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PREFACE

The 89 papers contained in these two volumes constitute the proceedings
of the International Symposium on Earthquake Structural Engineering,
which was held in St. Louis, Missouri, and presented by the University of
Missouri - Rolla. The symposium was endorsed by the American Society for
Engineering Education; the St. Louis and Mid-Missouri sections of the
American Society of Civil Engineers; and the Joint Committee on Tall
Buildings established by the International Association for Bridge and
Structural Engineering, the American Society of Civil Engineers, the
American Institute of Architects, the American Institute of Planners, the
International Federation for Housing and Planning, and the International
Union of Architects.

A large quantity of effective research has been put forth in the various
areas of destructive earthquakes, seismicity, ground motions, earthquake
instrumentation, earthquake zoning, and disaster prevention. In each, a
tremendous amount of world-wide information has been accumulated that
should be discussed and disseminated in specialized conferences, such as the
one held in St. Louis, to provide for interaction and cooperation among
researchers, educators, practitioners, and civil authorities in the field of
earthquake structural engineering and to focus attention on structural design
so as to minimize the distructive and killing effects of earthquakes. It is
hoped that the presentations and discussions contained herein will contribute
significantly toward this end.

It is not possible here to thank each and every person who contributed
toward the organization of the conference, but sincere appreciation is
extended to the authors for their cooperation and contributions and to all the
Technical Committee members and Session Chairmen for their untiring
efforts. _ i

Special appreciation is expressed to the NSF for its partial financial
support in publishing these proceedings. We are grateful for the assistance of
Drs. S.C. Liu and J.B. Scalzi, Program Managers of Earthquake
Engineering, Division of Advanced Environmental Research and Technology
of the National Science Foundation, and for the encouragement and support
of Drs. D. Thompson, Vice Chancellor, G.E. Lorey, Dean of Extension, and
J.S. Johnson, Dean of School of Engineering, Prof. J.K. Roberts, Assist. Dean
of School of Engineering, of the University of Missouri - Rolla. Last, but not
least, the cooperation of the Planning Committee and University staff is
acknowledged with thanks, and the skilled assistance of Mrs. Ann Mitchell
and Margot Lewis in typing portions of the proceedings deserves special
mention.

Rolla, Missouri, August 1976 Franklin Y. Cheng
Joseph H. Senne
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INTERNATIONAL SYMPOSIUM ON 1

EARTHQUAKE STRUCTURAL ENGINEERING
St. Louis, Missouri, USA, August, 1976

ON THE SPECIFICATION CF A DESIGN EARTHQUAKE
OTTO W. NUTTLI

Professor of Geophysics
Saint Louis University

St, Louls, Missouri, U. S. A.

SUMMARY

This peper discusses some of the more common means of
specifying the design earthquake motion at a site. They
include: estimation of the peak acceleration or the modi-
fied Mercalli intensity at the site, selection of an exist-
ing strong motion accelerogram which is scaled up or down
to give the proper pesk acceleration at the site, calcula-
tion of response spectra and/or Fourier spectra from the
selected strong motion records, construction of typical
response spectra which are scaled up or down so that their
zero-period level corresponds to the expected peak accelera-
tion, estimation of the sustained levels and the durations
of ground acceleration, velocity and displacement at dis-
crete frequencies, selection of an existing strong motion
accelerogram which is scaled up or down to fit the sustained
acceleration levels, and construction of synthetic time
histories of the ground motion by making use of mathematical-
physical models of the earth structure and of the earthquake
source mechanism.



INTRODUCTION

The purpose of a design earthquake is to provide the
structursl engineer with 2 specification of the maximum
ground motion to be encountered at a site during the life-
time of 2 structure, soc that the engineer can design the
structure to withstand the effects of the earthquake. De-
pending upon the use and importance of the building, the
phrase "withstand the effects of an earthquake" can mean any-
thing from not collapsing and no loss of 1life (e.g. school
and office buildings) to no structural and little architectu-
ral damage, with the structure remaining operationel (e.g.
hospitals, nuclear power plants, communication facilities).

There are various ways in which the seismologist or
earthquake engineer can present the design earthquake motion
to the structural engineer. 1In general they vary from the
elementary to the highly sophisticated, some of which exceed
the present state-of-the-art, Some are purely empirical,
whereas others employ models of the earthguake process and
of earth structure for calculating the ground motion, All
the methods involve assumptions which simplify or idealize
actual conditions.

The purpose of this paper is to acquaint the structural
engineer with the ways in which design motion can be pre-
gsented, with the type of information about the earthquakes
and the Earth itself which is needed to estimate the design
motion, and with the present state-of-the-art concerning the
specification of design earthqusake motion.

MEANS OF PRESENTING DESIGN EARTHQUAKE MOTION

In terms of information contained, the most complete
design motion would consist of time histories of the ground
acceleration, velocity and displacement. These would be
calculated, assuming a knowledge of the time history in the
immediate neighborhocd of the earthquake, of the geological
structure between the source region and the site, and of the
topography and soil conditions at the site. Figure 1 is an
example of what such time histeories would look like, although
the accelerogram in that figure is an observed rather than a
computed one. The velocity and displacement time histories
were obtained by numerical integration of the accelerogranm,

The accelerogram shows one horizontal component of
motion at Pacoima Dam, about 8 km away from the epicenter of
the San Fernando, California earthquake of February 9, 1971.
Note that the frequency of the waves varies between about 20
and 1 Hz, and that in the mid-portion of the accelerogram
there are high frequency waves which override lower frequency
ones, The maximum acceleration, which occurs shortly after
7.5 sec, appears to result from the constructive interference



of approximately 3 Hz and higher frequency waves, Also
note the dispersive character of the low frequency waves,
beginning at about 2.5 sec and continuing until the end,
with in general the lowest frequency waves arriving first,.
These probably sre surface waves originating from the
initial fault brezkage. The higher frequency waves that
override them, on the other hand, more likely are body waves
originating at various points on the fault as the rupture
advanced in jerky steps, This latter type of motion is
particularly difficult to model mathematically, because
there is no way of knowing in advance of the earthquske the
exact time history of the fault rupture.

The ground velocity and ground displacement time
histories of Figure 1 show principally the effect of the
large amplitude, low frequency surface waves., In the velo-
city record one can see what appears to be both fundamental
eand higher mode waves, the fundamental mode in general
having the lower frequency. As the base of the pier to
which the strong motion instrument at Pacoima Dam was
attached suffered a 0.5° permanent tilt because of the
earthquake, part of the displacement on the ground dis-
placement record may be showing the response of the in-
gtrument to tilt, rather than to actual ground displace-
ment (Trifunac and Hudson, 1971).

Rather than specify the actual time history of the
ground motion, one can give the displacement, velocity or
absolute acceleration response spectra. The response
spectrum is a measure of the maximum motion of 2 simple
linear oscillator with a specified amount of damping when
the oscillator is subjected to the ground acceleration time
history., If w is the natural angular frequency of the
oscillator, n is the fraction of critical damping of the
oscillator, and

wn=w01-n2 (1)
the displacement response spectrum is given by (Housner,
1970)

Sq = Iy(t’f:23‘max
= h%nficé(T) exp[—nujn(t —T?]sin(pn(t -T) df\ (2)

where y is the displacement of the oscillator, z is the
ground acceleration and t_ is the time t for which the ab-
solute value of the integ%al {or the displacement of the
oscillator) is 2 maximum. The integral must be evaluated
at each angular frequency w for which a value of the re-
sponse spectrum is desired, In general tm will be a
function of w.
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Pigure 1. Strong ground motion (horizontal S16%E component)
at Pacoima Dam, 8 km from the epicenter of the
1971 San Pernando, California earthquake (adapted
from Trifunac and Hudson, 1971)



The pseudovelocity response spectrum, S__, is given by
(Housner, 1970) pv

Spv = w Sd (3)
and the acceleration response spectrun, Sa’ by
_ .2
8, = w"S;. (4)

Figure 2 shows the response spectra for the Paccima
Dam horizontal component accelerogram of the San Fernando,
California earthquake of February 9, 1971. (The accelero-
gram was shown as Figure 1.) Note that the effect of in-
creased daemping is to reduce the value of 3__, It also
can be observed that the largest values of Spv and Sg
occur at periods of less than 2 sec. In general, the
larger the earthquake, the longer the periods at which the
peak in the velocity response spectrum occurs if the
distance from the epicenter remains constant (Housner,
1970). 1If the size of the earthquake is kept constant but
the epicentral distance allowed to increase, there alsoc will
be a shift of the peak in the velocity response spectrum to
the longer periods because the higher freguency waves under-
g0 greater attenuation in traveling through the Earth.

Une shortcoming of the response spectra curves is that,
by themselves alone, they cannot give a complete picture of
the effects of the time history of the acceleration dura-
tion (Trifunac and Hudson, 1971). Trifunac and Hudson
noted that the San Fernando earthquake, with strong ground
motion lasting about 7 sec, would have caused many buildings
and bridges that were only partially damaged to have
collapsed if the shaking hzd continued for another few sec-
onds, They observed that it is mainly this effect of the
duration of shaking on structural damage that cells for
detailed investigations of the patiern of the time release
of earthguake energy,

In addition to or in place of the response spectira one
can also calculate the Fourier amplitude spectra of the
ground acceleration, velocity and displacement. These
spectra will indicate the pericds, or period range, of
ground motion that contain large accelerations, velocities
and displacements., Fourier methods also suffer from the
fact that they give no information about the duration of the
motion. Housner (1970) showed that the undamped velocity
spectrum is almost identical to the Fourier amplitude spec-
trum of the ground acceleration.

There are many seismic areas of the world for which
there are either none or at most a few strong motion rec-
ords of earthquakes, Most of the United States with the
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Figuré 2. Response spectra derived from Pacoima Dam accel-

erogram of Figure 1 {(data from Trifunac and
Hudson, 1971). The numbers on the curves indi-
cate the fraction of critical damping.



exception of Celifornia falls in this category. If one is
unwilling to use strong motion records from one geographic
region for specifying design motion in another, he must

look at other methods of specifying design motion than those
discussed to this point,

Une such method (Nuttli, 1973a) estimates the level of
the ground acceleration, velocity and displacement for cer-~
tain discrete wave frequencies, These ground motion values,
together with their durations, are given as & function of
distance from the epicenter, The values specified are not
spectral values, but rather the amplitudes that would be ob-
tained by direct measurement in the time domain from strong
motion records, if such records were available. By estima-
ting ground motions at, say, 5, 1 and 0.2 Hz, one can pro-
vide some idea of the ground motion in the short, inter-
mediate and long period ranges.

Another widely used method merely estimates the peak
value of the ground acceleration (sometimes also velocity
and displacement). It is the least satisfactory of all the
methods because it provides no information about either the
wave freguency of the peak ground motion or of the duration
of the motion. Although there have Deen numerous attempts
to correlate peak acceleration (or peak velocity) with
damage (ordinarily expressed in terms of a modified Mercalli
or some other intensity value), the correlation usually is
low, with individual values differing by a2s much as plus or
minus one order of magnitude from the mean value,

INFORMATION NEFDED TO SPECIFY DESIGN EARTHQUAKE MOTION

The first kind of information that is needed to specify
the design earthquske motion at a site is the location of
all potential earthquakes near the site. This implies thst
one can accurately identify and locate the seismicelly-act-~
ive regions of the world. Unfortunately, this is not the
case. In most parts of the world our historical record of
earthquakes goes back no farther than a few hundred years,
which is far too little a time to give a representative
picture of the seismicity of an area, To supplement these
data we can look for fault structures, and for evidence of
movement on them in recent times by displacements in very
young geological strata. Such data, when availasble, can
give zdditional information about the return or recurrence
time of the large magnitude earthquakes that are responsible
for most of the fault displacement. Not all faults, how-
ever, show evidence of recent geological movement. In such
cases microearthauske studies can be made in the vicinity of
the fault, to determine if there is evidence of present-day
activity. Sometimes the spatial coordinates of the micro-



earthquake hypocenters will help to delineate the horizon-
tal and vertical dimensions of the active portion of the
fault surface., These microearthquake studies, along with
focal mechanism studies which determine the orientation of
the surface across which faulting occurs and the direction
of dislocation on that surface, can serve to identify a
fault as active even though there have been no observable
surface displacements on it, Examples of such areas are the
New Madrid fault zone of southeast Missouri and adjacent
states, the Ouachita Mountain front of Arkansas and eastern
Oklshoma, and the Wabash Valley fault zone on the Illinois-
Indiana border.

Along with the location of the active faults one also
needs information about the maximum size of an earthquake to
be expected in a given region, Normally this information is
given in the form of a maximum magnitude earthquake,

Richter and Gutenberg (Richter, 1935; Gutenberg and Richter,
1936, 1956) defined three types of magnitude scales, The
first, which Richter called local magnitude (M), is a
measure of the maximum ground motion in the frequency range
of about 1 to 10 Hz for Californis earthquekes. This scale
can only be properly used in areas where the surficisl geol-
ogy is similar to that of California and thus gives the same
attenuation of high frequency waves, The second and third
scales, which ordinarily make use of the amplitudes of waves
recorded at great distances from the epicenter, are nearly
independent of regional variations in geology. The one,
called body-wave magnitude (mp), is @ measure of the size of
the wave motion at a frequency of about 1 Hz. The other,
called surface-wave magnitude (Mg), is a measure of the size
of the wave motion at a frequency of 0.05 Hz, Unfortunately
both My and Mg are commonly called the Richter magnitude,
although for individual earthquakes they can differ by more
than one order of magnitude from each other, the one being a
measure of the excitastion of short-period seismic wave ener-
gy and the other 2 measure of the excitation of very long-
period wave energy.

If the shape of the spectrum of the ground motion were
the same for 211 earthquskes, then all we would need to know
in addition to that shape would be the level of the spectrum,
which could be specified by one of the magnitudes, However,
this is not the case. Factors such as the depth of the
earthquake, the orientation of the fault surface and of the
dislocation across the fault surface, the stress drop, the
area of fault rupture and the time history of the rupture
process all influence the shape and level of the spectrum in
the source region of the ground motion. PFor large earth-
guakes in some source regions the first three of these
factors remain nearly constant, and thus can be determined
from a study of previous earthguskes in those regions.



The motion in the source region is transmitted through
the Earth to the site in the form of wave motion. As it
propagates it is attenuated, both because of geometrical
spreading of the wave fronts and because of scattering and
abgorptive losses. The former, which is independent of wave
frequency, depends on the vertical and horizontal variations
in the elastic modull and density of the rock layers. This
so-called velocity structure can be determined from inde-
pendent studies of the travel times and amplitudes of body
waves and of the dispersion of surface waves. The latter is
frequency dependent, and shows wide wvariation in different

eologic regions for waves with periods less than 5 seconds
Nuttli, 1973b; Mitchell, 1975). The higher frequency waves
in general are the most strongly absorbed. Thus as the epi-
central distance increases the pezk in the spectrum of the
ground motion is shifted towards the lower frequencies, so
that the seismic risk 2t large distances applies principally
to tall or long structures having natural periods of
vibration of one or more seconds,

Finally, soil conditions at the site can affect the
ground motion there. The effect of a thick so0il layer in
general is to lower the acceleration values at the upper sol
surface (compared to the values at its base), and to in-
crease the velocities and displacements at the upper
surface (Trifunac and Brady, 1975). Inasmuch as damage or
seismic intensity values correlate better with ground ve-
locity than with ground acceleration (Hudson, 1970; Nuttli,
197%c), the effect of a thick soil layer is to increase the
damaging ground motions. In addition, certain soils
liquefy when subjected to vibratory motion, i.e, they take
on some properties of a fluid, Seed (1970) cites examples
of earthqueke~induced ground vibrations producing compaction
and associsted settlement of cohesionless soil deposits. If
these cohesionless materials are water saturated, then their
compaction is accompanied by an increase in pore water
pressure in the soil and 2 conseguent movement of water from
the voids, resulting in the eruption of sand, mud and water
in the form of sandblows and mudboils., Sandblows, over an
area about 150 km in length, were a2 common phenomenon of the
New Madrid earthquakes of 1811 and 1812 (Fuller, 1912).

S0il liquefaction on sloping grounds, which results in flow
slides, was extensive in the 1811-1812 New Madrid earth-
cuakes, the 1920 Kansu Province, China earthquake, the 1960
Chile earthguske, the 1964 Alaska earthquake and the 1970
Peru earthquake.

STATE-OF-THE-ART FPOR SPECIFYING DESIGN EARTHQUAKE MOTICN

The simplest method of presenting design earthquake mo-~
tion is by means of a2 hazard map, such as that of Alger~-
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missen (1969), TFigure 3 shows his map for the United
States, Zone O corresponds to no damage, zone 1 to minor
damage with modified Mercalli intensities of V and VI to be
expected, zone 2 to moderate damage with intensity of VII
and zone 3 to major damage with intensities of VIII and
-greater. Alternately, using empirical relations, one can
gssign a maximum acceleration (or ground velocity) for each
of the zones. Although the methodology is simple, there are
some practical problems thst arise. PFirst of all, the maxi-
mum intensity or acceleration values jump discontinuously
from one zone to another, whereas more realistically they
should change smoothly, Secondly, the map gives no weight
to the frequency of occurrence of earthquakes, so that
regions such as Charleston, South Carolina which have ex-
perienced just one damaging earthquake in historic times are
placed in the same zone 3 as coastal California, which hes
experienced a number of damaging earthquekes, Thirdly, be-
cause the map is developed meinly on the basis of historic
activity, it does not show the places where future large
earthquakes might ocecur but which have not yet experienced
demaging earthquakes, Finally, as was pointed out previ-
ously, a single maximum intensity or maximum acceleration
value is inadequate for many design purposes.

At the present time much work is being done to revise
Algermigsen's map in order to overcome some of its limita-
tions, particularly the first two that were mentioned above.
To overcome the third, separate maps of active fault systems
in the United States are being prepared, Unfortunaiely,
however, most of our knowledge of zctive fault systems is
restricted to the western United States.

There are several approaches that have been used to
overcome the problem of how to design with just a pezk magni-
tude value., One is to select sn existing strong motion
accelerogram made at a place with similar site conditions to
those of the place under investigation and at about the same
epicentral distance, and to scale it up or down by the ratio
of the accelerations. This is a fairly good procedure if the
regional geology and attenuative properties of the Barth are
the same in the region under investigation as the place
where the accelerograms are obtained. As with zll methods
which employ peak acceleration values, it suffers from the
fact that large peak accelerations can arise from fortuitous
constructive interference of several wave arrivals, so that
the peak acceleration may be physically unrelated to the
overall amplitude level of the accelerogram and to the de-
structive potential of the ground motion. Once an accelero-
gram is adopted, one can readily comnstruct response specira
for various fractions of critical damping.

A second approach is to construct an average set of
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response spectra curves, based on accelerograms from a
number of large earthquakes, The acceleration response
spectral curves will approach a limiting value at small
periods, independent of the amount of damping. In prac-
tice these curves can then be scaled up or down by the ratio
of the design peak acceleration to the zero-period accelera-
tion 1limit for the standard curves, the assumption being
that most peak accelerstions occur at short periods.

Instead of mapping the seismic hazard of a region, such
as was done by Algermissen (1969), one can map the regions
in which earthguakes of a given magnitude can be expected to
occur, Figure 4 shows an example of such a map. Region A
is the place where earthquakes as large as mpy = 7.5 can be
expected to occur, region B where earthquakes as large as my
= 6.5 can be expected to occur, and region C where earth-
quakes as large as my = 6.0 can be expected to occur.
Accompanying this map is 2 table or set of curves, showing
how the ground acceleration, velocity and displacement for
several selected frequencies fall off with epicentral dis-
tance. Figure 5 shows such a set of ground acceleration
curves for an earthquake in region A, PFor the curves of
Figure 5 Nuttli (197%a) preferred to use the sustained maxi-
mum values of the ground motion rather than individual pesk
values, where the sustained maximum is the level attained
for at least three cycles of the motion of a selected period.
For a particular site one may have to make two sets of
calculations of the sustained maximum motion, one for =
nearby earthqusake of smaller magnitude and one for a more
distant earthquaske of large magnitude.

An alternate to using directly for design purposes the
values taken from the curves of Figure 5 is to use the
values from the curves to select and scale an existing strong
motion accelerogram., After this is done one can compute
responge spectra, as described previously.

Because the body-wave amplitudes decrease more rapidly
with distance than the surface-wave amplitudes, one does not
have to go too far from the epicenter before the surface-
wave motion is dominant, No definite numerical value can be
assigned to this critical distance, as it depends upon the
size and depth of the earthquake and the length of faulting,
as well as upon the frequency-dependent absorptive proper-
ties of the transmitting medium., For the distances at which
the surface-wave motion is dominant, one can construct a
fairly adequate synthetic time history of the ground motion
(acceleration, velocity or displacement) by calculating the
motion produced by the surface waves alone. To do this one
must assume a knowledge of the depth of the earthquake, of
the orientation of the fault plane and the dislocation on it
of the velocity structure of the source and transmission
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region, of the time history of the dislocation and of the
size of the earthquake, expressed in terms of its seismic
moment, Figure 6 is an example of the Love wave ground ve-
locity and displacement, computed for earthgquakes at focal
depths of 2.5, 9.5 and 19.5 km, for a central United States
type geology and a seismic moment of 1024 dyne-cm (about My
= 5.7). This motion represents the contribution of the
fundamental and the first eight higher modes of Love waves,
for wave pericds of 1.5 to 400 sec., In order to include the
contribution of shorter period waves one would have to in-
clude many additional higher modes in the calculations,
which would result in z formidable computing problem,

Pigure 7 shows the effect of change of focal depth on
the spectra of the Love wave motion at a distance of 1000
km, As the depth is decreased the short period level in-
creases greatly, due to a stronger excitation of the
fundamental-mode wave. At these short periods the funda-
mental-mode waves damp out faster than the higher-mode
waves, 80 in the near-field region the surface wave ampli-
tudes vary even more greatly with focal depth, Thus, in the
near-field region of a2 very shallow earthquake the funda-
mental-mode surface waves will be destructive, even for
earthquakes with mp as small as 4,

Although the surface-wave motion can be adequately
modeled by a point (in space and time) source for the pur-
poses discussed above, this is not the case for the body-
wave motion in the near-field region. Each Jerk-like motion
of the fault surface will correspond to a new source of body
waves, acting according to no definite physical law, That
is, there is no way in advance we can know what the time
separation between jerky breaks will be. Thus it is a much
more difficult task to procuce realistic synthetic time
histories of body-wave motion in the near-field region
(where the body waves are potentially damaging) than it is
for the surface-wave motion. In fact, the present state-of-
the-art is such that adequate synthetic time histories of
neither the body-wave nor the surface-wave near-field motion
are available for predictive purposes., Thus we shall have
to continue to rely principally on strong-motion records of
actual earthquakes, 2nd hope to build a sufficiently large
collection that we can eventually describe a set of
"typical near-field records.

CONCLUSION

The purpose of this paper has been to explain to structural
engineers the kinds of design motion information that the
seismologist can provide him, and to point out the limita-
tions of such data and the assumptions made in arriving at
them. Depending upon the cost, location and intended use
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of the structure, the design parameters may be as simple as

a single peak acceleration value to as complex as a synthe-
tic time history of the ground acceleration, velocity and
displacement., As the latter is beyond the present state-of-
the~art for ground motions in the near-field region, seismol-
ogists and esrthquake engineers will have %o extend their
efforts to record the ground motion in such regions, to be
able empirically to build up sets of typical time histories
of the ground motion.
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SUMMARY

in conducting deterministic nonlinear dynamic response studies of a specific
structure, it is essential to know what general type of accelerogram to use as
input in order to obtain a good estimate of the expected maximum response with
a limited number of analyses. Insofar as dynamic structural response is concerned,
the major parameters characterizing the ground motion are intensity, duration
and frequency content. The effects of intensity and duration on dynamic response
have been studied by a number of investigators. However, little has been done
to study the effect of the frequency characteristics of the input motion. This
report presents the results of nonlinear dynamic analyses of isolated structural
walls with hysteresis loops characterized by a stiffness that decreases with increas-
ing amplitudes of inelastic deformation. A rough basis for classifying accelerograms
in terms of their damped velocity spectra as "broad band" and "peaking" is proposed.
The results of the study indicate that when extensive yielding occurs in a structure,
so that a significant change in the effective period of vibration results, a broad
band accelerogram is likely to produce a more severe response compared to a
peaking accelerogram of the same intensity and duration. On the other hand,
when only minor yielding occurs so that no significant increase in the effective
period results, a peaking record will more likely produce the more severe response.

INTRODUCTION

The economic provision of adequate stiffness, strength and deformation
capacity in earthquake-resistant structures depends on a realisitic assessment
of the maximum forces and deformations which are likely to occur during the
expected life of the structure. For a particular site, wide variations in the char-
acter of the free field motion can occur as a result of variations in the source
location, mechanism, and the transmission path properties. This variation would
be greater if the potential earthquake foci were widely separated.

The variation in the character of the ground motion at a site indicates the
desirability of considering a number of representative input motions when undertak-
ing an analysis to determine the likely maximum response of a particular structure.
However, where inelastic analyses (considered essential in a determination of
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deformation requirements) are concerned, only a very limited number of such

runs are possible in most cases. In recognition of this limitation, it was felt
desirable to develop a means of classifying accelerograms into fairly broad categories
according to certain basic properties, so that reasonably good estimates of the
maximum response of structures to potential earthquakes could be obtained on

the basis of a limited number of analyses.

CROUND MOTION PARAMETERS

Insofar as dynamic structural response is concerned, the principal ground
motion parameters are intensity, duration, and frequency content. Intensity
is used as a characteristic measure of the amplitude of the acceleration pulses
in a record. Duration refers to the length of the record during which relatively
large amplitude pulses occur, with due aliowance for a reasonable build-up time.
The frequency characteristics of a given ground motion have to do with the energy
content of the different component waves making up the motion.

Although the effects of intensity and durati&r} on dynamic structural response
have been studied by a number of investigators, very little has been done
to study the effect of the frequency characteristics of the input motion, particularly
with respect to the objective mentioned above.

This study presents the results of the dynamic nonlinear analyses of isolated
structural walls with hysteresis loops characterized by a stiffness which decreases
with increasing amplitudes of inelastic deformation. The study of the effect
of the frequency characteristics of the input motion was undertaken primarily
in an effort to narrow down the number of accelerograms which could be used
in a parametric study while still providing a reasonable estimate of the maximum
response under a likely combination of unfavorable conditions.

Frequency Characteristics

A typical strong-motion accelerogram shows an extremely complex series
of oscillations. Any such record may be thought of as a superposition of simple,
constant-amplitude waves each with a different frequency, amplitude and phase.
The importance of knowing the frequency characteristics of a given input motion
lies in the phenomenon of resonance or quasi-resonance, which occurs when
the frequency of the exciting force or motion approaches the frequency of the
structure. Near-maximum response to earthquake excitation can be expected
if the dominant frequency components occur in the same frequency (or périod)
range as the dominant effective frequencies (or periods) of a structure,

A convenient way of studying the frequency characteristics of an accelerogram
is provided by the Fourier amplitude spectrum. This spectrum provides a frequency
decomposition of the accelerogram, indicating the amplitude (in units of velocity -

a measure of the energy content) of the component at a particular frequency.
Another commonly used measure of the frequency content of an accelerogram

is the velocity response spectrum. This is a plot showing the variation of the
maximum absclute value of the relative velocity of a linear single-degree-of- freedom
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system with the undamped natural period (or frequency} when subjected to a
particular input motion. Figure 1 (from Ref. 1) shows the relative velocity response
spectra for the N-S component of the 1940 El Centro record, for different values

of the damping factor. The dﬁk\ed curve in Fig. 1 is the corresponding Fourier
amplitude spectrum. Hudson has shown that when the maximum response

of a system occurs at the end of a record, the undamped relative velocity response
spectrum has a form identical to that of the Fourier amplitude spectrum of the
ground acceleration. Otherwise, these two plots are only roughly similar.

As in the Fourier spectrum, the peaks in the velocity response spectrum reflect
concentrations of the input energy at or near the corresponding frequencies.

For damped systems, these peaks are reduced, the reduction being greater for
the shorter period systems. [t is pointed out that the velocity response spectrum
reflects the effects of the intensity and frequency content, but not necessarily

the duration, of the input.

Although both Fourier amplitude and undamped velocity response spectra
exhibit a jagged character, with peaks and troughs occurring at close intervals,
it is usually possible to recognize a general trend in the overall shape of the
curve. By noting the general shape of the spectrum in the frequency range of
interest, a characterization of the input motion in terms of frequency content
can be made. While this procedure represents a rather crude method for classifying
accelerograms in terms of frequency content, it nevertheless provides a sufficient
basis for determining the potential severity of a given input motion in relation
to a specific structure.

In this study, where a viscous damping coefficient of .05 of critical for
the first mode was used as the basic value for the dynamic analysis model, the
5% damped velocity response spectra corresponding to 10 seconds of a number
of representative records were examined. Figure 2 shows the velocity response
spectra for the N-S and E-W components of the 1940 E! Centro record (Imperial
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Valley Earthquake, May 18, 1940) . On the basis of this examination, two general
categories were recognized, namely:
(1) a "peaking" accelerogram with a spectrum exhibiting dominant frequencies
over a well-defined period range. The N-S component of the 1940
El Centro record is an example of this class.
(2) a "broad-band" accelerogram with a spectrum that remains more or
less flat over the period range of interest. The vertical component
of the 1940 El Centro record may be classified under this category.

A sub-class of the broad-band category is a record with a spectrum
which increases with increasing period within the period range of
interest. This may be referred to as a "broad-band ascending" accelero-
gram. The E-W component of the 1940 El Centro record is typical

of this type of record.

The above two cases are illustrated schematically in Fig. 3.

For a linear structure, where the dynamic behavior is dominated by its
fundamental mode (as in most reinforced concrete multistory buildings with structural
walls), a strong response can be expected when the fundamental period falls
within the peaking range of the input motion, i.e., within the period range where
the dominant components of the input motion occur. Lesser response can be
expected if the dominant period of the structure fails outside the peaking range.

Duration

Because of the significant computer cost involved in dynamic inelastic
analysis, particularly for the coupled wall and frame-wall systems planned for
the subsequent phases of this investigation, it was decided at the outset to use
a duration of 10 seconds of the base excitation for most analyses. Only when
studying the effect of duration on the response were 20-second records used.

Intensity

The best parameter to use as a characteristic measure of the amplitude
of the acceleration pulses within the period range of interest has not been clearly
established. Some investigators have chosen to normalize accelerograms on
the basis of the peak acceleration. Others have chosen to normalize their input
acceilerograms in terms of the "spectrum intensity", i.e., the area under the
relative velocity spectrum curve between bounding values of the period represent-
ing the limits of the period range of interest. Still others have used the root-
mean-square (rms)} acceleration.

If the intensity measure is to reflect the variation of acceleration amplitude
over the period range of interest, the measure must have the character of an
average. By this criterion, the peak acceleration is a poor measure. The spectrum
intensity taken over the period range of interest, and using a reasonable damping
value, should yield a more representative measure of intensity.
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DYNAMIC ANALYSIS OF ISOLATED STRUCTURAL WALLS

In order to study the effect of the frequency characteristics of the input
motion on the dynamic inelastic response of isolated reinforced concrete structural
walls, and to confirm the qualitative observations made above, three separate
sets of anaH}ses were made. The analyses were carried out using the program
DRAIN-2D developed at the University of Califctrgiia, Berkeley, as modified
to include the Takeda decreasing stiffness model.

The three sets considered are listed in Table |. These sets correspond
to structures with fundamental periods of 1.4, 0.8 and 2.0 sec., respectively.
All five of the accelerograms used were normalized to 1.5 times the 5%-damped
spectrum intensity (S1) of the N-S component of the 1940 El Centro record, * the
normalization factors being listed in Table 1. The normalized accelerograms
are shown in Fig. 4, and the corresponding 5%-damped velocity spectra are shown
in Fig. 5. The entries in the fourth column of Table 1 indicate the classification
of the accelerogram in terms of the general features of the velocity spectra relative
to the initial fundamental period of the structure. Thus, a "peaking (+}" classifica-
tion indicates that the peak in the velocity spectrum occurs at a period value
greater than that of the fundamental period of the structure considered. A "broad
band" classification refers to an accelerogram with a 5% damped velocity spectrum
which remains more or less flat over a region extending from the fundamental
period of the structure considered to at least 2 seconds greater.

Brief Description of Structure

The isolated structural wall considered in the analyses forms part of a
hypothetical 20-story building consisting of a series of parallel walls, as shown
in Fig. 6. The moment-rotation relationship for the wall is characterized by
a decrease in the reloading stiffness with increasing deformations beyond yield.
The structure is described in more detail in Ref. §,

(7)

In an effort to cut down on the computer time required for each analysis
without sacrificing accuracy in the results (the frequency content of the input
motion being only one of the parameters considered in the overall investigation},
preliminary analyses were run to determine the possibility of using a mode!
with a reduced number of lumped masses. Alternative "equivalent" models with
5, 8 and 12 lumped masses were tried and the results compared with those for
the 20-mass model. On the basis of these studies, the 12-mass mode! shown
in Fig. 7 was chosen for the parametric investigation. In order to obtain a reliable
estimate of the deformation requirements in the hinging region near the base
of the wall, the concentrated masses were spaced closer together (resulting in
shorter elements) in the lower portion of the model.

*In the following discussion, the 5%-damped spectrum intensity (SI} of the first 10
seconds of the N-S component of the 1940 El Centro record, for the period range
0.1 sec. to 3.0 sec., will be denoted by " (Sl)base" (which has a value of 70.15 in}.
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DISCUSSION OF RESULTS

(a) Fundamental Period of Structure, T = 1.4 sec., M = 500,000 in-kips
Envelopes of response values for the structure with perich of 1.4 sec.
and yield level, M_ = 500,000 in-kips, are shown in Fig. 8. Figures 8a, b,
and d indicate that' the E-W component of the 1940 El Centro record, classified
as "broad band ascending" with respect to frequency characteristics, produces
relatively greater maximum displacements, interstory displacements and ductility
requirements than the other three input motions considered. However, the same
record produces the least value of the maximum horizontal shear, with the artificial
accelerogram S1* producing the largest shear, as shown in Fig. 8c. Because
all the structures yielded and the slope of the second, post-yield branch of the
assumed moment-rotation curve is relatively flat, the moment envelopes for this
case do not show any significant differences among the four input motions used.

An idea of the variation with time of the flexural deformation at the base
of the wall under each of the four input motions of set (a) in Table 1 is given
by Fig. 9. This figure shows the normalized rotations of the node at story level
1", which represents the total rotation occurring in the first story. To plot
the curves in Fig. 9, the rotations have in each case been divided by the absolute
values of the corresponding rotation when first yielding occurred. The two
dashed lines on each side of the zero axis (at ordinates +1.0 and -1.0) thus represent
the yield level for all cases.

It is interesting to note in Fig. 9 that although the intense motion starts
relatively early under the artificial accelerogram S1, yielding first occurs under
the 1940 El Centro E-W motion. The magnitude of the rotation at the first yielding
cycle, however, is greater under both S1 and the Pacoima Dam S16E record,
a "peaking (0)" accelerogram. The Holiday Inn, Orion Blvd. record, a "peaking
(+)" accelerogram, as expected produced a much lower response during the
first few seconds, since the velocity spectrum for this motion (see Fig.5) peaks
at a period greater than the initial fundamental period (T1:1 .4 sec.) of the structure.
As the structure yields and the effective period increases, however, the response
under this excitation increases gradually.

It is significant to note in Fig. 9 that as yielding progresses and the effective
period increases, it is the "broad band ascending"type of accelerogram (in this
case, the El Centro E-W component) which excites the structure most severely,
while response to the other types of accelerogram--and particularly the peaking
accelerograms--tend to diminish. An indication of the change in fundamental
period of a structure as the hinging (yielded, "softened") region progresses
from the first story upward is given by Fig. 10, for different values of the yield
stiffness ratio. The figure is based on the properties of a structure with initial
fundamental period, T] = 1.4 sec.

*
Generated using Program SIMQKE {Ref. 5).
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It is pointed out that since the structure goes through unloading and re-
loading stages as it oscillates in response to the ground motion (see Fig. 11),
the general behavior reflects the effects of both the "elastic" or unloading stiffness,
as well as its yield or reloading stiffness. The effect of each stiffness value
will depend on the duration of the response under each stiffness value, and this
in turn will depend on the character of the input motion. When vielding occurs
early, and for the type of structure considered here in which the condition at
the critical section (i.e., the base of the wall) determines to a large degree the
response of the structure, it may be reasonable to assume that both elastic and
yield stiffness play about equal rolefasn influencing the "effective period" of
the structure. In the Takeda model of the hysteretic loop, the initial portions
of the reloading branches of the moment-rotation loops (see Fig. 11) will have
stiffness values intermediate between the initial elastic and the yield stiffness
of the primary curve.

{b) Fundamental Period of Structure, T _=0.8 sec., M = 1,500,000 in-kips

To study the effects of frequency charac‘{eristics for thé case of short-period
structures with relatively high yield levels, a "peaking (0)" accelerogram (N-S
component of the 1940 El Centro) and a "broad band ascending" type (E-W component
of the 1940 El Centro) were considered.

Figure 12, which shows response envelopes for this case, indicates that
the peaking accelerogram consistently produces a greater response in the structure
than a broad band record. It will be noted from a comparison of Fig. 12d and
Fig. 8d that the ductility requirements are not only significantly less for this
structure with a high vyield level, but that yielding has not progressed as high
up the structure as in the case of the structure considered under (a), with period
T,=1.4sec. and a low vield level. For the type of structure considered here,
wl\ere the displacements of the lower stories are generally in phase (fundamental
mode predominating), the magnitude of the ductility requirements at the base
of the wall is a direct function of the extent to which yielding has progressed
up the height of the wall,

The greater response of the structure under the N-S component of the
1940 El Centro (peaking) follows from the fact that the dominant frequency components
for this motion occur in the vicinity of the period of the structure {and also around
2.75 sec., see Fig. 5). In this region the E-W component has relatively low-power
components. Also, because of the high yield level of the structure, vielding
was hot extensive, particularly under the E-W component and apparently did
not cause the period of the yielded structure to shift into the range where the
higher powered components of the E-W motion occur. On the other hand, under
the N-S component of 1940 El Centro, Fig. 12d indicates yielding to have progressed
up to the 4th story level, as against the 2nd story level under the E-W component.
The greater extent of this yielding, and the accompanying increase in the effective
period of the structure, could easily have put the structure within the next peaking
range of the input motion,
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{c) Fundamental Period of Structure, T _=2.0sec., M = 500,000 in-kips

For this structure, the peaking accelerogram used wasd the E-W component
of the record taken at the first floor of the Holiday Inn on Orion Boulevard, Los
Angeles, during the 1971 San Fernando earthquake. The record has a 5% ~damped
velocity spectrum that actually peaks at about 1.75 sec. and may thus be classified
as a "peaking (-)" accelerogram relative to the structure considered. The other
input motion considered is the E-W component of the 1940 EI Centro record ("broad
band ascending").

The response envelopes of Fig. 13 indicate, as in case (a), that where
yielding is significant, the horizontal and interstory displacements, as well
as the ductility requirements near the base are greater for the broad band accelero-
gram than for the peaking motion. Also, as in case (a), the extensive yielding
which occurs near the base results in a reduction of the lateral inertial forces
or shears. Thus, Fig. 13¢, like Fig. 8d, shows the maximum shears corresponding
to the E-W component of the 1940 E| Centro to be less than those for the other
input motions.

SUMMARY AND CONCLUSIONS

The results presented above indicate that the frequency content of the
input motion can significantly affect the dynamic response of isolated walls.
By classifying accelerograms in terms of their 5%-damped velocity response spectra
as "peaking" or "broad band", a clear relationship was noted between the frequency
characteristics of the input motion and the dynamic response of yielding structures.

Specifically, it was noted that where significant yielding can be expected
in a structure, i.e., yielding which would appreciably lengthen the effective
period of vibration, an input motion with a velocity spectrum of the "broad-band
ascending" type is likely to produce more severe deformations than other types
of motion of the same intensity and duration. For cases where only nominal
yielding is expected so that the effective period of vibration is not significantly
changed, "peaking" type accelerograms tend to produce more severe deformations.
Since the extent of yielding is a function of both the earthquake intensity and
the yield level of the structure, as well as the frequency characteristics of the
input motion, these factors must be considered in selecting an input motion for
a given structure for the purpose of producing near-maximum response. The
above observations are important when it is desired to undertake a limited number
of analyses for the purpose of determining near-maximum response for use in
design.

It is recognized that considerations of the probable epicentral distance
and geology which affect the frequency content of the ground motion at a site
may logically rule out the possibility of dominant frequency components occurring
in certain frequency ranges. Thus, because the high frequency components
in seismic waves tend to be attentuated more rapidly with distance than the low
frequency components, it might be reasonable to expect that beyond certain distances,
depending on the geology, most of the high frequency components from a given
source would be damped out so that only the low frequency (long-period) components
need be reckoned with.
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SUMMARY

The San Fermando earthquake of February 9, 1971 has demonstrated that
bridges located in high risk seismic zones and which were designed in ac-
cordance to the then prevailing AASHO design criteria may not possess ade-
quate seismic resistance. This narrative describes an effort which was
undertaken to develop a set of practical retrofit measures that can be em~
ployed on existing bridges so as to reduce damage and minimize the threat
to life should an earthquake occur. The process leading to the identifica-
tion of potential bridge weaknesses, selection of retrofit measure and
verification of its adequacy is illustrated using two analysis procedures
i.e., a detailed analysis method and a simplified one.

INTRODUCTION

The San Fernando earthquake of February 9, 1971 caused considerable damage
to highway bridges. A report (Ref. 1) on the postearthquake damage sus-—
tained, recommended that existing bridges in earthquake prone areas be re-
examined to determine their seismic resistance, and if not adequate, be
modified to at least prevent collapse in the event of a strong seismic
loading.

The study described in this narrative (Ref. 3) was motivated as a result of
the extensive damage sustained by bridges during the 1971 San Fernando
earthquake. Its purpose was to develop a set of practical retrofit mea-
sures that can be employed on existing bridges so as to reduce damage and
minimize the threat to life should an earthquake occur.

The study emphasized conventional steel and reinforced concrete highway
bridges. Seven bridges were selected from potentially active seismic zones
of this country, and formed the basis of the study. Each bridge was first
analyzed in its "as built" condition to determine if a problem existed.
Those which responded in a failure mode were appropriately '"modified” to
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reflect a retrofit and were then reanalyzed to determine the adequacy of the
particular retrofit.

Observed failure modes for conventional bridge structures subjected to sies—
mic loading can be grouped into two categories; i.e., substructure failures
(pier or abutment) and hence loss of support capacity, and superstructure
collapse due to excessive relative motion at support bearings. Both types
of failure occurred during the San Fernando earthquake and both were con-
sidered in Ref. 3. Structural failure and damage to bridges may also be
caused by inadequate foundation strength or load-bearing degradation during
the course of seismic loading. Soil liquefaction is an example of this
failure mode. It was not specifically considered in Ref. 3 since the prob-
lem is one of bridge foundation material rather than of the bridge structure
itself.

The following five bridge retrofit concept categories were identified and
several concepts were developed for each.

e Superstructure horizontal motion restrainers for hinges,
expansion joints, bearings, etc.

¢ Bearing support restrainers - vertical
® Bearing area widening techniques
¢ Column (pier) strengthening

e Footing strengthening

Specific retrofit concepts produced were selected based on feasibility and
practicality.

Before taking any steps to retrofit an existing bridge, it is necessary to
decide (a) whether the bridge actually needs retrofitting, and (b) if it
does, what type or types of retrofit measures to employ. For a retrofit
measure to be cost—effective it must be both practical and economically fea-
sible to employ. In the context of this study the purpose of a given retro-
fit measure is to minimize damage so that the bridge can remain in at least
emergency use, rather than to eliminate it entirely.

To satisfactorily answer question (a), a structural, seismic analysis of the
subject bridge needs to be performed. First there should be a simplified
structural analysis which adequately considers the principal modes of bridge
response when subjected to the probable, site dependent seismic locading.
Should the results prove marginal as far as probable failure is concerned,
then a more detailed structural analysis may be necessary to reach a deci-
sion. If the analysis (simplified or detailed) indicates that some type of
failure (extensive enough so that the bridge could not remain in even emer-
gency use) will occur, the retrofit measure(s) to be employed should be
based on the mode and extent of failure. It is important to consider that
strengthening a component which is susceptible to a particular mode of sies-
mic damage may actually lead to a different mode of failure, or possibly to
failure of another component.

Once the retrofit measure has been chosen, its effectiveness in minimizing
damage should be investigated using an appropriate structural analysis
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procedure. The process leading to the selection of adequate retrofit con-
copts 1s an iterative one.

It is important to emphasize that seismic and structural considerations are
not the only cnes that need to be considered in the overall bridge retrofit

decision process. A partial list of other decision factors entering the
process is given.

e The importance of the bridge to the given locality based on
the type of highway, traffic volume and accessibility of
other crossings.

® Replacement or repair costs based on estimated damage includ-
ing lost time.

BRIDGE RETROFIT MEASURES

A retrofit measure is any means of increasing the seismic resistance of an
existing bridge. It is likely that there are many possibilities; the prob-
lem is to find those which are cost-effective. A brief summary of some
retrofit measures that should be considered for bridges in high risk seis-
mic zones:

(a) Restricting longitudinal, vertical, and lateral relative
displacements of the superstructure at expansion joints,
bearing seats, etc., by means of cables, tie bars, shear
keys, extra anchor bolts, metal stoppers, etc.

(b) Restricting rigid body motion of the superstructure by
connecting (e.g., with high strength steel cables) to a
supporting or an adjacent foundation or pier cap, enlarge-

ment of bearing areas, stoppers at edges of bearing areas,
etc.

(¢) Reducing induced vibrations by installation of energy ad-
sorbing devices such as elastomeric bearing pads at bearing
seats, or adaptation of the new Japanese 'shock absorber"
type of damper which allows slow movement, such as displace-
ment due to creep, shrinkage, and temperature change with
negligible resistance, but develops a large resistance in
the case of a rapid displacement; i.e., high velocity, such
as can be caused by an earthquake (Ref. 4).

(d) Strenmgthening of supporting structures: As a specific ex-
ample, increasing the strength of an existing column by
adding longitudinal and spiral reinforcement to the exterior
of the column and then bonding the added reinforcement with
a new layer of high strength concrete using pressure grout-
ing procedures and/or gunite. The additional longitudinal
reinforcement could also be extended into the cap and the
footing thus increasing the flexural strength of the column-
to-cap and column-to-footing connections (Fig. 1).
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BRIDGE ANALYSIS, RESULTS AND RETROFIT MEASURES EMPLOYED

The bridge chosen for illustration is the Bahia Overcrossing, Bridge Number
23-161, near Benecia, California (Fig. 2). It is a two-span continuous
reinforced concrete box girder, built-in at the abutments, with a single
column reinforced concrete bent, (3 ft by 8 ft) cross section, as the inter-
mediate support. The abutments are founded on a single row of piles with
sufficient flexibility to minimize stresges from thermal movement. The
intermediate support is founded on a spread footing with piles. The soil
of the bridge site consists, primarily, of loose to dense dark brown silt
with some fine to coarse sand and gravel. This bridge was first analyzed
using a nonlinear dynamic analysis method and was subsequently analyzed
using a simplified procedure. Details of the two analysis techniques are
given in Ref. 3,

For the detailed method, the bridge is modeled as a space frame (Fig. 3),
and subjected to a hypothetical earthquake in the form of ground surface
displacement time histories (Fig. 4) based on a statistical evaluation
of the seismicity of the site. The bridge is first analyzed as built to
determine: whether retrofitting is necessary, and if so, to define the
failed component(s). The candidate retrofit measure(s) is then incorpo-
rated into the bridge model and the analysis performed again.

Nonlinear Dynamic Analysis

Figure 5 is a moment—time history resulting from the application of the ver-
tical and horizontal (in the longitudinal direction) seismic ground motions.
By comparing the dynamic response with the ultimate moment it is observed
that the bending moment at the top of the column, approaches and exceeds

the ultimate value for a duration of approximately 16 seconds correlating
with the period of strongest vertical and horizontal motion.

The nonlineatr analysis demonstrates that at least one area of the bridge
should be considered for retrofitting. The area most vulnerable to damage
is the top portion of the column. An cbvious retrofit possibility is to
strengthen the column using the method illustrated in Fig. 1. TFigure 6
shows the bending moment variation at the top of the retrofitted column.
The largest magnitude attained is 88 percent of the computed ultimate bend-
ing moment for the retrofitted column. The addition of the longitudinal
reinforcing bars and concrete to the exterior of the column causes an in-
crease in the maximum bending moment experienced by the column during the
seismic loading. The ratio of the moment for the retrofitted case to the
unretrofitted is 1.19. At the same time, the retrofit leads to a 61 percent
increase in the ultimate moment.

Simplified Analysis

For the simplified analysis method, the predominant mode for a given bridge
is assumed to be horizontal and can be resolved into two orthogonal direc-
tions, longitudinal and lateral. If the lateral restoring force or resis-
tance of the structure is considerably larger than that in the longitudinal
direction, then the lateral response does not govern and can be ignored.
Vertical vibrations are also important for some bridges and for piers rig-
idly connected to the girders. An approximate consideration of such vibra-
tion is shown in this example.
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The following assumptions are made for the simplified analysis concerning
structural ideglization.

(1) Rollers and expansion joints are considered to be fric-

(2)

(3)

(4)

tionless,

Expansion joints are assumed capable of transmitting
longitudinal forces only if longitudinal ties are pro-
vided through the joint.

Skewed bridges are analyzed as if they were unskewed.
{i.e., the longitudinal stiffness is assumed to be per-
pendicular to the skewed piers).

Horizontally curved bridges are analyzed by converting

the structural properties into the chord line direction
(which is nominally referred to as the longitudinal direc-
tion) and perpendicular to the chord (lateral) direction.

For the analysis of a particular element of a curved bridge,
the longitudinal and lateral earthquake loading (accelera-
tions) are individually resolved into the principal direc-
tions (parallel and perpendicular) of the element. Since
the seismic motion can act in both the positive and negative
directioﬁs, the absolute values of these results are added
vectorially to obtain the appropriate element loads.

Each bridge is idealized separately in the longitudinal and lateral direc-
tions as single degree of freedom systems. This is done by determining an
equivalent mass and spring stiffness for the bridge in each of the two direc-
tions by combining the individual stiffness from the various contributing
bridge components.

It is assumed that failure will not occur if the analysis indicates that the
following overloading and/or yielding conditions will occur.

(1)

(2)

(3)

A plastic hinge occurring at the bottom of a pier that is
fixed at the top as long as the pier is not an isolated one
between expansion joints.

