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PREFACE 
The 89 papers contained in these two volumes constitute the proceedings 

of the International Symposium on Earthquake Structural Engineering, 
which was held in St. Louis, Missouri, and presented by the University of 
Missouri - Rolla. The symposium was endorsed by the American Society for 
Engineering Education; the St. Louis and Mid-Missouri sections of the 
American Society of Civil Engineers; and the Joint Committee on Tall 
Buildings established by the International Association for Bridge and 
Structural Engineering, the American Society of Civil Engineers, the 
American Institute of Architects, the American Institute of Planners, the 
International Federation for Housing and Planning, and the International 
Union of Architects. 

A large quantity of effective research has been put forth in the various 
areas of destructive earthquakes, seismicity, ground motions, earthquake 
instrumentation, earthquake zoning, and disaster prevention. In each, a 
tremendous amount of world-wide information has been accumulated that 
should be discussed and disseminated in specialized conferences, such as the 
one held in St. Louis, to provide for interaction and cooperation among 
researchers, educators, practitioners, and civil authorities in the field of 
earthquake structural engineering and to focus attention on structural design 
so as to minimize the distructive and killing effects of earthquakes. It is 
hoped that the presentations and discussions contained herein will contribute 
significantly toward this end. 

It is not possible here to thank each and every person who contributed 
toward the organization of the conference, but sincere appreciation is 
extended to the authors for their cooperation and contributions and to all the 
Technical Committee members and Session Chairmen for their untiring 
efforts. 

Special appreciation is expressed to the NSF for its partial financial 
support in publishing these proceedings. We are grateful for the assistance of 
Drs. S.c. Liu and lB. Scalzi, Program Managers of Earthquake 
Engineering, Division of Advanced Environmental Research and Technology 
of the National Science Foundation, and for the encouragement and support 
of Drs. D. Thompson, Vice Chancellor, G.E. Lorey, Dean of Extension, and 
I.S. Johnson, Dean of School of Engineering, Prof. J.K. Roberts, Assist. Dean 
of School of Engineering, of the University of Missouri - Rolla. Last, but not 
least, the cooperation of the Planning Committee and University staff is 
acknowledged with thanks, and the skilled assistance of Mrs. Ann Mitchell 
and Margot Lewis in typing portions of the proceedings deserves special 
mention. 

Rolla, Missouri, August 1976 
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Franklin Y. Cheng 
Joseph H. Senne 
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PROGRAM 
Registration Wednesday, August 18, 1976 

6:00 p.m. - 9:00 p.m., Mississippi Room 

Thursday, August 19, 1976 
7:30 a.m. - 5:00 p.m., Registration, Mississippi Room 

8: 15 a. m. OPENING SESSION, Mississippi Room 

Presiding: J.H. SENNE, University of Missouri - Rolla 

Welcome Remarks 

J.H. POELKER, Mayor of St. Louis 
Representative of Honorable J. W. SYMINGTON, U.S. Congressman 

D. THOMPSON, ViceChoncellor, University of Missouri - Rolla 

9:05 a.m. INVITED LECTURE, Mississippi Room 
Presiding: T.V. GALAMBOS, Washington University 

On the Specification of a Design Earthquake, by O.W. NUTTLI, St. Louis University 

9:40a.m. Coffee Break 

10:00 SESSION lA, Mississippi 

Room 

BUILDINGS AND BRIDGES 
Chairman: 

T.V. GALAMBOS, Washington, 
University 

C o-C hai rman; 

W.A. ANDREWS, University of 

Missouri - Rolla 

A Study of the Effect of the 

Frequency Characteristics of 
Ground Motions on Nonlinear 

Structural Response, by A.T. 
DERECHO, G.N. FRESKAKIS, and 

M. FINTEL, U.S.A. 

Seismic Retrofitting for Highway 

Bridges, by A. LONGINOW, R.R. 

ROBINSON, K.H. CHU, and J.D. 

COOPER, U.S.A. 

The Non-Linear Deformations in the 

Ground Base of large-Panel Build

ings Under Oscillation, by G.A. 

SHAPIRO and G.N. ASHKINADZE, 

U.S.S.R. 

Dynamic Behavior of Cable Stayed 

Bridges, by E.A. EGESELI, and J.F. 

FLEMING, U.S.A. 

Modal Analysis and Seismic Design 

of Tall Bui Iding Fromes, by P. 

PARAMASIVAM, S. NASIM, and 

S.L. LEE, Singapore 

Development in Structural Solu

tions of Multi·Storey Seismic-Proof 

Frameless Buildings of In-Situ 

Reinforced Concrete in USSR, by 

M.E. SOKOLOV and Y. V. GlINA, 

U.S.S.R. 

The Inelastic Seismic Response of 
Bridge Structures, by R.D. SHARPE, 
and A,J. CARR, New Zealand 

Effect of Coupling Earthquake 

Mations on Inelostic Structural 

Models, by F.Y. CHENG and K.B. 

OSTER, U.S.A. 

XI 

10:00 SESSION IB, Illinois Room 

FOUNDATION AND STRUCTURE 

INTERACTION 
Chairman: 
M. ALiZADEH, Shannon & Wilson, 

Inc. 

Co-C hoi rman: 
W.A. NASH, University of Masso

chussets - Amherst 

The Effect of Foundation Com

pliance on the Fundamental Periods 
of Multi-Storey Buildings, by E. 
MENDELSON, and I. ALPAN, Israel 

Inverted-Pendulum Effect on Seis· 

mic Response of Tall Buildings 
Considering Soil-Structure Interac

tion, by T.H. LEE, U.S.A. 

On the Use of Precast Pile-Founda

tions in Construction of Earthquake

Proof Large-Panel Buildings, by L.D. 

MARTYNOVA, Y.A SIMON, V.F. 

ZAKHAROV, and N.V. 

KONDRATYEV, U.S.S.R. 

Some Seismic Response Solutions 

for Soil-foundation-Building 

Systems, by J.K. MINAMI and J. 

SAKURAI, Japan 

Response of Structures Embedded 

in the Ground to Traveling Seismic 
Waves, by E.G. PRATER and M. 

WIELAND, Switzerland 

Some Comparisons of Dynamic 

Soil-Structure Analyses, by G.R. 
JOHNSON, H.1. EPSTEIN, and P. 

CHRISTIANO, U.S.A. 

Gypsum layer in Soil-Structure 

Systems, by Y.c. HUNG and M.D. 

SNYDER, U.S.A. 

The Soil Foundation-Structure Inter

action Under the Action of 

Earthquake Loads, by I. 
CIONGRADI and N. UNGUREANU, 

Romania 



12:00 Lunch 
1 :30 - 2: 10 INVITED LECTURE, Mississippi Room 
Presiding: V.V. BERTERO, University of California-Berkeley 
Protection of Communications Facilities in Earthquake Areas, by S.c. llU, National Science 

Foundation 
2: 15 SESSION 2A, Mississippi 

Room ANALYSIS AND DESIGN 

Chairman: 
T.e. HUANG, University of 
Wisconsin-Madison 

Co-Chairman: 
V.B. VENKAYYA. U.S. Air Force 

Flight Dynomics Laboratory, 

Wright Potterson. Ohio 
Critical Excitation and Response of 
Free Standing Chimneys, by P.c. 
WANG, W.WANG, R. DRENICK, 

and J. VELLOZZI, U.S.A. 
Dynamic Analysis of Elastic
Plastic Space Frames, by N.F. 

MORRIS, U.S.A. 
On the Limit Analysis of Box-Unit 
Buildings Under Static and Dynamic 
Effocts, by T.1. NASSONOVA and 

M.J. FRAINT, U.S.S.R. 

3:00 Coffee Break 

3:30 
Dynamic Response of Cantilever 

Beam-Columns with Attached 
Masses Supported on a Flexible 
Foundation, by AN. KOUNADIS, 
Greece 
Vibrations and Interactions of 
Layered Beam Foundations, by V.N. 
SHAH and T.e. HUANG, U.S.A 

Generating Response Spectra from 
Displacement and Velocity Time 

History Input, by A. CHUANG, T.H. 
LEE, D.A. WESLEY and S. lU, U.S.A. 
A Simplified Nonlinear Seismic 
Response Analysis of Structures 

Including Vertical Ground Motion, 
by D.R. BERVIG, U.S.A. 
Response of an Elasto-Plastic 
Spherical Structure in a Fluid to 
Earthquake Motions, by D. 
SRIMAHACHOTA, T. 

HONGLADAROMP. Thailand and 
S.L. LEE, Singopore 
Dynamic Response of Retaining 
Walls During Earthquake, by c.s. 
YEH, Republic of Chino 
Dynamic Response of Bridge Grid 

Under Moving Force, by N. 

MUNIRUDRAPPA, India 

XII 

2:15 SESSION 2B, Illinois Room 
DYNAMIC TESTS ON STRUCTURES 
Chairman: 

M. FINTEL, Portland Cement 
Association 

Co-Chairman: 

V.V. BERTERO, University of 

Cal ifornia-Berkeley 
Reversing Load Tests of Five 
Isolated Structural Walls, by AE. 
FIORATO. R.G. OESTERLE, JR. and 
J.E. CARPENTER, U.S.A. 

Dynamic Behavior of a Reinforced 

Concrete Spray Tower, by T.J. 

FOWLER and D.M. WILLIAMS. 
U.S.A. 
Experimental Studies on Hysteretic 
Characteristics of Steel Reinforced 

Concrete Columns and Frames, by 
M. WAKABAYASHI, and K. 

MINAMI. Japan 

Static and Dynamic Tests of a 
Large-Size Model of a Frameless 

In-Situ Reinforced Concrete Resi
dential Building. by Y.V. BARKOV 
and Y.V. GLiNA. U.S.S.R. 
Experimental Study on Reinforced 
Concrete Truss Frames as Earth
quake Resistance Elements, by T. 

SHIMAZU and Y. FUKUHARA. 

Japan 
Ductile Behavior of Coupled Shear 

Walls Subjected to Reversed Cyclic 
Loading, by AR. SANTHAKUMAR, 

India 

Earthquake Response of Guyed 
Towers, by AV. du BOUCHET, 
U.S.A. 
Experimental Study on Reinforced 
Concrete Columns with Special 
Web-Reinforcements, by H. 
UMEMURA, T. SHIMAZU, S. 

TADEHARA, T. KONISHI and Y. 
ABE, Japan 

Torsional Response at Large 
Eccentricities, by K. J. MEYER and 
U. OPPENHEIM, U.S.A 



A New Method for Numerical 

Integration of Equations of Motion 

by J.E. GOLDBERG, U.S.A. 

Sheraton Hotel in Santo Domingo, 

Oem. Rep.: Analysis, Design. and 

Construction Techniques, by A.A. 

RICART NOVEL. Dom. Rep. 

Friday, August 20, 1976 
8:00 - 12:00 Registration, Mississippi Room 

8:30 - 9; 10 INVITED LECTURE, Mississippi Room 

Presiding: J.B. SCALZI, National Science Foundation 

Establishment of Design Earthquakes--EvaluCltion of Present Methods, by V.V. 

BERTERO, University of California-Berkeley 

9: 15 SESSION 3A Mississippi 

Room ANALYSIS AND DESIGN 

Chairman: 

J.B. SCALZI. National Science 
Foundation 

CerC hai rmon: 

R.E. DAVIS, McDonnell Dooglas 
Automation Co. 

A Unified Approach to Designing 

Structures for Three Components of 
Eorthquake. by A.K. GUPTA and 

S.L. CHU. U.S.A. 
Resizing of Frames 

Ground Motion. 
VENKAYYA and 
U.S.A. 

Subjected to 
by V.B. 

F.Y. CHENG. 

Problems in Establishing and 

Predicting Ductility in Aseismic 

Design. by S.A. MAHIN and V. 

V. BERTERO, U.S.A. 

10:00 Coffee Break 

10:30 

Shear Coefficien1 and Shear Force 
Distribution in Nuclear Power Plant 

Structures due to Seismic loading, 

by N.C. CHOKSHI and J.P. LEE, 
U.S.A. 

EvaluCltion of the Reservoir Effect 

on the Dynamics of Dams. by H.U. 

AKA Y and P. GULKAN, Turkey 

Dynamic Response Characteristics 
of an Elasto-Plastic Structure on a 
Random Soil Ground. by T. 
KOBORI, Y. INOUE and M. 
KAWANO, Japan 

Some Design Considerations of 
Earth'luake Resistant Reinforced 

Concrete Shear Wolls, by T. 
PAULAY, New Zealand 

Earthquake Resistance of Struc

tures with Suspended Masses, by 
N.A. NIKOLAENKO and I.N. 

BURGMAN. U.S.S.R. 

XIII 

9:15 SESSION 3B, Illinois Room 
CODES AND REGULA nONS 

Chairman: 

J.E. GOLDBERG, Purdue University 
and University of Illinois-Chicago 
cere hai rman; 

V.R. BUSH, International Con

ference of Building Officials 

On Specifications for Earthquake
Resistant Design of the Honshu

Shikoku Bridges [JSCE-1974J. by l. 

KAWASAKI and E. KURIBAYASHI. 

Japan 

Comparison of Aseismic Steel 

Building Design Practice in Japan 

and USA. by P.H. CHENG, U.S.A. 

Comparative Study of the New 

Turkish Earthquake Resistant 

Design Code. by M. CELEBI, Turkey 

Application of Structural, Mechan

ical and Electrical CodEn C1nd 

Standards in the Design of Safety 

Related Structures, Components, 

and Systems for Nuclear Power 

Plants. by D.S. MEHTA and B.L. 

MEYERS, U.S.A. 

On Specifications for Earthquake

Resistant Design of Highway 

Bridges [Jan. 1971]. by K. 
KAWAKAMI. E. KURIBAYASHI, T. 

IWASAKI and Y. lIDA. Japan 

The New Turkish Aseismic Code: A 

Critical Evaluation with Emphasis 

on Soil Amplification Considera

tions. by A. GURPINAR. Turkey 

Earthquake Dynamic Environment 

within Buildings, by K.L. MERZ. 

U.S.A. 



Earthquake Response of a Tall 
Multi-Flue Stack, by P. 
KARASUDHI, Y.c. TSAI and K.P. 
CHAU, Thailand 

12:00 Lunch 

1 :30 - 2: 10 INVITED LECTURE, Mississippi Room 

On Earthquake Resistant Design of 
a Submerged Tunnel, by C. 
TAMURA and S. OKAMOTO. Japan 
Seismic Design of the Veteran's 

Administration Hospital at lama 
Linda. California, by W.T. HOLMES, 
U.S.A. 

Presiding: S.c. lIU, Notional Science Foundoflon 
Risk and Safety Analysis in Earthquake-Resistant Design. by A. H-S. ANG, 
University of Illinois at Urbano-Champaign 

2: 15 SESSION ..tA, Mississippi 
Room SAFETY, RELIABILITY, AND 
POWER PLANT STRUCTURES 
Chairman: 
S.c. UU, Nationol Science Foundc-

tion 
Co-Chairman: 
J.T.P. YAG, Purdue University 
Structural Damage and Risk in 
Earthquake Engineering, by 0.5. 
HSU, J.T. GAUNT and J.T.P. YAO, 
U.S.A. 
On Non-Stationary Spectrum and 
Mean Square Response of a Simple 
Structural System to Earthquake 
Excitation. by T. KOBORI and Y. 
TAKEUCHI. Japan 
Dynamic Earthquake Analysis of a 
Battom Supported Industrial Boiler. 
by N. J. MONROE and N. DASA 
U.S.A. 

3:00 Coffee Break 

3:30 
Effects of Earthquake Inpvt in 
Seismic Responses of Nuclear 
Power Plant Sites, by B.T.D. LU, 
J.A. FISCHER andJ. Peir, U.S.A. 
Discrete Modeling of Contoinment 
Structures, by Y.J. LIN and A.H. 
HADJJAN, U.S.A. 
Seismic Risk Analysis of Nuclear 
Power Plant Sites Including Power 
Spectrum Simulation of Future 
Earthquake Motion, by A. 
GURPINAR, Turkey 
Safety of Seismic Protective 
Systems with Reserve Elements. 
by I.M. EISENBERG. U.S.S.R. 
Seismic Dynamic Parametric Study 
on Finite Element Model of Nuclear 
Power Plant Facility. by J.S. 
TERASZKIEWICZ. U.S.A. 

XIV 

2:15 SESSION 48, Illinois Room 
GROUND MOTIONS, CONSTRUe-
TION AND REPAIR OF STRUC
TURES 
Chairman: 

O.W. NUTTLI, St. Louis University 
CoChairman: 
J.L. BEST, University of Missouri
Rolla 

Methodology for Incorporating 
Parameter Uncertainties Into Seis
mic Haz.ard Analysis for law Risk 
Design Intensities, by R.K. 
mcguire, U.S.A. 
Epoxy Repair of Structures. by J.M. 
PLECNIK, J.E. AMRHEIN, W.H. 
JAY, and J. WARNER, U.S.A. 
A California Structural Engineer 
Shares Three Years of On-Site 
Experiences in the Design of 

Reparations for Buildings in 
Managua, by P.J. CREEGAN. 
Nicaragua 

Troika for Earthquake-Resistant 
Building Design. by J.R. TlSSELL. 
U.S.A. 
Safety of Cities During Severe 
Earthquakes, by O.c. MANN, 
U.S.A. 
Evaluation of Greek Strong Motion 
Records. by P.G. CARYDIS and J.G. 
SBOKOS. Greece 
Behavior of Reinforced Concrete 
Structures During the Managua 
Earthquake, by G. ESTRADA
URIBE, Columbia 
Site Response Analysis for Earth
quake Loading, by Y.S. LOU. S.J. 
DIXON and C.R. MacFADYEN, 
U.S.A. 



Approximate Random Vibration 

Analysis of Elastoplastic Multi· 
Degree-of-Freedom Structures, by 

G. GAZETAS and E.H. 

VANMARCKE, U.S.A. 
Probabilistic Approach to Ultimate 

Aseismic Safety of Structures, by 
M. YAMADA and H. KAWAMURA, 

Japan 

Seismic Analysis of Hyperbolic 
Cooling Towers by the Response 

Spectrum Method, by P.l. GOULD, 

S.K. SEN and H. SURYOUTOMO, 

U.S.A. 

6:20 p. m. 
7:20 p.m. 

Social Hour, Illinais Room 

Banquet 

Presiding: J.K. ROBERTS, University of Missouri - Rolla 

8:30 a.m. 

9:15a.m. 

Chairman: 

SUBJECT: Structural Damage Caused by Guatemala Earthquakes of" and 6 February 

1976, by J. ROESSET, Massachusetts Institute of Technology 

Saturday, August 21, 1976 

INVITED LECTURE, Mississippi Room 

Presiding: P.L. GOULD, Washington University 

Observational Studies on Earthquake Response of Buildings in Japan, Y. OSAWA. M. 
MURAKAMI, and T. MINAMI, University of Tokyo, Japan 

SESSION 5, Mississippi Room STRUCTURAL ELEMENTS AND SPECIAL STRUCTURES 

P. L. GOULD, Washington University 

Co-Chairman: 

A.H. HADJIAN, Bechtel PawerCorporation 

Discrete Modeling of Symmetric Box-Type Structures, by A.H. HADJIAN, and T.S. ATALlK, 
U.S.A. 

Inelastic Seismic Response of Isolated Structural Walls, by G.N. FRESKAKIS, A. T. DERECHO and 
M. FINTEL, U.S.A. 

Effects of Sectional Shape on the Strength and Ductility of Slender Structural Walls in 

Earthquake-Resistant Multistory Buildings, by S.K. GHOSH and M. FINTEL, U.S.A. 

10:00 Coffee Break 

10:20 
On the Shear Pinched Hysteresis Loops, by M. CELEB/, Turkey 
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SUMMARY 

This paper discusses some of the more common means of 
specifying the design earthquake motion at a site. They 
include: estimation of the peak acceleration or the modi
fied Mercalli intensity at the site. selection of an exist
ing strong motion accelerogram which is scaled up or down 
to give the proper peak acceleration at the site. calcula
tion of response spectra and/or Fourier spectra from the 
selected strong motion records, construction of typical 
response spectra which are scaled up or down so that their 
zero-period level corresponds to the expected peak accelera
tion, estimation of the sustained levels and the durations 
of ground acceleration, velocity and displacement at dis
crete frequencies, selection of an existing strong motion 
accelerogram which is scaled up or down to fit the sustained 
acceleration levels, and construction of synthetic time 
histories of the ground motion by making use of mathematical
physical models of the earth structure and of the earthquake 
source mechanism. 
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INTRODUCTION 

The purpose of a design earthquake is to provide the 
structural engineer with 8 specification of the maximum 
ground motion to be encountered at a site during the life
time of a structure, so that the engineer can design the 
structure to withstand the effects of the earthquake. De
pending upon the use and importance of the building, the 
phrase "withstand the effects of an earthquake'l can mean any
thing from not collapsing and no loss of life (e.g. school 
and office buildings) to no structural and little architectu
ral damage, with the structure remaining operational (e.g. 
hospitals, nuclear power plants, communication facilities). 

There are various ways in which the seismologist or 
earthquake engineer can present the design earthquake motion 
to the structural engineer. In general they vary from the 
elementary to the highly sophisticated, some of which exceed 
the present state-of-the-art. Some are purely empirical. 
whereas others employ models of the earthquake process and 
of earth structure for calculating the ground motion. All 
the methods involve assumptions which simplify or idealize 
actual conditions. 

The purpose of this paper is to acquaint the structural 
engineer with the ways in which design motion can be pre
sented f with the type of information about the earthquakes 
and the Earth itself which is needed to estimate the design 
motion, and with the present state-of-the-art concerning the 
specification of design earthquake motion. 

MEANS OF PRESENTING DESIGN EARTHQUAKE MOTION 

In terms of information contained, the most complete 
design motion would consist of time histories of the ground 
acceleration, velocity and displacement. These would be 
calculated, assuming a knowledge of the time history in the 
immediate neighborhood of the earthquake, of the geological 
structure between the source region and the site, and of the 
topography and soil conditions at the site. Figure 1 is an 
example of what such time histories would look like, although 
the accelerogram in that figure is an observed rather than a 
computed one. The velocity and displacement time histories 
were obtained by numerical integration of the accelerogram. 

The accelerogram shows one horizontal component of 
motion at Pacoima Dam, about 8 km away from the epicenter of 
the San Fernando, California earthquake of February 9, 1971. 
Note that the frequency .Df the waves varies between about 20 
and 1 Hz, and that in the mid-portion of the accelerogram 
there are high frequency waves which override lower frequency 
ones. The maximum acceleration, which occurs shortly after 
7.5 sec, appears to result from the constructive interference 
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of approximately 3 Hz and higher frequency waves. Also 
note the dispersive character of the low frequency waves, 
beginning at about 2.5 sec and continuing until the end, 
with in general the lowest frequency waves arriving first. 
These probably are surface waves originating from the 
initial fault breakage. The higher frequency waves that 
override them, on the other hand, more likely are body waves 
originating at various points on the fault as the rupture 
advanced in jerky steps. This latter type of motion is 
particularly difficult to model mathematically, because 
there is no way of knowing in advance of the earthquake the 
exact time history of the fault rupture. 

The ground velocity and ground displacement time 
histories of Figure 1 show principally the effect of the 
large amplitude, low frequency surface waves. In the velo
city record one can see what appears to be both fundamental 
and higher mode waves, the fundamental mode in general 
having the lower frequency. As the base of the pier to 
which the strong motion instrument at Pacoima Dam was 
attached suffered a 0.5 0 permanent tilt because of the 
earthquake, part of the displacement on the ground dis
placement record may be showing the response of the in
strument to tilt, rather than to actual ground displace
ment (Trifunac and Hudson, 1971). 

Rather than specify the actual time history of the 
ground motion, one can give the displacement, velocity or 
absolute acceleration response spectra. The response 
spectrum is a measure of the maximum motion of a simple 
linear oscillator with a specified amount of damping when 
the oscillator is subjected to the ground acceleration time 
history. Ifw is the natural angular frequency of the 
OSCillator, n is the fraction of critical damping of the 
oscillator, and 

w = n 
2' n 

the displacement response spectrum is given by (Hausner, 
1,970 ) 

(1) 

Sd = Iy(t,w,n)\ max 

"" \d Ji"~tt,) eXPL-nw (t -I)] sin Wn(t -i) d-r-\ (2) 
n'f""C n 

where y is the displacement of the oscillator, z is the 
ground acceleration and t is the time t for which the ab
solute value of the integ~al (or the displacement of the 
oscillator) is a maximum. The integral must be evaluated 
at each angular frequency w for which a value of the re
sponse spectrum is desired. In general tm will be a 
function of w. 
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Figure 1. Strong ground motion (horizontal S160E component) 
at Pacoima Dam, 8 km from the epicenter of the 
1971 San Fernando, California earthquake (adapted 
from Trifunac and Hudson, 1971) 



The pseudovelocity response spectrum, Spv' is given oy 
(Housner, 1970) 

Spv '" w Sd 

and the acceleration response spectrum, Sa' oy 
2 

Sa = w Sd. 

Figure 2 shows the response spectra for the Pacoima 
Dam horizontal component accelerogram of the San Fernando, 
California earthquake of February 9, 1971. (The accelero
gram was shown as Figure 1.) Note that the effect of in
creased damping is to reduce the value of S • It also 
can be ooserved that the largest values of pVSpv and Sa 
occur at periods of less than 2 sec. In general, the 
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larger the earthquake, the longer the periods at which the 
peak in the velocity response spectrum occurs if the 
distance from the epicenter remains constant (Housner, 
1970). If the size of the earthquake is kept constant out 
the epicentral distance allowed to increase, there also will 
be a shift of the peak in the velocity response spectrum to 
the longer periods because the higher frequency waves under
go greater attenuation in traveling through the Earth. 

One shortcoming of the response spectra curves is that. 
by themselves alone, they cannot give a complete picture of 
the effects of the time history of the acceleration dura
tion (Trifunac and Hudson, 1971). Trifunac and Hudson 
noted that the San Fernando earthquake, with strong ground 
motion lasting aoout 7 sec, would have caused many buildings 
and bridges that were only partially damaged to have 
collapsed if the shaking had continued for another few sec
onds. They observed that it is mainly this effect of the 
duration of shaking on structural damage that calls for 
detailed investigations of the pattern of the time release 
of earthquake energy. 

In addition to or in place of the response spectra one 
can also calculate the Fourier amplitude spectra of the 
ground acceleration, velocity and displacement. These 
spectra will indicate the periods, or period range 9 of 
ground motion that contain large accelerations, velocities 
and displacements. Fourier methods also suffer from the 
fact that they give no information about the duration of the 
motion. Housner (1970) showed that the undamped velocity 
spectrum is almost identical to the Fourier amplitude spec
trum of the ground acceleration. 

There are many seismic areas of the world for which 
there are either none or at most a few strong motion rec
ords of earthquakes. Most of the United States with the 
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exception of California falls in this category. If one is 
unwilling, to use strong motion records from one geographic 
region for specifying design motion in another, he must 
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look at other methods of specifying design motion than those 
discussed to this point. 

Une such method (Nuttl1 9 1973a) estimates the l~vel of 
the ground acceleration f velocity and displacement for Cer
tain discrete wave frequencies. ?hese ground motion values, 
together with their durations, are given as a function of 
distance from the epicenter. The values specified are not 
spectral values, but rather the amplitudes that would be ob
tained by direct measurement in the time domain from strong 
motion records. if such records were available. By estima
ting ground motions at, say, 5, 1 and 0.2 Hz, one can pro
vide some idea of the ground motion in the short, inter
mediate and long period ranges. 

Another widely used method merely estimates the peak 
value of the ground acceleration (sometimes also velocity 
and displacement). It is the least satisfactory of all the 
methods because it provides no information about either the 
wave frequency of the peak ground motion or of the duration 
of the motion. Although there have been numerous attempts 
to correlate peak acceleration (or peak velocity) with 
damage (ordinarily expressed in terms of a modified Mercalli 
or some other intensity value), the correlation usually is 
low, with individual values differing by as much as plus or 
minus one order of magnitude from the mean value. 

INFORMATION NEEDED TO SPECIFY DESIGN EARTHQUAKE MOTION 

The first kind of information that is needed to specify 
the design earthquake motion 8t a site is the location of 
all potential earthquakes near the site. This implies that 
one can accurately identify and locate the seismically-act
ive regions of the world. Unfortunately, this is not the 
case. In most parts of the world our historical record of 
earthquakes goes back no farther than a few hundred years, 
which is far too little a time to give a representative 
picture of the seismiCity of an area. To supplement these 
data we can look for fault structures, and for evidence of 
movement on them in recent times by displacements in very 
young geological strata. Such data, when available, can 
give additional information about the return or recurrence 
time of the large magnitude earthquakes that are responsible 
for most of the fault displacement. Not all faults, how
ever, show evidence of recent geological movement. In such 
cases microearthquake stUdies can be made in the vicinity of 
the fault, to determine if there is evidence of present-day 
activity. Sometimes the spatial coordinates of the micro-



8 

earthquake hypocenters will help to delineate the horizon
tal and vertical dimensions of the active portion of the 
fault surface. These microearthquake studies, along with 
focal mechanism studies which determine the orientation of 
the surface across which faulting occurs and the direction 
of dislocation on that surface, can serve to identify a 
fault as active even though there have been no observable 
surface displacements on it. Examples of such areas are the 
New Hadrid fault zone of southeast Missouri and adjacent 
states, the Ouachita Mountain front of Arkansas and eastern 
Oklahoma, and the Wabash Valley fault zone on the Illinois
Indiana border. 

Along with the location of the active faults one also 
needs information about the maximum size of an earthquake to 
be expected in a given region. Normally this information is 
given in the form of a maximum magnitude earthquake. 
Richter and Gutenberg (Richter, 1935; Gutenberg and Richter, 
1936, 1956) defined three types of magnitude scales. The 
first, which Richter called local magnitude (ML), is a 
measure of the maximum ground motion in the frequency range 
of about 1 to 10 Hz for California earthquakes. This scale 
can only be properly used in areas where the surficial geol
ogy is similar to that of California and thus gives the same 
attenuation of high frequency waves. The second and third 
scales, which ordinarily make use of the amplitudes of waves 
recorded at great distances from the epicenter l are nearly 
independent of regional variations in geology. The one, 
called body-wave magnitude (mb), is a measure of the size of 
the wave motion at a frequency of about 1 Hz. The other, 
called surface-wave magnitude (MS), is a measure of the size 
of the wave motion at a frequency of 0.05 Hz. Unfortunately 
both ML and MS are commonly called the Richter magnitude, 
although for individual earthquakes they can differ by more 
than one order of magnitude from each other, the one being a 
measure of the excitation of short-period seismic wave ener
gy and the other a measure of the excitation of very long
period wave energy. 

If the shape of the spectrum of the ground motion were 
the same for all earthquakes, then all we would need to know 
in addition to that shape would be the level of the spectrum, 
which could be specified by one of the magnitudes. However, 
this is not the case. Factors such as the depth of the 
earthquake, the orientation of the fault surface and of the 
dislocation across the fault surface, the stress drop, the 
area of fault rupture and the time history of the rupture 
process all influence the shape and level of the spectrum in 
the source region of the ground motion. For large earth
quakes in some source regions the first three of these 
factors remain nearly constant, and thus can be determined 
from a study of previous earthquakes in those regions. 
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The motion in the source region is transmitted through 
the Earth to the site in the form of wave motion. As it 
propagates it is attenuated, both because of geometrical 
spreading of the wave fronts and because of scattering and 
absorptive losses. The former, which is independent of wave 
freQuency, depends on the vertical and horizontal variations 
in the elastic moduli and density of the rock layers. This 
so-called velocity structure can be determined from inde
pendent stUdies of the travel times and amplitudes of body 
waves and of the dispersion of surface waves. The latter is 
frequency dependent, and shows wide variation in different 
geologic regions for waves with periods less than 5 seconds 
(Nuttli, 1973bj Mitchell, 1975). The higher frequency waves 
in general are the most strongly absorbed. Thus as the epi
central distance increases the peak in the spectrum of the 
ground motion is shifted towards the lower frequencies, so 
that the seismic risk at large distances applies principally 
to taIlor long structures having natural periods of 
vibration of one or more seconds. 

Finally, soil conditions at the site can affect the 
ground motion there. The effect of a thick soil layer in 
general is to lower the acceleration values at the upper soli 
surface (compared to the values at its base), and to in
crease the velocities and displacements at the upper 
surface (Trifunac and Brady, 1975). Inasmuch as damage or 
seismic intensity values correlate better with ground ve
locity than with ground acceleration (Hudson, 1970; Nuttli, 
1973c), the effect of a thick soil layer is to increase the 
damaging ground motions. In addition, certain soils 
liquefy when subjected to vibratory motion, i.e. they take 
on some properties of a flUid. Seed (1970) cites examples 
of earthquake-induced ground vibrations producing compaction 
and associated settlement of cohesionless soil deposits. If 
these cohesionless materials are water saturated, then their 
compaction is accompanied by an increase in pore water 
pressure in the soil and a consequent movement of water from 
the voids, resulting in the eruption of sand, mud and water 
in the form of sandblows and mudboils. Sandblows, over an 
area about 150 km in length, were a common phenomenon of the 
New Madrid earthquakes of 1811 and 1812 (Fuller, 1912). 
Soil liquefaction on sloping grounds, which results in flow 
slides, was extensive in the 1811-1812 New Madrid earth
quakes, the 1920 Kansu PrOVince, China earthquake, the 1960 
Chile earthquake. the 1964 Alaska earthquake and the 1970 
Peru earthquake. 

STATF.-OF-THE-ART FOR SPECIFYING DESIGN EARTHQUAKE MOTION 

The simplest method of presenting design earthquake mo
tion is by means of a hazard map, such as that of Alger-



10 

missen (1969). Figure 3 shows his map for the United 
States. Zone 0 corresponds to no damage, zone 1 to minor 
damage with modified Merealli intensities of V and VI to be 
expected, zone 2 to moderate damage with intensity of VII 
and zone 3 to major damage with intensities of VIII and 

. greater. Alternately, using empirical relations, one can 
assign a maximum acceleration (or ground velocity) for each 
of the zones. Although the methodology is Simple, there are 
some practical problems that arise. First of all, the maxi
mum intensity or acceleration values jump discontinuously 
from one zone to another, whereas more realistically they 
should change smoothly. Secondly, the map gives no weight 
to the frequency of occurrence of earthquakes, so that 
regions such as Charleston, South Carolina which have ex
perienced just one damaging earthquake in historic times are 
placed in the same zone 3 as coastal California, which has 
experienced a number of damaging earthquakes. Thirdly, be
cause the map is developed mainly on the basis of historic 
activity, it does not show the places where future large 
earthquakes might occur but which have not yet experienced 
damaging earthquakes. Finally, as was pointed out previ
ously, a single maximum intensity or maximum acceleration 
value is inadequate for many design purposes. 

At the present time much work is being done to revise 
Algermissen's map in order to overcome some of its limita
tions, particularly the first two that were mentioned above, 
To overcome the third, separate maps of active fault systems 
in the United States are being prepared. Unfortunately, 
however, most of our knowledge of active fault systems is 
restricted to the western United states. 

There are several approaches that have been used to 
overcome the problem of how to design with just a peak magn~ 
tude value. One is to select an existing strong motion 
accelerogram made at a place with similar site conditions to 
those of the place under investigation and at about the same 
epicentral distance, and to scale it up or down by the ratio 
of the accelerations. This is a fairly good procedure if the 
regional geology and attenuative properties of the Earth are 
the same in the region under investigation as the place 
where the accelerograms are obtained. As with all methods 
which employ peak acceleration values, it suffers from the 
fact that large peak accelerations can arise from fortuitous 
constructive interference of several wave arrivals, so that 
the peak acceleration may be physically unrelated to the 
overall amplitude level of the accelerogram and to the de
structive potential of the ground motion. Once an accelero
gram is adopted, one can readily construct response spectra 
for various fractions of critical damping. 

A second approach is to construct an average set of 
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responsA spectra curves, based on accelerograms from a 
number of large earthquakes. The acceleration response 
spectral curves will approach a limiting value at small 
periods, independent of the amount of damping. In prac
tice these curves can then be scaled up or down by the ratio 
of the design peak acceleration to the zero-period accelera
tion limit for the standard curves, the assumption being 
that most peak accelerations occur at short periods. 

Instead of mapping the seismic hazard of a region, such 
as was done by Algermissen (1969), one can map the regions 
in which earthquakes of a given magnitude can be expected to 
occur. Figure 4 shows an example of such a map. Region A 
is the place where earthquakes as large as mb = 7.5 can be 
expected to occur, region B where earthquakes as large as mb 
= 6.5 can be expected to occur, and region C where earth
quakes as large as mb = 6.0 can be expected to occur. 
Accompanying this map is a table or set of curves, showing 
how the ground acceleration, velocity and displacement for 
several selected frequencies falloff with epicentral dis
tance. Figure 5 shows such a set of ground acceleration 
curves for an earthquake in region A. For the curves of 
Figure 5 Nuttli (1973a) preferred to use the sustained maxi
mum values of the ground motion rather than individual peak 
values, where the sustained maximum is the level attained 
for at least three cycles of the notion of a selected period. 
For a particular site one may have to make two sets of 
calculations of the sustained maximum motion, one for a 
nearby earthquake of smaller magnitude and one for a more 
distant earthquake of large magnitude. 

An alternate to using directly for design purposes the 
values taken from the curves of Figure 5 is to use the 
values from the curves to select and scale an existing strong 
motion accelerogram. After this is done one can compute 
response spectra, as described previously. 

Because the body-wave amplitudes decrease more rapidly 
with distance than the surface-wave amplitudes, one does not 
have to go too far from the epicenter before the surface
wave motion is dominant. No definite numerical value can be 
assigned to this critical distance, as it depends upon the 
size and depth of the earthquake and the length of faulting, 
as well as upon the frequency-dependent absorptive proper
ties of the transmitting medium. For the distances at which 
the surface-wave motion is dominant, one can construct a 
fairly adequate synthetic time history of the ground motion 
(acceleration, velocity or displacement) by calculating the 
motion produced by the surface waves alone. To do this one 
must assume a knowledge of the depth of the earthquake, of 
the orientation of the fault plane and the dislocation on it, 
of the velocity structure of the source and transmission 



NOTE: HATCHED LINES INDICATE 
BOUNDARIES ARE NOT PRECISELY ESTABLISHED 

Figure 4. Design earthquake zoning map of central United 
states, showing regions where earthquakes of a 
specified magnitude can be expected to occur 
(adapted from Nuttli, 1973a) 
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region, of the time history of the dislocation and of the 
size of the earthquake, expressed in terms of its seismic 
moment. Figure 6 is an example of the Love wave ground ve
locity and displacement, computed for earthquakes at focal 
depths of 2.5 p 9.5 and 19.5 km, for a central United States 
type geology and a seismic moment of 1024 dyne-em (about mb 
= 5.7). This motion represents the contribution of the 
fundamental and the first eight higher modes of Love waves, 
for wave periods of 1.5 to 400 sec, In order to include the 
contribution of shorter period waves one would have to in
clude many additional higher modes in the calculations, 
which would result in a formidable computing problem. 

Figure 7 shows the effect of change of focal depth on 
the spectra of the Love wave motion at a distance of 1000 
km. As the depth is decreased the short period level in
creases greatly, due to a stronger excitation of the 
fundamental-mode wave. At these short periods the funda
mental-mode waves damp out faster than the higher-mode 
waves, so in the near-field region the surface wave ampli
tudes vary even more greatly with focal depth. Thus, in the 
near-field region of a very shallow earthquake the funda
mental-mode surface waves will be destructive, even for 
earthquakes with mb as small as 4. 

Although the surface-wave motion can be adequately 
modeled by a point (in space and time) source for the pur
poses discussed above, this is not the case for the body
wave motion in the near-field region. Each jerk-like motion 
of the fault surface will correspond to a new source of body 
waves, acting according to no definite physical law. That 
is, there is no way in advance we can know what the time 
separation between je~ky breaks will be. Thus it is a much 
more difficult task to procuce realistic synthetic time 
histories of body-wave motion in the near-field region 
(where the body waves are potentially damaging) than it is 
for the surface-wave motion. In fact, the present state-of
the-art is such that adequate synthetic time histories of 
neither the body-wave nor the surface-wave near-field motion 
are available for predictive purposes. Thus we shall have 
to continue to rely principally on strong-motion records of 
actual earthquakes, and hope to build a sufficiently large 
collection that we can eventually describe a set of 
11 typical 11 near-field records. 

