

The John A. Blume Earthquake Engineering Center

Department of Civil Engineering Stanford University

PROBABILISTIC SITE-DEPENDENT RESPONSE SPECTRA

REPRODUCED BY

NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 by

Anne S. Kiremidjian Haresh C. Shah

This research was partially supported by The National Science Foundation Grant Gi-39122 and Banco Central de Nicaragua

> Report No. 29 April 1978

The John A. Blume Earthquake Engineering Center was established to promote research and education in earthquake engineering. Through its activities our understanding of earthquakes and their effects on mankind's facilities and structures is improving. The Center conducts research, provides instruction, publishes reports and articles, conducts seminars and conferences, and provides financial support for students. The Center is named for Dr. John A. Blume, a well-known consulting engineer and Stanford alumnus.

Address

The John A. Blume Earthquake Engineering Center Department of Civil Engineering Stanford University Stanford, California 94305

> Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

FDODT		EL REPORT NO.	2.	3. Recipien	ACASSING NOT
	PAGE	NSF/RA-780322		PH	290352
Title and	Subtitle			5. Report [Date
Proba	abilistic Site	-Dependent Response Spe	ctra (Report No.	29) A	pril 1978
Author(s)	, Kiremidjian, I	H.C. Shah		8. Perform	ing Organization Rept. No. 9::-
Performi	ng Organization Name a ford Universit	nd Address Y		10. Project	t/Task/Work Unit No.
Depar	rtment of Civi	1 Engineering		11. Contra	ct(C) or Grant(G) No.
The C	John A. Blume	Earthquake Engineering	Center	(C)	
Stant	ford, Californ	1a 94305		(G) GI	39122
. Sponsor	ring Organization Name a	and Address		13. Type o	f Report & Period Covered
Appli	ied Science and	Research Applications	(ASRA)		
Natic	onal Science Fo	oundation			
1800 Washi	6 Street, N.W.	50		14.	
	mentary Notes				
	•				
. Abstrac	t (Limit: 200 words)	······································	· · · · · · · · · · · · · · · · · · ·		
Effec	cts of local se	oil conditions on the P	GA, the frequenc	y content,	and the amplifica-
tion	factor are in	vestigated. Analysis g	oals are to obta	in peak gro	und motion modifi-
catio	on parameters [·]	for correcting the prob	ability distribu	tions on the	e peak ground
accel	leration value	s for the site of inter	est: to develop	site depende	ont nochonco
			cov, 00 acterop		ent response
spect	tral shapes (or	r dynamic amplification	factors) and pr	obability d	istributions of
spect the 1	tral shapes (or latter for thre	r dynamic amplification ee basic soil types; an	factors) and pr d to develop pro	obability d bability di	istributions of stributions on
spect the l respo	tral shapes (or latter for thro onse spectra a	r dynamic amplification ee basic soil types; an t a given location for	factors) and pr d to develop pro the three differ	obability d bability di ent soil ty	istributions of stributions on pes and from them
spect the 1 respo to ob	tral shapes (o latter for thro onse spectra a otain design ro	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s	factors) and pr d to develop pro the three differ pecified risk le	obability d bability di ent soil ty vel. Some	istributions of stributions on pes and from them significant obser-
spect the 1 respo to ob vatio	tral shapes (ou latter for thro onse spectra a otain design ro ons were: (1)	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio	factors) and pr d to develop pro the three differ pecified risk le n from a given e	obability d bability di ent soil ty vel. Some arthquake,	istributions of stributions on pes and from them significant obser- whose epicenter
spect the 1 respo to ob vatio is wi	tral shapes (or latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in	obability d bability di ent soil ty vel. Some arthquake, value,by fa	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0,
spect the 1 respo to of vatic is wi 0.75,	tral shapes (of latter for thr onse spectra a otain design r ons were: (1) l ithin 25 km fr , and 0.60 as	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f	obability d bability di ent soil ty vel. Some arthquake, value,by fa irm ground	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate
spect the 1 respo to of vatic is wi 0.75, soils	tral shapes (of latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr , and 0.60 as s, to alluvial	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o	obability d bability di ent soil ty vel. Some arthquake, value,by fa irm ground n peak grou	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration
spect the l response to of vatic is wi 0.75, soils for s	tral shapes (or latter for thre onse spectra a otain design re ons were: (1) ithin 25 km fre , and 0.60 as s, to alluvial soil classes 0	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu	obability d bability di ent soil ty vel. Some arthquake, value,by fa irm ground n peak grou tion for so	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by
spect the l respondent to of vatic is wi 0.75 soils for s apply	tral shapes (or latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr , and 0.60 as , to alluvial soil classes 0 ying the soil	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K_0 and K_1 ; (factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground irm ground n peak grou tion for so es for the	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types
spect the 1 respondent to ob vatic is with 0.75, soils for s apply descri	tral shapes (or latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by class	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K _O and K1; (es O, 1, and 2 are foun	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak grou tion for so es for the cally indep	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak
spect the 1 respect to ob vatic is wi 0.75, soils for s apply descr grour	tral shapes (or latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr , and 0.60 as , to alluvial soil classes 0 ying the soil ribed by class nd acceleratio	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d	obability d bability di ent soil ty vel. Some arthquake, value, by fa irm ground n peak grou tion for so es for the cally indep ynamic ampl	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respect to of vatic is wi 0.75, soils for s apply descr grour is for	tral shapes (or latter for three onse spectra a otain design re ons were: (1) f ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe nd acceleratio ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fa irm ground n peak grou tion for so es for the cally indep ynamic ampl	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respondent to ob vatic is wi 0.75 soils for s apply descr grour is for	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe nd acceleratio ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak grou tion for so es for the cally indep ynamic ampl	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respect to ob vatic is wi 0.75 soils for s apply descr grour is fo	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe nd acceleration ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fa irm ground n peak grou tion for so es for the cally indep ynamic ampl	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
speci the 1 respondent to obter vatic is with 0.75 soils for s apply descr groun is for . Docume Earth	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe nd acceleratio ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respect to of vatic is wi 0.75 soils for s apply descr grour is fo	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and 1 can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak ground tion for so es for the cally indep ynamic ampl Soils Soils	analysis
speci the 1 respondent to ob- vatic is wi 0.75 soils for s apply descr groun is for Earth Seisn	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleration ound to be bes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fa irm ground n peak grou tion for so es for the cally indep ynamic ampl Soils Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
speci the 1 respondent vation is with 0.75 soils for s apply descr groun is for Earth Seisn b. Ident	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio bund to be bes ent Analysis a. Descript nquakes mology	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respect to of vatic is wi 0.75, soils for 5 apply descr grour is fo Docume Earth Seisn b. Ident	tral shapes (or latter for three onse spectra a otain design re- ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleration ound to be bes ent Analysis a. Descript nquakes nology	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak grou tion for so es for the cally indep ynamic ampl Soils Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
speci the 1 respondent to off vatic is with 0.75 soils for s apply descr groun is for Earth Seisn b. Ident Respondent	tral shapes (or latter for thr onse spectra a otain design r ons were: (1) ithin 25 km fr , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by class noil classes 0 ying the soil classe	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fa irm ground n peak grou tion for so es for the cally indep ynamic ampl Soils Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respect to of vatic is wi 0.75 soils for s apply descr grour is fo Earth Seisn b. Ident Respo	tral shapes (or latter for three onse spectra a otain design re- ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes ent Analysis a. Descript nquakes mology tifiers/Open-Ended Terms onse spectra abilistic resp	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soil	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
speci the 1 respect to of vatic is wi 0.75 soils for s apply descr grour is fo Earth Seisn b. Ident Respo Proba	tral shapes (or latter for three onse spectra a otain design re- ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe noil classes 0 ying the soil ribed by classes	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak grou tion for so es for the cally indep ynamic ampl Soils Soils	istributions of stributions on pes and from them significant obser- whose epicenter ctors of 1.0, to intermediate nd acceleration il class 2 by three soil types endent of peak ification factors
spect the 1 respondent to of vatic is wi 0.75, soils for s apply descr grour is fo Docume Earth Seisn b. Ident Respo Proba c. cosa	tral shapes (or latter for three onse spectra a otain design re- ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes ent Analysis a. Descript nquakes nology tifiers/Open-Ended Terms onse spectra abilistic resp ATI Field/Group lifty Statement	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and 1 can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution urveys	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soils	21. No. of Pages
spect the 1 respondent to of vatic is wi 0.75, soils for s apply descr grour is fo . Docume Earth Seisn b. Ident Respo Proba . Cose . Availabi	tral shapes (or latter for three onse spectra a otain design re- ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes ent Analysis a. Descript nquakes mology tifiers/Open-Ended Terms onse spectra abilistic resp ATI Field/Group Tity Statement	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution urveys	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soils Soils	21. No. of Pages 22. Price
spect the 1 respondent vation is with 0.75 soils for se apply descr grour is for Earth Seisn b. Ident Respondent Proba c. cost	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes ent Analysis a. Descript nquakes nology tifiers/Open-Ended Terms onse spectra abilistic resp ATI Field/Group Tity Statement	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and 1 can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution urveys	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soils Soils Soils	21. No. of Pages 22. Price 22. Price
spect the 1 respondent vation is with 0.75, soils for s apply descr grour is for . Docume Earth Seisn b. Ident Respondent Proba c. cose . Availabi NTIS.	tral shapes (or latter for three onse spectra a otain design re ons were: (1) ithin 25 km free , and 0.60 as s, to alluvial soil classes 0 ying the soil ribed by classe not acceleratio ound to be bes ent Analysis a. Descript nquakes mology tifiers/Open-Ended Terms onse spectra abilistic resp ATI Field/Group Hity Statement (9.18)	r dynamic amplification ee basic soil types; an t a given location for esponse spectra for a s Peak ground acceleratio om the site of interest the local site conditio soils; (2) Probability and l can be derived f factors of K ₀ and K1; (es 0, 1, and 2 are foun n; and (4) The stochast t represented by the ga	factors) and pr d to develop pro the three differ pecified risk le n from a given e , diminishes in ns change from f distributions o rom the distribu 3) Spectral shap d to be statisti ic behavior of d mma distribution urveys 19. Security Cl 20. Security Cl	obability d bability di ent soil ty vel. Some arthquake, value, by fac irm ground n peak groun tion for so es for the cally indep ynamic ampl Soils Soils Soils Soil	21. No. of Pages analysis

CAPITAL SYSTEMS GROUP, ING. 6110 EXECUTIVE DOMESTARD SOUTH 2010 ROCKVILLE, MARYLAND 20852

PROBABILISTIC SITE-DEPENDENT

RESPONSE SPECTRA

by

Anne Setian Kiremidjian Haresh C. Shah

This research was partially supported by the National Science Foundation Grant GI-39122 and Banco Central de Nicaragua.

Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ia

.

ACKNOWLEDGMENTS

The authors of this report would like to thank Professor T. C. Zutty and Dr. C. P. Mortgat for the many helpful discussions and suggestions.

The partial support provided by the National Science Foundation Grant GI-39122 and Banco Central de Nicaragua is greatfully acknowledged.

TABLE OF CONTENTS

Page

ACKNOWLI	EDGMEN	ITS	i
CHAPTER	1.	INTRODUCTION	1
CHAPTER	2.	SITE-DEPENDENT DISTRIBUTION OF PEAK GROUND ACCELERATION	4
	2.1	Theoretical Development	4
	2.2	Strong Motion Data	6
	2.3	Soil Correction Factors	8
CHAPTER	3.	SITE-DEPENDENT RESPONSE SPECTRA	24
	3.1	Definition of Response Spectrum	24
	3.2	Probability Distribution of Response Spectra	28
CHAPTER	4.	STATISTICAL ANALYSIS OF RESPONSE SPECTRUM SHAPES .	32
	4.1	Correlation of DAF and PGA	32
	4.2	Probability Distribution of DAF	33
CHAPTER	5.	PROBABILISTIC RESPONSE SPECTRA	62
CHAPTER	6.	CONCLUSIONS	83
REFEREN	CES		85

CHAPTER 1

INTRODUCTION

Earthquake ground motion has been observed to be altered by the various types of soils encountered along the path of energy propagation. Changes occur due to the different soil layers, the depth of the soil layer to bedrock, irregularities within a soil layer, different densities, shear wave velocities, and natural periods of the soil. Furthermore, the effect of the local soil on the ground motion will depend on the strength of the initial energy release, its frequency characteristics and its duration.

