to C = 50%. In both cases, the relative accelera-

tion was used as the output to be :matched by the :model and the initial 

esti:mates of the para:meters aI' a
2 

and a
3 

were taken to be 50%: 

greater than the true values. For the sa:me initial values of the Q .. (0) 
JJ 

[Eq. (4.4. 19) with A = 10
4

], the esti:mates of the para:meters took about 

1 1 22 cycles (C = 5%) and 2 cycle (C = 50%) to converge. The esti:mates of 

the :model para:meters after 3 seconds of response data were accurate 
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1 
to f70 or less in each case. 

It was observed that in every case where the initial matrix 

Q(O) was taken diagonal, the sequential estimates of the parameters 

approached constant values. If the filter correctly calculated the op-

timal estimates, it would converge to the true values of the parameters 

because there is no model error and no significant measurement noise. 

The reasons for this were discussed in §4. 2. However, it was found 

that when the Q .. (0) were relatively small, the steady-state values 
JJ 

calculated by the filter were not always close to the true values of the 

parameters. It appears that Q(T) approaches the singular solution 

Q= 0 of the Ricatti equation (4.4.13), regardless of whether the filter 

values are optimal, so that eventually the data are not used to update 

~(T) in (4.4.12). Notice from the examples in Table 4.2 that the 

approach to Q = 0 is eventually independent of the initial conditions on 

Q. 

A similar behavior of Q(t) occurs when the Kalman-Eucy 

filter is applied to a linear model of the form of (4.3. 19), which can 

lead to "divergence" wherein the filter output gradually departs from 

the recorded output (Jazwinski, 1970). Although the same effect occurs 

in the present case, it has a different cause. In the Kalman-Eucy 

filter, it is due to model error. The filter values are always optimal 

because the equations for the filter give the exact solution for a linear 
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model of the form of (4. 3. 19). In the present application, there is no 

model error and the "divergence" of the filter output, or the "pseudo-

convergence" of the estimates of the parameters, is due to the sub-

optimal nature of the nonlinear filter. 

4.4.2 Tests: Real Data 

The computer program employed above was next used to estimate 

the parameters of the fundamental longitudinal mode of the Union Bank 

Building. Los Angeles, from records obtained during the 1971 San 

Fernando earthquake. The response of this building is studied in more 

detail in the next chapter using a different technique. The purpose of 

the present section is to show that the estimates of the parameters 

calculated by the filter can be in considerable error compared with the 

optimal estimates when there is significant model error or measure-

ment noise. This was originally discovered during an investigation of 

the sensitivity of J with respect to the model parameters, but a dif-

ferent approach is taken here in order to demonstrate the magnitude 

of the errors in the estimates given by the filter in specific cases. 

The results presented in Table 4.3 include the final estimates 

given by the filter for time segments from 5 to 15 seconds and from 15 

to 25 seconds of the longitudinal component of the relative displacement 

th 
at the 19 floor. The longitudinal component of the absolute 
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acceleration in the sub- basement was taken as the input to the models. 

The two time-segments represent respectively the worst and best per-

formance of the filter in finding the optimal estimates for a number of 

time segments. The optimal estimates in Table. 4.3 were obtained by 

minimizing J, Eq. (4. 4. 8), using the technique to be described in 

the next chapter. The value of JOin the Table is the contribution to 

J from the first integral term in (4. 4. 8) since here kl = 1 and 

The Table also shows that increasing Q .. (O) does not im
]] 

prove the performance of the filter, in contrast to the behavior of the 

filter with simulated data. 

To determine the values of J or 'V J for the estimates given 

by the filter, the complete displacement history for the model is re-

quired. Thus, Eqs. (4.4. 1) must be solved backwards in time because 

~(Tf) gives estimates of the final values of the displacement and veloc-

ityand not the initial conditions. Since this is equivalent to computing 

a forward solution with negative damping, the solution can become un-

stable. The unstable nature of the backwards problem can also be un-

derstood by;noting that the solution of (4. 4. 1) for a forward problem in 

time is eventually.independent of the initial conditions. The seriousness 

of the instability depends·on the size of the quantity ~w T
f
• Tests showed 

that sufficient accuracy was obtained in the present problem because 

the damping is small and the duration is just over two cycles. For 
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larger damping or longer durations, the instability might cause diffi-

culties in evaluating the performance of the filter. 

The estimates given by the filter for the time segment of the 

displacement record from 5 to 15 seconds were particularly poor. It 

.. . 

is shown in the next chapter that there is significant long-period noise 

in this portion of the record, in addition to the model error due to ig-

nored higher modes and nonlinearities in the response of the building. 

These effects are thought to explain why the filter had difficulty in es-

timating the damping coefficient, as· suggested by the large final values 

of Q
44 

in Table 4.3. The smaller value of J
O 

shows that these ef-

fects are not so pronounced in the time segment from 15 to 25 seconds. 

The optimal estimates of the displacement of the fundamental mode, 

given by minimizing J
O 

.for each time segment using the method in the 

next chapter, are given in Figs. 4.5 and 4.6 to indicate the magnitude 

of the model error plus measurement noise. 

Figure 4. 7 is included to show the behavior of the sequential 

estimates of the model parameters in a case where the filter is pre-

sumably giving optimal, or near optimal, estiinates. The plots were 

generated during the run of the filter program which gave the results 

in Table 4.3 for the portion of the relative displacement record from 

15 to 25 seconds. The variation of .the estimates during the latter part 

of the time segment show that there is interaction between the estimates 
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of the damping coefficient a
2 

and the participation factor a
3

, these 

estimates tending to increase or to decrease together. Plots such as 

Fig. 4.7, together with the information given by the inverse sensitivity 

matrix Q(t), are useful features of the filter method when it can be 

relied upon to produce optimal estimates. 

It was found that rerunning the filter using the final estimates 

of the preceding run as the initial estimates of the new run led to some 

improvement in the estimates. This is illustrated in Table 4.4 for 

two additional runs of the filter. If the filter was truly optimal, re-

peating this process should produce convergence to the optimal esti-

mates corresponding to J 0' since the initial estimates should even-

tually equal the final estimates and there should be no contribution to 

the minimum of J from the terms weighting the initial estimates. The 

results in Table 4.4 show that the approximate filter need not behave 

in this manne r . 

The observed behavior of the filter during the tests with simu-

lated and real data is consistent with the expected behavior of the error 

due to neglecting the term containing E in (4.3.12). From (4.3.5) 

and (4.3. 15), this error is initially zero. However, the terms 

3 
3 J(c, T) I can be expected to become nonzero because the 
3c.3c.3ck (1M 

1 J £ =!:: '/ 
model response is a nonlinear function of the parameters. Thus, E(T) 

will also become nonzero and the approximation will deteriorate with 
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time, unless the output of the exact filter converges rapidiy to the re

corded output. In this case, Eq. (4. 3. 11) rapidly approaches e = g 

and hence E quickly tends to zero. The term involving E in (4. 3. 12) 

should therefore never get the chance to grow relatively large and the 

approximate filter should have almost the same behavior as the exact 

filter. The conditions for good performance of the approximate filter 

therefore appear to be that the model output is capable of giving a good 

fit to the recorded output, and the weighting matrix A is small enough 

that convergence of the model output to the recorded output is not slow

ed too much by the influence of the initial estimates. 

The following conclusion is suggested by the above discussion 

and by the tests of the filter: The method should produce optimal, or 

near optimal, estimates if the model is capable of rnatching the record

ed data well, but it can be unreliable if the optirnurn output- error is 

large, either because of measurernent noise or rnodel error. Unfor

tunately, significant rnodel error is a possibility when linear models 

are applied to identify structures using strong-rnotion records. Thus, 

following the tests of the filter method, it was felt that a rnore reliable 

technique was required for the desired applications. A technique was 

therefore developed which involves no approxirnations in the theory. It 

is both more reliable and rnore efficient numerically than the filter 

rnethod, although the useful feature of obtaining sequential estirnates of 
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the parameters is lost. The technique is introduced in the next chapter. 
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V. MODAL MJNIMIZATION METHOD 

5. 1. Introduction 

Difficulties encountered in the application of the optimal filter 

method to the earthquake response of the Union Bank building empha-

sized the need for a reliable technique which would be guaranteed to 

find a minimum of the measure-of-fit J while remaining numerically 

efficient. This led to the development of the modal minimization method 

for mu1ti-degree-of-freedom linear models. 

The method is an extension of a well-known iterative approach 

to minimizing a function J(a
1

, ••• , an}' whereby a series of one-di-

mensional minimizations are performed with respect to each a i (Bekey, 

p.157, 1970). In the basic approach, one first solves the problem 

~in J(a
1

, a~O), ••• ,a~O» and then, with the minimizing argument de-

l (1). (l) (0) (0). 
noted by a 1 ' ~~ J(a 1 ' a 2 , a 3 , ••• , an } 1S found and so on. After 

one sweep through the parameters, giving new estimates a(f), a~), a~), 

(1) f th .... . t f J ••• , a or e mm1m1z1ng p01n 0 , 
n 

successive sweeps can be 

performed until convergence is achieved. 

Bekey (1970) points out that this method is slow to converge if 

the axes of the contours of J near the minimum are not aligned closely 

with the axes of the parameters. However, for the present problem of 

estimating the modal parameters of linear structural models, the 
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properties of the models can be exploited to reduce this effect and to 

make other modifications of the basic method which lead to better 

numerical efficiency. 

In the next section, the output- error approach is specialized 

for the class of problems treated in the applications. The modal mini-

mization method is then described. Finally, the results of applying 

the method to simulated data are given. 

5.2. Formulation of Problem 

The modal minimization method is an output-error method for 

estimating the modal parameters of a linear model. The case con-

sidered here is that in which the input and output consist of one compo-

nent of the base excitation and the parallel component of the response 

at some point in the structure respectively. The applications given 

later are of this kind, but the method is easily extended to include mu1-

tip1e inputs and mUltiple outputs. 

The parameters to be estimated are the modal parameters 

r = 1,2, ... ,N, where: 

,,(r) + (r)· (r) + (r) (r) _ (r) "(t) x a 2 x a
l 

x - -a
3 

z (5.2.1) 

and (5.2.2) 

This is the model given in § 3. 5. 2 with: 

(5.2.3) 
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Also, the subscript i on each x~r) has been omitted because the 
1 

response of only one coordinate is used. 

The recorded output is assumed to consist of the history of 

(5.2.4) 

over some interval [T
i

, Tfl. Thus, any combination of the displace

ment, velocity or acceleration records of one component of the struc-

tural response at a point can be used by choosing each k. as either 1 
1 

or 0, as in 24.4. The corresponding model output is: 

where, from (3.5.2): 

N 

x(t;a (1) , ... ,a (N» = I x(r} (t;~( r» 

r=l 

(5. 2. 5) 

(5. 2.6) 

The measure-of-fit to be used for the output matching is given 

by Eqs. (2. 2. 3), (2.2.4), (5. 2.4) and (5.2. 5): 

(5. 2. 7) 
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This has to be minimized subject to Eqs. (5.2. 1), (5.2.2) and (5.2.6). 

Notice that the weighting matrix A in (2. 2. 4) has been set to zero and 

V(t) has been taken diagonal and constant, although a more general 

case could also be treated if desired. The V .. were chosen to nor-
11 

malize each integral as in (4. 4. 9). This allows a comparison to be 

made between the optimal values of J for different time segments 

and for different response quantities. 