CONCLUSION 

The purpose of this paper has been to explain to structural 
engineers the kinds of design motion information that the 
seismologist can provide him, and to point out the limita
tions of such data and the assumptions made in arriving at 
them. Depending upon the cost, location and intended use 
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of the structure, the design parameters may be 8S simple as 
a single peak acceleration value to as complex as a synthe
tic time history of the ground acceleration, velocity and 
displacement. As the latter is beyond the present state-of
the-art for ground motions in the near-field region, seismol
ogists and earthquake engineers will have to extend their 
efforts to record the ground motion in such regions, to be 
able empirically to build up sets of typical time histories 
of the ground motion. 
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In conducting deterministic nonlinear dynamic response studies of a specific 
structure, it is essential to know what general type of accelerogram to use as 
input in order to obtain a good estimate of the expected maximum response with 
a limited number of analyses. Insofar as dynamic structural response is concerned, 
the major parameters characterizing the ground motion are intensity, duration 
and frequency content. The effects of intensity and duration on dynamic response 
have been studied by a number of investigators, However, little has been done 
to study the effect of the frequency characteristics of the input motion. This 
report presents the results of nonlinear dynamic analyses of isolated structural 
walls with hysteresis loops characterized by a stiffness that decreases with increas
ing amplitudes of inelastic deformation. A rough basis for classifying accelerograms 
in terms of their damped velocity spectra as I1broad band l1 and "peakingl1 is proposed. 
The results of the study indicate that when extensive yielding occurs in a structure, 
so that a significant change in the effective period of vibration results, a broad 
band accelerogram is likely to produce a more severe response compared to a 
peaking accelerogram of the same intensity and duration. On the other hand, 
when only minor yielding occurs so that no significant increase in the effective 
period results, a peaking record will more likely produce the more severe response. 

INTRODUCTION 

The economic provision of adequate stiffness, strength and deformation 
capacity in earthquake-resistant structures depends on a realisitic assessment 
of the maximum forces and deformations which are likely to occur during the 
expected life of the structure. For a particular site, wide variations in the char
acter of the free field motion can occur as a result of variations in the source 
location, mechanism, and the transmission path properties. This variation would 
be greater if the potential earthquake foci were widely separated. 

The variation in the character of the ground motion at a site indicates the 
desirability of considering a number of representative input motions when undertak
ing an analysis to determine the likely maximum response of a particular structure. 
However, where inelastic analyses (cons idered essential in a determination of 
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deformation requirements) are concerned, only a very limited number of such 
runs are possible in most cases. In recognition of this limitation, it was felt 
desirable to develop a means of classifying accelerograms into fairly broad categories 
according to certain basic properties, so that reasonably good estimates of the 
maximum response of structures to potential earthquakes could be obtained on 
the basis of a limited number of ana lyses. 

GROUND MOTION PARAMETERS 

Insofar as dynamic structural response is concerned, the principal ground 
motion parameters are intensity, duration, and frequency content. Intensity 
is used as a characteristic measure of the amplitude of the acceleration pulses 
in a record. Duration refers to the length of the record during which relatively 
large amplitude pulses occur, with due allowance for a reasonable build-up time. 
The frequency characteristics of a given ground motion have to do with the energy 
content of the different component waves making up the motion. 

Although the effects of intensity and duratiB:~ on dynamic structural response 
have been studied by a number of investigators, very little has been done 
to study the effect of the frequency characteristics of the input motion, particularly 
with respect to the objective mentioned above. 

This study presents the results of the dynamic nonlinear analyses of isolated 
structural walls with hysteresis loops characterized by a stiffness which decreases 
with increasing amplitudes of inelastic deformation. The study of the effect 
of the frequency characteristics of the input motion was undertaken primarily 
in an effort to narrow down the number of accelerograms which could be used 
in a parametric study while still providing a reasonable estimate of the maximum 
response under a likely combination of unfavorable conditions. 

Frequency Characteristics 
A typical strong-motion accelerogram shows an extremely complex series 

of oscillations. Any such record may be thought of as a superposition of simple, 
constant-amplitude waves each with a different frequency, amplitude and phase. 
The importance of knowing the frequency characteristics of a given input motion 
lies in the phenomenon of resonance or quasi-resonance, which occurs when 
the frequency of the exciting force or motion approaches the frequency of the 
structure. Near-maximum response to earthquake excitation can be expected 
if the dominant frequency components occur in the same frequency (or period) 
range as the dominant effective frequencies (or periods) of a structure. 

A convenient way of studying the frequency characteristics of an accelerogram 
is provided by the Fourier amplitude spectrum. This spectrum provides a frequency 
decomposition of the accelerogram, indicating the amplitude (in units of velocity -
a measure of the energy content) of the component at a particular frequency. 
Another commonly used measure of the frequency content of an accelerogram 
is the velocity response spectrum. This is a plot showing the variation of the 
maximum absolute value of the relative velocity of a linear single-degree-of- freedom 
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system with the undamped natural period (or frequency) when subjected to a 
particular input motion. Figure 1 (from Ref. 1) shows the relative velocity response 
spectra for the N-S component of the 1940 EI Centro record, for different values 
of the damping factor. The d~5red curve in Fig. 1 is the corresponding Fourier 
amplitude spectrum. Hudson has shown that when the maximum response 
of a system occurs at the end of a record, the undamped relative velocity response 
spectrum has a form identical to that of the Fourier amplitude spectrum of the 
ground acceleration. Otherwise, these two plots are only roughly similar. 
As in the Fourier spectrum, the peaks in the velocity response spectrum reflect 
concentrations of the input energy at or near the corresponding frequencies. 
For damped systems, these peaks are reduced, the reduction being greater for 
the shorter period systems. It is pointed out that the velocity response spectrum 
reflects the effects of the intensity and frequency content, but not necessarily 
the duration, of the input. 

Although both Fourier amplitude and undamped velocity response spectra 
exhibit a jagged character, with peaks and troughs occurring at close intervals, 
it is usually possible to recognize a general trend in the overall shape of the 
curve. By noting the general shape of the spectrum in the frequency range of 
interest, a characterization of the input motion in terms of frequency content 
can be made. Whi Ie thi s procedure represents a rather crude method for classifying 
accelerograms in terms of frequency content, it nevertheless provides a sufficient 
basis for determining the potential severity of a given input motion in relation 
to a specific structure. 

In this study, where a viscous damping coefficient of .05 of critical for 
the first mode was used as the basic value for the dynamic analysis model, the 
5% damped velocity response spectra corresponding to 10 seconds of a number 
of representative records were examined. Figure 2 shows the velocity response 
spectra for the N-S and E-W components of the 1940 EI Centro record (Imperial 

Velocity Response Sp.ctM> 

_____ Fourier Amplitude Spectrum 

Fig. 1 - Velocity response spectra - 1940 El Centro, 
N-S component (from Ref. 1 ) 
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Valley Earthquake, May 18, 1940). On the basis of this examination, two general 
categories were recognized, namely: 

(1) a "peaking" accelerogram with a spectrum exhibiting dominant frequencies 
over a well-defined period range. The N-S component of the 1940 
EI Centro record is an example of this class. 

(2) a "broad-band" accelerogram with a spectrum that remains more or 
less flat over the period range of interest. The vertical component 
of the 1940 EI Centro record may be classified under this category. 

A sub-class of the broad-band category is a record with a spectrum 
which increases with increasing period within the period range of 
interest. This may be referred to as a "broad-band ascending" accelero
gram. The E-W component of the 1940 EI Centro record is typical 
of this type of record. 

The above two cases are illustrated schematically in Fig. 3. 

For a linear structure, where the dynamic behavior is dominated by its 
fundamental mode (as in most reinforced concrete multistory buildings with structural 
walls), a strong response can be expected when the fundamental period falls 
within the peaking range of the input motion, i.e., within the period range where 
the dominant components of the input motion occur. Lesser response can be 
expected if the dominant period of the structure falls outside the peaking range. 

Duration 
Because of the significant computer cost involved in dynamic inelastic 

analysis, particularly for the coupled wall and frame-wall systems planned for 
the subsequent phases of this investigation, it was decided at the outset to use 
a duration of 10 seconds of the base excitation for most analyses. Only when 
studying the effect of dUY'ation on the response were 20-second records used. 

Intensity 
----:n;e best parameter to use as a characteristic measure of the amplitude 
of the acceleration pulses within the period range of interest has not been clearly 
established. Some investigators have chosen to normalize accelerograms on 
the basis of the peak acceleration. Others have chosen to normalize their input 
accelerograms in terms of the "spectrum intensity", i.e., the area under the 
relative velocity spectrum curve between bounding values of the period represent
ing the limits of the period range of interest. Still others have used the root
mean-square (rms) acceleration. 

If the intensity measure is to reflect the variation of acceleration amplitude 
over the period range of interest, the measure must have the character of an 
average. By this criterion, the peak acceleration is a poor measure. The spectrum 
intensity taken over the period range of interest, and using a reasonable damping 
value, shou Id yield a more representative measure of intensity. 



11
 ..

..
 

cO
 
.
.
 .m

o 
~ ~ z -

.. ....,
 

cO
 

a ~
 

~
~
.
l
O
l
 

.. =
 

IQ
 • .

(D
] 

1
9

4
0

 
E

l 
C

e
n

tr
o

, 
N

-S
 c

o
m

p
o

n
e
n

t 

v 
, 

. 
I 

I 

.. =
 

.. -
= 

U
II

oO
_1

lX
l 

~ z -
.. =

 
t ~
 c: >
"=

 

tl
.C

IX
I 

.-
W

I F
ig

. 
2 

-
,_

 
.a

 
,_

 
•
•
 

,_
 

,
~
 

.
~
 

ft:
.fn

O
O

 
IN

 
S
!
:
C
Q
~
O
S
 

0'
1,

 
D

a
m

p
in

g
 

~
 

1
9

4
0

 E
I 

C
e
n

tr
o

. 
E

-W
 c

o
m

p
o

n
e
n

t 

'"
" 

L
·e

oo
 

2.
0c

0 
f
·
~
O
O
 

'''
'' 

,ro
o 

, . .
"
 

P
E
R
1
~
L
J
 

IN
 

SE
O

::N
O

S 

V
e
lo

c
it

y
 r

e
sp

o
n

se
 s

p
e
c
tr

a
 c

o
rr

e
sp

o
n

d
in

g
 t

o
 

fi
rs

t 
1

0
 s

e
c
o

n
d

s 
o

f 
1

9
4

0
 E

1 
C

e
n

tr
o

 r
e
c
o

rd
 

••
 00

0 

'0
 

o 0
; >
 ~
 

t;
 .. 0
. 

!J
) 

In
ili

a
l 

fu
n

d
a

m
e

n
ta

l 
o

f 
lin

eo
r 

st
ru

ct
u

re
 

o
r 

m
ul

1i
pl

y 
-r

e
d

u
n

d
a

n
t 

fr
a

m
e

 
w

ith
 

lim
it

e
d

 
yi

el
di

ng
 

"P
IIO

l<
in

ll"
 .

p
e

c
lr

u
m

 

1.
...

.-
L

e
n

o
lh

e
n

e
d

 
pe

rio
d 

of
 

I 
fr

a
m

e
 

w
it

h
 

lim
it

e
d

 
yi

el
di

n'
1l

 
I 

P
er

io
d 

(0
 I 

P
eo

ki
n<

;l 
S

p
e

ct
ru

m
 

~
 

'u
 

.2
 

O
J >
 ~ U
 

II
I 

C
> 

en
 

P
eo

ki
nO

 
sp

ec
tr

um
 

w
it

h
 
so

m
e 

sp
e

ct
ru

m
 

in
te

n
si

ty
 

as
 

b
ro

o
d

-b
J
n

d
 

~
I
 -

-
/
/
"
 

~
 

,
-
-
/
 

/ 

.
/
 

" (B
rO

a
d

 -
bo

nd
 s

pe
ct

ru
m

 

~
T
 

"
J
 

I 

Le
ng

th
en

ed
 

I ..
.... 

"-

In
iti

a
l 

fu
n

d
a

m
e

n
ta

l 
p

e
ri

o
d

 
o

f 
is

o
la

te
d

 
w

al
l 

or
 

ot
he

r 
st

ru
ct

u
re

 
w

he
re

 
yi

el
di

n 
.. 

si
g

n
ifi

ca
n

tly
 c

ho
n<

;]e
s 

p
e

ri
o

d
 

p
e
r
i
O
d
~
1
 I 

P
e

ri
o

d
 

(b
) 

B
ro

o
d

 -
ba

nd
 

S
p

e
ct

ru
m

 

F
ig

. 
3 

T
y

p
ic

a
l 

sh
a
p

e
s 

o
f 

d
a
m

p
e
d

 r
e
sp

c
n

se
 s

p
e
c
tr

a
 

N
 

(
J
l 



T
a
b

le
 

1 

S
tr

u
c
tu

re
 

S
et

 
P

er
io

d
 

T
I 

(s
e
c
.)

 

• 
1._

 

b 
0.

' 

C
 

20
0 

S
u

m
m

ar
y

 o
f 

In
p

u
t 

M
ot

io
ns

 C
o

n
5

id
er

ed
 

in
 S

tu
d

y
 o

f 
F
r
e
q
u
~
n
c
y
 C

h
ar

ac
te

ri
st

ic
s 

F
re

q
u

e
n

c
y

 
'"

p
u

t 
M

ot
io

n 
C

h
a 

ra
c
te

rl
st

ic
s 

19
71

 
P

ac
oi

m
a 

D
am

 
P
~
a
k
l
n
g
 

(o
j 

S 
16

E
 c

o
m

p
o

n
en

t 

19
71

 H
o

li
d

ay
 I

n
n

, 
P

e
.k

in
g

 
(+

) 
O

ri
o

n
, 

E
-W

 c
om

po
 

A
rl

if
ic

ia
l 

A
cc

el
er

"9
ra

m
 

B
ro

ad
 b

an
d

 
S

I 

19
40

 E
I 

C
en

tr
o

, 
B

ro
ad

 b
an

d
. 

E
-I

V
 c

o
m

p
o

n
en

t 
a

sc
e

n
d

in
g

 

19
40

 E
I 

C
en

tr
o

, 
P

ea
k

in
g

 
(O

J 
N

-S
 c

o
m

p
o

n
en

t 

19
40

 E
I 

C
en

tr
o

, 
B

ro
a

d
 b

a
n

d
, 

[-
W

 c
o

m
p

o
n

e
n

t 
a

s
c
e

n
d

in
g

 

19
11

 H
o

li
d

ay
 t

m
l,

 
P

ea
k

in
g

 {
-I

 
O

ri
o

n
, 

E
-W

 c
om

po
 

19
40

 E
I 

C
en

tr
o

, 
B

ro
a
d

 b
a
n

d
, 

[-
W

 c
o

m
p

o
n

en
t 

lI
Is

c
e

n
d

in
g

 

In
te

n
si

ty
 

N
o

rm
al

tz
at

io
n

 
F

ac
to

r·
 

0
.5

9
 

3
. 2

2 

1
. 6

5 

1
.8

8
 

1
. S

O 

1
. 8

8 

3
.2

2
 

1
.8

8
 

• 
C

.l
c
u

l.
'e

d
 t

D
 y

ie
ld

 a
 5

\ 
d

am
p

ed
 s

p
ec

lr
u

m
 i

n
te

n
si

ty
 (

lo
r 

Ih
e 

ra
n

g
e 

0
.1

 t
o

 
3

.0
 s

e
c
.)

 e
q

u
.l

tD
 I

 ,
5

 t
im

es
 t

h
e 

5
\ 

d
am

p
ed

 5
p

ec
tr

u
m

 i
n

te
n

si
ty

 o
f 

th
e 

N
-S

 
co

m
p

o
n

lO
n

tD
lt

h
e 

1
9

Q
O

E
IC

en
tr

o
re

co
rd

, 
l.

e
.,

I.
S

 (
5

1
Ib

o
se

' 
In

 a
ll

 c
u

e
s,

 

o
n

ly
 t

h
e 

n
rl

t 
10

 I
-e

co
n

d
s 

o
f 
"
c
h

 .
c
c
e
le

ro
g

ra
m

 w
.a

$ 
c
o

n
si

d
e
re

d
. 

.:
~ ~
'
I
- ~ 

·"'1
 

'1
1'

W
"''

'''I
I"

n 
\I

lf
t.

lf
't

 
~-

M
 

A
 II 

H
lV

'r!
1r

i 
f\

li
.l

li
1

1
V

lI
l.

1
t 
fi

 
i"

 

1"- -~
. ~- 1-· L- 1-· -

0
 1~~'"

''"'l
M'\lI

'''f'
''I'I

I'R! 
Illt~

'IIIt
'II'I

~III~
'I~ 

_ 
til

 I
, 

U
 I

F
-

H
I 

1.
 

I
i
i
.
 

Jo
. 

• 
i 

\i
 1

 
i 

I 
• 

1-· _
.1

 

~-
-

1
-

.
_

 

Il
IO

I:
J.

(t
O

oo
O

I 

1
9

4
0

 E
I 

C
e
n

tr
o

, 
E

-W
 

x 
1

.8
8

 

1
9

4
0

 E
l 

C
e
n

tr
o

, 
N

·S
 

x 
I.

 S
O

 

1
9

7
1

 P
a
c
o

im
a
 D

a
m

, 
S

I6
E

 
x 

0
.5

9
4

 

1
9

7
1

 H
o

li
d

ay
 O

ri
o

n
, 

E
-

W
 

x 
3

.l
l 

A
rt

if
ic

ia
l 

A
c
c
e
le

ro
g

ra
m

. 
5

1
 

x 
1

.6
6

 

F
ig

. 
4 

-
T

e
n

-s
e
c
o

n
d

 d
u

ra
ti

o
n

 n
o

rm
a
li

z
e
d

 a
c
c
e
le

ro
g

ra
m

. 

N
 m
 



27 

DYNAMIC ANALYSIS OF ISOLATED STRUCTURAL WALLS 

In order to study the effect of the frequency characteristics of the input 
motion on the dynamic inelastic response of isolated reinforced concrete structural 
walls, and to confirm the qualitative observations made above, three separate 
sets of anat,)ses were made. The analyses were carried out using the program 
DRAIN-2D developed at the University of Califcrffjia, Berkeley, as modified 
to include the Takeda decreasing stiffness model. 

The three sets considered are listed in Table I. These sets correspond 
to structures with fundamental periods of 1.4,0.8 and 2.0 sec., respectively. 
All five of the accelerograms used were normalized to 1.5 times the 5%-damped 
spectrum intensity (SI) of the N-S component of the 1940 EI Centro record,* the 
normalization factors being listed in Table 1. The normalized accelerograms 
are shown in Fig. 4, and the corresponding 5%-damped velocity spectra are shown 
in Fig. 5. The entries in the fourth column of Table 1 indicate the classification 
of the accelerogram in terms of the general features of the velocity spectra relative 
to the initial fundamental period of the structure. Thus, a tlpeaking (+) n classifica
tion indicates that the peak in the velocity spectrum occurs at a period value 
greater than that of the fundamental period of the structure considered. A "broad 
band" classification refers to an accelerogram with a 5% damped velocity spectrum 
which remains more or less flat over a region extending from the fundamental 
period of the structure considered to at least 2 seconds greater. 

B fief Description of Structure 
The isolated structural wall considered in the analyses forms part of a 

hypothetical 20-story building consisting of a series of parallel walls, as shown 
in Fig. 6. The moment-rotation relationship for the wall is characterized by () 
a decrease in the reloading stiffness with increasing deformations beyond yield. 7 
The structure is described in more detail in Ref. 4. 

In an effort to cut down on the computer time requi red for each analysis 
without sacrificing accuracy in the results (the frequency content of the input 
motion being only one of the parameters considered in the overall investigation) , 
preliminary analyses were run to determine the possibility of using a model 
with a reduced number of lumped masses. Alternative "equiva lentil models with 
5, 8 and 12 lumped masses were tried and the results compared with those for 
the 20-mass model. On the basis of these studies, the 12-mass model shown 
in Fig. 7 was chosen for the parametric investigation. In order to obtain a reliable 
estimate of the deformation requirements in the hinging region near the base 
of the wall, the concentrated masses were spaced closer together (resulting in 
shorter elements) in the lower portion of the model. 

*In the following discussion, the 5%-damped spectrum intensity (51) of the first 10 
seconds of the N-S component of the 1940 EI Centro record, for the period range 
0.1 sec. to 3.0 sec., will be denoted by II (S1)b II (which has a value of 70.15 in). 

ase 
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DISCUSSION OF RESULTS 

(a) Fundamental Period of Structure, T ,= 1.4 sec., M = 500,000 in-kips 
Enve lopes of response va lues for the structure with peridd of 1 .4 sec. 

and yield level, M = 500,000 in-kips, are shown in Fig. 8. Figures 8a, b, 
and d indicate thafthe E-W component of the 1940 El Centro record, classified 
as "broad band ascending" with respect to frequency characteristics, produces 
relatively greater maximum displacements, interstory displacements and ductility 
requirements than the other three input motions considered. However, the same 
record produces the least va lue of the maximum horizontal shear, with the artificial 
accelerogram 51* producing the largest shear J as shown in Fig. Bc. Because 
all the structures yielded and the slope of the second, post-yield branch of the 
assumed moment-rotation curve is relatively flat, the moment envelopes for this 
case do not show any significant differences among the four input motions used. 

An idea of the variation with time of the flexural deformation at the base 
of the wall under each of the four input motions of set (a) in Table 1 is given 
by Fig. 9. This figure shows the normalized rotations of the node at story level 
"1", which represents the total rotation occurring in the first story. To plot 
the curves in Fig. 9, the rotations have in each case been divided by the absolute 
values of the corresponding rotation when first yielding occurred. The two 
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dashed lines on each side of the zero axis (at ordinates +1.0 and -1.0) thus represent 
the yield level for all cases. 

It is interesting to note in Fig. 9 that although the intense motion starts 
relatively early under the artificial accelerogram S 1, yielding first occurs under 
the 1940 EI Centro E-W motion. The magnitude of the rotation at the fi rst yielding 
cycle, however, is greater under both Sl and the Pacoima Dam S16E record, 
a "peaking (0)" accelerogram. The Holiday Inn, Orion Blvd. record, a "peaking 
(+)" accelerogram, as expected produced a much lower response during the 
first few seconds, since the velocity spectrum for this motion (see Fig. 5) peaks 
at a period greater than the initial fundamental period (T 1==1.4 sec.) of the structure. 
As the structure yields and the effective period increases, however, the response 
under this excitation increases gradually. 

It is Significant to note in Fig. 9 that as yielding progresses and the effective 
period increases, it is the "broad band ascending"type of accelerogram (in this 
case, the EI Centro E-W component) which excites the structure most severely, 
whi Ie response to the other types of accelerogram--and particularly the peaking 
accelerograms--tend to diminish. An indication of the change in fundamental 
period of a structure as the hinging (yielded, "softened l1

) region progresses 
from the first story upward is given by Fig. 10, for different values of the yield 
stiffness ratio. The figure is based on the properties of a structure with initial 
fundamental period, T 1 = 1.4 sec. 

* Generated using Program SIMQKE (Ref. 5) . 
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It is pointed out that since the structure goes through unloading and re
loading stages as it osci lIates in response to the ground motion (see Fig. 11), 
the general behavior reflects the effects of both the "elastic" or unloading stiffness, 
as well as its yield or reloading stiffness. The effect of each stiffness value 
will depend on the duration of the response under each stiffness value, and this 
in turn will depend on the character of the input motion. When yielding occurs 
early, and for the type of structure considered here in which the condition at 
the critical section (i .e., the base of the wall) determines to a large degree the 
response of the structure, it may be reasonable to assume that both elastic and 
yield stiffness play about equal roler in influencing the lI effective period" of 
the structure. In the Takeda model 8 of the hysteretic loop, the initial portions 
of the reloading branches of the moment-rotation loops (see Fig. 11) wi 1/ have 
stiffness values intermediate between the initial elastic and the yield stiffness 
of the primary curve. 

(b) Fundamental Period of Structure, T =O.8sec., M = 1,500,000 in-kips 
To study the effects of frequency characleristics for th~ case of short-period 

structures with relatively high yield levels, a "peaking (0)" accelerogram (N-S 
component of the 1940 EI Centro) and a "broad band ascending" type (E-W component 
of the 1940 El Centro) were considered. 

Figure 12, which shows response envelopes for this case, indicates that 
the peaking accelerogram consistently produces a greater response in the structure 
than a broad band record. It will be noted from a comparison of Fig. 12d and 
Fig. 8d that the ducti lity requi rements are not only significantly less for th is 
structure with a high yield level, but that yielding has not progressed as high 
up the structure as in the case of the structure considered under (a), with period 
T = 1.4 sec. and a low yield level. For the type of structure considered here, 
where the displacements of the lower stories are generally in phase (fundamental 
mode predominating) , the magnitude of the ducti lity requirements at the base 
of the wall is a direct function of the extent to which yielding has progressed 
up the height of the wall. 

The greater response of the structure under the N-s component of the 
1940 E I Centro (peaking) follows from the fact that the dominant frequency components 
for this motion occur in the vicinity of the period of the structure (and also around 
2.75 sec., see Fig. 5). In this region the E-W component has relatively [ow-power 
components. Also, because of the high yield level of the structure, yielding 
was not extensive, particularly under the E-W component and apparently did 
not cause the period of the yielded structure to shift into the range where the 
higher powered components of the E -W motion occu r. On the other hand, under 
the N-s component of 1940 EI Centro, Fig. 12d indicates yielding to have progressed 
up to the 4th story level, as against the 2nd story level under the E-W component. 
The greater extent of this yielding, and the accompanying increase in the effective 
period of the structure, could easily have put the structure within the next peaking 
range of the input motion. 
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(c) Fundamental Period of Structure, T,= 2.0 sec., M = 500,000 in-kips 
For this structure, the peaking accelerogram used wa~ the E-W component 

of the record taken at the first floor of the Holiday Inn on Orion Boulevard, Los 
Angeles, duri ng the 1971 San Fernando earthquake. The record has a 5% -damped 
velocity spectrum that actually peaks at about 1.75 sec. and may thus be classified 
as a "peaking (-)" accelerogram relative to the structure considered. The other 
input motion considered is the E-W component of the 1940 EI Centro record ("broad 
band ascending") . 

The response envelopes of Fig. 13 indicate, as in case (a), that where 
yielding is significant, the horizontal and interstory displacements, as well 
as the ducti lity requi rements near the base are greater for the broad band accelero
gram than for the peaking motion. Also, as in case Ca), the extensive yielding 
which occurs near the base results in a reduction of the lateral inertial forces 
or shears. Thus, Fig. 13c, like Fig. 8d, shows the maximum shears corresponding 
to the E-W component of the 1940 EI Centro to be less than those for the other 
input motions. 

SUMMARY AND CONCLUSIONS 

The results presented above indicate that the frequency content of the 
input motion can significantly affect the dynamic response of isolated walls. 
By classifying accelerograms in terms of their 5%-damped velocity response spectra 
as IIpeaking" or "broad band", a clear relationship was noted between the frequency 
characteristics of the input motion and the dynamic response of yielding structures. 

Specifically, it was noted that where significant yielding can be expected 
in a structure, i.e., yielding which would appreciably lengthen the effective 
period of vibration, an input motion with a velocity spectrum of the "broad-band 
ascending" type is likely to produce more severe deformations than other types 
of motion of the same intensity and duration. For cases where only nominal 
yielding is expected so that the effective period of vibration is not significantly 
changed, "peaking" type accelerograms tend to produce more severe deformations. 
Since the extent of yielding is a fundion of both the earthquake intensity and 
the yield level of the structure, as well as the frequency characteristics of the 
input motion, these factors must be considered in selecting an input motion for 
a given structure for the purpose of producing near-maximum response. The 
above observations are important when it is desired to undertake a limited number 
of analyses for the purpose of determining near-maximum response for use in 
design. 

It is recognized that considerations of the probable epicentral distance 
and geology which affect the frequency content of the ground motion at a site 
may logically rule out the possibility of dominant frequency components occurring 
in certain frequency ranges. Thus, because the high frequency components 
in seismic waves tend to be attentuated more rapidly, with distance than the low 
frequency components, it might be reasonable to expect that beyond certain distances, 
depending on the geology, most of the high frequency components from a given 
source would be damped out so that only the low frequency (long-period) components 
need be reckoned with. 
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SUMMARY 

The San Fernando earthquake of February 9, 1971 has demonstrated that 
bridges located in high risk seismic zones and which were designed in ac
cordance to the then prevailing AASHO design criteria may not possess ade
quate seismic resistance. This narrative describes an effort which was 
undertaken to develop a set of practical retrofit measures that can be em
ployed on existing bridges so as to reduce damage and minimize the threat 
to life should an earthquake occur. The process leading to the identifica
tion of potential bridge weaknesses, selection of retrofit measure and 
verification of its adequacy is illustrated using two analysis procedures 
i.e., a detailed analysis method and a simplified one. 

INTRODUCTION 

The San Fernando earthquake of February 9, 1971 caused considerable damage 
to highway bridges. A report (Ref. 1) on the postearthquake damage sus
tained, recommended that existing bridges in earthquake prone areas be re
examined to determine their seismic resistance, and if not adequate, be 
modified to at least prevent collapse in the event of a strong seismic 
loading. 

The study described in this narrative (Ref. 3) was motivated as a result of 
the extensive damage sustained by bridges during the 1971 San Fernando 
earthquake. Its purpose was to develop a set of practical retrofit mea
sures that can be employed on existing bridges so as to reduce damage and 
Dinimize the threat to life should an earthquake occur. 

The study emphasized conventional steel and reinforced concrete highway 
bridges. Seven bridges were selected from potent~ally active seismic zones 
of this country, and formed the basis of the study. Each bridge was first 
analyzed in its "as built" condition to determine if a problem existed. 
Those which responded in a failure mode were appropriately "modified" to 
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reflect a retrofit and were then reanalyzed to determine the adequacy of the 
particular retrofit. 

Observed failure modes for conventional bridge structures subjected to sies
mic loading can be grouped into two categories; i.e., substructure failures 
(pier or abutment) and hence loss of support capacity, and superstructure 
collapse due to excessive relative motion at support bearings. Both types 
of failure occurred during the San Fernando earthquake and both were con
sidered in Ref. 3. Structural failure and damage to bridges may also be 
caused by inadequate foundation strength or load-bearing degradation during 
the course of seismic loading. Soil liquefaction is an example of this 
failure mode. It was not specifically considered in Ref. 3 since the prob
lem is one of bridge foundation material rather than of the bridge structure 
itself. 

The following five bridge retrofit concept categories were identified and 
several concepts were developed for each. 

• Superstructure horizontal motion restrainers for hinges, 
expansion joints, bearings, etc. 

• Bearing support restrainers - vertical 

• Bearing area widening techniques 

• Column (pier) strengthening 

• Footing strengthening 

Specific retrofit concepts produced were selected based on feasibility and 
practicality. 

Before taking any steps to retrofit an existing bridge, it is necessary to 
decide (a) whether the bridge actually needs retrofitting, and (b) if it 
does, what type or types of retrofit measures to employ. For a retrofit 
measure to be cost-effective it must be both practical and economically fea
sible to employ. In the context of this study the purpose of a given retro
fit measure is to minimize damage so that the bridge can remain in at least 
emergency use, rather than to eliminate it entirely. 

To satisfactorily answer question (a), a structural, s~ismic analysis of the 
subject bridge needs to be performed. First there should be a simplified 
structural analysis which adequately considers the principal modes of bridge 
response when subjected to the probable, site dependent seismic loading. 
Should the results prove marginal as far as probable failure is concerned, 
then a more detailed structural analysis may be necessary to reach a deci
sion. If the analysis (simplified or detailed) indicates that some type of 
failure (extensive enough so that the bridge could not remain in even emer
gency use) will occur, the retrofit measure(s) to be employed should be 
based on the mode and extent of failure. It is important to consider that 
strengthening a component which is susceptible to a particular mode of sies
mic damage may actually lead to a different mode of failure, or possibly to 
failure of another component. 

Once the retrofit measure has been chosen, its effectiveness in minimizing 
damage should be investigated using an appropriate structural analysis 
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procedure. The process leading to the selection of adequate retrofit con
C'yts is an iterative one. 

It is important to emphasize that seismic and structural considerations are 
not the only ones that need to be considered in the overall bridge retrofit 
decision process. A partial list of other decision factors entering the 
process is given . 

• The importance of the bridge to the given locality based on 
the type of highway, traffic volume and accessibility of 
other crossings . 

• Replacement or repair costs based on estimated damage includ
ing lost time. 

BRIDGE RETROFIT MEASURES 

A retrofit measure is any means of increasing the seismic resistance of an 
existing bridge. It is likely that there are many possibilities; the prob
lem is to find those which are cost-effective. A brief summary of some 
retrofit measures that should be considered for bridges in high risk seis
mic zones: 

(a) Restricting longitudinal, vertical, and lateral relative 
displacements of the superstructure at expansion joints, 
bearing seats, etc., by means of cables, tie bars, shear 
keys, extra anchor bolts, metal stoppers, etc. 

(b) Restricting rigid body motion of the superstructure by 
connecting (e.g., with high strength steel cables) to a 
supporting or an adjacent foundation or pier cap, enlarge
ment of bearing areas, stoppers at edges of bearing areas, 
etc. 

(c) Reducing induced vibrations by installation of energy ad
sorbing devices such as elastomeric bearing pads at bearing 
seats, or adaptation of the new Japanese "shock absorber" 
type of damper which allows slow movement, such as displace
ment due to creep, shrinkage, and temperature change with 
negligible resistance, but develops a large resistance in 
the case of a rapid displacement; i.e., high velocity, such 
as can be caused by an earthquake (Ref. 4). 

Cd) Strengthening of supporting structures: As a specific ex
ample, increasing the strength of an existing column by 
adding longitudinal and spiral reinforcement to the exterior 
of the column and then bonding the added reinforcement with 
a new layer of high strength concrete using pressure grout
ing procedures and/or gunite. The additional longitudinal 
reinforcement could also be extended into the cap and the 
footing thus increasing the flexural strength of the column
to-cap and column-to-footing connections (Fig. 1). 
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BRIDGE ANALYSIS, RESULTS AND RETROFIT MEASURES EMPLOYED 

The bridge chosen for illustration is the Bahia Overcrossing, Bridge Number 
23-161, near Benecia, California (Fig. 2). It is a two-span continuous 
reinforced concrete box girder, built-in at the abutments, with a single 
column reinforced concrete bent, (3 ft by 8 ft) cross section, as the inter
mediate support. The abutments are founded on a single row of piles with 
sufficient flexibility to minimize stresses from thermal movement. The 
intermediate support is founded on a spread footing with piles. The soil 
of the bridge site consists, primarily, of loose to dense dark brown silt 
with some fine to coarse sand and gravel. This bridge was first analyzed 
using a nonlinear dynamic analysis method and was subsequently analyzed 
using a simplified procedure. Details of the two analysis techniques are 
given in Ref. 3. 

For the detailed method, the bridge is modeled as a space frame (Fig. 3), 
and subjected to a hypothetical earthquake in the form of ground surface 
displacement time histories (Fig. 4) based on a statistical evaluation 
of the seismicity of the site. The bridge is first analyzed as built to 
determine: whether retrofitting is necessary, and if so, to define the 
failed component(s). The candidate retrofit measureCs) is then incorpo
rated into the bridge model and the analysis performed again. 

Nonlinear Dynamic Analysis 

Figure 5 is a moment-time history resulting from the application of the ver
tical and horizontal (in the longitudinal direction) seismic ground motions. 
By comparing the dynamic response with the ultimate moment it is observed 
that the bending moment at the top of the column, approaches and exceeds 
the ultimate value for a duration of approximately 16 seconds correlating 
with the period of strongest vertical and horizontal motion. 

The nonlinear analysis demonstrates that at least one area of the bridge 
should be considered for retrofitting. The area most vulnerable to damage 
is the top portion of the column. An obvious retrofit possibility is to 
strengthen the column using the method illustrated in Fig. 1. Figure 6 
shows the bending moment variation at the top of the retrofitted column. 
The largest magnitude attained is 88 percent of the computed ultimate bend
ing moment for the retrofitted column. The addition of the longitudinal 
reinforcing bars and concrete to the exterior of the column causes an in
crease in the maximum bending moment experienced by the' column during the 
seismic loading. The ratio of the moment for the retrofitted case to the 
unretrofitted is 1.19. At the same time, the retrofit leads to a 61 percent 
increase in the ultimate moment. 

Simplified Analysis 

For the simplified analysis method, the predominant mode for a given bridge 
is assumed to be horizontal and can be resolved into two orthogonal direc
tions, longitudinal and lateral. If the lateral restoring force or resis
tance of the structure is considerably larger than that in the longitudinal 
direction, then the lateral response does not govern and can be ignored. 
Vertical vibrations are also important for some bridges and for piers rig
idly connected to the girders. An approximate consideration of such vibra
tion is shown in this example. 
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The following assumptions are made for the simplified analysis concerning 
structural ideqlization. 

(1) Rollers and expansion joints are considered to be fric
tionless, 

(2) Expansion joints are assumed capable of transmitting 
longitudinal forces only if longitudinal ties are pro
vided through the joint. 

(3) Skewed bridges are analyzed as if they were unskewed. 
(i.e., the longitudinal stiffness is assumed to be per

•. pendicular to the skewed piers). 

(4) Horizontally curved bridges are analyzed by converting 
the structural properties into the chord line direction 
(which is nominally referred to as the longitudinal direc
tion) and perpendicular to the chord (lateral) direction. 

For the analysis of a particular element of a curved bridge, 
the longitudinal and lateral earthquake loading (accelera
tions) are individually resolved into the principal direc
tions (parallel and perpendicular) of the element. Since 
the seismic motion can act in both the positive and negative 
directions, the absolute values of these results are added 
vectorially to obtain the appropriate element loads. 
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Each bridge is idealized separately in the longitudinal and lateral direc
tions as single degree of freedom systems. This is done by determining an 
equivalent mass and spring stiffness for the bridge in each of the two direc
tions by combining the individual stiffness from the various contributing 
bridge components. 

It is assumed that failure will not occur if the analysis indicates that the 
followiag overloading and/or yielding conditions will occur. 

(1) A plastic hinge occurring at the bottom of a pier that is 
fixed at the top as long as the pier is not an isolated one 
between expansion joints. 

(2) The bending moment for a reinforced concrete pier (based on 
the elastic response spectrum seismic loading) does not ex
ceed three times the ultimate moment of the section. This 
is based on the fact that the seismic acceleration will be 
reduced by a factor of l/~ where ~ is the ductility 
factor. For reinforced concrete, a value of ~ = 5 is com
monly used. 

(3) If, due to vertical vibrations, a plastic hinge forms at the 
top of a pier which is monolithic with the superstructure and 
the pier is framed into a transverse superstructure diaphragm. 
Failure will not occur as long as no plastic hinge develops 
at the bottom of the pier. 

It is assumed that the bridge will fail if the analysis indicates that any 
of the following conditions will occur. 
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(1) The anchor bolts of fixed bearings fail by shear. 

(2) A plastic hinge is formed at the bottom of 
hinged at the top if no additional lateral 
vided by the adjacent piers or abutment. 

a pier that is 
stability is pro-

(3) Piles are subjected to excessive lateral forces which create 
large horizontal displacements of the structure. Vertical 
piles in good soil subjected to more than 15 kips (each) 
lateral force are considered to be excessive. Clay is consid
ered as a poor soil for providing lateral resistance for piles. 

(4) Slip-out of pins in hinge connections or bearings due to ex
cessive horizontal or vertical relative motion. 

The simplified analysis technique is demonstrated by application to the as 
built Benecia bridge (see Fig. 7). Some selected results are compared with 
the nonlinear analysis discussed previously. 

KA 
KF 
KA9 
~9 
(El)B 

(El) P 

AB 
MB 

~---- 21 = 1032" ------;:iI""loII!"O!,-----
Beam Elements 

B 

h = 324" 

8.49 x 10 6 1b/in. 

11. 60 x 106 1b/in. 

l. 55 x 10 9 1b-in. /radian 

63.80 x 10 9 Ib-in. /radian 

(3 x 106 ) (5 .48 x 106 ) Ib- in~ 
6 5 (4. 73 x 10 ) (3. 73 x 10 ) Ib -in~ 

in~. Ap = 3456 2 7708 in. 