The bending moment for a reinforced concrete pier (based on
the elastic response spectrum seismic loading) does not ex-
ceed three times the ultimate moment of the section. This
is based on the fact that the seismic acceleration will be
reduced by a factor of 1/ 2u-1 where p is the duetility
factor. For reinforced concrete, a value of b =5 is com—
monly used.

1£, due to vertical vibrations, a plastic hinge forms at the
top of a pier which is monolithic with the superstructure and
the pier is framed into a transverse superstructure diaphragm.
Failure will not occur as long as no plastic hinge develops

at the bottom of the pier.

It is assumed that the bridge will fail if the analysis indicates that any
of the following conditions will occur.
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(1) The anchor bolts of fixed bearings fail by shear.

(2) A plastic hinge is formed at the bottom of a pier that is
hinged at the top if no additiomal lateral stability is pro-
vided by the adjacent piers or abutment.

(3) Piles are subjected to excessive lateral forces which create
large horizontal displacements of the structure. Vertical
piles in good scil subjected to more than 15 kips (each)
lateral force are considered to be excessive, C(Clay is consid-
ered as a poor soil for providing lateral resistance for piles.

(4) Slip-out of pins in hinge connections or bearings due to ex-
cessive horizontal or vertical relative motion.

The simplified analysis technique is demonstrated by application to the as
built Benecia bridge (see Fig. 7). Some selected results are compared with
the nonlinear analysis discussed previously.

2. =1032" le

1 [‘ £y

=1224"

Beam Elements
K K
. Va B s
i B 1
Kug B I B Kug
h= 324"
ID
Kp
6 Kpg
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Kp = 11.60 x 10% 1b/in.
KAG 1.55 x 109 1b~in. /radian
KFQ = 63.80 x 109 lb-in./radian
6 6 .2
(EI)B = (3x107°)(5.48x10") 1b-in"
(ED), = ¢4.73x10% (3.73x10°) 1b-in?
Ay, = 7708 in?, Ap = 3456 in?
My = 1.80 1b-sec2/in?

Fig. 7 Simplified Analysis Model of Benecia Bridge

Vertical Response Analysis: The stiffness of span 2 for rotation about the
lateral axis of the bridge (Y) is 4EIp/%y = 5.35 x 1010 ib/inch/radian.
This is nearly 30 times the stiffness of the abutment (Kg) thus the struc-
ture can be assumed to be hinged at the abutments. For rhe bent, the com-
parable rotational stiffness is Kpg = 4KIL /h = 2.18 x lOlO lb-inch/radian.
Since the pier foundation rotational stif%ness (KFQ) is nearly three times
as stiff, the base of the pier will be assumed as fixed.
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The length of the spans i1s approximately the same, and it can be assumed
that the spans will vibrate approximately as simple beams for the determina-
tion of their natural frequency for vertical response. For span 2, the fre-
quency of vertical vibration is

(ﬂ/2l§) V(EI)B/mB

3.17 cps

F

From Fig. 8 for a maximum vertical ground acceleration of 1.0g a peak ac-
celeration of 4.2 g is obtained for a structure with this frequency. For
the 0.26 g maximum vertical ground acceleration predicted for the bridge
site, the vertical seismic forces are derived from an equivalent accelera-
tion of a, = (0.26) x (4.2) = 1.0%¢g. From this acceleration, the midspan
moment from the vertical seismic load is estimated as My = (1 - O.Z)QZmBR%/
8 = 0.114 x 109 inch-lbs. The continuity factor (1 - 0.2) indicates that

the bending moment at the pier (M,.) is 0.4 times the simple beam moment for
purposes of estimating the midspan moment for vertical seismic loading. Add-
ing the static bending moment of 0.077 x 10?2 1b-inch results in a total mo-
ment of 0.191 x 107 1lb-inch. This is less than 9 percent higher than the

peak value obtained from the nonlinear dynamic analysis.

The rotation (QB) at the top of the pier can be computed based on the above
variation in the bending moment for the vertical seismic load. That is,
the moment variation resulting from a uniform vertical seismic load of 1.09
times the superstructure dead load with zero moment at the right abutment
and a value of Mgc at the pier. The result is 8 = 0.75M222/(3EIB) = 0.00212
radian. With this rotation at the top of the pier and zero rotation at the
bottom {fixed) the bending moment at the top is Mpp = Kpg (8) = 46.0 x 106
lb-inch. The moment at the bottom of the pier is of opposite sign and
one-~half this magnitude. The shear resulting from this distribution of
moments is HP = l'SMBD/h = 21.3 x 10% 1bs. Assuming a linear variation in
the moment at the center of the top and bottom elements of the pier are
Mop = 37.4 x 10° and MJ,, = 14.4 x 10° 1b-inch. These will be modified

by the moments from the longitudinal loading before comparing the results
with the nonlinear dynamic analysis.

Longitudinal Response Analysis: The important stiffness parameters for
longitudinal seismic load calculations are:

Abutments (each): K, = 8.49 x lO6 1b/inch

n

Span 1: Kl = EAB/Ql = 22.4 x 106 1b/inch
Span 2: K2 = EAB/)Z2 = 18.9 x 106 1b/inch
Pier: KP = 3EIP/h3 = (0,163 x 106 1b/inch

The combined stiffness (KK) is obtained from

K 1 -1

X

(1/R, + 17K+ (LK + 17K

12.14 % 10° 1b/inch

+ (1/KA + 1/K2)
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The weight of the supérstructure Wg = 1.57 x 106 1b and the equivalent weight
of the pier (which is approximately one~fourth the weight of the pier) is

Wpe = 24,000 lbs. The combined mass of the structure for longitudinal sies-
mic response is M = (Wg + wPe)/g = 4,130 lb-sec?/inch. With these param-
eters (KX and M) the effective frequency is determined from f = KX/M/(ZW) =
8.65 cps.

From Fig. 8 for a maximum longitudinal ground acceleration of 1.0g a peak
acceleration of 3.7 g is obtained. For the 0.32 g maximum horizontal ground
acceleration predicted for the bridge site, the seismic longitudinal forces
are derived from an equivalent acceleration of a, = 0.32 (3.7) = 1.18¢g.

The total longitudinal force (H) for the structure is ay times the combined
mass (M) above, there results H = 1.89 x 10® 1lbs. Assuming that this force
is distrib ted in proportion to the longitudinal stiffnesses of the compo-
neut elements of the bridge, the shear force in the pier is Hp = H (Kp/Ky) =
24,200 lbs. This shear force causes moments at the center of the top and
bottom elements of the pier of Mgop = 1.0 x 100 1b-inch and Mﬁot = 6.9 x

06 1b-inch.

- -ined Vertical and Longitudinai Seismic Results: Adding the pier shears
 » the vertical and horizontal analyses yields H = (21.3 + 2.42) x 104 =

"2 x 10% 1bs. This comgares almost exactly with the dynamic response

«vsis value of 23.4 x 10" 1lbs. In a similar manner, the combined bend-

moment at the center of the top and bottom elements of the pler are

= 38.4 x 106 and ME = 21.3 x 10% 1b-inch. These also compare quite-6
wably with the dynam&c analysis peak values of 36.4 x 106 and 27.5 x 10°,
< -ctively.

CONCLUSTIONS

Fror the observations made during this research program, the following con-
wusions can be made.

(1) Bridges that are located im high risk seismic zones that were
designed for earthquake loading according to the AASHO Design
Criteria may suffer substantial structural damage, and in
some cases collapse can be anticipated. This conclusion is
based on analyses performed on several bridges in Ref. 3.
Each bridge was subjected to a predicted seismic load of the
highest severity that would cccur during the life of the
bridge.

(2) A similar conclusion to the above is made for structures
located in highly active seismic regions that were designed
for more stringent earthquake loads than the AASHO code.

(3) The current seismic design criteria for bridges and the
methods of analysis for this loading are in a state of flux.
This conclusion is based on two observations:

e seismic design criteria have changed drastically in the
last decade for both buildings and bridge structures
built in regions where the earthquake risk is high; and



o comprehensive methods of dynamic structural analysis
have not been used, to the extent required, to develop
a rational system of simplified seismic design loading
conditions for various bridge structures.

For example, the influence of the soil material at the
bridge site and the vertical earthquake motions are not
included in design codes; but, they are potentially impor-
tant factors in the specification of seismic bridge loads.

(4) The simplified method of analysis used in this project for
the seismic analysis of bridges is a potentially adequate
tool for deciding what type of retrofit is required, if any.
At some time in the future when additional comprehensive
numerical studies are available, the simplified analysis
should be reviewed and compared with these new results for
possible modifications to the method.

REFERENCES

Jennings, P. C. and Wood, J. H.; "Earthquake Damage to Freeway Struc-
tures," Engineering Features of the San Fernado Earthquake of February
9, 1971, Report EFRL 71-02, June 1971.

Newmark, N. M.; Blume, J. A.; and Kapur, K. K.; "Seismic Design Spectra
for Nuclear Power Plants," J. Power Division, ASCE, Nov. 1973.

Robinson, R. R., et al; "Structural Analysis and Retrofitting of Existing
Highway Bridges Subjected to Strong Motion Seismic Loading," for Federal
Highway Administration, IIT Research Institute, May 1975.

Shunji Inomata; "Japanese Practice in Seismic Design of Prestressed
Bridges,” PCI Journal, July-Aug. 1972.



INTERNATIONAL SYMPOSIUM ON 51

EARTHQUAKE STRUCTURAL ENGINEERING
St. Louis, Missouri, USA, August, 1976

THE NON-LINEAR DEFORMATIONS IN THE GROUND BASE
OF LARGE-PANEL BUILDINGS UNDER OSCILLATIONS

G.A.SHAPIRO, Techn.D., TSNIIEP zhylischa
G.N.ASHKINADZE, Dipl. mngineex Moscow, USSR

SUMMARY

It is assumed that compressive deformation of the ground
are elastic-plastic and the ground Cannot act under tension.
Basing on these assumptions, there was developed a non-linear
calculation model of the large-panel building base under
rocking vacillations. Good corroboration of the calculation
model was obtained in the vibration tests of 4/4 life size
model of the 10-storey bulilding erected on the ground base.
Principal dynamic propertis and selsmic response of buildings
on the non-linear ground base are aealt with in this paper.

INTRODUCTION

It is known that the base deformability bears an
important effect up on the performance of the large-panel
building under vibrations. For example, displacement caused
by rocking vacillations of the 8-9-storey large-panel building
amounts to so per cent complete upper floor displacement by
small vibratioms [2].

It is natural to assume that the non-linear response of
the bullding has to an even greater degree to depend on the
non-linear response of bases. According vo the data of high-
capacity vibration tests the stiffness of bases can be
considerably reduced as the intensity of vibrations inreases.
The authors often elicitated thls dependence by the vibration
tests of buildings and models [2].

In contrast to non-linear structural stiffness that of
the base comes back alanost completely after vibrating has
been stopped.

However, the non-linear processes taking place in the
ground base of the building under heary vibrations and theig
intluence on the dynamic behaviour of system "building-ground"
has not been studied asyet.

THEORETICAL RESEARCH

It 1s very important to take into account the fact that
the non~-linear deformations of the ground take place even
under small strains and the residual deformations are
considerable.
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The common stress-stroin relation tfor the ground under
compression is shown in Fig 1 [1].

However, thls diagram is normally umed for calculating
centrally loaded foundations which are not taken off base.

The displacement caused by rocking of the building like rigid
massif on the ground accounts for a large part of complete
vibration aisplacement. the breaking of coantact between the
foundation part and the ground can take place in the large-
panei multistorey building under roking of this type.

It will be convenient in the following analysis to
accept the calculation scheme of vacillating bullding as an
absolutely rigid massif and to add the diagram of the ground
deformation column to horisontal section 3-4-3. This part of
the diagram shows an arbitrary motion of the foundation part
when breaking contact (Fig.1).

The above assumption that the building is an absolutely
rigid massif allows for simplifying the problem of the pure

deformation of ground base. the vibrations of designed model
can be written in the form of an equation:

’ Co My _ P&
in which
Y ~ angle of foundation rotation,

Y W - coefficient of resistance, and natural frequency of
! linear vibrations,

M(¢)- non-linear force characteristics of the base,

m, N - building mass reduced to the point of applying the
external load, and building height,

P(t)- external load: vibrational fjd?sindt or seismic

The complete diagram of elementary ground column in
mathematic terms is the following relation:

FE::CLgif*iL
Coefficients C(,cl{ depend on the sequence of loadings.
Force characteristics M(yY}can be found from the equilibrium

equation’
M~ N éﬁ(;l"*) +A82§ [(Coy+di)(i=4)1=0

N — al _Lér; (Ceye +di) =0

@)
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From (2) 32 4 .
3 -
S
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Taking into account (3), the motion equation (1) can be
integrated by numerical method, for example, by modified
Runge~Cutt’s method. The procedure of numerical method
corresponds to successive loading of the system.

To calculate the above system under vibrational or
seismic effects, the programe for the compubter has been
elaborated. This programe can be Goo used for calculating
system under static alternating load. In this case, the pro~
cedure of step by step method is The same as tne above, but
the integration of equavion (1) is substituted with the
following calculation:

- 5254
Mot (Do~ 22) -0l (755 55)
= A(s, ~ 52 ()
Sz

THE PECULIARITINS OF NON-LINEAR BASE DEFORMATIUNS
UNDER VIBRATIONS

Results of calculations show tnat partiel breaking of
contact between the foundation and the base exerts the
greatvest influence on the base respouse (Fig.Z2).

If the ground deformations are elastic, the base stiffues
can be decreased in 2.5 times, when €p,= 0,5L(Fig.3). The
piastic aeformations enlarge the angle” 0f foundation rotation
and reduce the stiffuess in adaition (Fig. 2,3%). The plastic
condensation of the ground eniarges the breaking area of the
foundation under rocking vibrations as shown in Fig. 5.

At the same time, the forms of hysteresis loops, angle
rotations, resconance curve and smail value of absorption
coerficient testifies to the insignificant display of plastic
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properties of ground. For the system with single~side ties
that insignificant display is caused by a sharp decrease in
the area of hysteresis loop (to compare Fig. 4a and 4b). The
non~linear-elastic nature of building vibrations under
vibration tests is too explained by this fact.

EXPERIMENTAL STUDY OF NON-LINEAR BASE DEIFCRMATIONS

To verify the calculation scheme there weve made the
vibration tests ¢of 10-storey building model. The seale of the
model was 1/4. The model was erected on the ground. The tests
were carried out by means of vibration generators which were
placed on the upper floor. In these tests displacenment of the
foundation as related to the ground was specially measured.
The 4,5 mm crack after breaking the contact was reached (Acg)
as well as the 1,5 mm chink by ground condensation (Acn) -
(Fig.3,6). The relations hip M(®) (Fig 2) values of crack
form of resonance curves and the line well confirm the
theoretical values.

Therefore the above calculation scheme may be used for
calculating actual buildings.

THE ANATLYSIS THE BASE NON-LINEAR DEFORMATION EFFEKT UPON
VIBRATIONS AND SEISMIC RESPONSE OF A 8-5TOREYS LARGE-~
PANEL BUILSING IN ALMA-ATA

The building bases upon boulder bed. Dimensions of
foundation slab are 34,6 x 16,1 x 0,5 m.

For this building the non~linear processes noted above
lead to the 2-3 times decrease in the bases stiffness. If the
well confirm the theoretical values. Therefore the above
calculation scheme may be used for calculating actual
buildings.

THE ANALYSIS THE BASE NON-LINEAR DEFORMATION EFFECT UPON
VIBRATIONS AND SEISMIC RESPONSE UF A 8-STCREYS LARGE-
PANEL BUILDING IN ALMA-ATA

The building bases upon boulder bed. Dimensions of
foundation slab are 34,6x16,1x0,5 m.

For this building the non-linear processes noted above
lead to the 2-3 times decrease in the bases stiffuess. If the
deformations of the structure is not taken into account, the
natural frequency is decreased 1.4-1.75 times, and it is
decreased 1,25-1.5 times if the elastic deformations of the
structure are considered. (Fig.?7). Hence the impulsive load
is approximately twice decreased deformations of the structure
is not taben into account, The natural frequency is decreased
1,4-1,75 times, and it is decreased 1,25-1,5 times if the
elastic deformations of the structure are considered (Fig.7).
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Hence, the impulsive load is approximately twice decreased.

But it is necessary to take into account that the about
2 times reduction of the contact area corresponds to the
above decrease of the load (Fig.2). This makes the conditions
of ground strength worse.

There was made the calculation of the building base
under accelerogram of Hollister, 1949 [SJ. In this
accelerogram the accelerations were 2 Yimes increased. If the
non-linear base deformation is taken into account, the moment,
applied to the base is 2,5~ times less, but the Llength
breaking area can exceed 0,5/ (Fig.8). Therefore in line with
the USSR Building Codes [5] the stablility of the ground may
be unprovided for.

CONCLUSIONS

On the basis of theoretical and experimental studies
there was developed a design model of the base of large-panel
and stone buildings with regard to the breaking of tne
foundation off the ground, and to the plastic deformatiocns
of the latter. Such a design scheme makes 1% possible to
calculate the base for the static, vibro and earthquake
effects.

The most important result of the base non-linear
deformabtlions is the decrease in the forces under vacillations
as well as in the foundation resting area on the base.

The partial breaking of the foundation off the ground,
as well ag the formation of the crack caused by ground
compression may lead to the appearance of a certain suspension
of building structures, which calls for additional forces and
ought to be taken in to account in design, for instance, when
applying methods [4].

Under earthquane loads notwithstanding the double or
even triple reduction of forceg, there may arise in the non-
linearly deformable bases bthe short—-term combinations of the
moments exceeding ratea values, as well as- of the breaking
areca lengths exceeding the allowable values (0,5 foundation
length), which threatens the stability conditions of the base.
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SUMMARY

A procedure is described for analyzing a cable stayed bridge
subjected to dynamic loads. The procedure considers nonlinear
behavior of both the cables, due to changing sag, and the towers and
girders, due to the interaction of axial and bending deformations. It
is concluded that the nonlinearity of the structure must be considered
in determining the stiffness of the structure in the dead load state,
however, a linear dynamic analysis from the dead load state will give
results well within normally required design accuracy. Damping in
the structure should be considered,

INTRODUCTION

A cable stayed bridge is a nonlinear statically indeterminate
structure in which the girder is supported elastically at points along
its length by inclined cable stays. A wide variety cf geometric con—
figuraticns have been utilized in cable stayed bridge construction, as
shown in Figure 1a. This type of bridge construction differs from the
conventional suspension bridge since the girder is supported by indi-
viduel inclined cablie members, attached directly to the tower, rather
than by hangers which are supported by one main cable suspended
between the towers, as shown in Figure 1b.

Since World War 11, approximately 60 cable stayed bridgeshave
been built throughout the world, or are presently under consideration.
The popularity of this type of structure is increasing, therefore it is
important that the design engineer have available convenient techniques
for their analysis and design. It is particularly important that know-
ledge be available concerning their behavior under various types of
loads. The static bebhavior of cable stayed bridges has been studied by
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a number of previous investigators, however, very little significant
information has been presented concerning their dynamic behavior.*
Because of their increased flexibility, low weight and low damping it
is difficult to extrapolate their dynamic behavior from the know dyna-
mic characteristics of girder and truss bridges.

The study presented here is concerned with a comparison of
linear and nonlinear dynamic analysis procedures for a single plane
cable stayed bridge under earthquake loading. For comparison pur—
poses, the response of the structure is considered under both the
longitudinal and vertical components of the May 18, 1940 El Centro
California Earthquake (4).

NONLINEAR BEHAVIOR OF CABLE STAYED BRIDGES

Even though the material in the members in a cable stayedbridge
behaves in a linear elastic manner, the overall force~deformation re—
lationships for the structure are nonlinear. This nonlinear behavior
i1s a result of both the axial force-deformation relationships for the
inclined cable stays and the combined axial and bending force—deforma—
tion relationships for the towers and girders being nonlinear. Both of
these nonlinear effects are due to geometric changes which occur in the
members due to the applied loads on the structure, however, the indi-
vidual behavior of the two types of members is completely different.

A cable, supported at it ends, and subjected to its own weight
and an externally applied axial tensile force will sag into the shape of
a catenary. The axial stiffness of the cable will change with chang-
ing sag, which in turn changes with displacement of the cable ends.
For conventional truss members the sag due to self weight can be safely
ignored, however, for cable members it must be considered if an
accurete analysis is to be performed.

The displacement of the cable ends, which result from deform-
ations in the structure due to the applied loads, have three distinct
effects upon the cable. The first is a change in strain in the cable
materisl. This change in strain can be considered to be linear and is
governed by the material modulus. Second, there is a rearrangement
of the individual wires in the cable cross section under changing load.
This deformation, which is known as constructional stretch, is per-—
manent, however, it is ususlly eliminated by the cable manufacturer
by prestretching the cable to a load greater than the working load dur—
ing the manufacturing process. Third, there is the change in sag of

*For a complete review of previous work and also a good bibliography
see references 1,2,3,
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the cable, exclusive of material deformation. This change in sag is
governed by the length of the cable, the weight of the cable and the
tensile force in the cable. It is this change in sag which causes the
nonlinear force—-deformation relationship for the cable since the change
in sag does not vary linearly with cable tension.

The second non—linear consideration in cable stayed bridges is
the behavior of the towers and girders when they are subjected to com-—-
bined bending and exial loads. Structural members which carry both
axial forces and bending moments are subjected to an interaction be -
tween these two effects. The lateral deflection of a member causes
additional bending moment when subjected to 8 simultaniously applied
axial force, thus altering the flexural stiffness. In a like manner the
presence of bending moments will affect the axial stiffness of the mem-
ber. For most structures the interaction between the flexural and
axial stiffnesses can be ignored; however, due to the large displece-
ments which can occur in cable stayed bridges this interaction should
be considered.

Since the force-deformation relationships for cable stayed
bridges are nonlinear, their analysis under the action of applied loads
1s more complicated then for conventional structures. Statically
applied loads on a structure will alwaysbe in equilibrium with the inter
nal member forces resulting from the deformation in the members.
For a linear stiructure the stiffness can be formulated in terms of the
deformations with nonchanging proportionality constants. For nonlin-
ezr structures these proportionality constants change with changing
load and in most cases cannot be represented by a simple algebraic
expression, thus increasing the difficulty in obtaining a solution for
the resulting equations. One popular way of solving nonlinear struc—
tural equations for static loads is by making use of successive linear
analyses, either by assuming the load to be applied incrementally w ith
a corresponding linear structural behavior for each increment, or by
assuming linear behavior for the total load application end iterating
until the correct equilibrium position is obtained. Either approach
should give essentially the same result, In the analyses presented
here, an iterative approach is used to determine the displacements
and member stresses under the structure dead load.

COMPUTATION OF STRUCTURAL STIFFNESS

A convenient method for considering the nonlinearity in the in—
clined cable stays is to consider an equivalent straight chord member
with en equivalent modulus of elasticity. The equivalent modulus of
elasticity combines both the effects of material and geometric deform-
ations. Hence, the axial stiffness of the equivalent member for any
particular combination of cable sag and cable tension is the same as
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the axial stiffness of the actual cable. This approach has been used
successfully by several previous investigators (2,3).

If the change in tension of a cable during a2 load increment is
not large the axial stiffness of the cable will not significantly change
during the load increment. For this situation, the equivalent modu-
lus of elasticity can be considered to be constant and is given by:

B 2 3
Eeq =E/ {1 + L(w!_) AE/12T JJ (1

where E is the material modulus, L is the horizontal projected length
of the cable, w is the weight per unit length of the cable, A is the cross
section area and T is the cable tension before the load increment is
applied. In many situations, due to the flexibility of cable stayed brid-
ges, the displacements and resulting changes in member forces during
the application of a load increment are not small, As the cable ends
move during the load application the equivalent modulus will change as
a result of the changing cable tension. For this situation, the equiva-
lent modulus of elasticity over the load increment is:

2 2_2
Eeq =E/Y1+ [(WL) (Ti + TF) AE/24Ti TF ] } @)
where the subscripts i and f represent the initiel and final values of
cable tension during the load increment. By using the concept of an
equivalent modulus of elasticity the individual member stiffness matrix
for any inclined cable stay for any value of cable tension can be written
in the form:

AE /L -AE /L
> - eq eq
mj . 3
- AE L
A Eeq/[_ eq/ i
The nonlinear behavior of the towers and girders, due to large
deformations in the members, can be considered by introducing the con—

cept of stability functions. The modified member stiffness meatrix will
be of the form:

K, Sg 0 0 K, 4Se 0 o ]

© 2271 2372 257 1 o7 2

[Km] =1 © 3050 K233 0 k52 Mae®4
i <4155 0 0 K455 o) 0

O 5271 5372 © 554 5672

0 B2 2 683 4 k6552 66 SJ

(4



63

where S, is a stability function which accounts for interaction of the
axial and bending flexibilities. The derivation of these stability func—
tions can be found in a number of standard texts inthe area of structural
analysis(g).

In order to perform a dynamic analysis of a structural system
the total structural stiffness matrix must be determined. By using the
previously described individual member stiffness matrices the struc—
tural stiffness matrix for any loading state can be determined by the
standard assembly procedure.

DY NAMIC ANALYSIS

The results presented in this discussion are for a mathematical
model, as shown in Figure 2, which represents with some modification
a single load bearing plane of the Nordbrucke Bridge at Dusseldorf,
Germany. For convenience, the dimensions were rounded off in con-
verting from metric units to feet. Cable areas were similarly rounded
off to correspond to dimensions of cables manufactured in the United
States. Whereas the actual structure has a tapered tower, the math-
ematical model has a constant area and moment of ihertia which wes
teken to be equal to that at the base of the tower in the actual structure,
The actual girder has a varying cross—section, while in the mathemat-
ical model the average ares and moment of inertia is used.

The girder is supported vertically at the towers, but is assumed
to be independent of the towers so that there is no moment transfer
between the girder and the towers. The towers are assumed to be fixed
at their bases. It is assumed that the cable has an initial prestress so
that it is capable of supporting a negative force increment during the
application of any load increment.

The mathematical model has 22 nodes and 31 individual merbers,
For the dynamic analysis, the mass of the structure was assumed to
be lumped at the nodes. Both translational and rotational inertias were
initially considered, however, at a later point in the analysis the rots -
tional inertias were neglected since their effect was negligible. The
modal damping coefficients were computed by using an approximate
approach described by Biggs (6).

The method employed in the dynamic analysis is a step by step
integration algorithm, developed by Argyris (7), which works in terms
of the inertia force vector and its time derivatives at the beginning and
end of a time step. This is an iterative approach which approximates
the displacements by a fifth degree polynomial with time. An integra-
tion step of 0.3 times the smallest natural period of the system is used.
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Cne of the advantages of this procedure is that it does not involve matrix
inversion when a lumped mass matrix is employed. Another is that in
most other procedures, when the number of degrees of freedom is
large, the capacity of the core memory is insufficient and external stor-
age units must be used thus greatly increasing the computation time.

In the procedure employed here, the nodal forces are calculated direct—
ly from the total displacements so that there is no need to store the
global structural stiffness matrix.

The mathematical model was analyzed, considering both linear
and nenlinear dynamic response, for the vertical and horizontal com—
ponents of the El Centro Earthquake. The conditions considered were:

a) Linear dynamic response, using the stiffness at the
dead load deformed state, assuming the structure
behaved linearly during the application of the dead
load (L-L).

b) Linear dynamic response, using the stiffness at the
dead load deformed state, considering the nonlinear
behavior of the structure during the application of the
deadload (NL-L),

c) Nonlinear dynamic response, using the stiffness at the
dead load deformed state, considering the nonlinear be—
havior of the structure during the application of the dead
load (NL.-NL). In order to account for the nonlinear be-
havior during the dynamic response the structure stiffness
matrix was recomputed at the end of each time step.

RESULTS AND CONCLUSIONS

The first step in the dynamic analysis was to compute the natural
frequencies and mode shapes for the bridge in the dead load deformed
state in order to determine the length of time step required in the step—
wise integration procedure. The lowest frequency of the structure is
0.4 cps due to its lightness and high flexibility.

The dynamic response of the structure to the vertical component
of the El Centro Earthgquake is shown in Figures 3 through 8. Figures
3, 5, and 7 show the variation of vertical displacement of the girder at
node 7, moment in the girder at the tower, and tension in Cable 1,
assuming no damping in the structure, for the L-L, NL-L | and NL-NL
cases. Similar curves are shown in Figures 4, 6, and 8 for the NL-
NL cese assuming damping of six, five and three percent of critical
damping in the first, second and third modes respectively, The varia—
tion of the displacement of the top of the tower at node 8, along the
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tongitudal axis.of the bridge, is shown in Figures S and 10, for the

damped and undamped cases, for the horizontal component of the
Etl Centro Earthguake.

It can be seen that for the undamped responses which are pre-
sented the computed results for the NL-L. and NL-NL cases are almost
identical for each quantity considered and are significantly different
than the L-L case. The L-L case underestimates the displacements
and the moments while giving mixed results for the cable tension.

The effect of the small amount of damping considered in the
analyses is considerable. The amount of reduction in the response
ranges from 25 to 35 percent.

Two general conclusions can be made, based upon the results
presented here and similar results obtained during the total investiga-
tion. The first conclusion is that the NL-L and NL-NL. cases demon-
strate almost the same dynamic béhavior throughout the time of loading.
This is an important observation since a linear dynamic anelysis of the
structure is far less complicated and requires far less computer time
than a nonlinear dynamic analysis. For accurate results, however,
nonlinear behavior of the structure must be considered when determin-
ing the structure stiffness matrix in the dead load state for use in the
dynamic analysis. The second conclusion is that damping has a signif-
icant effect upon the response of the structure and should be considered
during the analysis. Further investigation is necessary to determine
accurate values for the damping coefficients to be used.
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SUMMARY

An iterative method for the modal analysis of tall building frames
based on lumped mass idealisation is presented. The method takes into
consideration the flexibility of the horizontal members and allows
distinct rotations of the joints in each storey. The iteration converges
rapidly and the reguired computation can be carried out in a small
computer. The application of the proposed method to the seismic design
of tall buildings is illustrated with the aid of earthquake response
spectrum. The effect of damping and the contributions of the lower modes
to the seismic response of the structures are investigated, The storey
shear coefficients obtained verified the whipping action observed on the
top few storeys. The design procedure is simple and suitable for
practical design.

INTRODUCTION

The importance of dynamic analysis of tall buildings has been
enhanced by the recent trend towards more highrise buildings in some
metropolitan centres. In designing the structures to withstand the
effects of seismic and wind forces, the study of their dynamic behaviour
is useful in general and necessary in some Special cases.

The present study deals with a freguency analysis of tall building
frames and its application in the determination of the probable maximum
response of the structure when subjected to base excitation due to earth-
guake. Discrete methods of iterative nature which are relatively simple
are commonly used in practical design for freguency analysis {1, 2, 2)}*.
These methods are more suitable to the analysis of building frames as the
mass is mainly concentrated at each floor level. The proposed iterative
method, while similar to the procedure presented by Goldberg, Bogdanoff

* Numbers in parenthesis refer to the listing of references.
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and Moh (2) in that it takes into account the flexibility of the hori-
zontal members, differs with it by allowing distinct rotations of the
joints in each storey.

The procedure for the seismic design of building frames with the aid
of the proposed modal analysis and an earthquake response spectrum is
suggested with an illustrative example. The effect of damping on the
earthguake response, the contribution of the lower modes to the seismic
response of the structure, &nd the whipping action of the top few storeys
are discussed.

MODAL ANALYSTS

The freguency anazlysis is based on lumped mass idealisation using
slope deflection equations. The detailed derivation of the governing
equations was presented by Paramesivam, Yeh and Nasim (4) and the salient
features are outlined in the following. The equations of motion are
obtained by eguating the inertia forces acting on all the floors above a
particular storey to the shearing forces acting on the columns of that
storey. Thus the total shear 8; acting on the columns of the i-th storey
can be written as

n 2
Si = Z I"ka ‘Yk (N
k=1

where My and yi denote the mass and displacement of the k-th storey
respectively, w the circular freguency and n the total number of floors.
In Eg. 1, yi is positive toward the right and S; is positive if acting
toward the left at the column base. The storey shear can be expressed in
terms of the column moments in the form

MS = 8.h. (2)
1

where Mg represents the sum of the moments acting on both ends of all the
columns of the i-th storey, positive counter closewise, and h; is the
height of the i-th storey.

The sum of the column moments acting at both ends of all the columns
of i-th storey can be expressed in terms of the joint rotations and
relative storey displacement by means of the slope deflection equations in
the form

m
C .C -
= 1 - -
My 2 hi,j( 2R, 6ei’j 691-1,j) (3)
where
Ry = (yy - vy 90/hy ()

In these equations, Gi,' denotes the rotation of joint j on the i-th floor,
m the number of columhs on the floor Kg - denotes the stiffness of the j-
th column of the i-th storey, the stiffhéss being the flexural rigidity of
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the member divided by the length. Similarly, the sum of the moments
acting at the top of the i-th storey columns can be written as

i,i-1 i,3 i=T,3

m
(o]
1. = . . R. ad . . - Q. .
M FZI Km(é : Lo 2 ) (5)

Eliminating R, between (3) and (5) leads to

M . = . K¢ (6. .-6. ., .) (6
i,1-1 2 =1 Td 1sd i-1,3

Similarly the sum of the moments acting at the bottom of the (i+1)-th
storey columns can be derived as

¢
c Mi+'i Zooc
Ml i = 5 = > K, (e, . -0, ) (7

4 i+1,3774,4 i+,

In a similar manner, the sum of the moments acting on both ends of
all the beams on a floor level can be expressed in terms of the joint
rotations. Since thne sum of the beam and column moments acting on all the
joints at a floor level must vanish, the sum of the column moments of two
consecutive storeys, Mg + M§+1, in view of Egs. 6 and 7, can be expressed
in terms of the joint rotations in the form

o} c b
MY o+ M = 221{ i o+ 2 8. . +12 K.
Ll i+1 .j' aJ i,] Z 1+1 yd Ead 322 i,374,3

m=-1 m n
+ 12 K 22 K

Z 1,3+1%,5 ~ % 1,3°41,5 " = 1+11a i+,

i= i=
b b

* 12 (Ky 48, 5+ K5 0S5 a (&)

where KE i denotes the stiffness of the j-th beam on the i-th floor.

The iterative process starts with the simplifying assumption that
all the joint rotations on a floor level are equal to the average value
8;. Introducing the ratios Cj vi =81 y/gl into Eqs. % and &, in view of
Egs. 1, 2 and 4, leads to, respectlve T

n m
2 c =
(2 MWy dh, Z (e IS (S S I J
s - yl 1 _ k=1 Mk k'71 !J 1’3 ‘]:1 1,3 1 113 1
h, - m c
= 123 kS 23 K] |
j:'] tsd j=1 1J

(9
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n > n > 1m e
(20 Mwy dn, + (2 M wy )a. = 2> (K] .C. , .)8.
k:i K }:{ 1 k=i+1 k k l+1 3:1 1!J 1-1,J l—/i
b o =1y b
K, .C, . K, . . K. G,
v e [6{ i, 14,1 " (;? }\ i,3 " E?é <1,J+1)01,3 " Kl,mul,m}

=

m
. o ~
— . .C. . )8, . )
* %v] Ky sJ iy %: 1"'133 lﬁl!jl Ql 2(. hi‘f'l i ;L'H,J)@l’i”l (10)

The equilibrium equation of joint i,j can be written in the form

© 9. . +KS . (28, . +6.. ) +K° (20, .+6.. )
14374,3-1 1+1,377 4.3 it1,3 1,3 74,3 i-7,3

b b b 1€
T, T, 5%, T 5B e T P it

¢4 R L
3K Ry (11)

Introducing the assumption that the ratio between the end rotations of all
the columns on a storey is identical and the notatiocns

¢i+1,i T Ti41,3774,

g, . . = 0, /8. . (1%}

i-T,1 i-1,37 74,3

Eg. 11 simplifies into the form

b e} C N
Y + +
I{1',3‘@1,‘]'-1 * [%i+1,j(2 gi+1,i) - hi,j(g v gi- ) ghl
. o b . C . e
~ . _ . R a
+ 2K ’3+1] G, i, + hi,j+1gi,j+1 5Ki+1,jﬁi+1 + BKi,j‘i (14)

For the first iteration, the coefficient C1 : 1s assuned to be unity.
The iteration starts from the teop floor where thé” floor displacement y,,
taken as the amplitude factor, is set equal to unity. Assuming a
reasonable first approximation of the frequency w, the values of y,.q and
8p.1 are found in terms of Q using Egs. 9 and 0. This calculation is
repeated downward until the dlsplacement and rotaticn oif the ground floor,
Yo and 8, are found in terms of én. The boundsry conditions at i = O_are
Oo = 0 and yo = O. The first boundary condition yields the value of &,
wihich in turn leads to the first approximation of Yo which, in general,
will be aifferent from zero. The above procedure is repeated with ancther
trial value of w until the second boundary condifion at the bese is
satisfied. When this is done, the values of the joint rotations o i,j on
each floor are determined by applying Bq. 14 to each floor.
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For the second iteration, the average values of the floor rotations
9i and the second approximation of Cj : are computed from the values of
94,3 obtained in the first approx1mat10n. The iterative process is
repeated as discussed above until the values of Cj i3 between consecutive
cycles attain the desired accuracy.

With the final values of @1 -y Tthe corresponding values of y; are
calculated by applying Eg. 9 to éach floor, starting at the top lloor,
and the stress resultants are readily determined by means of the slope-
deflection equations.

DESIGN PRCCEDURE USING EARTHQUAKE RESPONSE SPECTRUM

The above analysis can be used to determine the natural frequencies
and corresponding mode shapes of building frames, and to estimate the
total meximum response of the structures when subjected to earthquake
excitation with the aid of earthquake respounse spectrum (5). The meximum
earthquake displacement ¥y, corresponding to each mode is computed from
the relationship

Vgay = Sg¥ Lt/ (15)

where 53 is the spectral displacement, y, the top displacement, L* and M*
are the earthguake participation factor and generalised wmass, respectively,
as defined by

n
* — i £
I* = ‘§ Moys (16)
n
o, v
M* = izﬂ My, 2 (17)

and Mj is the lumped mass of the i-th floor.

The displacements and stress resultants corresponding to the maximum
earthquake displacement are computed for the different modes. The meximum
respense is then determined by superimposing the response of the desired
number of the lower modes, using the root-mean-square procedure (5).

ILLUSTRATIVE EXAMPLE

The 10-storey building frame shown in Fig. 1 is considered to
illustrate the design procedure. The first three natural frequencies are
found fc be 3.2929, 9.1429 and 15.2950 rad/sec and the corresponding
periods are 1.9088, 0.6875 and 0.4109 seconds respectively. Response
spectra (5) based on the spectral velocity resulting from the N-S
acceleration component recorded at EI Centro, California earthqueke in
Yay, 1940 for different damping ratios and 20% g are used to illustrate
the design procedure.
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The maximum earthquake displacements and the corresponding mode
shapes for the first three modes, for damping ratios of 1%, 2% and 5%, are
shown in Fig. 2. The effective earthquake loading, i.e. the storey shears,
are calculated for each mode. The maximum storey shears are obtained by
taking the root of the sum of the squares (RMS) of the shear values of the
first three modes. The results for variocus damping ratios are presented
graphically in Fig. 3. The resultant base shears for damping ratios of 1%,
2 and 5% are found to be 12.4%, 11.4% and 8.5% of the building weight
respectively. The lateral force coefficients, i.e., the ratio between the
difference of consecutive storey shears and the corresponding storey weight,
are shown in Fig. 4.

CONCLUSICON

The proposed iterative metheod is a generalised version of the
procedure proposed by Goldberg et. al. (2)_allowing distinct Jjoint
rotations. The consideration of distinct rotations of the joints yields
a more flexible structure and reduces the natural frequency.

The contributions of the higher modes to the earthquake response of
the structure considered are small in comparison with that of the first
mode, and satisfactory preliminary designs can, be based on the first mode
response alone as can be seen from Fig. 3. From the lateral force co-
efficients shown in Fig. 4, it is observed that there is a significant
increase in shear towards the top few storeys, substantiating the whipping
action commonly observed in this type of structures.

The proposed method is suitable for practical design purposes, the
computation work being relatively simple. In fact the entire calculstions
can be carried out with the aid of a desk top calculator or a mini
computer.
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SUMMARY

The report deals with the main preconditions of in-situ
housing development in seismic regions of the USSR as well
as with a short survey of the subject. The paper includes
the principal structural solutions of in-situ seismicproof
buildings of frameless type: structural schemes, walls,floor
slabs, methods of reinforcement.

The experience in the field of designing of such
buildings is described too, particularly, static and dynamic
calculatiocns.

INTRODUCTION

In the USSR the construction of public and residential
frameless buildings with the application of in-situ
reinforced concrete using modern i1ndustrial methods has been
carried out since the mid-sixties. The construction is
preconditioned by a number of social-economic, architectural-
town planning and technical requirements.

Population growth in big towns and new settlements
demanded a comprehensive and efficient land use. It has
entailed higher buildings in towns and variety in town-
planning and architectural solutions for civil construction.

In seismic regions, besides the above-mentioned factors,
the problems of seismic stablility and durability of buildings
in combination with economical consumption of building
materials and capital investments are of primary importance.

In view of the fact that frameless in-situ buildings
possess high bearing capacity, spatial rigidity and stability
they meet the above requirements to a greater degree than
other buildings.

At present in-situ construction is carried out on a
wider scale in towns located in selsmic regions.

In the European part of the USSR the following town-
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resorts can be presented as an examples Sochi, Yalta; Kishi-
nev and Baku, the capitals of the Union Republics; in the
Asian part of the USSR — Alma-Ata, Dyushambe, Ashkhabad,
Frunze - the capitals of Union Republics tco. Reinforced
concrebe in-situ construction 1s under way in such towns as
Erevan, Tashkent and other towns of the USSR.

Owing to a wide range of plastic and structural
properties of in-situ concrete, some completed buildings are
designed with expressive architectural and spatial forms,
thus, performing the role of town-planning focal points.

15-storey sanatorium "Actor" and 14-gstorey residential
buildings in Sochi, 16-storey residential buildings in Baku
and Kishinav as well as 25-storey hotel in Alma-Ata are the
most interesting designs from architectural and structural
point of view.

STRUCTURAL SOLUTIONS

In-situ and precast - in-situ frameless buildings are
designed according to the following structural schemes:

- with in-situ bearing internal and external walls in
longitudinal and transverse direction;

- with in-situ bearing internal walls in longitudinal
and transverse direction and with external curtaln walls
out of panels or large-size blocks.

The buildings of the first structural sclhieme are
characterized with high seismic stability and, thus, being
more universal, they can be erected in regions with seismic
force from 7 up to 9 points, in fubure it is expected they
are to be constructed in areas with seismic force - 10; the
buildings of the second structural scheme are aimed for
regions with seismic force -~ 7 and 8.

Industrial methods with the application of repeatative
forms and shuttering are employed for in-situ construction.

As a rule, for buildings of the first scheme slip-forms
or large-size shuttering (boards) are used; for the second
scheme progressive shuttering (tunnel) is practiced.

One of the mogt important factors of seismic structural
desiganing is the choice of material for bearing walls. At the
beginning a heavy concrete was used for in-situ walls, as a
rule, and external in-situ walls were three-layered: internal
bearing layer, insulating layer (pads) extermal protective
layer. This solution leaves much to be desired from techno-~
logical point of view:s considerable labour expenditure;
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difficulty in ensuring the stability of insulation and the
designed thickness of the bearing layer.

The application of structural thermal insulating
concretes based on porous artificial aggregates (Xeramzite,
agloporite) has come into common practice in current in-situ
housing. From one side it allows to reduce the weight of a
building'and, accordingly, the value of inertia loads under
seismic effects, and from the other side it permits to
simplify the structure of external in-situ walls and the
technology of their erection. The keramzite concrete buildings
were constructed in Alma~Ata and Baku and agloporite concrete
buildings - in Dyushambe. The specific weight of concrete
based on light aggregates3in completed buildings makes up
from 14002up to 1800 kg/m~ with prism concrete strength being
205 kgfem=.

Experimental investigations are under way aimed at
reducing specific weight of porous aggregate concretes owing
to optimum composition of concrete mortar and proper granular
size of aggregates. At the same time the improveument of
strength properties is in the scope of research.

External bearing walls are assembled out of large-size
blocks or panels. Blocks and curtain panels are made, as a
rule, out of thermal insulating concretes based on artificial
or local porous aggregates, The,specific weight gf such
concretes amounts from 800 kg/m5 up to 1200 kg/m” depending
upon the weight of aggregates particularly upon the weight of
small-size granulars.

Considerable reduction in weight of buildings can be
obtained when asbestos cement curtain panels with effective
thermal insulating leyer are used for external walls.

In some regions with certain local raw materials being
available or where the manufacturing of such panels are
efficient from economical point of view the application of
such panels in in-situ construction is being investigated and
preparatory work is in a full swing.

The following types of floor siabs are eumployed: precast,
precast - in-situ or in-situ. Precast floor slabs are room-
sire panels with wall spacing being up to 3.6m or they are
cavity slabs with prestressed reinforcement with wall spacing
being up to 6.3m.

Precast -~ in-situ floors consist of two partss precast
slab and in-situ reinforced concrete. In-situ floor slabs are
structurally intercomnnected with walls with the help of
projections in certain areas (slip~forn method) or continuous
ties are provided along the contour ("tunnel' method).
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The experience nas shown that in-situ floor slabs are
more preferable from structural point of view as it allows
to ensure the designed rigidity of floor slabs in their
plane with less material expenditure and without additiomal
neasures connected with concreting the dowels and with
welding the inserts required in precast floor slabs.

The reinforcement of in-situ walls and trloor slabs
consists of flat welded frames, nets and spatial frames.
Reinforcement elements are made at special plants. Asarule
for working reinforcement of walls, hot-rolled stgel of
high rigidity with rated resistance = 3400 kgf/cm< is used,
for floor slabs ccld-drawn reinforcement wire with rated
resistance-from 2500 up to 3150 kgf/cm? is employed. Hot-
rolled reinforcement steel with rated resistance 2100 kgf/em?
is practiced for manufacturing reinforcement.

While designing wvertical in-situ diaphragms, special
attention is being paid to the reinforcement of the most
imporvant elements ~ lintels and the Jjoints between the
lintels and the wallg as well as to the reinforcement along
door and window openings. Strength tests have proved,
particularly, the efficiency of evenly distributed reinfor-
cement of lintels.

All seismic calculations of in-situ building 3 are
performed on the basis of dynamic theory of seismic stability
developed and adopted in the USSR. Automatic programmes
calculated with the help of computors "Minsk-22" "M-222" and
other have come into common use. The programmes are developed
by the following Institutes: TSNIISK, TSNIIEP zsilischa and
KievZNITEP.

At present certain methods allowing exact determinaticn
of spatial behaviour of in-situ frameless structures are
considered to be very perspective, particularly, the method
pased on the theory of "thin-walled rods". At the same time
the methods of “approximate calculations"™ are investigated
as well, they are intended for evaluation of seismic livads
and bearing capacity of buildings at the early stage of
designing.

While calculating and designing in-situ seismicproof
buildings, laboratory and field results are taken into
consideration. Field tests of 13 and 116-storey precast -
in-situ bulldings in Kishinev carried cut by TSNIIEP gzsilischa

are of special interest.
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SYSNOPIS

This paper describes the application of an inelastic dynamic
analysis of two very different bridge structures subjected to an
earthquake excitation. The paper discusses the effects on the
response of the structures of variations in the moment-curvature
relationships of the piers and also the effects of the inter-
action of the axial forces in the members with the yield moments.

INTRODUCTION

Bridge structures differ from the usual building structures
in that structures are usually very simple and that when they
enter the inelastic range there is very little opportunity for a
redistribution of member forces. Further, it is possible that the
bridge structures may readily form dynamic collapse mechanisms upon
the formation of only a small number of inelastic regions within
their structural systems.

An inelastic dynamic analysis program is used to analyse
bridge structures for arbitary seismic excitations. The analysis
allows for the interactive effects of the member axial forces on
their yield moments and also permits the choice of three possible
moment-curvature relationships.

The first example is a continucus multi span bridge which is
provided with seismic gaps at the central pier and at the abutments
and the initial aim of the analysis was to determine the
necessary widths of these gaps to prevent hammering between the
sections of the bridge and its abutments. The second structure
is a tall reinforced concrete bridge pier, together with its
supporting pile cap and piles, the pier being one of several
supporting a multispan, box girder bridge. The effects of the
axial-force moment interaction are important in the inelastic
response of the pile system and the consequences of the different
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movement-curvature relationships are studied.

THE METHCD OF ANALYSIS

The method of analysis and the computer program used for
these analyses is due to Sharpe (5) which was developed for the
dynamic analysis of two dimensional framed structures of arbitary
geometry and for an arbitary time-~history of seismic loading in
both horizontal and vertical directions.

THE FRAME MEMBERS

For the purposes of this program it was essential that the
beam-model should be such that its critical sections had the
ability to track any generalized moment-curvature function. In
particular, the Ramberg-Osgood (4) curvilinear hysteretic function
and the standard bi-linear function - a special case of the
latter being the elastic-perfectly plastic hysteres.

As the emphasis was being placed on inertia loading of the
structure, it was not considered necessary to make provision for
the loading of the framed members with loads distributed along their
length, such loadings, should they arise, are easily accommodated
by the provision of joints along the member. The critical sections
of all members occur at their interfaces with other members. To
achieve this modelling rigid end-blocks are located between these
interfaces and the modelled joints at the intersection of the
member centrelines.

A suitable model, which has to simulate the correct moment-
rotation and axial stiffness characteristics at these interfaces,
is that due to Gibertson (3). It is, simply, a one-dimensional
prismatic beam with sprung hinges incorporated at the critical
sections. By varying the rotational spring stiffnesses, it is
possible to model the full range of situations, from that of a
pinned end to one in which the beam is linearly elastic along its
entire length.

The theoretical discontinuity of slope, which occurs at the
critical sections of the beam-model, extends over an infinitely
small length, whereas the plastic hinge length in the real beam
has a length which varies with both the amount of curvature and
the type of material. To relate the rotation of the theoretical
hinge to the real plastic curvature, a constant hinge length for
the beam member is supplied together with the other data on
the members section properties.

The interaction between the axial force and the bending
moments affects the yield moment behaviour of such members at
columns in buildings and piers and piles in bridge systems and
this is allowed for which the yield interaction diagram shown in
figure 6.
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THE STRUCTURES STIFFNESS, MASS AND DAMPING MATRICES

Once the stiffnesses of the individual member stiffnesses
have been determined the stiffness matrix of the entire structure
is assembled by the Direct Stiffness method. At the same time
the mass matrix, of either the "Lumped" or "Consistent" [1] form,
and the damping matrix are formed.

The damping matrix is obtained by the method proposed by
Caughey [5] and is a combination of proportions of both the
mass and stiffness matrices of the structure, the proportions
being determined so as to provide a specified percentage of
critical damping at each of two specified frequencies. These
frequencies may be supplied as input data or taken as the first
two natural frequencies of free-vibration of the linear elastic
structure.