Some results of interest can be derived by using the notation of 

§2.3, so that: 

(5. 2. 8) 

where (5. 2. 9) 

and 1.. and IE are given by Eqs. (5.2.4) and (5.2. 5). At the global 

minimum ~(r)=~(r), r=l, ... ,N, of J, vrJ=O andhencefrom 

(2. 3. 7): 

8m ,.. 
< y', ~ > = 0 , k = 1 , 2, ... ,Sand r = 1 , 2, ... , N 

ua
k 

(5.2. 10) 

The sensitivity coefficients are therefore orthogonal to the output-er-

ror at the optimal estimates of the parameters. This is true for any 

model, linear or nonlinear, but an additional result can be derived for 

linear models. From Eqs. (5.2. 5) and (5. '2.6), and from Eqs. (5. 3. 7) 

and (5. 3. 8) given in the next section: 
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N 5 

lll= I I 
r=I k=3 

(r) (Jlll 
a -k !:\ (r) ua

k 

so that (5. 2. 10) implies: 

(5. 2. 11) 

(5. 2. 12) 

The output of the optimal lllodel and the optimal output-error are 

therefore orthogonal under the scalar product <.,.>. For exalllple, 

if only displacelllentlllatching is considered (ki =1, kZ=O, k 3 =0), 

then: 

T 

S f" " (x
O

- x)x dt =0 
T. 

1 

5. 3. Minimization Method 

The lllethod used to lllinimize J(~(l), ... , a (N» is described in 

four parts: lllodal sweeps, single-lllode lllinirnization, one-dirnen-

sional (I-D) lllinirnization, and nUlllerical eVclluati on of J. 

1) Modal sweeps 

(r) Initial estirnates are lllade for the a ,r = 1, ... ,N, then J 

is lllinirnized with respect to a ( 1), the paraIneters of the first lllode, 

while the parallleters of the other lllodes are held fixed. Using the 

new estimate of a (1) and the initial estilllates of the other a (r), J is 

then lllinirnized with respect to a (Z). By estilllating one lllode at a 

tirne in this lllanner, new estilllates of the lllodal paranleters are 

available after one sweep of the N lllodes. Successive sweeps are 
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performed until J is no longer reduced significantly. From three to 

five modal sweeps were usually sufficient to give adequate convergence 

to the minimum of J. 

The method may be summarized as consisting of repeated ap-

plications of the following sequence of minimizations: 

Notice that this method of minimizing J can be considered as an ap-

plication of the basic approach outlined in § 5. 1 except that it is at the 

modal level instead of at the level of each parameter. The procedure 

used to minimize J with respect to a given mode is described in the 

next part. 

2) Single-mode minimization 

Consider the stage in a modal sweep where J is to be mini

mized with respect to the parameters ofthe rth mode. From (5 .2.6) 

and (5.2.7), itfollows that the latest estimates ofthe parameters of the 

other modes are used to subtract all but the rth mode from the re-

corded response. The remaining portion of the response is then used 

to determine the new estimate of a (r). Thus, the minimization of J 

with respect to ~(r) is equivalent to minimizing the function: 
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+ k2 V 22 ITTf[ V~r) (t) - ~(r)(t;a (r» J2 dt 

1 

T 2 
+ k V S f[a (r) (t) - x(r)(t·a (r»] dt 

3 33 T. 0 '-
1 

subject to the constraints of (5. 2. 1) and (5.2.2). Here, 

N 

X~r) =x
O 

- I x(s) 

s=l 
s{:::r 

N 
v(r) =v _ \' ~(s) 
o 0 L 

s=l 
s:#r 

N 
a (r) =a _ \' x(S) 
o 0 L 

s=l 
s:#r 

(5.3.1) 

(5.3.2) 

are all known quantities, because the m.odal contributions are given 

by the latest estim.ates of the a(s), s:# r. 

The linearity of the m.odel canbe exploited in the m.inim.ization 

of J r(a (r» to enable the param.eters a~r), a~r) and a~r) to be 

determ.ined explicitly in term.s of a~r) and a~r).· Define a llnear 

operator by: 

2 
L (r) :=~+ (r) i!..+ (r) 

2 a 2 dt a 1 dt 
(5.3.3) 
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(r) (r) (r) 
and define the functions sk (t;a1 ,a2 ), k=3,4,5,by: 

L (r) (r) - 0 
s4 - , s ¥ ) ( T i) = 1 , ; ~r ) (T i) = 0 

, S~r)(Ti) = 0 , ;~r )(Ti ) = 1 

(5. 3. 4) 

(5.3. 5) 

(5.3.6) 

From these definitions, and the linearity of Eqs. (5.2.1) and (5.2.2): 

and 

5 

x(r)(t;a (r» = L a~r) s~r)(t;a~r), a~r» 
k=3 

(r) ox(r) 
sk = --rrT ' k =3,4, 5 

oak 

(5. 3. 7) 

(5.3. 8) 

The term a~r) s~r) is the forced vibration component of the modal 

response x(r) and a~r)s~r) +a~r)s~r) is the free vibration component 

due to the initial conditions. For fixed a~r) and a~r), it follows from 

(5. 3. 1), (5. 3. 7) and (5. 3. 8) that the global minimum of J (a (r» is 
r-

given by the solution for a~r), a ~r) and a~r) of the linear system of 

equations: 

(5. 3. 9) 

where 
T T· 

b (r) - k V S f (r) (r) dt + k "l T Sf. (r) • (r) dt 
·k - Ills. sk 2 v22 s. sk 
J T. J T. J 

1 1 

T 
+ k V J f .• (r) .. ( r) dt 

3 33 s. sk 
T. J 

(5.3. 10) 

1 
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and 
T T 

(r)=k V J f (r) (r)dt+k v. J fe(r) (r)dt c. Ills. Xo 2 22 s. v 0 
J T. J T. J 

1 1 

T 
+ k V J f .• (r) (r) dt 

3 33 s. a O T. J 
(5.3. II) 

1 

There is a unique solution to the equations given by (5.3. 9) 

since the 3x3 matrix [bj~)] is non-singular. This follows from the 

fact that this matrix corresponds to the matrix S defined by (2. 3. 9), 

which,according to Appendix A, is positive definite because the sen

sitivity coefficients s~r), s~r) and s~r) are clearly linearly inde

pendent in view of (5.3.7), (5.2.1) and (5.2.2). 

By using the solution to (5. 3. 9) for any given a~r) and a~r), 

a function f can be defined by: 
r 

f (a (r) a (r » = min . J (a ( r» 
r 1 ' 2 r-

( 
(r) (r) (r» 

a 3 ,a4 ;as 

(5. 3. 12) 

The original problem 'of solving min J (a (r» therefore reduces to 
a(r) r-

finding the minimum of f. This is achieved by applying the basic 
r 

iterative approach outlined in §"S. 1. Thus, a series of I-D mini-

mizations are performed by minimizing f alternately with respect to r 

a~r) and with respect to a~r). This process, which is indicated 

schematically in Fig. 5. 1, is continued until a consecutive pair of I-D 

minimizations results in a fractional decrease in f of less than e:, 
r 

where e: is specified. The procedure used to carry out each I-D 

mini.r.nization is described in the next part. 



Figure 5. 1. 
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o 

Schematic diagram of contours of f (air), a~r)) [Eq. 
(5.3.12)] showing a path of converglnce. 
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The criterion for convergence in ternlS of the relative change in 

f was chosen instead of the change in the estinlates of the paranleters 
r 

a~r) and a~r) because the latter can cause difficulties with the higher 

nlodes. The response nlay be so insensitive to these paranleters that 

the changes in f reach the roundoff level of the cOnlputer before the 
r 

para:Ineters have converged to the specified accuracy, and this nlay 

prevent the algorithm. fronl "converging". The criterion in ternlS of 

f , on the other hand, autonlatically takes into account the fact that 
r 

the resolution differs fronl one paranleter to another. In the results 

reported later, e was set equal to 10-
4 

in the criterion for conver-

gence. 

The paranleters a~r) and a~r) can be replaced by the nloda1 

period, T r' and da:Inping facto r, ~ r' in the a1gorith:In to nlininlize 

f so that the 1-D nlininlizations are with re spect to these latter pa
r 

ra:Ineters. This was done in the applications of the nlethod because of 

the convenience of working directly with the paranleters of interest. 

3) One -dinlensional nlininliza tion 

A nlethod is given for the m.ininlization of a function feet) of a 

single param.eter ct. The nlininlization of fr(a~r), af» is then 

achieved by applying the nlethod alternately to feet) =fr{et, a~r» and 

to f(OI) =fr(a~r ),01). Notice that the gradient of fr{a~r), a~r» is not 

required to deternline the direction of the search for the m.ininlum. of 

f because this direction is always parallel to one of the axes of the 
r 

para:Ineters. A m.ethod to m.ininlize feet) was therefore selected which 

only involved evaluating the function. 
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The method starts with an initial estimate, 010 , of the minimum 

of f(OI), and a step-size 5>0. 1£ f(OI
O

- 5)::::£(010), then 01 ~s incre-

mented continually by 5, that is, 01 = 010 + 5, 010 + 2 5, ... , 

f(OI
O 

- 5) <f(OI
O

)' then 01 is decremented continually by 5. 

but if 

The value 

of f is calculated at each step and the stepping is continued until f(OI) 

no longer decreases, showing the minimu:m. has been passed. The min

imizing argu:m.ent for a parabola through the last three values of f is 

then calculated and this is taken as the minimizing argument of f. 

A key point is the choice of 5. If it is too large, the estimate of 

the minimu:m. of f(Q') will be poor and an excessive amount of time may 

be spent iterating on a~r) and a~r). On the other hand, it if is too 

small, too much time may be spent in the stepping required to find the 

minimum of f(OI). A choice which was found to work well is the follow

ing. If the I-D minimization is with respect to air), 5 is taken to be 

half the change that occurred in the estimates of a~r) given by the last 

two l-D minimizations in this direction. A similar choice is made for 

the value of 5 for the l-D minimizations with respect to a~r). To 

illustrate this choice of 5, for the minimization determining a~r) to 

locate point 5 in Fig. 5. l, 5 would be half the difference between the 

values of air) at points land 3. To start the process during each 

modal sweep, 5 is given an initial value 5~r) while determining point 

1 and for point 3, 5 is set equal to ~ 6~r). Similarly, an initial value 

5~r) is used to start the l-D minimizations with respect to a~r). For 

the first modal sweep, 5~r) and 5~r) are prescribed for each mode 
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and they are then halved for each successive modal sweep. 

4) Evaluation of J 

The only calculations required for minimizing J are those 

, 1 d' 1 f «r) (r» Invo ve In eva uating r a
l 

,a
Z 

• The algorithm. used is discussed 

briefly here. 

At the beginning of the minimization of J with respect to the 

parameters of the rth mode, the current contribution of this mode to 

the response is added to the current output-error to form whichever 

of the quantities in Eqs. (5.3.2) are required. These quantities are 

then kept fixed during the estimation of a (r). 

To evaluate fr(a i
r

), a~r» for a given air) and a~r), Eqs. 

(5. 3.4) to (5.3.6) are first solved. The method used to solve all three 

linear equations is the efficient transition-matrix approach introduced 

by Nigam and Jennings (1969). This turns out to give the exact solutions 

at each time step, apart from the roundoff in the arithmetic calculations, 

because of the way the continuous record z(t) is defined as a linear 

interpolation of the digitized data. Equations (5. 3.9) are then solved 

f (r) (r) d (r) , G ' 1" t' d th t' or a
3 

,a
4 

an as uSlng aUSSlan e Imma lon, an e new es 1-

mate of the contribution of the rth mode is calculated from. (5. 3. 7). 

The value of fr(ai
r

), a~r» is then calculated from (5. 3. 1) using 

Simpson's rule for numerical integration. This procedure for evalua-

, f ( (r) . (r» tlng r a l ,a
Z 

, d f h «r) (r»· h IS repeate or eac pair a
l 

,a
Z 

arising in t e 
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minimization of f by the method described in parts 2) and 3). 
r 

5.3. 1 Comments on Method 

The modal minimization method has several advantages in com-

parison with the optimal filter method of Chapter 4. The most impor-

tant advantage is its reliability. Convergence to a local minimum oc-

cur red in every application of the method. Another advantage is that its 

convergence is easy to examine by assessing J and the current esti-

mates of the parameters of the 
th 

r mode every time J, or equiva-

1 1 f (
(r) (r» 

en t y, r a 1 ' a 2 ' is evaluated. In contrast, it is difficult to de-

termine whether the invariant-imbedding filter has given the optimal 

estimates of the parameters because the effects of the approximation 

in the theory are not easy to assess in a particular case. 