Awareness of the local soil condition problem has lead to the study of its influence on the different ground motion parameters. Some of the first efforts to study the changes in the intensity of ground motion were made by Wood (19) in his study of damage distribution and the intensity of shaking in San Francisco during the April 19, 1906 earthquake. The relationship between damage and ground conditions has been demonstrated by Duke (2). Gutenberg (4) and Kanai (9) have shown that small earthquakes and microtremors cause higher ground surface accelerations on soil deposits than on rock. Wiggins (19) has studied the effect of site conditions on the intensity of ground shaking by analyzing more than one hundred strong motion records. Differences in peak ground motion with soil depths and soil characteristics have been studied by Seed and Idriss (12) by considering earthquake records at sites approximately at the same distance from the epicenter. The primary conclusions from their study are that deep deposits of soft soils tend to produce ground motion with long-period characteristics, thus affecting

long-period structures, and shallow deposits of stiff soils result in ground motions having predominantly short period characteristics that affect short period structures. Analytical models for considering soil effects on earthquake motion are also developed in the same study. In a later report by Seed and Idriss (13) it was observed that for great distant earthquakes, the incidence of structural damage for buildings in San Francisco is likely to be greatest for multi-story buildings underlain by deep deposits of clay. The structural damage potential for those buildings was found to be twice as high as for buildings with the same structural characteristics built on other types of foundation material. The potential for damage was estimated to be about three to four times as high as for structures sited on rock. Site dependent response spectra were developed by Seed, Ugas, and Lysmer (14). The mean and one standard deviation spectral shapes were analyzed for four different soil conditions ranging from deep cohesionless soils to rock.

A considerable amount of work has also been done in the area of the damage potential of soil; such as soil liquefaction and landslides. These topics will not be of primary concern in the present development, though their importance is recognized. They pertain to much more localized problems, and it would be difficult to include them in the general methodology of this development.

In the present chapter the effects of local soil conditions on the PGA, the frequency content and the amplification factor are investigated. Other methods such as analysis of microtremor data, analytical modeling of soils, or actual testing of soils are not considered. The goals of this analysis are threefold:

- (1) To obtain peak ground motion modification parameters for correcting the probability distributions on the peak ground acceleration values for the site of interest.
- (2) To develop site dependent response spectral shapes (or dynamic amplification factors) and probability distributions of the later for three basic soil types.
- (3) To develop probability distributions on response spectra at a given location for the three different soil types and from them to obtain design response spectra for a specified risk level.

CHAPTER 2

SITE-DEPENDENT DISTRIBUTION ON PEAK GROUND ACCELERATION

2.1 Theoretical Development

The factors affecting earthquake ground motion have already been emphasized in the introduction. Of particular interest is the variation in peak ground acceleration values with different types of soils. Some previously developed models (11, 52) for obtaining the future peak ground acceleration at a site assume uniformity of the soil throughout the regions. In general however, the soil conditions can vary from deep soft alluvium to firm ground, and only rarely does one find continuous bedrock for foundation. Thus it is necessary to include the effects of local soil conditions in the peak ground acceleration forecast models. In the model used by Kiremidjian (11) the probability distribution of peak ground acceleration is determined at firm ground site and it would be difficult to generalize it to include all the possible travel paths of energy transmission with the numerous possible soil conditions encountered along the way. In such a case, the soil condition analysis would have to be done from the point of energy release and all modifications along the way would have to be incorporated. Such a method for analysis can be developed theoretically with the use of random generation models. However, the application of these models in practice may be very difficult. Consequently, the analysis in this development considers only the local site conditions and not the conditions along the wave travel path.

It is hypothesized that constants giving the relation between different classes of soil can be obtained and can be defined as follows:

$$k_{i} = \frac{\text{Peak Ground Acceleration of Soil Class } i}{\text{Peak Ground Acceleration of Firm Ground}}$$
(1)

where i specifies a soil class other than firm ground. Equation (1) can be written as:

$$k_{i} = \frac{y_{i}}{y}$$
(2)

where

y = peak ground acceleration for soil class i
y = peak ground acceleration for firm ground
or alternatively as

$$y_{i} = k_{i}y \tag{3}$$

The cumulative probability distribution on peak ground acceleration for soil class i can be derived in its most general form as:

$$P[Y_{i} \leq y_{i}] = P[Yk_{i} \leq y_{i}] = P[Y \leq y_{i}/k_{i}]$$
(4)

The form of Equation (4) is the same as the distribution for firm ground acceleration except for the dividing factor of k_i . Thus for any soil class, the cumulative distribution on peak ground acceleration can be obtained directly from the one for firm ground acceleration, but replacing the variable y by the variable y_i/k_i where k_i is the constant for the ith soil class. A direct application of the proposed modification will be shown later in this chapter.

5.

2.2 Strong Motion Data

Strong motion records from 57 past major earthquakes in the Western United States have been collected by the Earthquake Engineering Research Laboratory of the California Institute of Technology (6). The 57 earthquake events are listed in Table 1. From these earthquakes 209 strong motion accelerograms were obtained at free field stations or at the basements of buildings.

Tables 2 to 4 give the earthquakes from which the records were taken, the magnitude of the earthquake, the distance from the epicenter to the recording station when available, and the peak acceleration for each horizontal component. Only the horizontal components of the records will be used in the subsequent analysis since it is felt that they are the primary cause of damage.

The data varies in Richter magnitude from 3.8 to 7.7, the majority of the earthquakes being in the range between 5.0 and 6.7, thus representing a fairly uniform sample of damaging earthquakes. This data will be used for two different purposes. First the peak ground acceleration values will be used to obtain the soil class factors described in the previous section. Second, the acceleration response spectra computed from the entire acceleration record (7) will be used in obtaining response spectrum shapes and probability distributions on response spectra for different soil conditions. One disadvantage of the data is that about 50% of it is from the February 9, 1971, San Fernando earthquake; this introduces a bias towards conditions encountered primarily in the San Fernando-Los Angeles area, and also contains peculiarities associated with that particular earthquake. Later in the discussion as assessment will be made of the degree of accuracy of the results obtained.

	*
TABLE	1

Data for Earthquakes Providing Strong Motion Records

			· · · · · · · · · · · · · · · · · · ·				1	1
11o,	Earthquake Area	No. Day Year	Time Time Zone	Lat. (N)	Long. (W)	Depth (km)	Mag.	Max. Int.
1	Long Beach, CA	Mar. 10, 1933	1754 PST	33 37 00	117 58 00	16.0	6.3	9
2	Southern Calif.	Oct. Z, 1933	0110 PST	33 47 00	118 08 00	16.0	5.4	•
3	Eureka, CA	Jul. 6, 1934	1449 PST	41 42 00	124 36 00			5
•	Lower Calif.	Dec. 30, 1934	0552 PST	32 15 00	115 30 00	16.0	6.5	9
5	Melona, Nt.	Oct. 31, 1935	1138 MST	46 37 00	111 58 00		6.0	8
6	Helens, Ht.	Oct. 31, 1935	1218 MST	46 37 00	111 58 00			3
7	Helens, Mr.	Nov. 21, 1935	2058 MST	46 36 00	112 00 00			6
•	Helena, Mt.	Nov. 28, 1935	0742 MST	46 37 00	111 58 00		1 I	6.
9	Humboldt Say, CA	Feb. 6, 1937	2042 PST	40 30 00	125 15 00	1		5
10	Imperial Valley, CA	Apr. 12, 1938	0825 PST	32 53 00	115 35 00	16.0	3.0	
11	Imperial Valley, CA	Jun. 5, 1938	1942 PST	32 54 00	115 13 00	16.0	5.0	
12	Imperial Valley, CA	Jun. 6, 1938	0435 PST	32 15 00	115 10 00	16.0	4.0	
13	Northwest Calif.	Sep. 11, 1938	2210 PST	40 18 00	124 48 00		5.5	6
14	Imperial Valley, CA	May 18, 1940	2037 PST	32 44 00	115 30 00	16.0	6.7	10
15	Northwest CA	Feb. 9, 1941	0145 PST	40 42 00	125 24 00		6.4	
16	Santa Barbara, CA	Jun. 30, 1941	2351 #ST	34 22 00	119 35 00	16.0	5.9	8
17	Northern Celif.	Oct. 3, 1941	0513 PST	40 36 00	124 36 00			7
18	Torrance-Gardena, CA	Nov. 14, 1941	0042 PST	33 47 00	118 15 00	16.0	5.4	8
19	Borrego Valley, CA	Oct. 21, 1942	0822 PST	32 58 00	116 00 00	16.0	6.5	7
20	Northern Calif.	Mar. 9, 1949	0429 PST	37 06 00	121 18 00		5.3	7
21	Western Wash.	Apr. 13, 1949	1156 PST	47 06 00	122 42 00		7.1	8
22	Imperial Valley, CA	Jan. 23, 1951	2317 PST	32 59 00	115 44 00	16.0	5.6	7
23	Northwest Calif.	Oct. 7, 1951	2011 PST	40 17 00	124 48 00		5.8	7
24	Kern County, CA	Jul. 21, 1952	0453 PDT	35 00 00	119 01 00	16.0	7.7	11
25	Kern County, CA	Jul. 23, 1952	PDT	35 17 00	118 39 00			
26	Morthern Calif.	Sep. 22, 1952	0441 PDT	40 12 00	124 25 00		5.5	7
27	Southern Calif.	Nov. 21, 1952	2346 PST	35 50 00	121 10 00		1	7
28	Imperial Valley, CA	Jun. 13, 1953	2017 PST	32 57 00	115 43 00	16.0	5.5	7
29	Wheeler Ridge, CA	Jan. 12, 1954	1534 PST	35 00 00	119 01 00	16.0	5.9	8
30	Central Calif.	Apr. 25, 1954	1233 PST	36 48 00	121 48 00		5.3	7
31	Lover Calif.	Nov. 12, 1954	0427 PST	31 30 00	116 00 00	16.0	6.3	5
32	Eureka, CA	Dec. 21, 1954	1156 PST	40 47 00	123 52 00		6.5	7
33	San Jose, CA	Sep. 4, 1955	1801 PST	37 22 00	121 47 00		5.8	7
34	Imperial County, CA	Dec. 16, 1955	2117 PST	33 00 00	115 30 00	16.0	4.3	[
35	Imperial County; CA	Dec. 16, 1955	2142 PST	33 00 00	115 30 00	16.0	3.9	
36	Imperial County, CA	Dec. 16, 1955	2207 PST	33 00 00	115 30 00	16.0	5.4	7
37	El Alsmo, Baja Calif.	Feb. 9, 1956	0633 PST	31 42 00	115 54 00	16.0	6.8	l
38	El Alamo, Baja Calif.	Feb. 9, 1956	0725 PST	31 42 00	115 54 00		6.4	
39	Southern Celif.	Har. 18, 1957	1056 PST	34 07 06	119 13 12	13.8	4.7	6
40	San Francisco, CA	Mar. 22, 1957	1048 PST	37 40 00	122 28 00		3.8	5
41	San Francisco, CA	Har. 22, 1957	1144 PST	37 40 00	122 29 00		5.3	7
42	San Francisco, CA	Nar. 22, 1957	1515 PST	37 39 00	122 27 00		4.4	5
43	San Francisco, CA	Har. 22, 1957	1627 PST	37 39 00	122 29 00		4.0	5
44	Central Calif.	Jan. 19, 1960	1926 PST	36 47 00	121 26 00	· 1	5.0	6
45	Northern Calif.	Jun. 5, 1960	1718 PST	40 49 00	124 53 00		5.7	6
46	Wollister, CA	Apr. 8, 1961	2323 PST	36 30 00	121 18 00	11.0	5.7	7
47	Northern Calif.	Sep. 4, 1962	0917 PST	40 58 00	124 12 00		5.0	· 6
48	Puget Sound, Wash.	Apr. 29, 1965	0729 PST	47 24 00	122 18 00		6.5	8
49	Southern Calif.	Jul. 15, 1965	2346 PST	34 29 06	118 31 18	15.1	4.0	6
50	Parkfield, CA	Jun. 27, 1966	2026 PST	35 57 18	120 29 54	6.0	5.6	7
51	Gulf of Calif.	Aug. 7, 1966	0936 PST	31 48 00	114 30 00	16.0	6.3	6
52	Northern Calif.	Sep. 12, 1966	0841 PST	39 24 00	120 06 00		6.3	7
53	Northern Calif.	Dec. 10, 1967	0407 PST	40 39 00	124 36 00		5.8	6
54	Northern Callf.	Dec. 18, 1967	0925 PST	37 00 36	121 47 18		5.2	6
55	Borrego Hin., CA	Apr. 8, 1968	1430 PST	33 31 24	116 07 42	11.1	6.4	,
36	Lytle Creck, CA	Sep. 12, 1970	0630 PST	34 16 12	117 32 24	8.0	5.4	1
57	San Pernando, CA	Feb. 9, 1971	0600 PDT	34 24 42	118 24 00	13.0	6.4	11

* From TELFonac and Braily (34)

as Blanks Indicate unavailable information. Many Southern California parthquakes have an assumed depth of 16 km.