TIMEWISE INTEGRATION OF THE EQUATIONS OF MOTION.

The edquations of motion for the structure are integrated,
for equalised time steps, by a step by step integration method
[7] where the accelerationg are assumed to be constant during
the time step, the method having been shown to be stable and
accurate [o].

At the end of each time step the equilibrium of the critical
sections of each member is checked and the stiffnesses adjusted
accordingly. If, due to a change in stiffness, member eguilibrium
is no longer satisfied, the out of balance of these member forces
is corrected during the next time step.

To improve interpretation of the results from the analysis,
every time step in which the location of plastic hinges changes
within the structure, a picture, showing all plastic hinges is
printed together with any tabulated output.

THE DURHAM STREET RATLWAY OVERBRIDGE

The Structure

The bridge deck, simply-supported on piers formed on piles
driven into alluvial material, will carry traffic over a series
of main-trunk railway tracks. Built of reinforced and prestressed
concrete in two sections with artificially~constructed approach
embankments. In order that the two deck sections, when excited
by an earthguake, should neither hammer each other nor be interfered
with by the abutwents, an attempt was made to predict a width
for the three seismic- and expansion-gaps incorporated in the
structure.
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The idealization

The bridge was reduced to the centre-line frame depicted
in figure 1. An initial assumption was made that the deck would
not 1ift off any of its supports. The model sliding bearings,
are idealized to the extent that they allow infinite movement in
a horizontal direction. The seismic gap necessary in the real
structure, is then at least the peak-to-peak amplitude of the
relative motion. The deck, being simply-supported at the top of
the piers, did not require the possibility that it might develop
plastic hinges to be considered.

Equivalent viscous damping was set at five per cent of
critical for the first two modes and Initial-condition moments
due to shrinkage, temperature and creep were supplied by the
designers as were yield moments for the bases of the pilers

The analyses

The left and right halves of the bridge were found to have
undamped natural frequencies of 2.789 and 2.879 Hz, respectively.

A purely elastic dynamic analysis was performed using the
first ten seconds of the North-South and vertical components of
the El1 Centro, May 18, 1940 earthguake which was scaled, at the
request of the designers to give a maximum horizontal ground
acceleration of 0.23 g. The displacement responses of the two
halves, measured horizontally at the top of the central pier and
with respect to the ground, are shown plotted in figure 2a.

The initial displacements, due to the initial moments introduced
to represent the effects of ghrinkage in the prestressed deck,
have been eliminated from the plot (figure 3a) of the relative
displacements of the two decks. Hence, the gap required between
the deck sections is the 'dynamic' gap alone.

The second analysis attempted was of a non-linear type,
with only the columns being permitted to develop perfectly plastic
hinges at their bases when the predicted yield moments were
reached. For a collapse mechanism, it is only necessary for all
the piers of either half of the bridge to yield at ground level.
However, this i1s not a sufficient condition for a dynamically
excited structure to become unstable and collapse. Recovery is
possible if an incremental ground acceleration in the prevailing
direction of collapse causes the supports to catch up with the
collapsing deck.

With the same earthguake as used in the elastic analysis, the
left half of the bridge formed a collapse mechanism after 1.72
seconds, followed by that of the right at 1.99 seconds. Both
halves recovered briefly from this state before finally entering
their respective collapse mechanisms at 2.20 and 2,15 seconds of
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earthquake. The corresponding horizontal deflections of the
decks at these latter times were -14.6 and 11.2 mm.

To confirm that the previous analysis had, by chance, shown
the bridge just reaching the sensitive critical stage, a further
analysis, using the same yield moments and earthquake, was
implemented. The moment~curvature relationship at the pier
bases was changed to that of a bi-linear hysteretic function in
which the initial section remained the same as before. The
second branch of the function was allocated a slope of ten per
cent of the initial stiffness, in an attempt to similate approximately
the residual stiffness at a section. As a result, both bridge-
sections again reached the stage where all the pier-bases had
plastic hinges present concurrently, but catastrophic collapse was
prevented from occurring by the presence of the small residual
stiffness. Figures 2b and 3b show this response, both as a
plot of the concurrent deck displacement and of the relative
deck movement. A summary is given in table 1. The maximum
section ductility recorded at any of the pier-bases was approximately
6 - which indicates that only moderate yielding took place.

Both sides of the bridge experienced some permanent drift
which tended to widen permanently any seismic gap incorporated at
the time of construction. If the earthquake's direction was
reversed it might have been of the opposite effect. The real
structure is not in as much danger of total collapse under the
design earthquake as these initial analyses tend to indicate. The
need for continuity in the road surface would ensure that further
restraints on the horizontal movement of the deck would be imposed
if a sufficiently severe earthquake was encountered. The inclusion
of restraining devices, such as rubber buffering and sacrificial
shear pins, would, if the abutments did not collapse, significantly
decrease the response.

The permanent plastic horizontal drift, which is becoming
apparent in the last five seconds of the non-linear response, is
significant if the possibility of an eventual failure, due to
repeated stress~relief and incremental collapse, is to be considered.
A purely elastic analysis, on the other hand, will give no indication
of the permanent drift likely.

THE AUCKLAND UPPER HARBQUR CROSSING

The structure

This provides a good example of a bridge structure in which
there are very few members or places at which energy-absorption,
through plastic work, can take place. The analysis is that of
pier 'five' - in a direction perpendicular to that of the bridge
axig, and is probably the most critical of those supporting the
bridge deck. The structure, figure 4, consists of a hollow, thin-~
walled, reinforced concrete pier which supports the box-girder
deck. The pier is mounted on an almost square and relatively
inflexible pile-cap which is, in turn, supported by four identical
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circular piles driven vertically for some distance into the
harbour floor. The first ten seconds of the North-South and
vertical components of the El1 Centro, May 18, 1940 earthquake
accelerogram were used for all the analyses on this structure.

The idealization

The symmetrical nature of the plane-frame model of the pier
enabled the four piles to be analytically replaced by two with
twice the individual strength. The program could have coped with
two co-linear pairs of members, but this would have unnecessarily
introduced extra kinematic degrees of freedom and members.

The assumption that the pile-cap was infinitely stiff meant that
the horizontal degrees of freedom associated with the tops of

the piles and the bottom of the pier could all be coupled together.
To further stiffen the pile-cap, the associated rotations were
also coupled. This latter coupling implies that the rotations
will be identical at the relevant nodes and the rotational masses
summed and made to act on one common degree of freedom. The
ability of the program to handle rigid end-blocks meant that the
considerable differences between the interfaces and the centre-line
intersections could be accounted for in both the stiffness
calculations and the positioning of the possible plastic hinge
secticns. Both horizontal, vertical and rotational mass was
lumped at the intersections of all members. The basic moment-
curvature relationship employed was elasto-plastic in form.
Damping was ten per cent of critical for the first two modes,
whose natural frequencies of free vibration were 0.65 and 3.4 H;
respectively.

The analyses

Three different analyses were carried out. They were...
a) an elastic analysis,

b) an elasto-plastic analysis in which the critical sections
had only one constant value for the yield moment,

¢) an elasto-plastic analysis in which the moment - axial load
interaction criteria was permitted to control the ultimate strength
of the vertical members.

The horizontal displacement responses of the deck (figure 5)
in the three analyses illustrate how the formation of the plastic
hinges has allowed sufficient energy to be absorbed to reduce
noticeably the deck displacement. This is particularly evident
in the last four seconds of the responses. The maximum non-linear
response was decreased by approximately seven per cent. Examination
of +the printed time-history showed that significant plasticity
was not encountered until after 5.4 seconds of the earthquake.

The effect of the energy-absorption did not show up in the plotted
response (figure 5) until its next peak at about one second later -
even though the former peak was also that at which the maximum
response oc¢curred.
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The sensitivity of the structure to a changed criteria for
the development of plastic hinges can be seen by an inspection
of the differences in response between that using the obviously
more correct moment - axial load interaction criteria and that
in which the members' yield moments were fixed at a constant
value. The response for the latter of these two cases (figure 5c¢)
shows a very marked curtailment in the response after about seven
seconds of excitation, resulting in the appearance of a significant
permanent drift of the same magnitude as the curtailment.

An examination of the moment - axial load histories for the
critical section at the top of the left-hand pile (figure 6) shows
how the need for the interacting yield criteria. The overall
geometry of the structure results in the bending moment in the
piles being an almost linear function of the axial load. The
heavily banded nature of the graphed relationship confirms this,
the vertical width of the band reflecting the response of the
bridge-deck and pile-cap to the vertical component of the earth-
quake. The imposition of either type of yield criteria on the
pile moments is seen to be not very severe in the case of this
excitation. In the absence of the ability for the yield
criteria to be stipulated in terms of such interaction curves,
provided that a linear prediction could be made (as in the case
of these piles), a simple c¢alculation would seem to be sufficient
for an estimation of single positive and negative yield moments.

The moment - axial load interaction for the pier mewmber's base
section ig similarly very strongly banded, but differs from that
of the piles in that the imposed yield criteria is much more
severe. It can be seen that the choosing of more accurate single
yvield moments for the non-interaction analysis should, because of
the narrow banding of the actual path of the moment - axial
load response, give results which are similar to those of the
analysis which had an interactive capability.

In order to confirm this a fourth analysis, inceorporating
these modified yield moment values, was carried out. Yield
moments of 6.51 x 10° N m for the double pile and 25.1 x 10° N m
for the pier were specified. These were, approximately, ten
per cent smaller than those for the previous similar analysis
(i.e. analysis b.). When compared to the analysis, the ductility
reqguired doubled for an increase in maximum horizcontal deck
displacement, from 95.7 mm to 108 mm. The permanent drift,
estimated from the apparent offset of the response after ten
seconds of excitation, more than doubled. A comparative summary
is given in table II.

The sensitivity of the structure to small changes in the
member yvield criteria is understandable when it is realized that
the dynamic system is working in the region of a boundary
condition plateau ~ namely, the yield criteria. The small
number of members means that the loss of incremental stiffness at
one or two critical member sections proportionately alters the
total incremental stiffness of the structure much more significantly
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much more significantly than the same number of changes in,
for example, a ten-storey, four-bay frame with ninety members.

The only time that a collapse mechanism formed in the piles
was after 5.54 seconds in that analysis in which the re-calculated
vield moments were used instead of an interaction criteria. It
was present for only 0.04 seconds. However, the formation of a
plastic hinge at the base of the pier member also constitutes
a collapse mechanism - this being observed in all the inelastic
analyses. Again, this hinge was never present for any significant
length of time.

CONCLUSIONS

Both bridge structures are seen to be sensitive to the
charateristics of their plastic hinges. The nature of the differences
between the linear and non-linear responses 1s not predictable
because of this sensitivity. It is interesting to note that the
rormation of a potential collapse mechanism in a structure is a
necegsary {(but not sufficient) condition for a failure under
dynamic loading. In both cases, the analyses benefitted the
designers by showing them the range in which they could expect
their structures to respond if modelled with non-linear elements.
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Elastic tanalysis Bi~linear |analysis
Left deck| Right deckiLeft deck |Right deck

Natural frequency of undamped
fundamental mode (Hz) 2.789 2.879 2.789 2.879
Maximum deck displacement
{(horizontally) (mm) 20.2 18.3 23.1 25.4
Maximum amplitude of deck
displacement (mm) 38.4 36.1 58.0 38.9
Maximum relative displacement
of deck ends (mm) 11.5 25.0
Maximum seismic gap required
to prevent butting (mm) 5.9 9.4

TABLE 1: SUMMARY OF RESULTS FOR DURHAM STREET RAILWAY OVERBRIDGE
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analysis 102 49.7 - - -
b) Elasto-plastic
with no 95.7 -46.3 -1.53x10"° 3.66x107" 30
interaction
¢) Elasto-plastic
with -94.8 -46.6 -0.73x1073 4.39x10™" 8
interaction
Elasto-plastic
{no interaction) 108 -49.7 ~3,6 x10™° 8.30x10™" 64
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TABLE ITI: SUMMARY OF RESULTS OF ANALYSES OF PIER 5, TRANSVERSE

DIRECTION, AUCKLAND UPPER HARBOUR CROSSING.
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EFFECT OF COUPLING EARTHQUAKE MOTIONS ON
INELASTIC STRUCTURAL MODELS

FRANKLIN Y. CHENG1 and KENNETH B. OSTER2
1. Professor 2. Research Assistant
Department of Civil Engineering, University of Missouri-Rolla

Rolla, Missouri U,S. A,

SUMMARY

Response parameters have been studied for two structural models
subject to the coupling earthquake motions of the vertical and horizontal compo-
nents of the 1940 ¥l Centro. Bilinear material behavior, P-delta effect, damp-
ing, and the reduction of plastic moment capacity have been considered in the
investigation. The structural models are lumped mass in nature. One model has
masses lumped at structural joints, and the other has additional nodes at the cen-
ters of individual girders. Structures analyzed consist of a 4-story-3-~bay and a
10-story-single~-bay rigid frame. The results show that the model containing
nodes at girder centers can realistically reveal the effect of coupling earthquake
motions on structural systems and that the significance of a vertical earthquake
component depends on the structural parameters. The observation is based on a
comparison of displacement response, energy absorption, and the ductility and
excursion ratios of the systems analyzed.

INTRODUCTION

The effect of parametric excitation on structural response and stability was
described by Cheng [1] in 1974. Cheng and Oster recently published a report on
the effect that vertical earthquake motion has on the dynamic response of elastic
structures with various natural frequencies [2]. It is obvious that the inclusion
of the vertical earthquake component is essential in examplifying the real behavior
of a structural system. However, the structural model used in such an analysis
should provide a sufficient means for adapting the effects of this inclusion. The
purpose of this report is to show the effect of vertical earthquake motion on two
lumped mass models. The response parameters used for comparison are the
maximum horizontal floor displacements, maximum relative horizontal floor
displacements, maximum vertical floor displacements, energy absorptions, and
ductility and excursion ratios.

Model 1 is the traditional spring-mass system in which the mass of each floor
is lumped at the joints connected by columns and girders. The floor mass con-
sists of girder weight, superimposed mass, and the half weight of the columns
located above and below the floor. Model 2 is similar to Model 1 except one
additional node is assumed at the center of each girder. The mass lumped at the

S
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girder node is half of the floor mass distributed on the member.

FORMULATION OF MOTION EQUATION
The motion equation for a multidegree system includes viscous damping, P-
delta effect, and both horizontal and vertical earthquake components. It can be
expressed as

(M3 (£} + 101 (&) + (K] - (KD [x} = -(M] §&) M

in which [ M] = mass matrix; [C] = damping matrix; [K] = structural stiffness
matrix; [K_] = geometric matrix; {¥ } = ground acceleration vector; and {X},

{x1, and {:f 1 = acceleration, Velocitf and displacement of the structural nodal
coordinates respectively.

For the study of nonlinear structural systems, the numerical integration
should be performed on the basis of a stepwise technique for which the motion
equation of Eq. (1) can be written in the following incremental form:

[M] [AX]} +[C] {A%}+ (K] -~ [K ], ) {8x}=-[M] [gfg} +IAK 1{x}, (2)

in which {AX} = Ei}ﬂAt_ {i}t, [Ax) = {k}HAt- {}ﬂt, [AxY = £X}t+At" {x}t,

[Axg} = ixg}t-r—At— {xg}t, and {AKS] = [Ks]t+At_ [Ks]t' Because earthquake
motions primarily cause linear inertial forces, the rotatory inertial forces
associated with lumped masses are relatively small and ean be neglected. Thus,
the number of linear equations in Eq. (2) can be reduced by solving for the nodal
rotations, {Ax 6}’ in terms of nodal translations as

-1 Ax
(Bxgh= -1 17 1K) sz} (3)

in which [Kn] and [Klz] are submatrices of [K], and {Axv} and {Axs} are

incremental vertical and horizontal displacements respectively. The insertion of
Eq. (3) into Eq. (2) results in the final incremental form of the motion equation as
shown below:

o {gvh+ te (G e g - - e {s ek ) e
8 s s g st

o 11, T -1
in which [K™ ] = [K22] - [K12] [KH] (K,
{AXg} represent incremental vertical and horizontal earthquake components re-
spectively, Newmark's integration technique was formulated for previous work

(2, 5) and has been used successfully for this study.

STIFFNESS MATRIX FOR INELASTIC MATERIAL
Material behavior is assumed to be bilinear as shown in Fig. 1 for which the
stiffness of a member may be assumed to consist of an elastoplastic component
and an elastic component as discussed by Giberson [3]. The structural stiffness
matrix, [K], must be modified when one end or both ends of a constitutent member
become plastic or change from plastic to elastic. The member stiffness corres-
ponding to the four possible deformation stages are given in the recent work of

] - {Ks]tﬂlt’ and {Ayg} and
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Cheng and Oster [2]. The plastic moment capacity is reduced according to the
interaction equations in the AISC manual [4] for columns and ideal plastic moment
is used for girders.

GEOMETRIC MATRIX

The P-delta effect, which results from a vertical earthquake component and the
structural weight, can be simply illustrated by studying the single mass system
shown in Fig. 2. As sketched in the accompanying figure, the shear, Kgxg, is due
to the overturning moment produced by the vertical forces. The magnitude of
shear per unit displacement is Kg = W - my,/L in which W is the structural weight,
M the structural mass, ¥ the vertical earthquake component, and L the member
length. The geometric matrix of multistory structures can be established in a
gimilar manner.

DAMPING MATRIX
The general expression of the damping matrix can be expressed in a linear com-
bination of mass and stiffness as

[C]=a [M] + BIK] (5)
in which & and B are constants based on the fundamental natural period of a struc-
fure system. TFor an inelastic structural system, the stiffness matrix, [K],
varies during a response period; consequently, the combined form of mass and
stiffness cannot constantly represent the assumed damping coefficients, [C].
Therefore, the mass proportional damping is used in'this study for which & =
2)pp and B=o0. The term X is the fraction of critical damping, and p, is the fun-
damental frequency of the structural system.

ENERGY FORMULATION

Consideration of the energy absorption of a structure may serve two purposes.
First, the overall behavior of the structure can be determined by using the energy
measurements. I a structure is able to store the total input energy in the form of
elastic strain energy, the integrity of the structure will be greater than that of the
same structure for which a part of the input energy must be dissipated by strain
energy through permanent sets. Also the integrity of one structure will be greater
than another if the one is necessary to dissipate lesg strain energy when both are
subject to the same earthquake motion. Second, a means of checking the accuracy
of the response solution is provided. Based on the law for the conservation of
energy, the total input energy absorbed by a structure must be equal to the stored
energy (TSE) in the form of both elastic energy (ESE) and kinetic energy (EKE)
that is added to the dissipated energy resulting from permanent set (DSE) and
damping (EDD). The general expression for energy conservation at time t may
be written as

= + + 6
TIEt ESEt EKEt+DSEt EDD (6)

¢
The individual terms in Eq. (6) are:
t

B T

TIE, = tz;O (Vavel_\.xg + Ryave Ayg + [Fp} [Axs}ab) (7

psE =28 o2 M. M. +M 8
SE, =& (Mo 1 = My g Moy #8550 (8)

i=1 6KI,
i
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EKEt=-2* JZ}=1 Mj (xj +xg) *3 ?{::1 Mk(yk+yg) (9)
N, N
At
DSE, = Jle Iy M, A8 -D) (10)
3 T .. T ..
EDDt—([C] {x}ave) Eus}ave At (11)

The respective notations in Egs. (7) to (11) are:

v = average shears during incremental time at structural supports not
including shears resulting from P-delta effect,

Axg = incremental horizontal ground displacements,

= average vertical reactions during incremental time at structural

R
yave supports,

Ayg = incremental vertical ground displacements,
{Fp'} = {Ks] {xs}, horizontal forces at floor levels due to P-delta,
{Axs }ab = [Axs + Axg}, absolute horizontal displacement vector,

NM = number of members,

Li = length of member i,

E = modulus of elasticity of the structural member,

Ii = cross-sectional moment of inertia of member i,

M2i-1 = moment at end 2i-1 of member i at time t,

MZi = moment at end 2i of member i at time t,

N ¢ = number of floors,

Nm = mumber of lumped masses,

Mj = mass of jth floor,

Mk = lumped mass k,



1

5cj = horizontal velocity of floor i,

&g = horizontal ground velocity at time t,

Ve = vertical velocity of mass k relative to the base at time t,

jfg = vertical ground velocity at time t,

N At number of time increments at which the joint j (member end j) is in
plastic range,

Nj = number of joints,
Mpc = reduced plastic moment for columns, ideal plastic moment for girders,

Aei = incremental end rotation during time increment i,

p = strain hardening ratio,

{k}ave = average relative transverse velocity vector over At, and

{ﬁs }ave = average absolute transverse velocity over At.
The amount of error in the incremental integration technique is determined as
a percent of the total input energy. The following equation is used to calculate
the percentage of error after every time increment, At.
_ [TIE-(TSE + TDE)]

% Error = — (100) (12)

DUCTILITY AND EXCURSION RATIOS
The ductility ratio u, used in this investigation is defined as the ratio of the
total rotation, et’ of a joint (member end) divided by the yielding ratation, ey, of
the joint as

P, g_+ev

PR R SRR - 13)
6 6 6
y oy y

in which e is equal to the plastic rotation of the joint as sketched in Fig., 1.

The excursion ratio, €, of a joint (member end) is defined as the sum of total
plastic rotation, of the joint during an earthquake record divided by its yielding
rotation and may be expressed as

R

Nu i NLL
B, TR W as
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in which N is equal to the total number of times in which the joint has suffered
plastic deformation during the response.

EXAMPLES AND COMPARISONS

A 4-story-3-bay {rame has been analyzed for Models 1 and 2 as shown in Fig.
3. A comparison of the displacement response resulting from both horizontal and
vertical earthguakes is given in ¥ig. 4. The effect of the vertical component on
energy absorption of the elastic models of 1 and 2 is shown in Figs. 5 and 6.
Similarly, the comparisons of energy absorption of elastoplastic models result-
ing from a horizontal earthquake only and horizontal plus vertical components
are given in Figs. 7 and 8 respectively. The ductility and excursion ratios of
the columns and girders of Models 1 and 2 are given in Fig. 9. Note that the com-
parison of four cases for each floor refers to maximum values of any of the nodes
on that floor. Fig. 10 shows the maximum vertical displacements at the girder
centers of Model 2.

The ten-story-one-bay rigid frame shown in Fig. 11 has also been studied for
comparison of response parameters for which the yielding stress is 36 kip/sq in.
and the plastic moment capacity is increased by 2.5. The displacement response
at the girder center of each floor is shown in Fig. 12. The comparisons of input
and dissipated energy with and without damping are given in Figs. 13 and 14,
These two figures reveal the significant effects of damping and material behavior
on energy absorption, which, however, does not deviate noticeably for Models 1
and 2 of this structural system. The maximum relative floor displacements
associated with elastic and elastoplastic Models 1 and 2 are shown in Fig. 15 in
which the comparisons are based on a horizontal earthquake only, a horizontal
earthquake and the P-delta effect, and horizontal and vertical earthquakes plus
the P-delta effect. The ductility and excursion ratios of the girders for Models
1 and 2 are shown in Fig. 16. This structure has strong columns that have only
plastic hinges developed at the supporting base during the entire response period.
It is apparent that the P-delta effect has a significant influence on the displace-
ment response, whereas the vertical earthquake does not influence this strong
columnal structure noticeably. However, there is a remarkable difference in
the ductility and excursion ratios between Models 1 and 2.

CONCLUSIONS

Two lumped mass models, 1 and 2, are used to study response parameters of
damped and undamped inelastic systems subject to coupling horizontal and verti-
cal earthquake motions. The response parameters are expressed in terms of the
displacement response of the columns and girders, energy absorption, maximum
relative floor displacements and ductility and excursion ratios. From two ex-
amples of four-story-three-bay and ten-story-one-bay rigid frames, it has been
observed that Model 2, which has the masses lumped on girder centers and
structural joints, can best describe the behavior of structural systems subject to
both horizontal and vertical earthquakes. The significant effect of a vertical
earthquake on displacement response depends on structural parameters. The
examples show that the vertical earthquake affects more on model 2 than model
1, particularly on structures with weaker columns and that the vertical earth-
quake demands a great deal of ductility in girders of all structures.
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For the work reported on here, the percentage of error ranged from less than
0.5to 2.0%. The larger values occurred in the 10-story structure. This error
level is felt to be sufficient for the investigation reported on in this paper.
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Sumnmary

The gstudy deals with the effect of soil structure
interaction on the fundamental periods of framad reinforced
concrete multi-storey structures. Typical structures of
various heights and sevaeral foundation systems are examined,
as the relevant scill parameters are varied for each founda-
tion systen,

An approximate formula for the fundamental peried,
with the consideration of the elastic compliance of the
foundation, is presented. This formula shows the effect of
soll structure interaction to increase the fundamental period
of the structure,

The influence of the elastic compliance is shown as
particularly pronounced in the cases of isolated footings
on sand and of raft foundation on soft clay. This influence
increases with the height of the structure,

The influence of the compliance is small in the case

of pile foundations and it decreases with increase in the
height of the structure.
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1. Introduction

In many investigations it has been shown that the
interaction between a structure and the foundation soil
increases the fundamental period of the structure and
thus affects its response to earthquake stimuli.

Studying this problem, various mechanical models
have been proposed to represent the properties of the
foundation medium. Thus, for example, Lycan and Newmark (4)#*
Fleming et al(3) and Merritt and Housner{(6) investigated
two dimensional shear buildings with the foundation soil
represented by a spring or a spring-mass combination,
and Mendelson and Baruch(5) analysed the response of a
non symmetric multi-storey structure, with a raft founda-
tion, with the sub~s0il being represented by a massless
spring.

In these investigations only the vertical and rocking
motions of the foundations were considered, whereas horizon-
tal translations were not allowed for.

On the other hand, Parmelee et al(8) examnined a one-
storey structure in rocking and sliding motion and Muto(7)
obtained the response of a framed structure, with the
foundation s0il represented by springs allowing for both
rocking and sliding , while the participating soilil mass is
being added to that of the foundation,

The lateral dynamic response of pile foundations was
examined by Alpan{(l), who used the theory of beams on
elastic supports{(Winkler Model), and by Penzien(9), who
used a similar model with non linear springs and with
participating soil masses added to those of the piles.

In the present work the influence of the elastic
foundation compliance on the fundamental period of typical
framed reinforced concrete structures of 5,10 and 15
stories 18 examined, The following, commonly occuring,
foundation systems are considered:

(a) Isolated footings on sand.

(b) A raft on a clay layer, overlying solid rock.

{(c) Piles penetrating a clay layer and supported by
underlying solid rock.

Similarly, the influence of varying the s0oll parameters
for each of the foundation system i8 also examined.

In view of the considerable uncertainty in assuming the
soll mass participating in the motion of a foundation system,

* Numbers in parantheses refer to the list of references
at the end of the paper.
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the sub-s0il is represented here by massless aprings,
enabling, as appropriate, rocking and sliding motions
of the foundations., The relevant spring constants are
determined f£rom simple and practical relations based
on elastic theory combined with empirical evidence.

The effect of the dynamic soil structure inter-
action in a general case may be expressed by an approxi-
mate formula, proposed by Mendelson and Baruch(5), for
the fundamental period of a structure on an elastic
subgrade. The validity of this formula is checked again
in view of the results of the present work,

The computations connected with the present work
were carried out by using the STRUDL II computer
program(14),

2. An Approximate Formula for the Fundamental Period.

Mendelson and Baruch(5) have proposed, following
Dunkerley's approximation(l2), the following formula to
estimate the fundamental period of a structure based on
an elastic subgrade:

Tap = TD + TB (1)

where:
T = approximate fundamental period,

T = fundamental period of the structure as supported
by rigid subgrade,

T = period of the structure, considered as being a
rigid body elastically supported.

A similar formula has been presented by Merritt and
Housner(6) for a one-storey structure:

2 —_—
T (14 DKy gps D (2)
kg k
where
T = period,
h = height of structure,
k s gtiffness of structure,
kB =z gtiffness of subgrade in rocking ,
mz = mass of structure
%—E = ratio between the elastic soll compliance and the
8 flexibility of the structure,

The generallzation of equation 2 to allow for an
approximate determination of the fundamental period of
multi-gtorey structures leads to considerable
discrepancies if compared to actual values. The
difference is due to the fact that in the model
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represented by this equation the entire mass of the
structure is concentrated at its top. In equation 1,
on the other hand, the values 06f T and T are
obtained in accordance with the acfual mafs distri-
bution in the structure, and therefore there is a good
agreement between the approximation and reality, as
shown in reference 5.

3. Mechanical Models of Foundation-Soil Systems
3.1 1Isolated footings on sand

The elastic compliance of the footings is assumed,
in this case, as due to the compression of springs
representing the foundation soil (Fig l). A prelimi-
nary analysis of this system has shown sliding to have
but a negligible effect on the period, Thus the proposed
nodel does not include the possibility of sliding.

The computation of the relevant spring coustant for
an isclated footing follows tha approach of Alpan(2)
based on the following quite simple but adequate
assumptions:

(a) Uniform vertical pressure at any given depth,.
(b) Vertical pressure at a given depth to follow

the relation (Fig 2):

o

o

g = ——— (3)
z Z |2
1+ 55

where:
Oz = yaertical pressure at a given depth,

o, = pressure under the footing,
z = depth below footing,

r, = equivalent radius of footing.

(c) Tha elastic modulus of the sand - E  varies linearly
with depth as follows:

z
E, Eo(l +a 2 ) (&)
o
where:
Eo = e@lastic modulus of sand at footing depth,
E

oF
a ;2 "3z " rate of increase of the elastic modulus with depth;
[+]

a function of the relative density of the
sand.,
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Appropriate integration of the infinitesimal
strains within the simplified stress cone yields the
spring constant of an individual footing:
E. r
kK = (] [*] (S)
(1-v?).1(a)

where:

k = gspring constant,

Y = Poisson's ratio, approximately 0.3 for sands,

I{(a)= a function, decreasing with increasing o, with
maximum value of 0.5 for a=0Q ,

For the use with the approximate formula(equation 1)
the general spring constant in rocking of the foundation
system is obtained as:

kg = IX, "Lk (6)
wvhere:

ke = general spring constant in rocking,
X = go-ordinate of footing I relative to the axis

1 of rotation,
3.2 Raft foundation on a clay layer.

The raft, of dimensions B by L rests on a clay
layer of thickness d(Fig 3a) and constant elastic
modulus E. The clay layer, as previously mentioned,
overlies a 8s0lid rock mass. The elastic behaviour of
the clay is represented by one spring for the rocking
mode and by a second one for the gliding mode{(Fig.3b).

The spring constant for rocking - k, may be
expressed according to Shieneis(l1l) as follows:

E.L.B?
% £ (7)
Yt© oA
where:
E

1YT and kl = coefficients, depending on B,L and d

The spring constant for sliding - k_ 1is obtained
by using a semi-empirical relationship gi%en by Savinov {i10):

- 2 (B+L), /o (8)
kx kxo & A.BL ) Go
with

K L (1.7 x 10'3)3.3.1..
X0 (1+y) (1-0.5Y)

(kgfhm) (%)
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where: 2
E = elastic modulus of the clay in kgf/em

B,L = raft dimensions in cm,

A= 1072 ¢cm != empirical coefficilent,
Y = Poisson's ratio , approximately_ 0.5 for clays,
o = pressure under the raft (kgf/em”),

co = 0,1~0,2 kgf/cm2 = empirical reference pressure.
3,3 Pile foundations

The structure is supported by plles penetrating a clay
layer of thickness d and constant elastic modulus E, and having
thelr tips supported by massive rock underlying the clay(Fig 4a).

The individual pile may be considered as a colum with
lateral elastic support, hinged as the bottom and with partial
rotational restraint at the top{(Fig 4b). The pile head rotation
depends, on the bending stiffness of the pile itself, and on the
stiffness of the structural elements(beams and columns) jointed
at the pile head.

The spring constant of the lateral elastic support may be
ohtained from analogy with the model of a line load acting on
an elastic half space(l13) as shown in Fig 5:

P TE E
ket T E (10)
where: r
k = spring constant per unit length,
p = lcad per unit length,
u = digplacement under the load,
% =~ "influence radius™ ratio.

Following empirical evidence published by Alpan(l) the
value of B = 2,18 was adopted.

The actual analysis of the dynamic system under considera-
tion was based on a lumped parameter model, i.e. the piles were
devided into sections supported by discrete springs.

For use with the approximate formula (equation 1l)the gene-
ral spring constant for horizontal motion of the foundation
system, -k_, is defined as the force at ground level per unit
displacement, with restrained rotation at the pile heads.

4, The Buildings

A typical floor plan of the buildings selected for illustra-
tion is shown in Fig 6. The length of the buildings is 30.0 m,
their width 12.0 m, the height of a storey is 3,0 m, and the
number of stories is 5, 10 and 15 as stated hefore.
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The structures consist of reinforced concreta slabs of
14 ¢m thickness, seven identical frames which provide structu-
ral stiffness in the short("B")direction and four similar frames
in the long("L") direction as evident from Fig 6. All the beams
are of the same cross section whereas the columns vary in
accordance with their axial load, as shown in Fig 7.

In the cases of isolataed footings and pile foundations the
columns are €fixed in foundation beams of the regular cross
section, and in the case of raft foundatioan the columns are
fixed in the raft which is considered as infinitely rigid. The
external walls as well as the partitions are not considered to
contribute to the structural stiffness.

The analysis was based on a lumped mass model with the
masses lumped at the floor levels. Fach lumped mass, including
the mass of the floor, the walls, the partitions, the colunns
and 20% of the live load, was taken as 330 kgf.sec?/cm.

In the analysis, only the lateral oscillations in the "B"
direction were considered.

5. The Foundation Systemns
5.1 Isolated Footings on Sand

The footings were dimensioned in accordance with their
static load, assuming two types of sands of the following
properties:

{a) Relative density of Dr=SOZ, permigsible bearing
pressure of 3.0 kgf/cm? and alastic modulus at the surface of
E, = 150 kgf/em?.

(b) Relative density of Dr- 907, permissible bearing
pressure of 6.0 kgf/em? and elastic modulus of Eo = 250 kgf/cm?.

The ratios a/r, wera found in accovrdance with the relative
densities as 0.9 for the first case and 0.85 for the second one
and for the appropriate equivalent radii , I (a) and the spring
constants k were determined (see equations 4 and 5).

The dimensions of the fsotings, the associate spring

constants and the genaral spring constants in rocking are given
in Table 1,

As may be seen from Table 1, the difference between the
spring constants for the two sands is not too significant. Thus
only the stiffer sand(D, = 907%) was considered in the computa-
tions of the fundamental periods.
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5.2 Raft on a Clay Layer

The raft dimensions were taken as 13,0 by 31.0 m, the
thickness of the eclay layer was taken as 10.0 m and the
elastic moduli of the clay was assumed as 150 and 250 kgf/em?.

The geometry of the system yielded, for the computation
of the spring constant in rocking{equation 7), the following
values of the sequent coefficients:

E -
iYT 2.67 and kA 0.85

As may be seen from equations 8 and 9, the spring constant
in sliding depends, in addition to the elastic modulus of the
clay, on the contact pressure on the clay, and thus on the
height of the structure.

The values of the spring constants for the various
structures are given in Table 2,

5.3 Pile Foundations

The thickness of the clay layer was again takenr as 10,0m
and the elastic moduli, as before, were 150 and 250 kgf/cm?.
The pile diameters, uniform for each building, were determined
from the maximum static load with a permissible stress of
50 kgf/em?. The pile diameters, their mass per unit length,
and the general spring constants for all the cases are given
in Table 3.

6. The Approximate Fundamental Period

For use with the approximate formula(equation 1), T, were
determined for the structures being hinge supported on rigid
subgrade (Fig 8).

Values of Tg were obtained from:

m h2 Bz ]
L3 T —_ (= — 1
Ts 2 v k6(3 12) (1)

for the cases of isolated footings and raft foundations,
and from:

T = Zﬂ/ EiE;E_EE (12)
] kx
for the case of pile foundations,

where:
m = total mass of the building, assumed uniformly
distributed throughout the height,

mp = total mass of the piles,

h = height of building,

B = wywidth of building,

ke = ganeral spring constant in rocking,

kx = general spring constant for horizontal motilon,



135

The values of To and Tg are given, together with the
other results in Table 4.

7. The Results

The fundamental periods for all the cases examined as
well as the approximate values are presented in Table 4,
and shown as a comparative illustration in Figure 9. In this
figure the ratio T/T, is shown versus the squared racio(TolTs)2
which in fact expresses the ratio between the flexibility of
the structure and that of the foundation soll (cf. Fig.2 of
referance 6),

The variation of the period ratio with the number of
stories is illustrated in Fig. 10.

The practical significance of a change in period due to
the goil structure interaction lies in the influence of this
change on the seismic force acting on the structure. This
force, according to various seismic codes of practice, is
inversely proportional to{T)!/3,Thus the ratio of the seismic forces
V/Vg = (To/T)/? , also presented in Table &4, essentially indi-
cates the influence of the foundation compliance in comparison,
with non-yielding supports.

As an additional effect of the computationsg, the periods
of some of the highar modes were also obtained, only to confirm,
as has been known before (5), that the influence of the founda-
tion compliance on the periods of the higher modes 1is
negligible.

8. Conclusions

The Influence of the foundation compliance on the funda-
mental period is particularly pronounced in the case of isola-
ted footings on sand and that of a raft on a clay layer. This
influence increases with the height of the structure. The main
contributing factor in these cases appears to be the flexibility
of the foundation system in the rocking mode. Introducing a
constraint against sliding(i.e.kx = =) does not influence the
reriod significantly.

The influence of the foundation compliance appears to be
small in the case of pile foundations. This influence decreases
further with an increase in the height of the building(or
rather its slenderness, 1.e.its height to width ratio) since
the pile diameters, and hence their stiffness are increased to
allow for the higher loads transmitted.

The difference in the compliance effects of the various
foundation systems becomes evident in the taller buildings,
while in the lowest builldings(5 stories) it is practically
negligible.
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The approximate relationship, given by equation 1,
appears to furnish reasonably accurate values for the periods.
The deviation between the approximate and the more exact values
obtained for the fundamental period are essentially due to the
difference in the computation models used for obtaining T and
T. In the computations for To , the colums are fixed at tgeir
bases in foundation beams of the regular cross section with the
result of certain rotational flexibilities of the joints. In
determining T, the rotational stiffnesses at the bases of the
columnsg are increased significantly when the columns are also
fixed in the pile heads or in the rigid raft.

For the cases examined in this paper, the influence of
foundation flexibility on the probable seismic forces is not
too pronounced. The maximum influence was obtained in case C
2.1 (15 stories building with raft foundation on soft clay)
and amounted to a reduction of 157 of the seismic force.
Nevertheless, a greater influence may he expected for stiffer
structures (for example, shear wall structures) founded on
soft so0il, as seems to be indicated by the findings presented
in reference 5.
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Fig. 1 :

Mechanical model of isolated

footings as a foundation
system.

TEEE

Fig. 2 :

Stress distribution under
circular footing.

a ROCK b

Fig. 3 : Mechanical model of a raft

foundation.
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Fig. 8 : Idealized

supports for

computation of T
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INVERTED-PENDULUM EFFECT ON SEISMIC RESPONSE OF TALL
BUILDINGS CONSIDERING SOIL-STRUCTURE INTERACTION

TEH H. LEE

Senior Staff Engineer

General Atomic Company

San Diego, California, United States

ABSTRACT

The analyses of seismic response of high rise buildings
have been customarily performed without taking into account
the dynamic effects resulting from the dead weight of the,
structures. In the event of an earthquake disturbance, the
rotation of the bhuilding due to soil~structure interaction
will shift the center of gravity of the building laterally.
This means that, while responding to the excitations due to
ground motion, the system will behave as an inverted pendulum
influenced by its own weight. Furthermore the phenomena can
be shown to be coupled with the structural deformation which
causes the centers of gravity of the structural members to move
laterally. Although it is known to seismic analysts that this
gravitational effect depends primarily upon the aspect ratio of
the system and the foundation stiffness. its significance has
not been accurately quantified for tall buildings on soft ground
where the soil-structure interaction effect is playing an
important role.

This paper demonstrates how the phenomena can be studied by
using a soil-structure interaction model, Modified governing
equations were derived and incorporated in an interation analysis
utilizing fixed-base modes of the superstructures. In this
manner, the problem was investigated by modelling the soil medium
as an elastic half-space. The inverted pendulum effects, with
and without the consideration of structural deformation, are
discussed on the basis of the numerical results obtained,
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1, INTRODUCTION

The dynamic effects of.gravity loads on structural
response during earthquake has long been recognized by
engineers. In the early studies of this problem, highly
simplified models were used to obtain a qualitative assess-
ment of the phenomenon. The change observed in these
investigations when considering gravity influence was a
reduction in the natural frequencies of the system (see, for
example , Newmark [17]). The effects are more pronounced for
tall structures, such as high-rise buildings, on soft ground
and are insignificant for squat structures founded on rock.
Technically speaking, the phenomenon depends to a large extent
on the aspect ratio of the structure and the foundation stiff-
ness which governs the rotation of the system during earthquake.
Very little has been done so far for an accurate determination
of the effect upon the dynamic response of the structural masses
or members, Due to difficulty in deriving the modified govern-
ing equations for complex structures with gravity lcads, the
inclusion of gravitational influence in soil-structure inter-
action models has not yet been made feasible,

In the present paper, it will be demonstrated how the
gravity effects may be incorporated in a model as complicated
as a three-dimensional system in which the soil-structure inter-
action effects are accounted for by coupling the structure
with an elastic half-space. This was accomplished by modifying
the potential energy expression associated with gravity load and
then deriving the modified governing equations using the
Lagrange's equations of motion. In essence, the new equations
govern the motions of a seismic model in which the structure-
base system will behave as a flexible inverted pendulum while
responding to the disturbances from the ground motions.
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2, MATHEMATICAL FORMULATION

Consider, for the moment, the two-dimensional structure
on an elastic half-space as shown in Figure 1. Rigorous
derivation of its equations of motion including gravity effects
associated with both the rigid-body rotation and the structural
deformation may be achieved by considering the potential
energy change resulting from gravity load. The mathematical
formulation is, in general, rather involved. However, for a
preliminary investigation, an insight to the problem can be
obtained by taking an idealized model (Figure 2a) in which the
structural deformation is characterized by lateral deflections
of masses only. In this case, the necessary terms in the equa-
tions of motion reflecting gravity influence can be derived by
only considering the change in potential energy due to rigid-
body rotation of the system plus the lateral deflections of
the masses. For instance, the potential enerqgy change, Vg, at
the ith mass, mj, will be (Figure 2b)

2

- - =}
Vg = mig( hi2 + uie ) (1)

where g is the gravitational constant, hj is the elevation of
mass as indicated in Figure 2, ® 1is the base rotation and uj is
the lateral deflection of mass along xj~direction. Adding the
potential enerqgy change from all masses and extending the
analysis to three-dimensiconal problem, the expression for the
total change in potential energy resulting from gravity load

due to building rotation and lateral deflections of N super=-
structure masses (ignoring contribution from the base mass) may
be written, for small rotations, as follows:

N e2 92
= - . . . . i - .
Vg §|mlg( hrfl + ule3) +mlg( hlE" wlelﬂ (2)
i
where ©1, ©3 , uj and w; are coordinate variables.

In writing the above equations, the notation for three-
dimensional analysis has been used. The three components of
rotation (©1, ©3, ©3 ) and mass displacement relative to base
{u, v, w) are defined corresponding to the three axes (x1,x2,%X3)
in their respective coordinate frames.
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Substituting Eg. (2) into the Lagrange's equations of
motion yields the following additional terms representing
gravity influence

Vg = - m g0 , (i =1,2,...,N) (3)
du.;
i
an
—T= mge, (1 = 1,2,...,N) (4)
i
;BVg _ N
=-gmhe; +g E mywy (5)
o8, ]
= -gmhe, ~g m. . (6)
20, B3 7 93

where my is the superstructure total mass and h is the eleva-
tion distance of the superstructure center of mass as defined
by the equation

N
? mihi

My

h = (7)

Note that for the problem considered here, contributinn to Vg
does not involve torsicnal rotation 83 .

The governing egquations for a three-~dimensional soil-
structure interaction model using elastic half-space for ground
simulation have been previously presented by Lee and Wesley
( 2], [3]}). vusing the notation adopted in these papers and
adding the gravity influence as given by Egs. (3}~(6), the
modified governing equations may be written

d} + e ) {a} + [x]da} = - (K0« ofel [T o), @
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([ + T [el]) {U) + 275 {4}
~onm B [2 o) - o [ @1} - £} @

where the symbols used were already defined in [3] except

that new matrices [T} and[Tl] have been introduced. The
matrix [TM] contains zeros and masses. The elements in

[T%] are zeros and unity. The symbol rit denotes the
transpose.

For harmonic response, Eq. (8) may be solved for{g}
to give the following expressions:

&Y = -3 6 + o BRI, ao
{E} = ED][P] B - o ED][‘ﬂt [7™]{T,} (11)

where a bar over the, K column matrix designates the complex

amplitude and [5J= ;@ED The matrix [ D] is_a modal
amplification matrix which has been defined in [3]
Substituting Egs. (10)-(11) in Eg. (9) vields

(0] = o [ [@IBI 050 {5
N CER T IS S
o2 [ ] ol [ ) {E-( )

(12)

were [42 07 + 1T (4] » 2115071

The base displacement celumn matrix ﬁB can be decomposed
into two terms

{Op} = {Tc} + {0} (13)
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in which {UG} is the column matrix of ground motion and
{UI} is known as the column matrix of interaction displace-
ment. Replac1ng {f by the elastic half-space impedance
functions in the following manner ( [2] , [3] )

(£} = [xew)] {5} (14)

where [k(uoﬂ is a 6 X 6 matrix containing impedance functions,
the final equations can be put in the following form

(Do + o m o] + o) o] ) (o)
(o [a]+g mBlrt]+ o[x"]) {5 (15)

where [Mﬂ corresponds to the dynamic feedback from the structure
due to its inertia. It is defined as

[ = [n7] + o[r"] E105] L] (16

and the term involving [KD] representing the influence due to
structural deformation is defined by

[F]= [Tl [+ « o T B ] on

Eg. (15) can be solved for '{U } when the ground motlon&J}
is prescribed.
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When structural deformation is neglected, the gravity
influence comes from only one term

g my h [&{] (18)

which corresponds to the gravity load effects when the entire
structure-base system behaves as a rigid inverted-pendulum. _

In this case, the total weight of the building gmy and the h

parameter (or the aspect ratio parameter h/r, where ry is the
base ragius) will play an important role.
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3. NUMERICAL RESULTS

The modified governing equations derived in the preced-
ing chapter retain the gravitational effects which are
coupled with the soil-structure interaction. Numerical
results were obtained for a tall building simulated by an
idealized two-mass superstructure on rigid circular base
with hy = 250ft and hﬁ = 125ft. The center of mass of the
superstrugture is at = 168.6ft and the aspect ratio para-
meter is h/ro = 2.8. The ground motion was taken to be
harmonic and the data generated were in terms of frequency
regponse for a two-dimensional problem. For the preliminary
investigation conducted here with simplifying assumption
introduced for the structural deformation, the major effect
comes from the dynamic behavior of a rigid inverted pendulum,
The gravitational influence was found to diminish to an
insignificant level for buildings having low aspect ratios
built on relatively stiffer ground. Quantitatively, when
the shear wave velocity Vg in the elastic half-space is
greater than 500 FPS, gravity influence is negligible for
h/r,<3.

Figure 3 shows the frequency response of the top mass
in the vicinity of the first peak obtained with considera-
tion of gravity influence as compared to that determined by
conventional analysis ignoring gravity. As the shear wave
velocity Vg of the elastic half-space reduces,the rotation
{rocking) of the building becomes greater, and the top mass
amplification rises. The phenomena observed here agree
with those previously found by Parmelee [4]. Apparently,
the influence of gravity load tends to reduce the resonant
frequencies of the system and the frequency shift beccmes
larger as Vg drops. Another important finding is that the
dynamic amplification of top mass was found to be higher
when gravitational effects were included in the analysis.

The gravitational influence resulting from structural de-
formation characterized by lateral deflection only is not
significant judging from the numerical results generated for
this problem. This was expected because the lateral dis-
placement of the structural masses is primarily due to the
rigid-~body rotation of the system and the lateral deflection
is secondary in this case. The numerical values of the top
mass frequency response obtained with and without considering
lateral deflection of masses are displayed in Table I,
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Table I, INFLUENCE OF STRUCTURAL DEFORMATICN
Excitation Top Mass Amplification (Vg = 150 FPS)
Frequency, H, Lateral Deflection Lateral Deflection
Neglected Consgidered
.0720 41,938 43,456
: L0725 70,353 74.168
: L0730 123,245 124,203
.0735 78.936 74.700
| .0740 45,339 43,626
: .0745 30,946 30.098
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4, CONCLUSIONS

The influence of gravity load characterizing the dynamic
behavior of a flexible inverted pendulum has been incorpecrated
into a seismic model which accounts for the soil-structure
interaction effects, The formulation is applicable to more
involved three-dimensional models, Although the initial study
discussed here was conducted for a simple system with idealized
structural deformation, it has revealed important quantitative
information regarding the nature of the gravitational influence
on the building response during earthquake.

The gravity effect does not become a significant factor
unless building is tall. It needs not be considered in
seismic analyses of short and squat structures such as nuclear
reactors. The effect, however, becomes relatively more
important for tall buildings when foundation softening is
developing during seismic disturbances.

The potential energy change associated with structural
deformation was highly idealized. This results in the very
small changes as shown in Table I. The gravity influence
contributed from structural deformation is expected to be greater
when more rigorous expressions are used for the work done by
gravity forces. These include the consideration of the shorten-
ing of distance in the axial direction as the structure deforms.
Such problems will be treated in future papers.

5. DISCLAIMER

The work presented in the paper is a personal product of
the author who is responsible for the accuracy of the results and
tHe opinions herein expressed. It does not necessarily reflects
the official views of his employer.
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SUMMARY

This paper presents the results of the research of
earthquake large-panel dwelling houses on precast pile-
foundations under conditions of bed on building site of the
unstable soil.,

The calculation dynamic scheme of building, the results
of natural tests of fragment of precast pile-foundation and
large-panel S5—storey house by means of high capacity inertial
vibrator are being discussed.

Rigidity of pile~foundation plays a significant role in
the total deformation of a large-panel house, but practically
it doesn’t influence the frequency of its oscillation as was
established in the results of the tests.

Rigidity of pile-foundation is determined both by the
rigidity of grating and by piles.

The calculation dynamic scheme of large~panel building
on the pile=foundation may ve represented as a cantilever
elastically-Jjammed in level grating and pile~foundaticn in
the form of one storey frame.

Besides the investigations show that all constructions
above precast pile-foundation of building and also their
joints possess sufficient strength in order to resist
earthquake of various intensitvy.