Part 2) of the method is similar to the method used by Raggett 

(1974). He examines one mode at a time by filtering the response using 

a narrow band-pas s filter centered on the estimated modal frequency. 

A single-degree-of-freedom model is then used to estimate the modal 

parameters from the filtered response. The advantage of the present 

method in comparison to this approach is that the properties of a num-

ber of modes are estimated simultaneously by the minimization of J, 

so that modal interference can be reduced to an acceptable level. 

Raggett's results using simulated data for a linear system with three 
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degrees of freedom. show that m.odal interference has a significant ef-

fect on the accuracy of the estim.ates when using his approach. Using 

a three-degree-of-freedom. m.odel, the present approach is capable of 

giving the exact values of the param.eters from. the sim.ulated data used 

by Raggett. 

An interesting feature of the m.ethod for finding the m.inim.um. of 

the function fr(ai
r

), a~» is that after the first I-D minim.ization has 

been perform.ed, it is equivalent to the m.ethod of steepest descent. 

In the latter approach, the gradient of f would be evaluated to deter
r 

m.ine the direction of steepest descent and then a I-D m.inim.ization would 

be perform.ed in this direction. Referring to Fig. 5. 1, for the method 

of part 2) the line from. point 0 to point 1 m.ust be tangential to the 

contour of f at point 1. The next I-D m.inim.ization in the direction 
r 

of a~) is therefore in a direction norm.al to the contour of fr at 

point 1, which is the direction of steepest descent. All subsequent 

directions of search for the m.inim.um. also behave in this m.anner, 

proving the original assertion. 

It is well known that the rate of convergence of the m.ethod of 

steepest descent can be very slow if there is significant interaction 

between the param.eters near the m.inim.um.. An illustration of this 

problem. can be seen in Fig. S. 1, whe're the interaction, or lack of 

"orthogonality" (see22. 4. 5), between air) and a~) has been 
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exaggerated. In the applications of the method, the interaction between 

T and, was not pronounced. The few times that convergence with 
r r 

respect to T and, was slow were always cases where the model 
r r 

was having difficulty interpreting the data for the higher modes, which 

was reflected in unreasonable values returned for some of the modal 

parameters. 

The two parameters a~r) and a;r) would cause slow conver

gence if J (a (r» was minimized by applying the method of steepest 
r-

(r) 
descent to all five parameters in a , because there is strong inter-

action between these two parameters. The interaction arises because 

the major effect of both a~) and a~r) is to alter the amplitude of the 

contribution of the rth mode to the response. The effect of this inter-

action is reduced by using the explicit method to determine the mini

mizing value of a;r). 

Another source of interaction is that between the modes, which 

could cause slow convergence during the modal sweeps. However, 

this would not be expected to be a problem if the modes have widely-

spaced modal frequencies. The applications support this conclusion. 

5.4. Tests with Simulated Data 

5.4. I Single Degree-of-freedom Linear OsCillator 

The modal minimization method was first tested using the same 
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:model and data as in §4.4. 1. The linear oscillator used to generate 

the data nu:merically had values for its para:meters of T = 1. 0 sec, 

, = 5% and p = 1. O. It was found that the :method gave nearly exact 

values for the para:meters fro:m two cycles of data, regardless of 

whether the displace:ment, velocity or acceleration of the oscillator 

were used in the :measure-of-fit J. One cycle and a half-cycle of the 

displace:ment were also used and were found to give nearly exact results. 

The final esti:mates of the para:meters are shown in Table 5. 1., to

gether with the initial esti:mates. Because of the way the :method works, 

initial esti:mates of the participation factor, initial displace:ment and 

initial velocity were not required. The portions of the excitation and 

response which were used can be seen by exa:mining Figs. 4. 1 and 4. 3. 

Of course, the results are for a special case in which the only source 

of error is roundoff in the co:mputations. 
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Time segment 
Estimates of Parameters 

'" '" '" (seconds) T C(%) p 

2.0 - 4.0 1.00000 4.9999 1. 0000 

3.0 - 4.0 1. 00000 4.9994 0.9999 

3.0 - 3. 5 1. 00000 4.9989 0.9998 

Initial estimates 1. 12 3.82 -
True values 1.0 5.0 1.0 

TABLE 5. 1. Optimal estimates of the parameters 
using different portions of the dis
placement of the linear oscillator. 

5.4. 2. Ten Degree-of-freedom Linear Chain System 

The next tests of the modal minimization method used the "roof" 

response computed for a ten-degree-of-freedom linear chain system 

(Fig. 3. 1) which was initially at rest and then subjected to a base ac-

celeration given by the first 10 seconds of the 1940 E1 Centro earth-

quake record (Fig. 4. 1). The modal properties of the uniform chain 

system are given in Table 5. 2. The modal participation factor p is 
r 

. (r) (r) 
the quanhty a

3 
[Eq. (5. 2. 1)] or 13

10 
[Eq. (3.2. 13)] and it is in-

dependent of the normalization of the modeshapes. If the modeshapes 

are normalized to unity at the roof, P is equal to the conventional 
r 

participation factor. Also shown in Table 5. 2 are some of the peak 

modal contributions to the relative displacement, velocity and 
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acceleration at the roof. 

Some of the results of applying the modal minimization method 

to various portions of the simulated response records are shown in 

Table 5. 3, 5.4 and 5. 5. The parameters and initial conditions were 

estimated for each mode included in a model but only the results for 

the modal parameters are given. The measure-of-fit J for each 

model is also given. Recall that because of the normalization of J 

l. 

by the V.. in Eq. (5.2. 7), J ~ represents the ratio of the r. m. s. 
11 

output-error to the maximum response. 

The errors in the parameters are primarily due to the model 

error created by neglecting the higher modes of the chain system in 

each model. For a given number of modes and for a given time seg-

ment, this model error is greatest when the acceleration is used and 

hence the errors in the estimates tend to be the largest in this case. 

There is also "measurement noise" because the equations of motion 

for the uniform chain system were solved only to within an accuracy 

of 1 % of the exact response. This noise may therefore affect the ac-

curacy of those modes whose signals are relatively small. 

Observe that the modal periods are always estimated very ac-

curately, at least for the six modes investigated, and the damping 

factor and participation factor are estimated' quite accurately for each 

mode in a model except for the highest mode, which is most affected by 
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Record used to estimate parameters 

Modal Velocity Acceleration 

parameter O-lOsec 2-4 sec 0-10 sec 2-6 sec 2-4 sec 

'" 
Tl -0.001 0.000 -0.004 0.001 0.03 

'" 
'1 

-0.04 -0. 1 -0. 2 -0.2 2 

'" -0.05 -0. 1 -0.2 - 0.2 0.9 
PI 

'" 0.006 T2 -0.07 0.02 -0.04 -0. 1 

'" 
'2 

-0.04 O. 3 0.2 0.02 0.2 

'" 0.2 1 O. 5 -0.07 0.4 
P2 

'" 
T3 0.01 -0.01 0.01 0.04 -0.01 

'" 
'3 

-1 -3 -2 -4 -4 

'" -1 -6 -2 -5 -7 
P3 

'" 
T4 0.2 0.02 O. 2 O. 1 - O. 1 

'" 
'4 

-13 -18 -15 -13 -26 

'" -10 -9 -11 -10 -14 
P4 

Jx 106 2. 5 10 140 260 420 

TABLE 5.4. Relative errors (%) in the optimal parameter estimates 
using a four-mode model of the uniform chain system 
of Table 5. 2. 
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the model error. Observe also that there is some interaction between 

the estimates of the damping factor and participation factor of each 

mode. With few exceptions, they are consistently both too large or 

both too small in magnitude, and often by roughly the same percentage. 

This might be expected since the height of the resonant peaks in the am-

plitude of the transfer function between the base and the roof are con-

trolled by the ratio p /2 C. The difference between the effects of p 
r r r 

and C is that the former scales the forced vibration component of 
r 

the modal response uniformly in time, whereas the latter has an ac-

cumulative effect with time on both the forced and free vibration com-

ponents. 

The initial esti.rnates for the results given in the Tables for the 

model with (R+1) modes were taken to be the optimal estimates for the 

model with R modes. For the new mode, initial estimates are re-

qui red only for the period and damping factor if the modal sweeps are 

started with this mode instead of with the fir st mode. The initial esti-

mate for the pe riod of the first mode was 1. 12 sec and the initial esti-

mate for the damping factor of all the modes was 3.82%. These values 

were chosen to give unrounded numbers for initial errors. For the 

higher modes, the period ratios for a uniform shear beam were used to 

give the initial estimates of the periods. 

With these choices of the initial estimates, it was found that the 

number of modal sweeps required to give convergence of J to within 
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0.01% was norITlally three to five sweeps for displaceITlent matching and 

velocity m.atching and three to seven sweeps for acceleration matching. 

The nUITlber of modal sweeps required tended to increase as the length 

of the record decreased. The cOITlputer time per sweep for ten seconds 

of data ranged from. 4 seconds for a two-m.ode ITlodel to 14 seconds fo~ . 

a six-mode ITlodel, using an IBM 370/158. These tiITles are also rep

resentative for the applications reported in Chapter 6 which used earth

quake records from. buildings. 

Figure 5. 2 shows that the plots of the displacem.ent at the roof 

of the uniforITl chain system and the displacem.ent of an optim.al ITlodel 

with two ITlodes are indistinguishable. The optiITlal m.odel is given by 

the param.eters in the first colum.n of Table 5.3. Figures 5. 3 and 5.4 

show a sim.ilar match of the velocity and acceleration is achieved by an 

optim.al ITlodel with four m.odes (see Table 5.4, colurn.n 1). 

An illustration is given in Fig. 5. 5 of a profile of the measure

of-fit J com.puted for a single-mode model by varying the modal 

period T while keeping the damping factor constant at C= 5%. The 

acceleration record froITl 2.0 to 4.0 seconds was used in J and the 

plot is strictly one of fl (T, C) [Eq. (5.3. 12)]. Local m.inima correspond

ing to the first four m.odes can be observed. The local minimum. at a 

period of about T = o. 6 sec is a spurious one due to the interaction of 

the first and second modes, that is, a single-m.ode model with a period 
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of about 0.6 sec and a damping factor of 5% is able to cancel enough 

of both the first and second mode to produce a local minimum in J. 

The spurious minimum disappears when the first mode contribution is 

subtracted from the acceleration response, as it would be during the 

identification of the second mode by the modal minimization method. 

Furthermore, when the first mode is subtracted, the local minima 

become sharper and another one appears in the plot of the profile of 

J which corresponds to the fifth mode. 

Encouraged by the results of applying the modal minimization 

method to simulated data, the method was applied to earthquake records 

from some multi-story buildings. The results are reported in the 

next chapter. 
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VI. APPLICATIONS TO BUILDINGS 

The rn.odal rn.inirn.ization rn.ethod is used in this chapter to iden-

tify the rn.odal properties of linear rn.odels for two rn.ulti-story buildings. 

The records used were obtained during the 1971 San Fernando earth-

quake, California. 

6. 1. Union Bank Building, Los Angeles 

The Union Bank building is a 42- story steel-frarn.e structure in 

downtown Los Angeles which experienced peak accelerations at rn.id-

height of 20% g (transverse direction) and 13% g (longitudinal direction) 

during the 1971 San Fernando earthquake (M
L 

=6.3). Onlyrn.inor 

nonstructural darn.age occurred. Features of the building and its earth-

quake response are discussed by A. C. Martin and Associates (1973) 

and by Foutch et al (l975). 