2.3 Soil Correction Factors

When considering the peak ground acceleration from strong motion records, several factors must be taken into account. The peak ground acceleration value at a site will depend on the magnitude of the earthquake, the distance from the epicenter to the recording station, the soil condition at the site and the geological conditions along the energy propagation path. In general, the peak ground acceleration value has been shown (3) to decrease with increasing distance away from the epicenter, and to increase exponentially with Richter magnitude. Thus, in the analysis it is important to compare acceleration values recorded at the same distance from the epicenter and to be from earthquakes of comparable Richter magnitudes.

The first step in this analysis is to categorize the soil conditions in different groups. With the limited variety of strong motion records however, it is necessary to use as simple a classification as possible. For that purpose, three types of soil characteristics are defined in a manner similar to the one suggested by Trifunac and Brady (17).

> Class 0: - soft alluvium deposits Class 1: - intermediately stiff soils Class 2: - firm ground or rocks

Other more detailed classifications have been used by Duke, et al (2), Wiggins (18) and Seed, et al (14). Duke's and Seed's classifications can be easily correlated to the one defined above (see Reference 17). Wiggins describes the soil types according to their shear wave velocity.

When sorting the data according to the above soil types, 258 accelerograms from 129 recording stations were found to belong to Class 0, 116 accelerograms from 58 stations were found to be best described by soil Class 1, and 44 accelerograms from 22 stations were found to have

Strong Motion Earthquake Records for Soil Class 0

мо.	EERL NO.	LOCATION	DATE	RM	DIST. FROM EPI	DIRECTION	PGA CM/SEC ²
1.	A001	El Centro, Imperial Valley	5.18.40	6.3	10km	SE	341.69
2.	A001 .	Atheneum.CIT.Pasadena	6.21.52	7.7	124km	SE	46.46
	A003	Athoneum, CIT, Pasadena	6.21.52	2.2	124km	\$90W	52.06
5.	A004	Lincoln School Tunnel, Tart Lincoln School Tunnel. Taft	6.21.52	1 :: : :	55km	S69E	175.94
7 .	A005	Santa Barbara	6.21.52	7.7	89km	N43E	87.83
	A005	Santa Barbara Kollywood Storage Bidg.	6.21.52	7.7	89km	S48E	128.61
, ,,		Basement, Los Angeles	6.21.52	7.7	120km	SW	54.07
10.	A006	Hollywood Storage Bldg.	6 21 52	1	1202-	NACT	43 53
11.	A007	Hollywood Storage Bldg.	0.11.52	1			43.52
		P.E.Lot,Los Angeles	6.21.52	7.7	120km	SW	58.10
12.	X007	P.E.Lot,Los Angeles	6.21.52	7.7	120km	N90E	41.24
13.	A010	Bank of Amer., San Jose	9. 4.55		10km	N31W	100.16
	A011	El Centro, Imperial Valley	2. 9.56		119km	SW	32.42
16.	A011	El Centro, Imperial Valley	2. 9.56		118km	590W	50.08
17.	A012 A012	El Centro, Imperial Valley El Centro, Imperial Valley	2. 9.56		118km	55 \$90W	15.44
19.	A013	San Francisco S.P.Eldg.	3.22.57	5.3	17km	N45E	45.86
20.	A013	San Francisco S.P.Bldg. Hollistor City Hall	4. 8.61	5.6	1/km	SOLM	63.41
22.	A018	Hollister City Hall	4. 8.61	5.6	21 km	N89W	175.68
23.	A019	El Centro, Imperial Valley	4. 8.68	6.5	64km	SW	127.76
25.	A020	San Diego Light & Lower	4. 8.68	6.5	96km	SW	20.52
26.	A020	San Diego Light & Power	4. 8.68	6.5	96km	190E	28.88
27.	B021	Vernon CMD Bldg.	3.10.33	6.3	53km	N82W	151.52
29.	B023	Hollywood Storage Bldg.					
10.	8023	Basement,Los Angeles Hollywood Storage Bidg.	10. 2.33	5.4	38Km	NAOM	20.35
		Bagement,Los Angeles	10. 2.33	5.4	30km	NE	32.13
31.	B024	El Centro, Imperial Valley	12.30.34	6.5	64km	SW	156.82
33.	B028	Seattle.Wash. (Army Base)	4.13.49	7.1	55km	590W 502W	66.51
34.	B028	Seattle, Wash. (Army Base)	4.13.49	7.1	55km	N88W	65.86
35.	B029 B029	Olympia, Wash, Hwy, Test Lab.	4.13.49	7.1	16km	NO4W N86E	161.63
37.	B031	Taft, Lincoln School	1.12.54	5.9	43km	N21E	63.87
38.	B031 B032	Taft, Lincoln School	1.12.54	5.9	43km	S69E	66.81
40.	B032	Olympia, Wash. Hwy. Test Lab.	4.29.65	6.5	50km	586W	194.33
41.	B035	Cholame-Shandon #8	6.27.66	5.6	38km	NSOE	232.63
43.	B036	Cholame-Shandon #12	6.27.66	5.6	38km	NSOE	52.14
44.	B036	Cholame-Shandon #12	6.27.66	5.6	38km	N40W	63.17
46.	C048	8244 Orion Blvd, Los Angeles 8244 Orion Blvd.Los Angeles	2. 9.71	6.6	20km 20km	NW S90W	249.95
47.	C051	250 East First St., L.A.	2. 9.71	6.6	41km	W36E	97.81
48.	C051 C054	445 S. Figueroa St. L.A.	2. 9.71	6.6	41km	N54W	122.73
50.	C054	445 S.Figueroa St., L.A.	2. 9.71	6.6	41km	\$38W	116.96
51.	D054	Hollywood Storage Blig., Basement, Los Incales	2 9 71		351-0	<	103 78
52.	D054	Hollywood Storage Bldg.,			3364	511	105.70
	DOSE	Basement, Los Angeles	2. 9.71	6.6	35km	W90E	148.24
	2038	P.E. Lot, Los Angeles	2. 9.71	6.6	35km	SW	167.26
54.	D058	Hollywood Storage Bldg.,	2		1	NOCT	206 65
55.	D059	1901 Ave, of the Stars.L.A	2. 9.71	6.6	35km 38km	NYUE N46W	206.99 133.83
56.	D059	1901 Ave, of the Stars, L.A	2. 9.71	6.6	38km	544W	147.10
57.	D062	1640 S. Marrengo,L.A. 1640 S. Marrengo,L.A.	2. 9.71	6.6	42km 42km	N J 8W S 5 3W	117.98
59.	D068	7080 Hollywood Blvd., L.A.	2. 9.71	6.6	34km	NE	81.21
60. 61	D068 E071	7080 Hollywood Blvd.,L.A.	2. 9.71	6.6	34km	N90E	98.01
62.	E071	Wheeler Ridge	2. 9.71	6.6	89km	N90E	25.28
63.	E075	3470 Wilshire Blvd.,L.A.	2. 9.71	6.6	39km	NE	133.81
65.	E083	3407 W. Sixth St. L.A.	2. 9.71	6.6	39km	590W SW	158.18
66.	E083	3407 W. Sixth St., L.A.	2. 9.71	6.6	39km	N90E	161.95
68.	F086 F086	Vernon CMD Bldg.	2. 9.71	6.6	46km	N83W	104.56
69.	F087	Orange Co.Engr.Bldg.,	2. 9.71	0.0	46KM	507W	80.46
70.	F087	Santa Ana Orange Co. Enge Bla-	2. 9.71	6.6	86km	504E	26.76
		Santa Ana	2. 9.71	6.6	86km	\$86W	28,24
71.	F089	808 S.Olive,Los Angeles	2. 9.71	6.6	42km	S53E	131.87
73.	F095	120 N.Robertson, L.A.	2. 9.71	6.6	42km 36km	537W 588E	139.00
74.	F095	120 N.Robertson, L.A.	2. 9.71	6.6	36km	502W	83.85
76.	F098	646 S. Olive, L.A.	2. 9.71	6.6	42km	S53E S37W	236.42
77.	F101	Southern Calif.Edison,			1		
78.	F101	Southern Calif.Edison.	2. 9.71	6.6	104km	SW	37.46
79	7)03	Colton Rumning Dises in	2.9.71	6.6	104km	N90E	29.96
80.	F103	Pumping Plant, Pearblossom	2. 9.71	6.6	46km	NE N90W	91.48 120.57
#1.	F105	UCLA, (Bontlel Hall), L.A.	2. 9.71	6.6	38km	SW	83.15
1 05.	G107	Atheneum, CIT. Pusadena	2. 9.71	6.6	38km	N90E	77.63
L		1	1		417.00		73,30