1. 80 Ib-sec2/in~ 

2 = I224'1-I---~~ 
2 

Fig. 7 Simplified Analysis Model of Benecia Bridge 

Vertical Response Analysis: The stiffness of span 2 for rotation about the 
lateral axis of the bridge (Y) is 4EIB/l2 = 5.35 x 1010 lb/inch/radian. 
This is nearly 30 times the stiffness of the abutment (KAe ) thus the struc
ture can be assumed to be hinged at the abutments. For the bent, the com
parable rotational stiffness is Kpg = 4KIg /h = 2.18 x 1010 lb-inch/radian. 
Since the pier foundation rotational stiffness (KF9 ) is nearly three times 
as stiff, the base of the pier will be assumed as fixed. 
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The length of the spans is approximately the same, and it can be assumed 
that the spans will vibrate approximately as simple beams for the determina
tion of their natural frequency for vertical response. For span 2, the fre
quency of vertical vibration is 

F 

3.17 cps 

From Fig. 8 for a maximum vertical ground acceleration of 1.0 g a peak ac
celeration of 4.2 g is obtained for a structure with this frequency. For 
the 0.26 g maximum vertical ground acceleration predicted for the bridge 
site, the vertical seismic forces are derived from an equivalent accelera
tion of a z ~ (0.26) x (4.2) ~ 1.09 g. From this acceleration, the midspan 
moment from the vertical seismic load is estimated as M2 = (1 - 0.2)aZmBi~/ 
8 ~ 0.114 x 109 inch-lbs. The continuity factor (1 - O.Z) indicates that 
the bending moment at the pier (MBC) is 0.4 times the simple beam moment for 
purposes of estimating the midspan moment for vertical seismic loading. Add
ing the static bending moment of 0.077 x 109 Ib-inch results in a total mo
ment of 0.191 x 109 Ib-inch. This is less than 9 percent higher than the 
peak value obtained from the ~onlinear dynamic analysis. 

The rotation (G B) at the top of the pier can be computed based on the above 
variation in the bending moment for the vertical seismic load. That is, 
the moment variation resulting from a uniform vertical seismic load of 1.09 
times the superstructure dead load with zero moment at the right abutment 
and a value of MBC at the pier. The result is 8 = 0.75NZi Z/(3EIB) = 0.00212 
radian. With this rotation at the top of the pier and zero rotation at the 
bottom (fixed) the bending moment at the top is MBD ; Kpg (8) = 46.0 x 106 

Ib-inch. The moment at the bottom of the pier is of opposite sign and 
one-half this magnitude. The shear reSUlting from this distribution of 
moments is Hp = 1.5MBD/ h ~ 21.3 x 104 Ibs. Assuming a linear variation in 
tt1e moment at the center of the top and bottom elements of the pier are 
Ntop = 37.4 x 106 and t(ot = 14.4 x 106 Ib-inch. These will be modified 
by the moments from the longitudinal loading before comparing the results 
with the nonlinear dynamic analysis. 

Longitudinal Response Analysis: The important stiffness parameters for 
longitudinal seismic load calculations are: 

Abutments (each): KA 8.49 x 106 Ib/inch 

Span 1: EAB/il 22.4 x 106 lb/inch 

Span 2: EAB/£2 18.9 x 10
6 Ib/inch 

Pier: 3Elp/h
3 

= 0.163 x 106 Ib/inch 

The combined stiffness CKX) is obtained from 

Kx (l/KA + l/Kl)-l + Cl/Kp + l/KF)-l + (l/KA + 1/K2)-1 

12.14 x 106 Ib/inch 
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The weight of the superstructure WB ~ 1.57 x 106 Ib and the equivalent weight 
of the pier (which is approximately one-fourth the weight of the pier) is 
WPe = 24,000 Ibs. The combined mass of the structure for longitudinal sies
mic response is M = (WB + Wpe)/g = 4,130 Ib-sec2/inch. With th;;e param
eters (KX and M) the effective frequency is determined from f = KX/M/(2n) 
8.65 cps. 

Ft"om Fig. 8 for a maximum longitudinal ground acceleration of 1. 0 g a peak 
acceleration of 3.7 g is obtained. For the 0.32 g maximum horizontal ground 
acceleration predicted for the bridge site, the seismic longitudinal forces 
are derived from an equivalent acceleration of ax = 0.32 (3.7) = 1.18 g . 
The total longitudinal force (H) for the structure is ax times the combined 
mass (M) above, there results H = 1.89 x 106 Ibs. Assuming that this force 
is distrit' 'ted in proportion to the longitudinal stiffnesses of the compo
ne'lL elements of the bridge, the shear force in the pier is Hp = H (Kp/KX) 
24,200 Ibs. This shear force causes moments at the center of the top and 
bottom elements of the pier of M~op = 1.0 x 106 Ib-inch and M~ot = 6.9 x 
'f)6 Ib-inch. 

ined Vertical and Longitudinal Seismic Results: Adding the pier shears 
,. , the vertical and horizontal analyses yields H = (21.3 + 2.42) x 104 = 

'2 x 104 Ibs. This compares almost exactly with the dynamic response 
,'Jsis value of 23.4 x 104 lbs. In a similar manner, the combined bend
~oment at the center of the top and bottom elements of the pier are 

= 38.4 x 106 and M~ = 21.3 x 106 Ib-inch. These also compare quite 
':ably with the dynamcr.E analysis peak values of 36.4 x 106 and 27.5 x 106 

'ctively. 

CONCLUSIONS 

Fro- the observations made during this research program, the following con
.Llsions can be made. 

(1) Bridges that are located in high risk seismic zones that were 
designed for earthquake loading according to the AASHO Design 
Criteria may suffer substantial structural damage, and in 
some cases collapse can be anticipated. This conclusion is 
based on analyses performed on several bridges in Ref. 3. 
Each bridge was subjected to a predicted seismic load of the 
highest severity that would occur during the life of the 
bridze. 

(2) A similar conclusion to the above is made for structures 
located in highly active seismic regions that were designed 
for more stringent earthquake loads than the AASHO code. 

(3) The current seismic design criteria for bridges and the 
methods of analysis for this loading are in a state of flux. 
This conclusion is based on two observations: 

• seismic design criteria have changed drastically in the 
last decade for both buildings and bridge structures 
built in regions where the earthquake risk is high; and 



50 

o comprehensive methods of dynamic structural analysis 
have not been used, to the extent required, to develop 
a rational system of simplified seismic design loading 
conditions for various bridge structures. 

For example, the influence of the soil material at the 
bridge site and the vertical earthquake motions are not 
included in design codes; but, they are potentially impor
tant factors in the specification of seismic bridge loads. 

(4) The simplified method of analysis used in this project for 
the seismic analysis of bridges is a potentially adequate 
tool for deciding what type of retrofit is required, if any. 
At some time in the future when additional comprehensive 
numerical studies are available, the simplified analysis 
should be reviewed and compared with these new results for 
possible modifications to the method. 
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It is assumed that compressive deformation of the ground 
are elastic-plastic and the ground Cannot act under tension. 
Basing on these assumptions, there was aeveloped a non-linear 
calculation model of the large-panel building base under 
rocking vacillations. Good corroboration of the calculation 
model was obtained in the vibration tests of 1/4 life size 
model of the 10-storey building erected on the ground base. 
Principal dynamic propertis and seismic response of buildings 
on the non-linear ground base are Qealt with in this paper. 

INTRODUCTION 

It is known that the base deformability bears an 
important effect up on the performance of the large-panel 
building under vibrations. For example, displacement caused 
by rocking vacillations of the 8-9-storey large-panel building 
amounts to so per cent complete upper floor displacement by 
small vibrations [2]. 

It is natural to assume that the non-linear response of 
the building has to an even greater degree to depend on the 
non-linear response of bases. According to the data of high
capacity vibration tests the stiffness of bases can be 
considerably reduced as the intensity of vibrations inreases. 
The authors often elicitated this dependence by the vibration 
tests of buildings and models [2}. 

In contras~ to non-linear structural stiffness that of 
the base comes back almost completely after vibra~lng nas 
been stopped. 

However, the non-linear processes tak~ng place in the 
ground base of the building under heary vibrations and theiz 
in:t"luence on the dynamic behaviour of system I1building-ground" 
has not been stUdied asyet. 

THEORETICAL RESEARCH 

It is very important to take into account the fact that 
the non-linear Qeformations of the ground take place even 
under small strains and the residual deformations are 
considerable. 
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The common stress-stroin relation i·or the ground under 
compression is shown in Fig 1 [1J. 

However, this diagram is normally used for calculating 
centrally loaded foundations which are not taken off base. 

The displacement caused by rocking of the building like rigid 
massif on the ground accounts for a large part of complete 
vibration aisplacement. 'l'he breaking of contact between the 
foundation part and the ground can take place in the large
panel multistorey building under roking of this type. 

It will be convenient in the following analysis to 
accept the calculation scheme of vacillating building as an 
absolutely rigid massif and to add the diagram of the ground 
deformation column to horisontal section 3-4-3- This part of 
the diagram shows an arbitrary motion of the foundation part 
when breaking contact (Fig.i). 

The above assumption that the building is an absolutely 
rigid massif allows for simplifying the problem of the pure 
dei'ormaiJion of ground base. 'Ithe vibrations of designed model 
can be written in the form of an equation: 

in which 

p(t.) 
m~ 

~ - angle of foundation rotation, 

!,~ - coefficient of resistance, and natural frequency of 
linear Vibrations, 

M(lP)- non-linear force characteristics of thel base t 

nl) ~- building mass reduced to the point of applying the 
external load, and building height, 

P(t) - external load: vibrational Pcx..2sinclt or seismic 

The complete diagram of elementary ground. column in 
mathematic terms is the following relation: 

Pl=CL~li-dL 
Coefficients CL, cil depend on the seQuence of loadings. 

Force characteristics M(~)can be found from the equilibrium 
equation· 

{M - II l\Utl--i) i- AE 2l. [(Ci ~l +d.iJ(L--i)J =0 
IV 2.. L "'I 

N - &E!l (CL~l +dl) =0. 
l ~1 

(2 ) 
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02. ( 52 S4_ - S ) 
+-~l" 53 5") 

l _ f.J + Lf f,.[25 2 - ~t 5'4 
~ eE5 t - A e s 3 

~ L = ~ ~dt - LP A U L - 1), 

$ =~C[(L-1)2J S2=~CL(l--1)) 
1 L"'\ L=I 

where 

n 'rL rt-d l ' A) 
S 3 :=: L C l S -4 = 2-L. ~ ,ci;. I S 5 = -f;l l , L --, 

L~I' -

Taking into account (3), the motion e~uation (1) can be 
integrated. by numerical melJhod, for example, by modified 
Runge-Cutt's method. Tbe procedure of numerical methoa 
corresponds to successive loading of the systeme 

To calculate the above syslJem under vibrationa~ or 
seismic effects, the programe for the computer has been 
elaborated. This programe can be too usea for calculating 
system under static alternating loau. In lJhis case, the pro
cedure of step by step method is the same as the above, but 
the integration of equalJion <. 'i) is substituted with the 
following calculation: 

( n.-.-1 52-) e2.(SZSLI -S5) 
M - N 11 ~ 2- - S 3> - D, S..3 

~= ~ (LJ) 
~e2>(s1 - 5Sb ) 

THE PECULIARITI~S OF NON-DINEAR BASE DNFORMATluN8 
UNDER VIBRATIONS 

Results of calculations show that partial breaking of 
contact between the foundation and the base exerts the 
greatest influence on the base respouse (Fig.2). 

If the ground deformations are elastiC, 1Jhe basB stiffues 
cc,m bE;! decreased.in 2.5 'timet;) when e'O-z..= O,5L(Fi~o3). The 
p~ast~c deformat~ons enlarge the ang~e of foundat~on rotation 
and reduce the stiffuess in additiun (Fig. 2,3). Tile plastic 
condensation of ~he ground en~arges the breaking area of the 
foundation under rocking vibratiuns as shown in Fig.j. 

At the same time, the forms of hysteresls loops, angle 
rotations, resonance curve and smail value of absorplJion 
coelficient testifies to the insignificant display of plastic 
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properties of ground. For the system with single-side ties 
that insignii'icant display is caused by a sharp decrease in 
the area of hysteresis loop (to compa.re Fig. i-l-a and 4b). The 
non-linear-elastic nature of building vibrations under 
vibration tests is too explained by this facto 

EXPERIMENTAL STUDY OF NON-LINEAR BASE DEFORMATIONS 

To verify the calculation scheme there weve made the 
vibration tests of 10-storey bUllding model. Ine seale of the 
model was 1/4. The model was erected on the groUIld. The tests 
were carried out by means of vibration generators which were 
pla.ced on the upper floor. In these tests displacement of the 
foundation as related to the ground was specially measured. 
The 4,5 rom crack after breaking the contact was reached (~C~) 
as well as the 1,5 mm chink by ground condensation (Ac0 -
(Fig. 3,6). The relations hip M(\.f) (Flg 2) values of crack 
form of resonance curves and the line well confirm the 
theoretical values. 

Therefore the a"bove calculation scheme ma.y be used for 
calculating actual buildings. 

THE ANALYSIS THE BASE NON-LINEAR DEFORMATION EFFEKT UPON 
VIBRATIONS AND SEISMIC RESPOl'mE OF A 8-STOREYS LARGE

PANEL BUILSING IN AL~-ATA 

The building bases upon boulder bed. Dimensions of 
~oundation slab are 34,6 x 16,1 x 0,5 m. 

For this building the non-linear proces8es noted above 
lead to the 2-3 times decrease in the bases stiffness. If the 
well confirm the theoretical values. Therefore the above 
calculation scheme may be u~ed for calculating actual 
buildings. 

THE ANALYSIS THE BASE NON-LI~~AR DEFORrJATION EFFECT UPON 
VIBRATIONS AND SEISMIC RESPONSE uF A 8-STOREYS LARGE

PANEL BUILDING IN AL\~-ATA 

The building bases upon boulder bed. Dimensions of 
foundation slab are 34,6x16,1xO,5 m. 

For this building the non-linear processes noted above 
lead to the 2-3 times decrease in the bases stiffness. If the 
deformations of the structure is not taken into account, the 
natural frequency is decreased 1.4-1.75 times, and it is 
decreased 1,25-1.5 times if the elastic dei'ormations of the 
structure are considered. (Fig.7). Hence the impulsive load 
is approximately twice decreased deformations of the structure 
is not taben into account, the natural frequeney is decreased 
1,4-1,75 times, and it is decreased "1,25-1,5 times if the 
elastic deformations of the structure are considered (Fig.7). 
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Hence, the impulsive load is approximately twice decreased. 

But it is necessary to take into account that the about 
2 times reduction of the contact area corresponds to the 
above decrease of the load (Fig.2). This makes the conditions 
of ground strength worse. 

There was made the calculation of the building base 
under accelerogram of Hollister, 1949 [5J. In this 
acc.e.lerogram the accelerations were 2 times increased. If the 
non-linear base deformation is taken into account, the moment, 
applied to the base is 2,5-3 times less, but the length 
breaking area can exceed 0,5L(Fig.8). Therefore in line with 
the USSR Building Codes [3] the s-cabili ty of the ground may 
be unprovided for. 

CONCLUSIONS 

On the basis of theoretical and experimental studies 
there was developed a design model 01' the base of large-panel 
and stone buildings with regard to the breaking of the 
foundation off the ground, and to the plastic dei'ormations 
of the latter. Such a design scheme makes it possible to 
calcula-ce the base for the static, vibro and earthquake 
effects. 

The most important result of the base non-linear 
~eformations is the decrease in the forces under vacilla-cions 
as well as in -che foundation resting area on the base. 

'rhe partial breaking of the foundation off the ground, 
as well as the formation of the crack caused by ground 
compression may lead to the appearance of a certain suspension 
of building structures, which calls for additional forces and 
ought to be taken in to accoun-c in design, for instance, when 
applying methods [4J. 

Under earthquane loads notwithstanding the double or 
even triple reduction of forces, there may arise in the non
linearly deformable bases the short-term combinations of the 
moments exceeding rateQ values, as well as· of the breaking 
area lengths exceeding the allowable values (0,5 foundation 
lengthj, which threatens the stability conditions of the base. 
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SUMMARY 

A procedure is described for analyzing a cable stayed bridge 
subjected to dynamic loads. The procedure considers nonlinear 
behavior of both the cables, due to changing sag, and the towers and 
gi rders, due to the interaction of axial and bending deformations. It 
is concluded that the nonlinearity of the structure must be considered 
in determining the stiffness of the structure in the dead load state, 
however, a linear dynamic analysis from the dead load state will give 
results well within normally required design accuracy. Damping in 
the structure should be considered. 

INTRODUCTION 

A cable stayed bridge is a nonlinear statically indeterminate 
structure in which the girder is supported elastically at points along 
its length by inclined cable stays. A wide variety of geometric con
figurations have been utilized in cable stayed bridge construction, as 
shown in Figure 1 a. This type of bridge construction differs from the 
conventional suspension bridge since the girder is supported by indi
vidual inclined cable members, attached directly to the tower, rather 
than by hangers which are supported by one main cable suspended 
between the towers, as shown in Figure 1 b . 

Since World War II, approximately 60 cable stayed bridges have 
been bui.lt throughout the world, or are presently under consideration. 
The popularity of this type of structure is increasing, therefore it is 
important that the design engineer have available convenient techniques 
for their anaLysis and design. It is particularly important that know
ledge be available concerning their behavior under various types of 
loads. The static behavior of cable stayed bridges has been studied by 
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a number of previous investigators, however, very little significant 
information has been presented concerning their dynamic behavior. * 
Because of their increased flexibility, low weight and low damping it 
is difficult to extrapolate their dynamic behavior from the know dyna
mic characteristics of girder and truss bridges. 

The study presented here is concerned with a comparison of 
linear and nonlinear dynamic analysis procedures for a single plane 
cable stayed bridge under earthquake loading. For comparison pur
poses, the response of the structure is considered under both the 
longitudinal and vertical components of the May 18, 1940 EI Centro 
California Earthquake (4). 

NONLINEAR BEHAVIOR OF CABLE STAYED BRIDGES 

Even though the material in the members in a cable stayed bridge 
behaves in a linear elastic manner, the overall force-deformati.on re
lationships for the structure are nonlinear. This noniinear behavior 
is a result of both the axial force-deformation relationships for the 
inclined cable stays and the combined axial and bending force-deforma
tion relationships for the towers and girders being nonlinear. Both of 
these nonlinear effects are due to geometric changes which occur in the 
members due to the applied loads on the structure, however, the indi
vidual behavior of the two types of members is completely different. 

A cable, supported at it ends, and subjected to its own weight 
and an externally applied axial tensile force will sag into the shape of 
a catenqry. The axial stiffness of the cable will change with chang
ing sag, which in turn changes with disp lacement of the cable ends. 
For conventional truss members the sag due to self weight can be safely 
ignored, however, for cable members it must be considered if an 
accurate enalysis is to be performed. 

The displacement of the cable ends, which result from defot'm
ations in the structure due to the appl ied loads, have three distinct 
effects upon the cable. The first is a change in strain i.n the cable 
material. This change in strain can be considered to be linear and is 
governed by the material modulus. Second, there is a rearrangement 
of the individual wires in the cable cross section under changing load. 
This deforma.tion, which is known as constructional stretch, is per
manent, however, it is usually eliminated by the cable manufacturer 
by prestretching the cable to a load greater than the working load dur
ing the manufacturi.ng process. Third, there is the cha.nge in sag of 

*For a complete review of previous work and also a good bibliography 
see references 1,2,3. 
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the cable, exclusive of material deformation. This change in sag is 
governed by the length of the cable, the weight of the cable ond the 
tensile force in the cab le. It is this change in sag which causes the 
nonlinear force-deformation relationship for the cable since the change 
in sag does not vary li.nearly with cable tension. 

The second non-linear consideration in cable stayed bridges is 
the behavior of the towers Clnd girders when they are subjected to com
bined bending and exiel loads. Structural members which carry both 
axial forces and bending moments are subjected to an in teraction be
tween these two effects. The la teral deflection of a member causes 
additional bendi.ng moment when subjected to a simultaniously applied 
axial force, thus altering the flexural stiffness. In a like manner the 
presence of bending moments will affect the axial stiffness of the mem
ber. For most structures the interaction between the flexural and 
axial stiffnesses can be ignored; however, due to the large displ2ce
ments which can occur in cable stayed bridges this interacti.on should 
be consi.de red. 

S i.nce the force- deformation re lationships for cable stayed 
bridges are nonlinear, their analysis under the acti.on of applied loads 
is more complicated than for cCTIventional structures. Statically 
applied loads on a structure will alwaysbei.n equilibri.um with the inter
nal member forces resulting from the deformation in the members. 
For a linear structure the stiffness can be formulated in terms of the 
deformations with nonchanging proportionality constants. For nonlin
eE'r structures these proportionality constants change with changing 
load 2nd in most caSeS cannot be represented by a simple algebraic 
expression, thus increasing the diffi.culty in obtaining o. solution for 
the resulting equations. One popular way of solving nonlinear struc
tural equations for static loads is by making USe of successive linear 
analyses, either by assuming the load to be applied incrementally with 
a corresponding linear structurol behavior for each increment, or by 
assuming Linear behavior for the tota 1 load application and iterating 
unti l the correct equi I ibrium posi hon is obtained. Either approach 
should give essentially the same result. In the analyses presented 
here, an iterative approach is used to determine the displacements 
and member stresses under the structure dead load. 

COMPUTATION OF STRUCTURAL STIFFNESS 

A convenient method for considering the nonlinearity in the in
cl ined cable stays is to consider an equivalent straight chord member 
with 2n equivalent modulus of elasticity. The equivalent modulus of 
elastici ty combines both the effects of material and geometric deform
ations. Hence, the axial stiffness of the equivalent member for any 
particular combination of cable sag and cable tension is the same as 
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the axial stiffness of the actual cable. This approach has been used 
successfully by several previous investigators (2,3). 

If the change in tension of a cable during a load increment is 
not large the axial stiffness of the cable wi.lt not signifi.canUy change 
during the load increment. For this situation, the equivalent modu
lus of elasticity can be considered to be constant and is gi.ven by: 

E eq 0 E/ { 1 + [(WL)2 AE/12T
3 J } (1) 

where E is the materic>l modulus, L is the horizontal projected length 
of the cable, w is the weight per unit length of the cable, A is the cross 
section areE' and T is the cable tension before the load increment is 
applied. In many situations, due to the flexibility of cable stayed brid
ges, the displacements and resulting changes i.n member forces during 
the appl ication of a load i.ncrement are not small. As the cable ends 
move during the load application the equivalent modulus will change as 
a result of the changing cable tension. For this si.tuation, the equi.va
lent modulus of elasticity over the load increment is: 

E = E/ {1 + l(wL)2 (T. + T) AE/24 T~ T2 J } (2) 
eq L' 1 f 1 f 

where the subscripts i and f represent the initi21 and final values of 
cC1ble tension during the load increment. By using the concept of an 
equivalent modulus of elasticity the individual member stiffness matrix 
for any inclined cable stay for any value of cable tension can be written 
in the form: 

r
AE /L 

eq 

- AE /L 
eq 

-A E /Lj eq 

AE /L 
eq 

(3) 

i 

The nonl1near behavior of the towers and girders, due to large 
deformations in the members, can be considered by introducing the con-
cept of st?blli ty functi.ons. The modified member stiffness ma trix wi II 
be of the form: 
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where S. is E\ stabillty function which accounts for interaction of the 
axial and bendi.ng flexi.bilities. The derivation ofthesestabillty func
tions can be found in a number of standarcr texts inthe area of structural 
analysis(5) . 

In order to perform a dynamic analysi.s of a structural system 
the total structural stiffness matrix must be deter'mined. By using the 
previously described i.ndi.vidual member stiffness matrices the struc
tural stiffness matrix for 2ny loading state CBn be determi.ned by the 
standard assembly procedure. 

DYNAMIC ANALYSIS 

The results presented i.n this discussion are for a mathematical 
model, 2.5 shown in Figure 2, which represents with some modification 
a si.ngle load beari.ng plane of the Nordbrucke Bridge at Dusseldorf, 
Germany. For convenience, the dimensions were rounded off in con
verting from metri.c units to feet. Cable areas were similarly rounded 
off to correspond to dimensions of cabLes manufactured in the United 
States. Whereas the actual structure has a tapered tower, the math
emati.cal model has a constant area and moment of inertia which was 
t2ken to be equal to that at the base of the tower in the actual structure. 
The actual girder has a varying cross-section, while in the mathemat
i.caL modeL the average area and moment of i.nerti.a is used. 

The girder is supported vertically at the towers, but is assumed 
to be independent of the towers so that there is no moment transfer 
between the girder and the towers. The towers are assumed to be fixed 
at their bases. It is assumed that the cable has an i.ni.tial prestress so 
that i.t i.s capable of supporting a negative force increment duri.ng the 
application of any load increment. 

The mathematical model has 22 nodes and 31 i.ndivi.dual merYbers. 
For the dynamic analysis, the mass of the structure was assumed to 
be lumped at the nodes. Both translational and rotational inerti.as were 
ini tially considered, however, at a later point in the analysis the rota .... 
ti.onal inertias were neglected since their effect was negligible. The 
modo.l damping coeffi.cients were computed by using an approximate 
approach described by Biggs (6). 

The method employed in the dynamic analysis is a step by step 
integration algorithm, developed by Argyris (7), which works in terms 
of the inertia force vector and its time derivatives at the beginning and 
end of a time step. This is an iterative approach which approximates 
the displacements by a fifth degree polynomial with time. An integra
tion step of 0.3 times the smallest natural peri.od of the system is used. 
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One of the advantages of this procedure is that it does not involve matrix 
inversion when a lumped mass matrix is employed. Another is that in 
most other procedures, when the number of degrees of freedom i.s 
large, the capacity of the core memory is insufficient and external stor
age units must be used thus greatly increasing the computation time. 
In the procedure employed here, the nodal forces are calculated di.rect
ly from the total displacements so th0t there is no need to store the 
global structural stiffness matrix. 

The mathematical model was analyzed, considering both linear 
and nonlinear dynamic response, for the vertical and horizontal com
ponents of the El Centro Earthquake. The conditions considered were: 

a) Linear dynomic response, using the stiffness at the 
dead load deformed state, assuming the structure 
behaved linearly duri.ng the RppliCRtion of the deod 
load (L-L). 

b) Linear dynamic response, using the stiffness at the 
dead Joad deformr:;d state, considering 'the nonlinear 
behavior of the structure during the ;=.ppl ication of the 
dead load (NL-L). 

c) Nonli.near dynamic response, using the stiffness at the 
dead load deformed state, considering the nonlinear be
havior of the structure during the application of the dead 
loa.d (NL-NL). In order to account for the nonlinear be
havior during the dynamic response the structure stiffness 
matrix was recomputed at the end of each time step. 

RESULTS AND CONCLUSIONS 

The first step in tile dynemic analysis was to compute the natur0l 
frequencies and mode shapes for the bridge in the dead load deformed 
state in order to determine the length of time step requ-Lred in the step
wise integration procedure. The lowest frequency of the structure is 
0.4 cps due to its lightness and high flexibility. 

The dynamic response of the structure to tile vertical component 
of the El Centro Earthquake is shown in Figures 3 through 8. Figures 
3, 5, and 7 show the variation of vertical displacement of the girder at 
node 7, moment in the girder at the tower, and tension in Cable 1, 
assuming no damping in the structure, for the L-L, NL-L, and NL-NL 
cases. S imitar curves are shown in Figures 4, 6, and 8 for the N L
NL case assuming dampi.ng of six, five and three percent of critical 
damping in the first, second and third modes respectively, The varia
tion of the displ8.cement of the top of the tower at node 8, along the 



longi tudAl axis.of the bridge, is shown in FiQures 9 and 10, for the 
damped And undomped cases, for th2 horizontal component of the 
El Centro Earthquake. 
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It can be seen that for the undamped responses which are pre
sented the computed results for the NL-L and NL-NL cases are almost 
identical for each quantity considered and are significantly different 
than the L-L case. The L-L cose underestimates the displocements 
and the moments while giving mixed results for the cable tension. 

The effect of the small amount of damping considered in the 
anolyses is considerable. The amount of reduction in the response 
r1mges from 25 to 35 percent. 

Two general conclusions con be made, bosed upon the results 
presented here and similar results obtained during the total investiga
tion. The first conclusion is that the NL-L and NL-NL cases demon
strate almost the same dynami.c behavior throughout the time of loading. 
Thi.s is an important observation since a linear dynamic analysis of the 
structure is far less complicated and requi.res far less computer time 
thon 0 nonlinear dynami.c ana lysis. For accurate results, however, 
nonlinear behavior of the structure must be considered when determi.n
ing the structure stiffness matrix in the dead load state for use in the 
dynamic analysis. The second conclusi.on is that damping has a signif
icant effect upon the response of the structure and should be considered 
during the analysis. Further investigation is necessary to determi.ne 
accurate values for the dCl.mpi.ng coeffici.ents to be used. 
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Sm-W:.ARY 

An iterative method for the modal analysis of tall building frames 
based on lumped mass idealisation is presented. The method takes into 
consideration the flexibility of the horizontal members and allows 
distinct rotations of the joints in each storey. The iteration converges 
rapidly and the required computation can be carried out in a small 
computer. The application of the proposed method to the seismic design 
of tall buildings is illustrated with the aid of earthquake response 
spectrum. The effect of damping and the contributions of the lower modes 
to the seismic response of the structures are investigated. 'The storey 
shear coefficients obtained verified the \1hipping action observed on the 
top fe1N storeys. The design procedure is simple and sui table for 
practical design. 

I~'TRODUCTION 

The importance of dynamic analysis of tall buildings has been 
enhanced by the recent trend towards more highrise buildings in some 
metropolitan centres. In designing the structures to withstand the 
effects of seismic and wind forces, the study of their dynamic behaviour 
is useful in general and necessary in some special cases. 

The present study deals with a frequency analysis of tall building 
frames and its application in the determination of the probable maximum 
response of the structure when subjected to base excitation due to earth
quake. Discrete methods of iterative nature which are relatively simple 
are commonly used in practical design for frequency analysis (1, 2, 3)*. 
These methods are more suitable to the analysis of building frames as the 
mass is mainly concentrated at each floor level. The proposed iterative 
method, while similar to the procedure presented by Goldberg, Bogdanoff 

* Numbers in parenthesis refer to the listing of references. 
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and Noh (2) in that it takes into account the flexibility of the hori
zontal members, differs with it by allowing distinct rotations of the 
joints in each storey. 

The procedure for the seismic design of building frames with the aid 
of the proposed modal analysis and an earthquake response spectrum is 
suggested with an illustrative example. The effect of damping on the 
earthquake response, the contribution of the lower modes to the seismic 
response of the structure, and the vlhipping action of the top few storeys 
are discussed. 

]J[ODAL ANALYSIS 

The frequency analysis is based on lumped mass idealisation using 
slope deflection equations. The detailed derivation of the governing 
equations was presented by Paramasivam, Yeh and Nasim (4) and the salient 
features are outlined in the following. The equations of motion are 
obtained by equating the inertia forces acting on all the floors above a 
particular storey to the shearing forces acting on the columns of that 
storey. Thus the total shear Si acting on the columns of the i-th storey 
can be written as 

S. 
J. 

= (1) 

where Mk and Yk denote the ma.ss and displacement of the k-th storey 
respectively, w the circular frequency and n the total number of floors. 
In Eq. 1, Yk is positive toward the right and Si is positive if acting 
toward the left at the column base. The storey shear can be expressed in 
terms of the column moments in the form 

l';~ = S.h. 
l l l 

( 2) 

c where Mi represents the sum of the moments acting on both ends of all the 
columns of the i-th storey, positive counter closewise, and hi is tde 
height of the i-th storey. 

The sum of the column moments acting at both ends of all the columr.s 
of i-th storey can be expressed in terms of the joint rotations and 
relative storey displacement by means of the slope deflection equations in 
the form 

m 
M~ = ~ K~ . (12R. - 69. - 6g. 1 .) (3) 

J. 
j=1 

J.,J J. J.,j l- ,J 

where 

R. = (y. - y. 1 Jlh. (4) 
J. l l- J. 

In these equations, Qi j denotes the rotation of joint j on the i-th floor, 
m the number of column~ on the floor Kr j denotes the stiffness of the j
th column of the i-th storey, the stifftiess being the flexural rieidity of 



the member divided by the length. Similarly, the sum of the moments 
acting at the top of the i-th storey columns can be written as 

",c 
j·l. - 1 
~,1-

= 

Eliminating R. between (3) and (5) leads to 
1 

c , 
H .. 1 
~,~-

M~ m 
= ~ - ~ K~ . (Q. . - g. 1 .) 

2 1 ~,J 1,J ~- ,J j::: 

Similarly the sum of the moments acting at the bottom of the (i+1)-th 
storey columns can be derived as 

c 
M. 1 m 

1 + "" -2- - L..o 
j=1 
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(6) 

In a similar manner, the sum of the moments acting on both ends of 
all the beams on a floor level can be expressed in terms of the joint 
rotations. Since the sum of the beam and column moments acting on all the 
joints at a floor level must vanish, the sum of the column moments of two 
consecutive storeys, Ml + MI+1' in view of Eqs. 6 and 7, can be expressed 
in terms of the joint rotations in the form 

m m m-1 
= 2 ~ K~ Jl. . + 2 ~ K~ .Q.. + 12 ~ 

j:::1 1,J 1,J j=1 1+1,J 1,J j=2 

m-1 b m c m 
+ 12 ~ K. . 1Q · . - 2 ~ K. .Q. 1 . - 2 2::: K~ 1 .Q. 1 . 

j=2 1,J+ 1,J j=1 1,J 1- ,J j=1 l+,J 1+ ,J 

+ 12 (K~ 1Q · 1 + K~ Q. ) 1, 1, ~,m l,m 

b 
where K. . denotes the stiffness of the j-th beam on the i-th floor. 

1,J 

(8) 

The iterative process starts with the simplifying assumption that 
all the joint rotations on a floor level are equal to the average value 
~i' Introducing the ratios Ci, j = Qi /Oi into Eqs. 3 and 8, in view of 
Eqs. 1, 2 and 4, leads to, respectiveiy, 

= 

C )-(k. .C. 1 . Q. 1 
1,J 1- ,J 1-

(9) 
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m 
'"' (",c C )--2 LJ 1\ . , . 1 ' g. 1 
j=1 1,J l-,J 1-

Ko" } + . v. 
l,m l,m 

The equilibrium equation of joint i,j can be written in the form 

( 11 ) 

Introducing the assumption that the ratio between the end rotations of 8.11 
the columns on a storey is identical and the notations 

¢. 1 . 
1- ,1 

Q. 1 ./9 .. 
1-,J 1,] 

Eq. 11 simplifies into the form 

+ 2K ~ . 1 ] G. . + K ~ . 1 g . . 1 
1,J+ 1,J 1.,J+ 1,J+ 

( 12) 

3K~1 .R" 1 + 3K
c 

.R. 
1 T ,J 1 T 1, J 1. 

(14) 

For the first iteration. the coefficient C~ ~ is assuDed to be unity. 
"'-, J U 

rrhe iteration sta.rts from the top floor where the floor displacement Yn , 
taken as the amplitude factor, is set equal to unity. Assuming a 
reasonable first approximation of the frequency w, the values of y~-1 and 
Gn-1 are found in terms of Gn using bqS. 9 and 10. This calculation is 
repeated downward until the displacement and rotaticn of "Che Ground floor, 
;[0 and Go are found in terms or Gno The boundary conaitions at i = O_are 
go = 0 and Yo = O. r.rhe first boundary condition yields 'ehe value of Gn , 
which in turn leads to the first approximatior: of Yo vl'1ich, in general, 
will be ciifferent froQ zero. 'fhe above procedure is repeated wi C;L: another 
trial value of Vi until the second boundary condition at the base is 
satisfied. l'ihen this is done, the values of th.e joint rotations Qi j on 
each floor 8.re determined by ap:;:>lying Eq. 14 to each floor. ' 



For the second iteration, the average values of the floor rotations 
Qi and the second approximation of Ci j are computed from the values of 
gi,j obtained in the first approximation. The iterative process is 
repeated as discussed above until the values of Ci j between consecutive 
cycles attain ehe desired accuracy. ' 

with the final values of Gi j' the corresponding values of Yi are 
calculated by applying Eq. 9 to ~ach floor, starting at the top floor, 
and the stress resultants are readily determined by means of the slope
deflection equations. 

DESIGN PROCEDURE USING EARfliQUAKE HESPONSE SPECTHUN 
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The above analysis can be used to determine the natural frequencies 
and corresponding mode shapes of building frames, and to estimate the 
total maximum response of the structures when subjected to earthquake 
excitation with the aid of earthquake response spectrum (5). The maximum 
earthquake displacement Ymax corresponding to each mode is computed from 
the relationship 

Ymax S Y V/M· 
d n 

where Sd is the spectral displacement, Yn the top displacement, 1* and H* 
are the earthquake participation factor and generalised mass, respectively, 
as defined by 

1* 

M* 

= H.y. 
:1 :1 

and Hi is the lumped mass of the i-th floor. 

(16) 

(17) 

The displacements and stress resultants corresponding to the maximum 
earthquake displacement are computed for the different modes. The maximum 
response is then determined by superimposing the response of the desired 
number of the lower modes, using the root-mean-square procedure (5). 

ILLUSTRATIVE EXMIPLE 

The 10-storey building frame shown in Fig. 1 is considered to 
illustrate the design procedure. The first three natural frequencies are 
found to be 3.2929, 9. 1429 and 15.2950 rad/sec and the corresponding 
periods are 1.9088, 0.6875 and 0.4109 seconds respectively. Response 
spectra (5) based on the spectral velocity resulting from the N-S 
acceleration component recorded at EI Centro, California earthquake in 
May, 1940 for different damping ratios and 2ry/o g are used to illustrate 
the design procedure. 



78 

The maximum earthquake displacements and the correspondiug mode 
shapes for the first three modes, for damping ratios of 1%, Z!(; and 5%, are 
shown in Fig. 2. The effective earthquake loading, i.e. the storey shears, 
are calculated for each mode. The maximum storey shears are obtained by 
taking the root of the sum of the squares (l;;r,;s) of the shear vo.lues of the 
first three modes. The results for various damping ratios are presented 
graphically in Pig. 3. 'rhe resultant base shears for damping ratios of 1%, 
~h and ';flo are found to be 12.49';, 11.4% and 8.5"/0 of the building weight 
respectively. The lateral force coefficients, i.e., the ratio between the 
difference of consecutive storey shears and the corresponding storey weight, 
are shown in Fig. 4. 

CONCLUSION 

The proposed iterative method is a generalised version of the 
procedure proposed by Goldberg et. al. (2) allowing distinct joint 
rotations. The consideration of distinct ~otations of the joints yields 
a more flexible structure and reduces the natural frequency. 

'l'he contributions of the higher modes to the earthquake response of 
the structure considered are small in comparison with that of the first 
mode, and satisfactory preliminary designs can, be based on the first mode 
response alone as can be seen from Fig. 3. From the lateral force co
efficients sho~n in Fig. 4, it is observed that there is a si8nificant 
increase in shear towards the top few storeys, substantiating the Whipping 
action commonly observed In this type of structures. 

The proposed method is suitable for practical design purposes, t"le 
computation work being relatively simple. In fact the entire calculations 
can be carried out with the aid of a desk top calculator or a mini 
computer. 
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FIG. 1 BUILDING FRAME 
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SUMMARY 

83 

The report deals with the main preconditions of in-situ 
housing development in seismic regions of the USSR as well 
as with a sho~ survey of the subject. The paper includes 
the principal structural solutions wf in-situ seismicproof 
buildings of frameless type: structural schemes, walls,floor 
slabs, methods of reinforcement. 

The experience in the field of designing of such 
buildings is described too, particularlYi static and dynamic 
calcUlations. 

INTRODUG'rION 

In the USSR the construction of public and residential 
frameless buildings with the application of in-situ 
reinforced concrete using modern industrial methods has been 
carried out since the mid-sixties. The construction is 
preconditioned by a number of social-econo~c, architectural
town planning and technical requirements. 

Population growth in big towns and new settlements 
demanded a comprehensive and efficient land use. It has 
entailed higher buildings in towns and variety in town
planning and architectural solutions ror civil construction. 

In seismic regions, besides the above-mentioned factors, 
the problems of seismic stability and durability of buildings 
in combination with economical consumption of building 
materials and capital investments are of primary importance. 

In view of the fact that frameless in-situ buildings 
possess high bearing capacity, spatial rigidity and stability 
they meet the above requirements to a greater degree than 
other buildings. 

At present in-situ construction is carried out on a 
wider scale in towns located in seismic regions. 

in the European part of the USSR the t"ollowing town-
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resorts can be presented as an example: Sochl, Yalta; Kishi
nev and Baku!. "the capitals of the Union Republics; in the 
Asian part or the USSR - Alma-Ata, Dyushambe, Ashkhabad, 
Frunze - the capitals of Union Republics too. Reinforced 
concrete in-situ constiruc'tion ~s under way in. such towns as 
Erevan, Tashkent and other towns of the USSR. 