INTRODUCTION

The most part of earthquake territory of Soviet Union
bave the unstable and yielding ground.

Large- -scale erection i1n this conditions of large-panel
dwelling houses required the implementation of earthqueake
building of progressive shapes of foundation and pile-
foundations, in particular.

161
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The results of investigations.

The pile foundation represents a through construction
and consists of separate slender pivot-piles, dispersed in
ground and connected in level upper part beam framework in
distinction from foundation plate and wall. The perception
and average of seismic influence of ground on building takes
place not on the level of solid foundation plate as in the
case of foundation wall and plate, but only on the level of
grating by based on of large-panel building on pile foundation

The total oscillations of the building on the whole
remains qualitative identical to the oscillations ¢of the
building on solid foundation however the pillars experience
bending deformations and piles absorb part of energy,

- transfer oscillation to the ground.

Calculation scheme of large-panel building in pile~
foundation one can take as cantilever system in the form of
pivot with a number of points compacts on its height, which
is based on rigid disk (grating) that is supported by a
number of slender pivot-plles.

For the sake simplification the calculation of a building
in this case comes to the calculation of its above foundation
part and separately the pile-foundation.

The cantilever pivot elastically-jammed in level grating
is tsken as a calculation scheme of above foundation part.
The pile-foundation in its turn can be in the form of one
storey frame, which is acted by of vertical load and seismic
forces which in level grating.

The calculation above foundation part of building is
done according vo general used rules of calculation of large-
papel buildings on rigid foundation, but taking into account
the yielding pile~foundation.

The calculation of frame is being done in accordance wita
the ordinary rules of comstruction mechanics in assumption of
static action of external forces. The distribution of seismaic
forces among separate bearing vertical constructions of frame
(piles) is being done in dependence of construction solution
of horizontal disk (gratingg.

The most favourable solution of pile foundation can be
achieved by safe secure of horizontal ties of all piles in
system. This condition demanded the organization of momolivhic

grating.

However monolithic reinforcement grating requires the
organization of planking, application in big volume of manual
iabdur, quality control of placing of concrete in mounting
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and in winter conditions is heating of concrete oxr application
of special admixtures. All this results in reduction of degree
of industrialization of pile-foundations and prolonging the
time of building.

Cne can avoild all these lacks by means of organization
of precast grating, transferring a considerable partv of work
into factory conditions.

The problem of possible use of precast grating was
examined on the basis of special investigations devoted to
the study of earthquake-procf of large-panel buildings on
precast pile-foundations in conditions of bedding unstable
s0il of small power on construction site (5-6 m).

The construction schemes of experimental house are given
in figure 1.

The principal bearing elements of pile foundation are
rammed reinforcement grating-poles, which cut through slack
soll and with their lower ends rest on dense incompressible
stratum of gravel-pebbles deposits and a beam of grating.
Conjugate of pean of gration with piles 1s performed by means
of reinforcement heads of piles (fig.1a). The heads of piles
having through holes are put on the heads of two or three
piles monolithing of cavity of holes with small-grained
concrete is the next.

Joining of precast bveams of grating with each other and
with heads is performed by means of welding of laying details.

The strength of separate structures of foundation, its
Joinings and hardness and stability of pile-~foundation on the
whole by influence in it of horizontal vibrating loadings of
seismic type was the first step in the investigation.

The fragment of precast pile foundation which composited
1/5 part of experimental house was erected at one of from
building sites and was subjected To natural tests.

The fragment was loaded with calculated vertical statical
loading which was imitated by the weight of panels stacking
against each other.

The panels were displaced aside from the central axle of
fragment in order bto place a powertul wvibration machine
inertial action with the help which and are conduct tests.

The total volume of tests included a number of consecutive
cycles of vibration loading with the increasing indignant force.

This was achieved by modification of mass debalances in
vibratorse.
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The fragment was introduced into resonance at every stage
of tests by easy change of rate rotation of debalances this
was done twice ~ in increasing and in falling of rate rotation
(frequency of oscillations).

Registration of horizontal transferences of grating in
the process of forced oscillation of pile-foundation was
performed by means of apparatuses in all intersection of
grating beams.

The resonance curves were got as a result of treatment of
oscillogram which represents the record of horizintal
transferences of fragment under all cycles its vibration
loading (Fig.2).

Moreover the test fragment is in Uwo resonance states on
two first stages of loading and in two following - in one.

In the diapason close to the first resonance peak the
whole mass of grating and bailast of loading moved progressively
in the direction of the action of insurrected force and at the
approach of second resonance peak simultaneocusly with horizontal
transference of beam torsion oscillations of mass bailast of
weight moved around their own central axles of perpendicular
to the action of vibration machine.

As the law of ipertial excitement of constructions by
vibration load can be considered of harmonious, the inertial
forces at the moment of passing resonance with sufficient
degree of precision can be determined by ordinary formulas

S L = Mmea, ()
where Sif-inertial force t;

M -~ total mass of oscillating system in t»secE/m

2

Cl - acceleration with oscillate system in m/sec” and

accordingly being determined by formula
L = 4jEQLP2AL) (2)
where Y - frequency of oscillation of system in cps.

AL“ amplitude of osciliations of points system in the
level to be defined in m.

The inertial forces were determined for every stage of
iloading in accordance with the fixed Y and A on adducing above
formulas, baking the whole mass of loading grating applied in
level of head of pile.

In spite of some defects wnile testing in constructicns
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of grating (weak sides of heads, insufficient anchoring of
laying aetails in beams of grating) the fact of taking the
most part of horizontal inertianal force by fragment %Which
equals approximately 80% from calculation in earthquake force
9% showed that pile~foundation of such construction can
possess sufficient strength, rigidity, stability from the
earthquakes of different intensity.

Natural test of two-section 5 storied dwelling was
conducted to study the behaviour of large-panel building on
precast pile-foundation under seismic forces. The roof of
the holise lacked at the time of the test as some vibro-
machines had to be located on the floor of the 5 story.

The test of dwelling was conducted in the same way as
in the case 0of a fraguent (the same method).

The total volume of best consisted of a number of cycles
of vibro-loading of dwelling both in transverse and in
longitudinal directions.

Records of horizontal and verticel oscillations of
dwelling were conducted synchronously with the help of set
of vibro-apparatus.

Horizontal oscillations of dwelling were registrated in
7 levels of its height and vertical oscillations were
registrated in the level of grating.

The analysis of resonance curves (fig.3) has shown thatv
dwelling under vest in all cycles of vibration loading is
only in one Tesonance state, but in mogt dangerous one.

The criterion of the behaviour of large-—panel dwelling
on precast plle-foundation in earthquake can be taken the
form of its oscillation (fig.4) which is nearing to the form
typical to the system shear with tending (this corresponds to
the modern calculation of large-panel building on rigid
foundation), but with additional components of oscillation
and displacement their values prove the significant role of
pliability of pile-foundation in the total deformability of
a dwelling.

The pliability of pile-foundation is determined by its
rigidity which is the combination of rigidity of grating and
piles, the most part of rigidity of pile-foundation being
provided by the rigidity of grating.

So for example, coefficient of rigidity of p%lg»
foundation of vhe experimental house was 0,504.10° Y/m, and
coefficient of rigidity of grating was 0,329.10° t/m. The
rigidity of piles has to be taken into account otherwise
it will lead to the decrease of calculation of seismic load.
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fhe rigidity of piles can bpe neglected when the rigiaity of
grating is much more than that of piles.

The suvstitutlon of solid foundation by pile-foundation
influences greatly the elastic deformation of & buiiding and
the frequency changes insignificantly.

This doesn’t allow - to decrease the value of dynamic
coefficient in the well-known formula on determining sgeismic
calculation force.

The intensity of oscillations of building was increased
in comparison with original loading by 7 times for transverse
and by 13,5 times for longitudinal in the process of testing
and under successive increase of mass debalances.

The torces in building were achieved which equalled
86-90% of calculation for force 9. Visible fractures and
cracks were not discovered in construction of building and
pile~foundation. The lack of fractures accounts for more
favorable counditions of foundation work in the gystem of a
building than separate foundation from one side and the change
of reinforcement of head piles on the other sice.

on spite of the visible lack of fracture the decrease of
resonance frequency of oscillation of the system "building-
foundation" was registrated in every cycle of loading this
accounts for the decrease of original rigidity of the system
due to the development of plastic deformations in joints and
due to the irreversible pressing down of ground in contact
with construction of pile-foundation.

CONCLUSIONS

4. The conducted investigations allowed to determine the
influence of pile-foundation on the dynamic work of large-
panel building, to check the strength of separate constructions
of building and precast grating and also the Jjoints under
dynamic loadings nearing the calculated loadings under force 9.

2. It is established that the structure of pile-
foundation doesn’t result in significant change of dynamic
culculated scheme of large-panel building and this scheme is
being considered in the calculation of the building with a
rigid foun¢aticn (wall, and plate). In this very case the
elastic Jam of cantilever pivot in level of grating is being
introduced into calculation scheme of building thus reaching
the regilstration of pliability of piie-foundation.

%. The rigidity of piles should be tsken into account as
well as the rigidity of grating in the determining of the
rigidity of pile-foundation. The rigidity of piles can be
neglected only in the case when it is much less than that of
grating.
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4, In the course of test the forces were excited
comprising 90% of calculabion for seismic force 9. However
no visible fractures and cracks in above foundation
construction of building and in grating were discovered
although the amplitude of oscillation of upper floor reached
its maximum value in 7,8 mm and in grating - %,4 mm.

5. The data received as a result of these investigations
permit to make a conclusion that large-panel buildings on
precast pile-foundations can be earthquake-prool as well as
the buildings on solid foundations.
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SOME SEISMIC RESPONSE SOLUTIONS FOR
SOIL -FOUNDATION-BUILDING SYSTEMS
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SUMMARY

Behavior of buildings in earthquakes, taking into consideration the
interaction effects of the supporting ground and the foundation consisting
of basement, piles and piers, the energy dissipative capacities (damping)
of soils, and the influence of the vertical component of earthquake motion,
has been investigated by means of a cyclic truss type model that represents
a soil-foundation-building (SFB) vibratory system. The well-known 1940
El Centro and 1952 Taft earthquake wave forms have been used, normalized
to 100 gal horizontal and 60 gal vertical components which are fed into the
SFB system at the base of the surface soil layers. The buildings consid-~
ered range from low to medium height, 1 to 15 storeys above the ground
level. The damping of the building is assumed to be 3% of critical and
10% and 20% damping ratios have been assigned to the hard, soft and filled
soil types. The case of uniform damping ratio of 5% for the soil and the
building has also been studied for the purpose of comparison.

Seismic response in terms of base shear coefficient, base axial
force coefficient and base overturning moment coefficient has been deter-
mined by performing hundreds of simulation experiments. Some of the
findings do not conform to long established concepts but they provide
satiefactory explanations for building damage observed in the past.
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1. INTRODUCTION

The paper prepared by the ASCE-SEAOC Joint Committee on Lateral
Forces of Earthquake and Wind (1), published in April 1951 as ASCE
Proceedings, Separate 66 presented a rational dynamic approach method
of estimating the earthquake forces acting on buildings and laid the founda-
tion for current earthquake resistant design practice. The recommended
lateral force privisions were based on the seismic response spectra for
the one-mass vibrating system fixed at the base to a rigid supporting
medium for some U.S. earthquakes by M.A, Biot and E.C. Robison. The
Joint Committee also included recommendations for future study and invited
investigators to substantiate, modify or refine the recommended provisions.

The authors of this paper have obtained some deterministic seismic
response solutions for the soil-foundation-building (SFB) systems which
are presented herein. 2-span buildings ranging from low, medium to
moderate heights (15 storeys) supported on hard, soft, and filled ground
are considered. The foundation of the system consists of basement, piles
and piers to provide adequate support and stability to the buildings. Much
attention has been directed to the study of the superstructure behavior
under earthquake conditions but more attention should be directed to the
study of the soil and foundation aspects if rational progress is to be
achieved in earthquake resistant design. Recent research in soil dynamics
has indicated that energy dissipative capacity of soils is significant and
the vertical component of earthquakes, usually ignored in earthquake
resistant analysis, may also be important in certain cases. These two
aspects have been studied by performing simulation experiments using
the SFB interacting models with the famous El Centro, 1940 earthquake
and the Taft, 1952 earthquake as input wave forms at the base of the surface
soil layers.

Certain other aspects of the seismic response problem have been
investigated and published as progress reports since 1969. Evidence to
substantiate, modify or refine the findings would be welcomed.

2, SOIL-FOUNDATION-BUILDING MODEL

Fig. 1 shows the model used in the investigation reported in this
paper. The surface soil formation consists of three layers, each of 5
meter thickness and divided into 5 meter mesh in the horizontal direction.
Masses are concentrated at the intersections of the members. The vertical,
horizontal and diagonal members are proportioned to have the necessary
areas and stiffnesses to represent the soil types. The special feature of
the model is that the soil layers are continuous in the horizontal direction
so that in this model, the buildings are located at 50m on centers, Our
studies on the influence of adjacent buildings on the seismic response
have revealed that when the separation distance is of the order of 40m,
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Fig.1 Typical Cyclic Truss Type Model

Table 1 Periods of Vibration of Model Buildings
Fixed at GL, (sec)

Storeys
above GL 1st Mode 2nd Mode 3rd Mode
1 0.085 0.025 0.022
2 0.172 0.069 0.039
3 0.247 0.098 0.062
5 0.420 0.165 0.103
8 0.702 0.269 0.166
10 0.857 0.303 0.182
15 1,470 0.522 0.315

Table 2 Shear Moduli of Soil Types (kL/cmz)

Soil Layer Hard Soft Filled
Top 443 102 27
Middle 1034 236 64
Bottom 1330 305 82

Computed from
shear wave
velocities 1058 265 66
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there is practically no interaction between the buildings. (2) The vibrational
characteristics of the soil types are expressed by the predominant periods
of vibration, namely approximately 0.25 sec for the hard soil, 0,50 sec

for the soft soil and 1.0 sec for the filled ground to represent soil condi-
tions in uptown, downtown, and filled areas of Tokyo. The upper two

layers represent the actual vibrational characteristics of the surface soil
formation and the third layer elements represent the characteristics of

the deeper portion.

The building has been modeled as two 5m span width of 10m with a
storey height of 3.5m above ground and 5m storey height for the basement
portion. The masses are concentrated at the intersections of columns and
girders and the elements proportioned to have the necessary arcas and
stiffnesses with the diagonal elements providing the required rigidities.
Buildings of 1, 2, 3, 5, 8, 10 and 15 storeys have been analyzed. The
foundation of the buildings consists of one or no basement supported by piles
or piers reaching the firm bed formation 15m below the ground surface.

The natural periods of the modeled buildings considered fixed at
the base are given in Table 1. The shear moduli of the different soil types
for each soil layer and the values obtained from shear wave velocities are
shown in Table 2. The latter values correspond fairly well with those for
the middle layer., Poisson's ratio of 0,49 has been chosen based on the
investigations of Akio Hara (in Japanese). The natural periods of the
modeled soil types are 0.248 sec, 0.518 sec and 0.999 sec in the fundamen-
tal mode for the hard, soft and filled soil types respectively which are
close to the values initially assumed for the three soil types.

Internal viscous damping of 3% for the building and 10% and 20% for
each soil type has been assumed in the analysis based on the research of
Seed and Idriss (3) and Kenji Ishihara (in Japanese) which indicate that
damping values are strain dependent and the assumed values are to be
expected in the strain range of 0.00l. For the purpose of comparison, the
seismic response for the case of uniform damping ratio of 5% assigned to
both the soil and the building has also been obtained.

3. METHOD OF ANATLYSIS
3.1 Stiffness Matrix

The soil and the buildings have been transformed to a cyclic truss
type model as explained and shown in Fig. 1, Prestressed concrete piles
are provided for buildings of 3 or more storeys and piers for 10 and 15
storey buildings. The piles are considered as flexural members fixed at
the pile tip in the firm bed formation and to the building foundation at the
pile butt and the stiffnesses determined for these conditions., Piers are
considered to undergo shear and flexural deformations under the same
assumed boundary conditions and the stiffnesses determined for formu-
lating the stiffness matrix.
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The treatment of the left and right boundaries of the surface soil
layers is described by means of Fig. 1. The stiffness matrix for the portion
shown by solid masses and full line elements is given by Eqg. 1.

K
[KI] = Kz (1)
Ks
wherein Ky: stiffness submatrix for the left boundary portion
Ko: " H for the central portion
Ka: " " for the right boundary portion

The stiffness matrix for the model where the portion described by
Eq. 1 appears at the left and right boundaries cyclically may be represented
by Eq. 2. — —‘
\Kz
Kt K,

N .
(K] " (2)

~
~

e o

The above equation is a continuous series but for systems that have
stiffness characteristics such as this, the vibrational characteristics and
seismic response may be determined by using a matrix of a limited order,

such as Eq. 3., K
2
[K] — K3+K, ( 3 )

and this equation has been used in the present investigation.
3.2 Vibrational Characteristics

In this investigation, varied damping ratios have been assigned to
the supporting soil medium and the buildings so that the treatment of
complex eigenvalue problem becomes necessary. The following method
of analysis has been adopted by refering to the work of Foss (4) and the
QR method has been used for numerical computations.

The equation of motion for the SFB model may be written as

follows:
|

i el

wherein [MJ mass matrix

0

- 0 (4)

[C] : damping matrix

[K]: stiffness matrix
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! . . . .
X,X,X: displacement, velocity and acceleration vectors in the
horizontal direction

y,)'[,;f: same vectors as above in the vertical direction

Eq. 4 may be rewritten as follows:

X { 0
amlf3] T e
Ml Loll[3 ] | [ol-MI|| %) |9
wherein [O}: zero matrix
Pre-multiplying Eq. 5 by Eq. 6, Eq. 7 is obtained
<] o117 o)
ol M
=t o y X
Pl -<EM]S|]
x 1« (7)
(11 ol |3 |
wherein [I]: unit matrix
Assuming { ); }_—_ { U }7\1: in Eq. 7, the
following equation is obtained. ]
t gl |- el AKPM {—}
U= U

wherein

0h =1t
T I Ajup
Using the values of?Ad-,obtained from Eq. 8,

h; and Tj values may be computed from Eqgs. 10 and 11,
A=Vt L @=—h0;+ i [1 = %] @ (9)
==Vl [FIF T o
D:ZTC/(LQ)}/T—??JI)ZZY/% (1)

wherelin hj: damping ratio for the j-mode
Tj: natural period in the j-mode

LQ)J‘: circular frequency for undamped j-mode
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The complex eigenvectors corresponding to the above may be obtained
from Eq. 12. The amplitude jAk for the point in the j-mode and the phase
difference angle jBx may be determined from Eq. 13.

(0] = (v} + 1 (w] 2)

i ~ -1
A= + Wy iOr=Tan (Wy/v%) (3)
3.3 Response Calculations

The earthquake response has been calculated by using the character-
istic values obtained by the method explained in 3.2 and the damping ratiocs
obtained for the varied damping factors by superposing the first 15 mode
values. The buildings under study being low to moderate in height, the
effect of wave propagation is considered to be minor and the phase angle
difference between the masses has been neglected to simplify computations.

Input earthquake data for the 1940 El Centro and 1952 Taft tremors
are those contained in volume II Part A, Earthquake Engineering Research
Laboratory, EERL 75-50, California Institute of Technology, Sept. 1971.
Appreciation is expressed to the EERL staff for making available such
valuable information. Maximum horizontal acceleration has been reduced
to 100 gal and the maximum vertical acceleration to 60 gal for both earth-
quakes and they are fed-in at -15m from the ground surface where a firm
base formation is assumed to exist. '

The 100 gal horizontal input produces acceleration response at the
free field ground surface of approximately 410 gal, 290 gal and 190 gal for
the hard soil for 5%, 10% and 20% damping ratios respectively for the El
Centro earthquake; 270 gal, 225 gal and 145 gal for the hard soil for the
same conditions from the Taft earthquake. The 60 gal vertical input
produces random vertical acceleration response at the free surface
ranging from 40 gal to 240 gal in all soil types from the two earthquakes.

Modified linear acceleration method has been used to compute the
seismic response.

4. RESULTS OF STUDY
4.1 Natural Periods and Damping Ratios

Fig. 2 shows the relation between the circular frequencies and damp-
ing ratios for the 5 storey (N5) building without a basement (BO) supported
on hard soil. The three light lines indicate 3% damping for the building,
10% and 20% damping for the soil, all in the fundamental mode respectively.
The heavy solid line is for 3% building damping and 10% soil damping; the
broken line is for 3% building damping and 20% soil damping. The circles
on or near the three light lines indicate the damping ratio values for the
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Damping Ratios, h (%)
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Fig.2 Relation Between Circular Frequencies and Damping Ratios
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Fig.3 Relation Between Circular Frequencies and Damping Ratios for Different Soil Types
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first, second, third, ... modes from the left and increasing toward the
right, It is clear from this figure that assigning varied damping values

to the building and the soil do not affect the circular frequencies in any
particular mode. This is also true for the case when damping is neglected
altogether. This is also evident in Fig. 3 and it may be concluded that values
of the natural period of the SFB systems without damping may be used for
engineering purposes.

It i$ ‘common in practice to assume that damping ratios are propor -
tional to the circular frequencies but the relationships shown in Figs. 2
and 3 indicate otherwise.

Fig. 3 is similar to Fig. 2 but three soil types with varied damping
values are shown for the five storey building (N5) with (Bl) and without a
basement (BO)., F (3%-20%) denotes filled ground with 3% building damping
and 20% soil damping; S (3%-10%) denotes soft soil with 3% damping ratio
for the building and 10% damping ratio for the soil; and H (5%-5%) denotes
hard soil with uniform 5% damping for both the building and the soil.

The damping ratios are in general proportional to the circular
frequencies for the filled and soft soil types but not so for the hard soil
type. Within the scope of this investigation, the damping ratios are
proportional to the circular frequencies for low buildings supported on
soft soils but this relationship does not hold for taller buildings supported
on any type of ground.

4,2 Displacement and Acceleration Response

The values of the maximum horizontal displacements and accelera-
tions for the SFB systems due to simultaneously acting horizontal and
vertical earthquake components varied only slightly, compared to the case
of horizontal component acting alone. In general, the horizontal and the
vertical components of earthquake motion may be considered separately
and the results combined.

The acceleration response in the vertical direction at the base and
top of buildings does not vary much but the response is greater for the
hard soil than for the softer soils.

4,3 Stresses at the Base of Buildings

The maximum stresses acting at the ground level of buildings are
important parameters in earthquake resistant design. One of the para-
meters is the base shear coefficient Cg, (the ratio of the first storey
shear divided by the building weight above that level). Similarly impor-
tant are the base overturning moment coefficient, Cys {overturning
moment at the ground level divided by the product of the building weight
and the height to the center of gravity) and the base axial force coefficient,
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Cp, (axial forces in the columns at the base divided by the building weight).
Base Shear Coefficient, Cp

The MS (Minami-Sakurai's Modified Spectra) Response Curves for
the hard, soft and filled soil types and varied damping ratios, with and
without basements, piles and piers are plotted in Fig. 4 for the 1940 E1l
Centro earthquake and in Fig, 5 for the 1952 Taft earthquake. These MS
response curves are for 100 gal horizontal and 60 gal vertical inputs at
-15m below the ground level as previously explained. The values of Cp
are plotted against the fundamental periods of the soil -foundation-building
systems which differ from the usually plotted response curves that are
drawn agalnst the fundamental periods of the buildings assumed fixed at the
ground level without consideration of the foundation construction and the
nature of the supporting soil. The numbers near plotted points indicate the
number of storeys above grade, B denotes basement, p-piles and P-piers.

Several salient features are to be noted, as follows: 1. Low build-
ings move or ride with the motion of the ground and the natural periods of
low buildings that are less than the predominant period of the ground are
suppressed; 2. Base shear coefficients are largest for the hard type soil,
least for the filled ground and intermediate for the soft soil; 3. Response
values are largest for the uniform 5% building and 5% soil damping ratios,
least for 3% building and 20% soil damping and intermediate for 3% build-
ing and 10% soil damping ratios; 4. Soil-foundation-building interaction
effects are pronounced for the hard and soft soil types for the range of
natural period of approximately 1.2 secs and less. For the filled ground
type, 1.8 sec to 1.0 sec range; 5. For tall buildings with natural periods
exceeding the above maximum SF'B system periods, the soil type need
not be considered. However, adequate foundation construction (piles or
piers) must be used to transmit the permanent and temporary loads to the
satisfactory bearing medium.

Base Overturning Moment Coefficient, Cypg

The relationship between Cyq and the SFB natural periods is shown
in Fig. 6 for the El Centro earthquake and in Fig. 7 for the Taft earthquake.
The general shapes of the Modified Spectra curves are similar to those for
the Cp curves. Comparison of Cyq with CB indicates that for low buildings
CM<CB; for medium height buildings Cpg 3 Cp ; and CMm>Cp for taller
buildings.

The maximum Cpg values occur for the hard soil, least for the
soft type soil. These values are reduced as the soil damping ratios are
increased from 5% to 10% to 20%. For the same ranges in the natural
period of the SEB systems, the same observations apply in this instance
also as mentioned in connection with the CR response curves. It should
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he noted that large Cyq response occurs for relatively small buildings; N3
in the case of hard soil and N5 for the soft soil.

Base Axial Force Coefficients, Cp

The relationship between Cp and the natural period of SFB systems
is shown in Fig. 8 for the El Centro earthquake and in Fig. 9 for the Taft
earthquake. This parameter may be considered to indicate either an
increase or decrease in the building weight. The Cp values of 0.15-0.2
are due to 60 gal vertical component input at -15m from the ground surface
For near focus earthquakes, greater changes in the column stress condi-
tions may occur and, in combination with the horizontal earthquake
component effects, may not be dismissed as being insignificant as it
usually is in current earthquake resistant design practice. This is
particularly so for long span buildings and cantilevered portions of
buildings.

Acknowledgment

Some forty undergraduate and graduate students in the Dept. of
Architecture of Waseda University have participated and contributed
efforts in attaining the aim of gaining new knowledge, understanding, and
insight on this important problem in earthquake engineering from 1967 to
date. The authors express deep appreciation for their cooperation.

References

l. Anderson, Blume, Degenkolb, Hammil, Knapik,Marchand, Powers,
J.E. Rinne (Chairman), Sedgwich and Sjorberg: Lateral Forces of
Earthquake and Wind, Trans. ASCE, Vol., 117, 1952.

2. Sakurai, J. and Minami, J.K.: Some Effects of Nearby Structures
on the Seismic Response of Buildings, Proc. 5WCEE, Rome, 1973.

3. Seed, H.B. and Idriss, I.M.: Soil Moduli and Damping Factors for
Dynamic Response Analyses, Univ. of California, EERC 70-10, 1570.

4. Foss, K.A.: Coordinates which Uncouple the Equations of Motion of
Damped Linear Dynamic Systems, ASME, Journal of Applied
Mechanics, Vol. 57 -A-86, 1957,



INTERNATIONAL SYMPOSIUM ON 183

EARTHQUAKE STRUCTURAL ENGINEERING
St. Louis, Missouri, USA, August, 1976

RESPONSE OF STRUCTURES EMBEDDED IN THE GROUND TO TRAVELLING
SEISMIC WAV ES

E.G. PRATER, Institute of Foundation Engineering and
Soil Mechanics

M. WIELAND, Laboratory of Hydraulics, Hydrology
and Glaciology

Federal Institute of Technology, Zurich

Switzerland
ABSTRACT

The interaction of a long structure with the ground is investigated using the
theory of wave propagation, The special feature of the investigation is the consid-
eration of the spacial variations of the input motions applied at points an the bound-
ary of the system. In the illustrative problem the underground is assumed to con-
sist of horizontal layers terminated by vertical trangmitting boundaries, and a hor-
izontal soil-rock interface. Nonlinear soil behaviour is accounted for using aRam-
berg - Osgood model for the deviatoric stress-strain behaviour. The equations of
motion are discretized using central finite differences in space and time. The use
of a dual grid gives more efficient discretization and greatly simplifies the rela-
tions at interfaces and boundaries. The analysis of travelling wave motions does
not give rise to much extra computational effort as compared with the case in which
the spacial variations of input motions are ignored. This is not the case with the
finite element method, which becomes much less efficient for travelling wave anal-
ysis.

INTRODUCTION

In current earthquake structural enginecring design it is usual to assume that
the inpuf motion is uniform along the base of the structure, or, as the case may be,
of the soil-structure system. In other words, the underground is assumed to be per-
fectly rigid and to move as a whole. This assumption is not too restrictive if the
horizontal dimensions of the structure are small in comparison with the wave-
lengths of significant components of the earthquake motion. For certain structures,
however, this will not be the case, and it will be necessary to take into account the
propagating nature of earthquake motions, i.e. the boundary conditions must be
formulated for travelling wave input.

In many structural analyses a part of the underground is included in the struc-
tural model in order to investigatethe interaction ofthe structure with the ground.
This, ofcourse, adds greatly to the cost of the numerical investigation, especially
as a realistic inclusion of an underground consisting of soil layers requires an as-
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signment of nonlinear stress-strain properties to the soil [1, 2],

If a structure is important enough to consider the problem of soil-structure
interaction it is only realistic to incorporate travelling earthquake motion into the
analysis. Since there is but scanty information available about differential earth-
quake motions at points in the ground [3], and in any case at points underlying
the structure in question, it is necessary as a first approximation to assume a
single travelling seismic wave which remains unchanged as it passes through the
part of the underground not included in the structural model [4]. Thus the bound-
ary motions are considered to he a phase-dependent phenomenon only.

The further away from the structure the artificial boundary line is drawn the
more realistic the structural model becomes. It is often convenient, however, to
let the artificial boundary coincide with a soil-rock interface, the underlying rock
being, to all practical purposes, rigid in comparison with the soil. The speed of-
the input travelling wave is then determined by the physical characteristics of the
rock. Due to the presence, in general, of underlying rock at a practical depth the
bottom boundary condition is more easily taken care of. What presents the grealest
problem from a practical point of view are the artificial side boundaries terminat-
ing the structural model. The problem arises from the reflections that take place
at these boundaries. These spurious reflections contaminate the solution and limit
the length of time for which it is valid [51.

The treatment of artificial boundaries is a rather knotty problem. The usual
practice is to place them as far as possible from the structure as is economically
feasible. If the structure is discretized with much refinement (using finite ele-
ments or finite difference approximations) it is usually not economically possible
to place the artificial boundaries far away from the structure: some investigators
have placed them at a distance of about two times the diameter of foundation away
from the structure [6, 2]. If, on the other hand, only coarse discretization is
used for the structure the position of the boundaries may be extended further into
the underground [7]. For an underground composed of horizontal layers some
improvement in the analysis may be effected by finding first the free field solu-
tion using a one-dimensional model analysis and then applying the free ficld ac-
celerations (or displacements) at the artificial boundaries.

In this paper simple transmitting boundaries devised by Lysmer and Kuhle-
meyer [6] have been used. Energy is absorbed at the boundaries using viscous
elements. They were originally used in finite elements analysis, but have also
found application in finite difference codes for nuclear shock loading [9]1. This
special type of boundary only functions if the incident wave impinges on the bound-
ary at an angle greater than about 40°, i.e. not at grazing incidence. For the
purposes of this investigation it has been assumed that the direction of the wave
front makes a small angle with the horizontal so that the above condition is satis-
fied on the side boundaries. It is also considered unnecessary to apply the free
field solution to these boundaries in the case of an underlying rock medium.
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Relatively few papers dealing with travelling seismic waves have appeared
in the literature.Dibaj and Penzien [10] have considered an earth dam resting
on a rigid base, and Dezfulianand Seed [4] have considered the response of soil
formations with sloping rock boundaries. The authors [11] have investigated the
hydrodynamic forces on gravity dams due to travelling waves with both vertical
and horizontal components. More recently Wolf [7] has considered a nuclear
installation (idealized as a plate on an elastic foundation in which slip and uplift
of the plate is possible) for travelling shear wave motions. QOther references to
buildings, bridges and underground pipelines are given in [3]. In most investi-
gationsto date the finite element method of analysis has been used. This method
may be rather inefficient for travelling wave input depending upon the number of
base nodal points. Thus Kaldjian [12] has utilized higher order finite elements
(using very few elements) to investigate dam-foundation interaction for spacial
variation in the ground motion, The finite difference method, however, does not
present this problem as the spacial variation of the seismic wave may be incor-
porated directly through the boundary conditions into the equations for wave pro-
pagation.
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THE PROPOSED MODEL

In recent years much effort has gone into designing nuclear power plants for
seismic loading. An important aspect of the seismic design is the structural inter-
action of the nuclear reactor containment vessel with the surrounding ground, The
nuclear reactor building is a massive structure which is embedded usually several
metres in the ground. The shape of the structure lends itself to axisymmetric ana-
lysis and finite element codes have been written which incorporate the arbitrary
nature of the seismic loading by approximating it by a Fourier series with a finite
number of terms [13]. Recent designs have used such codes in preference to
simplified one or two-dimensional spring-mass models [6]. In some cases, how-
ever, where particular aspects of the analysis require special investigation it may
be justified to carry ouf a two-dimensional plane strain analysis. For example,
Seed and Idriss [2] investigated the soil-structure interaction problem with non-
linear stress-strain models suited to soil behavicur using a finite element code
written for plane strain conditions. The chief point of the present investigationis
to evaluate the influence of travelling seismic waves and energy absorbent trans-
mitting boundaries. Since nonlinear finite element codes incorporating these fea-
tures are not available the authors have written a program based upon the finite
difference method for this purpose. For convenience a plane strain model was
chosen to represent the structural behaviour of the power plant system. The ideal-
ization of the system is shown in Fig. 1. The rigidity of the structure is based
upon the data supplied in reference [2],

THE FIELD EQUATIONS
The differential eguations of motion are the well known damped wave equations *

f’uiJrK&L:TL N Y
where T = U’ijfj + bL

where the dot notation implies differentiation with respect to time. Equation (1)
is valid for any type of material behaviour,

The strain displacement relations are given by

ey :%(ulj‘] tougi ) S )
For elastic behaviour the stress-strain relations are

O'L‘=C;_jk[ekl S 2}

For plane strain conditions with cartesian coordinates x and v equations (2) and
(3) reduce, for isotropic behaviour, to

Oyx = (A + 2 ) 4 *‘7\%‘?
Sux
Oyy ?\—a—l:(—+(7\+2/;.)5;¥ N )

C&r:/‘*(%(*%;‘z)

Substitution of the relations expressed in equation (4) into equation (1) leads to
a formulation of the problem in terms of the field variable u; . Alternatively, the

* The symbols used are defined in the notation



187

algorithmus may be so written that equations (1) and (4) are used in conjunction
with one another. In this way one works with lower order eguations, and both the
stress and displacement fields are obtained directly. Together with the boundary
conditions these equations define the problem completely.

THE NUMERICAL METHOD

The finite difference method using central finite differences has been found
to be quite suitable for solving the equations of wave propagation. In using the
stress-strain relations together with the wave equations (in an alternative manner)
it is convenient to specify the unknown discrete displacements and stresses at
staggered grid points, thus allowing the use of central finite differences in all equa-
tions. In effect, four grids are superimposed over one another, one for normal
stresses Oxx, Gyy,one for shear stresses Oxy , one for horizontal displace-
ment Wy and one for vertical displacement u, . The system of interlacingnets
as it is so called, is described in detail elsewhere [11]. Apart from the advantage
of using lower order difference equations, a better approximation for the shear
stresses is obtained and the formulation of houndary conditions is greatly simpli-
fied. pa s

L4 Ax 7
Um,n+1 ]

Fig. 2 System of interlacing nets Om-1,n

(Tm,n—1 Vm,n-t

The discretisation of equation (1) in the time domain takes the form

9 PRy . K s trd .t 1+ 5
s L I D WL 5 o (TN TR TOUN ¢ Y WP )
where m and n define the position of the field variable u;
It follows that the velocity at time £ +1 is given by
. g te b $ K .y ’
Up = [TL 1 + (_t - -2—‘)11'_ ] —J_E'S—-: K L ] (6)

4
At 2
The displacements are obtained by simple integration, viz:

£+ 2

te 3 _ s b
ST = u T T o+ oatug

u
The numerical scheme, which is explicit, belongs to a class which is only
conditionally stable. To ensure stability the iterative speed must be less than the
velocity of wave propagationin the material. For a region subdivided into rect-
angular mesh elements of sides ax, ay the following condition (after Courant
et al.) must be fulfilled if the errors at some time gtep do not hecome magnified
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with time : 1
At £ { $ . 1 ] }7_

7\-1-9_}4[(5)?)_‘_(247)] e e e e e e e (D
This formula is valid for the interior of a homogeneous medium, [n practice, it
is adequate to fix the time step, according to equation (7), for the stiffest sub-
region of the physical system. Alternatively, it may be preferable to employ an
implicit numerical scheme, e.g. that proposed by Newmark [see, for example,
reference 14 ]. Spacial discretisation for T; in equation (1), i.e. for terms
%%“ etc., and in the stress-strain relations for a~';1 etc., presents no diffi-
culties [11]. See Fig. 2.

CONDITONS AT AN INTERFACE BETWEEN TWO MEDIA

In general, when an elastic wave reaches an interface between two media
reflection and refraction take place. For the condition of no slip at the interface
the following conditions hold. Denoting the quantities in the two media by suffices
a and b

(i) equality. of displacements

Uy )g = (), R ()
(ii) equality of normal and shear stresses

(Unn)o = (G-nn)b 9)

(Onsla= (Opns)e

The stress or displacement free boundary presents a special case of these
conditions, in that the right hand sides of equations (8 ) and (9 ) become zero.
Using interlacing nets and simple interpclations it is a trivial matter {o express
the interface conditions ndiscretised form. The stresses are assumed to be con-
tinuous across the interface,

SEISMIC LOADING

In accordance with the nature of wave propagation the seismic loading is
introduced via the boundary conditions. I this case the right hand side of equa-
tion (8 ) is replaced by a known time dependent function.

(Ue)a = ug(x,t) 10
(Uy)q = vg (x, 1)

If the ground disturbance acts simultaneously at all points in contact with the rigid
underground

g (X, L) = Uug (t}
é . . 11
vg (x, 1) = vo (B) ()

For travelling wave input the wave arrives at each point of the bottom bound-
ary with a time dependant phase shift. In this case

ug(x,t) = uo(t'—x/vt) P T R (12)

ete.
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Fig. 3 Strong motion phase of the San Fernando Earthquake 1971,
Station: Paicomo Pam. (Max. horizontal acceleration:
1.25 g, max. vertical acceleration: 0.72 g)

TRANSMITTING BOUNDARIES
Using two specialised equations of motion at the side boundaries, namely
Oxy = — ap Cp Uy Y ¢ =)

and .
Oxy = — bo Cg 0y I ¢ Y

where a, b are constants and Cp, , Cg are the velocities of compression and
shear waves respectively of the material beyond the boundary, very small re~
flections are produced and energy propagates to the region outside of the bound-
ary. This is true if the waves impinge at angles which are nol near grazing inci-
dence, Optimum dissipation is dependent on the choice of a and b and the angle
of incidence. For adequate results it is sufficient to set a = b = 1, [8]. It should
be pointed out that equations (13) and (14) were derived, strictly speaking, for
linear elastic materials., In the absence of published work for nonlinear materials
it has been assumed by the authors that transmitting boundaries may be used,
equations (13) and (14) being continually adjusted for the changes in the instan-
taneous values of the tangent shear modulus 4. When the transmitting bound-
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aries are deleted from the system the usual roller boundary condition is applied.
Fig. 2 shows the details of the computational grid scheme. On the transmitting
boundaries shear stress ( 0%, ) and horizontal displacements (velocity i, ) are
located. Thus, for the purposes of coding, the normal stress (Oxx ) and the
vertical velocity (a, ) at half a grid length ( AX ) away from the boundary are

2
used in the discretized form of equations (13) and (14).

MATERIAL PROPERTIES

Damping Characteristics :

Linear viscous damping may be introduced into the system through the term
Ky in equation (1). If w, is the fundamental frequency of the discretized system
the c¢ritical value of viscous damping for the fundamental mode is given by

Kerit = 298 9 O ¢ 59

Variable damping throughout the system is achieved by assigning different per-
centages of critical damping at the various discrete displacement points, 1.e.

K = % K. B ¢ €5

In the actual program used both ¢ and K were assumed constant for each mate-
rial zone.

Seed and Idrigss [1] have shown that damping is strongly strain dependent,
being rather low at small strains but increasing to over 20% at strains less than
1%. A bilinear hysteretic model idealizing real stress strain behaviour was used
in some investigations, and later the concept of an equivalent linear parameter
for approximating nonlinear hysteretic characteristics was introduced [1], In
the present study nonlinear hysteretic damping is obtained using the Ramberg-
Osgood model. This model is used for the bottom soil layer, and in all zones of
the system viscous damping of varying amounts is assumed. An experimental
check on the critical damping (obtained using a finite element code to deter-
mine w,) was carried out, and Kepjt adjusted to suit the nonlinear soil-structure
system.,

Stiffness Characteristics :

The Ramberg - Osgood model is now very well-known in both structural engineer-
ing [15,16 ] and the seismic analysis of soil layer systems [17, 18 ], The equa-
tions have been used either to deseribe load-displacement characteristics in struc-
tural members or the shear stress-strain characteristics of soils. As a first ap-
proximation towards the 2 -dimensional study of seismic loading of soil deposits

it has been assumed that the volumetric behaviour is linear elastic without tension
cut-off. The deviatoric behaviour is described by the following Ramberg-Osgood
constitutive law l R

(e By, = (Tt =Tt * o (T ~To)for,

-~ 4 _ 2 L 9 2

loct = = [(6'” ny) + (6\/)'.'61?_) (O~ Oy ) 6(6;; * Oxz "Gy: ]
i.e. shear behaviour is characterised by the behaviour in the octahedral plane
(Toct , ¥oct). The model has four parameters «, R, ¥y » Ty where the yy and

T, define a reference point for the stress~strain curve, which is usually asso-

co. 17

1

where %
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Three cases were investigated:

aj rigid underground ( V, =o0); transmitting side boundaries.
b) travelling wave input (V, = 1500m/sec); rigid side boundaries.

c) as b) but with transmitting side boundaries.

The assumed material properties are shown in Fig. 1.

For numerical stability the time step was chosen as at = 0.002 sec, as
determined by the wave velocity in zone 4 . This value of at corresponds to a
frequency of about 200 Hertz, and permits a good approximation of the accelera-
tion seismograms, which have a maximum frequency of less than 20 Hertz,

The critical damping of the system is Kgpit = 3.8t sec m

wo= 9,1 sec‘l.

, where

The time response for displacement and principal stress components for the
three cases a), b), c) given above are shown in Figs. 5, 6 and 7 for a point (A)
on the axis of symmetry at the base of the reactor foundation. The displacements
given are relative to the ground displacement immediately below point A, A com-
parison of cases a) and ¢) shows that the particular travelling wave investigated
does not have a substantial influence on the displacement response either qualita—
tively or quantitatively. Some differences are evident, however, in the stress
response. The greatest differences occur hetween cases b) and ¢}, namely between
rigid and transmitting side boundaries. In Table 1 the extreme values of stresses
and displacements at point A (Fig. 1) for the three above mentioned cases are
given,

Ymax Vmin %Y max %Y min

[cm] [cm] [kp/cm?] [kp/cm?]
case a 9.6 -11.4 4.0 -7.7
case b 12.2 -14.1 5.5 - 8.8
case ¢ 8.4 -11.5 3.7 - 6.4

Table 1: Extreme values of stress and displacement at point A (cf. Fig. I)

The dominant freguency of the displacements is in the region of the fundamental
frequency of the system. The frequencies of the stresses, however, are much
higher and are in the same order of magnitude as the earthquake frequencies, It
should be added that in the reactor structure still higher stress frequencies occur
because of the greater speeds of wave propagation and the presence of wave re~
flections, In one case the Ramberg - Osgood material was replaced by elastic ma-
terial. The influence on the results was not significant, This may be explained
by the fact that the shear stresses produced by the seismic loading were well be-
low the stress parameter 7y in the Ramberg - Osgood model, and the behaviour
was quasi-elastic. Another consequence of this was the low value of nonlinear
hysteretic damping,

In Fig. 8 the extreme values (i.e. limiting envelope to the curves) of stress
and displacement along the base of the reactor foundation are shown,
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ciated with the yield point, The initial shear modulus, Gg, is defined by

Ty

Uy

Streeter et al. [17 ] assume Ty about 80% of the shear stress at yield for a soil
material. yo and T, define the point of most recent stress reversal. The para-
meter ¢ equals 1 for the ‘skeleton'curve and 2 for the ‘branch'curve (i.e. un-
loading or reloading). For c =1, ¥, = 4,=0.

Ggo =

Toct
'C'y % -
_________ (£, )
5
branch curve skeleton curve

L}:{‘

) -
r< XY
branch curve

Fig. 4 Stress-strain behaviour of Ramberg-Osgood hysteretic mode!l
for material zone 1
The curves were constructed with the following material
characteristics: o
G, = 1480 kp/em™ , R =3, T, =15kp/cm

For sand good correlation with experimental data has been found for =1,0 and

R =3, [171. These values have been adopted in this paper. In fact, the parameter
R is the decisive parameter in the model. It enables behaviour between elastic

(R = 1) and elastic-ideal plastic (R=90) to be modelled. Thus for simple cantilever
structures Solnes et al. [16] assume R = 10.

The hysteresis behaviour of this simple nonlinear four parameter model is
llustrated in Fig. 4.

SOME NUMERICAL RESULTS

The system shown in Fig. 1 was subjected to the seismic loading using verti-
cal and horizontal components of a registered earthquake (San Fernando - 1971 -
Paicomo Dam). These seismograms are shown in Fig.3 for strong motion phase
of duration of 12 seconds. The seismograms weére not scaled down so that relativ-
ely large ground accelerations of peak magnitude of the order 1.256¢g, were fed into
the system,

A stiffness of the underlying rock, giving a travelling wave velocity of
1500 metres/sec, was assumed, but otherwise ignored in the analysis.
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Fig. 5 Response of point A: relative displacements (u(t) horizontal
and v(t) vertical) and principal stresses ( 07,(t) and ¢, (1),
cf. case a.
System: transmitting boundaries, cf. Fig. 1
Loading: infinite travelling wave velocity Vt = oo
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v(t) vertical) and principal stresses ( G, (t) and ¢~ (t), cf. case b.

System: rigid side boundaries.
Loading: travelling wave, velocity V,=1500 m/sec
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CONCLUSIONS

The analysis of the response of a nuclear reactor soil-structure system for
seismic loading, taking into account the self-weight of the structure to properly
simulate the nonlinear stress-strain behaviour of the ground, shows

"1, A travelling wave of velocity 1500/sec through the underlying rock reduces
the maximum response by about 10 —15% as compared with the upper bound
case, a rigid underground. The lower the velocity of the travelling wave the
greater is thiseffect, and both quantitative and qualitative differences are to
be expected,

2. The choice of the side houndary conditions substantially influences the results.
Transmitting boundaries reduce the stress and deformation responses by up
to 30% as compared with fixed boundaries,

3. The influence of the nonlinear hystereticmodel is not significant in the range
of small shear siresses Ty /TY <.0.2. The increased computational effort
(about 2.5 times as much computer time) is hardly justified in the lower stress
range.

4, Should travelling waves be of importance in the analysis it is economical to
introduce them into existing finife difference codes.

NOTATION

u . displacement vector*
0 :  stress tensor

body force vector

: strain tensor

Cijkl :  components of the elasticity tensor
mafterial density

K, Kuit : viscous damping coefficients

A, M 1 Lame's elasticity constants

T, . gtatic equilibrium term in the wave equation
at :  time step

Ug , Vg . horizontal and vertical ground displacement
Uy, Vy . seismic disturbance

X,y :  cartesian coordinates

Vi :  speed of travelling wave

CS , CP S-wave and P-wave velocities respectively
W +  fundamental frequency

3 . percentage critical viscous damping

et , Joct 1 octahedral stresses and strains

c R, Ty, py G . constants for Ramberg-Osgood model

acceleration due to gravity

* In the tensor notation u denotes differentiation with respect to
the coordinate x; . ‘
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SUMMARY

For the Tumped parameter and finite element methods appliied to
dynamic soil-structure interaction prablems, the effect of various para-
meters and possible sources of error are investigated through a limited
parametric study. Single and multi-degree-of-freedom systems with various
mass ratios, with and without internal and radiation damping, are sub-
jected to severe loadings. The single-degree-of-freedom system consists
of a rigid disk resting on the surface of an elastic stratum. Five-mass
models are used for the multi-degree-of-freedom systems. For the lumped
parameter model, a rational procedure is presented to find appropriate
springs, dashpots, effective masses and equivalent modal damping. This
study considers the vertical motion of surface-mounted axi-symmetric
structures on a homogeneous elastic stratum underlain by bedrock: For
these problems, it is demonstrated that the lumped parameter metnod can
produce results that give good general agreement with finite element
results which include the soil. The results indicate that it is possibie
to apply the lumped parameter method to problems beyond those of a
harmonic forcing function and an elastic half-space.

INTRODUCTION

The Tumped parameter method, based cn elastic half-space theory, and
the finite element method are the two most common treatments currently
being used for dynamic soil-structure interaction problems. Each method
has unique advantages and disadvantages which are somewhat dependent on
the characteristics of the specific problem. Both methods are used
extensively, but an evaluation of the accuracy of each is not possible
for most cases due to the lack of exact solutions or test data.
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The Tumped parameter method evolved from analytical solutions
obtained for a harmonic forcing function acting on a rigid disk mounted
on the surface of an elastic half-space. In 1966, Lysmer and Richart
[13] developed an analog solution for the vertical case by setting the
soil spring equal to the static stiffness coefficient; then, a constant
damping coefficient was selected which gave the closest agreement to the
elastic half-space solution. Hall [6] developed similar analog solutions
for the sliding and rocking cases; in the latter case, an effective mass
was used to match the resonant frequencies. The effect of soil-structure
interaction for earthquake problems was investigated by Parmelee et al.
[e.g. 15] by expanding the elastic half-space results of Bycroft [3] to
a two-mass model. Sarrazin, Roesset and Whitman [18] examined the inter-
action effects of the various parameters used in a similar lumped
parameter model. In order to utilize the modal method for multi-degree-of-
freedom systems, several technigues have been developed to represent the
soil dashpots by equivalent modal damping {2, 4, 10, 17, 20].

An important advantage of the lumped parameter method over the finite
element method is that the soil resistance is represented by a limited
number of springs and dashpots, and the resulting model is relatively
simple. In addition to the economic savings which result, it is also
feasible to obtain mode shapes and natural frequencies. If the dynamic
loads are well defined, the modal method of analysis can then be used to
determine a time history response, and a response spectrum analysis can
also be performed. The most important advantage associated with this
method, however, is that it easily takes into account the three-dimensional
nature of the probiem.