,

~							
Strong	Motion	Earthquake	Records	for	Soi1	Class	0

1	1	1	T		·		
но.	EERL NO.	LOCATION	DATE	RM	DIST. TROM EPI	DIRECTION	PGA CM/SEC ²
84.	6102	Athennum CIT Pagadona	2 9 91		371-		
85.	G108	Millivan Lib. CIT.Pasadena	2. 9.71	6.6	37km	NTUE	107.25
86.	G108	Millivan Lib., CIT, Pasadene	2. 9.71	6.6	37km	NOT	181.56
87.	G112	611 W. Sixth St.,L.A.	2. 9.71	6.6	41km	N38E	101.92
	6112	611 W. Sixth St., L.A.	2. 9.71	6.6	41km	N52W	78.54
	GII4	Fire Sta., Palmdalo	2. 9.71	6.6	337.m	SCOP	110.81
1	8115	15250 Venture Ulvel T. N	2. 9.71	6.6	33km	\$30W	136.25
92	1 1115	15250 Ventura Blud. L.A.	2. 9.71	0.0	2828	NILE	220.57
93.	H118	8639 Lincoln, Los Angeles	2. 9.71	6.6	4840	N/9W C452	140.04
94.	H118	8639 Lincoln, Los Angeles	2. 9.71	6.6	48km	5458	32.72
35.	H151	900 S. Fremont Ave.	ł				
1		Alhambra	2. 9.71	6.6	[4]km	890W	119.41
30.	1 1141	900 S. Fremont Ave.	1		1		
97.	8124	2600 Nutwork Fullorton	2 9 71	0.0	4 J Km	5W .	112.29
99.	H124	2600 Nutwood, Fullerton	2. 9.71	6.6	742.0	SW	34 51
99.	1128	435 N. Oakhurst, Beverly	1	1		54	34.34
1		Hills	2. 9.71	6.6	36km	ME	60.07
100.	1128	435 N. Oakhurst, Beverly	1				
	1	Rills	2. 9.71	6.6	36km	590W	91.58
[101.	1131	450 N. Roxbury, Beverly	1		[-	
		Hills	2. 9.71	6.6	37km	N 50E	164.28
102.	1131	450 N. Roxbury, Beverly					
103.	7134	1800 Century	4. 3.11	•••	3780	N40W	160.63
		East Los Angeles	2. 9.71	6.6	382-	N547	
104.	1134	1800 Century					
	1.	East Los Angeles	2. 9.71	6.6	30km	\$36E	\$2.33
105.	1137	15910 Ventura Blvd.,	L	1			• • •
100		Los Angeles	2. 9.71	6.6	28km	\$81E	140.16
100.	1137	15910 Ventura Bivd.,					
107.	3145	1 LOS Angeles 15107 Van Owen Street	2. 9.71	0.6	28km	509W	128,95
		Los Angeles	2. 9.71	6.6	742-	ew.	112 03
108.	J145	15107 Van Owen Street		1	* ***.	54	
		Los Angeles	2. 9.71	6.6	24km	\$90W	103.40
109.	M176	1150 S.Hill, Los Angeles	2. 9.71	6.6	42km	N37E	83.41
110.	M176	1150 S.Hill,Los Angeles	2. 9.71	6.6	42km	\$53E	116.03
112.	M180	4000 W.Chapmat Ave., Grange	2. 9.71	6.6	83km	SW	23.90
113.	N186	Whittier Narrows Dam.	4. 5./1		83K.M	290W	29.8/
		Whittier	2. 9.71	6.6	S2km	837E	95.72
114.	#186	Whittier Narrows Dam,		1			
		Whittier	2. 9.71	6.6	52km	853W	96.68
115.	N187	San Antonio Dam, Upland	2. 9.71	6.6	71km	NISE	55.74
117.	NIRA	1880 Century	2. 9.71	6.6	713cm	N75W	75.87
		East Los Angeles	2 9 71		202-	NEAP	334.44
110.	N188	1880 Century		1	JONE	M346	114.44
	1	East Los Angeles	2. 9.71	6.6	36 km	N36W	126.53
119.	N195	San Juan Capistrano	2. 9.71	6.6	120km	N33E	40.90
120.	N195	San Juan Capistrano	2. 9.71	6.6	120km	N57W	30.98
171.	N196	Long Beach State College	2. 9.71	6.6	73km	N76W	35.05
122.	0100	Long Beach State College	2. 9.71	6.6	73km	S14W	31.21
124.	0199	1625 Olympic Blvd.,L.A.	2 9.71	6.6	41km	N28E	137.86
125.	0204	205 W. Broadway, Long Brach	2. 9.71	6.6	73km	NE	230.03
126.	0204	205 W. Broadway, Long Beach	2. 9.71	6.6	73km	NODE	20.78
127.	0205	Terminal Island, Long Beach	2. 9.71	6.6	71km	N21W	28.42
128.	0205	Terminal Island, Long Beach	2. 9.71	6.6	71km	569W	28.13
743'	0206	i Hall of Records, San		1			1
130	0206	Hall of Pecorde Con	4. 9.71	6.6	104 km	NE	37.44
		Bernardino	2. 9.71	1	1042-	NOOF	43.03
131.	0210	Fire Station.Hemet	2. 9.71	6.6	140km	\$45E	34.93
132.	0210	Fire Station, Hemet	2. 9.71	6.6	140km	545W	38.44
133.	P217	3345 Wilshire Blvd., L.A.	2. 9.71	6.6	.39km	SW	108.28
134.	P217	3345 Wilshire Blvd., L.A.	2. 9.71	6.6	39km	N90E	88.17
135.	8222	Navy Lab., Port Hueneme	2. 9.71	6.6	78km	SW	25.91
137.	P231	9841 Airport Plus	2. 9.71	6.6	78km	S90W	25.22
138.	P231	9841 Airport Blud T. B	2. 9 71	0.0	402-	SAUR	37 76
139.	0233	14724 Ventura Blvd.L.A	2. 9.71	6.6	28km	S12W	243.28
140.	0233	14724 Ventura Blvd.L.A.	2. 9.71	6.6	28km	N78W	197.05
141.	0236	1760 N. Orchid Ave, L.A.	2. 9.71	6.6	34km	South	167.29
142.	0236	1760 N. Orchid Ave,L.A.	2. 9.71	6.6	34km	East	122.43
443.	4439	Beverly Wilshire Blvd,	2 0 22	1			
144.	0239	9100 Wilebirg plus	4. 9.11	0.6	_s/km	South	119.17
	/	Beverly Hills	2. 9.71	66	375m	Fast	161 76
145.	R246	6464 Sunset Blvd.L.A.	2. 9.71	6.6	34km	South	115.97
146.	R246	6464 Sunset Blvd, L.A.	2. 9.71	6.6	34km	East	106.99
147.	R248	6430 Sunset Blvd, L.A.	2. 9.71	6.6	34km	South	184.03
148.	R243	6430 Sunset Blvd,L.A.	2. 9.71	6.6	34km	East	174.35
150	R2497	1900 Avenue of the Stars, LA	1 2 2.71	6.6	38km	N44E	79.89
151.	R253	533 S. Fremont Avenue T	2. 9.11	0.6	38Km	NION	242 00
152.	R253	533 S. Fremont Avenue, L.A.	2. 9.71	6.6	4) km	S60W	220.69
153.	\$258	3440 University Ave. L.A	2. 9.71	6.6	42km	N29E	56.36
154.	S258	3440 University Ave. L.A.	2. 9.71	6.6	42km	S61E	\$3.39
1			F	1	1	1	1

390,	eerl no.	LOCATION	DATE	RM	DIST. FROM EPI	DIRECTION	PGA CM/SEC ²
155.	\$261	1177 Beverly Drive.L.A.	2. 9.71	6.6	39km	NS9E	97.76
156.	\$261	1177 Beverly Drive, L.A.	2. 9.71	6.6	39km	N31W	107.75
157.	\$266 \$266	3550 Wilshire Blvd., L.A.	2. 9.71	6.6 6.6	39km 39km	North West	153.56
159.	\$267	5260 Century Blvd.,L.A.	2. 9.71	6.6	49km	North	55.54
161.	1274	El Centro, Imperial Valley	2. 9.71	6.0	4988	East	61.54
162.	T 274	Irrigation District El Centro, Imperial Valley	4.12.38	3.0	13km	Worth	28.22
163.	T275	Irrigation District El Centro, Imperial Valley	4.12.38	3.0	13km	Bast	48.79
164.	1275	Irrigation District El Centro, Imperial Valley	6. 5.38	5.0	l3km	North	33.29
165.	1277	Irrigation District El Centro, Imperial Valley	6. 5.38	5.0	13km	gast	26.03
166.	7277	Irrigation District El Centro, Inperial Valley	5.18.40	6.7	1.3km	North	22.50
167.	7278	Irrigation District El Centro, Imperial Valley	5.18.40	6.7	13km	East	24.13
168.	\$278	Irrigation District El Centro, Imperial Valley	5.18.40	6.7	18km	North	11.91
169.	T279	Irrigation District El Centro, Imperial Valley	5.18.40	6.7	18km	East	14.43
170.	T279	Irrigation District El Centro, Imperial Valley	5.18.40	6.7	13km	North	11.37
171.	7280	Irrigation District	5.18.40	5.7	13km	East	18.46
172.	7280	Irrigation District	5.18.40	6.7	13km	North	22.36
		Irrigation District	5.18.40	6.7	13km	East	9.51
173.	7281	El Centro	5.18.40	6.7		North	6.49
175.	1282	El Centro	5.18.40	6.7	1	North	3.28
176.	T282	El Centro	5.18.40	6.7	}	East	3,93
178.	1283	El Contro	5.18.40	6.7		East	77.20
179.	1284 1284	El Centro	5.18.40	6.7		NORTH	11.42
181.	T285	El Centro	5.18.40	6.7	Į	North	50.96
182.	T285 T286	El Centro	5.18.40	6.7	1	East	70.92
184.	T286	El Centro	10.21.42	6.5		East	46.54
185.	T287	El Centro El Centro	1.23.51	5.6]	North	30.35
187.	T288	El Centro	6.13.53	5.5	}	North	7.21
188.	T288	El Centro	6.13.53	5.5	1	East	35.85
190.	T289	El Centro	11.12.54	6.3	}	North East	24.18
191.	1290	El Centro	12.16.55	4.3		North	30.42
193.	T291	El Centro	12.16.55	4.3	{	North	15.87
194.	7291	El Centro	12.16.55	3.9		East	7.19
195.	1292	El Centro	12.16.55	5.4	(North	62.52
197.	T293	El Centro	8.7.66	6.3		North	13.51
198.	U299	S.B. Court House	8.7.66	6.3	16km	East	14.78
200.	0299	S.S. Court House	6.30.41	5.9	16km	545E	172.31
201.	0301	Hollister Fublic Library Hollister Public Library	3. 9.49	3.5	20km	SOLW	119.44
203.	U305	Hollister Public Library	3. 9.49	5.3	32km	N89W	52.02
204.	0305	Hollister Public Library	3. 9.49	5.3	32km	SOIW Nagw	48.94
206.	U307	Holister Public Library	1.19.60	5.0		SCIW	35.34
207.	0309	Hollister Public Library	4. 8.61	5.5	21km	N89W	168.56
209.	U310	Seattle, Washington	4.29.65	6.5	22km	5328	52.19
210.	0310	Seattle, Washington	4.29.65	6.5	22km	\$58W	77.57
212.	U311	Lincoln School Tunnel, Taft	6.27.66	5.6	179km	S69E	11.24
213.	U313	Hollister Public Library	12.18.67	5.2	45km	N89W	13.10
215.	¥314	L.A. Subway Terminal	2 20 22	5.2	* 01-	3014	10.30
216.	V314	L.A. Subway Terminal			3960	N376	64.35
217.	¥315	Long Beach Utilities Bldg.	3.10.33	6.3	27km	South	192.73
219.	V315 V316	Long Beach Utilities Bldg.	3.10.33	6.3	27km	West	155.00
220.	V316	Long Beach Utilities Bldg.	11.14.41	5.4	4km	East	39.73
441.	¥317	Unamber of Commerce Basement, L.A.	11.14.41	S.4	26km	SSOR	14 84
222.	¥317	Chamber of Commerce Basement, L.A.	11.14 41	5.4	262-	EADW	11 12
223.	V320	Southern Pacific Bldg. Besement, San Fran	3.27 87	1 0	166-		2.02
224.	¥320	Southern Pacific Bldg, Basement, San Fran	1.23 47	1.0	16	14 5 LT	2.02
225.	V322	Southern Pacific Bldg. Basement, San Fran	3.27 47	5.3	272-	14.54	4.44
726.	¥322	Southern Pacific Bldg. Basement, San Fran.	3.22.57	5.3	3.7km	NASM	24 66
327.	V328	Southern Pacific Bldg. Basement, San Fran.	3.22.47	4.4	17km	NASE	2 47
228.	V328	Southern Pacfic Bldg. Basement, San Fran.	3.22.57	4.4	17km	N45W	9,00
			l				1

11

.

TABLE	2	(Cont.	.)
the second			_ •

NO.	EERL	LOCATION	DATE	RM	DIST. FROM EPI	DIRECTION	PGA CN/SEC ²
229.	¥329	Nevy Res.: Eval.Lab, Port Hueneme	3.18.57	4.7	7ka	South	163.64
230.	V329	Navy Res. 5 Eval.Lab, Port Hueneme	3.18.57	4.7	7km	West	86.86
231.	V332	Pacific Tel & Tel Bldg. Basement,Sacremento	9.12.66	6.3	170km	South	14.49
232.	¥332	Pacific Tel & Tel Bldg. Basement,Sacromento	9.12.66	6.3	178km	East	12.49
233.	W338	Hall of Records, San Bernardino	9.12.70	5.4	33km	North	113.63
234.	W338	Hall of Records, San Bernardino	9.12.70	5.4)3km	East	57.53
235.	W339	Southern Calif.Edison Colton	9.12.70	5.4	34km	South	40.20
236.	W339	Southern Calif.Edison Colton	9.12.70	5.4	34km	East	35.38
237.	W342	Millikan Lib.CIT, Pasadena	9.12.70	6.4	46km	North	19.38
238.	N342	Millikan Lib.CIT, Pasadena	9.12.70	6.4	48km	East	18.71
239.	¥370	Southern Calif.Edison Colton	4. 8.68	6.4	161km	South	21.49
240.	¥370	Southern Calif.Edison Colton	4. 8.68	6.4	161km	East	28.14
241.	¥371	Orange County Engr.Bldg. Santa Ana	4. 8.68	6.4	200km	504E	13.19
242.	¥371	Orange County Engr.Bldg.					
243.	¥372	Southern Calif. Edison	4. 0.08	•••	TUCKE	3604	11.73
•••••		Term.Isl.,Long Beach	4. 8.68	6.4	239km	N21W	8.73
244.	¥372	Southern Calif. Edison Term.Isl.,Long Beach	4. 8.68	6.4	239km	569W	9.51
245.	¥375	Millikan,CIT,Pasadena	4. 8.68	6.4	242km	North	9.82
246.	¥375	Millikan,CIT,Pasadena	4. 8.68	6.4	242km	East	10.32
247.	¥376	Atheneum, CIT, Pasadena	4. 8.68	6.4	242km	South	7.00
278.	¥376	Atheneum, CIT, Pasadena	4. 8.68	6.4	242km	West	10.07
279.	¥377	Southern Calif.Edison			2821-		
280.	¥377	Southern Calif.Edison	4. 0.00		25380	8328	//
281.	¥378	Subway Terminal Resement	4. 8.65	0.4	25.3Km	538W	11.92
	*170	Los Angeles	4. 8.68	6.4	253km	S52E	6.97
284.	13/6	Los Apgeles	4. 8.68	64	253km	CIEV	11.47
283.	¥379	CMD Building, Vernon	4. 8.68	6.4	245km	N83W	18.45
284.	¥379.	CMD Building, Vernon	4. 8.68	6.4	245km	507W	18.51
285.	¥380	Hollywood Storage Bldg, Basement, Los Angeles	4. 8.68	6.4	262km	South	10.93
286	¥380	Hollywood Storage Bldg, Basement, Los Angeles	4. 8.68	6.4	262km	East	12.39
	t .				1	1	