At the tirn.e of the San Fernando earthquake, strong-rn.otion 

accelerographs with synchronized tirn.ing were installed in the sub-

th th . 
basern.ent, on the 19 floor and on the 39 floor, but the mstrurn.ent 

th 0 
on the 39 floor failed to record. The S38 W com.ponents of the 

digitized relative acceleration, velocity and displacern.ent at the 19
th 

floor were used as the response data in the analysis. These corn.-

ponents correspond to the longitudinal direction of the building (Fig. 

6. 1). The sub-basern.ent absolute acceleration, 
o 

S38 W corn.ponent, 
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was used as the input to the models (Fig. 6. 2). 

The Fourier amplitude spectrum for 40.96 seconds of the ab

solute acceleration at the 19
th 

floor is shown in Fig. 6. 3 and the am-

p1itude of the estimated transfer function is shown in Fig. 6. 4. The 

first five dominant peaks of each plot are given in Tables 6. 1 and 6.2. 

Only the frequency range 0.2-2.5 Hz was used in constructing the 

Tables and the spectral amplitude ratios in Table 6. 1 for the absolute 

velocity and displacement were deduced by using the simple expression 

for transforms of derivatives. The erratic behavior of the unsmoothed 

transfer function in Fig. 6. 4 is typical for those estimated from seismic 

records. 

The interpretation of the peaks in Tables 6. 1 and 6.2 is based 

primarily on the period ratios for a uniform shear beam, since past 

work with ambient and forced vibration tests has shown that these 

ratios serve as a rough guide to identification of the resonant peaks 

of the lower modes of tall framed structures. The absence of the 

third longitudinal mode in Table 6.2 might be expected since for this 

th 
mode the 19 floor should be close to a node. It appears in Table 6.1 

because there is a relatively large peak in the Fourier amplitude spec-

trum of the sub-basement motion at a frequency of about 1 Hz. The 

tentative identification of the torsional mode is based on a simple 
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Period Period Ratio of spectral values(%) trnterpretation 
(sec) ratio Acceleration Velocity Displacemen 

of m.ode 

4.8 1.0 100 100 100 1 S\ongitudinal 

1.5 3.2 29 9 2.8 2n~ongi tudinal 

1. 25 3.8 21 5.5 1.5 2
nd

torsional 

0.66 7.3 17 2.3 0.3 4 t~ongitudinal 

1.0 4.8 15 3.1 0.7 3 r~ongitudinal 

TABLE 6.1. First five dominant peaks of the Fourier amplitude 
spectrum. of the S380 W component of the absolute 
acceleration at the 19th floor of Union B ank bUilding. 

Period Period Amplitude ratio Inte rp retation 
(sec) ratio (%) of mode 

4.8 1.0 100 1 s\ongitudinal 

1.5 3.2 54 2n~ongitudinal 

1.3 3.7 43 2nd . 1 torsLOna 

0.6 8.0 42 4 t~ongitudinal 

0.4 12.0 30 ? 

TABLE 6.2. Fust ftve dommant peaks of the ampbtude of the 
transfer function between the S38°W com.ponents 
of the absolute acceleration in the sub-basement 
and at the 19th floor. 
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model of the structure wherein the interstory stiffness of each mo

ment-resisting frame is replaced by a single spring and the mass and 

stiffness properties are assumed to be uniform with height. If it is 

assumed that the motion of longitudinal modes is purely in the longi

tudinal direction and the motion of the torsional modes is purely ro

tational, and if the experimental observation of equal fundamental 

translational periods is employed, the period of the rth torsional mode 

can be shown to be about 80% of that of the rth longitudinal mode. 

6. 1. 1. Time-invariant Models 

The parameters were first estimated for the major segment of 

the records, from 5 to 30 seconds. Following the general procedure 

described in §3. 5, a succession of models was taken in which the 

number of modes was increased one at a time and the optimal estimates 

from one model were used as the initial estimates for the next model. 

As discussed in § 5.4.2, when this is done, initial estimates are re-

quired only for the period and damping factor of the new mode. The 

initial estimates of the periods were those in Table 6. 1 and the ini

tial estimates of the damping factors were 4%. 

The intention was to add the modes to the mod els in the order 

of their dominance in Table 6. 1, although some difficulties were en

countered. The results for the optimal models determined by 
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displacement matching and by velocity matching are given in Table 

6.3, while those for acceleration matching are given in Table 6~ 4. 

The p r are the effective participation factors at the 19
th 

floor [Eq. 

(3. 2. 13)]. The measure-of-fit J for each model is also given. 

lo. 
Recall that J2 represents the ratio of the r. m. s. output-error to the 

maximum response, and the values in the Tables give this ratio as a 

percentage. For example, Table 6.3 shows that for a single-mode 

model determined by velocity matching, the r. m. s. velocity-error is 

9% of the peak velocity. 

Only a one-mode model was determined by matching the record-

ed and model displacements because the signal of the second mode was 

so small. The quality of the match is shown in Fig. 6. 5. The initial 

displacement is not equal to the "recorded" value because the initial 

conditions for each modal contribution are estimated along with the 

other modal parameters and these initial conditions are used in the 

calculations of the response of an optimal model. The calculated 

displacement and velocity for the two-mode model determined by 

velocity matching are compared with the actual displacement and 

velocity in Figs. 6. 6a and 6.6b. Figure 6.6. a shows that a good 

displacement match is obtained even when the model is determined by 

matching velocities. 
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Modal Two-mode Three-mode Four-mode Five-mode 
parameter model model model model 

,., 
Tl 4.59 4.62 4.62 4.61 
,., 
'1 

3.5 4.4 4.4 4.2 

A 
0.74 0.86 0.87 0.84 PI 

A 
T2 1. SO 1. 49 1. 49 1.49 

A 

'2 
4.2 4.6 5. 7 5.8 

A 0.31 0.39 0.48 0.46 P2 

At 
T2 1.2 

At 
'2 

7.7 

At -0. 12 P2 

'" 
T3 0.9 1.1 0.95 

'" 27 13 
'3 

19 

... 
-0.4 -0.29 -0. 13 P3 

'" 0.66 T4 0.66 
,. 

6.6 '4 7.2 

A -0. 17 -0. 15 P4 

~ 

J"2(%) 10.2 8. 8 8. 3 8.2 

TABLE 6. 4. Optimal estimates of the parameters using the por
tion from 5 to 30 seconds of the Union Bank accel
eration record, longitudinal direction. The tor
sional mode is distinguished by the superscript t. 
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An attempt was made to identify the second torsional mode by 

using a three-mode model and velocity matching. However, for the 

third dominant mode, the modal minimization method converged to a 

period of 1.0 second and a very high damping factor of 35% (Table 

6.3). A possible explanation for this behavior is that because the 

signals in the velocity record corresponding to the higher modes are 

small (Table 6. 1), the method chooses a local minimum of J which 

arises from partial compensation by the model of up to three of the 

higher modes in the velocity record with a period around 1 sec. The 

high damping of 35% would allow the identified "mode" to do this be

cause it produces a resonant peak in the frequency domain with a 

broad bandwidth. 

The difficulties in identifying the torsional mode also occur

red when the models were determined from the acceleration record 

(Table 6.4). Even though the torsional period was included as an 

initial estimate for the new mode for the models with three and four 

modes, the modal minimization method converged to one of the less 

dominant modes of Table 6. 1. It was only when a five-mode model 

was taken that the second torsional mode appeared. Furthermore, it 

produced only a small change in J. This suggests that the chosen 

class of models is not capable of producing a torsional signal of com

parable strength to that appearing in the actual records, possibly 
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because the excitation of the torsional mode by the transverse base 

motion is not considered in the modelling (23. 1. 1). 

The calculated velocity and acceleration for the four-mode 

model determined by matching accelerations are compared with the 

actual records in Figs. 6. 7. a and 6.7. b. The displacement of the 

four-mode model was almost identical to the displacement of the two-

mode model determined by velocity matching (Fig. 6. 6. a). Also, a 

comparison of Figs. 6.6. b and 6.7. a shows that the velocities of the 

four-mode model determined by matching accelerations and the two-

mode model determined by matching velocities produce nearly the 

same agreement with the recorded velocity. 

It is concluded from the results that a time-invariant linear 

model with a small number of modes can reproduce the strong-motion 

th .. 
records at the 19 floor surprlsmgly well. The number of modes 

required to give a very good approximation of the relative displace-

ment, velocity and acceleration are one, two and four modes respec-

tively. The respective optimal models give calculated response which 

have an r.m.s. error of about 8% or less of the peak response. The 

quality of the match of recorded and model responses was not expected 

prior to the identification; the match given by one of the two-dimen-

sional dynamic models used in the design of the building was not nearly 

as good, as seen in Fig. 6. 8 [from A. C. Martin and Associates (1973»). 
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Figure 6.8. Absolute response at the 19th floor of Union Bankbuild
ing during the 1971 San Fernando earthquake compared 
with the calculated response of a structural model used 
in the design of the building (fromA. C. Martin and 
Associates. 1973). 
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Of course, a better fit of the response histories should be expected for 

a model determined from the earthquake records than for a model 

synthesized from structural plans. 

The periodic nature of the difference between the displacement 

record and the displacement of the optimal model in Fig. 6. 5 or 6.6. a 

suggests that the discrepancy between these two histories is primarily 

due to long period errors of about 8 to 10 seconds in the record. This 

conclusion is also consistent with the large peak in the estimated trans

fer function in Fig. 6. 4 which is at a lower frequency than the funda

mental frequency of the building. 

An early study of long-period errors in accelerograms sug

gested that the errors in the derived displacement records should be 

relatively small up to a period of about 16 seconds (Trifunac, 1970b), 

but a later study, using the large amount of data from the 1971 San 

Fernando earthquake, showed that there were significant errors in 

some records at periods less than 16 seconds (Hanks, 1973). Thus, 

early records processed at the California Institute of Technology, 

which include the Union Bank records, were high-pass filtered with a 

cut-off frequency corresponding to a period of about 14 seconds, 

whereas for most of the later records, the cut-off frequency corre

sponded to a period of 8 seconds. To remove the long-period compo

nents, the Union Bank records were filtered with a roll-off 



-229-

termination frequency of O. 125 Hz and a roll-off bandwidth of 0.05 Hz 

and this led to a considerable improvement in the optimal displace-

ment match for a one-mode model, as can be seen by comparing Figs. 

6.5 and 6.90 However, the estimates of the parameters using the fil-

tered displacement and a one-mode model changed only slightly from 

their values in column 1 of Table 6. 3 to the values: T 1 = 4.61 sec, 

" ,. 
~l = 3. 4%, PI = O. 79. These results suggest that if sufficiently long 

segments of the records are taken, the method is not sensitive to mea-

surement noise which is at frequencies significantly different from the 

modal frequencies, as might have been anticipated from the least-

squares nature of the approach. 

The optimal estimates of the parameters of the four longitudinal 

modes determined by rn.atching the acceleration record with a five-

rn.ode rn.odel are corn.pared in Table 6.5 with other available values 

for these pararn.eters. The participation factors for the synthesized 

structural model and for the ambient vibration tests were calculated 

from the known mas s distribution of the building and the published 

rn.odeshapes. There was clearly a reduction in the stiffness of the 

structure during the San Fernando earthquake which was only partially 

recovered after the earthquake o The degradation in stiffness is thought 

to be due to changes in the nonstructural elements such as partitions. 

Notice that the period ratios are roughly the same during the 
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earthquake as before and after the event, suggesting that the reduc

tion in stiffness was approximately uniform over the structure. Fur

thermore, these period ratios are close to those for a uniform shear 

beam. 

The estimates of the damping factors from the seismic records 

are much greater than those for the ambient vibration tests. This is 

consistent with experience for other buildings and might be expected in 

view of the much larger amplitudes of the structural motion during the 

earthquake. The damping factors also increase slightly with the higher 

modes for this building. 