Owing to a wide range of plastic and structural 
properties of in-situ concrete, some completed buildings are 
aesigned with expressive architectural and spatial forms, 
thus, performing the role of town-planning focal points. 

15-storey sanatorium "Actor" and 14-storey residential 
buildings in Sochi, 16-storey residential buildings in Baku 
and KishinEv as well as 25-storey hotel in Alma-Ata are the 
most interesting designs from architectural and struc"tural 
point of view. 

STRUCTURAL SOLUTIONS 

In-situ and precast - in-situ frameless buildings are 
designed according to the following structural schemel:;): 

- with in-situ bearing internal and exte:C'nal walls in 
longitudinal and transverse direction; 

- with in-situ bearing internal walls in longitudinal 
and transverse direction and with external curtain walls 
out of panels or large-siZe blocks. 

The buildings of the first structural scheme are 
characterized with high seismiC stability and t "thus, being 
more universal, they can be erected in regions with seismic 
force from 7 up to 9 paints, in future it is e~xpected they 
are to be constructed in areas with seismic force - 10; the 
buildings of th~ second structural scheme are aimed for 
regions with seismic force - 7 and 8. 

Industrial methods with the application o,f repeatati ve 
forms and shuttering are employed for in-situ, construction. 

As a rule, for buildings of the first scheme slip-forms 
or large-size shuttering (boards) are used; for the second 
scheme progressive shuttering (tunnel) is practiced. 

One of the most important factors of seismic structural 
designing is the choice of material for bearing walls. At the 
beginning a heavy concrete was used for in-situ walls, as a 
rule, and external in-situ walls were three-layered: internal 
bearing layer, insulating layer (pads) External protective 
l~er. This solution leaves much to be desired from "tecnno
logical point of view: considerable labour expenditure; 



difficulty in ensuring the stability of insulation and the 
designed thickness of the bearing layere 
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Tne application of s~ructural thermal insulating 
concretes based on porous artificial aggregates (keramzite, 
agloporite) has come into common practice in current in-situ 
housing. From one side it allows to reduce the weight of a 
building 'and, accordingly, the value of inertia loads under 
seismic effects, and from the other side it permits to 
simplify the structure of external in-situ walls and the 
technology of their erection. The keramzite concrete buildings 
were constructed in Alma-At a and Baku and agloporite concrete 
buildings - in Dyushambe. The specific weight of concrete 
based on light aggregates

3
in completed buildings makes up 

from 1400
2

up to 1800 kg/m with prism concrete strength being 
205 kg/cm • 

Experimental investigations are under way aimed at 
reducing specific weight of porous aggregate concretes owing 
to optimum composition of concrete mortar and proper granular 
size of aggregateso At the same time the improvement of 
strength properties is in the scope of research. 

External bearing walls are assembled out of large-size 
blocks or panels. Blocks and curtain panels are made, as a 
rule, out of thermal insulating concretes basea on artificial 
or local porous aggregates, The

3
specific weight Of such 

concretes amounts from 800 kg/m up to 1200 kg/m/ depending 
upon the weight of aggregates particularly upon the W91ght of 
small-size granulars. 

Considerable reduction in weight of buildings can be 
obtained when asbestos cement curtain panels with effective 
thermal insulating layer are used for external walls. 

In some regions with certain local raw materials being 
available or where the manufacturing of such panels are 
efficient from economical point of view the application of 
such panels in in-situ construction is being investigated and 
preparatory work is in a full swing. 

The following types of floor SLabs are employed: precast, 
precast - in-situ or in-situ. Precast floor slabs are rooru
si~e panels with wall spacing being up to 306m or they are 
cavity slabs with prestressed reinforcement with wall spacing 
being up to 6.3m. 

Precast - in-situ floors consist of two parts: precast 
slab and in-situ reinforced concrete. In-situ floor slabs are 
structurally interconnected with walls with the help of 
prOjections in certain areas (slip-form method) or continuous 
ties are provided along the contour ("tunnel" method). 
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The experience nas shown that in-situ floor slabs are 
more preferable from structural point of view as it allows 
to ensure the designed rigidity of floor slabs in their 
plane with less material expenQiture and without additional 
measures connected with concreting the dowels and with 
welding the inserts required in precast floor slabs. 

'llhe reinforcement of In-si tu walls and floor slabs 
consists of flat welded frames, nets and spatial frames. 
Reinforcement elements are made at special plants. ASdrUie 
for working reinforcement of walls, hot-rolled steel of 
high rigidity with rated resistance - 3400 kgj/cm2 is used, 
for floor slabs cold-drawn reinforcement wire with rated 
resistance-from 2500 up to 3150 kgt/cm2 is employed. Hot
rolled reinforcement steel with rated resistance 2100 kgf/cm2 
is practiced for manufacturing reinforcement. 

While designing vertical in-situ diaphragms, special 
attention is being paid to the reinforcement of the most 
important elements - lintels and the joints between the 
lintels and the walls as well as to the rei~rorcement along 
door and window openings. Strength tests have proved, 
particularly, the efficiency of evenly distr:Lbuted reinfor
cement of lintels. 

All seismic calculations of in-situ buildiil( 1 are 
performed on the basis of dynamic theory of seismic stability 
developed and adopted in the USSR. Automatic I)rogrammes 
calculated with the help of computors "Minsk-·22" "M-222" and 
other have come lnto common use. The progranmles are developed 
by the following Institutes: TSNIISK, TSNII]ll) zsilischa and 
KievZNIIEP. 

At present certain methods allowing exact determinatiQu 
of spatial behaviour of in-situ f"rameless structures are 
considered to be very perspective, particularly, the meiifiod 
based on the theory of tfthin-walled rods". At the same time 
the methods of "approximate calculations" are investigated 
as well, they are intended for evaluation of seismic lQads 
and bearing capacity of buildings at the early stage of 
designing. 

While calculating and designing in-situ seismicproof 
buildings laboratory and field results are taken into 
consideration. Field tests of 13 and 16-storey precast -
in-situ buildings in KishLnev carried aut by TSNIIEP zsilischa 
are of special interest. 
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Fig_ { is-storey Sand toriulTl III 5och; 



Fig.3, l8-stDrey ad
ministrative 
buirdinq in 
TashKent 
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Fig,2. i6- ptorey resl
dentic;1f building 
in lJalta 
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SYSNOPIS 

This paper describes the application of an inelastic dynamic 
analysis of two very different bridge structures subjected to an 
earthquake excitation. The paper discusses the effects on the 
response of the structures of variations in the moment-curvature 
relationships of the piers and also the effects of the inter
action of the axial forces in the members with the yield moments. 

INTRODUCTION 

Bridge structures differ from the usual building structures 
in that structures are usually very simple and that when they 
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enter the inelastic range there is very little opportunity for a 
redistribution of member forces. Further, it is possible that the 
bridge structures may readily form dynamic collapse mechanisms upon 
the formation of only a small number of inelastic regions within 
their structural systems. 

An inelastic dynamic analysis program is used to analyse 
bridge structures for arbitary seismic excitations. The analysis 
allows for the interactive effects of the member axial forces on 
their yield moments and also permits the choice of three possible 
moment-curvature relationships. 

The first example is a continuous multi span bridge which is 
provided with seismic gaps at the central pier and at the abutments 
and the initial aim of the analysis was to determine the 
necessary widths of these gaps to prevent hammering between the 
sections of the bridge and its abutments. The second structure 
is a tall reinforced concrete bridge pier, together with its 
supporting pile cap and piles, the pier being one of several 
supporting a multispan, box girder bridge. The effects of the 
axial-force moment interaction are important in the inelastic 
response of the pile system and the consequences of the different 
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movement-curvature relationships are studied. 

THE METHOD OF ANALYSIS 

The method of analysis and the computer program used for 
these analyses is due to Sharpe (5) which was developed for the 
dynamic analysis of two dimensional framed structures of arbitary 
geometry and for an arbitary time-history of seismic loading in 
both horizontal and vertical directions. 

THE FRAME MEMBERS 

For the purposes of this program it was essential that the 
beam-model should be such that its critical sections had the 
ability to track any generalized moment-curvature function. In 
particular, the Ramberg-Osgood (4) curvilinear hysteretic function 
and the standard bi-linear function - a special case of the 
latter being the elastic-perfectly plastic hysteres. 

As the emphasis was being placed on inertia loading of the 
structure, it was not considered necessary to make provision for 
the loading of the framed members with loads distributed along their 
length, such loadings, should they arise, are easily accommodated 
by the provision of joints along the member. The critical sections 
of all members occur at their interfaces with other me:mbers. To 
achieve this modelling rigid end-blocks are located between these 
interfaces and the modelled joints at the intersection of the 
member centrelines. 

A suitable model, which has to simulate the correct moment
rotation and axial stiffness characteristics at these interfaces, 
is that due to Gibertson (3). It is, simply, a one-dimensional 
prismatic beam with sprung hinges incorporated at the critical 
sections. By varying the rotational spring stiffnesses, it is 
possible to model the full range of situations, from that of a 
pinned end to one in which the beam is linearly elastic along its 
entire length. 

The theoretical discontinuity of slope, which occurs at the 
critical sections of the beam-model, extends over an infinitely 
small length, whereas the plastic hinge length in the real beam 
has a length which varies with both the amount of curvclture and 
the type of material. To relate the rotation of the theoretical 
hinge to the real plastic curvature, a constant hinge length for 
the beam member is supplied together with the other dat.a on 
the members section properties. 

The interaction between the axial force and the bending 
moments affects the yield moment behaviour of such members at 
columns in buildings and piers and piles in bridge systems and 
this is allowed for which the yield interaction diagram shown in 
figure 6. 



THE STRUCTURES STIFFNESS, MASS AND DAMPING MATRICES 

Once the stiffnesses of the individual member stiffnesses 
have been determined the stiffness matrix of the entire structure 
is assembled by the Direct Stiffness method. At the same time 
the mass matrix, of either the "Lumped" or "Consistent" [1] form, 
and the damping matrix are formed. 

The damping matrix is obtained by the method proposed by 
Caughey (5] and is a combination of proportions of both the 
mass and stiffness matrices of the structure, the proportions 
being determined so as to provide a specified percentage of 
critical damping at each of two specified frequencies. These 
frequencies may be supplied as input data or taken as the first 
two natural frequencies of free-vibration of the linear elastic 
structure. 

TIMEWISE INTEGRATION OF THE EQUATIONS OF MOTION. 

The equations of motion for the structure are integrated, 
for equalised time steps, by a step by step integration method 
[7] where the accelerations are assumed to be constant during 
the time step, the method having been shown to be stable and 
accurate [6]. 
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At the end of each time step the equilibrium of the critical 
sections of each member is checked and the stiffnesses adjusted 
accordingly. If, due to a change in stiffness, member equilibrium 
is no longer satisfied, the out of balance of these member forces 
is corrected during the next time step. 

To improve interpretation of the results from the analysis, 
every time step in which the location of plastic hinges changes 
within the structure, a picture, showing all plastic hinges is 
printed together with any tabulated output. 

THE DURHAM STREET RAILWAY OVERBRIDGE 

The Structure 

The bridge deck, simply-supported on piers formed on piles 
driven into alluvial material, will carry traffic over a series 
of main-trunk railway tracks. Built of reinforced and prestressed 
concrete in two sections with artificially-constructed approach 
embankments. In order that the two deck sections, when excited 
by an earthquake, should neither hammer each other nor be interfered 
with by the abutments, an attempt was made to predict a width 
for the three seismic- and expansion-gaps incorporated in the 
structure. 



94 

The idealization 

The bridge was reduced to the centre-line frame depicted 
in figure 1. An initial assumption was made that the deck would 
not lift off any of its supports. The model sliding beari~gs, 
are idealized to the extent that they allow infinite movement in 
a horizontal direction. The seismic gap necessary in the real 
structure, is then at least the peak-to-peak amplitude of the 
relative motion. The deck, being simply-supported at the top of 
the piers, did not require the possibility that it might develop 
plastic hinges to be considered. 

Equivalent viscous damping was set at five per cent of 
critical for the first two modes and Initial-condition moments 
due to shrinkage, temperature and creep were supplied by the 
designers as were yield moments for the bases of the piers 

The analyses 

The left and right halves of the bridge were found to have 
undamped natural frequencies of 2.789 and 2.879 Hz, respectively. 

A purely elastic dynamic analysis was performed using the 
first ten seconds of the North-south and vertical components of 
the El Centro, May 18, 1940 earthquake which was scaled, at the 
request of the designers to give a maximum horizontal ground 
accelerati9n of 0.23 g. The displacement responses of the two 
halves, measured horizontally at the top of the central pier and 
with respect to the ground, are shown plotted in figure 2a. 
The initial displacements, due to the initial moments introduced 
to represent the effects of shrinkage in the prestressed deck, 
have been eliminated from the plot (figure 3a) of the relative 
displacements of the two decks. Hence, the gap required between 
the deck sections is the 'dynamic' gap alone. 

The second analysis attempted was of a non-linear type, 
with only the columns being permitted to develop perfectly plastic 
hinges at their bases when the predicted yield moments were 
reached. For a collapse mechanism, it is only necessary for all 
the piers of either half of the bridge to yield at grollnd level. 
However, this is not a sufficient condition for a dynillnically 
excited structure to become unstable and collapse. Recovery is 
possible if an incremental ground acceleration in the prevailing 
direction of collapse causes the supports to catch up ,vith the 
collapsing deck. 

with the same earthquake as used in the elastic analysis, the 
left half of the bridge formed a collapse mechanism after 1.72 
seconds, followed by that of the right at 1.99 seconds. Both 
halves recovered briefly from this state before finally entering 
their respective collapse mechanisms at 2.20 and 2.15 seconds of 



earthquake. The corresponding horizontal deflections of the 
decks at these latter times were -14.6 and 11.2 mm. 

To confirm that the previous analysis had, by chance, shown 
the bridge just reaching the sensitive critical stage, a further 
analysis, using the same yield moments and earthquake, was 
implemented. The moment-curvature relationship at the pier 
bases was changed to that of a bi-linear hysteretic function in 
which the initial section remained the same as before. The 
second branch of the function was allocated a slope of ten per 
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cent of the initial stiffness, in an attempt to similate approximately 
the residual stiffness at a section. As a result, both bridge
sections again reached the stage where all the pier-bases had 
plastic hinges present concurrently, but catastrophic collapse was 
prevented from occurring by the presence of the small residual 
stiffness. Figures 2b and 3b show this response, both as a 
plot of the concurrent deck displacement and of the relative 
deck movement. A summary is given in table 1. The maximum 
section ductility recorded at any of the pier-bases was approximately 
6 - which indicates that only moderate yielding took place. 

Both sides of the bridge experienced some permanent drift 
which tended to widen permanently any seismic gap incorporated at 
the time of construction. If the earthquake's direction was 
reversed it might have been of the opposite effect. The real 
structure is not in as much danger of total collapse under the 
design earthquake as these initial analyses tend to indicate. The 
need for continuity in the road surface would ensure that further 
restraints on the horizontal movement of the deck would be imposed 
if a sufficiently severe earthquake was encountered. The inclusion 
of restraining devices, such as rubber buffering and sacrificial 
shear pins, would, if the abutments did not collapse, significantly 
decrease the response. 

The permanent plastic horizontal drift, which is becoming 
apparent in the last five seconds of the non-linear response, is 
significant if the possibility of an eventual failure, due to 
repeated stress-relief and incremental collapse, is to be considered. 
A purely elastic analysis, on the other hand, will give no indication 
of the permanent drift likely. 

THE AUCKLAND UPPER HARBOUR CROSSING 

The structure 

This provides a good example of a bridge structure in which 
there are very few members or places at which energy-absorption, 
through plastic work, can take place. The analysis is that of 
pier 'five' - in a direction perpendicular to that of the bridge 
axis, and is probably the most critical of those supporting the 
bridge deck. The structure, figure 4, consists of a hollow, thin
walled, reinforced concrete pier which supports the box-girder 
deck. The pier is mounted on an almost square and relatively 
inflexible pile-cap which is, in turn, supported by four identical 
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circular piles driven vertically for some distance into the 
harbour floor. The first ten seconds of the North-South and 
vertical components of the EI Centro, May 18, 1940 earthquake 
accelerogram were used for all the analyses on this structure. 

The idealization 

The symmetrical nature of the plane-frame model of the pier 
enabled the four piles to be analytically replaced by two with 
twice the individual strength. The program could have coped with 
two co-linear pairs of members, but this would have unnecessarily 
introduced extra kinematic degrees of freedom and mernbers. 
The assumption that the pile-cap was infinitely stiff meant that 
the horizontal degrees of freedom associated with the tops of 
the piles and the bottom of the pier could all be coupled together. 
To further stiffen the pile-cap, the associated rotations were 
also coupled. This latter coupling implies that the rotations 
will be identical at the relevant nodes and the rotational masses 
summed and made to act on one common degree of freedom. The 
ability of the program to handle rigid end-blocks meant that the 
considerable differences between the interfaces and the centre-line 
intersections could be accounted for in both the stiffness 
calculations and the positioning of the possible plastic hinge 
sections. Both horizontal, vertical and rotational mass was 
lumped at the intersections of all members. The basic moment
curvature relationship employed was elasto-plastic in form. 
Damping was ten per cent of critical for the first two modes, 
whose natural frequencies of free vibration were 0.65 and 3.4 Hz 
respectively. 

The analyses 

Three different analyses were carried out. They were ... 

a) an elastic analysis, 

b) an elasto-plastic analysis in which the critical sections 
had only one constant value for the yield moment, 

c) an elasto-plastic analysis in which the moment - axial load 
interaction criteria was permitted to control the ultimate strength 
of the vertical members. 

The horizontal displacement responses of the deck (figure 5) 
in the three analyses illustrate how the formation of the plastic 
hinges has allowed sufficient energy to be absorbed to reduce 
noticeably the deck displacement. This is particularly evident 
in the last four seconds of the responses. The maximum non-linear 
response was decreased by approximately seven per cent. Examination 
of the printed time-history showed that significant plasticity 
was not encountered until after 5.4 seconds o~ the earthquake. 
The effect of the energy-absorption did not show up in the plotted 
response (figure 5) until its next peak at about one second later -
even though the former peak was also that at which the maximum 
response occurred. 



The sensitivity of the structure to a changed criteria for 
the development bf plastic hinges can be seen by an inspection 
of the differences in response between that using the obviously 
more correct moment - axial load interaction criteria and that 
in which the members' yield moments were fixed at a constant 
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value. The response for the latter of these two cases (figure 5c) 
shows a very marked curtailment in the response after about seven 
seconds of excitation, resulting in the appearance of a significant 
permanent drift of the same magnitude as the curtailment. 

An examination of the moment - axial load histories for the 
critical section at the top of the left-hand pile (figure 6) shows 
how the need for the interacting yield criteria. The overall 
geometry of the structure results in the bending moment in the 
piles being an almost linear function of the axial load. The 
heavily banded nature of the graphed relationship confirms this, 
the vertical width of the band reflecting the response of the 
bridge-deck and pile-cap to the vertical component of the earth
quake. The imposition of either type of yield criteria on the 
pile moments is seen to be not very severe in the case of this 
excitation. In the absence of the ability for the yield 
criteria to be stipulated in terms of such interaction curves, 
provided that a linear prediction could be made (as in the case 
of these piles), a simple calculation would seem to be sufficient 
for an estimation of single positive and negative yield moments. 

The moment - axial load interaction for the pier member's base 
section is similarly very strongly banded, but differs from that 
of the piles in that the imposed yield criteria is much more 
severe. It can be seen that the choosing of more accurate single 
yield moments for the non-interaction analysis should~ because of 
the narrow banding of the actual path of the moment - axial 
load response, give results which are similar to those of the 
analysis which had an interactive capability. 

In order to confirm this a fourth analysis, incorporating 
these modified yield moment values, was carried out. Yield 
moments of 6.51 x 10 6 N m for the double pile and 25.1 x 10 6 N m 
for the pier were specified. These were, approximately, ten 
per cent smaller than those for the previous similar analysis 
(i.e. analysis b.). When compared to the analysis, the ductility 
required doubled for an increase in maximum horizontal deck 
displacement, from 95.7 mm to 108 mm. The permanent drift, 
estimated from the apparent offset of the response after ten 
seconds of excitation, more than doubled. A comparative summary 
is given in table II. 

The sensitivity of the structure to small changes in the 
member yield criteria is understandable when it is realized that 
the dynamic system is working in the region of a boundary 
condition plateau - namely, the yield criteria. The small 
number of members means that the loss of incremental stiffness at 
one or two critical member sections proportionatelY alters the 
total incremental stiffness of the structure much more significantly 
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much more significantly than the same number of changes in, 
for example, a ten-storey, four-bay frame with ninety members. 

The only time that a collapse mechanism formed in the piles 
was after 5.54 seconds in that analysis in which the re-calculated 
yield moments were used instead of an interaction criteria. It 
was present for only 0.04 seconds. However, the formation of a 
plastic hinge at the base of the pier member also constitutes 
a collapse mechanism - this being observed in all the inelastic 
analyses. Again, this hinge was never present for any significant 
length of time. 

CONCLUSIONS 

Both bridge structures are seen to be sensitive to the 
charateristics of their plastic hinges. The nature of the differences 
between the linear and non-linear responses is not predictable 
because of this sensitivity. It is interesting to note that the 
~armation of a potential collapse mechanism in a structure is a 
nece~sary (but not sufficient) condition for a failure under 
dynamic loading. In both cases, the analyses benefitted the 
designers by showing them the range in whtah they could expect 
their structures to respond if modelled with non-linear elements. 
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Elastic analysis Bi-linear analysis 

Left deck Right deck Left deck Right deck 

Natural frequency of undamped 
fundamental mode (Hz) 2.789 2.879 2.789 2.879 

Maximum deck displacement 
(horizontally) (nun) 20.2 18.3 23.1 25.4 

Maximum amplitude of deck 
displacement (nun) 38.4 36.1 58.0 38.9 

Maximum relative displacement 
of deck ends (nun) n.s 25.0 

Maximum seismic gap required 
to prevent butting (rom) 5.9 9.4 

TABLE 1: SUMMARY OF RESULTS FOR DURHAM STREET RAILWAY OVERBRIDGE 
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a) Elastic 
analysis 102 49.7 - - -

b) Elasto-plastic 
with no 95.7 -46.3 -1. 53xlO- 3 3. 66xlO- It 30 
interaction 

c} Elasto-plastic 
with -94.8 -46.6 -O.73xlO- 3 4.39xlO-" 8 
interaction 

Elasto-plastic 
(no interaction) 108 -49.7 -3.6 xlO- 3 8.30xlO- It 64 
revised yield 
values 

TABLE II: SUMMARY OF RESULTS OF ANALYSES OF PIER 5, TRANSVERSE 

DIRECTION, AUCKLAND UPPER HARBOUR CROSSING. 
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SUMMARY 

Response parameters have been studied for two structural models 
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subject to the coupling earthquake motions of the vertical and horizontal compo
nents of the 1940 El Centro. Bilinear material behavior, p--Q.elta effect, damp
ing, and the reduction of plastic moment capacity have been considered in the 
investigation. The structural models are lumped mass in nature. One model has 
masses lumped at structural joints, and the other has additional nodes at the cen
ters of individual girders. Structures analyzed consist of a 4-story-3-bay and a 
10-story-single-bay rigid frame. The results show that the model containing 
nodes at girder centers can realistically reveal the effect of coupling earthquake 
motions on structural systems and that the significance of a vertical earthquake 
component depends on the structural parameters. The observation is based on a 
comparison of displacement response, energy absorption, and the ductility and 
excursion ratios of the systems analyzed. 

INTRODUCTION 
The effect of parametric excitation on structural response and stability was 

described by Cheng [1) in 1974. Cheng and Oster recently published a report on 
the effect that vertical earthquake motion has on the dynamic response of elastic 
structures with various natural frequencies [2). It is obvious that the inclusion 
of the vertical earthquake component is essential in examplifying the real behavior 
of a structural system. However, the structural model used in such an analysis 
should provide a sufficient means for adapting the effects of this inclusion. The 
purpose of this report is to show the effect of vertical earthquake motion on two 
lumped mass models. The response parameters used for comparison are the 
maximum horizontal floor displacements, maximum relative horizontal floor 
displacements, maximum vertical floor displacements, energy absorptions, and 
ductility and excursion ratios. 

Modell is the traditional spring-mass system in which the mass of each floor 
is lumped at the joints connected by columns and girders. The floor mass con
sists of girder weight, superimposed mass, and the half weight of the columns 
located above and below the floor. Model 2 is similar to Modell except one 
additional node is assumed at the center of each girder. The mass lumped at the 
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girder node is half of the floor masS distributed on the member. 

FORMULATION OF MOTION EQUATION 
The motion equation for a multidegree system includes viscous damping, P

delta effect, and both horizontal and vertical earthquake components. It can be 
expressed as 

[M] (x} + [C] (x} + ([K] - [K ]) (x} = -[MJ [it } s - . g (1) 

in which [M] = mass matrix; [C] = damping matrix; [KJ = structural stiffness 
matrix; [K J ;0:: geometric matrix; (x } = ground acceleration vector; and {x}, 
[x 1, and el} = acceleration, veloci~ and displacement of the structural ~odal 
coordinates respectively. 

For the study of nonlinear structural systems, the numerical integration 
should be performed on the basis of a stepwise technique for which the motion 
equation of Eq. (1) can be written in the following incremental form: 

[MJ (~x} + [C] r~x} + ([K] - [K ]t At) (~x} = - [M] (~: } + [L~K ] (x} (2) 
s +~ g s -t 

in which tAX} = (x}t+~t- {x1t' {~x} = {x}t+~t- {Xtt' {ax} == (x1t+~t- {x}t' 

(~x } = {x lt At- [x 1 , and [~K ] = [K ]t At- [K ]t' Beeause earthquake g g +u - g t s S +"-11 s 

motions primarily cause linear inertial forces. the rotatory inertial forces 
associated with lumped masses are relatively small and can be neglected. Thus, 
the number of linear equations in Eq. (2) can be reduced by solving for the nodal 
rotations, {~xe}' in terms of nodal translations as 

( -1 {~X } -~xel:= -[Kll J [K12 J Axv 
s 

(3) 

in which [lSI J and [K
12

1 are submatrices of [KJ, and {Ax
v

} and t~xs} are 

incremental vertical and horizontal displacements respectively. The insertion of 
Eq. (3) into Eq. (2) results in the final incremental form of the motion equation as 
shown b'l'llow: 

t:U ~ . 11 Ax .6. ., 
[M] ~xv} + [C) {A~v} + [K ] t~xv} = - [M] ~~.g} + [~.Ks] {:v}t (4) 

s ssg s 

. . 11 T ]-1 t .. } 
III WhICh [K ] = [K

22
] - [K

12
] [Kll [K12 ] - [Kslt+At' and AYg and 

{Axg} represent incremental vertical and horizontal earthquake components re
spectively. Newmark's integration technique was formulated for previous work 
(2, 5) and has been used successfully for this study. 

STIFFNESS MATRIX FOR INELASTIC MATERIAL 
Material behavior is assumed to be bilinear as shown in Fig. 1 for which the 

stiffness of a member may be assumed to consist of an elastoplastic component 
and an elastic component as discussed by Giberson [3]. The structural stiffness 
matrix, [KJ, must be modified when one end or both ends of a constitutent member 
become plastic or change from plastic to elastic. The member stiffness corres
ponding to the four possible deformation stages are given in the recent work of 
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Cheng and Oster [2]. The plastic moment capacity is reduced according to the 
interaction equations in the AISC manual [4] for columns and ideal plastic moment 
is used for girders. 

GEOMETRIC MATRIX 
The P-delta effect, which results from a vertical earthquake component and the 

structural weight, can be simply illustrated by studying the single mass system 
shown in Fig. 2. As sketched in the accompanying figure, the shear, Ksxs, is due 
to the overturning moment produced by the vertical forces. The magnitude of 
shear per unit displacement is Ks = W - myg/L in which W is the structural weight, 
M the structural mass, :Y'g the vertical earthquake component, and L the member 
length. The geometric matrix of multistory structures can be established in a 
similar manner. 

DAMPING MATRIX 
The general expression of the damping matrix can be expressed in a linear com

bination of mass and stiffness as 

[Cl=C([M]+,B[K] (5) 
in which rJ and {3 are constants based on the fundamental natural period of a struc
ture system. For an inelastic structural system, the stiffness matrix, [K], 
varies during a response period; consequently, the combined form of mass and 
stiffness cannot constantly represent the assumed damping coefficients, [C J. 
Therefore, the mass proportional damping is used in this study for which t'/. = 
2.A:pn and f3 = o. The term A is the fraction of clitical damping9 and Pn is the fun
damental frequency of the structural system. 

ENERGY FORMULATION 
Consideration of the energy absorption of a structure may serve two purposes. 

First, the overall behavior of the structure can be determined by using the energy 
measurements. If a structure is able to store the total input energy in the form of 
elastic strain energy, the integrity of the structure will be greater than that of the 
same structure for which a part of the input energy must be diSSipated by strain 
energy through permanent sets. Also the integrity of one structure will be greater 
than another if the one is necessary to diSSipate less strain energy when both are 
subject to the same earthquake motion. Second, a means of checking the accuracy 
of the response solution is prOvided. Based on the law for the conservation of 
energy, the total input energy absorbed by a structure must be equal to the stored 
energy (TSE) in the form of both elastic energy (ESE) and kinetic energy (EKE) 
that is added to the dissipated energy resulting from permanent set (DSE) and 
damping (EDD). The general expression for energy conservation at time t may 
be written as 

The individual terms in Eq. (6) are: 
, 

t T 
TIE = l: (V D.x + R D.y + (F 1 (D.x} } 

t t=o ave g yave g 'P' s ab 

NM Li 2 2 
ESEt = ~l 6El. (M2i- 1 - M2i_1 M2i + M2i) 

1 

(6) 

(7) 

(8) 



no 

(9) 

N. N~t 
DSEt = ]zi1 !; 1 M. ~ B. (1 - p) 

1= pc 1 
(10) 

EDD = ([C]T LX} ? (li 1 ~t 
t ' ave - save 

(11) 

The respective notations in Eqs. (7) to (11) are: 

V = average shears during incremental time at structural supports not 
ave including shears resulting from P-delta effect, 

~x == incremental horizontal ground displacements, 
g 

R '" average vertical reactions during incremental time at structural 
yave 

supports, 

~y == incremental vertical ground displacements, 
g 

(F 1 == [K ] ex }, horizontal forces at floor levels due to P-delta, 
p s s 

[~x } b == (Ax + Ax }, absolute horizontal displacement vector, - s a s g 

NM = number of members, 

L. = length of member i, 
1 

E = modulus of elasticity of the structural member. 

1. =: cross-sectional moment of inertia of member i, 
1 

M
2i

-
1 

= moment at end 2i-l of member i at time t, 

M2i = moment at end 2i of member i at time t. 

N
f 

= number of floors, 

N = number of lumped masses, 
m 

M. == mass of jth floor, 
J 

~ = lumped mass k, 



x. = horizontal velocity of floor j, 
J 

x = horizontal ground velocity at time t, 
g 

Y
k 

= vertical velocity of mass k relative to the base at time t, 

Y = vertical ground velocity at time t, 
g 

N ~t == number of time increments at which the joint j (member end j) is in 
plastic range, 

N. = number of joints, 
J 
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M = reduced plastic moment for columns, ideal plastic moment for girders, 
pc 

D. 8. = incremental end rotation during time increment i, 
1 

p = strain hardening ratio, 

(x} = average relative transverse velocity vector over At, and 
ave 

tli} = average absolute transverse velocity over ~t. 
save 

The amount of error in the incremental integration technique is determined as 
a percent of the total input energy. The following equation is used to calculate 
the percentage of error after every time increment, At. 

o/c E - [TIE-(TSE + TDE)] (100) 
o rror - TIE (12) 

DUCTILITY AND EXCURSION RATIOS 
The ductility ratio f,.L, used in this investigation is defined as the ratio of the 

total rotation, e
t
, of a joint (member end) divided by the yielding ratation, e , of 

the joint as y 

St e +t'.t 
~ = - = .:.L- ::: 1 + fL (13) e e e y y y 

in which Ci is equal to the plastic rotation of the joint as sketched in Fig. 1. 

The excursion ratio, E, of a joint (member end) is defined as the sum of total 
plastic rotation, of the joint during an earthquake record divided by its yielding 
rotation and may be expressed as 

N f'J. 
(== rP 1 

F1 e 
y 

(14) 
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in which N f.L is equal to the total number of times in which the joint has suffered 
plastic defbrmation dUring the response. 

EXAMPLES AND COMPARISONS 
A 4-story-3-bay frame has been analyzed for Models 1 and 2 as shown in Fig. 

3. A comparison of the displacement response resulting from both horizontal and 
vertical earthquakes is given in Fig. 4. The effect of the vertical component on 
energy absorption of the elastic models of 1 and 2 is shown in Figs. 5 and 6. 
Similarly, the comparisons of energy absorption of elastoplastic models result
ing from a horizontal earthquake only and horizontal plus vertical components 
are given in Figs. 7 and 8 respectively. The ductility and excursion ratios of 
the columns and girders of Models 1 and 2 are given in Fig. 9. Note that the com
parison of four cases for each floor refers to maximum values of any of the nodes 
on that floor. Fig. 10 shows the maximum vertical displacements at the girder 
centers of Model 2. 

The ten-story-one-bay rigid frame shown in Fig. 11 has also been studied for 
comparison of response parameters for which the yielding st:ress is 36 kip/sq in. 
and the plastic moment capacity is increased by 2.5. The displacement response 
at the girder center of each floor is shown in Fig. 12. The comparisons of input 
and dissipated energy with and without damping are given in Figs. 13 and 14. 
These two figures reveal the Significant effects of damping and material behavior 
on energy absorption. which, however, does not deviate noticeably for Models 1 
and 2 of this structural system. The maximum relative floor displacements 
associated with elastic and elastoplastic Models 1 and 2 are shown in Fig. 15 in 
which the comparisons are based on a horizontal earthquake only. a horizontal 
earthquake and the P-delta effect. and horizontal and vertical earthquakes plus 
the P-delta effect. The ductility and excursion ratios of the girders for Models 
1 and 2 are shown in Fig. 16. This structure has strong columns that have only 
plastic hinges developed at the supporting base during the entire response period. 
It is apparent that the P-delta effect has a significant influence on the displace
ment response. whereas the vertical earthquake does not influence this strong 
columnal structure noticeably. However. there is a remarkable difference in 
the ductility and excursion ratios between Models 1 and 2. 

CONCLUSIONS 
Two lumped mass models. 1 and 2. are used to study response parameters of 

damped and undamped inelastic systems subject to coupling horizontal and verti
cal earthquake motions. The response parameters are expressed in terms of the 
displacement response of the columns and girders. energy absorption. maximum 
relative floor displacements and ductility and excursion ratios. From two ex
amples of four-story-three-bay and ten-story-one-bay rigid frames. it has been 
observed that Model 2, which has the masses lumped on girder centers and 
structural joints. can best describe the behavior of structural systems subject to 
both horizontal and vertical earthquakes. The Significant effect of a vertical 
earthquake on displacement response depends on structural parameters. The 
examples show that the vertical earthquake affects more on model 2 than model 
1, particularly on structures with weaker columns and that the vertical earth
quake demands a great deal of ductility in girders of all structures. 
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For the work reported on here, the percentage of error ranged from less than 
0.5 to 2.0%. The larger values occurred in the 10-story structure. This error 
level is felt to be sufficient for the investigation reported on in this paper. 
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Summary 
The study deals with the effect of soil atructure 

interaction on the fundamental periods of framed reinforeed 
concrete multi-storey structures. Typical structureD of 
various heights and several foundation system. are examined. 
as the relevant soil parameters are varied for each founda
tion system. 

An approximate formula for the fundamental period, 
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with the consideration of the elastic complianee of the 
foundation, is presented. This for.ula shows the effect of 
soil structure interaction to increase the fundamental period 
of the structure. 

The influence of the elastic compliance is shown as 
particularly pronounced in the cases of i80lated footing. 
on sand and of raft foundation on 80ft elay. This influence 
increases with the height of the structure. 

The influence of the compliance is small in the case 
of pile foundations and it decreases with increase in the 
height of the structure. 
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1. Introduction 
In many investigations it has been shown that the 

interaction between a structure and the foundation soil 
increases the fundamental period of the structure and 
thus affects its response to earthquake stimuli. 

Studying this problem, various mechanical models 
have been proposed to represent the properties of the 
foundation medium. Thus, for example, Lycan and Newmark(4)* 
Fleming et a1(3) and Merritt and Housner(6) investigated 
two dimensional shear buildings with the foundation soil 
represented by a spring or a spring-mass combination, 
and Mendelson and Baruch(5) analysed the response of a 
non symmetric multi-storey structure, with a raft founda
tion, with the sub-soil being represented by a massless 
spring. 

In these investigations only the vertical and rocking 
motions of the foundations were considered, whereas horizon
tal translations were not allowed for. 

On the other hand, Parmelee et al(8) examined a one
storey structure in rocking and sliding motiorl and Muto(7) 
obtained the r~sponse of a framed structure, with the 
foundation 80il represented by springs allowing for both 
rocking and sliding , while the participating soil mass is 
being added to that of the foundation. 

The lateral dynamic response of pile foundations was 
examined by Alpan{l), who used the theory of beams on 
elastic ~upports(Winklar Model), and by Penzien(9), who 
used a similar model with non linear springs and with 
participating soil masses added to those of the piles. 

In the present work the influence of the elastic 
foundation compliance on the fundamental period of typical 
framed reinforced concrete structures of 5,10 and 15 
stories is examined. The following, commonly occuring, 
foundation systems are considered: 

(a) Isolated footings on sand. 
(b) A raft on a clay layer, overlying solid rock. 
(c) Piles penetrating a clay layer and supported by 

underlying solid rock. 

Similarly, the influence of varying the sail parameters 
for each of the foundation system is also examined. 

In view of the considerable uncertainty i~ assumin~ the 
soil mass participating in the motion of a foundation system. 

• Numbers in parantheses refer to the list of references 
at the end of the paper. 



the sub-soil is represented here by massless springs, 
enabling, as appropriate, rocking and sliding motions 
of the foundations. The relevant spring constants are 
determined from simple and practical relations based 
on elastic theory combined with empirical evidence. 
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The effect of the dynamic soil structure inter
action in a general case may be expressed by an approxi
mate formula, proposed by Mendelson and Baruch(5), for 
the fundamental period of a structure on an elastic 
subgrade. The validity of this formula is checked again 
in view of the results of the present work. 

The computations connected with the present work 
were carried out by using the STRUDL II computer 
program(14). 

2. An Approximate Formula for the Fundamental Period. 

Mendelson and Baruch(S) have proposed, following 
Dunkerley's approximation(12), the following formula to 
estimate the fundamental period of a structure based on 
an elastic subgrade: 

T - IT 2+ T 2 
ap 0 s 

where: 
T • approximate fundamental period, ap 
To 

T 
s 

• fundamental period of the structure 
by rigid subgrad~, 

- period of the structure~ considered 
rigid body elastically supported. 

(1) 

as supported 

as being a 

A similar formula has been presented by Merritt and 
Housner(6) for a one-storey structure: 

where: 
T .., 
h '" 
k IS 

ka C 

III .. 

h 2 k 
~g 

period, 
height of structure, 
stiffness of structure, 
stiffness of subgrade in rocking , 
mass of structure 

(2) 

ratio between the elastic soil compliance and the 
flexibility of the structure. 

The generali~ation of equation 2 to allow for an 
approximate determination of the fundamental period of 
multi-storey structures leads to considerable 
discrepancies if compared to actual values. The 
difference is due to the fact that in the model 
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represented by this equation the entire mass of the 
structure is concentrated at its top. In equation 1, 
on the other hand, the value •• f T and Tare 
obtained in accordance with die ac@ual mals distri
button in the structure, and therefore there is a good 
a-sreemen t between the approximat ion and reali ty, as 
shown in reference 5. 

3. Mechanical Models of Foundation-Soil Systems 

).1 Isolated footings on sand 

The elastic compliance of the footings is assumed, 
in this case, 8S due to the compression of springs 
representing the foundation soil (Fig 1). A prolimi
nary analysis of this system has shown sliding to have 
but a negligible effect on the period. Thus tho proposed 
.odel does not include the possibility of sliding. 

The computation of the relevant spring conatant for 
an isolated footing follows the approach of Alpan(2) 
baaed on the following quite simple but adequate 
••• uaptions: 

(a) Uniform vertical pressure at any given depth. 
(b) Vertical pressure at a given depth to follow 

the relation (Fig 2): 

where: 

a 
z • 

(1 + 

Gz • vertical pressure at a given depth, 

ao • pressure under the footing. 
z • depth below footing, 
ro • equivalent radius of footing. 