Strong Motion Earthquake Records for Soil Class 0

TABLE 3

Strong Motion Earhtquake Records for Soil Class 1

				1			
ю.	EERL NO	LOCATION	DATE	RM	DIST. FROM	DIRECTION.	PGA 2
					EDI		CM/SEC
1.	A002	Ferndale City Hall	10.7.51	5.8	53km	544W	102.03
2. 3.	A002	Eureka Fed.Building	10.7.51	5.8	24km	N46W N11W	164.53
4.	AUOB	Eureka Fed.Building	12.21.54	6.5	24km	N79E	252.72
6.	A009 A009	Ferndale City Hall Ferndale City Hall	12.21.54	6.5	40km	N44E N46W	197.25
7.	A014	Alex.Bldg., Basement					
1.	A014	San Francisco Alex,Bldg.,Basement	3.22.57	5.3	1980	NUSW	41.79
۹.	2015	San Francisco G.G. Pana	3.22.57	5.3	16km	N81W	45.40
		San Francisco	3.22.57	5.3	11km	NIOE	81.79
10.	A015 -	G.G.Pane, San Francisco	3.22.57	5.3	11km	S80E	102.80
11.	A016	State Building	1 73 67	• •	1764	. CUBE	83.81
12.	A016	State Building					
13.	A017	San Francisco Oakland City Hall	3.22.57	5.3	17km 24km	NZ6E	38.97
14.	A017	Oakland City Hall	3.22.57	5.3	24 km	564E	23.75
15.	B026 B026	Ferndale City Hall Ferndale City Hall	9.11.38	5.5	56km	N45E 545E	87.14
17.	B027	Ferndale City Hall	2. 9.41	6.6	104km	.N45E	61.30
18.	B027	Ferndale City Hall	2. 9.41	6.6	104km	S45E	38.40
20.	8030	Ferndale City Hall	9.22.52	5.4	43km	546E	74.14
21.	B038	San Luis Obispo					·
22.	8038	San Luis Obispo	0.27.66		/ 4 KBN	MOCN	19.21
21.	8039	Recreation Bldg.	6.27.66		72km 59km	554W	11.44
24.	8039	Eureka City Hall	12.10.67		59km	N79E	19.49
25.	B040	San Onofre SCE Power Plant	4. 9.68		158km	N33E	40.03
26.	B040	San Onofre SCE	4		1691-	8576	45 54
· 27.	D056	Castaic	2. 9.71	6.6	29km	N21E	309.40
28.	D056	Castaic	2. 9.71	6.6	29km	N69W	265.45
29.	0065	J710 Wilshire Blvd., tos Angeles, Ca.	2. 9.71	6.6	39km	SW	146.74
30.	D065	3710 Wilshire Blvd.,	2. 9.71	6.6	3.02m	89.0W	155.71
31.	E072	4680 Wilshire Blvd.,					100.75
12.	B072	4680 Wilshire Blvd.,	2. 9.71	6.6	38km	N75W	82.24
		Los Angeles, Ca.	2. 9.71	6.6	38km	N15E	114.98
33.	E078 E078	Los Angeles Water & Power	2. 9.71	1	41km	S40W	169.16
35.	E081	Senta Felicia Dam, Piru	2. 9.71		33km	SOBE	213.00
36.	E081	633 E.Broadway, Glandala	2. 9.71		338m	582W 570E	265.68
38.	F088	633 E. Broadway, Glendale	2. 9.71	ļ	32km	S20W	209.11
39.	2022	2011 Zonal, Los Angeles	2. 9.71		42km	SG2E	64.22
40.	F092	Oso Pumping Plant, Gorman	2. 9.71		55km	NE	85.20
42.	F104	Oso Pumping Plant, Gorman	2. 9.71	}	55ka	N90W	103.06
43.	G110	JPL, Pasadena	2. 9.71	ł	29km 29km	582E 508W	138.98
44.	J144	ArrayStation # 12,					246.27
46	3144	Lance Houghes Array Station # 12,	2. 9./1		25KA	NAIL	346.1/
		Lance Houghes	2. 9.71	ł	25km	N69W	277.90
47.	J148	Los Angeles	2. 9.71	ļ	39km	NE	107.63
48.	J148	616 S. Normandie Avenue Los Angeles	2. 9.71		39 km	\$90E	111.99
49.	L16 6	3838 Larkenshire Blvd.	2 6 71	1	304	NE	164.24
50.	L166	3838 Larkenshire Blvd.		1			
	1.171	Los Angeles Southern Calif. Edison	2. 9.71	ł	30km	590W	141.02
24+		San Onofre	2. 9.71		135km	N33E	11.95
52.	L171	San Onofre	2. 9.71	!	135km	N57W	15.87
53.	M178	Tehachapi Pumping			7.3km	N37E	117.28
54.	M178	Tehachapi Pumping	2. 9.71		776-	653F	139.04
55.	M183	Plant, Grapevine 6074 Pa Drive	2. 9.71		/361		133.04
		Wrightwood	2. 9.71		70km	NGSE	42,40
50.	M183	Wrightwood	2. 9.71	1	70km	N25E	55.71
57.	M184	6074 Pa Drive Wrightwood	2 4 71		70km	565E	43.10
58.	K184	6074 Pa Drive	a. y./1		70km	525W	57.19
59.	N185	Wrightwood Carbon Canyon Dam,	2. 9.71	1		6508	(7 1)
60.	N185	Brea Carbon Canyon Dam	2. 9.71	6.6	/4XM	5705	67.33
	4703	Brea	2. 9.71	6.6	74km	540W	67.28
61.	H191	2516 Via Tejon, Palos Verdos Estates	2 8 71	6.6	67km	N65E	24.74
62.	N191	2516 Via Tejon,	4. 3.11	6.6	67km	825E	40.07
	L <u></u>	Pains Verdes Estates	2. 9.71	<u>}</u>			

TABLE 3 (Cont.)

Strong Motion Earthquake Rea	cords for	Soil	Class	1
------------------------------	-----------	------	-------	---

NO.	ÆERL NO.	LOCATION	DATE	RM	DIST. FROM EPI	DIRECTION	PGA CM/SEC ²
63.	N192	Palos Verdes Estates 2500 Wilshire Blvd.,	2. 9.71	6.6	67km	S25E	40.07
64.	N192	Los Angeles 2500 Wilshire Blvd.,	2. 9.71	6.6	40km	N29E	96.75
65.	0208	Los Angeles University of Calif.	2. 9.71	6.6	40km	N61W	98.88
66.	0208	Santa Barbara University of Calif.	2. 9.71	6.6	133km	N42E	16.50
67.	P214	Santa Barbara 4867 Sunset Blvd.,	2. 9.71	6.6	133km	S48E	17.05
68.	P214	Los Angeles.Calif. 4867 Sunset Blv2.,	2. 9.71	6.6	35km	589W	154.10
69.	P220	Los Angeles, Calif. 666 West 19th Street	2. 9.71	6.6	35km	SOIE	156.35
70.	P220	Costa Messa 666 West 19th Street	2. 9.71	6.6	96km	SW	24.17
71.	Q241	800 West First Street	2. 9.71	6.6	96km	N90E	34.34
72.	Q241	Los Angeles 800 West First Street	2. 9.71	6.6	41km	N37B	86.80
73.	R244	Los Angeles 222 Figueroa Street	2. 9,71	6.6	41km	N53W	138.02
74.	R244	Los Angeles 222 Figueroa Street	2. 9.71	6.6	41km	N53W	149.35
75.	R251	Los Angeles 234 S. Figueroa Street	2. 9.71	6.6	41km	837W	126.79
76.	R251	Los Angeles 234 S. Figueroa Street	2. 9.71	6.6	41km	N37E	195.61
77.	\$255	Los Angeles 6200 Wilshire Blvd.,,	2. 9.71*	6.6	41km	S53E	188.27
78.	\$2 55	Los Angeles 6200 Wilshire Blvd.,	2. 9.71	6.6	38km	NO8E	123.80
79.	S262	Los Angeles 5900 Wilshire Blvd.,	2. 9.71	6.6	38km	N82W	128.41
80.	S262	Los Angeles 5900 Wilshire Blvd.,	2. 9.71	6.6	38km	N83W	68.39
81.	\$265	Los Angeles 3411 Wilshire Blvd.,	2. 9.71	6.6	38km	S07₩	93.69
82.	S265	Los Angeles 3411 Wilshire Blvd.,	2. 9.71	6.6	39km	South	104.17
83.	U294	Los Angeles Forndale City Hall	2. 9.71 7. 6.34	6.6 5MM1	39km 110km	West N45W	125.22 14.50
84.	0294	Ferndale City Hall	7. 6.34	5MMI	110km	S45W	14.65
86.	U298	Ferndale City Hall	2. 6.37	5MMI	87km	N45W S45W	35.91
87.	U300	Forndale City Hall	10. 3.41	6.4	76km	N45W	118.64
88.	0300	Ferndale City Hall	10. 3.41	6.4	76km	S45W	113.62
90.	U302	Tehachapi,Calif.Firehse	7.23.52	7.6		SROE	61.81
91.	U303	Tehachapi, Calif. Firehse.	7.23.52	7.6		NIOE	47.51
92.	U303	Tehachapi, Calif.Firehse.	7.23.52	7.6		S80E	57.28
93.	U304	Tehachapi,Calif.Firehse.	7.23.52	7.6		NIOE	11.21
94.	U308	Ferndale City Hall	6. 5.60	7.6	67km	580E N46W	18.22
96.	U308	Ferndale City Hall	6. 5.60	5.7	67km	S44W	73.58
97.	U312	Ferndale City Hall	12.10.67	5.8	41km	N46W	103.07
98.	U312	Ferndale City Hall	12.10.67	5.8	41km	S44W	232.07
99.	V319 V319	San Louis Obispo	11.21.52	6.0	73km	. N36W	52.92
100.	V.319 V.319	San Louis Obispo	11.21.52	6.0	73km	S54W	35.41
101.	V 32 3	Alexander Building San Francisco	3.22.57	4.4	14km	N81E	15.69
102.	V323	Alexander Building San Francisco	3.22.57	4.4	14km	N09W	18.60
103.	V326 V326	Oakland City Hall	3.22.57	4.4	20km	N26E	2.87
105.	V330	Eureka Federal Bldg	3.22.57	4.4	20km	S64E	3.53
106.	V330	Eureka Federal Bldg.	9.4.62	5.0		SIJE	45.31
107.	V331	Old Ridge Route, Castaic	7.15.65	4.0	18km	South	40.45
108.	V331 W334	Old Ridge Route,Castaic	7.15.65	4.0	18km	East	35.93
110.	W334	Wrightwood 6074 Pa Drive	9.12.70	5.4	32km	865E	139.04
111.	W336	Wrightwood CWR Site,	9.12.70	5.4	32km	S25W	194.41
112.	W336	Cedar Springs,Calif. CWR Site,	9.12.70	5.4	25km	S54E	55.95
113.	W344	Cedar Springs,Calif. JPL, CIT.	9.12.70	5.4	25km	S36W	69.42
114.	W344	Pasadena, Calif. JPL. CIT	9.12.70	5.4	62km	S82E	14.46
115.	¥373	Pasadena, Calif. JPL, CIT.	9.12.70	5.4	62km	SOBW.	24.14
116.	¥373	Pasadena, Calif. JPL, CIT	4. 8.68	6.4	223km	S82E	7.36
		Pasadena, Calif.	4. 8.68	6.4	223km	S08W	7.03