It is often assumed that the modeshapes, and hence the parti

cipation factors, will not change appreciably as the amplitude of the 

motion increases. This was the cas e with the participation factor of 

the second mode, but the participation factor of the fundamental longi

tudinal mode during the earthquake was quite different from its value 

in the pre-earthquake ambient vibration tests. The corresponding 

modeshape in the ambient tests was almost a straight line. The first 

two values for PI in Table 6. 5 suggest that the fundamental mode

shape may have been more like that for a uniform shear beam during 

the earthquake. 

On the basis of all the results, it is believed that the optimal 

estimates in Table 6.5 of the parameters for the first, second and 
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fourth longitudinal modes are reliable values for the strong-motion 

behavior of the building, as interpreted by a time-i nvariant linear 

model. It is more difficult to as sess the estimates for the parameters 

of the second torsional mode and third longitudinal mode. The periods 

appear reasonable but the large damping estimate for the third mode 

is questionable. Furthermore, because the estimate of the damping 

factor is most probably too large, the magnitude of the participation 

factor may also be too large. 

6. 1. 2. Time-varying Models 

The results presented in the previous subsection show that 

there was a degradation in the stiffness of the Union Bank building 

during the 1971 San Fernando earthquake. To further investigate this 

effect, optimal linear models were determined for four successive, 

overlapping subintervals in the time interval from 5 to 30 seconds. 

The variation of the optimal estimates with each time segment then 

shows how the equivalent linear parameters changed during the earth

quake due to nonlinearities in the structural response. 

Time windows of ten seconds were used, moving the window by 

five seconds each time. This gives time segments of just over two 

cycles of the fundamental mode. This choice, suggested by the results 

using simulated data, is a compromise between the desire to take a 
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small interval so that the instantaneous structural properties can be 

approximated, and the necessity to take a sufficiently large interval 

for the parameters to be estimated reliably. 

The optimal models were determined by matching displacements 

(one mode) and by matching velocities (one and two modes). The rec

ords used were those discussed above which were high-pass filtered 

with a roll-off termination frequency of 0.125 Hz, corresponding to a pe

riod of 8 seconds. The optimal estimates of the modal parameters and the . 

correspondingmeasure-of-fitare presented in Table 6.6. The estim.ates 

of the parameters for a given time segment are ingood agreement for the 

three different models, exceptfor the low damping in the first rowof Table 

6.6. The reason for the latter discrepancy is not clear, although it may be 

duepartlytothe small signal over half of the interval (see Fig. 6.10.a). 

The greater variation in the estimates of PI for the last time segment 

in Table 6.6 is to be expected since the determination of PI becomes 

ill-conditioned for later portions of the records. This is because the 

basement acceleration is small for these time intervals and the struc

tural motion is dominated by the free-vibration components which do 

not depend on the Pr' 

The results in Table 6.6 and plots of the recorded and model 

responses suggest that the lengthening in the period of the fundamental 

longitudinal mode during the interval from 5 to 30 seconds was 
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progressive rather than abrupt. The change in the fundamental period 

from the first to the last time segment was 7-i0/0, and the period of the 

second mode changed by 70/0. For the first three time intervals, the 

damping factors of the fundamental and second modes were approxi-

mat ely 40/0 and 50/0 respectively, dropping to about 30/0 over the last time 

interval. 

A comparison is given in Figs. 6.10. a, b and c of the recorded 

response and the calculated response of the optimal model with two 

modes determined by matching velocities over the interval from 5 to 

15 seconds. A similar comparison is given in Figs. 6.11. a, band c 

for the optimal model with two modes determined by again matching 

velocities, but over the interval from 20 to 30 seconds. The two cases 

presented in Figs. 6.10 and 6. 11 represent respectively the worst and 

best match of _velocities for a two-mode model. Ignored higher modes 

are evident in the velocity and acceleration comparisons in the 

Figures. 

6.1.3. Sensitivity Analyses, Union Bank Building 

The full sensitivity matrix S [the Hessian matrix, Eq. (2. 3.8)] 

and the reduced sensitivity matrix S [the partial Hessian matrix, 

Eq. (2.3.9)], involving derivatives of J [Eq. (5.2.7)] with respect to 

the model coefficients a~r), were evaluated in several cases. It was 
1 

found that corresponding elements of S and S were similar because 

the last term of Eq. (2. 3. 8) was small. Conclusions regarding the 

sensitivity of J with respect to the a~r) were therefore unchanged 
1 
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when S was used instead of S. The reduced sensitivity matrix was 

also calculated in several cases by replacing derivatives with respect 

to the model coefficients air} and a~r) [Eq. (5. 2. 3)] with derivatives 

with respect to T and r since it is the latter parameters which r ':or' 

are of major interest. To calculate the sensitivity matrices, the 

derivatives of the model response with respect to the param.eters are 

required. These are the so-called sensitivity coefficients and they 

were determined by computing the response of a number of single-

degree-of-freedom linear systems, which include those given in Eqs. 

(5. 3. 4) to (5. 3. 6). Finally, the first derivatives of J were also 

evaluated at the optimal estimates as a check, and in each case they 

were found to be suitably small. 

The sensitivity matrices gave quantitative confirmation of 

points which have already been noted and which can be inferred using 

other arguments. These points are surn.marized below. 

1) For a given mode, J is much more sensitive to the period 

than to the other modal parameters. 

2) The interaction between T and" and between T r r r 

and p , is generally small, but the interaction between' and p 
r r r 

is quite pronounced. 

3) The interaction between the parameters of different modes 

is generally small. 

4) J gets progressively less sensitive to the modal parameters 

as the mode number increases. The rate of decrease in the sensitivity 

with mode number is greatest for displacement matching and least for 
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acceleration matching. 

5) For the fundamental mode, J is most sensitive to the 

modal parameters when displacement matching is used. For the 

second mode, the sensitivity of J is least for displacement match-

ing and about the same for velocity and acceleration matching. For 

the third and higher modes, the sensitivity of J is greatest for 

acceleration matching. 

These conclusions regarding the sensitivity of J can be inter-

preted directly in terms of the expected accuracy of the estimates of 

the parameters, as discussed in §2. 4. 5. For example, points 1 and 

2 indicate that the modal periods will be estimated much more ac-

curate1y than the damping and participation factors. 

The diagonal elements of the reduced sensitivity matrix are 

presented in (a) of Table 6. 7 for the optimal estimates of the param-

eters given by a three-mode model determined by matching the velocity 

record over the interval 5 to 30 seconds (column 5, Table 6. 3). These 

values have been normalized by multiplying by the optimal estimates 

so that the sensitivities can be directly compared, without regard to 

the magnitude of the parameters. For example, Eq. (2.4.32) and the 

values in Table 6. 7 (a) show that an e % change in T 1 from its op

timal value will produce a change of 22.9 X (eI100)2 in J, whereas an 

e% change in '1 will produce a change of only 0.03)( (e/ 100)2, or 

1 
almost 1000 of the previous change. In view of Eqs. (2. 4. 30) and 

(2.4. 34), the square root of the diagonal elements are more indicative 

of the accuracy of the estimates. For example, it can be deduced 
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from the above that the bound on the relative error in T 1 is about 

" 4% and 10%, respectively, of the bounds on the relative error in '1 

" and Pl' 

Also shown in Table 6. 7 are the interaction coefficients, which 
I""'oJ I""t.,I I""oJ i 

are defined for two parameters a. and a. by the ratio - S . ./ (S .. S .. ) . 
1 J 1J 11 JJ 

These coefficients are introduced to indicate the extent of the inter-

action between the two parameters and they are the analog of cor-

relation coefficients in statistical theory. It can be shown that the 

magnitude of the interaction coefficients cannot be greater than unity, 

and the larger the magnitude, the greater the interaction between the 

corresponding parameters. If an interaction coefficient has unit 

magnitude, there is a straight line in parameter space along which the 

two parameters can be varied without changing the value of J, all 

other parameters remaining fixed. The values in Table 6.7 support 

point 2 given above. 

To illustrate how the sensitivities are affected when the param-

eters are estimated by matching smaller segments of the record, 

results for matching velocities over the time intervals from 5 to 15 

secs and 20 to 30 secs are also presented in Table 6.7 in (b) and (c) 

respectively. As was to be expected, the sensitivities, and hence the 

accuracy of the estimates, are decreased by taking smaller intervals 

of data. Observe from the sensitivities that the parameters T2 

and '2 of the second mode should be estimated more accurately 

using the first ten- second time segment rather than the last, but the 

opposite is true for the fundamental mode. This is because the 
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higher-mode signals decrease in time compared with the fundamental 

mode. The participation factors are estimated poorly in the last 

time segment because their determination is ill-conditioned (§6. 1. 2). 

Finally, a profile of the measure-of-fit J, or more strictly 

fl (T, 0 [Eq. (5. 3.12)], is presented in Fig. 6. 12 for matching of the 

acceleration record over 5 to 30 seconds. The damping factor was held 

constant at ,= 4% and the period was inc remented in steps of 0. 025 sec. 

Observe that the profile is very smooth and that local minima corres

ponding to the first four longitudinal modes are apparent. The reason 

for the spurious minimum at T = 3 sec is similar to that given at the 

end of Chapter 5. The absence of a minimum corresponding to the 

second torsional mode is consistent with the discussion in §6. 1. 1. 

A small minimum did appear at 1. 2 seconds when the profile of J 

was replotted after subtracting the contributions of the first and 

second mode from the acceleration record. 

6.2. Building 180, Jet Propulsion Laboratory, Pasadena 

Building 180 is a 9-story steel-frame structure on the campus 

of the Jet Propulsion Laboratory, Pasadena, California, which is 

located approximately 15 miles from the epicenter of the 1971 San 

Fernando earthquake. The amplitude of the acceleration response of 

the building during the earthquake was about twice that of the Union 

Bank building, but damage was limited to minor nonstructural crack

ing. Features of the design are discussed by Wood (1972) who also 

developed two-dimensional models of the building. These analytical 
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models suggest that the peak stresses in the structural frame ap-

proached, but did not exceed, the yield point during the San Fernando 

earthquake. Building 180 was investigated in this work because Wood's 

study was available for comparison and, in addition, the peak accel-

eration was among the largest ~ecorded in a building during the San 

Fernando earthquake. 

Strong-motionaccelerographs with synchronized timing were 

installed in the basement and on the roof (Fig. 6. 13). 
o . 

The S82 E com-

ponents of the digitized relative acceleration, velocity and displace-

ment at the roof were used as the response data in the analysis. 

These com.ponents correspond to the longitudinal direction of the build-

ing. The peak acceleration in this direction during the San Fernando 

earthquake was about 40% g compared with a peak in the transverse 

direction of about 20% g. The basement absolute acceleration in the 

longitudinal direction was used as the input to the m.odels (Fig. 6. 14). 

The Fourier amplitude spectra for 40. 96 seconds of the ab-

solute acceleration in the basem.ent and at the roof are shown in Figs. 

6. 15 and 6.16 respectively, and their ratio is shown. in Fig. 6.17. 

The first six dom.inant peaks in Fig. 6. 16 are presented in Table 6. 8 

and the first four dom.inant peaks over the frequency range 0 -4 Hz in 

Fig. 6. 17 are presented in Table 6. 9. There are several points to 

note in regard to these Tables. First, it will be explained later why 

both peaks with a period of about 0.4 sec are labelled as the second 

longitudinal mode. Second, the fourth and fifth peaks listed in Table 

6. 8 are not resonant peaks because they essentially vanish in the 
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Period Period Ratio of spectral values (%) 
(sec) ratio 

Acceleration Velocity Displacement 
Interpretation 

1. 28 1.0 100 100 100 1 stlongitudinal 

0.42 3.0 34 11 4 2nd
longi tudinal 

0.38 3.4 25 7 2 2nd
longitudinal 

1. 13 1.1 20 18 17 ------

0.90 1; 4 16 11 8 ------

0.26 4.9 9 2 0.4 3 rdlongi tudinal 

TABLE 6.8. First six dominant peaks of the Fourier amplitude 
spectrunl of the S820 E component of the absolute 
acceleration at the roof of Building 180. 