Because of the derivation of the Tumped parameters, good accuracy is
obtained for problems involving harmonic forces acting on surface-mounted
structures situated on a homogeneous, elastic half-space. Although some
work has inciuded one or more of the following: nonharmonic Toading,
partial embedment of the foundation, the presence of bedrock, and
inhomogeneous soil {8, 12, 14, 15, 18], the accuracy of the Tumped para-
meter method under these conditions has not been clearly established.

With the finite element method, such aspects as embedment and strati-
fication can be accurately represented [21]. Problems that can be
considered as two-dimensional, such as the long earth dam subjected to an
earthquake, as studied by Wilson [23], are ideally suited to the finite
element method. Spatially varying material damping may also be accommodated
[7] using stepwise numerical integration procedures. A problem which
occurs in the finite element model, however, is the necessity to absorb
the energy which reaches the boundary in order to simulate the unbounded
$0il. Viscous boundary dashpots were derived by Lysmer and Kuhlemeyer [12]
to absorb this enerqgy. The results are good for harmonic forcing
functions, but these dashpots have yet to be proven adequate for general
Teading and gecometry.

A distinct disadvantage of the finite element method is that, due to
computational limitations, it is not generally feasibie to analyze the
three-dimensional case. Isenberg and Adham [8] performed an earthquake
analysis for a circular three-dimensional structure by considering only a
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two-dimensional plane strain section through the center of the structure.
Although the embedment, bedrock and Tayered soil can be represented, the
simplification to two dimensions can introduce significant errcrs into the
analysis [e.g. 11, 19].

The present work includes a limited parametric analysis which compares
solutions obtained by the Jumped parameter and finite element methods.
Included is a raticnal procedure to determine the appropriate springs,
dashpots, effective masses and equivalent modal damping for the Tumped
parameter model. The effects of various parameters and possible sources
of errors are identified for both methods. While no claim of proof is
made as regards accuracy of the two treatments, the results indicate that
it is possible to apply the Tumped parameter method to problems beyond
those that involve a harmonic forcing function and an elastic half-space.

PROBLEM SELECTION

Due to limitations in the two methods, there are few problems avail-
able for comparative purposes. Even for problems that can be solved by
both methods, an absolute evaluation of each method cannot be made due to
the lack of exact solutions or test data. Therefore, any evaluation of
accuracy must come from a comparison of these two approximate methods.
Any meaningful comparison of the two methods must minimize the number of
variables considered.

A problem for the lumped parameter method must be one for which
springs, dashpots and effective masses can be obtained; for the finite
element method, the problem usually needs to be two dimensional. Since an
infinite half-space problem could introduce significant errors into the
finite element analysis at the lower horizontal boundary of the model, the
comparison problem is chosen to be bounded by bedrock beneath the soil.

This study considers the vertical motion of axi-symmetric structures
mounted on the surface of a homogeneous elastic stratum underlain by a
rigid base. This case was selected because the Tumped parameter variables
{spring, dashpot and effective mass) can be determined from existing solu-
tions [3, 22]. This allows an independent comparison to be made with the
finite element results. The dashpots are determined from Warburton's
amplification data [22] which includes depths to bedrock up to 4.0 radii.
The maximum depth of 4.0 radii is selected herein because this will result
in higher effective radiation damping, and this damping has a significant
effect on the response of the system.

The two structural configurations shown in Figure 1 are considered for
comparison of the two methods. The first comprises a rigid disk resting on
the surface of the elastic stratum, and will be referred to as the single-
degree-of-freedom (SDF) system. The other configuration, similarly fognded
on the stratum, consists of five equal masses connected by springs having
equal stiffnesses, and will be referred to as the multi-degree-of-freedom
(MDF) system. The springs that connect the MDF masses are dependent on the
mass and are selected to produce a fundamental natural frequency of 5.0 cps
for the system when the soil is considered to be rigid. This is accomplish-
ed by setting k/M = 1637 sec -2; this corresponds to a frequency in the
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Figure 1 - Structural Configurations for the Example ProbTems

same range as the resonant frequencies for the SDF system, and should allow
for significant soil-structure interaction.

The mass of the structure, M, is expressed in terms of a dimensionless
mass ratio, b, given as

b=M3 (1)
prO

where p is the density of the soil and vpo is the radius of the foundation.
Mass ratios of 5, 10, 20 and 30 are considered herein, and Poisson's ratio
is v = 0.25, as these values correspond to those used by Warburton. The
resonant frequency data are presented in the form of dimensionless fre-
quencies, a,.. For this parametric study, it is desirable to introduce time
into the anglysis. The resonant frequencies, f, are related to the dimen-
sionless frequencies by

a a_ Vv
f = 0 g.: _.9. . (2)
2ﬂr0 e 2m o

where G is the shear modulus and V. = /G/p is the shear wave velocity of the
soil. For constant a_ only the ratio Of V /v affects the resonant
frequency. For this study, the range of 3-5 Cps was selected for the

ln

-~
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SDF systems resonant frequencies. This range is obtained by setting
V/r = 45 sec1,

Two Toading conditions are considered herein. The first is a suddenly
applied constant force, Py, for which the maximum undamped amplification
of a SDF system is 2.0. The second Joading, shown in Figure 2, is

[ T T T T T T T
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Figure 2 -~ Sine Sweep Forcing Function
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Figure 3 - Response Spectrum for the Sine Sweep Forcing Function
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designated as the sine sweep forcing function. It consists of 13 cycles,
with an initial frequency of less than 1.0 cps to a final frequency of

about 10 cps. It is a more severe loading condition than the first, because
it can cause significantly higher ampiifications, and the response is depen-
dent on the natural frequency of the system. This forcing function is not
intended to represent an actual loading condition, but is selected instead
to provide a critical basis for comparison of the lumped parameter and
finite element methods. The response spectrum for the sine sweep forcing
function is shown in Figure 3 as a function of the undamped natural fre-
quency, f, of a SDF system for various fractions of critical damping, D.

The resonant frequencies of the exampie SDF systems fall within the range

of the sine sweep forcing function.

LUMPED PARAMETER MODELS

The lumped parameter models, shown on the left side of Figure 4, are in-
tended to represent the actual systems shown in Figure 1. The soil is
represented by a spring and dashpot for both the SDF and MDF configurations.
Also, an effective mass, M, is introduced to match Warburton's resonant
frequencies [22]. The soil spring, K;, for a stratum thickness = 4 rgy and
v = 0.25, is taken equal to 7.35 Gry [9]. The dashpot represents both
radiation damping and material damping in the soil. For the present, only
radiation damping is considered, and the dashpot coefficients can be deter-
mined from Warburton's data. From the resonant amplifications, A, given in
column 2 of Table 1, it is possible to obtain the effective fractions of
critical damping, D, for a SDF system from

A= (3)
The effective radiation damping fractions for vertical motion, D;, obtained

from Warburton's vertical amplifications, are shown in column 3 of Table 1.
The values are significantly lower than for the infinite half-space [16].
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Figure 4 - Models for the Lumped Parameter and Finite Element Methods
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Table 1 - Parameters for the SDF System

Mass AmpTification | Effective { Resonant Effective Damping
Ratio Damping Frequency | Mass Ratio | Coefficient

b A D, f (cps) m Co

(1) (2) (3) (4) (5) (6)

5 4.2 .120 4.52 3.10 1.455

10 7.2 .0696 4.09 1.93 1.193

20 19 .0263 3.42 1.39 .638

30 34 .0147 3.00 1.21 437

The effective mass, M, can be obtained from the resonant frequency data
of Warburton. Frequencies which result from V./ro = 45 sec™! are shown as
a function of the mass ratio in column 4 of Taé1e 1. The effective mass
can now be found by using these frequencies, the damping fractions in column
3 of the tablie, and the appropriate spring constant. To be consistent with
Warburton's data, Bycroft's spring stiffness [3] is used to obtain the
effective mass ratio, m, shown in column 5 of Table 1, where

=
I
==
—
~

It is now possible to determine the dashpot coefficients for a SDF
system since the damping constant is given by

— ) '
CZ =7 DZ KZM = COPO Gpm (5)

where C, is a dimensionless dashpot coefficient given in column 6 of Table 1.
Co includes the effect of Poisson's ratio, the damping fractfon, the
stiffness coefficient, and the mass ratio, b. Since this coefficient and
therefore the damping constant, C,, are dependent upon the mass (actual or
effective) they must be consistent with the mass selected for the analysis.

The dashpot coefficients come from the amplification data that occur at
the resonant freguencies. For most practical applications this is probably
adequate because it is at the resonant frequency that the maximum response
occurs. If the forcing frequency is far removed from the resonant frequen-
cy, the damping is less important. Although the dashpot coefficients have
been derived from data for a SODF system, it is reasonable to use the same
values for the MDF system. For a MDF system on a flexible soil, the funda-
mental resonant frequency will always be less than that of a SDF system with
the same total mass. If the resonant frequency of the MDF system is only
slightly Tess than that of the SDF system, the MDF system is essentially
acting as a rigid body, and a similar condition exists for both systems.

If the resonant frequency of the MDF system is much lower, the soil-struc-
ture interaction effects will be minimized and the dashpot coefficients
become Tess important.
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FINITE ELEMENT MODELS

The models used for the finite element analyses contain 467 elements
and 263 nodes, and are similar to that given previously [9]. The concen-
trated masses are located at a grid spacing equal to the radius of the disk,
rg> &S shown on the right side of Figure 4, thereby resulting in a condensed
model having 102 degrees of freedom for the MDF example case. For the
resonant frequencies given in Table 1, the spacing of the concentrated
masses varies from 1/10 to 1/15 the length of a shear wave, and is well with-
in the limits suggested by Lysmer and Kuhlemeyer [12]. For some of the
following cases investigated, no damping is considered; for others, dashpots
are placed along the vertical outer boundary of the model. The boundary
dashpots are taken as those derived by Lysmer and Kuhlemeyer. The repre-
sentation of internal damping is discussed subsequently.

RESULTS FOR THE SDF SYSTEMS

For the Tumped parameter model, the response to the two loading condi-
tions can be obtained by any routine numerical integration technique. As
computer run time is insignificant, accurate time-history responses can be
obtained by using an integration time increment that is much smaller than
the period of vibration. Moreover, the maximum amplification can be obtained
directly fram response spectra if the undamped natural frequency and fraction
of critical damping are known. For the finite element model, solutions were
obtained by a matrix integration procedure developed by Wilson [23]. As
described subsequently, the Wilson technique utilizes a diagonal mass matrix
and a damping matrix which is expressed as a function of the mass and stiff-
ness matrices. For the present study, it was necessary to modify the pro-
cedure to include a diagonal damping matrix so as to incorporate the
boundary dashpots. The time increment used for the sine sweep analyses
is .01 sec. Since the fundamental natural frequencies are less than 5.0 cps,
the selection of this time increment ensured at Teast 20 increments for
each cycle at resonance.

A comparison of the results for the suddenly applied constant force is
presented in Figure 5 as the amplification, A, versus mass ratio, b. The
upper limit shown is the amplification which occurs for the Tumped parameter
model when the radiation damping is ignored; the Tower 1imit shown is taken
to be the amplification corresponding to half-space radiation damping.

When radiation damping is properly included, the amplifications for the
Tumped parameter model are only 1 to 7 percent higher (depending on b) than
for the finite element model. In the former case, the amplification for a
suddenly applied force is independent of the natural frequency of the system.
The amplifications for both the actual mass and the effective mass are
therefore identical, and depend only on the fraction of critical damping.

For the purpose of comparing the behavior of the Tumped parameter and
finite element models, the sine sweep forcing function provides a more
severe test. The amplifications which resuit from this loading condition
are shown in Figure 6. The upper 1imit amplifications are between 7.2 and
13.3 when the actual mass is used, and between 6.7 and 9.3 using the effec-
tive mass. The undamped upper limits increase as the mass ratio decreases,
because, as can be seen from the response spectrum (Figure 3), amplifi-
cations increase with increasing frequency in the range of frequencies
considered. For a specified mass ratio, the actual mass will have higher
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amplifications than the effective mass because the natural frequency is
higher in the former case. When radiation damping is included, amplifica-
tions decrease as the mass ratio decreases. This is because the radiation
damping is higher for the lower mass ratios and more than offsets the
higher undamped amplifications.

For the case of no internal material damping, shown in Figure &, there
is fairly good general agreement between the results of the two methods.
Amplifications for the Tumped parameter method are as much as 11 percent
lower than the finite element amplifications for the actual mass, and are
as much as 21 percent lower for the effective mass. Utilization of damping
fractions for the half-space would again significantly lower the Tumped
parameter results.

Part of the differences shown in Figure 6 may be due to the presence of
the vertical boundary of the finite element model. The boundary dashpots
represent the "standard viscous boundary" as presented by Lysmer and Kuhle-
meyer [12] and have not been shown to provide accurate solutions for this
type of dynamic loading condition. For the case of the suddeniy applied
constant force, the amplifications for the finite element method are
consistently lower than for the lumped parameter method, whereas for the
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sine sweep, the amplifications for the finite element method are generally
higher than for the Tumped parameter method. The boundary does not affect
the results for the suddeniy applied constant force because of the short
time interval reguired to attain the maximum amplification. For the case
of the sine sweep, however, the maximum amplification takes place after
several wave reflections have possibly occurred at the outer vertical bound-
ary. The results were essentially the same when the boundary dashpots were
removed. Also, for the case of b = 5, the amplification obtained from the
finite element results is siightly higher than the resonant amplification
predicted by Warburton [22]. It therefore appears reasonable to assume
that the finite element results are high and are probably due to the presence
of the boundary.

Inclusion of internal material damping is accomplished with the Tumped
parameter method simply by adding it to the radiation damping. With the
finite element method, however, the internal damping is represented by the
damping matrix, [C], and is expressed as a function of the mass and stiffness
matrices, [M] and [K], i.e.

[C]=o [M]+8 [K] (6)

the fraction of critical internal damping is frequency dependent and is
commonly expressed as follows:

Di = gop— + 6T T (7)

in which D; is the fraction of critical damping in the ith mode and fy is the
natural frequency of the ith mode. For the present analysis, o and B were
chosen to be 0.75 sec™! and 0.0012 sec, respectively, so that the internal
damping fraction is approximately equal to .03 in the range of resonant fre-
quencies considered for this problem. When internal damping in the soil is
included, the influence of the boundary diminishes because the elastic waves
are partially damped as they approach and return from the vertical boundary.
For an internal damping fraction equal to .03 the results are in better
agreement than for the case of no internal damping; the maximum difference

is reduced to about 10 percent.

In addition to the amplifications shown in Figure 6, time history
responses are shown for the case of b = 5. The responses obtained from the
finite element method, and from the Tumped parameter method using the actual
mass, are shown for the case of no internal damping in Figure 7. The
normalized displacement, &, is the dynamic displacement due to P(t) divided
by the static displacement due to Pgy. The maximum absolute value is equal to
the amplification, A. The finite element response increases uniformly for
about 3 sec and then oscillates somewhat erratically, with the maximum
response occurring at about 3.7 sec. Again, it seems probable that the
later oscillations are high due to the vertical boundary of the finite
element model. The response of the Tumped parameter model increases at a
slower rate. As the natural frequency of the system with the actual mass
is higher than with the effective mass, the model is respeonding more to the
higher frequency portion of the sine sweep which occurs at the Tater times.
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In Figure 8, the response of the finite element model is compared to that
of the Tumped parameter model with the effective mass. The internal damping
fraction is taken equal to .03. A higher value was not selected because it
could diminish the effect of the radiation damping. The results are in good
agreement; both displacements increase at a similar rate until the maximum
displacement is achieved at 3.0 sec. Inclusion of the additional mass lowers
the natural frequency of the lumped parameter model to approximately that of
the finite element model. As a result, both achieve the maximum displacement
during the portion of the forcing function which corresponds to the resonant
frequency. The finite element response decays less rapidly and this may
again be due to the presence of the vertical boundary.



210

RESULTS FOR THE MDF SYSTEMS

With the finite element method, there are no additional problems asso-
ciated with considering a MDF structure rather than a SDF system. Use of a
Tumped parameter model requires that when an effective mass is used, the

~additional mass be included with the base mass of the structure. The funda-
mental frequencies for the lumped parameter models are shown in columns 2
and 3 of Table 2. They are lower than the corresponding SDF frequencies
because of the flexibility of the structure.

Table 2 - Parameters for the MDF System

Mass Fundamental Frequency Energy Fraction Damping Fraction
Ratio

b fy (cps) Y1 D,

Actual Effective Actual Effective Actual Effective
Mass Mass Mass Mass Mass Mass
(1) (2) (3) (4) (5) (6) (7)

5 4.45 4.07 .220 .521 .0264 .0625
10 4.02 3.67 .386 .604 .0269 .0420
20 3.40 3.15 .587 .703 .0154 .0185
30 L 2.98 2.83 .695 .758 .0102 0

When internal structural damping is neglected, the Tumped parameter
solutions may be obtained directly because the dashpots which represent the
soil can be expressed as a diagonal damping matrix. The governing equations
can be solved using numerical integration techniques such as that of Fu [5]
or of Wilson [23]. The method of Fu is directly applicable because it util-
izes a diagonal damping matrix whereas the Wilson technique must be modified
to accommodate a diagonal damping matrix.

When internal damping is included, it is usually necessary to utilize
the modal method of analysis because the resulting damping matrix is not di-
agonal, and it is difficult to construct the damping matrix to properly
account for damping in both the soil and the structure. When the modal
method of analysis is used, it is necessary to represent the soil and struc-
tural damping by equivalent modal damping which can be approximated by the
commonly used procedure presented by Biggs and Whitman [2], or by other tech-
niques. In the case of only vertical motion, the Biggs-Whitman formulation
reduces to

0. = DzEzi i DsEsi (8)
Ezi * E51

where Dj is the equivalent modal damping for the ith mode, D, is the damping
fraction for vertical motion, Dg is the damping fraction for the structure
and Ezj and Egj represent the energy stored in the soil and in the structure,
respectively, for the ith mode.
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o Structural Damping - The case of no structural damping is of interest
because the Tumped parameter solutions can be obtained with both dashpot
damping and equivalent modal damping. Amplifications of the top mass in the
lumped parameter and finite etement models subjected to the sine sweep forc-
ing function are shown in Figure 8. Only radiation damping is included.
Since no internal damping is included, the finite element amplifications are
probably high due to the vertical boundary. The Tumped parameter results
with dashpot damping are obtained with the modified technique of Wilson [23].
When the modal method is employed, the lumped impulse method of Biggs [1] is
used. The equivalent modal damping is determined from Eq. (8) with
Dg = 0, hence

B (9)

Ezi * Esi

in which y; represents the fraction of the total energy stored in the soil
spring in the ith mode. D, is given in column 3 of Table 1.

As shown in Figure 9, the amplification is lower when the effect of soil-
structure interaction is included than when the stratum is rigid, as the
decrease in frequency from 5.0 cps, and the radiation damping both cause a
decrease in amplification (Figure 3). It can be seen that amplifications
for the Tumped parameter model utilizing the actual mass and its associated
dashpot are as such as 30 percent higher than the finite element amplifi-
cations; however, amplifications for the Tumped parameter model utilizing
the effective mass are as much as 26 percent lower than the finite element
amplifications. The significant decrease caused by the inclusion of the
effective mass can be explained by Tooking at the first mode of vibration.
The energy fraction stored in the soil spring for mode 1, v,, is given for
the actual mass and the effective mass in columns 4 and 5 of Table 2. The
soil spring contains more of the total energy for the case of the effective
mass, and the energy ratio increases as the mass ratio increases. To obtain
the equivalent modal damping fractions for the first mode, the effective radi-
ation damping fractions in column 3 of Table 1 are muitiplied by v,, in
columns 4 and 5 of Table 2, leading to columns 6 and 7 of Table 2.  Amplifi-
cations of the lumped parameter model with eguivalent modal damping are
consistently lower than those of the model with a dashpot. This generally
occurs for viscous damping and the technique has recently been expanded to in-
clude a frequency factor which tends to reduce the damping [4, 17, 20].

Adjusted Modal Damping Fractions - Since modal damping is an approximation
to dashpot damping, and since the amplifications for the dashpot damping are
available for the case of no internal structural damping, it is possible to
adjust the eguivalent modal damping fractions to give better correlation with
the dashpot damping results. This procedure is demonstrated by considering
the effective mass case for b = 5. As shown in Figure 9, the amplification
of the top mass is 14 percent Tower for the Biggs-Whitman modal damping solu-
tion than for the dashpot damping solution. If the mcdal damping fractions,
for each mode, are reduced by 30 percent, the amplification of the top mass
for the modal damping solution is equal to that of the dashpot damping solu-
tion. Note that the base amplifications or the amplifications of any other
point on the structure could be equated instead of the top amplifications.
Also, the amplifications of various points on the structure could be averaged
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in some manner, and average amplifications could then be eguated. The differ-
ence in amplifications for various points on the structure can then be deter-
mined to obtain an indication of the overall accuracy. The result of the
adjusted damping fractions is that the relative damping between the various
modes, as determined by the Biggs-Whitman procedure, is maintained because all
modes are adjusted by the same percentage.

Results With Structural Damping Included - The same problem is now altered
to incorporate internal damping. The internal damping fractions for the soil
and the structure are both set equal to .03. The internal damping in the soil
can be added directly to the radiation damping. For the lumped parameter
method with modal damping (not adjusted) the modal damping fractions, obtained
from Eq. (8), are .03 higher than those used for the earlier analyses.

The amplifications of the top mass are shown in Figure 10. It can be seen
that the amplification for rigid soil is equal to 5.9. For the case of no in-
ternal damping, the amplification is 8.2. This reduction is due entirely to
the effect of the structural damping. For the lumped parameter method with
modal damping and actual mass, the amplifications are as much as 15 percent
higher than the corresponding finite element amplifications. These differences
would be increased if the modal damping fractions would be adjusted. For the
case of the effective mass, the lumped parameter amplifications are as much as
27 percent Tower than the finite element amplification if the Biggs-Whitman
modal damping fractions are used. The maximum difference is reduced to about
19 percent when the adjusted damping fractions are used. The results for the
two methods show good general agreement, but not as good as for the SDF system.
Again, it appears that the effective mass should be used for the lumped para-
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meter method; also, the adjusted modal damping fractions should be used, par-
ticularly if the amplification is very sensitive to damping.

CONCLUSIONS

In this paper, dynamic analyses have been performed using the Tumped para-
meter and finite element methods. Included is a rational procedure to obtain
springs, dashpots, effective soil masses and eguivalent modal damping fractions
for the lumped parameter method. The effects of various parameters have been
examined. A Timited parametric analysis has been performed to compare the re-
sults of the two methods. Single and multi-degree-of-freedom systems with var-
fous mass ratios, with and without internal soil and structural damping, have
been subjected to two loading conditions. For these problems, it has been de-
monstrated that the Tumped parameter method can produce results which give good
general agreement with finite element results which include the soil.
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NOTATION

A = displacement amplification;

ag = dimensionless frequency;

b = dimensionless mass ratio (See Eq. 1);

Co> Cz = dashpot coefficients (See Eq. 5);

D = fraction of critical damping;

£ = stored energy;

f = vesonant freguency;

G = s0il shear modulus;

Kz = s0il spring stiffness;

M = total mass of structure;

M = effective mass of soil and total mass of structure;

m = dimensionless mass ratio (See Eq. 4);

Po = maximum magnitude of applied force;

P (t) = applied force (function of time);

ro = radius of the foundation;

T ;I Q = ¢t
)

energy fraction (See Eg. 9);

normalized displacement; and
soil density.
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SUMMARY

The motion of an embedded foundation will differ during an earthquake
from the free field as a result of the soll-structure interaction. TFor most
of the sites, the soil profile is horizontally layered. This paper is to
investigate the extent of the interaction of structure, foundation and soil
when the soil layer is interrupted by the presence of a relatively stiff
gypsum layer of irregular profile. The site studied for a reactor building
consists mainly of layers of sand, clay, sandstone and gypsum.

Two finite element models were constructed to investigate the effect of
the gypsum geometry in the proximity of the reactor building. One finite
element model assumes the horizontal layering of the soil profile with a
uniform thickness of gypsum layer interbedded, while the other considers
the actual profile with a varying thickness of gypsum layer interbedded.
Plane strain elements were used for the soil lavers, reactor foundation
and reactor building structural systems.

Static and dynamic aspects of the layering effect were studied. The
static analysis was undertaken by applying vertical, horizontal and moment
loadings to the foundation mat to assess the influence of the gypsum layer
on the static soil spring constants. The dynamic analyses were performed
to study the influence of the gypsum layer on the soil-structure interaction.
Complex transfer functions were determined between bedrock and the structure-
foundation to evaluate the dynamic characteristics of each soil profile from
the two finite element models.
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INTRODUCTION

Although in most cases the soil layers underneath a structure are
horizontally extended, the existence of a tilted. and rather rigid layer of
an undulatory nature could have influence on the soil-structure interactiocn.
In the case of a nuclear power plant in the proximity of z thick and tilted
gypsum layer, a detailed evaluation of influence upon seismic response is
mandatory.

To study the effect of a gypsum layer, the model of an actual soil
profile was accompanied by a model with assumed horizontal layering. These
two finite element models were developed using plane strain elements for the
soil layers, reactor foundation and reactor building structural systems. Thus,
the dynamic coupling between the soil and structure was included.

The dynamic responses of the soil-structure systems were evaluated in
terms of complex transfer functions which were determined between the bedrock,
the foundation mat and the structural elements., The effect of the geometry
of the gypsum layer on natural frequency and amplification factors was assessed.
In this manner, the dynamic characteristics of each profile were evaluated
relative to the differences in soil-structure interaction effects and the
design ground response spectra.

The static analyses were performed by applying vertical, horizontal and
moment loadings to the foundation mat. This evaluates the effect of the
geometry of the gypsum layer on the static soil spring constants.

STRAIN COMPATIBLE SOIL PROPERTIES

Suppose that a sand-clay formation of layered soil is interbedded with
gypsum which possesses a high shear wave velocity. The soil properties
determined from in-situ geophysical testing are then incorporated with the
soil profile in the model. Consider a reactor building which is underlain
by seven formations as shown in Fig 1. The upper formations are sands and
clay. These are underlain by a thin layer of sandstone, a relatively thick
layer of overconsolidated clay and a 15 meter thick layer of gypsum inter-—
bedded with clay. The clay-gypsum layer is, in turn, underlain by stiff
and more pure gypsum. A horizontally layered model with this soil profile
is so constructed for the SHAKE computer program. Briefly, the computer
program SHAKE analyzes one-dimensional shear wave propagations in layered media.
Each layer is assumed to be homogeneous and isotropic and to be infinite
in horizontal extent. A 1linear visco-elastic system is assumed, however,
non~-linear behavior is considered in an approximate, piece-wise linear
manner: {3) The computer program SHAKE was used to deconvolute the surficial
time history to determine subsurface seismic strains and compatible soil
modulus and damping values for the site stratigraphy and soil properties.

An artificial time history with a response spectra enveloping a USAEC
Regulatory Guide 1.60€6) smooth design ground response spectra for 7 percent
damping normalized to a peak ground acceleration of 0.18 g was used in the
SHAKE runs. Figure 2 shows a comparison of the smooth design ground response
spectrum and the response spectrum corresponding to the artificial time
history.

Table 1 shows the results of the SHAKE runs in the form of strain
dependent shear modulus and damping values for the various soil strata.
These properties, which are compatible with the seismic strain levels
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resulting from the Safe Shutdown Earthquake, were used for the soil
properties in the two finite element models.

REACTOR BUILDING MODEL

For purposes of this investigation, a lumped mass model of a typical
reactor building was adopted for this study. The lumped mass model is
shown in Fig 3 and was taken from Ref 1. The massless beams in the lumped
mass model represent the containment building and reactor internal structures.
This lumped parameter model of the reactor building was analyzed for its
dynamic characteristics in the form of mode shapes, natural frequencies
and participation factors assuming fixed-base condition.

To be consistent with the plane strain geotechnical finite element
models used for the static and dynamic analyses, a plane strain model for
the reactor building was derived from the lumped mass model to preserve its
natural frequencies. This was achieved by judicious selection of material
properties for the plane strain elements, mass distribution and the physical
width of the model. The height of the plane strain models was restrained
to equal the actual height of the reactor building components in the lumped
parameter model. The properties of the lumped mass model such as magnitudes
of the various masses and the stiffness characteristics of the beams were
distributed over the plane strain elements so as to preserve the natural
frequencies. The plane strain representations of the reactor building
components were then incorporated into the finite element models of the
soil profiles and reactor foundation mat.

HORIZONTALLY LAYERED FINITE ELEMENT MODEL

The effect of the geometry of the interbedded gypsum layer was
evaluated by comparing the static and dynamic responses of the actual profile
with an assumed horizontally layered profile. A finite element model using
two~dimensional plane strain elements having two translational degrees of
freedom at each node was developed for the horizontally layered soil system.
The symmetry of the soil profile about the centerline of the reactor building
enabled the size of the model to be reduced through the use of symmetric and
anti~symmetric boundary conditions. A symmetric half of the finite element
model used for the horizontally layered soil profile as well as the repre-
sentation of the reactor building are shown in Fig 5. The depth of the finite
element model was taken to be 110 meters, or approximately 45 meters into the
stiff gypsum layer underlying the site. This boundary, which was taken as
rigid for both static and dynamic analyses, was the location of the prescribed
harmonic motion for the dynamic analyses.

The dimensions of the finite element model can influence the results of
dynamic finite element analyses significantly. Valid results require a
reasonable prediction of free-field effects sufficiently far from the reactor
building. Therefore, a parametric study was undertaken whereby the width of
the horizontally lavered finite element model was varied. Harmonic analyses
with specified horizontal motion of the rigid base were then performed. In
addition, exactly the same horizontal layering was used to obtain amplification
functions using the SHAKE program which yields an exact solution for the
horizontally layered profiles. Figure 4 shows the harmonic response, using
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4
computrer program LUSH,(’) of Nade A of the finite element model in Fig 9
compared to the exact soclution from the SHAKE analysis. WNode A of the
finite element model represents the surface point farthest removed from
the reactor building. Comparison of the two finite element soclutions shown
in Fig 4 to the SHAKE solution indicate that the 240 meter wide finite
element model yields a favorable prediction of the free-field harmonic
response.

The symmetry of the horizontally lavered soil profile about the center-
line of the reactor building was utilized to minimize the size of the finite
element model. However, the use of symmetry in the finite element modeling
necessitated the use of symmetric and anti-symmetric boundary conditions
in static and dynamic analyses of the horizontally layered site, TFor a
vertical harmonic excitation of the rigid base or the vertical static
loading of the reactor building foundation mat, the displacement field is
symmetric about the centerline of the reactor building. Consequently,

a boundary condition of zero horizontal displacement was applied to all
nodes along the centerline of the reactor building. This represented the
symmetric conditions for both the static and dynamic analyses. Yor a
horizontal harmonic excitation of the rigid base or the horizontal static
loading of the reactor building foundation mat, the displacement field

is anti-symmetric about the centerline of the reactor building. Con-
sequently, a boundary condition of zero vertical displacement was applied
to all nodes along the centerline of the reactor building. This represented
the anti-symmetric conditions for both the static and dynamic analyses.
The same boundary conditions as used for the horizontal excitation were
used for the static analysis of moment loading of the foundation mat.

The boundary conditions at the outer boundaries of the finite element
model are discussed in later Sections.

The strain compatible soil properties determined from the SHAKE
analysis of the horizonta ly layered site were used for the finite element
models for both the ANSYS(? static analyses and LUSH dynamic analyses.
ANSYS is a structural analysis computer program while LUSH is a dynamic
analysisg computer program for soil-structure system. Consequently, no
iterations on the strain dependent solil properties were required for the
LUSH dynamic analyses. For the static analyses, damping was not a con-
sideration. Only the shear modulus values and Poisson's ratio were re-
quired for the ANSYS finite element model. For the dynamic analyses, the
satrain compatible hysteretic damping values as determined from the SHAKE
analysis were used for the LUSH finite element model. Consequently, the
damping was frequency independent representing the true hysteretic nature
of the material damping in soil deposits. Table 1 shows the soil properties
for various layers used for both the static and dynamic finite element
models.

The dynamic finite element analysis requires a finite element mesh
size which is small in comparison to the wave length. The size of the
finite elements, therefore, depends upon the shear and compression wave
velocities of the soil strata and the frequency range of excitation over
which results are desired. A finite element mesh size of less than or
equal to one-~fifth (1/5) of the wave length of interest was used. The
wave length 1s dependent upon the frequency of excitation f, shear wave
velocity Ve and compression wave velocity v., according to:

v

Ao = ?a (1)
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A o= S (2)

where )A; and Ag are the compression and shear wave lengths respectively.
Since the shear wave velocity is less than the compressional wave velocity,
the shear wave velocity of the individual soil strata will govern the
finite element mesh size required for each layer as a function of the maxi-

mum [requency of interest. Thus, the LUSH criterion results in an element
mesh size, 4, such that

<

h

The program capabilities of LUSH require all matrix solutions to be
performed in-core. This results in limitations on the dynamic matrix band
width which in turn limits the mesh size of the finite element model by
providing an upper bound on the frequency which may be considered. For the
horizontally layered model, the wave propagation, either compressional or
shear, is assumed to be vertical. Consequently, the element mesh size
criteria is only restrictive in terms of the vertical element height except
in the region directly beneath the reactor building where wave reflections
are possible in non-vertical directions resulting from soil-structure
interaction. However, the wave rveflections and refractions for the actual
gypsum layer profile are multi-directional. Thus, the mesh size requirement
for the actual profile finite element model was found to restrict the maximum
frequency considered to 10 Hz for shear wave propagation with a slightly
higher frequency for compressional wave propagation. To preserve compati-
bility between the two finite element models, the horizontally layered model
was developed for a maximum frequency of 10 Hz for shear wave propagation.

ACTUAL PROFILE FINITE ELEMENT MODEL

A finite element model of the actual soil profile including the inter-
bedded gypsum layer was developed for both static and dynamic analyses.
As shown in Fig 6, the finite element model of the actual profile utilizes
two-dimensional plane strain finite elements having two translational
degrees of freedom per node. Unlike the horizontally layered finite element
model, the layer comntours prohibit the use of symmetry conditions. Analogous
to the horizontally layered finite element model, the plane strain representa-
tion of the reactor building was incorporated into the finite element model
of the actual site profile.

For compatible results with the horizontally layered finite element
model, the depth of the actual profile model was taken below the lowest
point of the dipping gypsum layer. The width-to-depth ratio of the model
affects the results of a dynamic finite element analysis. To be consistent
with the horizontally layered model, the half-width of the actual profile
model was taken to be 240 meters. Since the entire region on each side of
the reactor building foundation mat was included, no recourse was made to
symmetric and anti-symmetric boundary conditions.

Analogous to the horizontally layered model, only the shear modulus
values and Poisson's ratios were required for the ANSYS model used for the
static analyses. The material damping values used for LUSH model dynamic
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analyses are the hysteretic damping values shown in Table 1. For the
model of the actual profile, the interbedded gypsum layer gives rise to
wave reflections and refractions at any angle beneath the reactor building
because of its geometry. Consequently, it was necessary to utilize
square shaped elements having diagonals of the order of one-fifth (1/5)

of the shear wave lengths of the variocus materials throughout the region
except near the boundaries. This restriction, coupled with the core
limitations of the LUSH program, dictated a maximum frequency of 10 Hz

for consideration in the dynamic analysis based on shear wave propagation.
Analogous to the horizontally layered model, slightly higher frequency
compressional waves can be represented by the actual profile model.

STATIC ANALYSIS

To evaluate the effect of the geometry of the interbedded gypsum
layer on the static soil spring constants for the reactor building
foundation mat, static loads were applied to each of the finite element
models corresponding to the horizontally layered site and the actual
profile. Three static loading conditions {vertical, horizontal and
moment) were considered.

Vertical loading of 100 kips (45,359 kg) was applied to the finite
element representation of the foundation mat. For the horizontally
layered finite element model, recourse was made to the symmetry conditions.
The boundary conditions at the outer periphery of both finite element
models were taken as rigid along the base of the model with zero pre-
scribed horizontal displacements along the ncdes of the vertical boundaries
of both the horizontally layered model and the actual profile model. For
all static loading cases, the results were observed to be relatively in-
sensitive to the boundary conditions along the vertical peripheral
boundaries, indicating an adequate modeling of half space characteristics.

Horizontal loading of 100 kips (45,359 kg) was applied to the finite
element model of the foundation mat. For the horizontally lavered finite
element model, recourse was also made to the anti-symmetric boundary con-
ditions. Rigid boundary conditions were specified along the base of both
finite element models while zero prescribed vertical displacements were
specified at all nodes along the vertical boundaries of the model for the
actual profile. Analogous to vertical loading, the results were also
found to be relatively insensitive to the boundary conditions along the
vertical boundaries.

Moment loading was applied to the foundation mat in both finite
element models through the use of concentrated vertical forces at the
nodes of the finite element representation of the mat. The vertical con-
centrated forces were linearly distributed so as to produce zero net ver-
tical loading on the mat while yielding a moment of 100 kip-feet (13825 kg-M).
Anti-symmetric boundary conditions along the centerline of the reactor
building was also used for the horizontally lavered model. The boundary
conditions at the outer peripheral boundaries were taken to be the same
as for the horizontal loading case.

It was assumed that the vertical mat loading would be sufficient to
retain compressive soil pressures along all scil/foundation interfaces
such that the possibility of lift-off of the mat under moment loading
was not considered in the analysis.
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For vertical loading of the horizontally layered model, the results
indicate no coupling of vertical and rocking deformation. However, coupling
exists for vertical loading of the actual profile model. Thus, comparison
of these two cases illustrates that one effect of the geometry of the gypsum
layer is to couple vertical and rocking motion of the reactor building.

The horizontal loading of the mat for the horizontally layered finite
element model reveals a coupling of horizontal and rocking motion of the
mat. This is expected since the line of action of the horizontal loading
does not pass through the center of rotation; the horizontal mat loading,
therefore, also produces a moment loading of the foundation mat. This same
effect is observed for the actual profile where the coupled horizontal
rocking motion is more pronounced for the same loading. Thus, another
effect of the tilted gypsum layer is to increase the degree of coupled
rocking/horizontal motion compared to the horizontally layered site.

Using the nodal displacements obtained from the computer runs along
with the applied loads for each load case, lumped parameter stiffness
matrices were calculated for both the horizontally layered model and the
actual profile model by equating the work done to the strain energy of
each model. The resulting stiffness matrices for the horizontally layered
gite and actual profile are shown in Table 2. The presence of off-diagonal
terms in the stiffness matrices signifies the presence of coupled motion.
Thus, the coupling stiffness between vertical and rocking motion present
in Table 2 for the actual profile is absent from the stiffness matrix im
Table 2 for the horizontally layered site. This confirms the coupling
effects deriving from the geometry of the interbedded gypsum layer.

In general, a comparison of the two stiffness matrices in Table 2
indicates that in addition to introducing coupled vertical and rocking
motion, the overall effect of the geometry of the interbedded gypsum
layer is to increase the site stiffness 10 to 20 percent over the horizon-
tally layered stiffness values, based on the approximation used to repre-
sent the average depth of the stiff gypsum layer.

DYNAMIC ANALYSIS

To evaluate the effect of the geometry of the interbedded gypsum layer
on the seismic response of the reactor building, the transfer function
between the underlying stiff and more pure gypsum and the structure was
determined for both finite element models by applying a harmonic excitation
to the base of the finite element models of varying frequency from 0.4 Hz
to 10 Hz. The LUSH finite element program was used to formulate the stiff-
ness matrix [K] and mass matrix [M] for each of the two finite element models.
Damping is simula%ﬁg through the use of complex moduli in defining the
stiffness matrix. While the LUSH program utilizes harmonic analysis to
formulate a complex transfer function to perform time history response
analyses based on Fourier Transform methods, it is not written to directly
perform only harmonic analyses. Consequently, a separate program was
developed utilizing the appropriate subroutines of the LUSH program which
solve the dynamic matrix equation:

([K] - w?[M]) {x} = -M] {a} (%)
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where {X} is the vector of nedal displacements relative to the fixed base, {a}
is the vector of applied accelerations (unity for degrees of freedom in the ex-
citation direction and zero for the remaining degrees of freedom), w is the
circular frequemncy of excitation (27f) with f varied from 0.4 Hz to 10 Hz.

For the vertical harmonic excitation, the stiffness, mass and damping
matrices were formulated for both finite element models. The harmonic
excitation was applied at all the nodes on the base of the finite element
models while the boundary condition at all nodes along the outer vertical
boundaries was taken to be zero horizontal displacement. For the horizontal
harmonic excitation, the boundary condition at the peripheral vertical
boundary was taken to be zero vertical displacement at all nodes along the
vertical boundary. The horizontal excitation was applied at all the nodes
on the base of both models.

For comparison of the dynamic effects resulting from the geometry of
the interbedded gypsum, the transfer functions were obtained for the locations
at top of reactor building, base of foundation mat and free field away from
reactor structure for both the horizontally layered model and the actual
profile model. Foxr purposes of this analysis, the transfer function for
absolute acceleration, A(w), is defined as the complex frequency response

or magnification factor resulting from an absolute base acceleration given
by:

a(t) = 1,0e14¢ (5)

This implies that the absolute response to the base acceleration is complex
and may be written as:

u(t) = Adwe™" (6)

where, in general, A(w) is a complex valued function containing both amplitude
and phase information. While the transfer function is thus complex, only the
amplitude values were plotted against frequency. Figures ° through 9 show the
response to horizontal excitation and Figs 10 through 12 to the vertical
excitation for the above locations.

The transfer functions between the base of the finite element models at
a depth of 110 meters and the structural components of the reactor structure
illustrate the differing dynamic characteristics between an assumed horizontally
layered site and the actual profile. The differences are, therefore, a direct
result of the geometry of the interbedded gypsum layer since the dynamic
characteristics of the structure remained constant.

CONCLUSION

The results of the static analyses indicate that the effect of the
geometry of the interbedded gypsum layer is to increase the overall soil
stiffness of the site compared to a horizontally layered site possessing the
same stratigraphy. This was to be expected owing to the presence of the stiff
gypsum in closer proximity to the reactor foundation mat for the actual profile.
In addition to increasing the site stiffness, the geometry of the interbedded
gypsum layer leads to coupling of vertical and rocking motion of the reactor
structure. However, the coupling effect, while present, does not introduce
any significantly undesirable characteristics into the potential seismic



223

response of the reactor. The coupled motion together with the mat flexibility
results in differential settlement of less than 12 percent of the mean vertical
settlement under static loading.

The transfer functions for the free-field motion, shown in Figs 9 and
12 for horizontal and vertical excitation, indicate that the effect of the
geometry of the interbedded gypsum layer is to increase the site stiffness
as illustrated by the shift in the resonant peaks to higher frequencies,
which is consistent with the results of the static analyses. However, as
noted by the higher resonant peaks for horizontal motion in the neighborhood
of 1 Hz, 3.5 Hz and 5 Hz compared to the horizontally lavered site, the effect
of the gypsum layer appears to be one of decreasing the radiation dampiuy
effects as a result of multiple wave reflections from the lower stiff and
more pure gypsum layer. TFor vertical motion shown in Fig 12, the differences
in amplitudes are less significant and primarily associated with a frequency
shift of about 1 Hz.

The general effect of sloping rock interfaces has been found to lead
to standing wave patterns such that regions of attenuation and amplification
are established along the surface of an alluvial deposit bounded by sloping
rock layers, (7) This effect can be observed from Figs 9 and 12 where the
response functions for the free-field are different for a point to the left
of the reactor structure and a point to the right. Neither free-field
response of the actual soil profile differs from the horizontally layered
model to an extent sufficient to revise the design ground response spectra.

Comparison of the horizontal and vertical foundation mat response
functioens, shown in Figs 8 and 11 respectively, again illustrates the slight
stiffening effect of the geometry of the interbedded gypsum layer through an
increase in the frequencies of the resonant peaks. Analogous to the free-
field response functions, the amplification factors for horizontal excitation
are slightly greater for the actual profile layer in the neighborhood of
5 Hz, suggesting less radiation damping resulting from multiple wave
reflections between the foundation mat and stiff gypsum profile. However,
the maximum horizontal amplification factors in the frequency range of
0.8 Hz to 1.0 Hz are practically identical for the actual profile and
horizontally layered model. For the vertical excitation shown in Fig 11,
the general effect of the gypsum layer, in addition to increasing the
stiffness, is to slightly attenuate the response of the foundation mat in
the range of 2 to 3 Hz, while having no significant effect on the mat
response elsewhere.

Since the dynamic response characteristics of the reactor structural
components are determined not only by the soil-structure interaction effects,
but also by the dynamic characteristics of the structure itself, the response
functions shown in Fig 7 for the horizontal excitation and Fig 10 for the
vertical excitation are included only for information. However, these
figures serve to illustrate possible resonant frequencies to be considered
in the design. Even though the response functions in Fig 7 is highly
dependent on the structure, some observations are possible. At the lower
frequency where soil-structure interaction is predominant, the somewhat
higher amplitude of response is attributed to lower radiation damping.
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As expected, the layering and wave scatter tend to increase the response.
For the vertical excitation, the results in Fig 10 indicate that the
amplitude of response for the actual soil profile 1is somewhat less than
that for a horizontally layered site, especially when one recognizes the
slight frequency shift of abour 1.0 Hz. 1In the higher frequency range
around 10 Hz, the two response amplitudes are in closer agreement.
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SUMMARY OF DYNAMIC AND STRAIN COMPATIBLE SOIL PROPERTIES

|
(ﬁ_ 4( l Unit Shear Modulus Strain Compatible |
Layer Soill Tvpe Weight Poisson's for Soill Properties {
Number (PCF) Ratio Small Strain I Shear Modulus Damping |
(XSF) (KSF) (%) ;
7 Sand Above 130. Q.26 7000. 5770. 2.6 \
Water Table ‘
6 Sand EBelow 130. 0.42 16000. 13350. 3.0 1
Water Table
5 Clay 125. 0.48 5000, 955. 8.3 1
4 Sandstone 140, 0.38 70000. 68800. 0.8
3 Clay 125, 0.48 7400. 1370. 8.4
2 Clay Plus 125, 0.43 43000. 15920. 5.1
Gypsum
L 1 Gypsum 130. 0.44 100000. 93240, 1.3
TABLE 2
SOIL SPRING CONSTANT
Model Displacement Vertical Soil Horizontal Soil Rotational Soil 1
Tdentification Direction Spring Constant Spring Constant Spring Constant l
Horizontal Vertical 2.02 x 10% k/fe 0 0 |
Layered Model Horizontal 0 1.11 x 10° K/fe 26.61 x 105 k/rad |
Rotation 0 26.61 x 108 & 9.57 x 109 k-ft/rad |
Actual Vertical 2.56 % 106 k/ft -0.024 x lO6 k/ft 3.98 x 10 k/rad ]
Profile 6 6 |
Model Horizontal =0.024 x 107 k/ft 1.29 x 10~ k/ft 32.33 x 10 k/rad |
| __Retation 8.98 x 10° x 32.33 x 106 1 11.00 x 10 k- fc/rqgj
Sign Convention: Refer to Figs $5 and 6.
Pogitive horizontal corresponds to positive X-axis.
Positive vertical corresponds to positive Y-axis.
Pogitive rotation if counter-clockwise {right hand rule).
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SHEAR MODULUS
FOR

SOIL TYPE TRAIN ( KS F )
16.4' SAND 7000,
r v
16.4' - SAND 16000. -
282 CLAY 5000. )

98.4' CLAY (OVERCONSOLIDATED) 74 00.

49.2' / CLAY & GYPSUM 43000 J

147.6' GYPSUM

N ’ & 5

FIGURE |-LAYER FORMATION
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(FRACTION OF g)
N

o

ACCELERATION RESPONSE AMPLITUDE

0.02 _J
Ot 1.0 0.0 100.0
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A: RESPONSE SPECTRUM BASED ON ARTIFICIAL TIME
HISTORY, DAMPING = 7%

B: SMOOTH GROUND DESIGN RESPONSE SPECTRUM, USAEC

REG. QUIDE 1.80, PEAK GROUND ACCELERATION =0.i8¢,
DAMPING = 7%

FIGURE 2-SMOOTH GROUND DESIGN RESPONSE SPECTRUM VS. ARTIFICIAL
TIME HISTORY RESPONSE SPECTRUM
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Summary

In this paper the interaction among structure, substruc-
ture and soil ie amnalysed for dynamic and seismic actions.

The equations of motion of the structural system are
written by taking into account the interaction with the soil;
the corrections involved in comparison with the case when the
interaction is ignored are also emphasized. Besides, the
substructure is introduced into structural system and the
influence of the scil is included by means of its stiffness
matrix which improves the stiffness matrix of the structural
system.

The way of determining the elements of the soil flexi-
bility matrix reffering to the contact gurface with structural
system is shown for different soil models.

The obtained results are used for the determination of
conventional seismic loads, according to present seismic
codes.

The proposed solution is particularized for framed
structures with isolated foundation or with foundation beams.

A dynamic and seismic analysis is carried out by means
of computers for a framed structure with consideration of
the two mentioned types of foundation and the two types of
golls differentiated each other by their deforbability modulus.
Finally, some of the obtained results are discussed.
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1. Introduction.

Dynamic structural analysis is commonly performed by
assuming the structure supporting base as a rigid body, the
dynamic behaviour depending mainly on the deformation pro-
perties of the structure. In some cases, the supporiing base
ie considered to undergo certain deformations, their effects
being approximated in a whole manner, as done elsewhere [3]

[5] .

In the majority of present codes, the seismic design
requires that determination of stress and displacement state
to be performed by considering the static action of some
conventional loads obtained as functions of the vibration
mode periods as well as of the mode shapes, the damping and
the seismic intensity degree of the considered zone. This
method was successfully used and was continuously improved.

This paper follows the same manner of treating the
subject, except that interaction effect among structure,
substructure (foundation system) and soil is moreover taken
into consideration. This effect influences the behaviour of
the structural system (structure -~ substructure) on two ways:
1) through dynamic characteristics and 2) through static
interaction,.

The equation of motion for a structural system with
interaction are firstly presented and for a practical appli-
cation the system is assumed to be discretized in order to
use a finite element computation procedure.

The damping was not introduced in the dynamic equation
of motion, firstly in order not to increase much the extend
of this study and secondly because the numerical examples
which are presented do not take directly into consideration
the damping effects, the damping been introduced by means of
a conventional seismic load. However, the analysis by means
of the temporal steps with consideration of the damping, can



235

be performed without great difficulties, pursuing the views
presented in paragraph 2 of the paper.

The interaction effect is introduced in the idea of
maintaining permanently the contact between the structural.
system and the soil.

Some models with linear behaviour were adopted for the
g011: homogeneous, isotropic or anisotiropic linear deformable
halfspace, halfspace having the deformability modulus as
variable with depth, and the Winkler's model.

Particularly, the case of framed structures with isola-
ted or continuous foundations are discussed.