ΤĮ	\BI	E	-4
		_	

Strong Motion Earthquake Records for Soil Class 2

NO.	EERL NO.	LOCATION	DATE	RM	DIST. FROM EPI	DIRECTION	PGA cm/sec ²
		· · · · · · · · · · · · · · · · · · ·				1	
· 1.	B025	Helena, Montana	10.31.35	6.0	8km	SW	143.47
2.	B025	Helena, Montana	10.31.35	6.0	8km	S90W	142.50
3.	B037 ·	Temblor, Cal. No. 2	6.27.66	5.6	7 k m	N65W	264.35
4.	B037	Temblor, Cal. No. 2	6.27.66	5.6	7km	S25W	340.81
5.	C041	Pacoimadam, Pacioma	2.9.71	6.6	8km	S16E	1148.06
6.	C041	Pacoimadam, Pacioma	2.9.71	6.6	8km	S74W	1054.95
7.	C042	Pacoimadam, Pacoima	2.9.71	6.6	8km	S74W	27.07
8.	C042	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	20.73
9.	C043	Pacoimadam, Pacoima	2.9.71	6.6	8km	S74W	45.47
10.	C043	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	51.36
11.	C044	Pacoimadam, Pacoima	2.9.71	6.6	8km	S74W	109.94
12.	C044	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	113.21
13.	C045	Pacoimadam, Pacoima	2.9.71	6.6	8km	S74W ·	47.53
14.	C045	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	31.39
15.	C046	Pacoimadam, Pacoima	2.9.71	6.6	8km	S74W	23.60
16.	C046	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	30.94
1/.	C047	Pacoimadam, Pacoima	2.9.71	6.6	8km	S/4W	18.25
18.	C047	Pacoimadam, Pacoima	2.9.71	6.6	8km	S16E	27.51
19.	F102	Fort Tejon, Tejon	2.9.71	6.6	71km	NE	24.65
20.	F102	Fort Tejon, Tejon	2.9.71	6.6	/ikm	N90E	20.64
21.	G106	Seism. Lab, C.I.T., Pasadena	2.9.71	0.6	J/km	SW	87.48
22.	G106	Seism. Lab, C.I.T., Pasadena	2.9.71	6.6	37km	\$90W	188.59
23.	J141	Array Sta. #1, Lake Hughes, Cal.	2.9./1	6.8	31km	NZIE	145.52
24.	J141	Array Sta. #1, Lake Hughes, Cal.	2.9.71	6.8	31km	S69E	108.88
25.	J142	Array Sta. #4, Lake Hughes, Cal.	2.9.71	6.8	29km	569E	168.25
26.	J142	Array Sta. #4, Lake Hughes, Cal.	2.9.71	6.8	29km	S21W	143.52
27.	J143	Array Sta. #9, Lake Hughes, Cal.	2.9./1	6.8	29km	NZIE	119.26
28.	J143	Array Sta. #9, Lake Hughes, Cal.	2.9.71	0.8	29km	N69W	109.45
29.	0198	Griffith Park Obser., L.A.	2.9.71	0.8	JJkm	SW	1/6.90
30.	0198	Griffith Park Obser., L.A.	2.9.71	6.8	33km	590W	16/.38
31.	0207	Fairmont Reservoir, Fairmont	2.9.71	0.0	36Km	NOOE	04.70
32.	0207	Fairmont Reservoir, Fairmont	2.9.71	0.0	36km	N 34W	97.09
33.	P221	Santa Anita Reserv., Arcadia	2.9.71	0.0	42km	NUSE	137.08
34.	P221	Santa Anita Reserv., Arcadia	2.9.71	0.0	42Km	N8/W	103./3
35.	P223	Puddingstone Reserv., San Dimas	2.9.71	0.0	62km	NODE	69.70 52.05
30.	F223	Puddingstone Reserv., San Dimas	2.9.71	0.0	02Km	WCCN	23.23
37.	0290	Helena, Montana	11.21.35	O(MM1)	(0)	North	11.05
30.	11207	Helena, Montana	11 20 25	O(MIL)	621m	Last North	76 05
. 40	11207	Helena, Montana	11 20 25	6 (MMT)	621cm	Foot	74.03 83.06
40.	U27/	Allon Ponch (MP Site	11.20.33	O(MMIL)	o∠km	Last	00.00
41.	CCC#	Allen Kanen, UWK Blie, Sodar Springe	0 12 70	5.	201.0	5.85F	69.88
4.2	11335	Allon Donob (UD Site	9.12.70	J.4	20Km	30JE	07.00
42.		Sedar Springe	9 12 70	54	20km	505W	54.91
1		ander ohrrufe	2.14.10	⁷	LUKU	5051	51171
L			I			[

been recorded on soil type of Class 2. It should be noted that the accelerograms used are the horizontal components of motion only.

The records from each soil class are identified in Tables 2 to 4. The soil description for the recording sites were obtained from References (5), (8), (14), (17). In Tables 2 to 4, the Richter magnitude of the earthquake, the epicentral distance in km and the peak ground acceleration value in units of cm/sec^2 are also listed.

On the model described by Kiremidjian (11) the peak ground acceleration value obtained at a given site was derived by convolving the largest acceleration values from all nearby seismic sources and attenuating them to the site. Thus, the resulting peak ground acceleration value is governed by the nearest point on the closest source. An approach for obtaining k_0 and k_1 will be to consider accelerograms that are recorded at different epicentral distances. Because of the sparsity of the data, records are selected from each soil type for only two epicentral distances. Their ranges are from 0 km to 25 km, and from 26 km to 50 km. It would be desirable to consider different magnitude ranges for this analysis, however such data is not available at the present.

An interesting feature of the soil modification factors k_1 in Tables 5a and 5b is their deamplification for distances between 26 km and 50 km. The value of $k_0 = 0.62$ for distances from 0 km to 25 km is very close to the value of $k^0 = 0.6$ suggested by Seed, et al (14) for sites located at 8 km from the source. The value of $k_1 = 0.75$, however, is 25% lower than the value of k_1 used by Seed, et al (14).

The amplification of peak ground acceleration for sites between 26 km and 50 km from the epicenter confirms the observations made by

TABLE 5a

Soil Modification Factors (Distance From 0 km to 25 km, 5.5 < M < 6.5)

Soil Class	No. of Rec.	Mean PGA	k _i
Class O	32	127.05	0.62
Class l	10	155.38	0.75
Class 2	18	206.67	1.00

TABLE 5b

Soil Modification Factors (Distance From 26 km to 50 km, 5.5 < M < 6.5)

Soil Class	No. of Rec.	Mean PGA	k _i
Class 0	80	135.25	1.09
Class 1	40	144.77	1.16
Class 2	14	124.48	1.00

Seed, et al (14). For example, k₀ for this distance range obtained through this study is approximately 1.1. The corresponding value suggested by Seed, et al (14) at 32 km distance is about 1.3. Similarly, k₁ value from this study is approximately 1.2. At 32 km, Seed, et al (14) used a value of 1.5.

For any subsequent analysis the following factors will be used:

TABLE 6

Soil Modification Factors $(5.5 \le M \le 6.5)$

Distance	^k 0	^k 1
0 km - 25 km	0.6	0.75
26 km - 50 km	1.1	1.2

The usefulness of k₀ and k₁ is best illustrated by an example. Since most of the original data is from Southern California and primarily from the February 9, 1971 San Fernando earthquake, a site in that area will be used for their application. Figure 1 shows the cumulative probability distribution of peak ground acceleration at a firm ground site (soil Class 2) in the Los Angeles area. Using Equation (3) and the soil modification values for epicentral distance up to 25 km, the cumulative probability distributions of peak ground acceleration are computed for soil Class 0 and 1. Figure 3 shows the acceleration zone graphs for each soil type. From these figures, the peak ground acceleration value at Los Angeles for the next 50 years and 10% chance of exceedence changes from 0.3g for firm ground to 0.22g for Class 1 soils to 0.18g for alluvial soils.

As a second example, it is hypothesized that the k_i values obtained in this study for the epicentral distance of 0 km to 25 km are valid in the San Francisco area. The cumulative probability distributions on peak ground acceleration for 50 years future time period are computed for the three soil classes and are shown in Figure 2. The peak ground acceleration value for 10% chance of exceedence decreases

FIGURE 2 1.-CDF(PGA) for Three Soil Types at San Francisco, Time = 50 years

from 0.60g for firm ground sites to 0.45g for intermediate sites to 0.36g for alluvial sites. The acceleration zone graphs for each soil type are also computed and are shown on Figure 4.

In the above examples, it should be noted that the CDF's for soil Classes 0 and 1 represent the lower bounds of acceleration at a given risk level. A more precise analysis for the evaluation of these CDF's will require the application of the soil factors to each seismic source. Then the contribution from all sources is combined by integration. This integration could not be done at the present time since soil correction factors for epicentral distances larger than 50 km are not available.

CHAPTER 3

SITE DEPENDENT RESPONSE SPECTRA

Structural response to ground motion depends on various parameters amongst which the amplitude of the input motion, its frequency content and its duration are important. The motion is amplified or deamplified depending on the predominant natural frequencies and damping of the structure. Fourier amplitude spectra and response spectra are the measures most commonly used for representing the frequency content and the amplitudes of the ground motions. In this chapter, probability distributions will be developed for response spectra depending on the soil conditions of the site of interest. Such response spectra are extremely useful in design and analysis of structures.

3.1 Definition of Response Spectrum

In general a response spectrum is defined as the relationship between the maximum value of a response parameter to the natural period or frequency of a linear single degree of freedom system (Figure 5) with a specified damping. For clarity, the equation of vibratory motion of a single degree of freedom system is stated below:

$$m\ddot{x} + c\dot{x} + kx = F(t)$$
(5)

where

c = constant of viscous damping

k = stiffness (or spring constant) of the single degree of freedom system

m = mass of the single degree of freedom system

- x = displacement relative to the ground
- \dot{x} = velocity relative to the ground
- $\ddot{\mathbf{x}}$ = acceleration relative to the ground
- F(t) = time dependent forcing function

Alternatively Equation (5) can be written as:

$$\ddot{\mathbf{x}} + 2\beta\omega\dot{\mathbf{x}} + \omega^2 \mathbf{x} = \frac{\mathbf{F}(\mathbf{t})}{\mathbf{m}}$$
(6)

where

$$\omega = \frac{k}{m}$$
 = natural frequency of the system in radians
 $\beta = \frac{c}{2\omega m}$ = percent of critical damping of the system

FIGURE 5. Vibration of a Single Degree of Freedom System

It should be noted that for ground motion the forcing function can be written as

$$F(t) = -m\ddot{x}_0 \quad \text{or } \frac{F(t)}{m} = -\ddot{x}_0$$
 (7)

in which \ddot{x}_0 = is the ground acceleration relative to a fixed reference frame.

The relative displacement response spectrum is defined as follows:

$$s_{d} = \max |x(t)|$$
(8)
Two other quantities used extensively in structural engineering are the pseudo-relative velocity response spectrum (Equation 9) and the pseudo-absolute acceleration response spectrum (Equation 10).

$$\mathbf{s}_{\mathbf{x}} = \omega \mathbf{s}_{\mathbf{d}} = \omega \max |\mathbf{x}(\mathbf{t})| \tag{9}$$

$$\mathbf{s}_{a} = \omega^{2} \mathbf{s}_{d} = \omega^{2} \max |\mathbf{x}(t)|$$
(10)

The product of the pseudo-absolute acceleration with the mass of the vibrating system gives the spring force on the system. Thus, s_a is very often directly applied in earthquake resistant design. It should be noted that s_a approaches the value of peak ground acceleration as the period of the oscillatory system approaches zero (1).

The accelerograms from 57 major past earthquakes discussed in Section 2.2 will be used to develop statistics for site dependent response spectra. The response spectra values for each one of these strong motion records were made available by the Earthquake Engineering Research Laboratory of the California Institute of Technology (7). The response spectra are divided in three soil categories in the same way as the accelerograms.

In order to compare the response spectra from the different earthquakes, it is necessary to normalize them to some parameter, that will relate the data to a common measure. Dalal (1) defines a dynamic amplification factor or spectral shape, which is nothing more than the pseudo-absolute acceleration response spectrum normalized with respect to the peak ground acceleration from the corresponding accelerogram. Other normalization factors that can be used are the root-mean-square value of the response and area under the acceleration curve. Peak ground acceleration has been used throughout the first development

of this work, and it is felt that its use for normalization of the response spectra will provide a link between the two parts of the study, thus it is adopted here.