(3) 

(e) The elastic modulus of the sand - E varies linearly z 
with depth as follows: 

where: 
E -o E 

a .....2. .. 
r o 

E z - E (1 + a L) o r o 
(4) 

elastic modulUS of sand at footing depth" 

~E - . 
~z 

rate of increase of the elastic modulus with depth; 
a function of the relative density of the 
sand. 



Appropriate integration of the infinitesimal 
strains within the simplified .tress cone yields the 
spring constant of an individual footing: 

E . r 

k -
o 0 

(1-y 2 ),I(a) 
where: 
k • spring constant, 
y • Poisson's ratio, appro~imately 0.3 for sanda, 
1(0). a function. decreasing with increasing a, with 

maximum value of 0.5 for 0-0 . 
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(5) 

For the use with the approximate formula(equation 1) 
the general spring constant in rocking of the foundation 
s,stem is obtained as: 

2 
ke • .EX i .k l (6) 

where: 
It -e 
Xi • 

general spring constant in rocking, 

co-ordinate of footing i relative to the axis 
of rotation. 

3.2 Raft foundation on a clay layer. 

The raft, of dimensions B by L rests on a clay 
layer of thickness d(Fig 3a) and constant elastic 
aodulus E. The clay layer~ as previously mentioned, 
overlies a solid rock mass. The elastic behaviour of 
the clay is represented by one spring for th~ rocking 
mode and by a second one for the sliding mode(Fig.3b). 

The spring constant for rocking - ke may be 
expressed according to Shienels{ll) 8S follows: 

k • E.L.B 2 

e E 
i yT ' k). 

where: 
E 

iYT and kA • coefficients, depending on B,L and d 

(7) 

The spring constant for sliding - k is obtained 
by using a semi-empirical relationship gi~en by Savinov(lO): 

with 

k -x 

k 
xo 

k (1 I 2 ( B+ L) ) ! .Q. 
xo b. B" L a 

-3 • (1.7 x 10 )E.B.L. 
(l+y) (1-0. Sy) 

(8) 

o 

(kgf km ) (9) 
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where: 
E • elastic modulu8 of the clay in kgf/cm2 

B,L· raft dimension. in em, 

IJ. • 
y • 
C1 III 

C1 
o 

3.3 

10- 2 cm- 1 • empirical coefficient, 
Poisson's ratio, approxlmatel y2 0.5 for clays, 
pressure under the raft (kgf/cm ), 

2 
• 0.1-0.2 kgf/cm - empirical reference pressure. 

Pile foundations 

The structure is supported by piles penetrating a clay 
layer of thickness d and constant elastic modulu& E, and having 
their tips supported by massive rock underlying the clay(Fig 4a). 

The individual pile may be considered as a colum with 
lateral elastic support, hinged as the bottom a~d with partial 
rotational restraint at the top (Fig 4b). The pile head rotation 
depends, on the bending stiffness of the pile itself, and on the 
stiffness of the structural elements(beams and columns) jointed 
at the pile head. 

The spring constant of the lateral elastic support may be 
obtained from analogy with the model of a line load acting on 
an elastic half space(13) as shown in Fig 5: 

where: 

k _f.~R .! 
u 2.ln{-) 6 

r 

k - spring constant per unit length, 
p - load per unit length, 
u displacement under the load, 
R 
r "influence radius" ratio. 

Following empirical evidence published by Alpan(l) the 
value of ~ a 2.18 was adopted. 

(10) 

The actual analysis of the dynamic syste~ under considera
tion was based on a lumped parameter model, i.e. the piles were 
devided into sections support~d by discrete springs. 

For use with the approximate formula (equation l)the gene~ 
ral spring constant for horizontal motion of the foundation 
system. -kx ' is defined as the force at ground level per unit 
displacement, with restrained rotation at the pile heads. 

4. The Bu! Id fngs 
A typical floor plan of the buildings selected for illustra

tion is shown in Fig 6. The length of the buildings is 30.0 m, 
their width 12.0 m, the height of a storey is 3.0 m, and the 
number of stories is 5, 10 and 15 as stated before. 
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The structures consist of reinforced concrete slabs of 
14 cm thickness, seven identical frames which provide structu
ral stiffness in the short("B")direction and four similar frames 
in the long("L") direction as evident from Fig 6. All the beams 
are of the same cross section whereas the columns vary in 
accordance with their axial load. as shown in Fig 7. 

In the cases of isolated footings and pile foundations the 
columns are fixed in foundation beams of the regular cross 
section. and in the case of raft foundation the columns are 
fixed in the raft which is considered as infinitely rigid. The 
external walls as well as the partitions are not considered to 
contribute to the structural stiffness. 

The analysis was based on a lumped mass model with the 
masses lumped at the floor levels. Each lUmped mass, including 
the mass of the floor, the walls. the partitions. the columns 
and 20% of the live lo_d, was taken as 330 kgf.sec 2 /cm. 

In the analysis, only the lateral oscillations in the "B" 
direction were considered. 

5. The Foundation Systems 

5.1 ISOlated Footings on Sand 

The footings were dimensioned in accordance with their 
static load, assuming two types of sands of the following 
properties: 

(a) Relative density of D -50%. permissible bearing 
pressure of 3.0 kgf/cm 2 and ela~tic modulus at the surface of 
E • 150 kgf/cm 2

• o 

(b) Relative density of D - 90%. permissible bearing 
pressure of 6,0 kgf/cm 2 and elaitic modulus of E ~ 250 kgf/cm 2 • 

o 

The ratios afro wars found in accordance with the relative 
densities as 0.9 for the first case and 0.85 for the second one 
and for the appropriate equivalent radii , I (a) and the spring 
constants k were determined (see equations 4 and 5). 

The dimensions of the footings, the associate spring 
constants and the general spring constants in rocking are given 
in Table 1. 

As may be seen f~om Table 1, the differe~ce between the 
spring constants for the two sands is not too significant. Thus 
only the stiffer sand(Dr .. 90%) was consider~d in the computa
tions of the fundamental periods. 
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5.2 Raft on a Clay Layer 

The raft dimensions were taken as 13.0 by 31.0 m, the 
thickness of the clay layer was taken as 10.0 m and the 
elastic moduli of the clay was assumed as 150 and 250 kgf/cm 2

• 

The geometry of the system yielded, for the computation 
of the spring constant in rocklng{equation 7), the following 
values of the sequent coefficients: 

i E _ 2.67 and k\· 0.85 YT A 

As may be seen from equations 8 and 9, the spr~ng constant 
in sliding depends, in addition to the elastic m~4ulus of the 
clay, on the contact pressure on the clay, and thus on the 
height of the structure. 

The values of the spring constants for the various 
structures are given in Table 2. 

5.3 Pile Foundations 

The thickness of the clay layer was again caken as IO.Om 
and the elastic moduli, as before, were 150 and 250 kgf/cm2. 
The pile diameters, uniform for each building, were determined 
from the maximum static load with a permissible stress of 
50 kgf/cm 2 • The pile diameters, their mass per unit length, 
and the general spring constants for all the cases are given 
in Table 3. 

6. The Approximate Fundamental Period 

For use with the approximate formula(equation 1). To were 
determined for the structures being hinge supported on rigid 
subgrade(Fig 8). 

Values of Ts were obt.ined from: 

m h 2 B2 
Ts • 2nl ke(~ + 12) (11) 

for the cases of isolated footings and raft foundations, 
and from: 

T • 2w.; m+O.S mp 
s kx 

for the case of pile foundations, 
where: 
m - total mass of the building, assumed uniformly 

mp -
h -
B • 
k • 
k~ 

distributed throughout the height, 
total mass of the piles. 
height of building, 
width of building t 

general spring constant in rocking, 
general spring constant for horizontal motion, 

(12) 



The values of To and Ts are given, together with the 
other results in Table 4. 

7. The Results 

The fundamental periods for all the cases examined as 
well as the approximate values are presented in Table 4, 
and shown as a comparative illustration in Figure 9. In this 
figure the ratio ~!To is shown Versus the squared ratio(To!Ts)2 
which in fact expresses the ratio between the flexibility of 
the structure and that of the foundation soil (cf. Fig.2 of 
reference 6). 

The variation of the period ratio with the number of 
stories is illustrated in Fig. 10. 

The practical significance of a change in period due to 
the soil structure interaction lies in the influence of this 
change on the seismic force acting on the structure. This 

135 

force, according to varioltq seismic codes of practice. is 
inversely proportiona1t~T)1/3.Thus the ratio of the seismic forces 
V!Vo • (To!T)l!3 , also presented in Table 4. essentially indi
cates the influence of the foundation compliance in comparison. 
with non-Yielding supports. 

As an additional effect of the computations. the periods 
of some of the higher modes were also obtained, only to confirm, 
as has been known before (5), that the influence of the founda
tion compliance on the periods of the higher modes is 
negligible. 

8. Conclusions 

The influence of the foundation compliance on the funda
mental period is particularly pronounced in the caSe of isola
ted footings on sand and that of a raft on a clay layer. This 
influence increases with the height of the structure. The main 
cont~ibuting factor in these caSeS appears to be the fleXibility 
of the foundation system in the rocking mode. Introducing a 
constraint against sliding(i.e.kx • 00) does not influence the 
period significantly. 

The influence of the foundation compliance appears to be 
small in the case of pile foundations. This influence decreases 
further with an increase in the height of the building(or 
rather its slenderness. i.e.its height to width ratio) since 
the pile diameters. and hence their stiffness are increased to 
allow for the higher loads transmitted. 

The difference in the compliance effects of the various 
foundation systems becomes evident in the taller buildings, 
while in the lowest buildings(5 stories} it is practically 
negligible. 
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The approximate relationship, given by equation 1, 
appears to furnish reasonably accurate values for the periods. 
The deviation between the approximate and the more exact values 
obtained for the fundamental period are essentially due to the 
difference in the computation models used for obtaining Tp and 
T. In the computations for To , the colums are fixed at their 
bases in foundation beams of the regular cross aection with the 
result of certain rotational flexibilities of the joints. In 
determining T, the rotational stiffnesses at thE! bases of the 
columns are increased significantly when the columns are also 
fixed in the pile heads or in the rigid raft. 

For the cases examined in this paper, the influence of 
foundation flexibility on the probable seismic forces is not 
too pronounced. The maximum influence was obtained in case C 
2.1 (15 stories building with raft foundation on soft clay) 
and amounted to a reduction of 15% of the seismic force. 
Nevertheless, a greater influence may be expected for stiffer 
structures (for example, shear wall structures) founded on 
soft soil, as seems to be indicated by the findings presented 
in reference 5. 
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Fig. 1 : 

Mechanical model of isolated 
footings AS a foundation 
system. 

Fi g. 2 : 

Stress distribution under 
circular footing. 

a ROCK 
b 

Fig. 3 Mechanical model of a raft foundation. 

141 

z 



142 
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ROCK 
a b 

Fig. 4 Mechanical model of a system of pile foundation. 

Fig. 5 : 

£lastic half space 
under a line load. 
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Fig. 8 : Idealized 

supports for 

computation of To 

T 1.7 _-~------.------'--r'--'" 

~ 1.6 ..----t-----+------,I!---+---~ 

-·-Single 
footings 1.5 ..----+----'""-""if--.-r---+--~ 

----Raft 2 
(E-15 Okg I em ) 1.4 1------1~---~_4_----___,~+_-___I 
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1.0 
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Number of Stories 

Fig. 10: The founda.ental period as influenced by 
building height and foundation system. 
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ABSTRACT 

The analyses of seismic response of high rise buildings 
have been customarily performed without taking into account 
the dynamic effects resulting from the dead weight of the. 
structures. In the event of an earthquake disturbance, the 
rotation of the building due to soil-structure interaction 
will shift the center of gravity of the building laterally. 
This means that, while responding to the excitations due to 
ground motion, the system will behave as an inverted pendulum 
influenced by its own weight. Furthermore the phenomena can 
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be shown to be coupled with the structural deformation which 
causes the centers of gravity of the structural members to move 
laterally. Although it is known to seismic analysts that this 
gravitational effect depends primarily upon the aspect ratio of 
the system and the foundation stiffness. its significance has 
not been accurately quantified for tall buildings on soft ground 
where the soil-structure interaction effect is playing an 
important role. 

This paper demonstrates how the phenomena can be studied by 
using a soil-structure interaction model. Modified governing 
equations were derived and incorporated in an interation analysis 
utilizing fixed-base modes of the superstructures. In this 
manner, the problem was investigated by modelling the soil medium 
as an elastic half-space. The inverted pendulum effects. with 
and without the consideration of structural deformation, are 
discussed on the basis of the numerical results obtained. 
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1. INTRODUCTION 

The dynamic effects of. gravity loads on structural 
response during earthquake has long been recognized by 
engineers. In the early studies of this problem, highly 
simplified models were used to obtain a quali tcltive assess-
ment of the phenomenon. The change observed in these 
investigations when considering gravity influence was a 
reduction in the natural frequencies of the system (see, for 
example, Newmark [lJ). The effects are more pronounced for 
tall structures 1 such as high-rise buildings, on soft ground 
and are insignificant for squat structures founded on rock. 
Technically speaking, the phenomenon depends to a large extent 
on the aspect ratio of the structure and the foundation stiff
ness which governs the rotation of the system during earthquake. 
Very little has been done so far for an accurate determination 
of the effect upon the dynamic response of the structural masses 
or members, Due to difficulty in deriving the modified govern
ing equations for complex structures with gravity loads, the 
inclusion of gravitational influence in soil-structure inter
action models has not yet been made feasible. 

In the present paper, it will be demonstrated how the 
gravity effects may be incorporated in a model as complicated 
as a three-dimensional system in which the soil-structure inter
action effects are accounted for by coupling the structure 
with an elastic half-space. This was accomplished by modifying 
the potential energy expression associated with gravity load and 
then deriving the modified governing equations using the 
Lagrange's equations of motion. In ess~nce, thE~ new equations 
govern the motions of a seismic model in which the structure
base system will behave as a flexible inverted pendulum while 
responding to the disturbances from the ground motions. 
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2. MATHEMATICAL FORMULATION 

Consider, for the moment, the two-dimensional structure 
on an elastic half-space as shown in Figure 1. Rigorous 
derivation of its equations of motion including gravity effects 
associated with both the rigid-body rotation and the structural 
deformation may be achieved by considering the potential 
energy change resulting from gravity load. The mathematical 
formulation is, in general, rather involved. However, for a 
preliminary investigation, an insight to the problem can be 
obtained by taking an idealized model (Figure 2a) in which the 
structural deformation is characterized by lateral deflections 
of masses only. In this case, the necessary terms in the equa
tions of motion reflecting gravity influence can be derived by 
only considering the change in potential energy due to rigid
body rotation of the system plus the lateral deflections of 
the masses. For instance, the potential energy change, Vg , at 
the ith mass, mi, will be (Figure 2b) 

e2 
- m.g( h.- + u.S 

1 12 1 
(1 ) 

where g is the gravitational constant, hi is the elevation of 
mass as indicated in Figure 2, e is the base rotation and ui is 
the lateral deflection of mass along Xl-direction. Adding the 
potential energy change from all masses and extending the 
analysis to three-dimensional problem, the expression for the 
total change in potential energy resulting from gravity load 
due to building rotation and lateral deflections of N super
structure masses (ignoring contribution from the base mass) may 
be written, for small rotations, as follows: 

v 
g 

where 81, 83 , ui and Wi are coordinate variables. 

(2) 

In writing the above equations, the notation for three
dimensional analysis has been used. The three components of 
rotation (81, 82' 83 ) and mass displacement relative to base 
(u, v, w) are defined corresponding to the three axes (Xl,X2,X3) 
in their respective coordinate frames. 



150 

substituting Eg. (2) into the Lagrange's equations of 
motion yields the following additional terms representing 
gravity influence 

(i"" 1,2, ••• ,N) (3) 

(i:=: 1,2, .•• ,N) (4) 

-:1 Vg N 
= - g mth 8 1 + g2 m.w. 

J J 
(5 ) 

081 
j 

OVg N 
- g mth 8

3 - g~ m.u. 
a 8 3 j J J 

(6 ) 

where mt is the superstructure total mass and h is the eleva
tion distance of the superstructure center of mass as defined 
by the equation 

N 

2: m.h. 
J. J. 

h = i (7 ) 

mt 

Note that for the problem considered here, contribution to Vg 
does not involve torsional rotation 82. 

The governing equations for a three-dimensional soil
structure interaction model using elastic half-space for ground 
simulation have been previously presented by Lee and Wesley 
( [2J , [3J ). Using the notation adopted in those papers and 
adding the gravity influence as given by Egs. (3}-(6), the 
modified governing equations may be written 

(8 ) 
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( [MBJ + [A 1 ( m J [A] ) {DB 1 + [p J t { q } 

- g mt 11 [TIJ{UBl - g [Tm]t[f J{q} ~ {f}. (9) 

where the symbols used were already defined in [3J except 
that new matrices [TIL!) and [TIJ have been introduced. The 
matrix [Tm] contains zeros and masses. The elements in 
[T~ are zeros and unity. The symbol [It denotes the 

transpose. 

For harmonic response, Eq. (8) may be solved for{q} 
to give the following expressions: 

{q 1 - [i5J[P ] {uB\ + g [D]al [Tm] {l\l (10) 

{;;H == (DJ[P J {UB\ - g LDJ[-tl [TmJ{UBl (11) 

where a bar over the column matrix designates the complex 
amplitude and [5J= ~2LDJ. The matrix [DJ is a modal 
amplification matrix which has been defined in [3J . 
Substituting Eqs. (10)-(11) in Eq. (9) yields 

( [MIJ + g [ Tm] t[~J (DJ [pJ ) {uBl 
- (g m

t 
h [ T~ + g [p Jt L DJ[jl

t 
[ TID] 

+ g2 [TmJt[~J (o][tJt 
[T' ) {uB1 ={f } 

(12 ) 

where 

The base displacement column matrix DB can be decomposed 
into two terms 

(l3 ) 
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in which {UG} is the column matrix of ground motion and 
{Dr} is known as the column matrix of interaction displace

ment. Replacing {f} by the elastic half-space impedance 
functions in the following manner ( [2J ,[3J ) 

{f} (14) 

where [K(iWU is a 6 x 6 matrix containing impedance functions, 
the final equations can be put in the following form 

where [Mj corresponds to the dynamic feedback from the structure 
due to its inertia. It is defined as 

(16 ) 

and the term involving [KDJ representing the influence due to 
structural deformation is defined by 

Eq. (15) can be solved for {DI} when the ground motion{u
G

} 
is prescribed. 



When structural deformation is neglected, the gravity 
influence comes from only one term 
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(18 ) 

which corresponds to the gravity load effects when the entire 
structure-base system behaves as a rigid inverted-pendulum,_ 
In this case, the total weight of the bui~ding gmt and the h 
parameter (or the aspect ratio parameter h/ro where ro is the 
base radius) will play an important role, 
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3. NUMERICAL RESULTS 

The modified governing equations derived in the preced
ing chapter retain the gravitational effects which are 
coupled with the soil-structure interaction. Numerical 
results were obtained for a tall building simulated by an 
idealized two-mass superstructure on rigid circular base 
with hI = 250ft and h2 = 125ft. The center of maSs of the 
superstructure is at n = 168.6ft and the aspect ratio para
meter is hlro = 2.8. The ground motion was taken to be 
harmonic and the data generated were in terms of frequency 
response for a two-dimensional problem. For the preliminary 
investigation conducted here with simplifying assumption 
introduced for the structural deformation, the major effect 
comes from the dynamic behavior of a rigid inverted pendulum. 
The gravitational influence was found to diminish to an 
insignificant level for buildings having low aspect ratios 
built on relatively stiffer ground. Quantitatively. when 
the shear wave velocity Vs in the elastic half·-space is 
sreater than 500 FPS, gravity influence is negligible for 
h/ro<3. 

Figure 3 shows the frequency response of the top mass 
in the vicinity of the first peak obtained with considera
tion of gravity influence as compared to that determined by 
conventional analysis ignoring gravity, As the shear wave 
velocity Vs of the elastic half-space reduces,the rotation 
(rocking) of the building becomes greater, and the top mass 
amplification rises. The phenomena observed here agree 
with those previously found by Parmelee [4]. l\.pparently, 
the influence of gravity load tends to reduce the resonant 
frequencies of the system and the frequency shift becomes 
larger as Vs drops. Another important finding is that the 
dynamic amplification of top mass was found to be higher 
when gravitational effects were included in thE! analysis. 

The gravitational influence resulting from structural de
formation characterized by lateral deflection only is not 
significant judging from the numerical results generated for 
this problem. This was expected because the la.teral dis
placement of the structural masses is primarily due to the 
rigid-body rotation of the system and the lateral deflection 
is secondary in this case. The numerical values of the top 
mass frequency response obtained with and without considering 
lateral deflection of masses are displayed in Table I. 
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Table I. INFLUENCE OF STRUCTURAL DEFORMATION 

Excitation Top Mass Amplification (VS =; 150 FPS) 

Frequency, Hz Lateral Deflection Lateral Deflection 
Neglected Considered 

! 

.0720 41,938 43.456 

.0725 70.353 74.168 

.0730 123.245 124.203 

.0735 78.936 74.700 

.0740 45.339 43.626 

.0745 30.946 30.098 
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4. CONCLUSIONS 

The influence of gravity load characterizing the dynamic 
behavior of a flexible inverted pendulum has been incorporated 
into a seismic model which accounts for the soil-structure 
interaction effects. The formulation is applicable to more 
involved three-dimensional models. Although thE~ initial study 
discussed here was conducted for a simple system with idealized 
structural deformation, it has revealed important quantitative 
information regarding the nature of the gravitat:ional influence 
on the building response during earthquake. 

The gravity effect does not become a significant factor 
unless building is tall. It needs not be considered in 
seismic analyses of short and squat structures such as nuclear 
reactors. The effect, however, becomes relatively more 
important for tall buildings when foundation softening is 
developing during seismic disturbances. 

The potential energy change associated with structural 
deformation was highly idealized. This results in the very 
small changes as shown in Table I. The gravity influence 
contributed from structural deformation is expected to be greater 
when more rigorous expressions are used for the work done by 
gravity forces. These include the consideration of the shorten
ing of distance in the axial direction as the structure deforms. 
Such problems will be treated in future papers. 

5. DISCLAIMER 

The work presented in the paper is a personal product of 
the author who is responsible for the accuracy of the results and 
the opinions herein expressed. It does not necessarily reflects 
the official views of his employer. 
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SUMMARY 

This paper presents the results of the research of 
earthquake large-panel dwelling nouses on precast pile
foundations under conditions of bed on building site of the 
unstable 50ilo 

The calculation dynamic scheme of building~ the results 
of natural tests of fragment of precast pile-foundation and 
large-panel 5~storey house by means of high capacity inertial 
vibrator are being discussedo 

R~gidity of pile-foundation plays a significant role in 
the total deformation of a large-panel hous6 g but practically 
it doesnGt influence the frequency of its oscillation as was 
established in the results of the tests., 

Rigidity of pile-foundation is determlned both by the 
rigidity of grating and by pileso 

The calculation dynamic scheme of large-panel building 
on the pile-foundation may De represented as a cantilever 
elastically-jammed in level grating and pile-foundation in 
the form of one storey frame. 

Besides the investigations show that all constructions 
above precast pile-foundation of building and also their 
joints possess sufficient strength in order to resist 
earthquake of various intensity. 

INTRODUCTION 

The most part of earthquake territory of Soviet Union 
have the unstable and yielding ground., 

Large-scale erection In ~his conditions of large-panel 
dwelling houses required the implementation of earthquake 
building of progressive shapes of foundation and pile
foundations, in particularo 
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The results of investigations. 

The pile foundation represents a through construction 
and consists of separate slender pivot-piles, dispersed in 
ground and connected in level upper part beam framework in 
distinction from foundation plate and wall. ~l'he perception 
and average of seismic influence of ground 011 building takes 
place not on the level of solid foundation plate as in the 
case of foundation wall and plate, but only on the level of 
grating by based on of large-panel building on pile foundation 

Tlle total oscillations of the building on the whole 
remains qualitative identical to the oscillaliions of the 
building on solid foundation however "the pillars experience 
bending deformations and piles absorb part of energy, 
transfer oscillation to the ground. 

Calculation scheme of large-panel buildi,ng in pile
foundation one can take as cantilever system in the form of 
pivot with a number or points compacts on its .height, which 
is based on rigid disk (grating) that is supported by a 
number of slender pivot-piles. 

For the sake simplification the calculation of a building 
in this case comes to the calculation of l~S above foundation 
part and separately the pile-foundation. 

The cantilever pivot elastically-jammed in level -grating 
is taken as a calculation scheme of above foundation part. 
The pile-foundation In its turn can be in the form of one 
storey frame, which is acted by of vertical load and seismic 
forces which in level grating_ 

The calculation above foundation part of building is 
done according ~o general used rules of calculation of large
panel buildings on rigid foundation, but taki:a.g into account 
the yielding p~le-foundation. 

'rhe calculation of frame is being done in accordance with 
the ordinary rules of construction mechanics in assumption of 
static action of external forces. The distribution of seiSIIllc 
forces among separate bearing vertical const~lctions of frame 
(piles) is being done in de~endence of const~lction solution 
of horizontal disk (grating). 

The most favourable solution of pile fOWldation can be 
achieved by safe secure of horizontal ties of all piles in 
system. This condition demanded the organization of monoli~hic 
grating. 

However monolithic reinforcement grating requires the 
organization of planking, application in big volume of manual 
labOur, quality control of placing of concretE~ in mounting 
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and in winter conditions is heating of concrete or application 
of special admixtures. All this results in reduction of degree 
of industrialization of pile-foundations and prolonging the 
time of bUilding. 

One can avoid all these lacks by means of organization 
of precast grating, transferring a considerable pa:riJ of work 
into factory conditions. 

The problem of possible use of precast grating was 
examined on the basis of special investigations devoted to 
the study of earthquake-proof of large-panel buildings on 
precast pile-foundations in conditions of bedding unstable 
soil of small power on construction site (5-6 m). 

The construction schemes of experimental house are given 
in figure 4. 

The principal bearing elements of pile foundation are 
rammed reinforcement grating-poles, which cut through slack 
soil and with their lower ends rest on dense incompressible 
stratum of gravel-pebbles deposits and a beam of gratingo 
Gonj ugate of beam of gration with piles is performed by means 
of reinforcement heads of piles (fig.1a). The heads o£ piles 
having through holes are put on the heads of two or three 
piles monolithing of cavity of holes with small-grained 
concrete is the next. 

Joining of precast beams of grating with each other and 
with heads is performed by means of welding of laying details. 

The strength of separate structures of foundation, its 
joinings and hardness and stability of pile-foundation on the 
whole by influence in it of horizontal vibrating loadings of 
seismic type was the first step in the investigation$ 

The fragment of precast pile foundation which compo sited 
1/5 part of experimental house was erected at one of from 
building sites and was subjected to natural testso 

The fragment was loaded with calculated vertical statical 
loading which was imitated by the weight of panels staCking 
against each other. 

The panels were displaced aside from the central axle of 
fragment in order to place a powerrul vibration machine 
inertial action with the help which and are conduct tests~ 

The total volume of tests included a number of consecutive 
cycles of vibration loading with the increasing indignant force. 

This was achieved by modification of mass debalances in 
vibrators" 
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The fragment was introduced into resonance at every stage 
of tests by easy change of rate rotation of debalances this 
was done twice - in increasing and in falling of rate rotation 
(frequency of oscillations). 

Registration of horizontal transferences of grating in 
the process of forced oscillation of pile-foundation was 
performed by means of apparatuses in all intersection of 
grating beams0 

The resonance curves were got as a result of treatment of 
oscillogram which represents the reco~d of horizintal 
transferences of fragment under all cycles its vibration 
loading (f'igo2) .. 

Moreover the test fragment is in two resonance states on 
two first stages of loading and in two following - in one .. 

In the diapason close to the first reSon&lCe peak the 
whole mass of grating and bailast of loading moved progressively 
in the direction of the action of insurrected j~orce and at the 
approach of second resonan.ce peak simultaneously with horizontal 
transference of beam torsion oscillations of mass ballast of 
weight moved around their own central axles of perpendicular 
to the action of vibration machineQ 

As the law of inertial excitement of constructions by 
vibration load can be considered of harmonious~ the inertial 
forces at the moment of passing resonance with sufficient 
degree of precision can be determined by ordinary formula: 

S L - m·a , 

where S L - inertial force t; 

nt- total mass of oscillating system in t e sec2/m 

cl- acceleration with oscillate system in m/sec2 and 
accordingly being determined by fonnula 

Cl - LJ Jr 2 r.p2AL , (2) 

where ~ - frequency of oscillation of system :Ln cps~ 

AL- affiplitude of oscillations of points system in the 
level ~o be defined in ill. 

The inertial force s were determined for eVE~ry stage of 
loading in accordance with the t"ixed ~ and A i.- on adducing above 
formulas p taking the whole mass of loading grat:~ applied in 
level of head of pile. 

In spite of some defects while testing in constructions 
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of grating (weak sides of heads~ insufficient anchoring of 
laying details in beams of grating) the fact of takin~ the 
most part of horizontal inertianal force by fragment (which 
eg.uals approximately 80% from calculation in earthquake 1'orce 
9) showed that pile-foundation of such construction can 
possess sufficient strength 9 rigidity, stability from the 
ear~hquakes of different intensity~ 

Natural test of two-section 5 storied dwelling was 
conducted to study the behaviour of large-panel building on 
precast pile-foundation under seismic forces. The roof of 
the ho1.fse lacked at the time of the test as some vi bro
machines had to be located on the floor of the 5 story. 

The test of dwelling was conducted in the same way as 
in the case of a fragment (the same method)~ 

The total volume of test consisted of a number of cycles 
of vibro-loading of dwelling both in transverse and in 
longitudinal directions~ 

Records of horizontal and vertical oscillations of 
dwelling were conducted synchronously with the help of set 
of vibro-apparatusQ 

Horizontal oscillations of dwelling were registrated in 
7 levels of its height and vertical oscillations were 
registrated in the level of grating. 

The analysis of resonance curves (figo3) has shown tha~ 
dwelling under test in all cycles of vibration loading is 
only in one resonance state, but in most dangerous oneo 

The criterion of the behaviour of large-panel dwelling 
on precast pile-foundation in earthquake can be taken the 
form of its oscillation (fig. 4) which is nearing to the 1'orm. 
~ypical to the system shear with bending (this corresponds to 
the modern calculation of large-panel building on rigid 
foundation) 9 but with additional components of oscillation 
and displacement their values prove the significant role of 
pliability of pile-foundation in the total deformability of 
a dwelling" 

The pliability of pile-foundation is determined by its 
rigidity which is the combination of rigidity of grating and 
piles, the most part of rigidity of pile-foundation being 
p~ovided by the rigidity of gratingo 

So for example, coefficient of rigidity of p~l~
fO"Wldation of the experimental house was 0 9 504010 1m, and 
coefficient of rigidity of grating was 0~}290106 t/mo The 
rigidity of piles has to be taken into account otherwise 
it will lead to the decrease of calculation of seismic loado 
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'l'he rigidity of p~.Les can -De neglected when the rigid..i ty of 
grating is much more than that of piles. 

The suusti tution of solid foundation by p:ile-foundation 
in:fluences greatly the elastic d.eformation of ,9. building and 
the i'requency changes insignificantly. 

This doesn't allow - to decrease the ValUE;) of dynamic 
coefficient in the well-known formula on detennining seismic 
calculation force. 

The intensity of oscilla'tions of building was increased 
in comparison with original loading by 7 times for transverse 
and by 13,5 times for longitudinal in the process of testing 
and under successive increase of mass debalances. 

The i"orces in building were achieved which equalled 
86-90% of calculation for force 9. Visible fractures alld 
cracks were not discovered in construction of "building and 
pile-foundation. The lack of fractures accounts for more 
favorable conditions of foundation work in the system of a 
building than separate foundation from one side and the change 
of reinforcement of head piles on the other side. 

:In spite of the visible lack of fracture the decrease of 
resonance frequency of oscillation of the system tlbuilding
foundation" was registrated in every cycle of loading this 
accounts for the decrease of original rigidity of the system 
due to the development of plastic deformations in joints and 
due to the irreversible pressing down of ground in contact 
with construction of pile-foundation. 

CONCLUSIONS 

'I. The conducted investigations allowed to determine the 
influence of pile-foWldation 011 the dynamiC wor.k of large
panel building, to check the strength of separate constructions 
of building and precast grating and also the joints under 
dynamic loadings nearing the calculated loadings under force 9. 

2. It is established that the structure of pile
foundation doesn't result in significant change of dynamic 
culculated scheme of large-panel building and this scheme is 
being considered in the calculation of the bu1tlding with a 
rigid fo~ation (wall, and plate)c In this very case the 
elastic jam of cantilever pivot in level of grating is being 
introduced into calculation scheme of building thus reaching 
the registration 01" pliability of piJ.e-foundation. 

3. The rigidity of piles should be taken into account as 
well as the rigidity of grating in ~he determining of the 
rigidity of pile-foundation. The rigidity of piles can be 
neglected only in the case when it is much less than that of 
grating. 
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4. In the course of test the forces were excited 
comprising 90% of calculation for seismic force 9. However 
no visible fractures and cracks in above foundation 
construction of building and in grating were discovered 
although the amplitude of oscillation of upper floor reached 
its maximum value in 7,8 mm and in grating - 3,4 rome 

5. The data received as a result of these investigations 
permi t to make a conclusion that large-panel buildings on 
precast pile-foundations can be earthquake-proor as well as 
the buildings on solid foundations. 

REFERENCES 

I. ,L,oTJill6oB A.j',ie, i~iRpTuHoBa Jl. A • CTpOMTeJlhCTBO KpYIIHOIIaHeJIo

Hill{ AOMOB Ha CBaIDrUX WH,n;aM8HTax B Ce;iCMMqeCIHU p~1OHax Ha 

npoca,n:01ffitU rpYHTax MaJIo.l Nl0Il.U10CTH.JiJ ... UHTI1,19.73. 

2. Ularm:po r .A. ,iviapTbl.HOBa J1 • .4. ,CllMOH 10.1\. ,8axapOB 15. w. ,KOH

ApaT:beB li.Do 0 cei1cIvlocTO.<iKOCTH KpymronaHeJIbHWC 3)J.aHHA Ha 

C60PHl:lX CBMHhIX c1lYH,IJ,aMeHTax. }[. II }KU.ill1lIUIOe CTpOI1TeJIbCTBO" , 

Jfl2, 1976. 

3. J3116paWioHHhle HCIIhlT8.HHH 3)I,a.Hlli1. 110,1l. pe.n.a.KUHe~l I1PO:P. r. A .llla
llHpO,iVl. ,CTPOrlI13;n,aT, 1972 r. 



168 

ct) facade 

~ Y/llf"//9, 
1"' ... .. ~ &, .. pi ~ .... r I>y-! ~ r4 .. r' "'..,II pd)~ to pi '~ 

/ / /, -'7,7,? /'/(7 
IH/IIO 77/111"1 r////"I'/T77, //1 

C)p£Clrt 

I U ru I II Il I 1_0 ~ 
1_'_I_'_I_I_1_IJJ_'~IJJJ ~ 
J ~D m } 

P LSI. 1 

1--. 

I \ 

:/1 l\ 
II ~ I ~ 

J 

// 
,011-

V· 

D 
Q 7 ~ ;; 

~) SLde lflew 
F"""""_-_~ 

flLeq,-uenc~ lQ>S) /0 mpeLtude(mm) 
I 
f 



INTERNATIONAL SYMPOSIUM ON 
EARTHQUAKE STRUCTURAL ENGINEERING 

169 

S1. louis, MissolJri, USA, August, 1976 

SOME SEISMIC RESPONSE SOLUTIONS FOR 
SOIL -FOUNDATION -BUILDING SYSTEMS 

By J 0 KAZ UO MINAMI and JOJI SAKURAI 

':' Professor and ':":' Assoc. Professor, Waseda University 

Tokyo Japan 

SUMMARY 

Behavior of buildings in earthquakes, taking into consideration the 
interaction effects of the supporting ground and the foundation consisting 
of basement, piles and piers, the energy dissipative capacities (damping) 
of soils, and the influence of the vertical component of earthquake motion, 
has been investigated by means of a cyclic truss type model that represents 
a soil-ioundation-building (SFB) vibratory system. The well-known 1940 
El Centro and 1952 Taft earthquake wave forms have been used, normalized 
to 100 gal horizontal and 60 gal vertical components which are fed into the 
SFB system at the base of the surface soil layers 0 The buildings consid
ered range from low to ITlediuITl height, 1 to 15 storeys above the ground 
leveL The daITlping of the building is as sUIned to be 3% of critical and 
10% and 20% damping ratios have been assigned to the hard, soft and filled 
soil types. The case of uniform damping ratio of 5% for the soil and the 
building has also been studied for the purpose of comparison. 

Seismic response in terms of base shear coefficient, base axial 
force coefficient and bas e overturning moment coefficient has been deter
mined by performing hundreds of simulation experiments. Some of the 
findings do not conform to long established concepts but they provide 
""t1<:f"tctory explanations for building damage observed in the past. 
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1. INTRODUCTION 

The paper prepared by the ASCE -SEAOC Joint Cornrnittee on Lateral 
Forces of Earthquake and Wind (1), published in April 1951 as ASCE 
Proceedings, Separate 66 presented a rational dynamic approach method 
of estimating the earthquake forces acting on buildings and laid the founda
tion for current earthquake resistant design practice. The recommended 
lateral force privisions were based on the seismic response spectra for 
the one-mass vibrating system fixed at the base to a rigid supporting 
medium for some U.S. earthquakes by M.A. Biot and E. C. Robison. The 
Joint Committee also included recommendations for futu~re study and invited 
investigators to substantiate, modify or refine the recommended provisions. 

The authors of this paper have obtained some deterministic seismic 
response solutions for the soil-foundation-building (SFB) systems which 
are presented herein. 2 -span buildings ranging froIn low J medium to 
moderate heights (15 storeys) supported on hard, soft, and filled ground 
are considered. The foundation of the system consists of basement, piles 
and pier s to provide adequate support and stability to the building s. Much 
attention has been directed to the study of the superstructure behavior 
under earthquake conditions but more attention should be directed to the 
study of the soil and foundation aspects if rational progress is to be 
achieved in earthquake resistant designo Recent research in soil dynamics 
has indicated that energy dis sipative capacity of soils is significant and 
the vertical component of earthquakes, usually ignored in earthquake 
resistant analysis, may also be im.portant in certain cases. These two 
aspects have been studied by performing simulation experiments using 
the SFB interacting models with the famous El Centro, 1940 earthquake 
and the Taft, 1952 earthquake as input wave forms at the base of the surface 
soil layers. 

Certain other aspects of the seismic response problem have been 
investigated and published as progress reports since 1969. Evidence to 
substantiate, modify or refine the findings would be welcomedo 

2. SOIL-FOUNDATION -BUILDING MODEL 

Fig. 1 shows the model used in the investigation reported in this 
paper. The surface soil formation consists of three layers, each of 5 
meter thickness and divided into 5 meter Inesh in the horizontal direction. 
Masses are concentrated at the intersections of the members. The vertical, 
horizontal and diagonal members ar e proportioned to have the necessary 
areas and stiffnesses to represent the soil types. The special feature of 
the model is that the soil layers are continuous in the hori.zontal direction 
so that in this model, the buildings are located at 50m on center s. Our 
studies on the influence of adjacent buildings on the seismic response 
have revealed that when the separation distance is of the order of 40m, 
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X:Horizontal 
Y:Vertical 

Fig. 1 Typical Cyclic Truss Type Model 

Table 1 Periods of Vibration of Model Buildings 
Fixed at GL, (sec) 

Storeys 
above GL 1st Mode 2nd Mode 3rd Mode 

1 0.085 0.025 0.022 
2 0.172 0.069 0.039 
3 0.247 0.098 0.062 
5 0.420 0.165 0.103 
8 0.702 0.269 0.166 

10 0.857 0.303 0.182 
15 1.470 0.522 0.315 

Table 2 Shear Moduli of Soil Ty:ee s (kg/cm 2) 
Soil Layer Hard Soft Filled 

Top 443 102 27 
Middle 1034 236 64 
Bottom 1330 305 82 

Computed from 
shear wave 
velocitie s 1058 265 66 
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there is practically no interaction between the buildings. (2) The vibrational 
characteristics of the soil types are expressed by the predominant periods 
of vibration, namely approxirnately 0.25 sec for the hard soil, 0 0 50 sec 
for the soft soil and 1. 0 sec for the filled ground to represent soil condi
tions in uptown, downtown, and filled areas of Tokyo. The upper two 
layers represent the actual vibrational characteristics of the surface soil 
forrnation and the third layer elements represent the characteristics of 
the deeper portion. 