The paper is based on a series of previous results [1]
[4] [7] [8] , without resuming the problems treated there.

2. The Equation of Motion of Structural Systems with
Interaction.

The differential equations will be derived for a structu-~
ral system with interaction which may be considered as com-
posed of a finite number of component members.

The disgplacement components about reference axis of a
point from the structural system are denoted by u, v and w.
These displacements can be expressed for any point of the
structural system, as functions of an arbitrary number of
displacements selected so that to be capable to describe the
deflected configuration of the structure. The points where
those displacement are selected become the structure joints,
while the corresponding displacements are called the nodal
displacements. The following relation can be written with
respect to displacements q and nodal displacements Ay

q:an (1)

in which a ie a matrix depending on x, y and z variables. If
all displacements, q, are known, the specific deformations
may be determined in the form of a vector &
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€= b qy (2)

where b is a matrix obtained from matrix a by a differen-
tiation procedure. In the most general case, the vector €
has the form QQ{EX €y & x& 5;2 Sox } . By using the
Hooke's law, the tensions are determined

G-=ce=Cbqy (3)
in which C is the elasticity matrix, and

66 Gy Gy Guy By ax

If the displacements q as functions of time t, are

known, the acceleration components may be found

(4)
"T_{.. - }_ azu azv azw}
UV ITI IR 9 97
In order to establigh the equation of motion of the

structural system, the virtual work concept applied to elastic
systems and the d'Alambert's principle are used

Jurdi-f p g 5

in which JU is the variation of internal deformation energy
of the structural aystem,dﬁ. is the virtual work of the
applied and of the comstraint forces, while/ffcﬂfﬁdv

in the variation of virtual work done by inertial forces.

The variation of internsal deformation ensrgy may be
written in the form

JU:]\‘IJ‘ST(TdV (6)

which, by considering the equation (2) and (3), becomes

(7)
JU:/V J&Lchqudv

The virtual work of applied as well as of the constraint
forces 1s composed of the following terms: the variation of
the virtual work due to surface concentrated and distributed
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forces, the variation of forces from connections without
total constraints (which can also be concentrated and digtri-
buted) and the variation of the virtual work of volumetric
forces. These terms are as follows:

&:J&RP t/JngdS+J;LYJOc];dei/J;TO dv (8)
S 1 A2 v

The concentrated forces were supposed to be applied at joints,
while for the concentrated forces from connections only the
interaction joints N, common both to structural system and

to supporting base were considered. If the division of the
gtructure in finite elements is practiced, the distributed
applied and constraint forces along the body boundaries as
well as the volumetric forces can be replaced by equivalent
nodal forces, so that all applied forces set up a vector p*
while the constraint forces form a vector Y. In this case

the virtual work of external forces takes a simple form

I da P il (9)

and the equation (5) may be written as
T T cd T Peda Y-/ pdaldTag, v (o)
Jé”Jng quNdV qN qN1 vjj 940 a gy

Supposing that all nodal displacement influencing directly

the interaction are grouped, the term J}N1Y may be written
as a function of dGL: [J;N J;N } , as follows
1 2
Y (11)
Jay, | {o1-dal¥™
{"rqm S, 1o 79"

As SN is an arbitrary quantity, it may be left out and the
equation (lo) becomes

(/bTCbdv)qN:P*+Y*~(/foTadV)aN (12)
v A%
In the above equation, the term

/bTCb dv = K (13)

v
is the gtiffnes matrix of the structural system, or pointing
out once more, of the system composed of structure and sub-
gtructure, while the term
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/CifGTGdV=M (14)

is mass matrix of the equivalent discrete system.

With those specifications the Equation (12) takes the

form %

S,
KqN+MqN-P Y (15)
In the case of free vibrations P*= o so that the Equation
(15) becomes

Kay e Mi, =Y (16)

3 The Interaction Forces.

The contact between structural system and supporting
base is permanently maintained; the displacements of the
contact surface of the structural system and of the supporting
medium are equal. Connection forces appears on the contact
surface, under the form of the contact pressures, which are
equivalently replaced by nodal force on the structural systemn.
The pressures on & finite element of soil surface are assumed
to be distributed according to certain simple laws. The
smaller those finite elements are, the less the pressure
distribution law influences the final results. The resultant
of pressures on these subdomains (finite elements) must be
equal but of a contrar sense t0o the reactive nodal forces
applied to the structural system.

The structure horizontal displacements are supposed to
be locked through friction effect and by the embeding into
the sgoil.

Since some linear relationship were assumed to exist
between vertical displacements on the soil surface and the
applied forceg, their general form will be

W" = F)ﬂ71 + P}12?2+ ------ + P‘iN'IVN'I

W= By%e PoaVat  PanTg

(17)
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WN«l: P,N1?+ ey P’N1N1YN1

or, under a condensed form
W= p? (18)

in which w is the vertical displacement vector at the inter-
action nodal poin‘bs,qN1 and p 1s the soil flexibility
matrix, its elements depending on the mechanical model adopted
for the soil and, in to a certain extent on the laws adopted
with respect to the pressure distribution on a surface finite
element.

By the inversion of B matrix, the Y vector is obtained
from (18) g
Y:F W= KTW=1r<TqN1 (19)
Ky being the stiffness matrix of the soil on the contact
surface. By changing its sign, Y becomes the interaction
nodal force vector Y of the structural system

~ U i
0 0 ¢ qNZ
or %

Y*:—KTqN (21)

Returning to Equation (15), with Y given by (21) it can
be written
. X x*
Kqy+May= P* - Kray (22)

or

Ksay* M‘qN=P* (23)

Particularly, in case of the free vibrations, the vector
P*= o0 and Eq. (23) beccmes
quN+‘MﬁN:O (24)
in which Kg is called the stiffness matrix of the structural
system and takes the form

Ksz[Kﬂ*KT Kz } (25)
K21 K22
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Therefore, the stiffness matrix of the system characterizes
the behaviour of the structure, substructure and the soil.

In case when the dynamic analysis is used for the seismic
degign and besides the horizontal component of the earthquake
is considered as predominant, the structural lateral matrix
is then used, which can be obtained as follows

[Ksﬂ KSQ] QH}_ Ry (26)
Ks21  Ks22]|go) | O

in which ¢ I represents the displacements about the directions
of the adopted dynamic degree of freedon, RH are the corres-
ponding inertial forces, and q are the other displacements.By
solving the matrix system (26) and eliminating q the lateral
stiffness matrix of the system composed of the structure, sub-~
structure and the soil, KSL’ is obtained as

T I (27)
Ksp = Kg11™ K1 Kgop Ksan

4. The Soil Flexibility Matrix.

As it was already showed the soil stiffness matrix KT’
on the contact zone is obtained by inversion of the soil
flexibility matrix B . This matrix depends on the mechanical
model adopted for the soil, i.e.

I’ The soil is considered as a homogeneous isotropic
linear deformable halfspace. Supposing that contact pressures
are constant on a subdomain Elj, the elements of 2 matrix are
calculated with relation

Piﬁl‘:‘ng f/ d S0 (28)
TE, S2j JleAxU+

in which £, and V, are the deformation modulus and Poisson's

coefficient respectively, the other quantities being showed
in Fig.l. For the case of a rectangular element £y, a com~-
puter program was elaborated for celculation of p matrix
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Fig.2. Interaction of isolated foundations.
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elements.

29, The soil is considered as a transversal anisotropic,
homogeneous and linear deformable halfspace in the sense
given by Michell. In case of the transversal anisotropy,
according to the Michell's solution, the displacements on

the halfspace limit surface due to a normal load P may be
determined with

] P
W (29)

where r is the distance between the point of application of
P and the point corresponding to displacement w; J is a
nondimensional factor characterizing the anisotropy of the

term :
. {%55[1 V3=l J [TET(1 Vy)+ 6 }2}/5

nkE
gVl 7 (30)
oo %%n-vﬁm-nvz)-?m oG

J=

in which E is the deformation modulus on & vertical direction,
6 1is the shear modulus, n:-H - % denotes the ani-
sotropy degree, Ey is the soil deformation modulus in trans-
versal direction, V; , ¥, , V3 are the Poisson's coefficients,
namely, v, - for horizontal contraction due to the tensions

in horizontal planes V, - vertical contraction due to the
tensions in horizontal plane, V3 - horizontal contraction

due to the tensions in vertical planes; ¢=(1+V)}(1-V)-2n¥;)

In the case of transversal anisotropic halfspace, the
displacements on the limit surface can be obtained in the
same manner as in the case of a homogeneous isotropic half-
T_ \)o J

—_—— b—-o
E, Ve

3°. The soil is congidered as a halfspace having its
modulus of deformability as variable with the depth. The
following law is used for the variation of E = Eg*tE,zM

gspace, by replacing the factor

in which €, is the soil deformation modulus on the limit
surface, E, is the soil deformation modulus at a depth of
1m : the index m %akes into consideration the manner of
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nonhomogenity propagation along the depth. Particularly, the

valueg used in practice arem = 1, m = %T and m = 2, depen-

ding on the goll characteristics.

The soil surface displacements produced by & normal
concentrated loads may be calculated with

i P (31)
W= W‘FE(%H*E?]‘rm)
in which
e%._Eq . gX 26 (1001 m) (32)
°oT-y2 0 1T E, 3w

By considering constant pressures on a surface finite
element ; , the coefficients Fg may be calculated as fo~

- : f/ 4.0 (33)
UIES S T
e ) 42 ﬁxu f) Yyt +E1Vfi ?)+WU W

4°. The soil is considered of the form of a field of
springs (Winkler model). In contrast with the previous cases

llows:

in which p was a full matrix, in this case it becomes a dia-
gonal matrix. The elements of B matrix may be calculated
with relation Fﬂ=51d/kj

k; being the stiffness coefficient (settlement coefficient)
of the soil, kj is supposed as constant on () ; surface. Some-
times the coefficient kj; is considered as constant on the
whole contact surface.

5. Solutions for Framed Structures.

A detailed analysis was carried out for framed structures
having as foundation a) continuous beam foundation or b)
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isolated blocks under columns. The soll was sssumed as a
homogeneous, isotropic or anisotropic linear deformable half-
gpace. Computer programs were elaborated for seismic analysis
of these structural systems on the basis of considerations
presented in this paper.

In the case of foundations of continuous beam form, the
801l flexibility matrix B s is generated on the basis of the
relation (28) depending on the nodal points of the structursgl
system.

As for the .ramed structures with isolated foundation,
the solution of halfspace deformations under a rigid block,
subjected to a concentrated force or to a couple were used
for determining the matrix P .

In Fig. 2 the foundation block deformations produced by
a unity centric force or by an unity couple respectively, as
well as the deformed soil shope and the influences on the
surrounding foundations are shown. The following relations
are used for the calculation of the displacementsEWPﬂ),F&QMﬂ)
(6] ,
F;jj(P:ﬂ:L'_\)-(z’ % ; P‘ﬁkk(M:”=-—-Jj—8kE“LVO)

Fo o

in which A is the contact surface between the foundation and
the soil, L is the contact surface dimension reapective to
bending plane, C, and kq sre coefficlents depending on %;
ration ( B being the other dimension of the contact surface,
assumed of a rectangular form); C, and k, may be found in

the mentioned paper.

The computation of the lateral coefficients is performed
by means of the relation that gives the limit surface displa-
cements of the halfapace under the action of & normal load,

7
1-Vo P
IMEo r
particularized for P = 1 in the case of centric loads and

P =+

in the case of couples, d being the couple arm of
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Fig.3.Geometric characteristics of the structural system.
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the contact surface pressures due to the action of M = 1,
Fig. 2.

6. Numerical Examples.

The dynamic and seismic analysis of a two bay, five
story frame, considering two foundation solution: a) isolated
foundations, b) continuous beams foundations. Two types of
soil were agsumed, differentiated by their deformation mo-
dulus E, for which the values of loo da N/cm? and 500 da N/cm?
regpectively, were adopted. The Poisson's coefficient of the
goil was assumed ¥, = 0,35.

The geometrical dimensions of the structure and the
foundation as well as the gravity loads are shown in Fig.3.
The reinforced concrete modulus of elasticity, for the
structural system was chosen Ep= 285.000 da N/cm?.

In Pig. 4 and 5 the dynamic characteristics for the
first three vibration modes (Fig.5 a) are presented together
with the bending moment diagram, under the action of the
geismic conventional forces, corresponding to the IStmode of
vibration, are presented as follows:

- frame without interaction (Fig. 4 a)

~ foundation beams considered independent and loaded
with connection loads transmited by frames (from the analysis
without interaction), (Pig.4 d and e),

~ frame on isolated foundation with interaction (Fig.

4 b and 5 b),

- frame on foundation beam with interaction (Fig. 4 ¢

and 5 c¢).

Conclusions,

With the assumption adopted a formulation for the dy-
namic and seismic analysis of structures was presented by
taking into consideration the interaction with the sub-
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structure and the foundation soil.

By using a finite element technique, the suplimentary
factors involved due to interaction, their way of evaluation,
the corrections introduced in a structural analysis and
especially the manner in which the soil takes part at this
process, were emphasized.

Particularly some procedures for obtaining real solutions
are indicated.

A computer program analysis was carried out for several
examples, emphasizing the interaction effects on the dynamic
behaviour of the structural systems considered and on the
stress state in these systems.

From this analysis the following conclusions were drawn
up:

The general shape of the three modes of vibrations 1is
the same in the both case consgidered, with and without inter-
action.

As it was expected, on increase was found in the natural
periods of vibration; more significant increases were observed
to fundamental mode of vibration for the structural system
having beam foundations, i.e. 80% for the soil with E= loo
da N/cm® and 43% for the soil with Eg= 500 da N/cm®. In the
case of isolated foundations, the increases of first mode
period for the structural system are 55% greater for the soil
with E,= loo da N/cm® and 17% for the soil with E= 500 da N/

cm .

Some increases of the periods of vibration are found

also to higher modes.

Therefore, both the foundation system and the soil type
will influence the dynamic characteristics of the structure.

Because of the changes in the dynamic characteristics
of the structural system, in the case of interaction, smaller
seismic coefficients were obtained and implicitly decreased



250
conventional seilsmic loads have resulted.

Bacause of the decreasing in the seismic loads and as
a result of the static interaction effect, the stress state
of the studied structural systems undergoes some changes in
comparison with the situation in which the interaction is
neglected.

The most stregsed sections are not always at the struc-
ture base, where the bending moments decrease with 18-300%.
By comparing the most stressed members in the structure, it
may be found differences ranging from 19% to 45%.

This effect is differentiated in function of the soil
type, for base sections and the soil with e = loo da N/ om®
being more important for the structure with isolated founda-
tion, while in the case of E, = 500 da N/cmg, the structure
with foundation beams proved more sensitive.

All interaction effects are diminished at higher levels.

The decrease of the structure base section stresses
leads to modification of the stress state in the foundation
beams and the soil.

The effectg of the interaction depend on structure,
foundation system, type of the soil, so that the results
obtained on the presented examples can not be extended to
any practical situation. By including the interaction it is
however possible to influence the way of elaborating some
types of structures.
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PROTECTION OF COMMUNICATIONS FACILITIES IN EARTHQUAKE AREAS
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Whippany, N. J., U.S.A. Washington, D. C., U.S.A.
ABSTRACT

The continued reliable operation of telephone equipment in earthquake-
prone areas depends on the equipment's ability to survive earthquakes of a
realistic magnitude. This paper presents a procedure for developing
regional earthguake protection practices in a cost-effective manner.

Maintaining system reliability requires extensive knowledge of the
earthquake environment of a particular area and the response-damage-fallure
mechanism of the eguipment and its supporting frame during earthguakes. The
earthquake environment is determined by a reglonal microzonation analysis,
which is translated into isoseismic acceleration maps of the area being
studied. The seismic response of the communications equipment is determined
by a comprehensive analysis of the coupled foundation-building system and
dynamic testing of the equipment assembly, employing a regional test
environment.

The procedure is applied to electronic, electromechanical, and
reserved-power equipment for both a single system and multiple systems
within an earthquake area.

INTRODUCTION

Telephone communications facilities are so vital to public health and
safety that special efforts must be made to prevent disruption of these
services by a major earthquake. At present, building codes have only rudi-
mentary provisions regulating the planning and design of communications
lifelines. The primary reason for this is a lack of understanding of the
dynamic behavior of different communications systems under seismic loadings.
Recently, the earthguake behavior of several types of communications
facilities has been investigated to determine the dynamic characteristics
and earthguake vulnerability of a variety of eguipment supported in single-
story and multistory telephone buildings.

In addition, microzonation studies, which delineate the risk potential
of telephone systems in various selismic regions, and cost/icss analyses,
which characterize the earthquake safety and economic consequences of these
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systems, also have been performed. Based on the results of these studies,
a procedure has been established for developing earthquake protection
practices 1n communications facilities. The pertinent elements of this
procedure, such as the characterization of earthquake enviromment, tests
of equipment and framework assemblies, cost/loss considerations, and the
interfacing of these elements will be described in this paper.

BASIC EARTHQUAKE PROTECTION PROCEDURE

The decision to protect a new or existing facility in a seismic
environment can be made on the basis of maintaining system reliability:
agalnst earthquake failure independent of the protection cost, or considera-
tion of a proper balance hetween the earthguake loss and protection cost
among various feasible protection schemes. (We refer to the former pro-
cedure as a reliability-based procedure and the latter one as a cost-based
procedure.) These two approaches, along with the required data and informa-
tion, are shown in Figure 1. The reliability-based decision requires
information on the earthquake enviromment and knowledge of the system's
response-damage~failure behavior during earthquakes. The earthquake

*
enviromment information is provided by a microzonation analysisl and the
resulting isoseismic intensity (or acceleration) maps of the area of
interest. BSuch maps define the seismic risk within an area in terms of the
intensity or acceleration level. The earthquake behavior of the equipment

assembly is predicted by a comprehensive dynamic testing program2 that
identifies the failure modes and damage states assoclated with various
ground excitation levels.

The cost-based decision (see Figure 1) cowbines system reliability and
cost information to develop cost-effective earthquake protection. If the
protection cost of the system is extremely small compared with other cost
items, a cost-based decision usually becomes a reliability-based decision
because the protection cost is no longer a controlling factor for decision
making.

EARTHQUAKE ENVIRONMENT

The actual earthquake motion enviromment that a sgpecific communications
facility must survive is a function of the facility's geographic location
and its location within a building. The expected peak ground acceleration
is determined by microzonation studles that depict the regional earthguake
enviromment as a function of geographic location. Peak in-building wvalues
are examined for two cases, i.e., ground/first floor locations and upper
floor locations. An amplification factor that relates ground values to
in-building wvalues is employed. The appropriate test environment at the
equipment support is achieved by linearly scaling a typical waveform for
upper-bound in-building motion down to the expected acceleration level.

Microzonation Analysis
Microzonation maps show expected peak accelerations as a function

of geographic location. In general, a microzonation study yields a

¥ References are listed as the last paragraph of this paper.
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Figure 1. Decision Process for Earthquake Protection

probablilistic characterization of the earthquake environment in a particular
region. It combines historical data, seismological and geological informa-
tion, and a sound statlistical model to determine the expected environment
at a given facility. This information may be represented by a contour map
with a 90-percent probability that the contour acceleration levels indicated
will not be exceeded during the service life of a given communicatbions
facility.

As an example, the acceleration contours resulting from a microzonation

analysis of the Rocky Mountain statesl are shown in Figure 2. This contour
map indicates the expected peak ground acceleration for every location in
the study area with a 90-percent probability that these levels will not be
exceeded during the 50~year service life of the equipment. The 10-percent
exceedance probability is a generally accepted level in the earthquake
engineering profession and is considered adequate for communications
facilities. For extremely critical installations, such as nuclear power
rlants, a much lower exceedance probability — from 2 to 5 percent — most
likely would be employed. This, of course, results in higher acceleration
values.

Upper-Bound Response Spectra
Equipment located on upper floors of multistory buildings generally

is subjected to stronger shaking than equipment on ground flcors, since
earthquake motion is amplified as it travels through the coupled
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Figure 2. Peak Earthquake Ground Acceleraticn "g" Contours with a

90-Percent Probasbility of Not Being Exceeded in 50 Years

ground-building-equipment system. In an analytical study of earthquake-

induced in-building motion,3 the motion time histories for the upper floors
of representative multistory telephone buildings with different building
characteristics and soil conditions were calculated for earthquakes with
Modified Mercalll Intensities of V to X. The results were expressed in
terms of motion histories. The envelope response spectra for different
damping ratiocs are shown in Figure 3. These spectra indicate the floor
response characteristics of telephone buildings in earthquake environments.
The average peak floor acceleration level corresponding to such spectra is
approximately 0.8 to 1.0 g, and the predominant frequency band is
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approximately 2 to 6 Hz. This frequency range includes the fundamental
frequencies of most communications equipment and framework assemblies.

Upper-Bound Time History

Ideally, a simulated earthquake motion used for equipment testing
should resemble an actual earthquake motion as closely as possible in
response spectra, peak accelerations, peak velocities, peak displacements,
durations, and appearance of waveforms. A number of different test methods
can be used to simulate an earthguake environment, including sine beat,
decaying sine, sine sweep, and random waveforms. The random waveform method
was chosen since 1t satisfies more of the above reguirements than any
other method.

The appropriate acceleration time history is generated on a digital

computer using the techniques established earlier. Bagically, the
technique starts with a filtered Gaussian white noise; then an envelope
function is used to shape the initial, middle, and final phases of the
simulated motion into a typical earthguake accelogram. The predominant fre-
guency content is adjusted through parameters related to the ground motion
transfer function. An upper-bound earthquake enviromment is generated by
matching, as closely as possible, the 2-percent spectrum of the synthesized
earthquake to the in-building spectra shown in Figure 3.
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The resulting acceleration history of this synthesized earthquake,
shown in Figure &, qualifies as the upper-bound criterion since it approxi-
mately matches the upper-bound in-building response spectrum and has a peak
acceleration close to 1 g. This peak acceleration value is consistent with
the maximum in-building asccelerations determined in Reference 3.
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Figure L. Analytically Developed Artificial Earthquake Accelogram

In Figure 5 the in-building upper-bound spectrum (Figure 3) is compared
to the spectrum of the, analytically generated time history. As indicated,
the spectra match reasonably well within the frequency range of interest,
i.e., approximately 2.3 to 6 Hz, which bounds the fundamental frequencies
of most communications equipment-framework systems. At frequencies below
2 Hz, the time history spectrum is lower, and for frequencies above € Hz,
somewhat higher than specified.

Building Amplification of Free-Field Motions

The large collection of ground-motion data recorded during the

San Fernando earthquake was analyzed,3 and the results showed that the ratio
of upper floor acceleration to ground/first floor acceleration (amplifica-
tion factor) varied with the amplitude of the ground motion. Figure 6 shows
the amplification factor for the mean plus-cne standard deviation accelera-
tion for moderate to large intensities and for conditions common to most
telephone buildings. This amplification (one standard deviation above the
mean) is judged sufficiently, yet not overly conservative for determining
how to protect the equipment. As indicated in Figure 6, the amplification
factor varies from 3.0 at 0.1 g ground acceleration down to 1.0 at 0.5 g.
For ground accelerations higher than 0.5 g, the amplification factor remsins
unity — i.e., there is no amplification.
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Figure 5. Comparison of 2-Percenit Damped Shack Spectra
Earthquake Environment for a Specific Location

An earthquake enviromment used for testing can now be generated for a
specific location. As an example, consider a communications facility
located geographically on the microzonation map (Figure 2) such that the
peak ground acceleration is 0.2 g. If the equipment is to be installed on
the upper floors of the building, then the amplification factor in Figure 6
ig approximately 2.0, so that the peak upper floor acceleration is 0.4 g.

The earthquake enviromment for this specifie facility can be determined
by linearly scaling the accelogram of Figure b, which has a peak accelera-
tion of approximately 1 g, down to a peak acceleration of 0.4 g. If the
equipment were on the ground/first floor, there would be no building
amplification and the test environment would have been scaled to 0.2 g
instead of to 0.4 g.
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TESTS OF VARTOUS TYPES COF EQUIPMENT

The regional earthquake environment discussed in the preceding sections
has been used to test a variety of communications equipment. The tests are
performed to determine the earthquake vulnerability — i.e., the failure
modes, lateral strength and damage profile — of the equipment assembly. The
equipment tested includes T7-ft floor-supported electronic eguipment,

11-1/2 ft ceiling-braced electromechanical equipment, and the battery plant
of the reserved power system. The basic concern is with the integrity of
the equipment framework assemblies and their supports, such as holddown
belts and braces. If these supports fail, the entire communications system
ig vulnerable to a catastrophic collapse.

The basic test procedure for each category of equipment can be
sumarized as follows:

»+ Program a shaker table motion using the upper-bound synthesized
earthquake waveform shown in Figure 4.

+ Test the equipment framework by using linearly scaled table inputs
of progressively increasing peak amplitude from 0.1 to 1.0 g.

« During each test, observe and record the frame responses. In
particular, determine the peak table acceleration levels 8;, corre-

sponding to initial damage, and a_,, corresponding to total failure.

f
These characterize the damage profile of the equipment-framework
assembly.

Flectronic Equipment

The No. 1, 2, 3, and 4 Flectronic Switching Systems (ESS) make up the
latest vintage of telephone switching facilities. These systems are
replacing the electromechanical equipment, which presently comprises the
bulk of the existing telephone plant.
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Figure 7. Typical T-ft Electronic Equipment

Figure T shows a typical electronic switching office. The equipment
frameworks are T £t tall and generally are self-supported — i.e., anchored
to the flecor. As a regsult of this support system the configuration is
basically an inverted pendulum with a fundamental frequency that varies
between 2 and € Hz, depending on the specific type of eguipment.

The electronic equipment tests are performed -for three different
frameworks and three different welght categories, for a total of nine cases.
Two failure levels are determined: +the initial failure level, which is
defined as the input acceleration level that causes a permanent frame dis-
tortion (as measured by strain gauges) or loosening of the anchor bolts in
the floor; and the total failure level, which corresponds to frame buckling
or pulling out of the anchor bolts.

The test results are used tec construct the damage profile in terms of
base equipment acceleration, as shown in Figure 8. In general, lightweight
electronic egquipment located on ground floors is less vulnerable than heavy
equipment located on upper floors. The damage profile for each of the
nine cases considered and the ground acceleration contours of Figure 2 are
used to determine the regional floor anchor bolt reguirements for equipment
on ground/first floors and on upper floors of telephone buildings. In some
cases, i.e., heavy equipment in high-risk areas (see Figure 2), it is
necessary to include overhead bracing to ensure protection of the equipment.
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BElectromechanical Equipment

Electromechanical equipment, which consists primarily of crossbar
switching facilities, is mounted on 11-1/2 £{ frameworks anchored to the
floor and braced to the ceiling, as shown in Figure 9. This configuration
results in a fundamental frequency of L4 to 8 Hz for the squipment-framework-
bracing, depending on the specific mix of equipment weights and frameworks.

Figure 9. Typical 11-1/2 £t Electromechanical Equipment
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The tests are the same as those performed on electronic equipment,
i.e., varying the weight, framework, and input enviromment. In addition,
a special structure was built to simulate overhead bracing on the shaker
table, as shown schematically in Figure 10.

The results of the electromechanical equipment tests are expressed in
terms of damage profiles. By keying these damage profiles to the micro-
zonation map, regional earthguake protection practices were developed. The
results show that the standard nonearthquake installations are satisfactory
for low to moderate seismic risk areas and that present earthquake practices
are adequate for the high-risk regions. These earthquake practices include
a more substantial overhead bracing configuration than the nonearthquake
installations use.
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Figure 10. Evolution of Field Configuration to Test Configuration
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Reserved Power Systems

The primary component of the telephone reserved power system is the
battery plant. The newest battery plant consists of polyester-glass stands
with round cells, as shown in Figure 11. There are several earthquake pro-
tection measures that can be employed with this stand-cell configuration —
for example, epoxy all Joints in the stand and lock the cells in place,
and/or place a harness over the stand and anchor it to the floor, as shown
in Figure 12. ‘

Figure 11. Nonearthquake Tnstallation of
Polyester Glass Stands with Round Cells
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A serieg of tests were performed with variations in the stand-cell
configuration — i.e., 2-row 2-tier, l-row 2-tier, 2-row 3-tier, etc. — dif-
ferent earthquake protection measures and variable earthquake input. The
fundamental frequency varied from LI to 7 Hz, depending on stand-cell con-
figuration and earthquake protection. The resulting damage profiles were
keyed to the microzonation map, and regional earthquake protection guide-
lines were developed. This study shows that the harness and epoxy are
required for all battery stand configurations in moderate- and high-risk
areas, and the harness is required for certain configurations on upper
floors in low-risk areas.

CQST AND LOSS ANALYSIS

The above analysis shows that an earthquake protection policy can be
based on reliability considerations. While improving the reliability of the
structure tends to lower the loss due to earthquake damage, it also could
result in a significant increase in the total cost of the structure. When
the additional protection cost becomes substantial, it is necessary to con-
sider the cost and loss factors during the design protection decision
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process. Some recent papers have been published addressing such problems

in the context of optimal design5’6 or decilsion analysis.7 Since cost and
reliability are key factors, estimates of these quantities must be truly
representative of the actual enviromment to preclude both grossly conserva-
tive and marginal design practices. Because of uncertainties in the earth-
quake and structural parameters involved in such complex problems, the
degree of precision in the cost and loss estimates depends on the
sophistication of the analysis procedure. However, for practical purposes,
simple but reliable procedures are more desirable. One such cost/loss
analysis procedure is described below.

Cost/Loss Analysis Procedure

The expected dollar loss of an equipment system due to earthquakes
depends on the earthquake risk and the total worth of the system. The
following two situations are considered: one communications system in a

given seismic risk area, and "n'" of these systems in that area.

Single System Cost/Loss Analysis — Consider the situation where there
is one communications system located within a given contour, as illustrated
in Figure 13A. Assume that regional earthquake protection is incorporated
to ensure survival of the system for the enviromment indicated by its loca-
tion on the contour map (Figure 2). The specific earthquake protection
installed is determined by the damage profile (Figure 8) of the equipment-

framework system.
DESIGN \/

CONTOUR @

A. SINGLE-SYSTEM CASE B.N-—-SYSTEM CASE

Figure 13. Monetary Losses for Communications Systems during Earthquake

If earthquake protection were not incorporated in the system, the
expected losses over the 50~-year facility service life would be equal to the
value of the equipment, i.e., cy - When earthquake protection ig included,
this loss is reduced to

L = pfc' 2 (l)

1

where Pe is the probability that the design environment will be exceeded

during the facility service life, i.e., the exceedance probability is 0.10.
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Thus, the expected loss is

L, = 0.10 c, . (e}

The earthquake protection cost ratio § (i.e., protection cost divided
by equipment value) for communications facilities is typically 0.00h to
0.02, depending on the type of equipment and its protection design level.
Therefore, an expenditure

P = 0.00%4 c; to 0.02 ¢ (3)

results in a reduction of expecied losses, Le’ from s to 0.10 Ci’ which

obviously makes the earthguake protection cost-effective.

Multiple Systems Cost/Loss Analysis — When there is more than one
system within a given contour (Figure 13B), the situation is different.
Each system is equally vulnerable and has a certain likelihood of fallure
during a given time period. Furthermore, joint failures of a number of
systems alsc may ocecur.

Let the "n" similar systems in Figure 138 be denoted as a,b,c,...; let
pf(a),pf(b),... — be the respective failure probabilities; pf(ab),

pf(bc),...,pf(mn) the joint failure probabilities for two systems; and
pf(abc),pf(bcd),...,pf(lmn) the Joint failure probabilities for three

mn_mn

systems, etc. Then the total expected earthquake loss for these "n systems
is

L = c;(pp(a) +0,(0) + .. 4D

+ 2ci[pf(ab)-kpf(bc}-%...—pr(mn)] + ...t nci[pf(ab...n)]. ()

If each system has earthquake protection to ensure survival for the
environment indicated by its contour location, then the failure probabil-
ities of single systems¢ within the contour are ildentical — i.e., pf(a) =

pf(b) = ... = pf(n) Z p, = 0.1 —but the joint failure probabilities of two

or more systems are not known. The calculation of these joint failure
probabilities is complicated, because the correlation between events of
multiple failures is difficult to evaluate. However, if these systems are
geograpnically separated so that their failure can be treated as independent
events, then it can be assumed that pf(ab) = pf(a)pf(b),

pf(abc) = pf(a)pf(b)pf(c), etc. and the expected loss can be expressed as

_ ny 2 ny_3 n\_n
L, = ci[npf-k2(2>pf—%3(3>pf4-...+-n(n)pf] . (5)

From the equation above note that higher-order terms contribute very little
to the total loss; this is expected because these terms correspond to
higher-order joint failures, which are extremely small. If these terms are
neglected for n > 2 in the above equation, then a lower-bound estimate
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of the earthquake loss is given by
Le > ne.p, = 0.10 ne, . (6)

Therefore, since the protection cost for "n" similar systems is P = néc.
-] 13

vhere 6 is typically 0.00h to 0.02, it can be concluded that earthquake
protection is cost-effective.

The relatively simple cost models described above demonstrate that
earthquake protection of communications facilities increases system
reliability, and can be incorporated into the system in a cost-effective
manner.

CONCLUSION

This paper has described procedures developed to ensure telephone
equipment reliability in various earthquake-risk regions. TFor a given
system the following elements must be determined: +the nature of the earth-
queke enviromment, equipment tests, and the cost of the protection as
opposed to the possible system loss. The study showed that earthquake
protection practices that were designed according to these prervequisites
increased system reliability in a cost~effective manner.
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SUMMARY

This paper deals with the problem of the seismic design of free stand-
ing chimneys, of constant as well as tapered cross sections. It is more
particularly shown that seismic deisgns based on the so-called critical
excitations of these structures are conservative, but not overly conserva-
tive, and that they should be appropriate either for localities in which
ground motion records are scarce or for structures whose loss would have
serious consequences, economically or socially. This conclusion is based
on computed "critical design factors" which are the ratios of the response
peaks generated by a critical excitation to those produced by an actual
ground acceleration of same intensity., These factors were found to be in
the order of 0.93 to 1.3 for at least one structural design variable of each
of the two structures, implying the conclusion that design based on the
critical excitation method would be more, but not greatly more, conser-
vative than one based on an already observed ground motion. Design cal-
culations for the additional steel reinforcement implied by those factors
confirm this conclusion.

INTRODUCTION

Free standing chimney are comparatively susceptible to seismic
damages due to their inherent weak supporting condition and lack of struc-
tural redundancy. The most damaging (critical) ground excitation for an
assigned design variable (moments, shears, or deflections) possesses
characteristic frequency contents, duration, and energy level. The first
two characteristics are dependent on the structural properties while the
other depends on the nature and intensity of the ground motion.

Structural response is characterized by the frequencies of the modes
of its free vibrations. Intuitively, one should expect the most damaging
(i. e. ; the critical) excitation of a structure to have a frequency spectrum
that matches that of the structure. This is actually the case, as experience
indicated. It is known, for instance, that ground meotion matching in
frequency with the lower vibration modes of a structure is likely to cause
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severe damage in it. It is alsoc well known that excitations at short dis-
tances from the epicenter which exhibit intense vibrations at high frequen-
cies may induce damage in apparently strong but rigid structures, vyet light
or no damage to seemingly weaker but flexible structures. Mathematical
confirmation [ 3] of these observations shows that the critical excitation of
an elastic structure, for a given intensity and relative to one of the design
variables, is the time-reversed impulse response of that variable.

It develops however, that the kind of precise frequency matching which
is afforded by the time-reversed impulse response is not in general achiev-
ed by realistic ground motions. In other words, the response peaks to
which it leads are typically much too large, and the designs that would es-
cape damage, much too conservative to be useful. It has accordingly been
necessary in this study to modify the time-reversed impulse response and
to treat the modified excitation as the critical. To distinguish the original
and its modification, they are called the 'first-class' and the second-
class' critical excitations in what follows.

This paper starts with a discussion of the first-class critical excitation
for structures with a single-degree-of-freedom, as well as some assump-
tions and concepts that are pertinent to it, and then proceeds to the case of
multi-degree-of-freedom systems. The idea of the second-class critical
is introduced next. The succeeding sections present the methods and the
results of the analyses of the two types of chimney, namely one with con-
stant and the other with tapered cross sections. A critical discussion of
the results is contained in the concluding section.

EFFECTIVE DURATION AND INTENSITY OF GROUND EXCITATION

The response y(t) of a design variable of an elastic structure to a
ground acceleration %g(t) is given by the Duhamel integral

y(t) = fig(’f)h(t-'r) dr (1)

o}

in which h{t-7) is the unit impulse response at a time (t-7). For a structure
with a single degree of freedom it is given by

o -Ew(t-7)

hit-7} = sin wD(t—T) (2)

1
“p

where w,, =V 1—52' is the damped frequency, w is the undamped frequency,
and £ is the damping ratio. Thus, if the maximum response of a structure
occurs at time tg, the duration of excitation needs not be taken lenger than
the value of {tg-tp} so that h{to-to)= 0, or more practically h{tg-tg) decays
to a certain percentage of the maximum of h(t), The decay percentage can
often be left to the judgment of the designers. For example, if the decay
to a ten percent was assigned to a structure based on its fundamental
period of vibration of 2 seconds, with a damping ratio of 5% then the dura-
tion of excitation need not be taken greater than

(t -t )= ~fn0.1 _ _2.3 = 14. 6 seconds (2a)
e o w

Ew am
0.055
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The definition of the intensity of ground excitation has been the subject
of extensive discussions. In this paper, following the derivation of refer-
ence [3], the intensity of an excitation was defined as

E=[] ié (t) dt]? (3)
t

Since the duration of excitation (t,-t,)} used for the critical excitations and
the comparative recorded excitations, as will be seen in the later discus-
sions, are the same, the intensity of excitation defined here is similar to
that defined by Housner [6].

E~—f2 (4)

FIRST-CLASS CRITICAL EXCITATION

The maximum response of a multi-degree-of-freedom system repre-
sented by modal superposition is as follows:
t

Tilhe) = T eygnyle )= f (M Doy Py hylem) dr

t
’c
fx (7) Bt -7) ds (5)
t g
o
th th .th
wherey (t )is the k response variable, c1> . is the k element of ¢ i
mode shape n; (t )isthe normal coordinate o% ith mode, P; cpTM 1/ o: $ Moy
is the ith ' mode part1c1pa.t10n factor with M as the mass matrlx and
1 is a vector with 1's or o's to indicate the existence or not of excitation in
the vector elements of y. Squaring the response yj, and setting up the in-
equality, the following relation is obtained.

t
2 . T 2
yow )= f % (1) B (£ -7) d7]
t0
t t
€ 2 .e.._
< [[&Z(mari [ [ B _-ndr]
Tt B t ©
O O
< EZNZ (6)
or yrite) < EN

where E is the intensity of excitation as defined in Eqg. (3) and N2 is the
square integral of the unit impulse response. The maximum response is
the product EN and can be obtained by applying a first-class critical exci-
tation %.(t), so that

%.1(T) = T h (t,~7) (7

21
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The shape of the unit impulse h (t) and % _4(t) are shown in Fig. 1.

b4
N cl
hit) M
N

_ \/\\/\/ e
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The maximum response due to the first class critical excitation is

1
Zit

Yol [ Rt -7 Rt -nar

= EN (8)

The intuitive interpretation of this result was already mentioned in the
Introduction. It indicates that the frequency content of the first class
critical excitation matches exactly with that of the structural vibration
and therefore that the corresponding critical response vy is the maxi-
mum peak among those produced by all the excitations with same inten-

sity E.
SECOND-CLASS CRITICAL EXCITATION

It has been mentioned in the introduction, that the response peaks pro-
duced by the first-class critical excitations often are too large to be real-
istic, and the results reported below for two free-standing chimney will be
seen to confirm this. It has therefore been found necessary to intr:ocuce a
modification which is called the "second-class critical excitation” here.

The second-class critical excitation is obtained by superposition of a
number of recorded groung excitations (or artificially generated excitations)
and least-square fitted with the first class critical excitation as follows:

n

k.5(t) ‘:12:1 cii’ci(t) {9

and ¢

© . 2 .
tf [ixcl(t) - xcz(t)J dt = minimum
o
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e
2 L2
Xcz(t) dt = E

t
o

The response to the second-class critical excitation is

t
e._..

Yoo = jt" B (ke -7) & _, (1) d7 (10)
o]

The second-~lass critical excitation ¥ , resembles the recorded
excitations more closely than the first-cla$$§ one and the peak of its re-
sultant response y , is more reasonable. However it is still larger than
that of any of the rgsponses due to the component excitations used for the
least-squares of it.

In order to find the first-class critical excitation % and the cor-
responding response y 1 for a particular structural descign variable based
on the time-reversed uRit impulse response, the designer only needs the
specification of a reference ground motion intensity E. However, in order
to obtain the second-class critical excitation X_, which is a least-squares
fit, a number of appropriate ground motions must be selected to make the
combination as shown by Eq. (9). Finally, in order to have a basis of
comparison, a few recorded accelerograms must be selected and struc-
tural responses calculated for them as well., This section describes the
choices that were made for these purposes.

In regard to the first requirement of obtaining the least-squares fitted
excitation x.5, twelve accelerograms were selected including two of the
three selected for comparative studies. These accelerograms were chosen
with the following stipulations:

1. The ground excitations are characterized by relatively short
epicentral distances, say 25 to 30 kilometers.

2. The shape of the accelerogram should have a gradual build-up
period.

3. The site conditions of the selected earthquakes should re-
semble as much as possible the condition prevailing at the
location of the structure.

The third stipulation may be difficult to satisfy unless a choice can be
made from a rather large variety of accelograms, probably larger than
now exists. At any rate, in the present study twelve ground motions re-
corded in Southern California were chosen and assumed to be representa-
tive for the locations of the chimneys to be analyzed below. Appendix 1
lists these twelve earthquakes and their intensities E.

Typical examples of second-class critical excitation obtained in this
way are shown in Fig. 2.
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For comparative studies, three accelerograms were selected from
the published results | 2], namely, (1) 1971 San Fernando, Pacoima S14W,
(2) 1940 Imperial Valley, El Centro S00E, (3) 1954 Eureka N79E. Each of
these three accelerograms has certain special characteristics: the first
is the strongest (1. 17g) that has ever been recorded, the second one is
strong and of relatively long duration, while the third one is moderately
intense and of relatively short duration.

CHIMNEYS WITH CONSTANT CROSS SECTICONS
Chimmneys with constant cross sections are simple prismatic canti-
levers. Its natural frequency of vibration of the ith mode is given by [1]:

w, = a | (11)

where a, is obtained from the transcendental equation
cos a, cosh a, = -1 (12)
i i

The mode shapes are given by

x . X . x x X
¢i( L) = sin a; T - sinh o T + Ai(cosh @, 7, - cos a; L)

with sin a; + sinh a;
A. = (13)

i cos a; + cosh a,

In the above expressions, E is the modules of elasticity, I is the moment
of inertia, m is the distributed mass per unit height, L. is the height of the
chimney, and x is the distance from the base of the chimney.

For a reinforced concrete chimney of 304. 80 m in height, 18. 288 m in
outside diameter, and 0,4572m in thickness, the mass per unit height is
1910.677 Kg-seczfmz. Based on modulus of elasticity 2.9489x 109 kg/m2 and
moment of inertia 1018.5m?%, the period of vibration in seconds of the first
six modes are 2,400, 0.383, 0,137, 0.070, 0,042 and 0.028. The participation

factors quJi dx/ qu>iZ dx are 0.783, 0.434, 0.251, 0.001 for the first
o o}
four modes. The design variables selected are top deflection A, base
moment M, and base shear V. The results of the dynamic analysis for
the three reference earthquakes are shown in Table 1. The entries in the
table are more specifically the response peaks generated by these excita-
tions shown in the left column. The peaks to which the first-class critical
excitation leads are seen to be consistently much higher than those due to
the actual ground motion.

Those produced by the second-class critical are however much more
realistic. The ratios of those peaks to the ones generated by the actual
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ground motions are listed in Table 2, under the heading of "critical design

factors.”" These factors are seen to range over values from 1 to 3.
TABLE 1. RESPONSE PEAKS OF CHIMNEY WITH
CONSTANT CROSS SECTION
Excitations Intensity Response Variables
E Top Deflection | Base Moment BaseVShear
. M

(cm/ sec’?) () (1KY -m) | (10°Kg)
Pacoima Dam 0. 676 10288. 8 1280. 2
lst cl. critical 6.471 2. 396 26151.1 1194, 3
2nd cl. critical 5.101 59678. 2 3565,7
El Centro 0.432 4967, 4 349. 9
1st cl. critical 2,572 0,953 10394, 4 474, 7
Z2nd cl. critical 2. 028 23720.6 1417. 3
Eureka 0,243 3423. 3 286.6
1st cl. critical 2. 008 0. 744 8115.5 370. 6
2nd cl. critical 1.583 18519.9 1106.5

TABLE 2. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH CONSTANT CROSS SECTIONS

Excitations Top Deflection A Base Moment M Base Shear V
Pacoima Dam 3.54 2. 54 0. 93
El Centro 2.21 2. 09 1. 36
Fureka 3.06 2.37 1. 29

TAPERED CHIMNEYS

Most chimneys have tapered shapes. Although expressions similar to
(11) and (13) for frequency and mode shapes can be derived, it is simpler
to use discrete lumped mass approach.

The chimney selected for this study is a 304.8 m free standing tapered
reinforced concrete cylinder. The bottom outside diameter is 25. 298 m
with wall thickness of 0.889m. The top outside diameter is 10. 262 m with
a thickness of 0. 216m. The 0. 64 cm steel lining is not considered as the
integrated structural element. The detailed vertical chimney wall cross
section is shown in Figure 3.

A discrete finite element method was used to find the free vibration as
well as dynamic analysis. The height of the chimney is divided into 17
sections with the respective horizontal cross sectional area and moment
of inertia computed as shown in Table 3. The lumped masses at the nodal
points are also shown in Table 3. The condensed stiffness matrix refers
to the horizontal displacements at the nodal points corresponding to each
mass point. The mode shapes and periods of vibration are shown in
Figure 4. The design variables selected for study are again the top de-
flection A, the base moment M, and the base shear V. The dynamic
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TABLE 3. AREA, MCMENT OF INERTIA AND

LUMPED MASSES OF TAPERED CHIMNEY

Ar%a Moment of Inertia Lumped 2Mass
Element (m*) (m™) Node (Kg-sec /m)
17 7.005 93.420 18 10119, 08
16 7.505 114.90 17 27976.28
15 8.125 145. 791 16 37648.93
14 8. 999 186.856 15 40476.32
13 10. 448 24. 652 14 45535.86
12 12. 293 330.866 13 53571.6
11 14. 888 450. 039 12 62053.77
10 18. 334 617.540 11 76934. 77
9 22.956 823. 209 10 93006. 25
8 25.348 1044.520 9 1106268, 21
7 28. 108 1274.539 3 122321.82
6 31.010 1540.536 7 134970. 67
5 34.056 1846. 109 6 148363,57
4 37.242 2194.955 5 162351, 71
3 41.448 2644, 194 4 176935,09
2 54.024 3684.179 3 200149. 45
1 66, 189 4788.8¢65 2 290477.12
1
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analyses of this chimney led to results which are summarized in Tables 4
and 5. Table 4 lists the response peaks that were generated by the actual
ground motions, along with those due to the first-class and second-class
critical excitations of the same intensities. Table 5 presents the critical
design factors.

TABLE 4, RESPONSE PEAKS OF CHIMNEY WITH
TAPERED CROSS SECTIONS

Excitation Intensity Response Variables
E Top Deflection | Base Moment | Base Shear
3/ A 5. M 4y

m/sec>’ 9 ) (1°Kg-m) (10% Kg)
Pacocima Dam 1.383 5536, 6 703. 6
l1st cl. critical 6.996 3.849 10930.4 1044.0
2nd cl. critical 21.924 58122.5 5191.0
E1l Centro 0. 694 2134, 7 313.3
1st cl. critical 2. 895 1.594 4523.7 432.1
2nd cl. critical 9.074 22684.8 2148.4
Eureka 0.448 1580. 3 2307.4
1st ¢l. critical 2.034 1.119 3177.9 3035.3
2nd cl. critical 6.373 15935.9 15092. 2

TABLE 5. CRITICAL DESIGN FACTORS OF THE
CHIMNEY WITH TAPERED CROSS SECTIONS

Excitations Top Deflection A Base Moment M Base Shear V
Pacoima Dam 2.78 1.97 1.48
El Centro 2.51 2.12 1.33
Eureka 2.50 2.01 1.32

A design of the base cross section of the chimney was also made,
based on the elastic design approach as well as on an inelastic one with
ductility factor of p = 4. The results are shown in Table 6. The re-
inforcing that would be required for adequate strength against the second-
class critical is considered to be rather high, but not beyond reason, when
compared with that needed against the El Centro ground motion,

CONC LUSIONS

The proposed method of assessing seismic resistance of structures,
based on the second-class critical excitation, was applied to uniform
cross sectional and tapered chimneys. The conclusions from this study
are as follows,

1. The method proposed here is an upper bound analysis in view of
the fact that precise nature of earthquake, frequency of occurrence, inter-
action of structure and soil, and other earthquake related factors are not
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readily available.

2. In the structural design of the two chimneys, the method appears
to be effective, though still somewhat conservative. If desired, further
reduction of the bound can be achieved by the judgment of the design en-
gineer in reducing the specified intensity E, or in eliminating some of the
selected component earthquakes in the least-squares fitting process. By
observation of the coefficient of the least-squares fitting process, it appears
that the earthquakes which most resemble the shape of the time-reversed
unit impulse response excitation are the ones which may cause larger re-
sponse. If these earthquakes are not likely to occur at a given location,
they can be profitably omitted. '

3. Both the intensity of the earthquake E, and the square integral N
depend on the effective duration te-tg used in the integration process. In
general, the duration depends on the fundamental period of vibration and
the damping of the structure, being shorter for shorter period and larger
damping. It is suggested that one may use the duration of decay of the unit
impulse response to a judiciously selected percentage (say 20%) of the peak,

4. When plastic behavior is considered by using a ductility factor of
3 for a recorded earthquake, a ductility factor of roughly 6{=2x3) is re-
quired for the same structural strength against the least-squares fitted
excitation. This ductility factor appears somewhat on the high side but
not entirely out of proportion.

5. Based on the above discussions, it is suggested that the assess-
ment of seismic resistance based on critical excitation be used for struc-
tures with major importance the destruction of which would cause severe
human and economic losses. Another instance for adopting this approach
is for those localities where seismicity is active but reliable ground
motion data are scarce.

6. The practicality of the method is still undergoing examination by
applying to various realistic structures at the time of this writing. Hope-
fully, consistent comprehensive recommendations can be drawn from these
results in the near future.
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SUMMARY

A method is presented for the nonlinear dynamic analysis
of three dimensional space structures stressed into the
elastic-plastic range. The procedure is an extension and
modification of previously published static analyses. These
modifications take place in the description of the stiffness
matrix and in the interaction equations required for three
dimensional elastic-plastic flow. The modal superposition
method is used to reduce the order of the nonlinear dynamic
equations to a more manageable form.