The dynamic amplification factor is defined as:

$$D(T,\beta) = \frac{s_a(T,\beta)}{y}$$
(11)

where:

 $D(T,\beta)$ = dynamic amplification (DAF) for period T and damping β

$$s_a(T,\beta)$$
 = pseudo-absolute acceleration response spectrum
for period T and damping β

y = peak ground acceleration value

The mean value and standard deviation of a sample of DAF's are given by Equations (12) to (14) below:

$$m_{D}(T,\beta) = \frac{1}{n} \sum_{i=1}^{n} D_{i}(T,\beta) = \text{mean DAF}$$
 (12)

$$\mathbf{v}_{\mathrm{D}}(\mathrm{T},\beta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{D}_{i}(\mathrm{T},\beta) - \mathbf{m}_{\mathrm{D}}(\mathrm{T},\beta) \right]^{2} = \text{variance}$$
(13)

$$\sigma_{\rm D}({\rm T},\beta) = \sqrt{{\rm v}_{\rm D}} = {\rm standard deviation}$$
 (14)

To obtain the median of the sample, the elements in the sample have to be ordered in either ascending or descending order and if n is odd then:

$$\bar{m}_{D}(T,\beta) = D_{\underline{n+1}}(T,\beta)$$
(15)

and when n is even

$$\bar{m}_{D}(T,\beta) = \frac{1}{2} \left[D_{n}(T,\beta) + D_{n+1}(T,\beta) \right]$$
(16)

The central values defined here will be used in the next section to develop the probability distribution on response spectra.

3.2 Probability Distribution of Response Spectra

Peak ground acceleration depends neither on the frequency content, the general distribution of peaks, nor the duration of the ground motion. However, the dynamic amplification factor is both frequency dependent and amplitude dependent, thus it is assumed that these two quantities are statistically independent. This assumption was proven to be valid for 33 accelerograms used by Dalal (1) and it will be confirmed for the records used in this study in the following section.

At this time Equation (11) is recalled and is rewritten in the form:

$$S_{a}(T,\beta) = Y D(T,\beta)$$
(17)

in which $S_a(T,\beta)$, Y, and $D(T,\beta)$ denote random variables corresponding to pseudo-absolute acceleration response spectra, the peak ground acceleration, and the dynamic amplification respectively. Then the probability distribution function on response spectra can be obtained as follows:

$$F_{S_a}(s_a) = P[S_a \le s_a] = P[YD \le s_a] = \int_0^\infty \int_0^{s_a/\eta} f_{Y,D}(\xi,\eta) d\xi d\eta$$
 (18)

where $f_{Y,D}(y,d)$ = joint probability distribution of PGA and DAF. From the independence of Y and D, the joint distribution can be written as:

$$f_{Y,D}(y,d) = f_{Y}(y)f_{D}(d)$$
 (19)

Substituting back into Equation (18)

$$F_{S_{a}}(s_{a}) = P[S_{a} \le s_{a}] = \int_{0}^{\infty} \int_{0}^{s_{a}/\eta} f_{Y}(\xi) f_{D}(\eta) d\xi d\eta$$

$$= \int_{0}^{\infty} f_{D}(\eta) F_{Y} \frac{s_{a}}{\eta} d\eta$$
 (20)

where

$$F_{Y} \frac{s_{a}}{\eta} = \int_{0}^{s_{a}/\eta} f_{Y}(\xi) d\xi \qquad (21)$$

In Equation (21), $F_{Y}(s_{a}/n)$ is the cumulative probability distribution function on peak ground acceleration. For the distribution on dynamic amplification factor $f_{D}(d)$, Dalal (1) has shown that a lognormal distribution describes its behavior better than a truncated normal distribution. In this study, it is assumed that the dynamic amplification factor D has gamma distribution. The validity of each one will be tested and the results will be shown in the next section.

1. Tuncated Normal DAF

$$f_{D}(d) = \frac{1}{1 - F_{D}(0)} \frac{1}{\sqrt{2\pi} \sigma_{D}} \exp\left[-\frac{1}{2} \left(\frac{d - m_{D}}{\sigma_{D}}\right)^{2}\right] \text{for } d \ge 0$$
 (22)

where $F_D(0) = CDF$ of DAF when D=0

 $m_{\rm D}$ = mean DAF

 $\sigma_{\rm D}$ = standard deviation

then the distribution on response spectra becomes:

$$F_{S_{a}}(s_{a}) = \frac{1}{1 - F_{D}(0)} \frac{1}{\sqrt{2\pi} \sigma_{D}} \int_{0}^{\infty} \exp\left[-\frac{1}{2}\left(\frac{\eta - m_{D}}{\sigma_{D}}\right)^{2}\right] F_{Y} \frac{s_{a}}{\eta} d\eta \qquad (23)$$

2. Lognormal DAF

$$f_{D}(d) = \frac{1}{\sqrt{2\pi} \sigma_{lnD}} \exp\left[-\frac{1}{2} \left(\frac{\ln d - \ln m_{D}}{\sigma_{lnD}}\right)^{2}\right] \text{for } d \ge 0$$
(24)

where \bar{m}_{D} = median DAF

 σ_{lnD} = standard deviation of the natural logarithm of DAF the relation between the m_D , σ_D and \bar{m}_D , σ_{lnD} are given by the following equations:

$$V_{\rm D} = \frac{\sigma_{\rm D}}{m_{\rm D}}$$
(25)

$$\overline{m}_{D} = m_{D} \exp\left[-\frac{1}{2} \sigma^{2}_{lnD}\right]$$
(26)

$$\sigma_{lnD}^{2} = ln [v_{D}^{2} + 1]$$
(27)

Thus the parameters of the lognormal distribution can be obtained directly from the sample mean and standard deviation of DAF.

$$F_{S_{a}}(s_{a}) = \frac{1}{\sqrt{2\pi} \sigma_{\ell n D}} \int_{0}^{\infty} \exp\left[-\frac{1}{2} \left(\frac{\ell n \eta - \ell n \overline{m}}{\sigma_{\ell n D}}\right)^{2}\right] F_{Y}\left(\frac{s_{a}}{\eta}\right) d\eta$$
(28)

3. Gamma Distributed DAF

$$f_{D}(d) = \frac{\lambda(\lambda d)^{k-1} e^{-\lambda d}}{\Gamma(k)} \text{ for } d \ge 0$$
(29)

where

$$\Gamma(k) = \int_0^\infty e^{-u} u^{k-1} du$$
 (30)

$$m_{\rm D} = k/\lambda \tag{31}$$

and

$$\sigma_{\rm D}^2 = k/\lambda^2 \tag{32}$$

The values of k and λ will vary from one soil condition to another. Then

$$F_{S_{a}}(s_{a}) = \frac{\lambda}{\Gamma(k)} \int_{0}^{\infty} (\lambda \eta)^{k-1} e^{-\lambda \eta} F_{Y}\left(\frac{s_{a}}{\eta}\right) d\eta$$
(33)

The cumulative distributions on s_a will vary with soil classes 0, 1, and 2. These distributions will depend on the mean and standard deviation of response spectrum shapes computed from each soil data sample.

CHAPTER 4

STATISTICAL ANALYSIS OF RESPONSE SPECTRUM SHAPES

4.1 Correlation of DAF and PGA

To investigate the degree of correlation between peak ground acceleration and the response spectrum, and DAF, response spectrum values for 16 periods and 5 damping values are selected for each of soil classes 0, 1, and 2 described in Tables 2 to 4. The periods range from 0.05 sec to 5.0 sec and the damping values are 0%, 2%, 5%, 10% and 20%. The response spectrum values and the spectrum shape values were plotted against the corresponding value of peak ground acceleration for each soil class. Figures 6 to 29 show the scattergrams for periods 0.05, 0.1, 0.5, and 1 sec, and damping of 2% and 5%. Standard deviations, correlation coefficients and coefficients of variation are computed for all cases. In addition, a least squares fit line is obtained for response spectra versus peak ground acceleration. The following conclusions can be made for all three types of soils.

- There is relatively good correlation between the response values s_a and peak ground accelerations (PGA).
- The correlation coefficients for s vs PGA vary from
 0.422 to 0.99 for soil class 0, from 0.253 to 0.998 for
 soil class 1, and from 0.790 to 0.996 for soil class 2.
- The correlation of s to PGA is in general higher for lower periods than for higher periods at the same damping.
- The correlation of s to PGA increases with higher damping values as is expected.

- The correlation coefficient for s_a vs PGA is highest for soil class 2.
- The correlation coefficients for DAF vs PGA are overall very low and vary from .001 t0 .350 for soil class 0, from 0.005 to .428 for soil class 1, and from .004 to 0.630 for soil class 2. In all these cases the correlation coefficient is much smaller than 1.0 (0.63 in the best case), which implies that the two parameters, DAF and PGA are uncorrelated.
- The scatter of the DAF vs PGA points increases with larger periods.
- There is no noticeable improvement in the correlation between DAF and PGA with increasing damping value.
- The scatter for DAF vs PGA appears to be equally large for all three types of soils.

From the above observations and discussions, the assumption that DAF and PGA are stochastically independent is shown to be reasonable.

4.2 Probability Distribution of DAF

In Section 4.1, three different probability distributions are suggested for the dynamic amplification factor. Equations 22, 24, and 29 are used in this section to find the most appropriate distribution for DAF.

The cumulative distribution functions obtained from Equations 22, 24 and 29 are tested against the cumulative distribution function obtained from the data for the three soil conditions. To obtain the parameters for the truncated normal, lognormal and gamma distributions,

FIGURE 6 Soil Class = 0

FIGURE 7 Soil Class =0

FIGURE 8 Soil Class = 0

FIGURE 9 Soil Class = 0

FIGURE 10 Soil Class = 0

FIGURE 12 Soil Class = 0

FIGURE 13 Soil Class = 0

FIGURE 15 Soil Class = 1

FIGURE 16 Soil Class = 1

PERIOD = 1.00 SEC DAHPING = 2 %

FIGURE 17 Soil Class = 1

FIGURE 18 Soil Class = 1

*

FIGURE 19 Soil Class = 1

FIGURE 20 Soil Class = 1

FIGURE 21 Soil Class = 1

FIGURE 29 Soil Class = 2

FIGURE 30 Comparison of Three CDF's of DAF

FIGURE 31 Comparison of Three CDF's of DAF

FIGURE 34 Comparison of Three CDF's of DAF

FIGURE 35 Comparison of Three CDF's of DAF

FIGURE 37 Comparison of Three CDF's of DAF

FIGURE 39 Comparison of Three CDF's of DAF

FIGURE 40 Comparison of Three CDF's of DAF

FIGURE 43 Comparison of Three CDF's of DAF

FIGURE 44 Comparison of Three CDF's of DAF

FIGURE 45 Comparison of Three CDF's of DAF

FIGURE 47 Comparison of Three CDF's of DAF

the statistics of the data is computed for each soil type. Equations 12, 13, 26 and 27 are used to evaluate the mean, variance, median, and variance of the logarithm of the parameter and the results are listed in Tables 7 to 12. The statistics for soil class 0 are given in Tables 7 and 8; for soil class 1 are given in Tables 9 and 10; and for soil class 2 are in Tables 11 and 12. The parameters λ and k of the gamma distribution are obtained directly from the mean and the variance as shown by Equations 31 and 32.

Figures 30 to 47 show the three distributions and the data for periods of 0.1, 0.5, 1.0 sec and 2% and 5% damping for soil classes 0, 1 and 2. From the graphs it can be observed that:

- The truncated normal distribution gives the poorest fit to the data.
- The gamma distribution approximates the CDF from the data better than either the truncated normal or the lognormal distributions for all three soil types. This observation is especially true for periods higher than about 0.4 sec. For periods lower than 0.4 sec all three distributions are very close.
- The fit for all three distributions is poorest for soil class 2 and best for soil class 0. The fit improves from soil class 2 to soil class 0 because of the increase in the number of data points in each sample.
- For all three soil conditions the fit to the data is better for low periods of vibration than for high periods.

In the subsequent analysis, the gamma distribution will be used as the representative distribution of DAF.