Period Period Amplitude ratio (%) Interpretation 
(sec) ratio of mode 

1. 28 1.0 100 1 S~ongitudinal 

0.43 3.0 21 2nd
longitudinal 

0.39 3.3 22 2nd
longi tudinal 

0.26 4.9 12 3 rdlongitudinal 

TABLE 6.9. First four dominant peaks of the amplitude of the 
transfer function between the S820 E components 
of the absolute acceleration in the basement and at 
the roof. 
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transfer function. They apparently come from amplification by the 

first mode of peaks in the Fourier amplitude spectrum of the base 

motion. Finally, sharp peaks in the unsmoothed transfer function 

associated with near zeros in the basement spectrum were ignored 

because the calculation of the ordinate of the amplitude of the transfer 

function is ill-conditioned in this case. 

6.2. 1. Time-invariant Models 

The parameters were first estimated for the time segment of 

the records from 0 to 20 seconds. The general procedure of succes-

sively adding modes to the models was followed. The initial estimates 
A 

of the periods were taken from Table 6.8 (with T2 =0.42 sec) and the 

initial estimates of the damping factors were 4%. 

The results for the optimal models determined by matching the 

relative displacement, velocity and acceleration records are pre-

sented in Table 6. 10. The p are the effective participation factors 
r 

at the roof [Eq. (3.2.13)]' which are equal to the conventional parti-

cipation factors 0: for modeshapes normalized to unity at the roof. 
r 

The values in parentheses are explained later. In marked contrast 

to the estimates for the Union Bank building (Tables 6.3 and 6.4), the 

estimates of the damping factors and participation factors determined 

from different response quantities are not in good agreement. Fur-

thermore, for the optimal models determined by matching displace-

ment and velocity, the measure-of-fit J is significantly greater for 

a specified number of modes than its counterpart for the Union Bank 
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building (Table 6.3). Part of the difference between the recorded 

and model displacements appears to be a long-period error in the 

record of period 6 to 7 seconds, which is apparent over the interval 

from 10 to 20 seconds in the comparison of displacements. Another 

part is due to a significant change in the fundamental period with time 

which shows up most clearly in the displacement comparisons (see, 

for example, Fig. 6.18. a). A surprising result is that for a given 

number of modes, the acceleration record can be matched better than 

the diSPlaC~ll1ent and velocity records (see i~ in Table 6. 10), which 

was not the case with the Union Bank building. 

Other problems with the estimates in Table 6. 10 are apparent. 

For example, the values PI =0.9 and PI = 1. 0 are suspect if judged 

on the basis of their values for linear models. An examination of the 

expression for ~l [Eq. (3.28)] shows that PI is greater than unity 

for a linear model if the modeshape of the fundamental mode has its 

greatest value at the roof. In fact, for a uniform shear beam, 

PI = 1. 27. Furthermore, the estimate in Table 6. 10 for the partici

pation factor of the third dominant mode has the opposite sign to what 

would be expected for a third translational mode (for a uniform shear 

beam, P3 =0.25). A curious result is that the period estimate for the 

third dominant mode corresponds to a trough in Figs. 6. 16 and 6. 17, 

although its large damping would give the corresponding modal peak 

a broad bandwidth which could account for contributions in the re-

sponse at nearby frequencies. It is thought that the difficulty in identi-

fying the third longitudinal mode is partially due to its relatively small 
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signal in the records (Table 6. 8). 

The results in Table 6. 10 s~ggest strongly that there is a pro-
,., 

nounced interaction between p and, in the calculations since the 
r r 

small damping estimates are associated with small participation 

factors and the large estimates are sim.ilarly correlated. This inter-

action could be suppressed by fixing the p on the basis of prior 
r . 

information during the minimization of the measure-of-fit J. Alter-

natively, since there is reason to believe that the interaction is al

most linear, 'r and Pr canbescaledbythesame factor so that P
r 

is equal to some prior value. For example, if the, and p in 
r r 

Table 6. 10 are scaled to give the participation factors from one of 

WoodIs synthesized structural models, the damping estimates are in 

much better agreement, as shown by the values in parentheses in 

Table 6. 10. The high damping factor for the second mode may be 

a consequence of the large change in its period (§ 6. 2.2). In effect, 

the method may attempt to include the two broad peaks at 2.5 Hz in 

Fig. 6. 16. 

A question of considerable interest is why the interaction of 

the damping and participation factors is so pronounced compared 

with the Union Bank results. A sensitivity analysis similar to §6. 1.3 

showed, som~what unexpectedly, that the sensitivities were almost 

the same for the two buildings, regardless of whether displacement, 

velocity or acceleration matching were used. The interaction coef-

ficents involving T r' and the interaction coefficient for '2 and P2' 
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however, were larger for BUilding 180. The results are illustrated 

in Table 6. 11 which can be compared with their counterparts in (a) 

of Table 6. 7. 

'---

r Sensitivity Sensitivity Sensitivity 
w. r. t. T w. r. t. 'r w. r. t. Pr r 

1 67.4 0.04 O. 14 

2 0.23 0.004 0.005 

Interaction Interaction Inte rac tion r 
T and, T and p C and p r r r r r r 

1 0.04 -0.42 0.78 

2 O. 14 -0.22 0.90 

-
TABLE 6. 11. Results corresponding to Table 6.7 but 

for the Building 180 velocity record over 
the interval from 0 to 20 seconds. The 
corresponding optimal estimates are 
given in column 5, Table 6.10. 

It is thought that the above difficulties may be as sociated with 

the much stronger response of Building 180. It is shown in §6. 2.2 

by using time-varying models that the structure exhibited a marked 

nonlinear or time-varying behavior during the earthquake. The tem-

poral change of the equivalent linear parameters may possibly allow 

more interaction to occur between the damping and participation 

factors during the matching of the responses. 

Despite the difficulties with the damping and participation 

factors, the model responses were in good agreement with the records. 
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The calculated response of the optilnal IrlOdel with two modes deter

mined by matching velocities is compared in Figs. 6. 18. a, b and c 

with the recorded response.' The optimal estilnates of the initial 

displacement and velocity are nonzero because in the presence of model 

error (ignored higher modes and nonlinearities' in the structural response)~ 

these values give the smallest value of J, although this is achieved 

at the expense of a poor match over the first two seconds. A point 

of interest is that the acceleration of this model was very silnilar to 

that of the optimal model with two modes determined by matching ac

celerations, but the velocities of these two models were significantly 

different. The parameters for the two models are given in columns 

5 and 6 of Table 6. 10. 

The optilnal esti.:mates of the parameters 6f the three longi

tudinal modes, which were determined from the relative acceleration 

record, are compared in Table 6. 12 with values from other sources. 

The parameters of the first three modes of Wood l s refined model 

were determined by Wood (1972) as follows: the participation factors 

were determined from a synthesized model; the periods were esti

mated from the transfer function calculated from the earthquake rec

ords; and the damping factors were estimated by attempting to match 

through trial and error the resonant peaks of the Fourier amplitude 

spectra of the recorded and model accelerations. Difficulties were 

encountered in the latter approach because the resonant peaks from the 

records were much broader than those from the model response; pre

sumably because of the change in ti.:me of the modal frequencies. Wood 
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chose to keep the participation factors constant and to vary the daxnp-

ing until the spectral peaks of the second and third m.ode were about 

30% higher than the corresponding peaks from. the records. His 

approach suppresses the interaction effects discussed above. 

It was m.entioned earlier that there are twin peaks in the 

Fourier am.plitude spectrum. of the acceleration record at a period of 

about 0.4 sec (Fig. 6. 16). Wood chose the spectral peak at O. 42 sec 

as the period of the second longitudinal m.ode in his refined m.odel, 

whereas the m.odal m.inim.ization m.ethod chose a second-m.ode period 

corresponding to the peak at O. 38 sec. It is shown in the next section 

that the second-m.ode period changed considerably during the earth-
,.. 

quake response and that the value T2 =0.38 sec corresponds to the 
,.. 

initial strong-m.otion portion while the value T2 =0. 42 sec corresponds 

to the later portion of the response, which is alm.ost free vibrations. 

The m.atch of the recorded acceleration given by the optiInal 

m.odel with three m.odes (Tables 6. 10 and 6. 12) and the corresponding 

m.atch for the three lowest m.odes of Wood's refined m.odel are pre-

sented in Figs. 6.19. a and b respectively. To allow the calculated 

responses to be com.pared on the sam.e basis, both m.odels were 

started from. rest, although the estiInates of the initial conditions for 

the contribution of each m.ode in the optim.al m.odel were nonzero. The 

calculated velocities for the sam.e m.odels are presented in Figs. 

6.20. a and b. The optim.al m.odel clearly gives a m.uch better fit to 

the recorded response than Wood's m.odel. This is prim.arily because 

the m.odel response is very sensitive to the m.odal peri ods and the 
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m.odal m.inim.ization m.ethod finds the values for the periods which 

optim.ize the response m.atch (acceleration in this case). It is of 

interest that the velocity of this optim.al m.odel is also in good agree

m.ent with the record. 

In conclusion, the tim.e-invariant m.odels for Building 180 did 

not perform. as well as they did for the Union Bank building. There 

are at least two possible reasons for this. First, the earthquake 

response of Building 180 was considerably stronger than that of the 

Union Bank and so effects not included in the linear m.odels m.ay be 

m.ore pronounced. The second reason relates to the number of cycles 

of the record which were used to determ.ine the tim.e-invariant m.odels. 

For the Union Bank building, the 25-second portion used is only about 

5~ cycles of the fundam.entallongitudinal m.ode, whereas the 20-second 

segm.ent used for Building 180 corresponds to about 16 cycles of the 

fundam.ental m.ode. Thus, even if the average relative change in the 

m.odal param.eters per fundam.ental cycle was approximately the sam.e 

in the two buildings, the overall change would be greater for Building 

180. The change in the m.odal param.eters with tim.e is investigated 

in the next subsection by determ.ining the optim.al estim.ates for a 

succes sion of short tim.e segm.ents of the records. 

6. 2. 2. Tim.e-varying Models 

In the initial investigation into how the equivalent linear param.

eters changed during the earthquake, tim.e-windows of five seconds 

were used, which corresponds to about 4 cycles of the fundam.ental 
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mode. Over the first 10 seconds of response, the optimal estilnates 

of the damping and participation factors exhibited even greater inter

action than for the tilne-invariant models and corresponding estimates 

for velocity matching and for acceleration matching were not consist

ent. However, the modal periods were consistent and gave interesting re

sults, so these are presented in Table 6.13. It can be seen that over the 

first 10 seconds or so of response, the fundamental period changed from 

1.1 sec to 1.3 sec, or by about 20%, and the period of the secondmode chang

ed from 0.33 sec to 0.42 sec, or by about 30%. The value 0.33 sec is the same 

as that determined by Nielsen (1964) from forced vibration tests performed 

on Building 180 before the architectural work was completed (Table 6. 12). 

It was found that time-windows of ten seconds produced more 

consistency between the various estimates of the damping and parti

cipation factors. The results for these segments of the records are 

presented in Table 6.14. The damping of the fundamental mode ap

parently decreased from about S% in the first 10 seconds to about 3% 

in the interval from 10 to 20 seconds. The corresponding decrease 

in the damping of the second mode was from about 12% to about 4%. 