The building has been modeled as two 5m span width of lOrn with a 
storey height of 3. 5m above ground and Srn storey height for the basement 
portion. The masses are concentrated at the intersections of columns and 
girders and the elements proportioned to have the necessary areas and 
stifinesses with the diagonal elements providing the requ.ired rigidities. 
Buildings of 1, 2, 3, 5, 8, 10 and 15 storeys have been analyzed. The 
foundation of the buildings consists of one or no basement supported by piles 
or piers reaching the firm bed formation 15m below the ground surface. 

The natural periods of the modeled buildings considered fixed at 
the base are given in Table 1. The shear moduli of the different soil types 
for each soil layer and the values obtained from shear wave velocities are 
shown in Table 2. The latter values correspond fairly well with those for 
the middle layer. Poisson's ratio of 0.49 has been chosen based on the 
investigations of Akio Bara (in Japanese). The natural periods of the 
ITlodeied soil types are 0.248 sec, 0.518 sec and 0.999 sec in the fundaITlen
tal mode for the hard, soft and filled soil types respectively which are 
close to the values initially assurned for the three soil types. 

Internal viscous damping of 3% for the building and 10% and 20% for 
each soil type has been assumed in the analysis based on the research of 
Seed and Idriss (3) and Kenji Ishihara (in Japanese) which indicate that 
damping values are strain dependent and the assumed vah1.es are to be 
expected in the strain range of O. 001. For the purpose of comparison, the 
seisITlic re sponse for the case of uniforITl damping ratio of 50/0 assigned to 
both the soil and the building has also been obtained. 

3. METHOD OF ANALYSIS 

3 0 1 Stiffness Matrix 

The soil and the buildings have been transformed to a cyclic truss 
type nlodel as explained and shown in Fig. 1. Prestressed concrete piles 
are provided for buildings of 3 or nlore storeys and piers for 10 and 15 
storey buildings. The piles are considered as flexural ITleITlbers fixed at 
the pile tip in the firm bed forITlation and to the building foundation at the 
pile butt and the stiffnesses deterITlined for these conditions. Piers are 
considered to undergo shear and flexural deforITlations under the same 
assuITled boundary conditions and the stiffnesses determined for formu
lating the stiffness matrix. 
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The treatment of the left and right boundaries of the surface soil 
layers is described by means of Fig. 1. The stiffness matrix for the portion 
shown by solid masses and full line eleITlents is given by Eq. 1. 

( 1 ) 

wherein Kl: stiffness submatrix for the left boundary portion 

" II for the central portion 

II Il for the right boundary portion 

The stiffness matrix for the model where the portion described by 
Eq. 1 appears at the left and right boundaries cyclically may be represented 
by Eq. 2. 

[KJ 

"'1<2 
k3+ K, 

K2 
K3 t K, 

( 2 ) 

K.2, 

The above equation is a continuous s erie s but for systems that have 
stiffness characteristics such as this J the vibrational characteristics and 
seisITlic response may be determined by using a ITlatrix of a limited order, 
such as Eq. 3., 

[K] = ( 3 ) 

and this equation has been used in the present investigation. 

3.2 Vibrational Characteristics 

In this investigation, varied damping ratios have been assigned to 
the supporting soil mediuITl and the building s so that the treatment of 
complex eigenvalue problem becomes necessary. The following method 
of analysis has been adopted by refering to the work of Foss (4) and the 
QR method has been used for nUITwrical computations. 

The equation of motion for the SFB model may be written as 
follows: 

[Mlm T [elm T [K11~f = 1 ~ I 
wherein [M): mass matrix 

[C]: daUlping matrix 

[K]: stiffness matrix 

(4 ) 
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I " X,X,x: displacement, velocity and acceleration vectors in the 
horizontal direction 

y, Y J y: same vector s as above in the vertical direction 

Eq. 4 may be rewritten as follows: 

[ 
[ c ] [ M ] l J ~ I [ [K J [OJ I ~ ~ (5 I 
[M] [0 J J ~ + [0 1 -[MJ j ~ ~ 

wherein [0 J: zero matrix 

Pre -multiplying Eq. 5 by Eq. 6, Eq. 7 is ohtained 

[
[1-<] [0] ]-1 
[0] [M] (6 ) 

l -( -( 1 X f I X l -[K}{c1 -Q<I{M] ~, = I, 

1

(7 ) 
[IJ [oj J ~ 

wherein [1]: unit matrix 

Assuming 

following equation is obtained. 

_1 J IT t = [-[1<]' [C) -[K]'[MJ] J - f 
7'-- I [lJ [OJ lU 

wherein 

1 u} = 1 ~1~~~ 
Using the values of 1iA- obtained from Eq. 8, 

if 
h j and Tj values may be computed from Eqs. 10 and n. 

wherein 

7t t = +J + i fi = - h j W j-+ i /1 - f1,/ ee) i 

nj = - 'fj / j 1/ + Cf/ 
Tj= 27C/(WJ/1-fJ/ )=27[/f; 

hj: damping ratio for the j -mode 

Tj: natural period in the j -mode 

cilr circular frequency for undamped j -mode 

in Eq. 7, the 

( 8 ) 

(9 ) 

(10 ) 

(11 } 
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The complex eigenvector s corresponding to the above ITlay be obtained 
from Eq. 12. The amplitude jAk for the point in the j -ITlode and the phase 
difference angle jEtk ITlay be deterITlined 1rOITl Eq. 13. 

{ U } = {1I} + Iv { UF} ( 12 ) 

(13 ) 

3.3 Response Calculations 

The earthquake response has been calculated by using the character
istic values obtained by the method explained in 3.2 and the daITlping ratios 
obtained for the varied damping factors by superposing the first 15 mode 
value s. The buildings under study being low to ITloderate in height, the 
effect of wave propagation is considered to be ITlinor and the phase angle 
difference between the masses has been neglected to simplify computations. 

Input earthquake data for the 1940 El Centro and 1952 Taft trelnors 
are those contained in volume II Part A, Earthquake Engineering Research 
Laboratory J EERL 75 -50, California Institute of Technology, Sept. 1971. 
Appreciation is expre s sed to the EERL staff for making available such 
valuable information. MaxiITlum horizontal acceleration has been reduced 
to 100 gal and the maximum vertical acceleration to 60 gal for both earth
quakes and they are fed-in at -15ITl from the ground surface where a firm 
base forITlation is assumed to exist. 

The 100 gal horizontal input produces acceleration response at the 
free field ground surface of approximately 410 gal, 290 gal and 190 gal for 
the hard soil for 5%, 100/0 and 20% damping ratios respectively for the E1 
Centro earthquake; 270 gal, 225 gal and 145 gal for the hard soil for the 
same conditions from the Taft earthquake. The 60 gal vertical input 
produces random vertical acceleration response at the free surface 
ranging from 40 gal to 240 gal in all soil types froITl the two earthquakes. 

Modified linear acceleration method has been used to compute the 
seismic response. 

4. RESULTS OF STUDY 

4.1 Natural Periods and Damping Ratios 

Fig. 2 shows the relation between the circular frequencies and damp
ing ratios for the 5 storey (N5) building without a baseITlent (BO) supported 
on hard soiL The three light lines indicate 3% damping for the building J 

10% and 20% damping for the soil, all in the fundamental mode respectively. 
The heavy solid line is for 3% building daITlping and 10% soil damping; the 
broken line is for 3% building damping and 20% soil damping. The circles 
on or near the three light lines indicate the damping ratio values for the 
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first, second, third, ••• modes froITl the left and increasing toward the 
right. It is clear from this figure that assigning varied damping values 
to the building and the soil do not affect the circular frequencies in any 
particular mode. This is also true for the case when damping is neglected 
altogether. This is also evident in Fig. 3 and it may be concluded that value s 
of the natural period of the SFB systems without damping may be used for 
engineering purposes. 

It is 'common in practice to assume that damping ratios are propor
tional to the circular frequencies but the relationships shown in Figs. 2 
and 3 indicate otherwise. 

Fig. 3 is similar to Fig. 2 but three soil types with varied damping 
values are shown for the five storey building (N5) with (Bl) and without a 
basement (BO). F (3%-200/0) denotes filled ground with 30/0 building damping 
and 200/0 soil damping; S (3%-10%) denotes soft soil with 30/0 damping ratio 
for the building and 100/0 damping ratio for the soil; and H (50/0-50/0) denotes 
hard soil with uniforITl 5% damping for both the building and the soil. 

The damping ratios are in general proportional to the circular 
frequencies for the filled and soft soil types but not so for the hard soil 
type. Within the scope of this investigation, the damping ratios are 
proportional to the circular frequencies for low buildings supported on 
soft soils but this relationship does not hold for taller buildings supported 
on any type of ground. 

4.2 Displacement and Acceleration Response 

The values of the maximum horizontal displacements and accelera
tions for the SFB systems due to simultaneously acting horizontal and 
vertical earthquake components varied only slightly, compared to the case 
of horizontal component acting alone. In general, the horizontal and the 
vertical components of earthquake motion may be considered separately 
and the results combined. 

The acceleration response in the vertical direction at the base and 
top of buildings does not vary much but the response is greater for the 
hard soil than for the softer soils. 

4.3 Stresses at the Base of Buildings 

The maximum stresses acting at the ground level of buildings are 
important parameters in earthquake resistant design. One of the para
meters is the base shear coefficient CB, (the ratio of the first storey 
shear divided by the building weight above that level). Similarly impor
tant are the base overturning moment coefficient, eM (overturning 
moment at the ground level divided by the product of the building weight 
and the height to the center of gravity) and the base axial force coefficient, 
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C A, (axial forces in the colUInns at the base divided by the building weight). 

Base Shear Coefficient, C B 

The MS (Minallli-Sakurai's Modified Spectra) Response Curves for 
the hard, soft and filled soil types and varied damping ratios, with and 
without baselllents, piles and piers are plotted in Fig. 4 for the 1940 El 
Centro earthquake and in Fig. 5 for the 1952 Taft earthquake. These MS 
response curves are for 100 gal horizontal and 60 gal vertical inputs at 
-15m below the ground level as previously explained. The value s of CB 
are plotted against the fundalllental periods of the soil-foundation-building 
systellls which differ frolll the usually plotted response curves that are 
drawn against the fundalllental periods of the buildings as sumed fixed at the 
ground level without consideration of the foundation construction and the 
nature of the supporting soil. The numbers near plotted points indicate the 
number of storeys above grade, B denotes bas elllent , p-piles and P-piers. 

Several salient features are to be noted, as follows: 1. Low build
ings move or ride with the ITlOtion of the ground and the natural periods of 
low buildings that are less than the predolllinant period of the ground are 
suppres sed; 2. Base shear coefficients are largest for the hard type soil, 
least for the filled ground and intermediate for the soft soil; 3. Response 
values are largest for the uniforlll 5% building and 5% soil damping ratios', 
least for 30/0 building and 20% soil dalllping and inte-nnediate for 3% build
ing and 10% soil damping ratios; 4. Soil-foundation-building interaction 
effects are pronounced for the hard and soft soil types for the range of 
natural period of approximately 1.2 sees and les s. For the filled ground 
type, 1. 8 sec to 1. 0 sec range; 5. For tall buildings with natural periods 
exceeding the above lllaxilllulll SFB systelll periods, the soil type need 
not be considered. However, adequate foundation construction (piles or 
piers) must be used to translllit the perlllanent and temporary loads to the 
satisfactory bearing medium. 

Base Overturning Moment Coefficient, CM 

The relationship between CM and the SFB natural periods is shown 
in Fig. 6 for the El Centro earthquake and in Fig. 7 for the Taft earthquake. 
The general shapes of the Modified Spectra curves are similar to those for 
the CB curves. Comparison of eM with CB indicates that for low buildings 
CM<CB; for medium height buildings CM ~ C B ; and CM'>CB for taller 
buildings. 

The maximum CM values occur for the hard soil, least for the 
soft type soil. These values are reduced as the soil damping ratios are 
increased from 5% to 10% to 200/0. For the same ranges in the natural 
period of the SFB systellls, the same observations apply in this instance 
also as mentioned in connection with the CB response curves. It should 
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be noted that large CM response occurs for relatively small buildings; N3 
in the case of hard soil and N5 for the soft soil. 

Base Axial Force Coefficients, CA 

The relationship between CA and the natural period of SFB systems 
is shown in Fig. 8 for the El Centro earthquake and in Fig. 9 for the Taft 
earthquake. This parameter may be considered to indicate either an 
increase or decrease in the building weight. The C A values of 0.15 -0.2 
are due to 60 gal vertical component input at -15m from the ground surfacE 
For near focus earthquakes, greater changes in the column stress condi
tions may occur and, in combination with the horizontal earthquake 
component effects, may not be dismissed as being insignificant as it 
usually is in current earthquake resistant design practice. This is 
particularly so for long span buildings and cantilevered portions of 
buildings. 
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ABSTRACT 

The interaction of a long structure with the ground is investigated using the 
theory of wave propagation. The special feature of the investigation is the consid
eration of the spacial variations of the input motions applied at points on the bound
ary of the system. In the illustrative problem the underground is assumed to con
sist of horizontal layers terminated by vertical transmitting boundaries, and a hor
izontal soil-rock interface. Nonlinear soil behaviour is accounted for using aRam
berg - Osgood model for the deviatoric stress-strain behaviour. The equations of 
motion are discretized using central finite differences in space and time. The use 
of a dual grid gives more efficient discretization and greatly simplifies the rela
tions at interfaces and boundaries. The analysis of travelling wave motions does 
not give rise to much extra computational effort as compared with the case in which 
the spacial variations of input motions are ignored. This is not the case with the 
finite element method, which becomes much less efficient for travelling wave anal
ysis. 

INTRODUCTION 

In current earthquake structural engineering design it is usual to assume that 
the input motion is uniform along the base of the structure, or, as the case may be, 
of the soil-structure system. In other words, the underground is assumed to be per
fectly rigid and to move as a whole. This assumption is not too restrictive if lhe 
horizontal dimensions of the structure are small in comparison with the wave
lengths of Significant components of the earthquake motion. For certain structures, 
however, this will not be the case, and it will be necessary to take into account the 
propagating nature of earthquake motions, 1. e. the boundary conditions must be 
formulated for travelling wave input. 

In many structural analyses a part, of the underground is included in the struc
tural model in order to investigate the interaction ofthe structure with the ground. 
This, of course, adds greatly to the cost of the numerical investigation, especially 
as a realistic inclusion of an underground consisting of soil layers requires an as-
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signroent of nonlinear stress-strain properties to the soil [1, 2]. 

If a structure is important enough to consider the problem of soil-structure 
interaction it is only realistic to incorporate travelling earthquake motion into the 
analysis. Since there is but scanty information available about differential earth
quake motions at points in the ground [3], and in any case at points underlying 
the structurein question, it is necessary as a first approximation to assume a 
single travelling seismic wave which remains unchanged as it passes through the 
part of the underground not included in the structural model [Lb). Thus the bound
ary motions are considered to be a phase-dependent phenomenon only. 

The further away from the structure the artificial boundary line is drawn the 
more realistic the structural model becomes. It is often convenient, however, to 
let the artificial boundary coincide with a soil-rock interface, the underlying rock 
being, to all practical purposes, rigid in comparison with the soil. The speed of 
the input travelling wave is then determined by the physical characteristics of the 
rock. Due to the presence, in general, of underlying rock at a practical depth the 
bottom boundary condition is more easily taken care of. What presents the greatest 
problem from a practical point of view are the artificial side boundaries terminat
ing the structural model. The problem arises from the reflections that take place 
at these boundaries. These spurious reflections contaminate the solution and limit 
the length of time for which it is valid [5l. 

The treatment of artificial boundaries is a rather knotty problem. The usual 
practice is to place them as far as possible from the structure as is economically 
feasible. If the structure is discretized with much refinement (using finite ele
ments or finite difference approximations) it is usually not economically possible 
to place the artificial boundaries far away from the structure: some investigators 
have placed them at a distance of about two times the diameter of foundation away 
from the structure [6,2]. If, on the other hand, only coarse discretization is 
used for the structure the position of the boundaries may be extended further into 
the underground [7]. For an underground composed of horizontal layers some 
improvement in the analysis may be effected by finding first the free field solu
tion using a one-dimensional model analySiS and then applying the free field ac
celerations (or displacements) at the artificial boundaries. 

In this paper simple transmitting boundaries devised by Lysmer and Kuhle
meyer [8] have been used. Energy is absorbed at the boundaries using viscous 
elements. They were originally used in finite elements analysis, but have also 
found application in finite difference codes for nuclear shock loading [91. This 
special type of boundary only functions if the incident wave impi:nges on the bound
ary at an angle greater than about 40 0 , i. e. not at grazing incidence. For the 
purposes of this investigation it has been assumed that the direction of the wave 
front makes a small angle with the horizontal so that the above condition is satis
fied on the side boundaries. It is also considered unnecessary to apply the free 
field solution to these boundaries in the case of an underlying rock medium. 
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Relatively few papers dealing with travelling seismic waves have appeared 
in the Hterature.Dibaj and Penzien [10] have considered an earth dam resting 
on a rigid base, and Dezfulian and Seed [4] have considered the response of soil 
formations with sloping rock boundaries. The authors [11] have investigated the 
hydrodynamic forces on gravity dams due to travelling waves with both vertical 
and horizontal components. More recently Wolf [7] has considered a nuclear 
installation (idealized as a plate on an elastic foundation in which slip and uplift 
of the plate is possible) for travelling shear wave motions. Other references to 
buildings, bridges and underground pipelines are given in [31. In most investi
gations to date the finite element method of analysis has been used. This method 

may be rather inefficient for travelling wave input depending upon the number of 
base nodal points. Thus Kaldjian [121 has utilized higher order finite elements 
(using very few elements) to investigate dam-foundation interaction for spacial 
variation in the ground motion. The finite difference method, however, does not 
present this problem as the spacial variation of the seismic wave may be incor
porated directly through the boundary conditions into the equations for wave pro
pagation. 

Fig. 1 

> , # , 
88m 48m 88m 

Geometry of an idealized nuclear power plant embedded in the ground. 
Material properties in the 5 zones: 
Ramberg--osgood material 
Go == 1480 kp/cm2 , 'l)' = 15 kp/cm2 ,R == 3,y = 2.1 t/m3 , ? = 7 % 
Elastic properties in zones ® - ® 
E == 2000 kp/cm2 , )) '" 0.35, '( = 2.0 t/m 3 , '7 = 15 % 
E '" 25000 kp/cm2 )) = 0.2, t = 1.1 t/m3 , 7 = 2 % 
E"'70000 kp/cm2 , ))= 0.2, 't =1.0t/m3, 7= 2% 
E '" 40000 kp/cm2 , V= 0.2, t == 1.5 t/m3 , '7= 2 % 
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THE PROPOSED MODEL 

In recent years much effort has gone into designing Duel-ear power plants for 
seismic loading. An important aspect of the seismic design is the structural inter
action of the nuclear reactor containment vessel with the surrounding ground. The 
nuclear reactor building is a massive structure which is embedded usually several 
metres in the ground. The shape of the structure lends itself to axisymmetric ana
lysis and finite element codes have been written which incorporate the arbitrary 
nature of the seismic loading by approximating it by a Fourier series with a finite 
number of terms [13]. Recent designs have used such codes in preference to 
simplified one or two-dimensional spring-mass models [6]. In some cases, how
ever, where particular aspects of the analysis require special investigation it may 
be justified to carry out a two-dimensional plane strain analysis. For example, 
Seed and Jdriss [2 J investigated the soil-structure interaction problem with non
linear stress-strain models suited to soU behaviour using a finite element code 
written for plane strain conditions. The chief point of the present investigation is 
to evaluate the influence of travelling seismic waves and energy absorbent trans
mitting boundaries. Since nonlinear finite element codes incorporating these fea
tures are Dot available the authors have written a program based upon the finite 
difference method for this purpose. For convenience a plane strain model was 
chosen to represent the structural behaviour of the power plant system. The ideal
ization of the system is shown in Fig. 1. The rigidity of the structure is based 
upon the data supplied in reference [21. 

THE FIELD EQUATIONS 

The differential equations of motion are the well known damped wave equations * 
.fili. + Kui. = Ti. • . • • . •• (1) 

where Ti. CJijlj + b L 

where the dot notation implies differentiation with respect to I;ime. Equation (1) 
is valid for any type of material behaviour. 

The strain displacement relations are given by 

e .. I.J 

For elastic behaviour the stress-strain relations are 

cr··-C e lJ - ljkl Id 

For plane strain conditions with cartesian coordinates 
(3) reduce, for isotropic behaviour, to 

(lx-x = (A + 2 M) dUx + A au)' 
I ax oy 

CJyy 0; ? ~~" + (). + 2fl) ~ 
0:: ( au I( -t GUY) 

xy = fA a>, 8y 

• • • • • • • (2) 

• • • • • (3) 

x and y equations (2) and 

• , ••••• (4) 

Substitution of the relations expressed in equation (4) into equation (1) leads to 
a formulation of the problem in terms of the field variable UL. Alternatively, the 

* The symbols used are defined in the notation 



algorithmus may be so written that equations (1) and (4) are used in conjunction 
with one another. In this way one works with lower order equations, and both the 
stress and displacement fields are obtained directly. Together with the boundary 
conditions these equations define the problem completely. 

THE :f\, UMERICAL METHOD 

The finite difference method using central finite differences has been found 
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to be quite suitable for solving the equations of wave propagation. In using the 
stress-strain relations together with the wave equations (in an alternative manner) 
it is convenient to specify the unknown discrete displacements and stresses at 
staggered grid points, thus allowing the use of central finite differences in all equa
tions. In effect, four grids are superimposed over one another, one for normal 
stresses O'x>(, CSyy Jone for shear stresses O"'xy ) one for horizontal displace
ment uJ( and one for vertical displacement u y • The system of interlacing nets 
as it is so called, is described in detail elsewhere (111. Apart from the advantage 
of using lower order difference equations, a better approximation for the shear 
stresses is obtained and the formulation of boundary conditions is greatly simpli-

tied. .- , , 
.6)( I 

um.n+1 ~ °m,n+1 

Vm-ln Cfm n Vm n <tmT l.n 

Fig. 2 System of interlacing nets Om-1,n U m•n 6 m n , Um+ I,n t:.y 

<lm,n-1 Vm,n-1 

The discretisation of equation (1) in the time domain takes the form 

~ (' t+1 _ u.t ) + ~(U.t+1 + u.lt ) 
4t u l l m,n ,;. l m,1"! 

where m and n define the position of the field variable ui. 

It follows that the velocity at time t + 1 is given by 

• l+1 [T t+ :!. f K. t] 1 
u i. = i. '1. + (A t T) u l -S'''';----'--+---rk;;-

td 2 
The displacements are obtained by simple integration, viz: 

+ At u' r+ 1 l 

(T.t+r) ••• (5) 
L M."" 

•.• (6) 

The numerical scheme, which is explicit, belongs to a class which is only 
conditionally stable. To ensure stability the iterative speed must be less than the 
velocity of wave propagation in the material. For a region subdivided into rect
angular mesh elements of sides L:l.X, L::.Y the following condition (after Courant 
et al. > must be fulfilled if the errors at some time step do not become magnified 
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with time: 1 

~ t ~ { ~ 1 }2: 
)'-;-2.j-A [C2x(+(~\tJ • • • • • • • • (7) 

This formula is valid for the interior of a homogeneous medium. in practice, it 
is adequate to fix the time step, according to equation (7), for the stiffest sub
region of the physical system. Alternatively, it may be preferable to employ an 
implicit numerical scheme, e. g. that proposed by Newmark [see, for example, 
reference 141. Spacial discretisation for T[ in equation (1), i. e. for terms 
~~"x etc., and in the stress-strain relations for ~~x etc., presents no diffi

culties [11]. See Fig. 2. 

CONDITONS AT AN INTERFACE BETWEEN TWO MEDIA 

In general, when an elastic wave reaches an interface between two media 
reflection and refraction take place. For the condition of no slip at the interface 
the following conditions hold. Denoting the quantities in the two media by suffices 
a and b 

(i) equality of displacements 

(ul)o = (uL)b 

(U) equality of normal and shear stresses 

(CJnn)a = ()nn)b 

(G"ns)a= (Clns)b 

(8) 

(9) 

The stress or displacement free boundary presents a special Case of these 
conditions, in that the right hand sides of equations (8 ) and (9 ) become zero. 
Using interlacing nets and simple interpolations it is a trivial matter to express 
the interface conditions indiscretised form. The stresses are assumed to be con
tinuous across the interface. 

SEISMIC LOADING 

In accordance with the nature of wave propagation the seismic loading is 
introduced via the boundary conditions. In this case the right hand side of equa
tion (8 ) is replaced by a: known time dependent function. 

= u ~ (x, t) 
v ~ (x, t, 

If the ground disturbance acts simultaneously 
underground 

ujJ (x, t) 

v'J (x, t) 

Uo (t) 

vo (t) 

(10) 

at all points in contact with the rigid 

(11) 

For travelling wave input the wave arrives at each point of the bottom bound
ary with a time dependant phase shift. In this case 

u ~ (x, t) (12) 

etc. 
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Using two specialised equations of motion at the side boundaries, namely 

and 
(J"xy 

(13) 

(14) 

where a, b are constants and Cp , Cs are the velocities of compression and 
shear waves respectively of the material beyond the boundary, very small re
flections are produced and energy propagates to the region outside of the bound
ary. This is true if the waves impinge at angles which are not near grazing inci
dence. Optimum dissipation is dependent on the choice of a and b and the angle 
of incidence. For adequate results it is sufficient to set a = b '" 1, [8 J. It should 
be pOinted out that equations (13) and (14) were derived, strictly speaking, for 
linear elastic materials. In the absence of published work for nonlinear materials 
it has been assumed by the authors that transmitting boundaries may be used, 
equations (13) and (14) being continually adjusted for the changes in the instan
taneous values of the tangent shear modulus jA-. When the transmitting bound-
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aries are deleted from the system the usual roller boundary condition is applied. 
Fig. 2 shows the details of the computational grid ::cherne. On the transmitting 
boundaries shear stress ( o-xy ) and horizontal displacements (velocity Ux ) are 
located. Thus, for the purposes of coding, the normal stress (o-xx ) and the 
vertical velocity (u y ) at half a grid length ( ,:X ) away from the boundary are 
used in the discretized form of equations (13) and (14). 

MATERIAL PROPERTIES 

Damping Characteristics: 

Linear viscous damping may be introduced into the system through the term 
Kui. in equation (1). If Wo is the fundamental frequency of the discretized system 
the critical value of viscous damping for the fundamental mode is given by 

K crit = (15) 

Variable damping throughout the system is achieved by assigning different per
centages of critical damping at the various discrete displacement points, i. e. 

K = ? Kcrit . • • • • • • • • • (16) 

In the actual program used both 5' and K were assumed constant for each mate
rial zone. 

Seed and Idriss [11 have shown that damping is strongly strain dependent, 
being rather low at small strains but increaSing to over 20 % at strains less than 
1 %. A bilinear hysteretic model idealizing real stress strain behaviour was used 
in some investigations, and later the concept of an equivalent Un ear parameter 
for approximating nonlinear hysteretic characteristics was introduced [11. In 
the present study nonlinear hysteretic damping is obtained using the Ramberg
Osgood model. This model is used for the bottom soil layer, :md in all zones of 
the system viscous damping of varying amounts is assumed. An experimental 
check on the critical damping (obtained using a finite element code to deter-
mine wo) was carried out, and Kcrit adjusted to suit the nonlinear soil-structure 
system. 

Stiffness Characteristics: 

The Ramberg - Osgood model is now very well-known in both structural engineer
ing [15,16 1 and the seismic analysiS of soil layer systems [17,18]. The equa
tions have been used either to describe load-displacement characteristics in struc
tural members or the shear stress-strain characteristics of soils. As a first ap
proximation towards the 2 - dimensional study of seismic loading of soil deposits 
it has been assumed that the volumetric behaviour is linear elastic without tension 
cut-off. The deviatoric behaviour is described by the following Ramberg-Osgood 
constitutive law R 

(t,,<'.t -to)lc ty = ('tod -To)!c'ty + ex. IC'toct -To)jc't
y 

I .... (17) 

where T oct. '" ; [( G'xx - csyy i\ (f'iyy - r:rt.;/' + (ISX)( - (Sn t + 6 (6,,~ -r crx~ t cr y~ ) ] I 
i. e. shear behaviour is characterised by the behaviour in the octahedral plane 
('lcd ) tnet). The model has four parameters c(, R, t y , 'ry where the tyand 
'ty define a reference point fur the stress-strain curve, which is usually asso-
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Three cases were investigated: 

a) rigid underground ( Vt == co); transmitting side boundaries. 

b) traveUing wave input (V~ = 1500 m/sec}; rigid side boundaries. 

c) as b) but with transmitting side boundaries. 

The assumed material properties are shown in Fig. 1. 

For numerical stability the time step was chosen as 6 t == 0.002 sec, as 
determined by the wave velocity in zone 4 . This value of t..t corresponds to a 
frequency of about 200 Hertz, and permits a good approximation of the accelera
tion seismograms, which have a maximum frequency of less than 20 Hertz. 

The critical damping of the system is Kcrit == 3. St· see . m-4 , where 
w 0 '" 9. 1 see -1 . 

The time response for displacement and principal stress components for the 
three cases a), b), c) given above are shovm in Figs. 5, 6 and 7 for a point (A) 
on the axis of symmetry at the base of the reactor foundation. The displacements 
given are relative to the ground displacement immediately below point A. A com
parison of cases a) and c) shows that the particular travelling wave investigated 
does not have a substantial influence on the displacement response either qualita
tively or quantitatively. Some differences are evident, however, in the stress 
response. The greatest differences occur between cases b) and c), namely between 
rigid and transmitting side boundaries. In Table 1 the extreme values of stresses 
and displacements at point A (Fig. 1) for the three above mentioned cases are 
given. 

U max v min 
a-. 

Ymax cry min 

[em] [em] [kp/cm2 ] [kp/cm2 ] 

case a 9.6 - 11.4 4.0 - 7.7 
case b 12.2 - 14.1 5,5 - 8.8 
case c S.4 - 11.5 3.7 - 6.4 

Table 1: Extreme values of stress and displacement at point A (cf. Fig. 1) 

The dominant frequency of the displacements is in the region of the fundamental 
frequency of the system. The frequencies of the stresses, however, are much 
higher and are in the same order of magnitude as the earthquake frequencies. It 
should be added that in the reactor structure still higher stress frequencies occur 
because of the greater speeds of wave propagation and the presence of wave re
flections. In one case the Ramberg - Osgood material was replaced by elastic ma
terial. The influence on the results was not Significant. This may be explained 
by the fact that the shear stresses produced by the seismic loading were well be
low the stress parameter '(y in the Ramberg - Osgood model, and the behaviour 
was quasi-elastic. Another consequence of this was the low value of nonlinear 
hysteretic damping. 

In Fig. 8 the extreme values (i. e. limiting envelope to the curves) of stress 
and displacement along the base of the reactor foundation are shown. 
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Streeter et a1. [17 1 assume 7:'{ about 80 % of the shear stress at yield for a soil 
material. 'to and 1'0 define the point of most recent stress reversal. The para
meter c equals 1 for the 'skeleton' curve and 2 for the 'branch' curve (i. e. un
loading: or reloading). For c = 1, to = "0= O. 

Toct 

L
f 2j~-------

branch curve curve 

---------_"---,!=7-_7''"-----------. (od, 
4y 

branch curve 

Fig. 4 Stress-strain behaviour of Ramberg-osgood hysteretic model 
for material zone 1 . 
The curves were constructed with the following material 
characteristics: 2 2 
Go = 1480 kp/cm ,R = 3, L y = 15 kp/cm 

For sand good correlation with experimental data has been found for 01-= 1.0 and 
R '" 3, [171. These values have been adopted in this paper. In fact, the parameter 
R is the decisive parameter in the model. It enables behaviour between elastic 
(R = 1) and elastic-ideal plastic (R =00) to be modelled. Thus for simple cantilever 
structures Solnes et a1. [161 assume R = 10. 

The hysteresis behaviour of this simple nonlinear four parameter model is 
illustrated in Fig. 4. 

SOME NUMERICAL RESULTS 

The system shown in Fig. 1 was subjected to the seismic loading using verti
cal and horizontal components of a registered earthquake (San Fernando - 1971 -
Paicomo Dam). These seismograms are shown in Fig. 3 for strong motion phase 
of duration of 12 seconds. The seismograms were not scaled down so that relativ
ely large ground accelerations of peak magnitude of the order 1.25 g, were fed into 
the system. 

A stiffness of the underlying rock, giving a travelling wave velocity of 
1500 metres/sec, was assumed, but otherwise ignored in the analysis. 



193 

15 u (em] 

7.5
1 

-75 

_15+-____________ ~------------_+--------------~-------t~(5=e~c~) 
o 3 6 9 12 

15,-~~--------------------------------------------~ 
v [em] 

7.5 

Or-------------------------~--------------------~ 

-7.5 

_15t-____________ ~-------------+--------------~------~t~(5~e~c~) 
o 3 6 9 12 

10f01 (kp/cm2 j I 

:[ ... .". .... • "'M\oI....,¢ ~.~j.,~ .. '" .. ~AhMJ. ,1\, .., -'" .... • - ·1 
• •• T , 'v ~ "V qoy ~ y "" to 'f Vi V IV ~>rh .err I 

~! I 
10~--------------+--------------+I--------------~I----------t-(5-e-e~) I 

o 3 6 9 12 

10~~--~~------------------------------------------~ 
62 [kp/cm2] 

5 

Or-------------------------~----~~~~~------~ 

-5 

t(sec) 
-10~----------~-----------+------------+-------~~ 

o 3 6 9 12 

Fig. 5 Response of point A: relative displacements (u(t) horizontal 
and v(t) vertical) and principal stresses ( ()1 (t) and <Y l. (t)) , 
cf. case a. 
System: transmitting boundaries, cf. Fig. 1 
Loading: infinite travelling wave velocity V

t 
= 00 
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Fig. 6 Response of point A: relative displacements (u(t) horizontal and 
vet) vertical) and principal stresses ( (J 1 (t) and () 'to (t), cf. case b. 
System: rigid side boundaries. 
Loading: travelling wave, velocityVt=·1500 m/sec 
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Fig. 7 Response of point A: relative displacements (u(t) horizontal and 
v(t) vertical) and principal stresses ( ()'f (t) and () 2. (t), cf. case c. 
System: transmitting boundaries 
Loading: travelling wave, velocity Vt =0 1500 m/sec. 
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CONCL USIONS 

The analysis of the response of a nuclear reactor soil-structure system for 
seismic loading, taking into account the self-weight of the structure to properly 
simulate the nonlinear stress-strain behaviour of the ground, shows 

1. A travelling wave of velocity 1500/sec through the underlying rock reduces 
the maximum response by about 10 -15 % as compared with the upper bound 
case, a rigid underground. The lower the velocity of the travelling wave the 
greater is this effect, and both quantitative and qualitative differences are to 
be expected. 

2. The choice of the side boundary conditions substantially influences the results. 
Transmitting boundaries reduce the stress and deformation responses by up 
to 30 % as compared with fixed boundaries. 

3. The influence of the nonlinear hystereticmodel is not significant in the range 
of small shear stresses Loc t ITy < 0.2. The increased computational effort 
(about 2.5 times as much computer time) is hardly justified in the lower stress 
range. 

4. Should travelling waves be of importance in the analysis it is economical to 
introduce them into existing finite difference codes. 

NOTATION 

Ul 
(Tlj 

b i 
eij 
Cljkl 

J' 
K, Kc.rit 
').. J-' 
Ti. 
~t 

u~ I v9 
uo ; v~ 

? 
'(Ott I t oct 

C, R .0<., ty. a-r ,Go 
g 

displacement vector* 
stress tensor 
body force vector 
strain tensor 
components of the elasticity tensor 
material density 
viscous damping coefficients 
Lame's elasticity constants 
static equilibrium term in the wave equation 
time step 
horizontal and vertical grOlUld displacement 
seismic disturbance 
cartesian coordinates 
speed of travelling wave 
S-wave and P-wave velocities respectively 
fundamental frequency 
percentage critical viscous damping 
octahedral stresses and strains 
constants for Ramberg-Dsgood model 
acceleration due to gravity 

* In the tensor notation UlJj denotes differentiation with respect to 
the coordinate Xj . 
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For the lumped parameter and finite element methods applied to 
dynamic soil-structure interaction problems, the effect of various para
meters and possible sources of error are investigated through a limited 
parametric study. Single and multi-degree-of-freedom systems with various 
mass ratios, with and without internal and radiation damping~ are sub
jected to severe loadings. The single-degree-of-freedom system consists 
of a rigid disk resting on the surface of an elastic stratum. Five-mass 
models are used for the multi-degree-of-freedom systems. For the lumped 
parameter model, a rational procedure is presented to find appropriate 
springs, dashpots, effective masses and equivalent modal damping. This 
study considers the vertica1 motion of surface-mounted axi-symmetric 
structures on a homogeneous elastic stratum underlain by bedrock; For 
these problems, it is demonstrated that the lumped parameter method can 
produce results that give good general agreement with finite element 
results which include the soil. The results indicate that it is possible 
to apply the lumped parameter method to problems beyond those of a 
harmonic forcing function and an elastic half-space~ 

INTRODUCTION 

The lumped parameter method, based on elastic half-space theory, and 
the finite element method are the two most common treatments currently 
being used for dynamic soil-structure interaction problems. Each method 
has unique advantages and disadvantages which are somewhat dependent on 
the characteristics of the specific problem. Both methods are used 
extenSively, but an evaluation of the accuracy of each is not possible 
for most cases due to the lack of exact solutions or test data. 
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The lumped parameter method evolved from analytical solutions 
obtained for a harmonic forcing function acting on a rigid disk mounted 
on the surface of an elastic half-space. In 1966, Lysmer and Richart 
[13J developed an analog solution for the vertical case by setting the 
soil spring equal to the static stiffness coefficient; then, a constant 
damping coefficient was selected which gave the closest agreement to the 
elastic half-space solution. Hall [6J developed similar analog solutions 
for the sliding and rocking cases; in the latter case, an effective mass 
was used to match the resonant frequencies. The effect of soil-structure 
interaction for earthquake problems was investigated by Parmelee et al. 
[e.g. 15] by expanding the elastic half-space results of Bycroft [3J to 
a two-mass model. Sarrazin, Roesset and Whitman [18J examined the inter
action effects of the various parameters used in a similar lumped 
parameter model. In order to utilize the modal method for multi-degree-of
freedom systems, several techniques have been developed to represent the 
soil dashpots by equivalent modal damping [2, 4, 10, 17, 20J. 

An important advantage of the lumped parameter method over the finite 
element method is that the soil resistance is represented by a limited 
number of springs and dashpots, and the resulting model is relatively 
simple. In addition to the economic savings which result, it is also 
feasible to obtain mode shapes and natural frequencies. If the dynamic 
loads are well defined, the modal method of analysis can then be used to 
determine a time history response, and a response spectrum analysis can 
also be performed. The most important advantage associated with this 
method, however, is that it easily takes into account the three-dimensional 
nature of the problem. 

Because of the derivation of the lumped parameters, good accuracy is 
obtained for problems involving harmonic forces acting on surface-mounted 
structures situated on a homogeneous, elastic half-space. Although some 
work has included one or more of the following: nanharmonic loading, 
partial embedment of the foundation, the presence of bedrock, and 
inhomogeneous soil IS, 12, 14, 15, 18], the accuracy of the lumped para
meter method under these conditions has not been clearly E~stablished. 

With the finite element method, such aspects as embedment and strati
fication can be accurately represented [21J. Problems that can be 
considered as two-dimensional, such as the long earth dam subjected to an 
earthquake, as studied by Wilson [23J, are ideally suited to the finite 
element method. Spatially varying material damping may also be accommodated 
[7] using stepwise numerical integration procedures. A problem which 
occurs in the finite element model, however, is the necessity to absorb 
the energy which reaches the boundary in order to simulate the unbounded 
soil. Viscous boundary dashpots were derived by Lysmer and Kuhlemeyer [12] 
to absorb this energy_ The results are good for harmonic forcing 
functions, but these dashpats have yet to be proven adequate for general 
loading and geometry. 

A distinct disadvantage of the finite element method is that, due to 
computational limitations, it is not generally feasible to analyze the 
three-dimensional case. Isenberg and Adham [8J performed an earthquake 
analysis for a circular three-dimensional structure by considering only a 
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two-dimensional plane strain section through the center of the structure. 
Although the embedment, bedrock and layered soil can be represented, the 
simplification to two dimensions can introduce significant errors into the 
analysis [e.g. 11, 19J. 