From the cumulative probability distributions on dynamic amplification factors resulting from the gamma fit, pseudo-acceleration response spectral shapes corresponding to the mean value of the distribution and the 84 percentile (or approximately mean plus one standard deviation) are obtained. The shapes for the three soil conditions are compared to the shapes developed by Seed, et al (14) and are shown on Figures 48 to 50. The spectral shape for very loose sand given by Seed, et al (14) is not compared since there is no counterpart to it in the soil division used in this study.

For all three soil classes, the spectral shapes developed through the above analysis are lower than the spectral shapes shown by Seed, et al (14). For very low periods all the curves are close together giving similar DAF values. The difference in the shapes results primarily because the strong motion data in the two studies is not identical. For example, accelerograms from the Bursa, Turkey, and the Akita, Japan earthquakes used by Seed et al (14) are not included in the data of Table 1.

For high periods, the mean and 84 percentile shapes are almost the same. Only for soil class 1 (intermediate) the DAF values are a little higher than the values given by Seed, et al (14).

FIGURE 50 Comparison of DAF from Present Study to DAF from Seed et al (50), Soil Class = 2, Damping = 5%.
CHAPTER 5

PROBABILISTIC RESPONSE SPECTRA

The cumulative probability distributions on response spectra, s_a , at Los Angeles for a future time period of 50 years are computed using Equation 33. The cumulative probability distribution on peak ground acceleration for the next 50 years at Los Angeles as obtained by Kiremidjian (11) is used directly in the evaluation of $F_{S_a}(s_a,t)$. Three CDF's of s_a are computed for soil classes 0, 1, and 2. For each of these cases the parameters λ and k are obtained from Tables 7 to 12.

Figures 51 to 74 show the cumulative probability distributions for alluvial soil deposits (class 0), intermediate soils (class 1), and firm soils (class 2), for periods of 0.05, 0.1, 0.5, and 1.0 seconds and dampings of 2% and 5%. These figures give the probability that a structure with one of the natural periods specified above will be excited by an earthquake so that its maximum response acceleration is larger than a given s_a value in the next 50 years in Los Angeles.

For example, a structure with a predominant period of 0.1 second and a critical damping of 5% has 90% chance of being excited in the next 50 years so that its response acceleration will be

0.26g or smaller if it is built on alluvium (class 0)

0.33g or smaller if it is built on intermediate soils (class 1)
0.55g or smaller if it is built on firm ground (class 2)

Similarly, for a structure with a predominant natural period of 1.5 second and 5% damping, there is 90% probability of being excited so that its response acceleration in the next 50 years is 0.18g, 0.19g, and 0.15g for soil classes 0, 1, and 2 respectively, if the structure is located in Los Angeles.

Los Angeles Site, Time Period = 50 Yrs.

Los Angeles Site, Time Period = 50 Yrs.

The cumulative density functions, $F_{S_a}(s_a)$, for the three soil types are next compared to the cumulative density function of peak ground acceleration. Figures 75, 76, and 77 show the two CDF's for soft soils, intermediate soils, and firm ground respectively. The $F_{S_a}(s_a)$ is shown for a damping of 5% and only one value of the natural period T. For soft and intermediate soils, the natural period is taken at T = 0.3 sec. For firm ground the period is taken at T = 0.15 sec. The CDF's of s for these natural periods give the highest values of acceleration at a specified risk level. The CDF's of s for other values of T will lie above the curves of CDF of s_a shown in Figures 75, 76 and 77. It is important to note the difference in values between peak ground acceleration and response spectrum accelerations at the same risk level. For example, at 5% chance of exceedence the PGA value for soft soils is 0.23g while the s value is 0.52g. Similarly, for intermediate soils the PGA value at 5% risk level is 0.29g while the s_a value is 0.65g. For the same risk level the PGA at firm ground is 0.38g and the corresponding value of s is 0.87g. Thus, a structural design based on peak ground acceleration rather than on response spectrum acceleration may greatly underestimate the earthquake load resistance requirements for the structure.

Pseudo-acceleration response spectra are obtained for three risk levels. Figures 78 to 80 give the response spectra for 10%, 20%, and 50% chance of exceeding the acceleration values when the structure has 5% damping. In most cases the pseudo-acceleration response spectra for soil class 1 is higher than the others at periods higher than 0.3 sec. In the low period range, $.05 \le T \le .3$ sec, the soil class 2 response spectra predominates over the two other curves.

FIGURE 79 Pseudo-Absolute Acceleration Response Spectra for Three Soil Types, Los Angeles Site, $P[S > s_a] = 0.2$, Damping = 5%, Time = 50 years.

FIGURE 82 Comparison of Pseudo-Absolute Acceleration Response Spectra, Los Angeles Site, Soil Class = 1, Damping = 5%, Time = 50 years, $P[S_a > s_a] = 0.1$

FIGURE 83 Comparison of Pseudo-Absolute Acceleration Response Spectra, Los Angeles Site, Soil Class = 0, Damping = 5%, Time = 50 years, $P[S_a > s_a] = 0.1$.

The response spectra for 50% risk level and 5% damping obtained in this study are compared to the mean spectra for magnitude 6 1/2 earthquake at a distance of 5 miles (8 km) as computed by Seed, et al (14). Figures 81 and 82 show the response spectra for soil classes 2 and 1. The deep cohesionless soils and soft to medium clays and sands are compared to the soil class 0 from this development as presented in Figure 83.

To be able to make a reasonable comparison, the response spectral shape for rocks obtained by Seed, et al (14) is multiplied by 0.30g, the shape for intermediate soils by 0.22g, and the shapes for deep cohesionless soils by 0.18g. These factors correspond to the peak ground acceleration values for 10% chance of exceedence in the next 50 years at a site in Los Angeles having either of soil conditions 2, 1, or 0.

From Figures 81 to 83, the response spectrum curves reported by the present study are lower than the response spectra obtained by Seed, et al (14) in all three cases when the natural period is smaller than about 0.7 sec. For values of T larger than about 0.7 sec the spectra from both studies are quite close. The discrepancy in the low period range results primarily because of the difference in the original strong motion data used in each study.

ι.

CHAPTER 6

CONCLUSIONS

The following significant observations can be made from the results of this study:

- Peak ground acceleration from a given earthquake, whose epicenter is within 25 km from the site of interest, diminishes in value by factors of 1.0, 0.75, and 0.60 as the local site conditions change from firm ground to intermediate soils, to alluvial soils. The corresponding factors for distances between 26 km and 50 km are 1.0, 1.16, and 1.09.
- Probability distributions on peak ground acceleration for soil classes 0 and 1 can be derived from the distribution for soil class 2 by applying the soil factors of k₀ and k₁ as given in Table 6.
- Spectral shapes for the three soil types described by classes 0, 1 and 2 are found to be statistically independent of peak ground acceleration. Correlation coefficients relating spectral shapes (dynamic amplification factors) and peak ground acceleration are very low.
- The stochastic behavior of dynamic amplification factors is found to be best represented by the gamma distribution. The fit of the gamma distribution to DAF data is better than either the lognormal or truncated normal distributions used by Dalal (1).

- Probability distributions on response spectra for 3 soil types can be obtained from the distributions on peak ground acceleration and the soil dependent gamma distributions on dynamic amplification factor as shown in Chapter 5.
- From the distributions on response spectra for a Los Angeles site and a future time period of 50 years, the risk is found to be highest for structures on soil class 1 and lowest on soil class 2 for natural periods higher than 0.3 sec. The risk is highest for structures on soil class 2 and lowest on soil class 0 at low periods smaller than about 0.3 sec.
- All of the results presented in this study depend on the quality of the strong motion data used. More than 50% of the data is from the February 9, 1971 San Fernando earthquake, thus any of the above conclusions have a bias towards this earthquake. The effect is strongest for the soil class 0 conclusions. The data for soil class 2, is fairly well represented by different earthquakes, but the majority of them are from Southern California. The application of any findings to other parts of the state should be done with great caution.

REFERENCES

- 1. Dalal, J. S., "Probabilistic Seismic Exposure and Structural Risk Evaluation", Technical Report No. 169, Dept. of Civil Engineering, Stanford University, February 1973.
- 2. Duke, C. M., "Effects of Ground on Destructiveness of Large Earthquakes," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 84, No. SM3, Paper 1730, August 1958.
- Gutenberg, B. and Richter, C. F., "Earthquake Magnitude, Intensity, Energy and Acceleration (Second Paper)", Bulletin of the Seismological Society of America, April 1956.
- 4. Gutenberg, B., "The Effects of Ground on Earthquake Motion," B SSA, Vol. 47, No. 3, July 1957, pp. 221-251.
- Hansen, W. R., Weiss, R. B., Idriss, I. M. and Cluft, L. S., "Geotechnical Data Compilation for Selected Strong Motion Seismolograph Sites in California", Woodward-Lundgren & Associates, Consulting Engineers and Geologists, Oakland, CA., December, 1973.
- 6. Hudson, D. E., Brady, A. G., Trifunac, M. D. and Vijayaraghavan, "Strong-Motion Earthquake Accelerograms, Corrected Accelerograms and Integrated Ground Velocity and Displacement Curves", Volume II, Part A, EERL71-50, Earthquake Engr. Res. Lab., Calif. Inst. of Tech., Pasadena, 1971.
- Hudson, D. E., Trifunac, M. D. and Brady, A. G., "Strong-Motion Earthquake Accelerograms, Response Spectra", Volume III, Part A, EERL72-80, Earthquake Engr. Res. Lab., Calif. Inst. of Tech., Pasadena, 1972.
- Hudson, D. E., editor, "Strong-Motion Instrumental Data on the San Fernando Earthquake of Feb. 9, 1971", Earthquake Engineeringing Res. Lab., California Institute of Tech., and Seismological Field Survey, National Oceanic and Atmospheric Administration, U. S. Dept. of Commerce, September 1971.
- 9. Kanai, K., "Semi-empirical Formula for the Seismic Characteristics of the Ground", Bull. of the Earthquake Engineering Research Institute, Vol. 35, Part 2, June 1957, pp. 309-326.
- Kiremidjian, A. S. and Shah, H. C., "Seismic Hazard Mapping of California", The John A. Blume Earthquake Engineering Center, Report No. 21, Dept. of Civil Engr., Stanford Univ., November 1975.
- 11. Kiremidjian, A. S., "Probabilistic Hazard Mapping and Development of Site-dependent Seismic Load Parameters", Ph.D. Dissertation, Department of Civil Engineering, Stanford University, Stanford, California, December 1976.

- 12. Seed, H. B. and Idriss, I. M., "Influence of Soil Conditions on Ground Motions During Earthquakes", Journal of Soil Mechanics and Foundation Division, Proceedings of the ASCE, SM1, pp. 99-137, January 1969.
- Seed, H. B. and Idriss, I. M., "Influence of Soil Conditions on Building Damage Potential During Earthquakes", Journal of the Structural Division, Proceedings of the ASCE, ST2, pp. 639-663, February 1971.
- 14. Seed, H. B., Ugas, C. and Lysmer, T., "Site-Dependent Spectra for Earthquake Resistant Design", Report No. EERC 74-12, University of California, Berkeley, November 1974.
- 15. Shah, H. C., Mortgat, C. P., Kiremidjian, A. and Zsutty, T. C., "A Study of Seismic Risk for Nicaragua", Part I, The J. A. Blume Earthquake Engineering Center, Report No. 11, Dept. of Civil Engr., Stanford University, January 1975.
- 16. Shah, H. C., Zsutty, T. C., Krawinkler, H., Mortgat, C. P., Kiremidjian, A. S. and Dizon, J. O., "A Study of Seismic Risk for Nicaragua", Part II, The J. A. Blume Earthquake Engineering Center, Report No. 12A and 12B, Dept. of Civil Engr., Stanford University, March 1976.
- 17. Trifunac, M. D. and Brady, A. G., "On the Correlation of Seismic Intensity Scales With the Peaks of Recorded Strong Ground Motion", Bull. of the Seis. Soc. of Am., Vol. 65, No. 1, pp. 139-162, February 1975.
- Wiggins, J. H., Effect of Site Conditions on Earthquake Intensity, J. Struct. ASCE, ST2, April 1964.
- 19. Wood, H. O., "Distribution of Apparent Intensity in San Francisco", in "The California Earthquake of April 18, 1906", Report of the State Earthquake Investigation Commission, Carnegie Institute of Washington, Washington, D. C., pp. 220-245.