The high damping factor of the second mode in the first time segment 

may be a spurious effect due to the considerable change in the period 

of the second mode over this interval (Table 6. 13) 

The calculated velocity and acceleration of the optimal model 

with two modes determined by matching the first ten seconds of the 

velocity record are compared with the corresponding recorded re

sponses in Figs. 6.21. a and b. A similar comparison is given in 
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Record 
used 

Velocity 

Acceleration 

Velocity 

Acc ele ration 

Velocity 

1. 09 

1. 10 

1. 08 

1. 08 

1. 19 

Acceleration 1. 19 

Velocity 

Acceleration 

1. 20 

1. 21 

4-9 Velocity 1. 24 

1. 25 

1. 25 

1. 25 

6-11 

10-15 

15-20 

Acceleration 

Velocity 

I Acceleration 

Velocity 

Acceleration 

Velocity 

Acceleration 

Velocity 

1. 27 

1. 28 

1. 29 

1. 29 

1. 26 

Acceleration 1. 26 

Velocity 

Acceleration 

Velocity 

Acceleration 

Velocity 

Acceleration 

1. 26 

1. 26 

1. 27 

1.2-7 

1. 27 

1. 27 

0.33 

0.32 

0.37 

0.37 

0.38 

0.38 

0.42 

0.42 

0.42 

0.42 

0.42 

0.41 

3.3 

.. 3.4 

3.2 

3. 3 

3.3 

3.3 

3. 1 

3. 1 

3.0 

3.0 

3.0 

3.1 

TABLE 6. 13. OptiInal estiInates of the m.odal periods for different 
segm.ents of the records from. JPL Building 180, San 
Fernando earthquake. One-m.ode and two-m.ode m.odels 
were used. 
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Figs. 6. 22. a and b for the optimal model with two modes determined 

by matching the segment of the velocity record from 10 to 20 seconds. 

On the basis of all the results, it is thought that the optimal 

estimates in Table 6. 12 of the periods of the fundamental and second 

modes are reliable values, although it is to be remembered that 

these are the best periods for a time-invariant model over mast of 

the strong-motion portion of the response and that the periods actually 

changed considerably during the earthquake. The dam.ping factor of 

40/0 in Table 6. 12 for the fundamental m.ode is also considered to be 

representative for the strong-m.otion response of Building 180 during ., 

the San Fernando earthquake. There are difficulties in estimating the 

damping of the second m.ode because of the m.arked change in its period, 

which is also thought to have produced the twin peaks in the Fourier 

am.plitude spectru:m of the roofacceleration record. The estimates in 

Table 6. 12 for the param.eters of the third m.ode are considered to be 

unreliable. This m.ode has little effect on the response, and for this 

building,it is concluded that only two m.odes are required to give a 

good approxim.ation of the relative velocity and acceleration records, 

and one m.ode is sufficient for the displacem.ent. 
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VII. CONCLUSION 

In this dissertation, a practical strategy has been devised and 

implemented for systematically determining best estimates 9f param

eters of linear structural models from records of base motion and 

response during an earthquake. The investigation was set within the 

framework of a general output-error approach (Chapter 2). In this 

approach, the model parameters are estimated by using a suitable 

com.puter . algorithm. which systematically varies the parameters until 

some measure-of-fit between the structural output and model output, 

such as the integral- squared difference, is minimized. The parameter 

values so calculated are called the optimal estimates for the class of 

models employed. 

The question of whether this approach allows the parameters to 

be determined uniquely and reliably was studied for a general class of 

linear structural models for which the mass matrix was assumed knOWll 

(Chapter 3). It was shown that reliable estimates of the stiffness and 

damping matrices for these models usually cannot be made from rec

ords of the earthquake response of a structure, because of several 

basic limitations of the data. It was also shown that the modal periods, 

modal damping factors and the effective participation factors at the 

points of measurement give all the information about the stiffness and 
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damping distributions that is contained in the structural records. 

These modal parameters, rather than the stiffness and damping ma

trices, should be estimated when identifying a structure from earth

quake records. Furthermore, in order to obtain reasonable accuracy, 

only the parameters of the dominant modes in the records should be 

estimated, and this should be done by performing a series of identi

fications in which modes are successively added to the models until 

the measure-of-fit is no longer significantly decreased. Otherwise, 

the higher modes ofthe model may be primarily matching noise in the 

records. It is also desirable to estimate the parameters by separate

ly matching the displacement, velocity and acceleration records, so 

that a check can be made on whether the linear models produce con

sistent results. 

It was concluded that the distribution of earthquake forces 

throughout the structure generally cannot be estimated reliably from 

a few records of the structural motion (§ 3.5). If estimates of the 

forces experienced by a structure during a particular earthquake are 

required, and records of the structural motion are available, the 

forces can be estimated by using a synthesized model which has been 

modified so that the parameters of its lower modes are equal to the 

corresponding values determined from the records. 

Two output-error techniques for determining the modal 
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param.eters from. seism.ic response records were investigated. The 

first technique studied was the optim.al filter m.ethod (Chapter 4). 

Advantages of this m.ethod are that it provides sequential estim.ates of 

the param.eters, thereby showing how the estim.ates depend on the. 

length of record used, and it can also be applied to nonlinear m.odels. 

It was found from. tests of the m.ethod that because of approxim.ations 

which m.ust be m.ade in the theory in order to produce a feasible algo

rithm., the estim.ates calculated by the filter can be quite different 

from. the optim.al estim.ates when there is significant m.easurem.ent 

noise or m.odel error. It was concluded after the tests that a m.ore 

reliable technique is required when identifying linear m.odels of struc

tures from. earthquake records. 

A new output-error technique is introduced for estim.ating the 

m.odal param.eters, which was called the m.odal m.inim.ization m.ethod 

(Chapter 5). This m.ethod can be relied upon to find the optim.al esti

m.ates of the m.odal param.eters and it is m.ore efficient num.erically 

than the optim.al filter m.ethod, but it is lim.ited to linear structural 

m.odels. 

The m.odal m.inim.ization m.ethod was em.ployed to study the 

strong-m.otion response of two m.ulti-story buildings during the 1971 

San Fernando earthquake (Chapter 6). Within the fram.ework of linear 

m.odels, new inform.ation was obtained from. the records concerning 
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the properties of the higher modes and also the time-varying character 

of the equivalent linear parameters. 

The response in the longitudinal direction of a 40-story steel

frame building was first studied. The building experienced a peak ac

celeration at midheight of about 20% g but suffered no structural damage. 

It was found that a time-invariant linear model with a small number of 

modes could reproduce the strong-motion records remarkably well 

over the 25- second interval investigated. The matching of the rec

orded and model responses was considerably better than anticipated on 

the basis of other studies where less systematic techniques were ap

plied to attempt to achieve a good match with linear models. The 

number of modes required to give a good approximation of the relative 

displacement, velocity and acceleration records was one, two and four 

modes respectively. 

The modal minimization method also gave new information 

about the higher-mode damping and participation factors for the build

ing, as well as more reliable information about the modal periods. 

The estimates of the modal damping factors from 25 seconds of the 

acceleration record ranged from 4% for the fundamental longitudinal 

mode to 7% for the fourth longitudinal mode. Although there was a 

reduction in the stiffnes s of the structure during the earthquake, the 

period ratios among the first four longitudinal modes were roughly the 
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same as during ambient vibration tests before and after the seismic 

shaking. This suggests that the degradation in stiffness was approxi

mately uniform over the structure. Furthermore, the period ratios 

during the earthquake remained close to those for a uniform shear 

hearne 

The other building studied was a 9-story steel-frame structure 

which experienced a peak acceleration of about 400/'0 g, one of the 

largest recorded in a building during the San Fernando earthquake. 

Damage was limited to minor nonstructural cracking. A time-invar

iant linear model was again able to match the response well over the 

twenty-second interval of the longitudinal records which was studied. 

The match was considerably better than that given by a previously 

reported model which was essentially based on the traditional fre

quency-domain approach for determining the modal periods 'and damp

ing factors. However, the optimal estimates of the modal damping 

and participation factors from records of different response quantities 

were less consistent than in the first building investigated. It is 

thought that this may be due to the stronger nonlinear, or time-varying, 

dynamic behavior of the 9- story structure. 

The time variation of the structural properties during an earth

quake can be studied by determining the optimal estimates of the modal 

parameters for short time segments of the records. By using 
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successive time windows, the results can show how the equivalent 

linear parameters change because of nonlinear effects. 

This approach was applied to both buildings described above. 

It was found that the average increase of the periods per fundamental 

cycle for the two lowest modes was about 10/0 for the taller building and 

about 30/0 for the smaller building. For the latter structure, almost 

all of the change occurred in the first 10 or so seconds, during which 

the fundamental period increased from 1. 1 sec to 1. 3 sec, or by about 

200/0, while the period of the second mode increased from O. 33 sec to 

0.42 sec, or by about 300/0. The latter change was thought to have pro

duced the twin peaks at O. 38 sec and O. 42 sec in the Fourier amplitude 

spectrum of the roof acceleration. 

On the basis of the results for the two buildings, it is tentative

ly concluded that when the optimal estimates of the modal parameters 

are used, a time-invariant linear model based on a small number of 

modes can adequatelyreproduce a building's strong-motion response if 

structural damage does not occur. This is useful information for 

structural design eJ;l1.ploying linear models, even though the best values 

for the modal parameters are difficult to determine prior to measuring 

the response to the earthquake. From the results of Chapter 6, it is 

suggested that for design calculations, this difficulty might best be 

treated by using typical values for the damping factors obtained from 
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studies of the earthquake response of similar structures, and by using 

participation factors from a synthesized structural model, since the 

model response is not particularly sensitive to these parameters. 

However, the response is very sensitive to changes in the modal 

periods, which are difficult to synthesize accurately. It is therefore 

suggested that the overall stiffness of the structural model should be 

varied so that the periods of the lowest modes, particularly the funda

mental, cover a representative range of values. 

In continuing research in this area, it is considered that it 

would be most fruitful to concentrate on improving features of the 

linear models and in applying the approach to records from a wide 

variety of buildings. In particular, the models could be modified 

to include both horizontal components of the translational motion of 

the base because this might allow better modelling of any torsional 

response shown during an earthquake. There may also be other appli

cations in earthquake engineering for which the method could be fruit

fullyem.ployed. For example, the method may be applied to the re

corded response of soil layers to investigate local site effects, pro

vided earthquake records, such as those from. bore holes, are also 

available to serve as input to the linear models. The method may also 

be a useful approach to determine the dynamic properties of large 

earth dams. 
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It is also desirable to investigate the identification of nonlinear 

models so that structural properties such as strength and ductility 

during an earthquake can be studied. Some other output-error tech

nique, such as the Gauss -Newton method, is then required to determine 

the optimal estimates of the parameters, but some of the difficulties 

discussed in this work for linear models, such as those arising from 

lack of identifiability and from limited resolution, will have their 

counterparts in structural identification with nonlinear models. 

Nonlinear modelling is a particularly challenging area of research 

because it is difficult to formulate models which include such 

observed phenomena as amplitude-dependent stiffness, hysteresis 

and structural deterioration. In addition, the lack of experience in this 

area will make it difficult to assess whether the estimates of the param

eters are reliable. Research is also inhibited by the scarcity of re

sponse records of structural motions well into the inelastic range or 

approaching failure, and such data from tests employing large-scale 

shaking tables can make a valuable contribution. 

In conclusion, it is felt that the modal minimization method has 

proven to be a useful technique to investigate the dynamic properties 

of buildings from their strong-motion records. In particular, it has 

shown that by using the optimal estimates of the modal parameters, 

time-invariant linear models of the two buildings studied can reproduce 

their strong-motion records surprisingly well. 
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APPENDIX A: IDENTIFIABILITY 

Consider a class of m.odels rn with its associated set of al-

lowable param.eter values denoted by u, and let C be a class of 

inputs to the m.odels. The class rn is defined by the function m.(a,~) 

relating the output IE of a m.odel with param.eters ~ to the input z 

in C. In the following work, ~ and IE will denote the histories of 

the input and output over a specified time interval. 