The present work includes a limited parametric analysis which compares 
solutions obtained by the lumped parameter and finite element methods. 
Included is a rational procedure to determine the appropriate springs, 
dashpots, effective masses and equivalent modal damping for the lumped 
parameter model. The effects of various parameters and possible sources 
of errors are identified for both methods. While no claim of proof is 
made as regards accuracy of the two treatments, the results indicate that 
it is possible to apply the lumped parameter method to problems beyond 
those that involve a harmonic forcing function and an elastic half-space. 

PROBLEM SELECTION 

Due to limitations in the two methods, there are few problems avail
able for comparative purposes. Even for problems that can be solved by 
both methods, an absolute evaluation of each method cannot be made due to 
the lack of exact solutions or test data. Therefore, any evaluation of 
accuracy must come from a comparison of these two approximate methods. 
Any meaningful comparison of the two methods must minimize the number of 
variables considered. 

A problem for the lumped parameter method must be one for which 
springs, dashpots and effective masses can be obtained; for the finite 
element method, the problem usually needs to be two dimensional. Since an 
infinite half-space problem could introduce significant errors into the 
finite element analysis at the lower horizontal boundary of the model, the 
comparison problem is chosen to be bounded by bedrock beneath the soil. 

This study considers the vertical motion of ax i-symmetric structures 
mounted on the surface of a homogeneous elastic stratum underlain by a 
rigid base. This case was selected because the lumped parameter variables 
(spring, dashpot and effective mass) can be determined from existing solu
tions [3, 22J. This allows an independent comparison to be made with the 
finite element results. The dashpots are determined from Warburton's 
amplification data [22J which includes depths to bedrock up to 4.0 radii. 
The maximum depth of 4.0 radii is selected herein because this will result 
in higher effective radiation damping, and this damping has a significant 
effect on the response of the system. 

The two structural configurations shown in Figure 1 are considered for 
comparison of the two methods. The first comprises a rigid disk resting on 
the surface of the elastic stratum, and will be referred to as the sing1e
degree-of-freedom (SDF) system. The other configuration, similarly founded 
on the stratum, consists of five equal masses connected by springs having 
equal stiffnesses, and will be referred to as the multi-degree-of-freedom 
(MDF) system. The springs that connect the MDF masses are dependent on the 
mass and are selected to produce a fundamental natural frequency of 5.0 cps 
for the system when the soil is considered to be rigid. This is accomplish
ed by setting kiM = 1637 sec -2~ this corresponds to a frequency in the 
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Sjngle-De~ree-of-Freedom System (SOF) 

Mulfi-Oegree-of-Freedom Syslem(MDF) 

Figure 1 - Structural Configurations for the Example Problems 

same range as the resonant frequencies for the SDF system, and should allow 
for significant soil-structure interaction. 

The mass of the structure, M, is expressed in terms of a dimensionless 
mass ratio, b, given as 

b (1) 

where p is the density of the soil and ro is the radius of the foundation. 
Mass ratios of 5, 10, 20 and 30 are considered herein, and Poisson's ratio 
is \! ::: 0.25, as these values correspond to those used by liJarburton. The 
resonant frequency data are presented in the form of dimensionless fre
quencies, ao' For this parametric study, it is desirable to introduce time 
into the analysis. The resonant frequencies, f, are related to the dimen
sionless frequencies by 

where G is 
soi 1 . For 
frequency. 

(2) 

the shear modulus and Vs = JG/p is the shear wave velocity of the 
constant a only the ratio of V Ir affects the resonant 

For this gtudy, the range of 3~5 gps was selected for the 



SDF systems resonant frequencies. This range is obtained by setting 
V Ir = 45 sec-1 
so' 
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Two loading conditions are considered herein. The first is a suddenly 
applied constant force, Po, for which the maximum undamped amplification 
of a SDF system is 2.0. The second loading, shown in Figure 2, is 

Po 

--'iL r 1'1 n 

<: 
<:? 
-;:; 
<: 

0 :::> 
~ 

0> 
c: 
u 

~ 

-Po V ~ 
P(t); Po 5in[.1 (2+1)3 1] 

o 5 1.0 1.5 2.0 2.5 30 3.5 4.0 

Time (Seconds) 

Figure 2 - Sine Sweep Forcing Function 

12 

10 

.q 
8 

c: 
0 

Cl 

."' .... 6 
0.. 
E 
.q 

~~ 4 

2 

0- Fraction of Crilicol Damping 

.0 
0 2 4 6 8 10 12 

Noturol Frequency, f(cps) 

Figure 3 - Response Spectrum for the Sine Sweep Forcing Function 
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designated as the sine sweep forcing function. It consists of 13 cycles, 
with an initial frequency of less than 1.0 cps to a final frequency of 
about 10 cps. It is a more severe loading condition than the first, because 
it can cause significantly higher amplifications, and the response is depen
dent on the natural frequency of the system. This forcing function is not 
intended to represent an actual loading condition, but is selected instead 
to provide a critical basis for comparison of the lumped parameter and 
finite element methods. The response spectrum for the sine sweep forcing 
function is shown in Figure 3 as a function of the undamped natural fre
quency, f, of a SDF system for various fractions of critical damping, D. 
The resonant frequencies of the example SDF systems fall within the range 
of the sine sweep forcing function. 

LUMPED PARAMETER MODELS 

The lumped parameter models, shown on the left side of Figure 4, are in
tended to represent the actual systems shown in Figure 1. The soil is 
represented by a spring and dashpot for both the SDF and MDF configurations. 
Also, an effective mass, M, is introduced to match Warburton's resonant 
frequencies [22J. The soil spring, Kz , for a stratum thickness = 4 ro and 
v = 0.25, is taken equal to 7.35 Gro [9J. The dashpot represents both 
radiation damping and material damping in the soil. For the present, only 
radiation damping is considered, and the dashpot coefficients can be deter
mined from Warburton's data. From the resonant amplifications, A, given in 
column 2 of Table 1, it is possible to obtain the effective fractions of 
critical damping, D, for a SDF system from 

A = _----'1'-----_ 

2D~ 
(3) 

The effective radiation damping fractions for vertical motion, Dz , obtained 
from Warburton's vertical amplifications, are shown in column 3 of Table 1. 
The values are significantly lower than for the infinite half-space [16]. 
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Table 1 - Parameters for the SDF System 

Mass Amplification Effective Resonant Effective Damping 
Ratio Damping Frequency ~'ass Ratio Coefficient 

b A Dz f (cps) m Co 
( 1 ) (2 ) (3) (4 ) (5) (6 ) 

5 4.2 .120 4.52 3.10 1.455 

10 7.2 .0696 4.09 1. 93 1 .193 

20 19 .0263 3.42 1. 39 .638 

30 34 .0147 3.00 1. 21 .437 

The effective mass, g, can be obtained from the resonant frequency data 
of Warburton. Frequencies which result from Vs/ro = 45 sec- l are shown as 
a function of the mass ratio in column 4 of Table 1. The effective mass 
can now be found by using these frequencies, the damping fractions in column 
3 of the table, and the appropriate spring constant. To be consistent with 
Warburton's data, Bycroft's spring stiffness [3J is used to obtain the 
effective mass ratio, m, shown in column 5 of Table 1, where 

M 
m = M 

It is now possible to determine the dashpot coefficients for a SDF 
system since the damping constant is given by 

(4) 

(5 ) 

where Co is a dimensionless dashpot coefficient given in column 6 of Table 1. 
Co includes the effect of Poisson's ratio, the damping fraction, the 
stiffness coefficient, and the mass ratio, b. Since this coefficient and 
therefore the damping constant, Cz , are dependent upon the mass (actual or 
effective) they must be consistent with the mass selected for the analysis. 

The dashpot coefficients come from the amplification data that occur at 
the resonant frequencies. For most practical applications this is probably 
adequate because it is at the resonant frequency that the maximum response 
occurs. If the forcing frequency is far removed from the resonant frequen
cy, the damping is less important. Although the dashpot coefficients have 
been derived from data for a SDF system, it is reasonable to use the same 
values for the MDF system. For a MDF system on a flexib1e soil, the funda
mental resonant frequency will always be less than that of a SDF system with 
the same total mass. If the resonant frequency of the MDF system is only 
slightly less than that of the SDF system, the MDF system is essentially 
acting as a rigid body, and a similar condition exists for both systems. 
If the resonant frequency of the MDF system is much lower, the soil-struc
ture interaction effects will be minimized and the dashpot coefficients 
become less important. 
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FINITE ELEMENT MODELS 

The models used for the finite element analyses contain 467 elements 
and 263 nodes, and are similar to that given previously [9]. The concen
trated masses are located at a grid spacing equal to the radius of the disk, 
ro, as shown on the right side of Figure 4, thereby resulting in a condensed 
model having 102 degrees of freedom for the MDF example case. For the 
resonant frequencies given in Table 1, the spacing of the concentrated 
masses varies from 1/10 to 1/15 the length of a shear wave, and is well with
in the limits suggested by Lysmer and Kuhlemeyer [12J. For some of the 
following cases investigated, no damping is considered; for others, dashpots 
are placed along the vertical outer boundary of the model. The boundary 
dashpots are taken as those derived by Lysmer and Kuhlemeyer. The repre
sentation of internal damping is discussed subsequently. 

RESULTS FOR THE SDF SYSTEMS 

For the lumped parameter model, the response to the two loading condi
tions can be obtained by any routine numerical integration technique. As 
computer run time is insignificant, accurate time-history responses can be 
obtained by using an integration time increment that is much smaller than 
the period of vibration. Moreover, the maximum amplification can be obtained 
directly from response spectra if the undamped natural frequency and fraction 
of critical damping are known. For the finite element model, solutions were 
obtained by a matrix integration procedure developed by Wilson [23]. As 
described subsequently, the Wilson technique utilizes a diagonal mass matrix 
and a damping matrix which is expressed as a function of the mass and stiff
ness matrices. For the present study, it was necessary to modify the pro
cedure to include a diagonal damping matrix so as to incorporate the 
boundary dashpots. The time increment used for the sine sweep analyses 
is .01 sec. Since the fundamental natural frequencies are less than 5.0 cps, 
the selection of this time increment ensured at least 20 increments for 
each cycle at resonance. 

A comparison of the results for the suddenly applied constant force is 
presented in Figure 5 as the amplification, A, versus mass ratio, b. The 
upper limit shown is the amplification which occurs for the lumped parameter 
model when the radiation damping is ignored; the lower limit shown is taken 
to be the amplification corresponding to half-space radiation damping. 
When radiation damping is properly included, the amplifications for the 
lumped parameter model are only 1 to 7 percent higher (depending on b) than 
for the finite element model. In the former case, the amplification for a 
suddenly applied force is independent of the natural frequency of the system. 
The amplifications for both the actual mass and the effective mass are 
therefore identical, and depend only on the fraction of critical damping. 

For the purpose of comparing the behavior of the lumped parameter and 
finite element models, the sine sweep forcing function provides a more 
severe test. The amplifications which result from this loading condition 
are shown in Figure 6. The upper limit amplifications are between 7.2 and 
13.3 when the actual mass is used, and between 6.7 and 9.3 using the effec
tive mass. The undamped upper limits increase as the mass ratio decreases, 
because, as can be seen from the response spectrum (Figure 3), amplifi
cations increase with increasing frequency in the range of frequencies 
considered. For a specified mass ratio, the actual mass will have higher 
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amplifications than the effective mass because the natural frequency is 
higher in the former case. When radiation damping is included, amplifica
tions decrease as the mass ratio decreases. This is because the radiation 
damping is higher for the lower mass ratios and more than offsets the 
higher undamped amplifications. 

For the case of no internal material damping, shown in Figure 6, there 
is fairly good general agreement between the results of the two methods. 
Amplifications for the lumped parameter method are as much as 11 percent 
lower than the finite element amplifications for the actual mass, and are 
as much as 21 percent lower for the effective mass. Utilization of damping 
fractions for the half-space would again significantly lower the lumped 
parameter results. 

Part of the differences shown in Figure 6 may be due to the presence of 
the vertical boundary of the finite element model. The boundary dashpots 
represent the "standard viscous boundary" as presented by Lysmer and Kuhle
meyer [12J and have not been shown to provide accurate solutions for this 
type of dynamic loading condition. For the case of the suddenly applied 
constant force, the amplifications for the finite element method are 
consistently lower than for the lumped parameter method, whereas for the 
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sine sweep, the amplifications for the finite element method are generally 
higher than for the lumped parameter method. The boundary does not affect 
the results for the suddenly applied constant force because of the short 
time interval required to attain the maximum amplification. For the case 
of the sine sweep, however, the maximum amplification takes place after 
several wave reflections have possibly occurred at the outer vertical bound
ary. The results were essentially the same when the boundary dashpots were 
removed. Also, for the case of b = 5, the amplification obtained from the 
finite element results is slightly higher than the resonant amplification 
predicted by Warburton [22]. It therefore appears reasonable to assume 
that the finite element results are high ~nd are probably due to the presence 
of the boundary. 

Inclusion of internal material damping is accomplished with the lumped 
parameter method simply by adding it to the radiation damping. With the 
finite element method, however, the internal damping is represented by the 
damping matrix, [C], and is expressed as a function of the mass and stiffness 
matrices, [M] and [K], i.e. 

[C] a [M] + 6 [K] 

the fraction of critical internal damping is frequency dependent and is 
commonly expressed as follows: 

D. = _0:_ + Sn f. 
1 4nf. 1 

1 

(6) 

(7) 

in which Di is the fraction of critical damping in the ith mode and fi is the 
natural frequency of the ith mode. For the present analysis, a and S were 
chosen to be 0.75 sec- 1 and 0.0012 sec, respectively, so that the internal 
damping fraction is approximately equal to .03 in the range of resonant fre
quencies considered for this problem. When internal damping in the soil is 
included, the influence of the boundary diminishes becausl~ the elastic waves 
are partially damped as they approach and return from the vertical boundary. 
For an internal damping fraction equal to .03 the results are in better 
agreement than for the case of no internal damping; the maximum difference 
is reduced to about 10 percent. 

In addition to the amplifications shown in Figure 6, time history 
responses are shown for the case of b = 5. The responses obtained from the 
finite element method, and from the lumped parameter method using the actual 
mass, are shown for the case of no internal damping in Figure 7. The 
normalized displacement, 8, is the dynamic displacement due to P(t) divided 
by the static displacement due to Po. The maximum absolute value is equal to 
the amplification, A. The finite element response increases uniformly for 
about 3 sec and then oscillates somewhat erratically, with the maximum 
response occurring at about 3.7 sec. Again, it seems probable that the 
later oscillations are high due to the vertical boundary of the finite 
element model. The response of the lumped parameter model increases at a 
slower rate. As the natural frequency of the system with the actual mass 
is higher than with the effective mass, the model is responding more to the 
higher frequency portion of the sine sweep which occurs at the later times. 
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In Figure 8, the response of the finite element model is compared to that 
of the lumped parameter model with the effective mass. The internal damping 
fraction is taken equal to .03. A higher value was not selected because it 
could dinlinish the effect of the radiation damping. The results are in good 
agreement; both displacements increase at a similar rate until the maximum 
displacement is achieved at 3.0 sec. Inclusion of the additional mass lowers 
the natural frequency of the lumped parameter model to approximately that of 
the finite element model. As a result, both achieve the maximum displacement 
during the portion of the forcing function which corresponds to the resonant 
frequency. The finite element response decays less rapidly and this may 
again be due to the presence of the vertical boundary. 
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RESULTS FOR THE MDF SYSTEMS 

With the finite element method, there are no additional problems asso
ciated with considering a MDF structure rather than a SDF system. Use of a 
lumped parameter model requires that when an effective mass is used, the 
additional mass be included with the base mass of the structure. The funda
mental frequencies for the lumped parameter models are shown in columns 2 
and 3 of Table 2. They are lower than the corresponding SDF frequencies 
because of the flexibility of the structure. 

Table 2 - Parameters for the MDF System 

Mass Fundamenta 1 Frequency Energy Fraction Damping Fraction 
Ratio 

b fl (cps) 1'1 01 

Actual Effective Actual Effective Actual Effective 
Mass Mass Mass Mass ~lass Mass 

(1 ) (2) (3) (4 ) (5) (6) (7) 

5 4.45 4.07 .220 .521 .0264 .0625 

10 4.02 3.67 .386 .604 .0269 .0420 

20 3.40 3.15 .587 .703 .0154 .0185 

30 2.98 2.83 .695 .758 .01Q2 .0111 

When internal structural damping is neglected, the lumped parameter 
solutions may be obtained directly because the dashpots which represent the 
soil can be expressed as a diagonal damping matrix. The governing equations 
can be solved using numerical integration t2chniques such as that of Fu [5J 
or of Wilson [23J. The method of Fu is directly applicable because it uti1-
izes a diagonal damping matrix whereas the Wilson technique must be modified 
to accommodate a diagonal d-amping matrix. 

When internal damping is included, it is usually necessary to utilize 
the modal method of analysis because the resulting damping matrix is not di
agonal, and it is difficult to construct the damping matrix to properly 
account for damping in both the soil and the structure. When the modal 
method of analysis is used, it is necessary to represent the soil and struc
tural damping by equiva1ent modal damping which can be approximated by the 
commonly used procedure presented by Biggs and Whitman [2J, or by other tech
niques. In the case of only vertical motion, the Biggs-Whitman formulation 
reduces to 

D. = 
1 

o E . + 0 E . 
Z 21 S S1 

E . + E . 
Zl S 1 

(8) 

where D1 is the equivalent modal damping for the ith mode, Dz is the damping 
fraction for vertical motion, Ds is the damping fraction for the structure 
and Ezi and Esi represent the energy stored in the soil and in the structure, 
respectively, for the ith mode. 
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No Structural Damping - The case of no structural damping is of interest 
because the lumped parameter solutions can be obtained with both dashpot 
damping and equivalent modal damping. Amplifications of the top mass in the 
lumped parameter and finite element models subjected to the sine sweep forc
ing function are shown in Figure 9. Only radiation damping is included. 
Since no internal damping is included, the finite element amplifications are 
probably high due to the vertical boundary. The lumped parameter results 
with dashpot damping are obtained with the modified technique of Wilson [23J. 
When the modal method is employed, the lumped impulse method of Biggs [lJ is 
used. The equivalent modal damping is determined from Eq. (8) with 
Os = 0, hence 

D. = 
1 

E . 
Zl ° --~~-- z 

E . + E . 
Zl Sl 

y.D 
1 Z 

(9) 

in which Yi represents the fraction of the total energy stored in the soil 
spring in the ith mode. Dz is given in column 3 of Table 1. 

As shown in Figure 9, the amplification is lower when the effect of soil
structure interaction is included than when the stratum is rigid, as the 
decrease in frequency from 5.0 cps, and the radiation damping both cause a 
decrease in amplification (Figure 3). It can be seen that amplifications 
for the lumped parameter model utilizing the actual mass and its associated 
dashpot are as such as 30 percent higher than the finite element amplifi
cations; however, amplifications for the lumped parameter model utilizing 
the effective mass are as much as 26 percent lower than the finite element 
amplifications. The significant decrease caused by the inclusion of the 
effective mass can be explained by looking at the first mode of vibration. 
The energy fraction stored in the soil spring for mode 1, Yl' is given for 
the actual mass and the effective mass in columns 4 and 5 ot Table 2. The 
soil spring contains more of the total energy for the case of the effective 
mass, and the energy ratio increases as the mass ratio increases. To obtain 
the equivalent modal damping fractions for the first mode, the effective radi
ation damping fractions in column 3 of Table 1 are multiplied by Yl' in 
columns 4 and 5 of Table 2, leading to columns 6 and 7 of Table 2. Amplifi
cations of the lumped parameter model with equivalent modal damping are 
consistently lower than those of the model with a dashpot. This generally 
occurs for viscous damping and the technique has recently been expanded to in
clude a frequency factor which tends to reduce the damping [4, 17, 20J. 

Adjusted Modal Damping Fractions - Since modal damping is an approximation 
to dashpot damping, and since the amplifications for the dashpot damping are 
available for the case of no internal structural damping, it is possible to 
adjust the equivalent modal damping fractions to give better correlation with 
the dashpot damping results. This procedure is demonstrated by considering 
the effective mass case for b = 5. As shown in Figure 9, the amplification 
of the top mass is 14 percent lower for the Biggs-Whitman modal damping solu
tion than for the dashpot damping solution. If the modal damping fractions, 
for each mode, are reduced by 30 percent, the amplification of the top mass 
for the modal damping solution is equal to that of the dashpot damping solu
tion. Note that the base amplifications or the amplifications of any other 
point on the structure could be equated instead of the top amplifications. 
Also, the amplifications of various points on the structure could be averaged 
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in some manner, and average amplifications could then be equated. The differ
ence in amplifications for various points on the structure can then be deter
mined to obtain an indication of the overall accuracy. The result of the 
adjusted damping fractions is that the relative damping between the various 
modes, as determined by the Biggs-Whitman procedure, is maintained because all 
modes are adjusted by the same percentage. 

Results With Structural Damping Included - The same problem is now a1tered 
to incorporate internal damplng. The lnternal damping fractions for the soil 
and the structure are both set equal to .03. The internal damping in the soil 
can be added directly to the radiation damping. For the lumped parameter 
method with modal damping (not adjusted) the modal damping fractions, obtained 
from Eq. (8), are .03 higher than those used for the earlier analyses. 

The amplifications of the top mass are shown in Figure 10. It can be seen 
that the amplification for rigid soil is equal to 5.9. For the case of no in
ternal damping, the amplification is 8.2. This reduction is due entirely to 
the effect of the structural damping. For the lumped parameter method with 
modal damping and actual mass, the amplifications are as much as 15 percent 
higher than the corresponding finite element amplifications. These differences 
would be increased if the modal damping fractions would be adjusted. For the 
case of the effective mass, the lumped parameter amplifications are as much as 
27 percent lower than the finite element amplification if the Biggs-Whitman 
modal damping fractions are used. The maximum difference is reduced to about 
19 percent when the adjusted damping fractions are used. The results for the 
two methods show good general agreement, but not as good as for the SDF system. 
Again,it appears that the effective mass should be used for the lumped para-



meter method; also, the adjusted modal damping fractions should be used, par
ticularly if the amplification is very sensitive to damping. 

CONCLUSIONS 

1:'13 

In this paper, dynamic analyses have been performed using the lumped para
meter and finite element methods. Included is a rational procedure to obtain 
springs, dashpots, effective soil masses and equivalent modal damping fractions 
for the lumped parameter method. The effects of various parameters have been 
examined. A limited parametric analysis has been performed to compare the re
sults of the two methods. Single and multi-degree-of-freedom systems with var
ious mass ratios, with and without internal soil and structural damping, have 
been subjected to two loading conditions. For these problems, it has been de
monstrated that the lumped parameter method can produce results which give good 
general agreement with finite element results which include the soil. 
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NOTATION 

displacement amplification; 
dimensionless frequency; 
dimensionless mass ratio (See Eq. 1); 
dashpot coefficients (See Eq. 5); 
fraction of critical damping; 
stored energy; 
resonant frequency; 
soil shear modulus; 
soil spring stiffness; 
total mass of structure; 
effective mass of soil and total mass of structure; 
dimensionless mass ratio (See Eq. 4); 
maximum magnitude of applied force; 
applied force (function of time); 
radius of the foundation; 
time; 
soil shear-wave velocity; 
constants in Eqs. 6 and 7; 
energy fraction (See Eq. 9); 
normalized displacement; and 
soil density. 
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The motion of an embedded foundation will differ during an earthquake 
from the free field as a result of the soil-structure interaction. For most 
of the sites, the soil profile is horizontally layered. This paper is to 
investigate the extent of the interaction of structure, foundation and soil 
when the soil layer is interrupted by the presence of a relatively stiff 
gypsum layer of irregular profile. The site studied for a reactor building 
consists mainly of layers of sand, clay, sandstone and gypsum. 

Two finite element models were constructed to investigate the effect of 
the gypsum geometry in the proximity of the reactor building. One finite 
element model assumes the horizontal layering of the soil profile with a 
uniform thickness of gypsum layer interbedded, while the other considers 
the actual profile with a varying thickness of gypsum layer interbedded. 
Plane strain elements were used for the soil layers, reactor foundation 
and reactor building structural systems. 

Static and dynamic aspects of the layering effect were studied. The 
static analysis was undertaken by applying vertical, horizontal and moment 
loadings to the foundation mat to assess the influence of the gypsum layer 
on the static soil spring constants. The dynamic analyses were performed 
to study the influence of the gypsum layer on the soil-structure interaction. 
Complex transfer functions were determined between bedrock and the structure
foundation to evaluate the dynamic characteristics of each soil profile from 
the two finite element models. 
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INTRODUCTION 

Although in most cases the soil layers underneath a structure are 
horizontally extended, the existence of a tilted and rather rigid layer of 
an undulatory nature could have influence on the soil-structure interaction. 
In the case of a nuclear power plant in the proximity of a thick and tilted 
gypsum layer, a detailed evaluation of influence upon seismic response is 
mandatory. 

To study the effect of a gypsum layer, the model of an actual soil 
profile was accompanied by a model with assumed horizontal layering. These 
two finite element models were developed using plane strain elements for the 
soil layers, reactor foundation and reactor building structural systems. Thus, 
the dynamic coupling between the soil and structure was included. 

The dynamic responses of the soil-structure systems were evaluated in 
terms of complex transfer functions which were determined between the bedrock, 
the foundation mat and the structural elements. The effect of the geometry 
of the gypsum layer on natural frequency and amplification factors was assessed. 
In this manner, the dynamic characteristics of each profile were evaluated 
relative to the differences in soil-structure interaction effects and the 
design ground response spectra. 

The static analyses were performed by applying vertical, horizontal and 
moment loadings to the foundation mat. This evaluates the effect of the 
geometry of the gypsum layer on the static soil spring constants. 

STRAIN COMPATIBLE SOIL PROPERTIES 

Suppose that a sand-clay formation of layered soil is interbedded with 
gypsum which possesses a high shear wave velocity. The soil properties 
determined from in-situ geophysical testing are then incorporated with the 
soil profile in the model. Consider a reactor bUilding which is underlain 
by seven formations as shown in Fig 1. The upper formations are sands and 
clay. These are underlain by a thin layer of sandstone, a relatively thick 
layer of overconsolidated clay and a 15 meter thick layer of gypsum inter
bedded with clay. The clay-gypsum layer is, in turn, underlain by stiff 
and more pure gypsum. A horizontally layered model with this soil profile 
is so constructed for the SHAKE(4) computer program. Briefly, the computer 
program SHAKE analyzes one-dimensional shear wave propagations in layered media. 
Each layer is assumed to be homogeneous and isotropic and to be infinite 
in horizontal extent. A linear visco-elastic system is assumed, however, 
non-linear behavior is considered in an approximate, piece-wise linear 
manner. (3) The computer program SHAKE was used to deconvolute the surficial 
time history to determine subsurface seismic strains and compatible soil 
modulus and damping values for the site stratigraphy and soil properties. 
An artificial time history with a response spectra enveloping a USAEC 
Regulatory Guide 1.60(6) smooth design ground response spectra for 7 percent 
damping normalized to a peak ground acceleration of 0.18 g was used in the 
SHAKE runs. Figure 2 shows a comparison of the smooth design ground response 
spectrum and the response spectrum corresponding to the artificial time 
history. 

Table 1 shows the results of the SHAKE runs in the form of strain 
dependent shear modulus and damping values for the various soil strata. 
These properties, which are compatible with the seismic strain levels 



resulting from the Safe Shutdo\vn Earthquake, were used for the soil 
properties in the two finite element models. 

REACTOR BUILDING MODEL 

For p~rposes of this inves5igation, a lumped mass model of a typical 
reactor building was adopted for this study. The lumped mass model is 
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shown in Fig 3 and was taken from Ref 1. The massless beams in the lumped 
mass model represent the containment building and reactor internal structures. 
This lumped parameter model of the reactor building was analyzed for its 
dynamic characteristics in the form of mode shapes, natural frequencies 
and participation factors assuming fixed-base condition. 

To be consistent with the plane strain geotechnical finite element 
models used for the static and dynamic analyses, a plane strain model for 
the reactor building was derived from the lumped mass model to preserve its 
natural frequencies. This was achieved by judicious selection of material 
properties for the plane strain elements, mass distribution and the physical 
width of the model. The height of the plane strain models was restrained 
to equal the actual height of the reactor building components in the lumped 
parameter model. The properties of the lumped mass model such as magnitudes 
of the various masses and the stiffness characteristics of the beams were 
distributed over the plane strain elements so as to preserve the natural 
frequencies. The plane strain representations of the reactor building 
components were then incorporated into the finite element models of the 
soil profiles and reactor foundation mat. 

HORIZONTALLY LAYERED FINITE ELEMENT MODEL 

The effect of the geometry of the interbedded gypsum layer was 
evaluated by comparing the static and dynamic responses of the actual profile 
with an assumed horizontally layered profile. A finite element model using 
two-dimensional plane strain elements having two translational degrees of 
freedom at each node was developed for the horizontally layered soil system. 
The symmetry of the soil profile about the centerline of the reactor building 
enabled the size of the model to be reduced through the use of symmetric and 
anti-symmetric boundary conditions. A symmetric half of the finite element 
model used for the horizontally layered soil profile as well as the repre
sentation of the r~octor building are shown in Fig 5. The depth of the finite 
element model was taken to be 110 meters, or approximately 45 meters into the 
stiff gypsum layer underlying the site. This boundary, which was taken as 
rigid for both static and dynamic analyses, was the location of the prescribed 
harmonic motion for the dynamic analyses. 

The dimensions of the finite element model can influence the results of 
dynamic finite element analyses significantly. Valid results require a 
reasonable prediction of free-field effects sufficiently far from the reactor 
building. Therefore, a parametric study was undertaken whereby the width of 
the horizontally layered finite element model was varied. Harmonic analyses 
with specified horizontal motion of the rigid base were then performed. In 
addition, exactly the same horizontal layering was used to obtain amplification 
fun~tions using the SHAKE program which yields an exact solution for the 
horizontally layered profiles. figure 4 shows the harmonic response, using 
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(~) -
COl1\l'Llter pl-ogram LllSH, ,ll N\lde A of the finite eleml'nt nll)(i('J in Fig 5 

compared to the exact solution from the SHAKE analysis. Node A of the 
finite element model represents the surface point farthest removed from 
the reactor building. Comparison of the two finite element solutions shown 
in Fig 4 to the SHAKE solutipn indicate that the 240 meter wide finite 
element model yields a favorable prediction of the free-field harmonic 
response. 

The symmetry of the horizontally layered soil profile about the center
line of the reactor building was utilized to minimize the size of the finite 
element model. However, the use of symmetry in the finite element modeling 
necessitated the use of symmetric and anti-symmetric boundary conditions 
in static and dynamic analyses of the horizontally layered site. For a 
vertical harmonic excitation of the rigid base or the vertical static 
loading of the reactor building foundation mat, the displacement field is 
symmetric about the centerline of the reactor building. Consequently, 
a boundary condition of zero horizontal displacement was applied to all 
nodes along the centerline of the reactor building. This represented the 
symmetric conditions for both the static and dynamic analyses. 1'or a 
horizontal harmonic excitation of the rigid base or the horizontal static 
loading of the reactor building foundation mat, the displacement field 
is anti-symmetric about the centerline of the reactor building. Con
sequently, a boundary condition of zero vertical displacement was applied 
to all nodes along the centerline of the reactor building. This represented 
the anti-symmetric conditions for both the static and dynamic analyses. 
The same boundary conditions as used for the horizontal excitation were 
used for the static analysis of moment loading of the foundation mat. 
The boundary conditions at the outer boundaries of the finite element 
model are discussed in later Sections. 

The strain compatible soil properties determined from the SHAKE 
analysis of the horizontazlr layered site were used for the finite element 
models for both the ANSYS 5 static analyses and LUSH dynamic analyses. 
ANSYS is a structural analysis computer program while LUSH is a dynamic 
analysis computer program for soil-structure system. Consequently, no 
iterations on the strain dependent soil properties were required for the 
LUSH dynamic analyses. For the static analyses, damping was not a con
sideration. Only the shear modulus values and Poisson's ratio were re
quired for the ANSYS finite element model. For the dynamic analyses, the 
strain compatible hysteretic damping values as determined from the SHAKE 
analysis were used for the LUSH finite element model. Consequently, the 
damping was frequency independent representing the true hysteretic nature 
of the material damping in soil deposits. Table 1 shows the soil properties 
for various layers used for both the static and dynamic finite element 
models. 

The dynamic finite element analysis requires a finite element mesh 
size which is small in comparison to the wave length. The size of the 
finite elements, therefore, depends upon the shear and compression wave 
velocities of the soil strata and the frequency range of excitation over 
which results are desired. A finite element mesh size of less than or 
equal to one-fifth (1/5) of the wave length of interest was used. The 
wave length is dependent upon the frequency of excitation f, shear wave 
velocity Vs and compression wave velocity vc ' according to: 

A 
c 

v 
c 

f 
(1) 



A (2) 
s 

where Ac and As are the compression and shear wave lengths respectively. 
Since the shear wave velocity is less than the compressional wave velocity, 
the shear wave velocity of the individual soil strata will govern the 
finite element mesh size required for each layer as a function of the maxi
mum frequency of interest. Thus, the LUSH criterion results in an element 
mesh size, d, such that 

d < 1 A 
S s 

v 
s 

Sf 
(3) 
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The program capabilities of LUSH require all matrix solutions to be 
performed in-core. This results in limitations on the dynamic matrix band 
width which in turn limits the mesh size of the finite element model by 
providing an upper bound on the frequency which may be considered. For the 
horizontally layered model, the wave propagation, either compressional or 
shear, is assumed to be vertical. Consequently, the element mesh size 
criteria is only restrictive in terms of the vertical element height except 
in the region directly beneath the reactor building where wave reflections 
are possible in non-vertical directions resulting from soil-structure 
interaction. However, the wave reflections and refractions for the actual 
gypsum layer profile are multi-directional. Thus, the mesh size requirement 
for the actual profile finite element model was found to restrict the maximum 
frequency considered to 10 Hz for shear wave propagation with a slightly 
higher frequency for compressional wave propagation. To preserve compati
bility between the two finite element models, the horizontally layered model 
was developed for a maxi~um frequency of 10 Hz for shear wave propagation. 

ACTUAL PROFILE FINITE ELEMENT MODEL 

A finite element model of the actual soil profile including the inter
bedded gypsum layer was developed for both static and dynamic analyses. 
As shown in Fig 6, the finite element model of the actual profile utilizes 
two-dimensional plane strain finite elements having two translational 
degrees of freedom per node. Unlike the horizontally layered finite element 
model, the layer contours prohibit the use of symmetry conditions. Analogous 
to the horizontally layered finite element model, the plane strain representa
tion of the reactor building Ivas incorporated into the finite element model 
of the actual site profile. 

For compatible results with the horizontally layered finite element 
model, the depth of the actual profile model was taken below the lowest 
point of the dipping gypsum layer. The width-to-depth rutio of the model 
affects the results of a dynamic finite element analysis. To be consistent 
with the horizontally layered model, the half-width of the actual profile 
model was taken to be 240 meters. Since the entire region on each side of 
the reactor building foundation mat was included, no recourse was made to 
symmetric and anti-symmetric boundary conditions. 

Analogous to the horizontally layered model, only the shear modulus 
values and Poisson's ratios were required for the ANSYS model used for the 
static analyses. The material damping values used for LUSH model dynamic 
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analyses are the hysteretic damping values shown in TablE~ 1. For the 
model of the actual profile, the interbedded gypsum layer gives rise to 
wave reflections and refractions at any angle beneath the reactor building 
because of its geometry. Consequently, it was necessary to utilize 
square shaped elements having diagonals of the order of one-fifth (1/5) 
of the shear wave lengths of the various materials throughout the region 
except near the boundaries. This restriction, coupled with the core 
limitations of the LUSH program, dictated a maximum frequency of 10 Hz 
for consideration in the dynamic analysis based on shear wave propagation. 
Analogous to the horizontally layered model, slightly higher frequency 
compressional waves can be represented by the actual profile model. 

STATIC ANALYSIS 

To evaluate the effect of the geometry of the interbedded gypsum 
layer on the static soil spring constants for the reactor building 
foundation mat, static loads were applied to each of the finite element 
models corresponding to the horizontally layered site and the actaal 
profile. Three static loading conditions (vertical, horizontal and 
moment) were considered. 

Vertical loading of 100 kips (45,359 kg) was applied to the finite 
element representation of the foundation mat. For the horizontally 
layered finite element model, recourse was made to the symmetry conditions. 
The boundary conditions at the outer periphery of both finite element 
models were taken as rigid along the base of the model with zero pre
scribed horizontal displacements along the nodes of the vertical boundaries 
of both the horizontally layered model and the actual profile model. For 
all static loading cases, the results were observed to be relatively in
sensitive to the boundary conditions along the vertical peripheral 
boundaries, indicating an adequate modeling of half space characteristics. 

Horizontal loading of 100 kips (45,359 kg) was applied to the finite 
element model of the foundation mat. For the horizontally layered finite 
element model, recourse was also made to the anti-symmetric boundary con
ditions. Rigid boundary conditions were specified along the base of both 
finite element models while zero prescribed vertical displacements were 
specified at all nodes along the vertical boundaries of the model for the 
actual profile. Analogous to vertical loading, the results were also 
found to be relatively insensitive to the boundary conditions along the 
vertical boundaries. 

Moment loading was applied to the foundation mat in both finite 
element models through the use of concentrated vertical forces at the 
nodes of the finite element representation of the mat. The vertical con
centrated forces were linearly distributed so as to produce zero net ver
tical loading on the mat while yielding a moment of 100 kip-feet (13825 kg-H). 
Anti-symmetric boundary conditions along the centerline of the reactor 
building was also used for the horizontally layered model, The boundary 
conditions at the outer peripheral boundaries were taken 1:0 be the same 
as for the horizontal loading case. 

It was assumed that the vertical mat loading would be sufficient to 
retain compressive soil pressures along all soil/foundation interfaces 
such that the possibility of lift-off of the mat under moment loading 
was not considered in the analysis. 



For vertical loading of the horizontally layered model, the results 
indicate no coupling of vertical and rocking deformation. However, coupling 
exists for vertical loading of the actual profile model. Thus, comparison 
of these two cases illustrates that one effect of the geometry of the gypsum 
layer is to couple vertical and rocking motion of the reactor building. 

The horizontal loading of the mat for the horizontally layered finite 
element model reveals a coupling of horizontal and rocking motion of the 
mat. This is expected since the line of action of the horizontal loading 
does not pass through the center of rotation; the horizontal mat loading, 
therefore, also produces a moment loading of the foundation mat. This same 
effect is observed for the actual profile where the coupled horizontal 
rocking motion is more pronounced for the same loading. Thus, another 
effect of the tilted gypsum layer is to increase the degree of coupled 
rocking/horizontal motion compared to the horizontally layered site. 

Using the nodal displacements obtained from the computer runs along 
with the applied loads for each load case, lumped parameter stiffness 
matrices were calculated for both the horizontally layered model and the 
actual profile model by equating the work done to the strain energj of 
each model. The resulting stiffness matrices for the horizontally layered 
site and actual profile are shown in Table 2. The presence of off-diagonal 
terms in the stiffness matrices signifies the presence of coupled motion. 
Thus, the coupling stiffness between vertical and rocking motion present 
in Table 2 for the actual profile is absent from the stiffness matrix in 
Table 2 for the horizontally layered site. This confirms the coupling 
effects deriving from the geometry of the interbedded gypsum layer. 

In general, a comparison of the two stiffness matrices in Table 2 
indicates that in addition to introducing coupled vertical and rocking 
motion, the overall effect of the geometry of the interbedded gypsum 
layer is to increase the site stiffness 10 to 20 percent over the horizon
tally layered stiffness values, based on the approximation used to repre
sent the average depth of the stiff gypsum layer. 

DYNAMIC ANALYSIS 

To evaluate the effect of the geometry of the interbedded gypsum layer 
on the seismic response of the reactor building, the transfer function 
between the underlying stiff and more pure gypsum and the structure was 
determined for both finite element models by applying a harmonic excitation 
to the base of the finite element models of varying frequency from 0.4 Hz 
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to 10 Hz. The LUSH finite element program was used to formulate the stiff
ness matrix [K] and mass matrix [MJ for each of the two finite element models. 
Damping is simulatz1 through the use of complex moduli in defining the 
stiffness matrix. While the LUSH program utilizes harmonic analysis to 
formulate a complex transfer function to perform time history response 
analyses based on Fourier Transform methods, it is not written to directly 
perform only harmonic analyses. Consequently, a separate program was 
developed utilizing the appropriate subroutines of the LUSH program which 
solve the dynamic matrix equation: 

-[M] {a} (4) 
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\"here cn is the vector of nodal displacements relative to the fixed base, {a} 
is the vector of applied accelerations (unity for degrees of freedom in the ex
citation direction and zero for the remaining degrees of freedom), w is the 
circular frequency of excitation (2~f) with f varied from 0.4 Hz to 10 Hz. 