INTRODUCTION

The more efficient use of structural materials has led
to design based on the ultimate capacity of structures,
rather than their elastic 1limit. This has created a need
for computational procedures to evaluate structural response
in the complete range of material behavior. While a large
amount of effort has been expended on the computation of
planar elastic-plastic response, very little work has been
published on the elastic-plastic analysis of three dimen-
sional frameworks, even under static load (l1). The dynamic
response problem has been considered in (2) and (13). How-
ever, the latter paper was restricted to linear response
computations. Herein will be presented a procedure for the
computation of the nonlinear elastic-plastic response of
arbitrary frameworks whose members can be struts, beams or
cables.
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MATHEMATICAL FORMULATION

The approach utilized herein is basically that employed
in static analyses by Jonatowski and Birnstiel (7). However,
certain modifications to their procedure have been made.
First of all, it should be noted that, whereas in (7) sta-
bility functions are used, this work uses the usual stiff-
ness values unmodified by the effect of thrust. While
stability functions were applied in scme of the early
static analyses, their use did not make a difference in the
final results. It was felt that the large amount of computer
time required to generate the stiffness values in dynamic
analyses did not justify the refinement of stability func-
tions. The dynamic equations can be written in the following
matrix form

[M]{%°}+ [c]{ﬁ} + [I\]{D} = {p} (1)

in which [M] = mass matrix. It is made up of the lumped
masses consisting of half the weight of each member framing
into a node. The rotary inertia contribution was computed
by assuming that half of each member rotates as a rigid bar
about the node, while the torsional inertia is computed as
the product of the polar moment of inertia and the mass den-
sity of the beam. Matrix Eﬂ = the damping matrix and {D{ =
the displacement patrix (u,v,w,0x, ©y and ©z7 at each node).
The elements of {D} are the velocities at the nodes while
the {D} matrix contains the accelerations. Matrix {p} =
the force matrix, made up of concentrated forces and couples
at the nodes. _The matrix [K is formed from member stiff-
ness matrices [k] evaluated at the deformed pcsition of the
member. The matrix elements of Eg. 1 are referred to a
global system of coordinates; therefore, the elements of
k] are referred to these coordinates as well. Matrix [k]
may be determined from

[x] =[=] * [x+][<] (2)

where [r] is the member rotation matrix (4,7) and[k#] is

the member stiffness matrix in local coordinates. The

basic difficulty in the analysis concerns the evaluation of
[k*] so attention will be focused on this problem.

It is assumed that all plastic behavior, when it
occurs, 1s concentrated at the nodes of the system. Since
lqads are applied only at the nodes, these are the sec-
tions at which maximum bending stresses will occur. The
?grgis—strain equation for the material is defined by

14

o= EE€

(T*i__{ﬁe~| b) 1/ (3

7
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in which E = modulus of elasticity, b = constant defining
the shape of the stress-strain curve, ¢= unit stress, ¢ =
unit strain and oy = the ultimate stress. For an elastic-
perfectly plastic material o¢_ will be taken as the
yield point of the material. "The moment at the noge is
expressed by a relationship similar to Eq. 3 (5,7)

1+ |2 Vb
i |

Jonatowski and Birnstiel derived a matrix [k* | based
on Eg. 4. However, their procedure has two defects: one
practical, the other theoretical. The practical defect is
that their member stiffness matrix is not symmetrical.
This means that a complete band width algorithm must be
used in all computations, rather than the half band width
procedures customarily employed in structural analysis. A
second defect in their matrix is that it viclates statics.
This is easily proven by computing the shear & a node
directly from their stiffness matrix and comparing that
value with the shear computed by dividing the sum of node
moments, obtained from the same matrix, by the member
length. The two values should coincide but in the elastic-
plastic case they do not. It must be emphasized, however,
that the error in statics arises only when the member
undergoes plastic flow. The error cannot be large because
their results compare very favorably with those of other
workers. A modified symmetrical form of the [k*] matrix
is expressed by the following elements

* = * = k% = * = * = k% =
k¥, =k, ki, = AE k¥, = kig k3g = By + B, (5a)
gL Y
L
= - = * = - * =
k3¢ = ~ Kgg = By k3,12 kg, 12 = By (5b)
- — = = * = — _
k33 = 7 k3g = kgg = C) *+ C;  Kig Kgg = Cq (5¢)
—_ = - e * = - =
k3,11 k%, 11 Co  ki,a ki 10 fo,10 = & (5d)
= = * - n * - 4
kP g = 4B, K& gy = 2EL,  Kpg = 4BI, k§ .o = 2BT, (Se)
Lhb Lrv P Ty
— * =
kip,11 = 4Ely kis 12 = 4Ely (5£)
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where
Bl—ixﬂ(g+%) B2=E(§_+§) (6a)
2 W 12 W
C, = EI (4 + 2) C, = EI (4 + 2) (6b)
e Ty : “'"2"Y d ry
1’ L
and 1 , b1
B /
g=+ | [BP ho= (e (20N VTR gy
°® Tl
o) b1y, a.( 8 b) /
p= 1+ (2iMg'5] ) d=(L+]% M\%_l! (7b)
iMPw)i Moy’ 4
s = (L+ a.(M{qyb)l/b ry=2hd  r. = 2ps (7¢)
—(—ML’—-J- (h+d) (p+s)
pW) j

U,V and W denote the principal axes for the member. The a,
and a. values will be defined later. For the present they
can bd taken as 1.00. Then the plastic factors g, h, p, d
and s are identical to those developed in (7) while ry is an
averaging factor introduced to insure that the stiffness
matrix satisfies statics and is symmetrical. In this formu-
lation, unlike that of Jonatowski and Birnstiel, the exist-
ence of plastic flow at a node 1 influences the stiffness

at the opposite member node j. This is reasonable, although
it is possible to describe this influence in other ways (2).

The primed stress resultants in Egs. 8 are those computed as
if the member were completely elastic. Terms with P sub-
scripts denote the yield values of the stress resultants.

(If the member is a cable, Pp is the ultimate force.,) Pp is
easily computed, but the yiegd moments depend on the inter-
action of the moments about both axes and the thrust acting
on the section. This requires an interaction eguation of
some type. Both Jonatowski and Birnstiel, and Bockholdt and
Weaver ultilized the interaction equations developed by
Santathadaporn and Chen (l1l). However, the solution of these
equations requires a trial and error procedure, and is quite
time-consuming, even for simple static problems. In a
dynamic analysis, the computer time would seem to be prohib-
itive. It was decided to employ an approximate solution to
the problem of interaction., In their work on H columns

under biaxial loading, Tebedge and Chen introduce the follow-
ing interaction equation (12)
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e e
M+ M o= 1.0 (8)
Mpy Mpy
wherein
Mo = 1.18 Fwa(l—g ) <Py (9a)
p
_ _ 2
Mpy = 119 Fzy (m(E)%) <Rz (9b)
P
e=1.60 - */p (10)
2 1n F/P
P

Eq. 8 was used in the following manner: at nodes i and j
the left hand side of Eg. 8 was computed and called a; and
a.. If a, or a. is less than 1.00, it is set equal to 1.00,
while if It is &reater than 1.00 its computed value was
used 1in Egs. 7 along with values of MP and M W found from
Eq. 9. This procedure insures interacgion begween the
various moments only when Eg. 8 results in a value greater
than 1.00. Since Eq. 8 is an upper bound equation, it can
be expected that its use will results in an over—estimation
of the yield load on a section. This defect was corrected
somewhat by substituting M& for My and M& for M.

In order to solve dynamic problems it is necessary
that unloading of a section be properly defined. If un-
loading is to occur at a point O on the moment-rotation
curve, a residual moment, AMg, the difference between
the elastic-plastic moment at O and the elastic moment,
M7 , is introduced. Along the unloading curve , A Mg
is taken as a residual moment in the definition of .
For example, in Eq. 7, My becomes My - AMyg where, as
usual, My is computed as i1f the member were elastic.
This insures that unloading occurs the proper curve.
Along this unloading curve, Mp remains as previously
defined and Egs. 5, 6 and 7 are again used with this
modification.

All operations with the [rmatrices are identical
to those described 1in (7) and will not be reproduced
here. It should be notea, however, that the gecmetric
nonlinearities are introduced in the [r|matrices;
these matrices are functions of the deformed position
of each member. The influence of member thrusts on the
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stiffness matrix can be added tc the member stiffness after
it has been expressed in global coordinates

ki ;=% ;- FL (i=1,2,3,7,8,9,) (11a)
AE
Ki,i+ve = %i,i46 V %ET: (i=1,2,3) (11b)

The value of F is the compressive force acting on the
member. It can be expressed by

F=F_ - AE AL (12)
° i

in which F = the initial compressive force and

AL = % ( (Xj‘Xi) (uj—ui) + (yj—yi) (vj—vi) + (zj_zi)
(wj—wi) + 0.50 ((uimuj)Z + (vi_vj)z . (Wj"Wi)z))) 13

Egs. 11 introduce the second geometric nonlinearity into
the stiffness matrix as F is a nonlinear function of the
displacements.

Once the stiffness and mass matrices have been ade-—
quately described, the dynamic response computations
differ little from those required for the nonlinear elastic

case (9). Egs. 1l were solved with the aid of the modal
response method and Newmark's linear acceleration method
{(3,9). The mode shapes were determined with the aid of the

Givens~Householder method (10).
NUMERICAL RESULTS

The theory developed in the previous section was pro-
grammed and run on an IBM 360 computer. Several problems
were run; the most informative example is presented in
Fig. 1. The simple three dimensional frame of Fig. 1 was
analyzed as a check on the static formulation (2,8). A
comparison of previous work (8) and that propocsed herein
is presented in the figure. It cannot be claimed that
the agreement is very good; however, in view of the
assumptions made, the results are as could be expected.
Jonatowski and Birnstiel used the interaction equations
of (1ll); they are lower bound values. In this work, Eg. 9
represents an upper bound. Therefore, the point at which
vield will occur differs for each model. This is evident
from the figure. However, once yielding occurs for each
system, the behavior becomes the same for both solutions.
It can be concluded, therefore, that the description of
plastic flow proposed herein is adequate but that the
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stress state at which flow starts may be overestimated. It
may be of some interest to note that the same frame was
analyzed in (2) using a yield point stress of 33 ksi. The
values obtained plotted slightly above those in {8).

Dynamic analyses were carried out for the frames pre-
sented in _Figs. 1 and 2. In both cases F,, = 36 ksi
(248 MN/mz) and b = 10. Damping was 2.5 ger cent of criti-
cal in each mode. A dead load of 100 kips (445 kN) was
taken at each rnode of the simple frame of Fig. 1. In com-
puting the mode shapes, inertia terms corresponding to
rotational accelerations were multiplied by the factor
0.01l. This corresponds to neglecting rotational accelera-
tions. The mode shapes take the familiar configurations
for a simple frame: the fundamental mode is a displacement
in the 7 direction at a fregquency of 0.790 Hz while tne mode
corresponding to motion in the X direction is the third at
a frequency of 1.34 Hz. Modes 2 and 4 correspond to com-
bined motions in the X and Z directions at frequencies of
1.06 and 2.25 Hz. It should be noted that modes 5 through
8 describe motion in the Y direction at frequencies
bunched around 14.9 Hz.

As a test case for the simple frame, it was analyzed
for a harmonic load of 5 kips (22.25 kN) acting at a
frequency of 4.70 radps applied at node 2 in the Z direc-
tion. This locad is close to that reguired for resonance
of the first mode. The response amplitudes are given in
Table 1. The linear elastic soluticn employed the first
4 mode shapes at a time step of 0.07 seconds, correspond-
ing to 1/6 the period of the highest mode, in this case,
mode 4. It is evident that in order for the modal res-
ponse method te be applicable to an elastic-plastic soclu-
tion, all stress resultants must be found with great
accuracy. The linear elastic four mode response satis-
fied this requirement. Elastic-plastic 1 denotes a four
mode elastic-plastic response using At = 0.07 sec. The
solution failed to converge at the step N = 47. However,
the structure revealed an instability at the previous
time step. This is found from an investigation of the
moment values in the columns and the girders. It is
obvious that for this frame the mcment about the W axis
for member 4-5, call it My, should just about equal the
moment about the V axis for member 3-4, call it M,. At
N=45, M7=-479 in - kips while Mp; = - 482 in-kips
(54,500 N-m). At N=46, M, = -1.0 in-kips while M2 =
-520.4 in-kips; the resuzts are completely wrong. This
form of instability revealed itself in all elastic-
plastic analyses of the frame.

In previous work on the nonlinear elastic analysis
of cable stiffened structures {(9), it has been found that,
when the number of mode shapes needed to describe a re-
sponse has been chosen, the time interval corresponding
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to the accuracy of this description is fixed at T min/g.
That is, if not enough modes are chosen, the analysis will
not yield an accurate description. However, its accuracy
can be improved only by using more modes, not by decreasing
the time step. For the elastic-plastic solution this may
not be true. For that reason elastic-plastic 2 was run
with four modes and a time step of 0.035 seconds. As can
be seen, the results are basically the same as the previous
case, indicating that the maximum time step for numerical
stability is accurate enough for the description of elastic-
plastic behavior.

Unlike the case for the linear elastic solution, the
two elastic-plastic response solutions did not describe
all the stress resultants accurately. The moment values
checked out until instability occurred, but the thrusts in
the columns were off somewhat. The vertical accelerations
are very small; therefore the column thrusts should add
up to around 400 kips (1789 kN). At N=37 in Elastic-
plastic 1, their sum was 356.6 kips, a significant error.
In order to determine how important an influence this
defect in the solution has on the description of the struc-
ture's behavior, Elastic-plastic 3 was run. This response
computation utilized 8 modes and a time step of 0.01
seconds. The column thrusts balanced completely, but other
than this change, no differences exist between this soclu-
tion and the previous two. It was decided that only four
modes would be needed in elastic-plastic solutions.

An attempt was made to analyze the frame's response
when subjected to earthquake loading. This was accom-
plished with the artificial accelerograms of (6). These
accelerograms were generated by multiplying a stationary
Gaussian process by a time dependent deterministic func-
tion. The stationary process and deterministic functions
are chosen on the basis of statistical properties of the
desired earthquake. Artificial earthquake 3 of (6) was
chosen and 5 seconds of response were computed. The
maximum acceleration of the quake in this time interval
is around 0.108 gravity but this value was increased or
decreased by multiplying the accelerogram by the neces-
sary factor. Quake directions along the X axis and at an
angle of 45 degrees with the X and Z axes were chosen.
Very little plastic flow occurred in the frame priocr to
instability. However, when flow did occur in the columns,
enough hinges were formed to start a collapse mechanism.
The biaxial quake did not lead to any interaction effect
on u, until failure occurred. That is, u, is basically a
plot of the response of the frame to an accelerogram 0.707
times that of the artificial quake. Interaction, however,
did lead to failure at a smaller amplitude.

The large frame (192 degrees of freedom of Fig. 2
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was also analyzed. Every floor has the same size girders
while the columns change every two stories. Its static
capacity was checked under the proporticnal loading system
shown. The loads are in the ratios P,, = 6P, and P, = 2 Py
with half loads applied at the top stdry. Instability
occurred at a load of Py = 2.06 kips (9.16 kN); vield
moments were exceeded at all columns in the bottom two
stories. The displacements at node 1 were u = 1l.71 inches
(4.35 cm) and w = 6.03 inches (15.3 cm); very little non-
linear behavior was revealed prior to the collapse lcad.
The mode shapes for the structure were computed using an
assumed dead load of 20 psf (858 N/m ) on each floor. The
fundamental frequency was 0.646 Hz corresponding to motion
in the Z direction, while the second mode's frequency was
.687 Hz and its displacement pattern indicates motion in
the X-Z plane. All the mode shapes are what one would
expect for the frame. Only the first nine mode shapes
were computed ( = 2,73 Hz) and no vertical motion mode
appeared among them. Response was computed for an earthquake
acting in the Z direction with the acceleration of 0.486
gravity. The first 9 modes were used at a time step of
0.06 seconds. Again instability arose suddenly with
little difference between the linear elastic solution and
the nonlinear elastic-~plastic solution until failure. Just
as for the static case failure arose due to yielding of
all the columns in the bottom two stories. In this solu-
tion, the column thrusts balanced out so that no error
existed in the stress resultants. Until the final time
step iterations converged in at most three trials; at

the final step no convergence was reached after 20 iter-
ations.

The dynamic analyses of the two frames were some-
what unsatisfactory in that their behavior could be
described quite well by a linear elastic analysis. Such
frames have no overload capacity when subjected to earth-
guake lcadings. All columns yield together and form a
collapse mechanism. A structure which does not reveal
this type of behavior is shown in Fig. 3. This figure
represents a planar cable-stayed bridge analysed
elastically in a previous work (9). Its dead load was,
taken as 16 K/ft. The glrder area is 8 sg. ft. (0.7 m")
and its moment of inertia is 45 ft4 (0.39 m4%) while the
corresponding tower properties are 3 sg. ft. (0.3 'm®) and
20 ft4 (0.173 n4) A cable cross sectional area of 1.10
sq. ft. (0.1 m 2)was assumed; the cable tensions are 9696
Kips (43 MN) in cable 2-3 and 11,500 kips (51 MN) in cable
3-5. Plastic properties were chosen to make the system
yield under the applied dynamic load; = 2000 kst
(95.8 MN/ 2) for the girder, 5000 ksf (2394 MN/2) for
the tower anci 21,800 ksf (1, 050 000 MN/p?2) for the cable,
along with Zw = 45 ft.4 (0.39 m%) for the girder and 18
ft.4 for the tower. A comparison of solutions obtained
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for a load of 500 kips (2.2 MN) applied at node 7 and vary-
ing as cos 3.00 t is shown in Table 2. 3 modes were all
that is required for accurate results. The elastic solu-
tion was obtained from a previous nonlinear solution, where-
in 100 kips (450 kiN) were applied, by multiplying the
response by 5.00. This structure is basically linear so
this would not introduce any error. Any correction would
make the elastic sclution larger because a cable-stayed
bridge behaves as a softening spring. The results of the
analysis are presented in Table 2. Behavior is as could

be expected. However, it must be noted that significant
plastic flow occurred in the system even in the first cycle.
This is because the dead load moments must be included in
the dynamic analysis. The interaction of thrust and

moment resulted in large amounts cf plastic flow at moments
slightly larger than the dead load moments.

CONCLUSION

A method has been presented for the computation of
the static and dynamic response of three dimensional space
frameworks. While certain modifications were made in
accepted static analysis procedures, these modifications
appear to have a minor influence on the accuracy of the
solutions obtained. On the other hand, complete nonlinear
elastic-plastic solutions are possible with the use of
little more computer time then is required for nonlinear
elastic solutions. Of course, this does not mean that the
amount of computer time needed to sclve such dynamic prob-
lems is small; even nonlinear elastic solutions are guite
time-consuming. The use of the modal superposition method
does lead to a great saving in computer time because it
makes it possible tc use a much larger time step than the
direct solution of the dynamic equations would permit.
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SUMMARY

Some simple examples are given to show how the limit
equilibrium extreme principles of elastic-plastic systems
can be used to calculate box=-unit buildings. The box-unit
buildings are presented in the form of the system of imbound
boxes i.e. in form of system with single-side ties.

INTRODUCTION

To calculate the ultimate load for the box-unit building
one can use the limit equilibrium methods, devised by
A.A.Gvozdev [ 3] and developed by S.M.Bernshtein [2] for systems
with single-side ties.

The calculations of stability against overturning
commonly used are particular cases of static (or kinematic)
limit equilibrium principles application. These principles
can be used to find destruction mechanism of the systems with
single-side ties.

It is also important to take into account the fact that
reactions in ties between boxes can have only one direction
under dynamic load and vibrations. Application of extreme
principles of the systems with single-side ties may simplify
calculation in this case.

Structural system of box-unit building may be considered
as a system with single-side ties.

BOX-UNIT COLUMN UNDER STATIC HORIZONTAL LOADS
The limit equilibrium box-unit column is considered. Lt
is assumed that all boxes are identical. Calculation scheme,

dimensions, loads and possible destruction mechanism are
shown in Fig.1.

The load factor Pi, corresponding to i-th possible
destruction mechanism can be obtained using the equation

Reowd + Avee = 0 ; (1)
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where Aﬂoad“ action of load

A yen — action of vertical forces of stability
against overturning.

For the i-th possible destruction mechanism these
effects are expressed as follows:

hi
Aeoad = P, jCL(x)(hL ﬁt)thfr =D m""’“‘iup (2)
Mmz——G lPF“M W (3)
in which }L - storey height
mE-L°°‘°L.. moment of load unit d,(X)

Je
W1L - moment of stability against overturning
(other symbols are given in Fig.1).
¥rom equations (1), (2) and (3) the result is

Mi©
Pi:z nl?&& M)
The limit value of load factor can be cobtained from
the following extreme problem

If g(x) sign is not changed along axis X minimum P, is
reached by L =nh

Normally the necessary reliability of structure is
secured introducing into formula the respective religbility
factors. In above formular reliability factors_of materials
resistance can not be used.Therefore value o 5 P should be
decreased 1.5 times and design load value P shoulid be
determined from the follow1namgguatlon.

des M
P™ = 0.67 fa (4')

and weight of boxes has to be taken into accouat with the
coefricient of correction 0.9.

The values of summarized wind pressure - QWlnd and design
load by {(4') Q des acting on a box - unit building diameter
made of two box—unit columns are shown in Fig.2. ¥or those
calculatlons the following initial data is accepted:

= 9.55t., b = b.2m., h = 2.75n.

As appears from Fig.2 ultimate height of box-unit building
should not exceed 16 storeys, if boxes are not tied together
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The sbove mechanism corresponds to a rotation of column
around the edge of lower Joint, the contact area of lower box
being equal to zero and compressive stresses being infinitely
large.

It would be correct to take into account deformations
and limited strength of materials and so bi-linear stress—
strain diagram for mortar Joint should be taken into considera-
tion (Fig.3).

This diagram is characterized by 3 value: Oy - yield
stress, Uy ~ displacement of begining yield, U, - maximum
displacement.

The limitation on displacements by Uu is equal to limita-
tion stipulating failure of concrete or mortar jJjoint.

To simplify let us assume thai all joints are identical.
In this case the box-unit column strength has to be determined
by strength of lower joint gs given above However, forces of,
stability produce moment M{ about center of gravity of
compressive stress epure in contact area. It leads to decreas
in the load bearing capacity.

So, load factor is to be calculated by formula (4'),
but ultimate load has to be reduced by coefficient F
which is 0z
e

P =% (6)

Where 2 - distance between above centre of gravity and
center of the columh.

If boxes rest upon each other with 4 sides, value P, as
a rule, can be about 1. If boxes rest with 2 longitudinal
sides, tThe valueiﬁ can be obtained thus:

F(Y2-74 +3)
Pt s )
2nG 8 7__%_[3_

K— 613 Sacmt'é
Syﬂnt - sunmarized width of Jjoints
As regards the above example, the values (des were
calculated by accounting for the coefficient P 5
which was calculated by (6),where E%5= 130 kg/cm<, Q}xnt =20cm,
W= 1 or 0.1
These values are shown in Fig.2.

The decrease in the load bearing capacity is 10-15%.
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NATURAL VIBRATIONS OF BOX~UNIT COLUMN

The static load upon the box-unit column was considered
above.

There is under consideration single-degree of freedom
system shown in fig.4.

If small natural vibrations are considered equation of
mass notlon to the right can be written as follows

G~ § ()" )

05869
A = iz +0.0587) @)
f(4) = Stgn(¥) (10)

& -~ gravivy acceleration
(Cf. Fig.4).

Since f(q0==-}(—49) non-linear equation (9) can be
sufficiently precisely replaced by the linear equation [1]

¢ + kP =0 (1)
in which 42
3A

A - amplitude of vibrations

As it is followed from <11) the frequency of natural
vibrations depends on the amplitude and not on the msass.
The diagram frequency of natural vibrations - amplitude is
shown in Pig.5. In the design scheme under consideration the
value H was accepted as equal 2/3 of the building neight.
Experimental results obtained by vibration tests are shown in
Fig.5 too.

As it follows from Fig.5 the experimental values can
become equal to theoretital values when the amplitude is 2-3cm.

Hence, it is necessary when calculating to take into
account the considered above vibration form.

CONCLUSION

Thesimple example dealt with in this paper show, that the
box-unit building can be calculated by means of the limit
equilibriumn method.

More complicated cases require using linear programming
and extreme propeties of ultimate load [1,2], deformation time
and residual deformation [4].
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These exaumples confirm the fact, calculations of the

elastic-~plastic systems and systems 'with single—-side ties are
analogous.

The authors express their deep acknoledgement to their

scientific adviser prof.G.A.Shapiro D.Sc.(Eng.) for his kind
suggestion in cerrying out this work.
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Summary

In this paper, the dynamic response of steel mulli - story buildings with a concrete - core,
supported on a flexible foundatton and subjected to an arbitrary dynaniic force or lo a horizonlal
movement of the ground induced by an earithquake, is established by anclyzing an equivalent
conitnuous model. This model consists of @ canitlever with transtationa! and rotaiional springs
at its support, carrying n concenirated masses at the floor levels. The (ufluence of the rotaiory
tneriia of the masses as well as of an tnitial cousiant compressive force acting al the free end of
the eantilever, are also tncluded. The iree and forced moiton of the aforementioned model ts tnve-
stigated, using generalized functions.

Ttis found that : a) the effect of the transtational spring on the eigenjrequencies of Lhe jirst
three modes is constderably higher than that of the rotational spring; b) the elfect of the lransla-
tonal and the rotatory wertia of the mass of the foundation on the frequeicy of the jundamenial
mode is appreciable.

Introduction

Recently, for economic and structural reasons, a great number of high - rise steel buldings with a
reinforced concrete - core, resisting the wind and earthquake forces, have been constructed. The dynamic
response of such buildings is usually established by analyzing an equivalent model made up of a massless
cantilever with concentrated masses at the floor levels. A more accurate mode! will inctude the effect of the
mass distribution of the core. Moreover, if the building is constructed on relatively soft soil, it may be
necessary to consider the effect of the displacement of the foundation. Investigations of earthquake res-
ponse have shown that the support flexibility has little effect on the stress distribution in the building ;
however, it may have a significant influence on the eigenfrequencicst?l,

In this investigation, a rigorous analysis of the dynamic response of a cantilever beam with transla-
tional and rotational elastic springs at its support, carrying n concentrated masscs, is presented. The influ-
ences of the rotatory inertia of the masses and of an initial constant axial compressive force P are also
included.

A closed form solution for the determination of eigenfrequencies and mode shapes, is given in ma-
trix form. Furthermore, the differential equation for establishing the modal amplitude of the cantilever
beam-column, subjected to an arbitrary dynamic force or to a horizontal movement of the support induced
by an earthquake, is also presented using generalized functions 1 13l
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Mathematical analysis

Assuming that the concentrated masses My, M,,. .., M are attached at points located at oy, o,.. .,
an = I respectively from the support of the cantilever (Fig. 1), the equation of motion is

n—1 . n—! , . n—1

Ely""+|Im-+ Y M; 3 (x—ai)} y—21 8 (x-a)y + Py =1f)|px)+ X Fidlx- o) 0]
i=1 j=1 i=1

where f(t) is the forcing function taken the same for all applied forces ; p(x) = po [HE—x;)—HE—xu)1

is a distributed lateral load per unit length extending over a portion of the length of the beam xx—x;

(xx>x;) ; Fi (1, 2,..., n) is a concentrated lateral force acting on the ith concentrated mass.

Fig 1. Cantilever beam - column with attached masses
supported on flexible afoundation

The solution of equation(1) must satisfy the following conditions at the ends of the cantilever beam
- column :

atx=0: Ely” 0,0=Cy (0, 0+ 1# 0, 0, Ely” 0, =- Cy Q0-Py (0, )-Mj (o,t)} 2
at x=/ : Ely” (I, O=-T¥' (, 1), Ely” (I, ) = Ma¥ (3, =Py’ (I, t) -f (0)Fa @

where C;, C, are the rotational and translational spring constants, respectively, In the case ofa
lateral movement y, of the support of the cantilever beam - column, as for example in motion induced
by an earthquake, the acceleration of the support is usually a known function of time V=V, f(t), where
V5o is the maximum support acceleration and f(t) is the time function for support acceleration. Equations
(1) and (2) are valid for this case, if y is taken as the relative displacement of the axis of the beam with re-
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spect to its support, while the term in brackets on the right - hand side of equation (1) is replaced by
n—I1
— Mys — Vo = M; 8(x—0) | and Fy in equation (2) is replaced by - ¥, M.

i=1

Free Vibrations

For free vibrations, the solution of equation (1) is of the form

y(x, 1) = Y(x)elet 3)
Introducing the nondimensional coordinates
X Y _ oj
R (CER T (@

and substituting (3) into (1) and (2), the following relations are obtained

YOGS e i 1Y o el e 9D L YO
des K 1+EIMLS(§ ai) }Y ©+k { El 38 (€ —a) & +p Tde T 0 (5)
o dQ}’(O) = dY0) 45 dY(0) d¥Y()  _ dY(0) -
AE=01 St =G KT S = T YO B T kMY (0) o
&Yy dY() eBY) , dY(0)
at £E=1: @ k4 1k, @& gE = -kKIMuY (1) -B §E
where
_ mo? oo M N S
k1 = E B, M= SR Ji= i (i=0,1,..., n) -
g BB e S S N
~TE COT TR 0 CT

Taking the Laplace transform of the differential equation (5) and the kinematic boundary conditions of
(6), solving for the Laplace transform and inverting the result , the following solution is obtained

n—I « _ _ - L , _
Y€)= ¢ (Y (O0) + 0oO)Y(0) + £ HE o) [MiY(@)Fuf —01) —~JY (@)F 5§ —0i) (8)
=t
where H is the Heaviside function and
0,(8) = F1(§) — (Co~ My)F,(E) . 0xE) = FE) (G F s )
Fi(&) = 87}@ (cZcosh(€ -- L2cosef) | Fy(&) :ééﬂj}:@(%smh«’;é — %sins&)
e —- I —— (9)
2 4 2 4
VSRR VY
M = KM Tk i=0,1,2 ....n

Differentiation of ecquation (8) yields
n—l1 * *
Y'(E) = 0" (EY{0) 4+ 0'y8) Y(O)r X HE—a) {MiY(@)F 5§ — a)— LY (@) F o ~ai)] (10)
i-1

Using equation (8), the natural boundary conditions in relations (6) give

n—I * *
YO + LMY+ % IMY(a)®, (J—a) =LY (a)d, (1 —a)]—= 0
S . (1
fo(DY(0) -+ (DY (0) + £ [MiY(m)Pu(l — @) —JiY (@)® 5l —ai)] = 0

[
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where . .

f(1) = 0,"(1) —=Jng, (1) fo(1) = 9. (1) =Jngy” (1)

B = 07(1) + Magy (D + Broy (1) (D=3 (1) + Mago(1) + B’ (1) (12)
®,(1 —a) = Fy(1 —) ~JaFy'(1 —a) , Oyl @) = Fy (1 8) 4 MoFy(l ~@) -+ B2F, (1 &)

By evaluating equations (8) and (10) for &=q,,..., @n—, and using equations (11), the following system
of 2n homogsneous equations is obtained on the unknowns Y(0), Y{(¢,),..., Y(@n-) Y'(0), Y'(ap,....

Y(@ny)- A R vi—o
i
where
A= "9:(0) —1... ...0 -
@@ MF@—a)  —l... .0
[ e e e - e e (14)
L 9a(@ny) M JFolon_,—ay) M JFalon_—a,). . M 2Fs (Gnmy—0On_s) -1
5 M,O,(1—d;) M0y (1—y)...... Moo ®1(l—Tn—y) Moy ® (1 —Guy)
Ap=" @)  0... -
i OoTy)  —JyF y(@y — ) 0... 5
g Q@) —NF y@n ) —JoF @ —0y). —fnazF'z(a.H—&n_z)
() =0, (1—ay) T (1)« » Ty ® 3 (I Tng)— T 1 D' (I — ) [‘
Ay ="0%(d) 0... .
¢'y(@) MF,@E—a)  0... 0 \
........................................................................................... e L16)
’ 0 (@) MyF y(@ng— ) MoF s(finy—0s) - . - Mg s(Gin_y—0in_s) 1
L) M@y(1—a) MOyl —a)) ... . Mumo®y(l—tny) Mo, @y(l—au_y)_ }
A ="0's(@) —1... 0
' %(az) —J1F2 (az (11) —1... 0
o )N By @ny—iy) —IoFy @y ).« + o IngFy (@ —iny) —1
L) hegi—d) (T o i) ® (1l — )
Y ={¥(0) v(@), ..., Y(@n )T } (18)
Y'={y(0) Y'(qy), ..., Y (Gn)}T

where the superseript T indicates the transpose of the matrix, For a non - trivial solution, the determinant
of the system (13) must vanish, resulting in the following frequency equation

[An Am] —0 (19
AB]. A22

Compautation of Mode Shapes

When the natural frequencies w, are established, the corresponding mode shapes of the cantilever
beam - column may be obtained as follows :
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By evaluating equation (8) for £ = @, @, .., tn_y, equation (10) for E=0;, Gs,. .., du_y, 1 and using the
first of equations (11), the following system of 2n equations is obtained

A?i ATZ Ym = O
(20)
AT AR Y ¥,

where the matrices Af], A[ are given by equations (14), (15) for o=, respectively, the column
matrices Yn, Y'm are given by eguations (18) and

Am_T0u@E) 0. L0
L o@) M Fyd, @) 0. 0
; (P'I(&Il—l) M]_Fyg(an_l_a]_) MzF‘z(E;H-—J“‘az) — M“——E]:,E(a]]_l_a“_g) 0
, * _ * , _ * i - * , _
_o(h) M, F(l—a,) M,F' (1 —0,). ... Mu o F'y(l—tn_s) Muy F'ol ~tlay) _
Ano oM@ —l1.. I
‘ - * re = -
‘/ (P"Z(Q‘z) —Jle (azlal) —1... .0
— e e L (22)
(9’2(61571) *J1F2”(an;;fa1) —“Jgth(au_l _al)' . .'—Jn_-ngn(anfl‘an-g) —1
Lol L F (=) —LE (=) o= JnoFy (=) —Tu F Ul ~Tuy) _
Y = {O O, e Y'III(I)}T (23)
The above system of equations may be inverted to yield
- —t .
Y - Allni ‘iﬂl 0
(24)
Y'm ;g‘l AZ { Wi

Consequently Y, Y'm are determined as functions of the arbitrary constant Y'u{1) 2 0. Y, Y de-
termined, as discussed above, may be substituted in equation (8) to yield the corresponding mode shapes,
The general solution obtained by superimposing the characteristic shapes is

}7(&_:9 t) = i Ym(é) [CIIISin(DlILt T DmCOSU)mt] (25)

m=:=1
where ;:y‘,-’[is the dimensionless diflection and Cun, Din are constants which are determined from the
initial conditions.

Forced Motion

The dynamic deflection may be expressed in series of the characteristic mode shapes

Y50 = ¥ Yu()An®) (26)

m=1
where Am(t) is the modal amplitude.

Using the Lagrange equation of moticn, the following differential equation for establishing the modal
amplitude Am(t) may be obtained
1 . n _
0] [pCOYa()dx+ 3, Fi¥u(a) }
0

il

An(t) + 0 Ap(t) = (27)

m YR T VA @) + 382w
o =i

In the case of lateral motion of the support having a ys = y,, f(t) acceleration, the termin the brackets

L
in the numerator of the right-hand side of equation (27) must be replaced by — [mim [ Y (x)dx -+
0
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. n P
Vso MiYm(o;) } For this case, equation (27) may be rewritten in nondimensionalized coordinates as

. Am(D)-FAT2A (D) =— (05 (O m (28)
where

oY -t 29
n=- =g (29)

Am(7) is the modal amplitude of the relative displacement of the axis of the cantilever with respect to
its support; Tm is the natural period of the mth mode; I'n is the modal participation factor defined as

J Yan(&)E + 3 M Vin(ex)
0 p=t (30}

]_m:i n __ -
IMiY2@)+ 1Y 5 (@)]
=1

[ Yn(E)dE +
0

1

The integrals in the above expression for I'm are evaluated as follows

! ’ 4 . Rm ( mn Y
[Yn(®dE=[¥m Y'u] {tw Su)T , [YH(EME=[Yn Ym][ i 2 ] [ i } 3D
b 0 Qm Sm Y m
where
tm= {rf? IRV Sm = {S" S3,.... S}
1 1
= dg, ST = dg,
1 Of 9,(5)dg 1 £ 9x(5)dE 32)
1
m_ - w1
I Maj Fy(E—ai)dg S"= -J; f Fy(§—ai)dg, (i=2,.. . n—1)
Rm =[" - m 1
i Iy ... TE g fwith: 1y = f F (§)de
i 0
| .t
e By I} =M; [9u(E)Fa(6—8;)dE (G=2, ..., n=1) (33)
| j
Symmetr, " . % 1
Tat n—t 15 = MiM; [ Fp6—@)FyE—adg (jpiandji=2,...,n—1)
Sm =1 m m m B . m 1 2
Sit Si2...81 4 with : S5 = [92(8)d§
0
1 _ .
Slz% ‘. 'S;:H——l S;TJ? = JJ'_I @(E)F o(E—ay)dé, (=2,..., n—1) (34
aj
Symmetr. vl
| Se—1s Si = Jii[Fy E—)Fy E-a)dg  (7>i and}j, i=2,...,n-1)
i _ i
m:: i

- 1
a9z G L with = qi = [0,(E)es(E)dE
‘ 0

|
|
1 1 [ 1 — .
GGy A= —JifeOF E—a)de (=2, ...,n—1) (33)
{ @
Symmetr. I v o1
ey | it = —M; Jj [FuE~a)F o(6-a) d& (21 andj,i=2,...,n~1)

| aj
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In case the cantiliver beam—column is initially at rest (t = 0) the solution of equation (28) is given by the
Duhamel integral as

(1)

Am(T) - — —2?

Flnff(r') sin2n(t—1")dr (36)
H

Numerical Results

The frequency equation (19) depends on the stiffness ratios C, =C,I/EI, C, =C, [*/EI, the mass
and the moment of inertia ratios Mi = M; /ml, Ji=Ji/mB (=0, 1, 2, ..., n) respectively, the length
ratios ai=0i /l(i=1, 2, ..., n) and the nondimensional axial force p = p? =P[? EL

The frequency equation (19) is evaluated numerically for cantilever beam - columns carrying up to
two attached masses ; the nondimentionalized frequencies Qi (m = 1, 2, 3) of the first three modes are

Table 1. Nondimensionalized Eigenfrequencies Qm (m=1,2, 3)

N Umer 1 ¢ ol data
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1 o |} 0 05 ] Q 0 jos | © 0 4.-583
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\ 1 © {05} 0 o jos] o o 1.326
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128
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obtained numerically on a G. E. 235 digital computer by a trial and error technique, and are given in
Table I. As evident from Table I, the effects of the transiational and rotational inertia of the concentrated
masses, of the axial constant compressive force, of the translational and rotational springs as well as of
the translational and rotatory inertia of the mass of the foundation, tend to decrease the natural frequen-
cies and to bring them closer together. This implies that in the solution for forced motion of cantilever
beam - columns having rotational and translational springs at their support and carrying concentrated
masses, it will be necessary to retain more terms in the expansion of the displacement components in
series of the characteristic shapes than in the case of fixed - end cantilever beams without concentrated
masses.

In Table II, the frequencies of the first three modes of vibration of a caniilever beam without con-
centrated masses and with a translational and a rotational spring at its support, are presented. It can
be seen that the effect of both springs on the frequency of the first mode is appreciable. However, only
the translational spring has an appreciable effect on the frequencies of the second and third modes.

In case of an elastic support, the effect on the fundamental frequency of the miss of the foundation

and of its rotatory inertia is presented in Table Il As it can- be seen, for C; ~ 0, C,x 0.10 or

Table II. Effect of Springs on the Eigenfrequencies &m (m=1, 2, 3)

Numerical Rotational spring Translational spring
Values
of Q, = Om % change of Q,, Q.= Om__ %, change of Qg
Fi from that of rigid EI from that of rigid
G C mE support T,l‘f support
3.516 0 3.516 0
0 22.044 0 22.034 0
61.701 0 61.701 n
3.509 0.2 3.504 0.3
1000 21.991 0.2 21.013 4.6
51.575 0.2 ‘ 53.173 13.8
3.438 1.9 1 3.386 3.7
100 21.620 » 1.9 \ 14.304 35.1
60.570 1.8 , 33.954 B 45.0
2.968 15.6 ‘ 2.447 29.6
10 19.356 12.2 ’ 7.017 68.2
55.519 10.0 30.570 50.4
1.557 55.7 | 0.976 72.2
1 16.250 26.2 ‘ 5.731 74.0
50.897 17.5 \’ 30.261 ] 51.0
0.541 84.6 | 0.315 91.0
0.1 15.512 29.6 5.605 74.6
50,065 18.9 ’ 30.233 51.0
0.173 93.1 } 0.100 97.1
0.01 15.428 30.0 ' 5.595 74.6
49.975 19.0 ) 30.221 51.0
0.055 98.4 \ 0.031 99.1
0.001 15.420 30.0 5.595 54.6
49,966 19.0 4 30.221 51.0
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10 or C; =10, C, ~ oo the effect of the translational inertia of the mass of the fou-

ndation is negligible, whereas the effect of its rotatory inertia is appreciable. Conversely, for C,~0,
C,>.0,10 or C,=0.10, ;.10 orC, =10,'C; ~ oo the effect of the translational inertia of the mass of

the foundation is appreciable,

whereas the effect of its rotatory inertia is negligible. Finally, if both

spring constants C,, C, have the same numerical value, less than 1000, the effect of the transla-
tional and rotatory incrtia of the masse of the foundation is substantial.

Table III. Effect of M, J, of the Mass of the Foundation on the Fundamental Frequency

| T = 0.001 } T =01
Cz‘\do\]ol 001 |01 | i 10 M\ Tg | arbitrary
2 -
| oot r 0.028 0.028 { 0028 | 0.02 0.010 | .001 0.032
o | 00 0028 | 0028 0.028 0.024 0.010 .01 0.031
& 1 | 0027 0.027 0.027 0.024 0.010 1 0.030
el 3| 002 0.021 0.021 0.021 0.0t0 I 0.022
| 10 | 0.009 0.009 0.009 0.009 0.008 | 10. 0.009
W; Joi 001 ot 1 1 10 [Mds| .001 .01 1 1 0
e J 001 | 0.280 0.280 0.278 0.243 0.098
- ot 027 0.279 0.277 0.242 0.098
S = . 0054 0.053 0.048 0.027 0.010 1 0.272 0.272 0.270 0.240 0.098
| 2 ‘ I 0216 | 0216 | 0216 | 0210 | 0.098
LS [ 10. | 0.095 0.095 0.095 0.095 0.094
Mo\ 3o .00l 01 1 ] 1 10 §M\To| .00l o | a1 10
> | ‘
= l » l 0.055 0.054 L 0.043 l 0.027 0.010 > 1 0.535 0.528 0.473 0.273 0,098
[
1~—l z r ( =
_% {2 | 0085 0.054 l 0.048 0.027 0.010 T 0.541 0.534 0.477 0.274 0.098
bow | ; «
] ' & =10 | T, = 1000
|2 [To\ Fig| 001 K N U | 10 |5\l 001 01 1) 1 10
‘8 > 0.032 | 0.031 0.030 } 0.022 0.009 > 0.032 0.031 0.030 0.622 0.009 '
Rl : _ \
-~ = P
jackl 0.315 | 0314 0.300 i 0.223 0.095 u 0.315 0.314 0310 | 0.223 0.095 ’
| = |
To\M. .00 61 1 10 o\l .00 61 1 ! 10 J
001 | 2273 2.271 2.246 1.986 | 0.950 -
ol .01 2273 2.270 2.245 1.98 | 0.950 <
T | 2263 | 2260 | 2237 | 1983 | 0950 | - 2464 | 2480 | 2441 | 2072} 0951
1 2.131 2.130 2.115 1,935 | 0.950 =
10 0.981 0.981 0.981 0.981 | 0.981 5 |
Jo\ Mg arbitrary _‘!—o\:Mo arbirtaty T
001 2.959 »
gl o 2,955 2
Sl 2.920 = ~ 3,495,
1 2.462 s
10 0.982 -




314

Conclusions

A rigorous analysis of the dynamic response of a cantilever beam--column with translational and
rotational spring at its support, carrying concentrated masses, is presented. The effects of the rotatory
inertia of the masses, as well as of the translational and rotatory inertia of the mass of the foundation
are also included.

A closed—form solution for the determination of natural frequencies is established in matrix form.
The effect of various paramsters on the frequency of the first three modes has been established by
numerical evaluation of the results for cantilever beam - columns having up to two attached masses.
Furthermore, it is found that in case of an elastic support, the effects of the mass of the foundation and of
its rotatory inertia on the fundamental frequency of the cantilever are appreciable. A procedure
for determining the mode shapes is also given.

Finally, the differential equation for establishing the modal amplitudes of cantilever beam — columns
subjected to an arbitrary dynamic force or to a movement of the support, is presented.
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Summary A beam and its supporting soil foundation are represented by a
layered beam system. Each beam in this system is either a classical beam
or a shear beam, and each is separated from its adjacent beams by spring
layers. Natural frequencies and normal modes are obtained by two different
methods: the state space method and power series method. Numerical exam-
ples are given. In a succeeding paper, orthogonality conditions will be
derived for these modes and applied to the investigation of forced vibra-
tions.

INTRODUCTION

The interaction between the seil foundation and the supported struc-
ture is of great importance in many engineering problems such as earth-
quake structural engineering and high speed ground transportation. This
paper concerns the vertical reaction of the soil foundation on the sup-
ported structure. Generally, the Winkler foundation model [13] is used
for this purpose. This model assumes that the foundation consists of
closely spaced, independent linear springs. Pasternak proposed a founda-
tion model [3] which includes the shear interaction between the spring
elements of the Winkler foundation. Later, Kerr [4] proposed a two-lay-
ered foundation model which is a modification of the Pasternak model.

In this paper, the general case of a two-dimensional, n-layered
foundation is considered. As a first phase of this type of investigation,
the supported structure is replaced, for simplicity, by a beam. The length
and width of the foundation are assumed te be the same as those of the
supported beam. This beam—foundation system is referred to as a layered
beam foundation. Analytical methods are developed for the study of free
and forced vibrations of this foundation.

The natural frequencies and the normal modes for the layered beam
foundation are obtained by two different methods: the state space method
[10] and power series method [1]. Numerical examples are given,
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For the forced vibration amalysis of a structure, orthogonality and
normalizing conditions for the modes of the structure are needed.

In the

succeeding paper [2], these conditions will be found and applied to the
investigation of the forced vibrations of the layered beam foundation.

1.

EQUATTONS OF MQTION

The layered beam foundation shown in Fig. 1 consists of n beams.

Each beam is either a classical beam or a shear beam and is separated from
the adjacent ones by the spring layers.

governing equations for the system.
constant across the thickness of each layer.

The mass of the spring layer introduces dynamic coupling terms in the
The mass density is assumed to be
The mass and stiffness of

the elastic layers and the beams are allowed to vary along the length.

LAYER BEAM
n r"
i
N
| | ! i |
1 J | L
I S
T2 7277777 77777 (J+1)
w2 2T 2 2 2 2
VS S S S A J
2 2 2 2=
77777 777 7 7 7 771 (3-L
e T S < S
i | ! | |
t | | | { |
I ! | I ! |
m T I -t [ o |
i | i i i |
Ll 4 L 4L
7 7 7 7 777 777777 1
= =

IS ST TS

Fig. 1 System of Layered Beams

The equation of motion for the jth beam is derived as follows:

First

the potential energy and the kinetic energy for the jth beam, jth layer,
and (j+1)St layer are obtained; then the Hamilton principle [5] is applied
to derive the equation of motion.
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The potential energies of the classical beams and layers are ex—
pressed as follows:

g a2y 2
- 1 _73
Vbj 5 EjIj(x) ( 3 ) dx o
X
0
2
v . = Lok, 0 (v.-y, )7 dx 2)
23 2 3 j i1
0
2
v - Lok 0 (o v0?d (3)
L(+1) 2 750 x) Y417y x
0
) 2 oy, 2
Tbj =5 mbj(x) e dx (4

0

th
To find the kinetic energy of the j layer, it is assumed that the dis-
placement is linearly distributed along the thickness of the layer. The
kinetic energy, ATRj’ in the section of the layer of length Ax, shown in

Fig. 2, is expressed as

h. 2
J 1 Ei_ h,-t,
_1 A 1 . SO
ATRj bmj(x) X . . yj~l o yj dtj
0 ] ] J
1 bm, (x) Ax . 2
= + ¥ + 9. 7.
2 T3 YT T ) =
Therefore,
1 bm, (%) 9
TQ,j = 5 ——J———3 (yJ + yj*-l + yj yj—-l) dx (6)
0
fez— DK — e
7]
£, \ 5 n, Fig. 2 An Element of the
3 ] .th
{ j layer.
Y1
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Similarly,
m, . (x)
_1 j+L L2 .2 .
Teg+) T 2 3 Gy + V5 ¥ 95 Vyq) I (7)
Let _
Vi T Yy T Ve T Vg4 (8)
T, =T .+ T,. +T,,. 9
i bl A TR(GHD (9
and
L.=T, -7, (109
3 J 3
Then t1 )
Aj = action integral = Lj at (1)
£

and, according to Hamilton's principle,

6Aj = 0. (12)

Equation (12) implies that the Euler equation for the integral A

is the differential equation of motion for the j th beam. The FEuler equa—
tion [6] is as follows:

3L, oL, oL, 2 oL, 2 3L,
s m \nt) =5t t 2 \5r) t s (a_i
. ' t : A 7!
73 x 3 I3 73 ®ot Y3

ox

52 3L,

+ 55 Efél =0 (13)
3t Yy

The substitution of expression (10) for ij in equation (13) gives:

bk, () (yymyy_g) F bk () (7549774)

J
. bm, (x) . bm, (x) .
_ bmj+1(X) . bmj+1(x) ..
3 73 6 Yi41
2
2 3 y.
- Jii- BT (x) ——75-) - 0 (14)
Ix o ox

If the jth beam is a shear beam, then
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L 2
Y.
- 1 3
= bGj(x) ( P ) dx (15)

and the second term in equation (13) becomes

3 L.
e e T bG (x) (16)
ox Byj

The equation of motion for the J shear beam is obtained by replacing
the last term in equation (14) by the right-hand side of equation (16).
The equations of motion for the jth peam are re-arranged as follows:

Classical beam:

(fj(X) y;) + bkj(X) (yj—yj_l) + bkj+l(XJ (yj—y ).