Let M* be a m.odel in rn given by the param.eters 

then the definitions in § 2. 4. I m.ay be written as: 

(i) M* is globally identifiable for C 

~ 'v'~EC, 

m.(~,~) fm.(a*,~) ,V~Eu with a fa* 

(il) M~~ is locally identifiable for C 

~ V~ E C, :B: a neighborhood ?Z(a*) Cu such that: 

m.(a, z) fm.(a*, z), Va En(a~:~) - -- -- - - - with ~f~* 

oJ. 

a"- in u, 

In Fig. A. 1, the m.odels corresponding to aI' a 2 and a 3 are re

spectively globally identifiable, locally identifiable, and neither 

globally nor locally identifiable. In order for the whole class of 

m.odels to be globally or locally identifiable, the appropriate definition 

above has to hold for each a ~~ in u. 

The following results have been used in this dissertation. 

Recall the definition of JO(a) given by (2.3.5) and (2.3.6): 
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Figure A. 1. Schematic diagram illustrating identifiability in 
terms of the mapping mea, z) between the set of 
allowable parameter values -and the set of outputs. 
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(A. 1) 

where <.,.> is a scalar product and y. is the output to be matched 

by minimizing J o. The identifiability of a model can be expres sed 

in terms of the minimization of J 0 using the model output for y. as 

follows: 

Theorem A. 1 

Proof 

(i) M* is globally identifiable for C 

~ 'V~ E C, the global minimum of: 

JO(a) =<~(~~~,~) -~(~.'~), m(a*,z) -~(~,~» 

occurs only at a =a*, that is, 

(ii) M* is locally identifiable for C 

~ 'V~EC, JO(a) has a strict local minimum at 

is, :1 a neighborhood 7(a *) such that: 

JO(~»JO(a*), 'VaE7(a*) with ~/=a* 

(A. 2) 

* a =a , that 

The proof is given for (ii). It is easily modified for (i). 

(a) Necessity: By hypothesis, M*' is locally identifiable, so 

there is a neighborhood 7(a*) of a':~ such that ~(~,~) /=m(a*,z) for 

each a:;a':~ in 7(a*). Notice that JO(a)2:JO(a~~)=O. Supposethere 

exists a/:;a*'m 7(~*) suchthat JO(a/)·=JO(a*), then Jo(a/)=O and hence, 

bythepositive-definitepropertyof <0,">, m(a/,z)=m(a*,z), which is 
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a contradiction. Thus, J o(~) > J o(~:.*), Va E 7l(~:.~:C) such that a I:. a *. 

(b) Sufficiency: By hypothesis, 

Suppose there exists ~I:.a* in 7l(~~:~) such that IE(~'~) =IE(a*,~), 

then J 0 (~) = 0, which is a contradiction. Thus, M* is locally identi

fiable. 

The results proved in Theorem A. 1 are used as definitions by 

o 

Bellman and Astrom (1970) except that they omitted to state in their 

version of (i) that the global minimum must occur at only one point. 

The advantage of the definitions given in §2, 4. 1 are that they make it 

clear that identifiability is a property of the model and it is inde-

pendent of the particular scalar product chosen for J
O

' For example, 

with continuous data, <., 0> in Theorem A. 1 could be defined in 

terms of the quantities in the time domain or in terms of their trans-

forms in the frequency domain. 

Another result related to identifiability which has been stated 

in this dissertation is the following: 

Theorem A. 2 
8m(a, z) 

The sensitivity coefficients -8 - - are linearly independent 
. ak 

over the data interval if and only if the reduced sensitivity matrix 

S(~,~) is positive definite. 

Proof 

From (2. 3, 9), for an arbitrary vector A. of appropriate 
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di.r.nension: 

(A. 3) 

;;:: 0 

Thus, S is always positive semi-definite. Furthermore, using the 

positive-definite property of a scalar product: 

t,..... '\' am 
A S(a,z)A. =0 ~ ) A.. a- =0 over the date interval, from which 
- - -- W J a. 

j J 
the desired result follows. 

The first part of the statement in Theorem A. 2 is used as a 

definition of identifiability by Beck and Arnold (1977). It is a stronger 

statement than local identifiability, as the following result shows: 

Theorem A. 3 

The sensitivity coefficients ami are linearly independent 
aak a* 

=> M* is locally identifiable for ~-

Proof 

First, from Eq. (A. 2): 

Thus, J 0 has a local minimum. at a ~~. From (2. 3. 8) and (2. 3. 9), 

since here ~(a*) =J:E-(~*'~) -m.(a*,~) =0. Thus, by hypothesis and 
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and Theorem A. 2, 'V'VJO(~:.*) is positive definite. From a result in 

advanced calculus, this ensures that J
O 

has a strict local minimum 

"-at a'" and hence the desired result follows from Theorem A. 1, part 

(ii). 

The converse of the theorem is not true in general. However, 

it can be shown that the two statements in Theorem A. 3 are equivalent 

in the special case where m(~,.!} is a linear function of the param-

eters a. In this case, each statement is a necessary and sufficient 

condition for uniqueness of the optimal estimates of the model param-

eters. 
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APPENDIX B: PROOF OF THEOREM IN 23.4.3 

Theorem 

Consider a controllable and observable model in tnN whose 

output for a known input is measured. Let J be the output set defin-

ing the coordinates at which the response is measured. Let iP be 

a transformed mode shape matrix of the observed model. The num.ber 

of models in ~ which are consistent with the observed data is equal 

to the num.ber of solutions of the following matrix problem: 

Find a nonsingu1ar, real matrix B such that: 

(i) t 
Be.=e. , V'iEJ 

-]. """"l 

(ii) B..e.=..e. 

(iii) (BCP(r» t(BCP (s» = 0 , r of s 

. (3. 4. 7) 

(3.4.8) 

(3. 4. 9) 

where e. is the unit vector given by (e')k = 6. k and ..e. is a knO'Wll 
-]. """"l 1 

vector of dimension N with elements given by: 

Furthermore, for each solution B, the transformed mode

shapes q; (r) of the model in tD.N which has the same output as the 

observed model are given by: 

where 

q;(r) = ~Bcp(r) 
- y-r 

(3.4.11) 

(3. 4. 12) 
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Proof 

Let .£:Nc inN denote the set of all models which are consistent 

with the observed data and let ijN denote the set of all matrices B 

which satisfy the matrix problem given by Eqs. (3.4. 7), (3. 4. 8) and 

(3.4. 9). To prove the theorem, it is shown that a one -to-one onto 

mapping f can be constructed between ijN and '£:N. This also 

handles the case where the number of solutions is infinite. The proof 

is in three steps: (a) f is defined, (b) f is shown to be onto, (c) f 

is shown to be one-to-one. 

(a) There are two preliminaries. First, the i(r) defined by 

(3.4.11) and (3.4.12) are possible transformed modeshapes since: 

using (3.4. 9) in addition to (3. 4. 11) and (3. 4. 12). Notice that y :f. 0 
r 

since if y = 0, then BCP(r) = 0; since B is non singular , this implies 
r -

~(r) = Q, which is a contradiction. Second, by Proposition I, or 

Proposition 2 with e
L

, a model in inN is consistent with the mea

sured input and output if and only if it has the same values of illr' 'r 

and j3~r) as the observed model, V r = 1, ... ,N and Vi E J. 
1 

Define a mapping f from ijN to .£:N as follows. Let BE ijN' 

then define f(B) as that model in ~ which has the transformed 

modeshapes i(r) given by (3.4.11) and (3.4.12), and the modal 

frequencies and damping factors ill and, of the observed model. 
r r 

From (3.4. 5) and §3. 2. 2, the model is defined uniquely. Furthermore, 
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the fact that the sign of y is arbitrary is consistent with the result 
r 

stated in§3. 2.1 that the modeshapes of a model are only unique to 

within a change of sign. 

To show f(B) E .£N' it remains to prove that it has the correct 

(r) values of /3. , V r = 1, ... ,N and Vi E J. 
1 . 

From (3.2. 13) and (3.4. 5) 

Consider first cp~r) where i is in J. From (3. 4. 7): 
1 

and thus from (3. 4. 11): 

or 

Consider next Cl'. Define a diagonal matrix A by: 
r 

o 
Y2 

A= 

o 

then from (3.4. 9) and (3. 4. 12): 

~t Bt B~ =A2 

Using the fact that ~ is unitary: 

(B. 1) 

(B.2) 

(B. 3) 

(B. 4) 
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which, together with (3. 4. 8) leads to: 

A2~t.e.= ~t Bt B.e.=~t Bt .e. 

Thus, from (3. 4.11): 

or 0( =y 0( 
r r r 

since from (3. 2. 8), (3. 4. 5) and (3. 4. 10): 

N 
0( = ') p cp{r) = (cp{r))t p 

r l..J kk - -
k=l 

(B. 5) 

(B.6) 

with a similar expression for 0(. 
r 

Substituting (B. 5) and (B. 2) into 

(B. 1) leads to: 

1. "'"'{r) -~ (r) (r) . 
13. =m. cpo 0( =13. , "if r=l, ... ,N and '9'lEJ 

1 1 1 r 1 
(B. 7) 

(b) It is now shown that f is onto, that is, given any model 

in ~N' there exists B in aN such that the model is equal to f{B). 

Let the model in ~N have a transformed mode shape matrix 

r, then V r=l, ... ,N and ViEo9: 

(B. 8) 

Define (B.9) 

and define a matrix A by {B. 3). Each ratio y r is well-defined 

since 0( f. 0, otherwise 13~r) = 0, '9'i E 09, which contradicts an original 
r 1 
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hypothesis. Similarly, y I: 0 and so the m.atrix A is nonsingular. 
r 

Define B = i A ~t (B. 10) 

then the aim. is to show that B belongs to IS
N 

and that feB) is equal 

to the given m.odel in a.
N

. First, B is real and nonsingular. Also 

from. (B. 8) and (B. 9) 

a =y a and cp~r) =y cp~r) 
r r r 1 r 1 

These results can be written in vector form. using (B. 6): 

"'(r) t (r) t 
(cp ).E.. =y r(CP ).E.. and 

(r) t "'(r) t (cp ) e. =y (cp ) e. 
- -'l. r - --'l. 

In m.atrix form., they becom.e: 

(B. 11) 

In view of the definition of B in Eq. (B. 10), and the fact that ~ and 

"" ~ are unitary, (B. 11) leads to (3.4.7) and (3.4.8). Furtherm.ore, 

from. the definition of B: 

or ""(r) 1 (r) cp = -Bcp - y-r 
(B. 12) 

Applying the unitary property (3.4.6) for the cp(r): 

_1 _(BCP(r»t(BCP(s» = 6 
Y Y - - rs r s 

(B. 13) 

This shows (3.4.9) holds and, together with the earlier results,proves 

that B belongs to IS
N

. 

FinC).lly, from. (B. 12) and (B. 13), the m.atrix B and the trans

form.ed m.odeshapes cp( r) of the given m.odel in a.
N 

satisfy (3.4. 11) 
- I 
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and (3.4.12). Thus, f(B) is equal to the given model. 

(c) The final result is to show that f is one-to-one, that is, 

if B 1 , B2 in IBN are such that f(B 1)=f(B2 ), then B
1

=B2 . 

Since f(B l ) and f(B 2 ) are the same model in .L
N

, the trans

formed modeshapes corresponding to Bland B2 can be made equal 

by an appropriate choice of sign for y(l) and y(2). Thus: 
r r 

_l_B cp(r) =cp(r) = _l_B cp(r) 
(1) 1- - (2) 2-

Yr Yr 
(B. 14) 

where the i(r) are the transformed modeshapes of the model 

f(B
l

) =f(B
2

). The results in (a) show that: 

y(l)a =a =y(2)a 
r r r r r 

and so y<l) =y(2) because 01 :f0. Simplifying (B. 14): 
r r r 

B rI,(r) - B (r) 
IX. - 2~ 

Since ~ is nonsingu1ar, B1 =B 2 . 

(B. 15) 