(x)) m, (x)

" m G Am A
+m-bJ (X) Y- + 3 YJ + 6 yj"l

l(x)
+-L*~——-yj+l =0 an

ji-1

where
fj(x) = Ej Ij(x) (18)

Shear beam:

- (gj(x) y;) + bkj(x) (yj-yj_l) + bkj+l(x) (yj—y )
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. mJ(x) + m (x) . m,(x)."
+ mb] (X) y:] + 3 YJ + 3 yJ_l

=0 (19)

where

gj(X) = bGj(X) (20)

2. TFREE VIBRATIONS

For free vibration analysis
v.{x,t) = w,{x) e1>\t (21)
J J
After equation (19) is substituted in equation (17), the resulting fourth-

order equation is reduced to the following four first-order ordinary
differential equations:
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“
dx wj
dy.
3 -y
EJ IJ( ) I :
d(M,)
e vj (22)
d(v.)
——J—dx = bk, (x) (wj—wj_l) + ok, (wj-ij‘)
2
[m, (x) +m,  (x)]X
- mbj(x) wjkz - —d 3 +l VE
) m.(x))\2 _ m.+l(x))\2 .
6 "j-1 6 i+l

Similarly, equation (19) can be reduced to the following two equations:

:11-1
bGj(x) Pl Vj
&y
= bkj(x) (Wj-wj_l) + bkj+l(x) (Wj—wj+l)

(23)
(m,(x) +m, ,(x)]
_ 2 kD j+1 2
mbj(x) WjA 3 A wj
2 2
_ m, (x)A . ) m.+l(x)A y
6 3-1 6 i+

In this way, the layered beam system can be represented by a system of N
linear, first-order, ordinary differential equations. N is given by the
following expression:

N =4 0, + 2 n z4)
where

ny = number of beams in the system,

n_ = number of shear beams in the system.

These N equations can be expressed in matrix form as
d
— 1Y =
ax {y} [al{Y} (25)

where

{¥} = [Nx1] state vector
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= {ul, Ups wees Ugs wees UN} (26)

{u.} = {w., V., m., V.} for beam 27
b 3 wJ’ 3703 (27)
= {Wj, Vj} for shear beam (28)

and

coefficient matrix.

[A]

Two methods, the state space method and power series method, are used
to solve equation (23).

3. STATE SPACE METHOD

This method is used for the cases where the matrix [A] is constant.
Let ¢(x) be a fundamental matrix of equation (25) at x = 0. Then the
solution of equation (25) is

-1
Y} = e&)e O {v}
X=X x=0 (29)
= op0 Y}
where
{Y} __ = state vector at =x=x
X=X
{v} -g ~ state vector at x=0
and
-1
¢N(X) = &(x)® ~(0)
= normalized fundamental matrix at x=0
= transfer matrix [7].
For x=1, equation (29) becomes
{Y}X=Q = o) {Y)__, (30)

Based on the boundary conditions at x=0 and x=%, the submatrix [¢]D
which is (N/2 X N/2), is derived from the matrix ¢N(£). The value of A,
which makes the determinant of [¢]D equal to zero, is the eigenvalue of

the system., The corresponding eigenfunction is obtained from equation
(29).

Fxamples 1 & 2. These examples illustrate the state space method.
In both examples, a beam supported by a two-layered foundation model, a
modified Pasternak model as shown in Fig, 3, is used. In the first exam-
ple, the beam and the shear beam are simply supported. In the second
example the beam and the shear beam have free-free boundary conditions.
The data for these two examples are the same, as follows:




322

L LS LS

l % é <; UPPER LAYER
Wz <
<

T ] T | T | I SHEAR BEAM

' <
< | LOWER LAYER
1 <=
1
NN

NN N NN NTSTNON N NN NN VNN N
- é : %j

Fig. 3 Beam on Elastic Foundation (Modified Pasternak
Model) of same Width and Length

€

E)I, = 10° lbs-ft” 6, = 2x10° lbs/ft
m, = .5 lbs—sec2/ft2 m, = 6 lbs—secz/ft3
m, =0 m, = 18 1bs—sec2/fc3
k, = 10° 1bs/ft3 b =1 %t

k, = 33,333.3 lbs/ft” g =10 ft

Tables 1 and 2 give the first eight eigenvalues for Examples 1 and 2,
respectively. To obtain the accurate eigenfunctions, it 1is necessary to
calculate the corresponding eigenvalues for eight significant digits.
Since the eigenfunctions are symmetric or anti-symmetric with respect to
the midspan, their accuracy can easily be checked. The orthogonality
conditions of these eigenfunctions, derived in paper [2], provide
another check.

Table 1. Eigenvalues for Example 1, Table 2. Eigenvalues for Example 2.
‘Eigenvalue, rad/sec Eigenvalue, rad/sec
State Space Finite Element State Space Finite Element
Mode Method Method Mode Method Method
1 64.5031 64.5968 1 50.9513 50.9516
2 99.5431 100.4874 2 64.0285 64.1241
3 152.2749 155.7791 3 94.5255 95.4871
4 212.2243 222.0954 4 139.5464 142.7728
5 262.7208 262.7381 5 198.7639 207.2009
6 267.2531 278.1600 6 256.6565 259.9604
7 277.8812 288.8704 7 259.9603 261.9398
8 317.7203 322.9463 8 263.0352 273.1839
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For compariscn purposes, the finite element method developed in [9]
is used to find the eilgenvalues and eigenfunctions for these two examples.
The eigenvalues found by the finite element method are included in Tables 1
and 2. As the consistent mass matrix is, used in the finite element devel-

opment, the eigenvalues obtained by this method are larger than the exact
ones.

For a beam on the Winkler foundation the difference between nth and

(n+l)St eigenvalues is monotonically increased as n increases [11]. This
is not true for the two examples considered here. Because the state space
method is based on the trial-and-error approach, it would be easy to miss
two eigenvalues which are close to each other. One way to reduce this
difficulty is to consider a small increase in the value of A at every
step. Computationally, this is an expensive approach. Another way to
eliminate this difficulty is to use a Sturm sequence, as discussed below.

Let [M] be the mass matrix and [K] be the stiffness matrix of the
beam—foundation system. These matrices are developed by the finite ele-
ment method discussed in [9]. [M] and [K] are symmetric and positive
definite. The leading principal minors, fr(k) of [[M]-A[K}], possess

the Sturm sequence property [8]. Consequently, the number of changes in
sign of consecutive members of the sequence fr(X), starting with

fo(k) = 1, is equal to the number of eigenvalues of [[MI-A[K]] which are

smaller than A. This property provides a test to check whether any eigen-
value has been missed. The leading principal minors of [[M]-A[K]] are
computed using a variant of Gaussian elimination [12] which preserves
information necessary for evaluating the required determinants.

Because some natural frequencies are close, a beating phenomenon may
take place between the two beams during free vibrations.

Figures for eight corresponding eigenfunctions for each example are
drawn in the Appendix. The eigenfunctions of Example 1 are divided into two
groups, in-phase and out—of-phase groups, as there are two layers in the
beam—-foundation system. Eigenfunctions 1-4, 6, and 8 belong to the in-
phase group and the eigenfunctions 5 and 7 belong to the out-of-phase
group. The first and fifth eigenfunctions constitute a pair. There is
an infinite number of such pairs. 1In each pair, the one belonging to the
out-of-phase group has a higher eigenvalue. For an n-layered beam-
foundation system, there are n such groups. In the first group, the
individual normal modes of the beams are in-phase. In the second group,
only one individual normal mode is out-of-phase. In the ith (i < n) group,
a total of (i-1) individual mode shapes are out-of-phase. Similarly, the
eigenfunctions of Example 2 can be divided into two groups.

4. POWER SERIES METHOD

When the matrix [A] is not constant, the state space method cannot be
applied. However, the power series method can be used if matrix [A] is
analytic for 0 < x < £. This means kj(x), mj(x), mbj(x), f}l(x), and

ggl(x), j=1,2,...,n, are analytic for 0 < x < &. Under this condition,
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there exists a unique solution Y(x} of equation (25) which is analytic
for 0 < x $ &. Thus, this solution has the following power series
representationt

Y(x) = Z Yk(x—x )k 0<x-x <2 (31)
o - o -
k=0
where
Yk is a constant (NX1) vector and X, = 0.

According to Taylor's theorem,

1 (k+1)

Yer1 = 7 Y (x,) (32)
k
1 d
= T — Y7 (x) (33)
(k+1) [.dxk J
X=X
o
Substitution of equation (25) in equation (33) gives
1 dk
“oert T DT [d—f (4 Y<X>>} (34)
X X=X

k=20, 1,2, 3, ...

Applying Leibnitz's rule, equation (34) reduces to

k
I S ky , (1) (k-1)
Yer1 = G| l:iio (i) A (x)) ¥ (xo)] (35)

As [A] is analytic, according to Taylor's theorem,

AT = 1[40 0ex )" (36)
k=0
where [A(k) )1
(A ] = —— 57— 37
Substitution of equations (33) and (36) in equation (35) gives
1 k
Yo =t o [84) Yy k=0,1, 2, ... (38)
i=0
where
Y, = Y(XO) (39)

Substitution of equations (38) and (39) in equation (31) gives

Ye) = T (B (0] (Gex )" 0 <x<28 (40)
k=0
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where

[Bk(x)] =

==

k-1
.Z [Ai]Yk_i_l] k=1,2,3,...
i=0

and

[B,()1 = [1]Y_

The series in equation (40) converges absclutely and uniformly to Y(x).
This implies that this series can be rounded-off to any desired accuracy.
So the equation (40) can be expressed as

Y0 = [T, (41)

in which [Y(x)] is the partial sum of the series which gives the desired
accuracy.

For x =%, equation (41) becomes

() = WY (42)

As before, a sub-matrix fw(i)]D is derived from the matrix [y()],

according to the boundary conditions at x=0 and x=%. The value of A
which makes the determinant of {w(x)]D zero is an eigenvalue. The corre~

sponding eigenfunction can be obtained from equation (41). Three examples
are solved to illustrate the power series method.

Examples 3 & 4. A simply supported beam is resting on the Winkler
foundation as shown in Fig. 4. The following data is common to these two
examples:

5 2 _ _
ElIl = 107 1bs~ft L =10 ft ml =0

) e

SPRING
LAYER

SNANN NN AN IR INTTYNN N NNN N NN

Fig. 4 Beam on Winkler Foundation

In Example 3,
k() = 10" (1 +—’T§) bs/ft> 0 < x < 10

and 2 2
my = 0.5 lbs-sec”/ft

In Example 4,
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kl = 104 lbs/ft3

and
mbl(x) = 0.5 ( 1+ %:) lbs—-seCZ/ft2 0<x< 10!

The first four eigenvalues in radians/second, for Example 3, are
177.5078, 247.9721, 433.4473, and 727.1568. TFor Example 4, they are
55.776, 86.0725, 162.2364, and 273.6375. The corresponding eigenfunctions,
calculated from eigenvalues with eight significant digits, are drawn in the
Appendix. The eigenfunctions are no longer symmetric or anti-symmetric with
respect to the midspan. Only the first eigenfunction can be predicted
qualitatively. This is not true for the other eigenfunctions. In Example
3, stiffness of the foundation increases as x increases, Thus, the modal
deflection for the first eigenfunction should be smaller at x = 8' than
at x = 2', TFor the second mode it is completely opposite. This is neces-
sary so that the second eigenfunction is orthogonal to the first one.
Similar comments are applicable to Example 4.

Example 5. In this example, a two-layered bezm, represented by a modi-
fied Pasternak model, as shown in Fig. 3, is considered. The stiffness of
each layer increases linearly. The data for this example are as follows:

5 2 } 2
E212 = 10~ 1bs-ft L 0.5 lbs-sec“/ft
£ =10 ft mbl =0
k) = 1+ 10° 1bs/ft> m, = 2.0 Ibs—sec/ft>
1 B 2,3
kl(x) = §-k2(x) m = 6.0 lbs-sec” /ft

61

[}

ZXlOSL lbs/ft.

The first eight eigenvalues in radians/second obtained by the power
series method are 73.6654, 106.081, 156.5450, 217.072, 274.4609, 304.1648,
326.2989, 339,0188. TFigures representing the corresponding eigenfunctions
are alotted in the Appendix. Comments regarding the eigenvalues and the
eigenfunctions obtained by the state space method in Example 1 are also
applicable here.

CONCLUSION

The problem of interaction between a structure and its supporting
foundation is of current interest. In this paper, the structure (repre-
sented by a beam) and its supporting soil foundation are modelled by a
layered beam system for free vibration analysis. In a forthcoming paper,
forced vibration will be analyzed. With this background, we are currently
investigating the problem of a moving elastic system on a beam supported
by a layered foundation. We may also extend our rescarch to investigate
the interaction between a complex structure and its supporting soil
foundation.
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NOMENCLATURE

b = width of the beam—foundation system

Ej(x) = modulus of elasticity of the jth beam

Gj(x) = shear modulus of the jth shear beam, lbs/ft

Ij(x) = area moment of inertia of the jth beam

kj(x) = gtiffness of the jth layer, lbs/ft3

£ = length of the beam-foundation system

mbj(x) = mass per unit length of the jth beam

mj(x) = mass of the jth layer per unit contact area

Mj(x) = moment in the jth beam

Tbj = kinetic energy of the jth beam

ng = kinetic energy of the jth layer

V. = potential energy of the jth beam
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Vv i = potential energy of the jth layer
J(x) = shear force in the jth beam
J(x) = deflection of the jth beanm
J(x t) = deflection of the jth bean
wJ(x) = glope of the jth beam
A = frequency of harmonic vibration
APPENDIX

Normal modes for Examples 1-5, reduced and simplified from [9], are
plotted here as Figs. 5-9, respectively. The mode numbers are indicated
within the figures.

\__,//? —— — =

=Y ey

S AAN

Fig. 5 Eight Normal Modes of Example 1
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Fig. 6 Eight Normal Modes of Example 2

?

Fig. 7 Four Normal Modes of Example 3
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GENERATING RESPONSE SPECTRA FROM DISPLACEMENT AND VELOCITY
TIME HISTORY INPUT

A. CHUANG, T. H. LEE, D. A. WESLEY, and S. LU

General Atomic Company

San Diego, California, United States

ABSTRACT

An investigation has been made to explore a method of generating
response spectra from displacement and velocity time history input instead
of acceleration time history. The ability to generate response spectra
from digitized displacement and velocity time history input is required in
order to show that the displacement input used for some component tests or
analyses is, in fact, equivalent to the input when specified in terms of
acceleration,

In many instances, the component structure analysts use dynamic models
which utilize displacement and velocity input. This is often the case of
the tests where digitized displacement is specified. Since the floor re-
sponse spectra are usually determined in a conventional analysis by using
acceleration input, it is necessary to ascertain that the response data
produced by using displacement and velocity input are consistent with those
generated by using acceleration excitation.

The analytical approach used in this investigation was successively to
integrate by parts the expression of the absolute acceleration response of
a single degree-of-freedom oscillator and the final results are in terms of
Duhamel's integrals involving only displacement and velocity excitations.
The numerical computations of these integrals were facilitated by making
use of recurrence relations. The response spectra obtained were compared
with those generated by conventicnal methods using acceleration input.
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1. INTRODUCTION

The determination of seismic response through the use of the response
spectrum method has long been a standard practice in dealing with linear
systems. However, in recent years many structural components are modelled
as nonlinear systems whose governing equations are formulated in absolute
coordinates. The expressions of these equations contain boundary displace-
ment and velocity as excitation input rather than the support acceleration
terms as commonly encountered in the conventional linear analysis methods.
For the same reason, when these nonlinear component structures are qualified
by test methods, the excitation is usually specified by digitized displace-
ment input. Since the support motion of a component structure is usually
defined by acceleration time history data along with the floor response
spectra, it is necessary to establish the equivalency of using displacement
excitation input.

A response spectrum is defined as the maximum response of a damped,
single degree of freedom linear oscillator to a specified support motion
plotted versus the natural frequency or period. The calculations are then
repeated for various damping values. These curves provide a description of
the frequency characteristics of the support motion and give the maximum
response of single-degree of freedom systems to the excitation. By modal
super-position, the response spectrum techniques can be applied to the
analysis of complex multi-degree of freedom structures such as buildings,
nuclear power plants, and equipment.

The generation of response spectra normally requires the numerical
computation of the response of a simple oscillator to a specified base
acceleration. The motion of the oscillator is described by a second order,
linear, inhomogeneous differential equation, and if a digital deséription of
the support excitation is available, the response can be obtained by numer-
ical integration.

For some engineering applications, dynamic models for the component
structures are used where displacement and velocity time history inputs
are required. This is often the case of tests where digitized displacement
is specified. In this case, the response spectra must be generated from
the displacement and velocity time history records,

In this investigation, the acceleration response is in terms of dis—
placement and velocity time history. Therefore, the analytical approach
used in this study was successively to integrate by parts the expression of
the absolute acceleration response to a single-degree of freedom oscillator,
and the final results are in terms of Duhamel's integrals involving only
displacement and velocity excitations.



333

2, MATHEMATICAL FORMULATION

The exact expression for the relative displacement of a single degree
of freedom, damped, linear system with zero initial conditions excited by
base motion y(t) is [1]:

t o
S(t) = - e @t gin w1 - 22 (- Tydr (D)

——
wyl - Ci o

where w is the undamped natural frequency, and C is the fraction of
critical damping.

By differentiating equation (1), the exact expression for the rela-
tive velocity can be obtained:

¢ i (£=1) —
vit) = - d[. F(mye N cos w ¢q¥— £ (t - T)dT

o]
‘ T (£-1) gy
+___§:2 f Y(Te sin w1 - 2% (¢t - Ddr . 2)
1T -z s}

The "absolute'" acceleration of the mass may be derived by further
differentiating equation (2) with respect to t:

a(t) = i&%i;:fgé__ ./‘ y(t)e Wi (e-T) sin w ¢q'iiz;_(t - 1)dt

t
+ 2w f 50e T s w 1 - 22 (¢ - Dar . (3)

(0]

If we let ¢ = wZz, B = /1 - QZ, the first integral vields:

t L]
.i. §(T)e_c(t_T) sin w B(t - T)dt = [U(c - T)y(T)]E

o

t
. 3
- _[ v(T) Ut - T)dt
A AT

e—c(t—T)

where U(t - 1) = sin w B(t -~ 1) (4)

t
The expression -/~ y(T)i/gT U(t — T)dT can be successively
0
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integrated by parts, so that the first integral can be written as:

t ~c (t-T) . .
Jr y(T)e sin w B(t -~ T)dT = y(£)U(0o) - v(0)U(t)
o

9 p]
- /BT Ut - 1) - y(t) + AT U(t - 1) . v (0)
t 2
+ f v(T) #U(t - T)dT (5)
(o]

Since the initial velocity and displacement are usually zero and

BAT Ut - 1)

equation (3) is reduced to the following expression:

y(t) = —wBy(t)
=t

€ 2
a(t) = ABwa(t) + Aw f y(1T) "a_ifU(t - T)dr
(o]

t
+ 2¢ f 50e T cos w B(e - T)dt (6)
o)
2
where A :.L']___Z_Lz.
1 -z?
t
The second integral 2c¢ u[' §(T)ec(tﬁT) cos w B(t - T)dT s
o

may also be successively integrated by parts and after a somewhat lengthy
derivation the final expression may be written as:

° t 2
a(r) = ABuly () + 2ey(t) - 2ey(t) + Aw f y(0) 57 V(e - Ddr
(o]
t 3?2
+ 2¢ f v (1) 'B_T—zﬁ(t - T)dr (7)
(o]

—e (t-T) cos w B(t - T)

where U(t - T) = e
The expression for a(t) is finally given as:

a(t) = (1 - 22%) w?y(t) + 2wiy () - 2022y (t)

E _uz(t-m)
-D f e we sin w1 - % (£ - T)y(t)dr

(o]

t
- E f owe (t-T) cos w1 - 22 (£ - T)y(r)dr  (8)

o
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where 2
3 2
p =Y g} - 227)° b2 1 _ 2 ,
v1-2¢
and

E = 2081 - 22%) + 2221 - 22He®

y(t) is the displacement time history and ¥(t) is the velocity time
history. Since y(t) and ¥ (t) are known, a(t) can be evaluated as soon as
the values of the two Duhamel's integrals

€ (t-1) I
.J. ewa Y sin w /1 - ? (£ - T)y(r)dr s
0

and

t
.I' LWE T © vq—:_gEA(t - Tyy(t)dt |, (9
O

are determined.

3. EVALUATION OF DUHAMEL'S INTEGRALS

The two Duhamel's integrals as shown in Equation (9), can be evaluated
by using a numerical integration technique [2]. However, for excitations
of longer duration, an accurate computation for these integrals is almost
prohibitive due to the cost of the computer time unless a recurrence re-
lation can be found.

For a small time increment At, the expression of the first integral in
Equation (9) may be written as:

~/¢+At e_c(t+ﬂt_T) sin w B(¢ + At - T) y(r)dr
o

oY

tHAt (t-1) —eAt
d]. e © . e € [sinwB (t-T) coswBAt+coswB (t—1)sinwBAt iy (T)dT (10)
o

which can be written as

t —c (t-T) t+he ~c (t-T)
P f e sinwB(t-T)y(T)dT + P f e sinwB(t-T)y(T)}dT
o t
tt+AL

t
+Q Jr e~ (=D coswB (t-T)y(T)dt + Q Jﬁ e_c(t_T) coswB(t-T)y(T)dT (11)
[e] t

where P and Q are constants defined by

—cA
P=cC t coswBAt

cAt
Q=ce sinwBAt .
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In the same manner, the second integral, for a small increment, yields

t+AL i
f e—c(t—‘H"At) cos w B(t - T + At)y(r)dr (12)
o

which may be expressed as:

£ —e(e-1)
P f e © t-t coswB(t - T)y(T)dT
s
t+AL
+ P f e_c(t_T) coswB(t - T)y(T)dT
t
C e
- Q ‘/‘ e © & sinwB(t - T)y(r)dT
o

t+AL _ ( _ )
-Q f ST GinwB (e - T)y(D)dr (13)
t

By examining the eight integrals in Equations (11) and (13}, one can
conclude that there is a recurrence relation in each of the Duhamel's
integral for a small time increment, Therefore, the numerical data of the
four integrals may be stored in the computer in the form of the original
Duhamel's integrals multiplied by a constant P or Q.

For each time increment, there are only two integrals to be evaluated
for the particular small time increment only. The integrals are:

t+Hit (t-1)
P -Q f e € sinwB(t - T)y(r)dT
t
and

t+AL
(F + Q) j‘ e_c(t—T) coswB(t — T)y(T)dT
t

Since the integration for the two integrals is limited from (t) to (t +
At), both the computation time and core storage are drastically reduced.
The trapezoidal rule is usually accurate enough to evaluate these two
integrals for small time increment At,
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4, NUMERICAL RESULTS

In this section, results are obtained to demonstrate that the
response spectra generated by digitized displacement and velocity time
history input are essentially the same as the ones generated by acceler-
ation time history. Moreover, the results will be compared between the
response spectra generated by acceleration input and those generated by
displacement time history alone, i.e., with velocity time history neg-
lected, for a low damping case.

In order to perform the numerical calculations described in the
previous section, a computer code, DISPEC, was developed. The output of
the code includes numerical values and graphical displays of the computed
response spectra. The input data are digitized time history values of
displacement and velocity input generated by integrating an acceleration
trace whose response spectra are known. The accuracy of the DISPEC code
has been tested against an existing computer program EQUAL [9] which
generates response spectra from acceleration time history input, and the
comparison shows that the agreement is excellent.

A. Comparison of Response Spectra (using both displacement and velocity
input for DISPEC).

Two response spectra plots as well as a numerical tabulation due to a
1 g horizontal ground motion of an artifical earthquake are shown. One is
the result from the program using acceleration input (Figure 2), and the
other is the result of DISPEC code using displacement and velocity time
history input (Figure 1). 1In both cases, the damping factor is 5Z.

For the purpose of improving the accuracy of the integration process
in the high frequency range, the time step At for integration was chosen
for this test case, as 0.0001 second when the period is less than 0.06
second. For all other period values, satisfactory accuracy can be
achieved with a more economical integration step of 0.001 second.

B. Comparison of Response Spectra (using only displacement input for
DISPEC).

It was shown in the equation (8) for the undamped case that the
response spectra can be generated from displacement time history alone.
For a lightly damped structure, such as a steel structure, or an uncracked
concrete building [3], it is also possible to generate an approximate
response spectra of acceptable accuracy from only the displacement time
history input by using Equation (8).

A series of comparisons was made to find a maximum damping value for
which the response spectra generated from acceleration can be approximately
generated by displacement time history alone. The need for this investi-
gation is due to the fact that the velocity input trace in a test is
sometimes unavailable.
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By comparing Figure 2 and Figure 3 as well as Table 2, one can
easily conclude that the spectra for 0,05 damping computed by DISPEC
without y(t) input is quite different from the one computed by EQUAL. In
the high frequency range the difference.is quite large but decreases to an
acceptable region when the period reaches approximately 0.2 second. Above
this period, the difference is considered to be acceptable from the engi-
neering point of view.

As shown in Equation (8), the term 2wZy(t) is the only term contain-
ing the velocity time input y(t). The effect of this term is obviously
quite small if the product of w and I is small. The smaller of the damp-
ing value {, the less effect this term has on the overall response a(t).
Since the circular frequency w is a variable its effect at low frequencies
will be small.

It is shown in Figure 4, Figure 5 and Table 3 that the difference of
the response spectra, computed respectively by DISPEC and by EQUAL has
been improved considerably as the damping is reduced from 0.05 to 0,07,
The maximum deviation at the lowest period of 0.03 second is 17.6%.
However; the difference decreases rapidly as the period increases until
the discrepancy is only 2.12% at a period of 0.1 second. As shown in
Table 6, some steel, reinforced or prestressed concrete structures without
cracking or joint slip where the stress level is low or well below pro-
portional limits are representative of structures with critical damping
in the neighborhood of 1.0%.

Similar results are obtained for 0.008 damping as can be seen by an
examination of Table 4, Figure 6 and Figure 7. The difference of the
response spectra computed by DISPEC and computed by EQUAL has been reduced
slightly. The maximum discrepancy is about 14 percent, and it decreases
to 2.02% at T = 0.1 second.

For a structure with 0.005 damping value or lower, the response
spectra can be generated by using displacement time history alone. TFrom
Figure 8, Figure 9 and Table 5, the response spectra generated by DISPEC
and by EQUAL are almost identical except in the low period range which
still has some minor differences. From Table 6, steel structures with a
low stress level of 0 < 1/4 Oy and without joint slip, reinforced or
prestressed concrete structures without cracking, with the stress level
well below proportional limit, etc., are structures typically encountered
in this damping range.
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5. CONCLUSIONS

An analytical technique has been developed for generating response
spectra from displacement and velocity time history input instead of
acceleration time history. Recurrence relations are developed which
provide an economical means of solution for the numerical evaluations of
the Duhamel's integrals involved. A comparison shows that agreement
between spectra generated by the two methods is excellent.

It is further shown, that for very lightly damped cases, the response
spectra may be generated by displacement time history input alone. At
0.57Z critical damping or lower, the response spectra for a structure may
be generated by displacement time history alone with only minor error (of
the order of 5%) in the low period range (T < 0.08 second).

For a structure with damping wvalues in the 0.008 to 0.071 range, one
can expect about 15% error introduced for a period T less than 0.06
second. For damping values higher than 0.01, the response spectra gener-
ated by displacement time alone are not recommended for use and the contri-
butions from the relative velocity terms must be included.
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SUMMARY

The seismic response of structures was studied by using a small
and large displacement analysis for a one and two story model. 3Both
the small and large displacement analyses used in this study include
the effect of a bilinear or elasto-plastic force-displacement relation-
ship. 1In addition, the large displacement analysis includes the large
displacement coupling term relating the horizontal and vertical dis-
placement, the P-delta effect and vertical ground motion.

The P-delta effect in the analysis evolves from a consideration
of the stiffness of a fixed-fixed column with axial forces applied at
the ends. 1In the dynamic analysis, the axial forces acting on the
columns include the gravity, or dead loads of the structure, in addition
to the vertical inertia loads resulting from vertical accelerations.
The vertical acceleration of the structural mass depends not only on
the vertical ground motion but also on the large displacement coupling
term. Due to axial forces, the horizontal restoring force of the columns
will decrease for large horizontal distortions.

The objective of the study was to determine the significance of
these additional effects on the seismic response of the one and two story
models. In order to evaluate the effect of these additional terms the
small displacement differential equations of motion were solved and used
as a baseline for comparison with the solutions from the large displace-
ment differential equations of motiom.

A complete parametric study was conducted over the frequency range
of .2 ¢ps to 10 cps. The effects of varicus levels of elastic and plastic
action, damping and vertical ground motion on the response of the one
and two story models were investigated.

The results showed that the large displacement considerations in-
cluded in the analysis do have an effect on the seismic response of
structures. This was found to be particularly true for the lower
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frequencies (2 cps or less) when a large amount of plastic action was
allowed to take place.

The seismic response studies for the one and two story models
strongly indicate that vertical ground motion could be a significant
factor for tall structures.

INTRODUCTION

When a structure is subjected to an earthquake, the base of the
structure essentially moves with the ground while the upper stories
move relative to the ground. These relative motions can be of such
large magnitudes that plastic deformations occur causing permanent
offsets in the structure. The extent of the damage, especially the
amount of permanent offset, will determine the useability of the struc-
ture.

The problem of designing a structure to minimize damage caused
by earthquakes has been of considerable interest for some time. Some
of the earliest published work done in this area was by Martel (1)*
and Green (2)* on the flexible first story concept. Martel studied
the response of a single bent excited harmonically. His studies show
that the flexible first story concept will not reduce the accelerations
of the upper stories if the period of the fundamental frequency of the
earthquake is greater than the fundamental pericd of the bent. Essentially
the same conclusion was reached by Green. By using a single degree of
freedom spring and mass system, he showed it would be very difficult to
isolate the upper stories from low frequency ground motions.

A more recent publication, that of Fintel and Khan (3)#%* extends
the flexible first story concept by designing a shock absorbing system
into the structure of the first floor. Their studies show that by
using a shock absorbing system with a bilinear force-displacement
characteristic, it is possible to keep the force input to the upper
stories below a specified level as well as confine the damage to the first
floor. They analyzed the response characteristics of their one story
model within the completely plastic to 10 percent elastic range. For
clarification of the plastic and elastic terms refer to page 10.

Thomaides (4), made a study of bilinear single degree of freedom
systems. He investigated the response characteristics over a much wider
range, from zero to 25 percent elastic action. One of his conclusions
which is of particular interest in regards to this study is that a
structure will sustain less permanent offset when the amount of elastic
action is increased in a structure.

None of the references previously cited included the effect of verti-
cal ground motion.

*The number in parenthesis refers to a reference included in the
bibliography.
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The existing seismic building codes are reviewed in references (5),
(6) and (7). They are primarily based on the concept of absorbing energy
to prevent catastrophic failures by allowing large amounts of plastic
action to take place within the structure. This requires designing
buildings with high ductility factors. The code also requires a quasi-
static earthquake lcads analysis which consists of applying lateral loads
at the different floor levels of the structure. These lateral loads are
based on a number of considerations. Some of those considered are gravity
plus dynamic loads, seismic zone factors, site soil factors, etc. The
dynamic loads used in the code are based essentially on results obtained
from single degree of freedom models. The effects of large displacement
coupling, P~delta effect and vertical ground motion, have not been con-
sidered in arriving at the present codes.

The analytical work by Smith, Ernst and Maheshwari (12) points out
the importance of designing with steel that does not have a yield plateau.
They show that the use of this type of steel in the design of structures
will significantly reduce the amount of permanent offset. The results
from the experimental work at Nebraska, conducted by Smith, Ernst,
Riveland, and Pierce (13) substantiates their amalytical results. From
this work, a new design philosophy has evolved which is the designing of
buildings with as much reserve elasticity (elastic action) as possible
in order to minimize permanent offset and damage.

An area in which a lot of development work has taken place is use of
the finite element technique to study the linear and non-linear seismic
response of structures. A number of large scale linear three dimensional
and non-linear two dimensional programs are available. To the writer's
knowledge, no large scale non-linear three dimensional frame analysis
programs are available at this time. A large scale two dimensional non-
linear program was not used in this study because of the difficulty of
conducting simplified parametric studies. It was also felt the cost
involved would be prohibitive.

The objective of this study is to determine the combined effect of
large displacement coupling, P-delta effect, vertical ground motion, and
bilinear action, on the following structural response characteristics:

(1) Dbistortion
(2) Permanent offset
(3) Lateral force coefficients

DERTVATION OF THE EQUATIONS OF MOTION FOR THE ONE AND TWO STORY MODELS

The differential equation of motion which include the large displace-
ment coupling term, the P-delta effect, and the vertical ground motion was
derived as follows for the one story structure which is shown schematical-
ly in figure la. The equation was derived with the restriction that the
mass m, moves parallel with the horizontal plane. This restriction is
realis%ic since most buildings are built such that this type of motion
will predominate. This restriction is substantiated by pictoral document-
ation of earthquake damaged structures. For instance, figure 3.15 page
156 of reference (11) shows the deformed shape of a reinforced concrete
structure damaged by the San Fernmando earthquake of February 9, 1971.
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This figure shows that the columns are deformed approximately in the fixed
-fixed mode shape while the first floor remains horizontal. It is further
assumed in the derivation that the inertial effects of the column and its
axial deformation are negligible.

The large displacement coupling term relating the vertical (A ) and
horizontal (A, ) displacements, shown in figure 2, was obtained by using an
approximation method, First, the shape function, equation 1, which repre-
sents the deformed shape of a fixed-fixed column was determined.

y(x) = (EEE_ EEEDA @))
02 23 H
. 1/2 dx 2 , .
Next, the 1ntegra1-§ O(E;) dx was used to approximate the vertical
displacement (Ay) caused by the horizontal displacement (Ay). The result-
ing equation relating these two displacements is;

9 ()2 2)

by =15 H

This equation shows that large horizontal displacements, which a structure
will experience during severe earthquakes, will cause significant vertical
displacements. The validity of the above equation was substantiated by
experimental tests. A comparison of the experimental and theoretical
curves is given in figure 3.

The P-delta effect is included in the analysis by using a geometric
stiffness term for a fixed-fixed column with axial forces applied at the
ends. The important effect included in the analysis, by using the geo-
metric stiffness, is that the columns horizontal stiffness decreases as
the axial load increases. In the dynamic analysis the axial load is the
sum of the dead loads (gravity loads) plus live loads which herein are
considered to include inertia loads.

The input tco the mathematical models include the horizontal and ver-
tical acceleration, velocity and displacement time histories,

The equation for the horizontal motion of the mass m, was obtained by
using the concept of dynamic equilibrium, or D'Alembert's principle. The
coordinates 8 ., y.. and y_ shown in figure 1 are independent. 5H repre-
sents the horiZontal disp?acement of the mass m, while y_ and ¥ &efine
the vertical and horizontal displacement of the ground. Vertical dis-
placement of the mass is defined by & and is expressed in terms of §

v, and y... The horizontal restoring ¥%rce due to the relative dis- HL,
placement of a column is;
6P
12ET T
Q=% ~-—2) B, -y
23 5 Hl H 3)

where the first term in parenthesis is the geometric stiffness and the
second term in parenthesis is the relative horizontal displacement between
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the mass m; and the ground. The relative displacement term is referred to
as distortion,

The free body diagram of the mass mp is given in figure 1b. By sum-
ming moments about points a and b which represent the inflection points of
the columns, equations are obtained for the axial loads (P_ and P_) in the

. . R L
right and left columns. These equation are:

. .

o - . m 81 & - ﬁr_) ! oy (51{1—3’}1)] H
R w @772 w 12 ) (
L a® oy (GnyH |
W 2 2 )
o oo Mfm g ﬁz) ™0 o dmn,
L A 2 2 W 2 2
m. g 8.~y
1 A HL "H
_ 9 2
where AV = 132-(5Hl—yﬂ)
The differential equation for the horizontal motion of mass m, was
derived by summing the horizontal forces which gives;
m8uy ¢ 5 ) 4 Gy — (6)
here k = (_]._ZEE_ - EP_L
whe L 37 75
2
o - 8L 5Pr
23 52
Now, by substituting for the axial column loads PR and PL and rear-
ranging, equation 6 becomes:
. : ng mé
12EI 6 1 1Vl
8 LR (e — =
moy 21 3 st (om0 Gy =00 (g

This equation gives an interesting insight into the problem. For
instance, the restoring force in the above equation is decreased by the
static gravity term ( 1 ) and increased by the large displacement

] R -
coupling acceleration term m,§

1°vl
5.
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. N _ _ o - . . 2 i
Noting that 6Vl (18/152)[6Hl yH)(GHI—yH) + (GHl yH) 1+ Yy and
adding a viscous damping term, the large displacement response equation
for a one story structure is;

2
wz “n (8. ~v.)
PO n (8,.-y.) - 8- “HL 'H
5Hl o5 H1 “H D
28w
. no.x bg — N+ _ 108
5 Ca Ve s Cur e 7~ O™ H) 75
752°D
108 > 108 -
- (- )2 Gy — T vy 8
4592y = HL “H 75¢ p = HL HV (8)
where:
o = percent elastic action
R = percent plastic action
108 (5. -y )2
D=l+'——*‘*2 H1 “H
758
6H1 = horizontal displacement of mass m, (in)
Vg = horizontal ground motion (in)
yv = vertical ground motion (in)
. . . 2
g = acceleration of gravity (in/sec”)
£ = damping factor
2 = length of columns (in)
2 (L2E1)
“n 3 fundamental frequency of one story model for small
m. 2 A
1 displacements (rad/sec)

The first three terms on the right hand side of the equal sign,
when (D=1), is the equation of motion for mass mj considering small dis-
placements. This is the equation which G. M. Smith, G. Ernst, and
Maheshwari (12) have investigated quite thoroughly. The next three
terms are due to large displacement coupling and P-delta considerations
while the last term comes from including vertical ground motion.
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Equations for the two story model were derived in the same manner as
for the one story model. A set of coupled non-linear differential equa-
tions was obtained which defines the motion of masses mj and mp as shown
in figure 4. The independent coordinates used in the analysis are 8y3
and §p2 which represent the horizontal motion of masses m; and mp while
the horizontal and vertical ground motions are defined by yy and yy, re-
spectively.

The vertical displacements of masses mj and m, can be expressed as
a summation in terms of the independent coordinates. These equations
are.:

9 2

b1 = 152, Gy + vy (9)
9 2 9 32

Sy2 = 152, (Bpgymyyg) + 152, (80510 + ¥y (10)

The differential equation of motion for mass my is determined by
sumning forces in the horizontal direction in figure 5a. After making
the necessary substitutions, we obtain;

H1 W

. m.g m, 8
12ET 6 2° w 2°V2 w
+ —== - - &) - = - =
PRI { C 326 0y ~ 5 1579 (2)]} Cyp~0) = 0
Again, we find that the horizontal restoring force is decreased by
the gravity term and increased by the vertical acceleration term.

The differential equation of motion for mass m; is derived by sum-—
ming the horizontal forces in figure 5b. Upon substituting for the axial
column loads Pyqs Pri» PL2’ and PRZ’ the equation becomes;

. sl 6 . .
mibgy F [2(2 ER (mig - mydyy + myg + my8,,) (8 -vy)
1
1251 6 - -
T20737) 7 5y (g8 7 myfyp) 1 Cpymiyy) = O (12)

2

Again it is noted, for the first set of terms in brackets, the grav-
ity term reduces the restoring force while the vertical acceleration in-
creases the restoring force. However, for the last set of terms in
brackets, the gravity term increases the restoring force while the ver-
tical acceleration decreases it.

After substituting for the vertical accelerations and the additiom
of the forces due to viscous damping, the differential equation for
masses mp and mj are;
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. c
_ 2 J12EI Y2 63
Su2 oo, 3 20g78y) - 57 Cpobyy) + 555 (Bpp=0yp)
272 1, 2 )
108 .7 ) _ 108 2 - .2
75%,,0, Sy yH)(aHZ 801 C1 Ve ~ F5r 2. P Ve Cpp~Oyp)
1%272
108 2 = 108
522D Cyp=fi)” Sy 222D (3 H2~ Hl) (898417
272 272
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~ 108 2
b, =L+ 2542 (8gp=0pp) ]
2
b= 2 s % e 28 (2 7
7521 759,l 1
216 ™ 108 "2 2
(6,80 (8 -y) + —5 (—-)( )71
752112 my H2 H1 HI “H 7522 H2~ Hl
C2 = ZEwn
percent of critical damping
24T
0.293(—= 3 )] fundamental frequency of two story model {(Rad/
l sec) with m, = ml/2.

lumped mass representing second floor (lb-secz/in) = ml/2

lumped mass representing first floor (lb—seczlin)

horizontal displacement of mass m, (in)
horizontal displacement mass ml (in)
length of columns supporting mass m, (in)
length of columns supporting mass my (in)
vertical displacement of ground (in)
horizontal displacement of ground (in)

acceleration of gravity (in/secz)

The two equations, 13 and 14, are referred to as the large displace-
ment equations for the two story model.
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The small displacement equations for the two story model are obtained
by setting D; = Dy = 1, and keeping the first two terms on the right hand
side of equation 13 and the first five terms on the right hand side of
equation 14. All the other terms in equations 13 and 14 come from consid-
ering the large displacement coupling term, the P-delta effect and vertical
ground motion.

PROCEDURES FOR THE SOLUTION OF THE ONE AND TWO STORY MODEIL EQUATIONS

The differential equations of motion were solved using a digital
computer program which functions as an analog computer. For the one
and two story models, the computer program uses an idealized bilinear
hysteresis loop to represent the force-deflection property of reinforced
concrete. In order to mathematically define the bilinear hysteresis
loop o and B parameters were used. Smith, Ernst and Maheshwari (12)
give a detailed discussion on the various interpretations that may be
given to the o and B parameters. Herein, the o and B parameters simply
represent the percent of elastic and plastic action, respectively, allowed
for a particular structure. By using these terms, the restoring force
Q can be expressed as:

Q=0Qx + Q8
where Qo = a(Q) = elastic restoring force
QB = B(Q) = plastic restoring force
a+ B =1

The bilinear restoring force as related to the o and B parameters
is shown in figure 6. 1Initially, at point O, the structure is unloaded.
With increasing distortion, the structure will go partially plastic which
is shown to occur at peoint a. For any additional distortion, the QB
term remains constant while Qa continues to increase. The sum of Qo
and QB gives the total restoring force Q.

Corrected versions of the San Fernando earthquake of February 9,
1971 were used to excite the one and two story models. These records were
obtained from the National Earthquake center at the California Institute
of Technology in Los Angeles. Information regarding this earthquake data
is given in references (14) and (15). The data points defining the
acceleration-time histories are supplied at time increments of .02 seconds.
The velocity and displacement time histories of the earthquake, which are
required for the solution of the non-linear differential equations, were
obtained by integrating the acceleration-time histories.

As stated in the introduction, the objective was to determine the
significance of the additional terms on the response of the one and two
story dynamic models. 1In order to evaluate the effect of the additiomal
terms the differential equations for small displacements were solved and
used for comparison purposes.



355

A parametric study was made for the following parameter values:
o = percent elastic action (0., .5, 1.0)
8 = percent plastic action (1., .5, 0.)
¢ = damping factor (.03, .1)
£ = wn/2ﬂ = fundamental frequency (one story model) (.2 to 10 cps)
£ = wn/ZW 7/.293(2(12%1)) = Fundamental frequency (two story model)
’ (.3 to 10 cps)
Up = K(Ue)

where Up = distortion level at which plastic action starts

K

I

fraction of maximum linear distortion (.4, .6, .8, 1.)

I

Ue maximum elastic distortion

The parameter K determines the level of distortion at which plastic
action occurs (Up). For example, the completely elastic (a=1.0, B=0.0)
response for the one story model is shown in figure 7. Thus, when
bilinear runs are made for a particular B value, distortions above the
line K = .6 would cause plastic action to occur in the structure.

All the response-time histories for the one and two 'story models
were solved using the 4th order Runge-kutta integration method. The
computer program was checked by comparing the small displacement response
solutions with those obtained by Smith, Ernst and Maheshwari (12) for
linear and bilinear cases. For a linear case, the analog solution of
Smith, Ernst and Maheshwari gave a maximum distortion of 5 inches while
the program used gave 5.12 inches maximum distortion. This small difference
in distortion is representative of all the cases run. When considering
the possible errors in the analog simulation approach and the round off
errors, etc. for digital computation, the writer feels that the agreement
between the two solutions is very good.

An exact check on the solution of the large displacement problem was
not possible because no published results were available for comparison.
Since the main harmonic components of the San Fernando earthquake are
below 0.3 cps it was felt that a high frequency model should respond
about the same for either a small or large displacement analysis.
Therefore, check runs were made using the small or large displacement
analyses for a high frequency model. Since the results for the two
solutions compared almost exactly, it is an indication that the large
displacement differential equation was programmed correctly.
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The equations for the two story model were solved using a mass ratio

of (:iE = 2) for the first and second flcors. The damping in the model

m

2

is the same viscous damping term (ZEwn) used in the one story model.
The w_ term is the first mode frequency of the two story model and was
used as the basis for plotting the results. The computer codes for the
two story model (small and large displacement analyses) were checked in
the same manner as the one story medel.

COMPARISON OF RESULTS BETWEEN THE SMALL AND LARGE DISPLACEMENT ANALYSES

The response characteristics of the one and two story models were
investigated over a frequency range of .2 to 10 cps. It was found that
for frequencies over 4 cps, the small and large displacement analysis
gave essentially the same results. Therefore, the response information
for the one and two story models is plotted for a frequency range of 0.2

to 4.0 cps. The results obtained for cases where K = .6 or K = .8 compared
closely with the results for the completely linear cases (a= 1 and g = 0).
Because of this, response information on the cases where K= .6 or K = .8

has not been included since they would have added very little useful
information.

The maximum distortion response solutions for the first story of the
one and two story models are shown in figures 8, 9 and 10. For the
completely elastic cases shown in figure 8, the small and large displacement
analyses compare very closely for frequencies above 0,7 cps. Below this
frequency, the two solutions differ. For example, the small displacement
analysis for the one story, figure 8a, shows a sharp increase in distortion
below 0.7 cps while the large displacement analysis shows a decrease to
.5 c¢ps. For the two story model, the difference in the first story
distortion determined by the two analyses is shown in figure 8b. Again,
the differences occur below 0.7 cps.

As the amount of plastic action is increased, the large displacement
terms become more significant. This can be seen by comparing figures
8 and 9. The difference in distortion between the small and large
displacement analyses for the one story model has increased significantly
for frequencies below 1.0 c¢ps. For example, at .75 cps the large
displacement analysis shows an increase of 35 percent. For the two story
model, the point at which the small and large displacement analyses differ
considerably in first story distortion has moved up from .7 cps to about
1.7 cps. The effect of reserve elasticity on distortion is shown in
figure 10. For the case with o« = B = .5, the region of difference between
the small and large displacement analyses for maximum distortion has
dropped below 0.7 cps. This compares very closely with the completely
elastic case.

A comparison of the results obtained for permanent offset for the
small and large displacement analyses are shown in figures 11 and 12.
There is a considerable difference between the small and large displacement
analyses in the amount of offset for the one story model. This is shown
in figure 11a. For example, at 0.75 cps the large displacement analysis
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shows an increase of 72 percent in the amcunt of permanent offset, The
two story model also shows a large difference in offset of the first floor
up to about 1.6 cps. When the amount of elastic action is increased, the
magnitude of permanent offset is significantly reduced. These results,
when ¢ = B = ,5 for the one and two story models, are shown in figure 12.
For the one story model, the large displacement analysis, in comparison

to the small displacement analysis, shows an increase in offset below

0.9 cps and a decrease in offset from 0.9 to 1.5 cps. For the two story
model, the large displacement analysis shows an increase in permanent
offset over the small displacement analysis for frequencies below 2.7 cps.

While investigating the maximum distortion and permanent offset
characteristics for the large displacement analysis, runs were made to
determine which large displacement terms were significant, It was found
that the static gravity term, which is the P-delta effect, accounted for
most of the differences between the small and large displacement analyses.

The vertical acceleration caused by the large displacement coupling
term was evaluated for the one and two story models. The maximum vertical
first floor accelrations due to the large displacement coupling term
for structural models with a fundamental frequency of 1.3 ¢ps was found
to be 0.06 G's and 0,074 G's, respectively, while the maximum acceleration
for the second floor was 0.076 G's, These acceleration levels are quite
low in comparison to the maximum vertical ground motion acceleration of
0.71 G's for the San Fernando earthquake.

C =(6Hl)max
g

8 = 1.0) are shown in figure 13. There is a slight increase in the lateral
force coefficient when large displacements are included in the analysis

for the one story model. However, for the two story model, the opposite
situation is true. In general, the large displacement analysis shows a
reduction in the lateral force coefficient.

The lateral force coefficients, for the case (a= 0.0,

The effect of vertical ground motion for the case when (o= 0.0,
B = 1.0) is shown in figure 14. Cases were run with and without vertical
ground moticn using the large displacement analysis. No difference in
maximum distortion was found for the one story model. However, for the
two story model, the vertical ground motion did have an effect on the
horizontal distortion. For instance, a 1.3 cps building showed an
increase of 21 percent in maximum distortion for the first story when
vertical ground motion was included.

CONCLUSIONS AND DISCUSSION

The results obtained from the small and large displacement analyses
show that the large displacement terms and vertical ground motion do have
an effect on the seismic response of buildings under certain conditions.
As the amount of plastic action increases in a structure the more signifi-
cant their effect becomes. In general, the large displacement terms have
a significant effect at low frequencies.
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For the one story model the maximum distortion and permanent offset
show a difference between the small and large displacement analyses for
frequencies below 1 cps while the two story model shows a difference
below 1,7 cps, The fact that the frequency range, which shows this
difference, has moved from .7 cps for a one story structure to 1.7 cps
for a two story structure indicates that large displacement terms including
vertical ground motion could become even more significant for taller
buildings which would have frequencies within this range.

It should be kept in mind, when considering these results, that one
and two story structures usually do not have fundamental frequencies
under 2.0 c¢ps.

Results from the small and large displacement analyses also show a
difference for the lateral force coefficients. This difference extends
over the frequency range of 1 to 4 cps for the one story model and 0.2
to 4 cps for the two story model. A maximum difference of 29 percent
was calculated for the two story model which has a frequency of 1.9 c¢ps.
This also indicates that large displacement terms including vertical
ground motion should be used in the dynamic analysis for the determination
of lateral force coefficients.

The results showed that the vertical ground motion had essentially
no effect on the horizontal response for the one story model. For the
two story model the results obtained from the vertical ground motion
effect study showed a difference over a frequency range from 1 cps to
4 cps. A maximum difference in distortion of 21 percent was obtained
for the two story model. These results strongly indicate that taller
buildings could be effected significantly by vertical ground motion.
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