For the vertical harmonic excitation, the stiffness, mass and damping 
matrices were formulated for both finite element models. The harmonic 
excitation was applied at all the nodes on the base of the finite element 
models while the boundary condition at all nodes along the outer vertical 
boundaries was taken to be zero horizontal displacement. For the horizontal 
harmonic excitation, the boundary condition at the peripheral vertical 
boundary was taken to be zero vertical displacement at all nodes along the 
vertical boundary. The horizontal excitation was applied at all the nodes 
on the base of both models. 

For comparison of the dynamic effects resulting from the geometry of 
the interbedded gypsum, the transfer functions were obtained for the locations 
at top of reactor building, base of foundation mat and free field away from 
reactor structure for both the horizontally layered model and the actual 
profile model. For purposes of this analysis, the transfer function for 
absolute acceleration, A(w), is defined as the complex frequency response 
or magnification factor resulting from an absolute base acceleration given 
by: 

iwt 
aCt) = 1.0e (5) 

This implies that the absolute response to the base acceleration is complex 
and may be written as: 

., iwt 
u(t) = A(w)e (6) 

where, in general, A(w) is a complex valued function containing both amplitude 
and phase information. While the transfer function is thus complex, only the 
amplitude values were plotted against frequency. Figures ' through 9 show the 
response to horizontal excitation and Figs 10 through 12 to the vertical 
excitation for the above locations. 

The transfer functions between the base of the finitE! element models at 
a depth of 110 meters and the structural components of the reactor structure 
illustrate the differing dynamic characteristics between an assumed horizontally 
layered site and the actual profile. The differences are, therefore, a direct 
result of the geometry of the interbedded gypsum layer since the dynamic 
characteristics of the structure remained constant. 

CONCLUSION 

The results of the static analyses indicate that the effect of the 
geometry of the interbedded gypsum layer is to increase the overall soil 
stiffness of the site compared to a horizontally layered site possessing the 
same stratigraphy. This was to be expected owing to the presence of the stiff 
gypsum in closer proximity to the reactor foundation mat for the actual profile. 
In addition to increasing the site stiffness, the geometry of the interbedded 
gypsum layer leads to coupling of vertical and rocking motion of the reactor 
structure. However, the coupling effect, while present, does not introduce 
any significantly undesirable characteristics into the potential seismic 
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r~sponse of the reactor. The coupled ~otion together with the mat flexibility 
results in differential settlement of less than 12 percent of the mean vertical 
settlement under static loading. 

The transfer functions for the free-field motion, shown in Figs 9 and 
12 for horizontal and vertical excitation, indicate that the effect of the 
geometry of the interbedded gypsum layer is to increase the site stiffness 
as illustrated by the shift in the resonant peaks to higher frequencies, 
which is consistent with the results of the static analyses. However, as 
noted by the higher resonant peaks for horizontal motion in the neighborhood 
of 1 Hz, 3.5 Hz Jlld 5 Hz compared to the horizontally layered site, the effect 
of the gypsum layer appears to be one of decreasing the radiation damplllg 
effects as a result of multiple wave reflections from the lower stiff and 
more pure gypsum layer. For vertical motion shown in Fig 12, the differences 
in amplitudes are less significant and primarily associated with a frequency 
shift of about 1 Hz. 

The general effect of sloping rock interfaces has been found to lead 
to standing wave patterns such that regions of attenuation and amplification 
are established along the surface of an alluvial deposit bounded by sloping 
rock layers. (7) This effect can be observed from Figs 9 and 12 where the 
response functions for the free-field are different for a point to the left 
of the reactor structure and a paint to the right. Neither free-field 
response of the actual soil profile differs from the horizontally layered 
model to an extent sufficient to revise the design ground response spectra. 

Comparison of the horizontal and vertical foundation mat response 
functions, shown in Figs 8 and 11 respectively, again illustrates the sligh~ 
stiffening effect of the geometry of the interbedded gypsum layer through an 
increase in the frequencies of the resonant peaks. Analogous to the free
field response functions, the amplification factors for horizontal excitation 
are slightly greater for the actual profile layer in the neighborhood of 
5 Hz, suggesting less radiation damping resulting from multiple wave 
reflections between the foundation mat and stiff gypsum profile. However, 
the maximum horizontal amplification factors in the frequency range of 
0.8 Hz to 1.0 Hz are practically identical for the actual profile and 
horizontally layered model. For the vertical excitation shown in Fig 11, 
the general effect of the gypsum layer, in addition to increasing the 
stiffness, is to slightly attenuate the response of the foundation mat in 
the range of 2 to 3 Hz, while having no significant effect on the mat 
response elsewhere. 

Since the dynamic response characteristics of the reactor structural 
components are determined not only by the soil-structure interaction effects, 
but also by the dynamic characteristics of the structure itself, the response 
functions shown in Fig 7 for the horizontal excitation and Fig 10 for the 
vertical excitation are included only for information. However, these 
figures serve to illustrate possible resonant frequencies to be considered 
in the design. Even though the response functions in Fig 7 is highly 
dependent on the structure, some observations are possible. At the lower 
frequency where soil-structure interaction is predominant, the somewhat 
higher amplitude of response is attributed to lower radiation damping. 
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As expected, the l~yering Rnd wave scatter tend to incr0RsP the response. 
For the vertical excitation, the results in Fig 10 indicate that the 
amplitude of response for the actual soil profile is s~mewhat less than 
that for a horizontally layered site, especially when one recognizes the 
slight frequencY sbift of about 1.0 Hz. In the higher fri?qut:'nc'\' LlI1ge 
around 10 Hz, the two response amplitudes are in closer agreement. 
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TABLE 

Su}IXARY OF DYNA.'lIC A.>;D STMI" CmtPATIBLE SOIL PROPERTIES 

Unit Shear .'(ociulus Strain Compatible 
Layer Soil Type Weight Poisson's for Soil Propert ies 

Number (PCF) Ratio Small Strain Shear Modulus Damping 
(KSF) (KSF) (7,) 

7 Sand Above 130. 0.26 7000. 5770. 2.6 
Wnter Table 

6 Sand Below 130. 0.42 16000. 13350. 3.0 
Water Table 

5 Clay 125. 0.48 5000. 955. 8.3 

4 Sandstone 140. 0.38 70000. 68800. 0.8 

3 Clay 125. 0.48 7400. 1370. 8.4 

2 Clay Plus 125. 0.43 43000. 15920. 5.1 
Gyp"~m 

1 Gypsum 130. 0.44 100000. 93240. 1.3 

TABLE 2 

SOIL SPRING CONSTANT 

Model Displacement Ven ical Soil Horizontal Soil Rotational Soil 
ldentification Direction Spring Constant Spring Constant Spring Constant 

Horizontal Vertical 2.02 x 105 k/ft 0 0 
Layered Model 

Ho't'izontal 0 1.11 x 106 k/ft 26.61 x 106 k/rad 

Rotation 0 26.61 x 106 k 9.57 x 109 k-ft/tad 

Actual Vertical 2.56 x 10
6 

k/ft -0.024 x 10
6 

k!ft 8.98 x 106 k/rnd 
P't'ofile Horizontal -0.024 x 106 k/ft 1. 29 x 106 k/ft 32.33 x 10

6 
klrad 

Model 
106 k 32.33 x 106 11.00 x 109 k-ft/rad Rotation 8.98 :<: 

Sign Convention: Refer to rigs 5 nnd 6. 
Positive horizontal corresponds to positive X-axis. 
Positive vertlcal corresponds to positive Y-axis. 
Positive rotation if counter-clockwise (right hand rule). 

I 

I 

'i 

I 
I 



226 
SHEAR MODULUS 

SOIL TYPE FOR SIoIALl STRAIN ( K SF) 
16.4' Iv SAND 7000. 

\7 

16.4' - SAND 115000. -
t262' CLAY !lOOD. 1 
.-Ii.»' nor 

98.4' CLAY (OVERCONSOLIDATED) 7400. 

\ 
I I 49.2' CLAY eo GYPSUM ~poO. , 
j 

I 
( I 

147.S' GYPSUM 100,000 
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Summary 

In this paper the interaction among structure, substruc
ture and soil is analysed for dynamic and seismic actions. 

The equations of motion of the structural system are 
written by taking into account the interaction with the soil; 
the corrections involved in comparison with the case when the 
interaction is ignored are also emphasized. Besides, the 
substructure is introduced into structural system and the 
influence of the soil is included by means of its stiffness 
matrix which improves the stiffness matrix of the structural 

system. 
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The way of determining the elements of the soil flexi
bility matrix reffering to the contact surface with structural 
system is shown for different 80il models. 

The obtained results are used for the determination of 
conventional seismic loads, according to present seismic 
codes. 

The proposed solution is particularized for framed 
structures with isolated foundation or with foundation beams. 

A dynamic and seismic analysis is carried out by means 
of computers for a framed structure with consideration of 
the two mentioned types of foundation and the two types of 
solIs differentiated each other by their deforbability modulus. 
Finally, some of the obtained results are discussed. 
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1. Introduction. 

Dynamic structural analysis is commonly performed by 
assuming the structure supporting base as a rigid body, the 
dynamic behaviour depending mainly on the deformation pro
perties of the structure. In some cases, the supporting base 
is considered to undergo certain deformations, their effects 
being approximated in a whole manner, as done elsewhere [J] 
[ 5] . 

In the majority of present codes, the seismic design 

reqUires that determination of stress and displacement state 
to be performed by considering the static action of some 
conventional loads obtained as functions of the vibration 
mode periods as well as of the mode shapes, the damping and 
the seismic intensity degree of the considered zone. This 
method was successfully used and was continuously improved. 

This paper follows the same manner of treating the 
subject, except that interaction effect among structure, 
substructure (foundation system) and soil is moreover taken 
into consideration. This effect influences the behaviour of 
the structural system (structure - substructure) on two ways: 
1) through dynamic characteristics and 2) through static 
interaction. 

The equation of motion for a structural 13ystem with 
interaction are firstly presented and for a practical appli
cation the system is assumed to be discretized in order to 
use a finite element computation procedure. 

The damping was not introduced in the dynamic equation 
of motion, firstly in order not to increase much the extend 
of this study and secondly because the numeri(~al examples 
which are presented do not take directly into consideration 
the damping effects, the damping been introdueed by means of 
a conventional seismic load. However, the analysis by means 
of the temporal steps with consideration of the damping, can 
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be performed without great difficulties, pursuing the views 
presented in paragraph 2 of the paper. 

The interaction effect is introduced in the idea of 
maintaining permanently the contact between the structural~ 
system and the soil. 

Some models with linear behaviour were adopted for the 
soil: homogeneous, isotropic or anisotropic linear deformable 
halfspace, halfspace having the deformability modulus as 
variable with depth, and the Winkler's model. 

Particularly, the case of framed structures with isola
ted or continuous foundations are discussed. 

The paper is based on a series of previous results [1] 

[4J [7J [8J ,without resuming the problems treated there. 

2. The Equation of Motion of Structural Systems with 
Interaction. 

The differential equations will be derived for a structu
ral system with interaction which may be considered as com
posed of a finite number or component members. 

The displacement components about reference axis of a 
point from the structural system are denoted by u, v and w. 

These displacements can be expressed for any point of the 
structural system, as functions of an arbitrary number of 
displacements selected 80 that to be capable to describe the 
deflected configuration of the structure. The points where 
those displacement are selected become the structure joints, 
while the corresponding displacements are called the nodal 
displacements. The following relation can be written with 
respect to displacements q and nodal displacements qN 

q = a qN (1) 

in which a is a matrix depending on x, y and z variables. If 
all displacements, q, are known, the specific deformations 
may be determined in the form of a vector €. 
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(2) 

where b is a matrix obtained from matrix a by a dit!'eren
tiation procedure. In the most general case, the vector S 

has the form E7={ Ex Sy Ez ~y tyz 'l;.x} • By using the 
Hooke's law, the tensions are determined 

D=CE =Cbq 
N 

in which C is the elasticity matrix, and 

(J T = {Ox Uy Uz Gxy 0yz bzx } 

(}) 

If the displacements q as functions of 1;ime t, are 
known, the acceleration components may be fotmd 

In order to establish the equation of motion of the 
structural system, the virtual work concept applied to elastic 
systems and the d'Alambert's principle are used 

in which diu is the variation of internal deformation energy 
of the structural system,crL is the virtual work of the 
applied and of the constraint forces, while .hpdqTqdV 
in the variation of virtual work done by ine~tial forces. 

The variation of internal deformation en,ergy may be 
written in the form 

du=fvdSTr:JdV (6) 

which? by considering the equation (2) and (3), becomes 

du= ( dqTbTCbq dV Jv N N 

The virtual work of applied as well as oj~ the constraint 
forces is composed of the following terms: the variation of 
the virtual work due to surface concentrated and distributed 
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forces, the variation of forces from connections without 
total constraints (which can also be concentrated and distri

buted) and the variation of the virtual work of volumetric 
forces. These terms are as follows: 

The concentrated forces were supposed to be applied at joints, 
while for the concentrated forces from connections only the 
interaction joints N, common both to structural system and 
to supporting base were considered. If the division of the 

structure in finite elements is practiced, the distributed 
applied and constraint forces along the body boundaries as 
well as the volumetric forces can be replaced by equivalent 
nodal forces, so that all applied forces set up a vector P* 
while the constraint forces form a vector Y. In this case 
the virtual work of external forces takes a simple form 

dL:: Jq T p* + dq T Y ( 9 ) 
N N1 

and the equation (5) may be written as 

[ J;,TbTCb q dV:: dqTP*+dqNYl!dci~aTaqNdV (10) 
V N N N 1 V 

Supposing that all nodal displacement influencing directly 
the interaction are grouped, the term orqN,Y may be written 
as a fUnction of ~T:: {~ ~q l ,as follows 

N N1 N2 J 

{dq N1 dqN2} {~l::dq~y* (11) 

As d;N is an arbitrary quantity, it may be left out and the 
equation (10) becomes (i bTC b dV lqN:: p* + y*- Vvf aT a dV) 'iN 

In the above equation, the term 

(12) 

!vbTCbdV::K (13) 

is the stiffnes matrix of the structural system, or pointing 
out once more, of the system composed of structure and sub
structure g while the term 
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Iv f aT 0 dV = M ( 14 ) 

is mass matrix of the equivalent discrete system. 

With those specifications the Equation (12) takes the 
form 

Kq + Mq = P* + y* 
N N 

In the case of free vibrations p*~ 
(15) 

o so that the Equation 
(IS) becomes 

(16) 

J The Interaction Forces. 

The contact between structural system and supporting 
base is permanently maintained; the displacememts of the 
contact surface of the structural system and of the supporting 
medium are equal. Connection forces appears on the contact 
surface, under the form of the contact pressures, which are 
equivalently replaced by nodal force on the structural system. 
The pressures on a finite element of soil surface are assumed 
to be distributed according to certain simple laws. The 
smaller those finite elements are, the less the pressure 
distribution law influences the final results. The resultant 
of pressures on these subdomains (finite elements) must be 
equal but of a contrar sense to the reactive nodal forces 
applied to the structural system. 

The structure horizontal displacements are supposed to 

be locked through friction effect and by the embeding into 

the soil. 

Since some linear relationship were assumed to exist 
between vertical displacements on the 80il surface and the 
applied forces, their general form will be 

W1 = ~11Y1 + ~12Y2+ ..... + ~1N1YN1 
(17) 

W2 = ~21Y1 + ~22Y2 + ...... + ~2N1YNl 
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or, under a condensed form 
w = ~ y (18) 

in which w is the vertical displacement vector at the inter

action nodal points, qN1 and ~ is the soil flexibility 
matrix, its elements depending on the mechanical model adopted 
for the soil and, in to a certain extent on the laws adopted 
with respect to the pressure distribution on a surface finite 

element. 

By the inversion of f-> matrix, the Y vector is obtained 
from (18) 

(19) 
KT being the stiffness matrix of the soil on the contact 
surface. By changing its sign, Y becomes the interaction 
nodal force vector Y of the structural system 

y * , t ~ H ~T ~ 1 \ ~~J (20) 

or 
(21) 

Returning to Equation (15), with Y*given by (21) it can 
be written 

(22) 

or 
(2,3) 

Particularly, in case of the free vibrations, the vector 
p*: 0 and Eq. (2J) becomes 

KsqN+MQN""O 
(24) 

in which Ks is called the stiffness matrix of the structural 
system and takes the form 

(25) 
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Therefore, the stiffness matrix of the system characterizes 
the behaviour of the structure, substructure and the soil. 

In case when the dynamic analysis is used for the seismic 
design and besides the horizontal component of the earthquake 
is considered as predominant, the structural lateral matrix 
is then used, which can be obtained as followB 

[
KS11 

Ks21 

(26) 

in which q H represents the displacements about the directions 
of the adopted dynamic degree of freedom, RH a.re the corres
ponding inertial forces, and q are the other d.isplacements.By 
solving the matrix system (26) and eliminating q the lateral 
stiffness matrix of the system composed of the structure, sub
structure and the soil, KSL ' is obtained as 

T -1 
KSL = KS11 - KS21 KS22 KS21 

(27) 

4. The Soil Flexibility Matrix. 

As it was already showed the soil stiffness matrix KT, 
on the contact zone is obtained by inversion of the soil 
flexibility matrix ~ • This matrix depends on the mechanical 
model adopted for the soil, i.e. 

1°. The soil is considered as a homogeneoul3 isotropic 
linear deformable halfspace. Supposing that contact pressures 
are constant on a subdomain n.. j , the elements o:f ~ matrix are 
calculated with relation 

(28) 

in which Eo and 170 are the deformation modulus and Poisson's 
coefficient respectively, the other quantities being showed 
in Fig.I. For the case of a rectangular element ~j , a com
puter program was elaborated for calculation of' p matrix 
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elements. 

2°. The soil is considered as a transversal anisotropic, 

homogeneous and linear deformable halfspace in the sense 
given by Michell. In case of the transversal anisotropy, 
according to the Michell's solution, the displacements on 
the halfspace limit surface due to a normal load P may be 
determined with 

w = l.....J:.. 
E r 

(29) 

where r is the distance between the point of application of 
P and the point corresponding to displacement W; J is a 
nondimensional factor characterizing the anisotropy of the 
term 

(Jo) 

in which E is the deformation modulus an a 
E -r2 

G is the shear modulus, n:: f = 7 
sotropy degree, EH is the soil defJrmation 

vertical direction, 

denotes the ani
moduluB in trans-

versal direction, ))1 , ))2 ,V3 are the Poisson's coefficients, 
namely, v1 - for horizontal contraction due to the tensions 
in horizontal planes Y2 - vertioal contraction due to the 
tensions in horizontal plane, Y3 - horizontal contraction 
due to the tensions in vertical planes; cp=(1+)l,)(1- Y1- 2n v2) 

In the case of transversal anisotropic halfspace, the 
displacements on the limit surface can be obtained in the 
same manner as in the case of a homogeneous isotropic half
space, by replacing the factor T - Vo by-L 

II Eo E 

)0. The soil is considered as a halfspacEI having its 

modulus of deformability as variable with the depth. The 
following law is used for the variation of E = Eo.! E1z m 

in which Eo is the soil deformation modulus on the limit 
surface, E1 is the soil deformation modulus at a depth of 
1 m ; the index m takes into consideration the manner of 



nonhomogenity propagation along the depth. Particularly, the 
values used in practice are m = 1, m ~ ~- and m = 2, depen
ding on the soil characteristics. 

The soil surface displacements produced by a normal 
concentrated loads may be calculated with 

in which 

(31 ) 

(J2 ) 

By considering constant pressures on a surface finite 
element ~j , the coefficients ~ij may be calculated as fo
llows: 
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4°. The soil is considered of the form of a field of 
springs (Winkler model). In contrast with the previous cases 
in which ~ was a full matrix, in this case it becomes a dia
gonal matrix. The elements of ~ matrix may be calculated 

with relation ~jj = ~j/ kj 

kj being the stiffness coefficient (settlement- coefficient) 
of the soil, k j is supposed as constant on -iLj surface. Some
times the coefficient Kj is considered as constant on the 
whole contact surface. 

5. Solutions for Framed Structures. 

A detailed analysis was carried out for framed structures 
having as foundation a) continuous beam foundation or b) 
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isolated blocks under columns. The soil was a.ssumed as a 
homogeneous, isotropic or anisotropic linear deformable half
space. Computer programs were elaborated for seismic analysis 
of these structural systems on the basis of considerations 
presented in this paper. 

In the case of foundations of continuous beam form t the 
soil flexibility matrix ~ , is generated on the basis of the 
relation (28) depending on the nodal points of the structural 
system. 

As for the ~ramed structures with isolated foundation, 
the solution of halfspace deformations under a rigid block, 
subjected to a concentrated force or to a couple were used 
for determining the matrix ~ • 

In Fig. 2 the foundation block deformations produced by 
a unity centric force or by an unity couple respectively, as 
well as the deformed soil shope and the influences on the 
su.rrounding foundations are shown. The following relations 
are used for the calculation of the displacem(mts ~jlP=1) , I\~M =1) 

[ 6 J : 

p,··(P -1) _1-lo Co rJJ - - - ,r-;,-. Eo v A 

2 
~ ( M -1) - 8 k1 (1- Yo) 
rkk - - 3 

Eol 

in which A is the contact surface between the foundation and 
the soil, L is the contact surface dimension respective to 

bending plane, Co and k1 a.re coeffiCients depemding on ~ 

ration ( B being the other dimension of the contact surface, 
assumed of a rectangular form); Co and k1 may be found in 
the mentioned paper. 

The computation of the lateral coefficients is performed 
by means of the relation that gives the limit surface displa
cements of the halfapace under the action of a normal load, 

7 
1- Vo P 

-
II Eo r 

particularized for P = 1 in the case of centric loads and 
P ;;::!: t in the case of couples, d being the couple arm of 
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Fig.3.Geometric characteristics of the structural system. 
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the contact surface pressures due to the action of M = 1, 
Fig. 2. 

6. Numerical Examples. 

The dynamic and seismic analysis of a two bay, five 
story frame, considering two foundation solution: a) isolated 
foundations, b) continuous beams foundations. Two types of 
soil were assumed, differentiated by their deformation mo
dulus Eafor which the values of 100 da N/cm2 and 500 da N/cm2 

respectively, were adopted. The Poisson's coefficient of the 

soil was assumed Yo::: 0,35. 

The geometrical dimensions of the structure and the 

foundation as well as the gravity loads are shown in Fig.3. 
The reinforced concrete modulus of elasticity. for the 

2 structural system was chosen Eb= 285.000 da N/cm • 

In Fig. 4 and 5 the dynamic characteristi'~s for the 
first three vibration modes (Fig.5 a) are presented together 
with the bending moment diagram, under the action of the 

st seismic conventional forces, corresponding to the I mode of 
vibration, are presented as follows: 

- frame without interaction (Fig. 4 a) 
- foundation beams considered independent and loaded 

with connection loads transmited by frames (from the analysis 
without interaction), (Fig.4 d and e), 

- frame on isolated foundation with interaction (Fig. 
4 band 5 b), 

- frame on foundation beam with interaction (Fig. 4 c 
and 5 c). 

Conclusions. 

With th~ assumption adopted a formulation for the dy
namic and seismic analysis of structures was presented by 
taking into consideration the interaction with the sub-
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structure and the foundation soil. 

By using a finite element technique, the suplimentary 

factors involved due to interact~on, their way of evaluation, 

the corrections introduced in a structural analysis and 

especially the manner in which the soil takes part at this 

process, were emphasized. 

Particularly some procedures for obtaining real solutions 
are indicated. 

A computer program analysis was carried out for several 
examples, emphasizing the interaction effects on the dynamic 

behaviour of the structural systems considered and on the 

stress state in these systems. 

From this analysis the following conclusions were drawn 
up: 

The general shape of the three modes of vibrations is 

the same in the both case considered, with and without inter

action. 

As it was expected, on increase was found in the natural 
periods of vibration; more significant increases were observed 
to fundamental mode of vibration for the structural system 

having beam foundations, i.e. 80% for the soil with ~= 100 
da N/cm2 and 43% for the soil with Eo= 500 da N/cm2 • In the 
case of isolated foundations, the increases of first mode 

period for the structural system are 55% greater for the 80il 

with Eo= 100 da N/cm2 and 17% for the soil with E? 500 da NI 
2 cm • 

Some increases of the periods of vibration are found 

also to higher modes. 

Therefore, both the foundation system and the soil type 

will influence the dynamic characteristics of the structure. 

Because of the changes in the dynamic characteristics 
of the structural system, in the case of interaction, smaller 

seismic coefficients were obtained and implicitly decreased 
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conventional seismic loads have resulted. 

Because of the decreasing in the seismic loads and as 
a result of the static interaction effect, thel stress state 
of the studied structural systems undergoes some changes in 
comparison with the situation in which the interaction is 
neglected. 

The most stressed sections are not alwaYfl at the struc
ture base" where the bending moments decrease with 18-300%. 
By comparing the most stressed members in the structure, it 
may be found differences ranging from 19% to 45%. 

This effect is differentiated in function of the soil 
type, for base sections and the soil with Eo= 100 ds N/cm2 

being more important for the structure with isolated founda
tion, while in the case of Eo= 500 da N/cm2 , the structure 
with foundation beams proved more sensitive. 

All interaction effects are diminished at higher levels. 

The decrease of the structure base section stresses 
leads to modification of the stress state in the foundation 
beams and the soil. 

The effects of the interaction depend on structure, 
foundation system, type of the soil, so that the results 
obtained on the presented examples can not be I~xtended to 
any practical situation. By including the inte:~action it is 
however possible to influence the way of elabo;rating some 
types of structures. 
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The continued reliable operation of telephone equipment in earthquake
prone areas depends on the equipment's ability to survive earthquakes of a 
realistic magnitude. This paper presents a procedure for developing 
regional earthquake protection practices in a cost-effective manner. 

Maintaining system reliability requires extensive knowledge of the 
earthquake environment of a particular area and the response-damage-failure 
mechanism of the equipment and its supporting frame during earthquakes. The 
earthquake environment is determined by a regional microzonation analysis, 
which is translated into isoseismic acceleration maps of the area being 
studied. The seismic response of the communications equipment is determined 
by a comprehensive analysis of the coupled foundation-building system and 
dynamic testing of the equipment assembly, employing a regional test 
environment. 

The procedure is applied to electronic, electromechanical, and 
reserved-power equipment for both a single system and multiple systems 
within an earthquake area. 

INTRODUCTION 

Telephone communications facilities are so vital to public health and 
safety that special efforts must be made to prevent disruption of these 
services by a major earthquake. At present, building codes have only rudi
mentary provisions regulating the planning and design of communications 
lifelines. The primary reason for this is a lack of understanding of the 
dynamic behavior of different communications systems under seismic loadings. 
Recently, the earthquake behavior of several types of communications 
facilities has been investigated to determine the dynamic characteristics 
and earthquake vulnerability of a variety of equipment supported in single
story and multistory telephone buildings. 

In addition, microzonation studies, which delineate the risk potential 
of telephone systems in various seismic regions, and cost/loss analyses, 
which characterize the earthquake safety and economic consequences of these 
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systems, also have been performed. Based on the results of these studies, 
a procedure has been established for developing earthquake protection 
practices in communications facilities. The pertinent elements of this 
procedure, such as the characterization of earthquake environment, tests 
of equipment and framework assemblies, cost/loss considerations, and the 
interfacing of these elements will be described in this paper. 

BASIC EARTHQUAKE PROTECTION PROCEDURE 

The decision to protect a new or existing facility in a seismic 
environment can be made on the basis of maintaining system reliability· 
against earthquake failure independent of the protection cost, or considera
tion of a proper balance between the earthquake loss and protection cost 
among various feasible protection schemes. (We refer to the former pro
cedure as a reliability-based procedure and the latter one as a cost-based 
procedure.) These two approaches, along with the required data and informa
tion, are shown in Figure 1. The reliability-based decision requires 
information on the earthquake environment and knowledge of the system's 
response-damage-failure behavior during earthquakes. T:he earthquake 

environment information is provided by a microzonation analysisl * and the 
resulting isoseismic intensity (or acceleration) maps of the area of 
interest. Such maps define the seismic risk within an area in terms of the 
intensity or acceleration level. The earthquake behavior of the equipment 

assembly is predicted by a comprehensive dynamic testing program2 that 
identifies the failure modes and damage states associated with various 
ground excitation levels. 

The cost-based decision (see Figure 1) combines system reliability and 
cost information to develop cost-effective earthquake protection. If the 
protection cost of the system is extremely small compared with other cost 
items, a cost-based decision usually becomes a reliability-based decision 
because the protection cost is no longer a controlling factor for decision 
making. 

EARTHQUAKE ENVIRONMENT 

The actual earthquake motion environment that a specific communications 
facility must survive is a function of the facility's geographic location 
and its location within a building. The expected peak ground acceleration 
is determined by micro zonation studies that depict the regional earthquake 
environment as a function of geographic location. Peak in-building values 
are examined for two cases, i.e., ground/first floor locations and upper 
floor locations. An amplification factor that relates ground values to 
in-building values is employed. The appropriate test environment at the 
equipment support is achieved by linearly scaling a typical waveform for 
upper-bound in-building motion down to the expected acceleration level. 

Microzonation Analysis 

Microzonation maps show expected peak accelerations as a function 
of geographic location. In general, a microzonation stu.dy yields a 

* References are listed as the last paragraph of this paper. 
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probabilistic characterization of the earthquake environment in a particular 
region. It combines historical data, seismological and geological informa
tion, and a sound statistical model to determine the expected environment 
at a given facility. This information may be represented by a contour map 
with a 90-percent probability that the contour acceleration levels indicated 
will not be exceeded dUring the service life of a given communications 
facility. 

As an example, the acceleration contours resulting from a micro zonation 

analysis of the Rocky Mountain states l are shown in Figure 2. This contour 
map indicates the expected peak ground acceleration for every location in 
the study area with a 90-percent probability that these levels will not be 
exceeded during the 50-year service life of the equipment. The IO-percent 
exceedance probability is a generally accepted level in the earthquake 
engineering profession and is considered adequate for communications 
facilities. For extremely critical installations, such as nuclear power 
plants, a much lower exceedance probability - from 2 to 5 percent - most 
likely would be employed. This, of course, results in higher acceleration 
values. 

Upper-Bound Response Spectra 

Equipment located on upper floors of mUltistory buildings generally 
is subjected to stronger shaking than equipment on ground floors, since 
earthquake motion is amplified as it travels through the coupled 
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Figure 2. Peak Earthquake Ground Acceleration "g" Contours with a 
90-Percent Probability of Not Being Exceeded in 50 Years 

ground-building-equipment system. In an analytical study of earthquake

induced in-building motion,3 the motion time histories for the upper floors 
of representative mUltistory telephone buildings with different building 
characteristics and soil conditions were calculated for earthquakes with 
Modified Mercalli Intensities of V to X. The results were expressed in 
terms of motion histories. The envelope response spectra for different 
damping ratios are shown in Figure 3. These spectra indicate the floor 
response characteristics of telephone buildings in earthquake environments. 
The average peak floor acceleration level corresponding to such spectra is 
approximately 0.8 to 1.0 g, and the predominant frequency band is 
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approximately 2 to 6 Hz. This frequency range includes the fundamental 
~requencies o~ most communications equipment and ~ramework assemblies. 

Upper-Bound Time History 

Ideally, a simulated earthquake motion used for equipment testing 
should resemble an actual earthquake motion as closely as possible in 
response spectra, peak accelerations, peak velocities, peak displacements, 
durations, and appearance o~ wave~orms. A number o~ di~~erent test methods 
can be used to simulate an earthquake environment, including sine beat, 
decaying sine, sine sweep, and random wave~orms. The random wave~ormmethod 
was chosen since it satisfies more o~ the above requirements than any 
other method. 

The appropriate acceleration time history is generated on a digital 

computer using the techniques established earlier.
4 

Basically. the 
technique starts with a filtered Gaussian white noise; then an envelope 
~unction is used to shape the initial, middle, and final phases o~ the 
simulated motion into a typical earthquake accelogram. The predominant ~re
quency content is adjusted through parameters related to the ground motion 
trans~er ~unction. An upper-bound earthquake environment is generated by 
matching, as closely as possible, the 2-percent spectrum of the synthesized 
earthquake to the in-building spectra shown in Figure 3. 
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The resulting acceleration history of this synthesized earthquake, 
shown in Figure 4, qualifies as the upper-bound criterion since it approxi
mately matches the upper-bound in-building response spectrum and has a peak 
acceleration close to I g. This peak acceleration value is consistent with 
the maximum in-building accelerations determined in Reference 3. 
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In Figure 5 the in-building upper-bound spectrum (Figure 3) is compared 
to the spectrum of the> analytically generated time history. As indicated, 
the spectra match reasonably well within the frequency range of interest, 
i.e., approximately 2.3 to 6 Hz, which bounds the fundamental frequencies 
of most communications equipment-framework systems. At f'requencies below 
2 Hz, the time history spectrum is lower, and for frequencies above 6 Hz, 
somewhat higher than specified. 

Building Amplification of Free-Field Motions 

The large collection of ground-motion data recorded during the 

San Fernando earthquake was analyzed,3 and the results showed that the ratio 
of upper floor acceleration to ground/first floor acceleration (amplifica
tion factor) varied with the amplitude of the ground motion. Figure 6 shows 
the amplification factor for the mean plus-one standard deviation accelera
tion for moderate to large intensities and for conditions common to most 
telephone buildings. This amplification (one standard deviation above the 
mean) is judged sufficiently, yet not overly conservative for determining 
how to protect the equipment. As indicated in Figure 6, the amplification 
factor varies from 3.0 at 0.1 g ground acceleration down to 1.0 at 0.5 g. 
For ground accelerations higher than 0.5 g, the amplification factor remains 
unity - i.e., there is no amplification. 
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Earthquake Environment for a Specific Location 

An earthquake environment used for testing can now be generated for a 
specific location. As an example, consider a communications facility 
located geographically on the microzonation map (Figure 2) such that the 
peak ground acceleration is 0.2 g. If the equipment is to be installed on 
the upper floors of the building, then the amplification factor in Figure 6 
is approximately 2.0, so that the peak upper floor acceleration is 0.4 g. 

The earthquake environment for this specific facility can be determined 
by linearly scaling the accelogram of Figure 4, which has a peak accelera
tion of approximately 1 g, down to a peak acceleration of 0.4 g. If the 
equipment were on the ground/first floor, there would be no building 
amplification and the test environment would have been scaled to 0.2 g 
instead of to 0.4 g. 
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TESTS OF VARIOUS TYPES OF EQUIPMEN'I' 

The regional earthquake environment discussed in the preceding sections 
has been used to test a variety of communications equipruent. The tests are 
performed to determine the earthquake vulnerability - i,e., the failure 
modes, lateral strength and damage profile - of the equipment assembly. The 
equipment tested includes 7-ft floor-supported electronic equipment, 
11-1/2 ft ceiling-braced electromechanical equipment, and the battery plant 
of the reserved power system. The basic concern is with the integrity of 
the equipment framework assemblies and their supports, such as holddown 
bolts and braces. If these supports fail, the entire communications system 
is vulnerable to a catastrophic collapse. 

The basic test procedure for each category of equipment can be 
summarized as follows: 

• Program a shaker table motion using the upper-bound synthesized 
earthquake waveform shown in Figure 4. 

• Test the equipment framework by using linearly scaled table inputs 
of progressively increasing peak amplitude from 0.1 to 1.0 g. 

• During each test, observe and record the frame responses. In 
particular, determine the peak table acceleration levels a., carre-

l 

sponding to initial damage, and a
f

, corresponding to total failure. 

These characterize the damage profile of the equipment-framework 
assembly. 

Electronic Equipment 

The No.1, 2, 3, and 4 Electronic Switching Systems (ESS) make up the 
latest vintage of telephone switching facilities. These systems are 
replacing the electromechanical equipment, which presently comprises the 
bulk of the existing telephone plant. 
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Figure 7. Typical 7-ft Electronic Equipment 

Figure 7 shows a typical electronic switching office. The equipment 
frameworks are 7 ft tall and generally are self-supported - i.e., anchored 
to the floor. As a result of this support system the configuration is 
basically an inverted pendulum with a fundamental frequency that varies 
between 2 and 6 Hz, depending on the specific type of equipment. 

The electronic equipment tests are performed for three different 
frameworks and three different weight categories, for a total of nine cases. 
Two failure levels are determined: the initial failure level, which is 
defined as the input acceleration level that causes a permanent frame dis
tortion (as measured by strain gauges) or loosening of the anchor bolts in 
the floor; and the total failure level, which corresponds to frame buckling 
or pulling out of the anchor bolts. 

The test results are used to construct the damage profile in terms of 
base equipment acceleration, as shown in Figure 8. In general, lightweight 
electronic equipment located on ground floors is less vulnerable than heavy 
equipment located on upper floors. The damage profile for each of the 
nine cases considered and the ground acceleration contours of Figure 2 are 
used to determine the regional floor anchor bolt requireme~ts for equipment 
on ground/first floors and on upper floors of telephone buildings. In some 
cases, i.e., heavy equipment in high-risk areas (see Figure 2), it is 
necessary to include overhead bracing to ensure protection of the equipment. 
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Electromechanical Equipment 

Electromechanical e~uipment, which consists primarily of crossbar 
switching facilities, is mounted on 11-1/2 ft frameworks anchored to the 
floor and braced to the ceiling, as shown in Figure 9. This configuration 
results in a fundamental fre~uency of 4 to 8 Hz for the equipment-framework
bracing, depending on the specific mix of equipment weights and frameworks. 

Figure 9. Typical 11-1/2 ft Electromechanical E~uipment 
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The tests are the same as those performed on electronic e~uipment, 
i.e., varying the weight, framework, and input environment. In addition, 
a special structure was built to simulate overhead bracing on the shaker 
table, as shown schematically in Figure lO. 

The results of the electromechanical equipment tests are expressed in 
terms of damage profiles. By keying these damage profiles to the micro
zonation map, regional earthquake protection practices were developed. The 
results show that the standard nonearthquake installations are satisfactory 
for low to moderate seismic risk areas and that present earthquake practices 
are adequate for the high-risk regions. These earthquake practices include 
a more substantial overhead bracing configuration than the nonearthquake 
installations use. 
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Figure 10. Evolution of Field Configuration to Test Configuration 
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Reserved Power Systems 

The ~rimary com~onent of the telephone reserved power system is the 
battery plant. The newest battery plant consists of polyester-glass stands 
with round cells, as shown in Figure 11. There are several earthquake pro
tection measures that can be employed with this stand-cell configuration -
for example, epoxy all joints in the stand and lock the cells in place, 
and/or place a harness over the stand and anchor it to the floor, as shown 
in Figure 12. 

Figure 11. Nonearthquake Installation of 
Polyester Glass Stands with Round Cells 
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A series of tests were performed with variations in the stand-cell 
configuration - i.e., 2-row 2-tier, l-row 2-tier, 2-row 3-tier, etc. - dif
ferent earthquake protection measures and variable earthQuake input. The 
fundamental frequency varied from 4 to 7 Hz, depending on stand-cell con
figuration and earthquake protection. The resulting damage profiles were 
keyed to the microzonation map, and regional earthQuake protection guide
lines were developed. This study shows that the harness and epoxy are 
required for all battery stand configurations in moderate- and high-risk 
areas, and the harness is required for certain configurations on upper 
floors in low-risk areas. 

COST AND LOSS ANALYSIS 

The above analysis shows that an earthQuake protection policy can be 
based on reliability considerations. While improving the reliability of the 
structure tends to lower the loss due to earthQuake damage, it also could 
result in a significant increase in the total cost of the structure. When 
the additional protection cost becomes substantial, it is necessary to con
sider the cost and loss factors during the design protection decision 
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process. Some recent papers have been published addressing such problems 

in the context of optimal design5 ,6 or decision analysis. 1 Since cost and 
reliability are key factors, estimates of these quantities must be truly 
representative of the actual environment to preclude both grossly conserva
tiYe and marginal design practices. Because of uncertainties in the earth
quake and structural parameters involved in such complex problems, the 
degree of precision in the cost and loss estimates depends on the 
sophistication of the analysis procedure. However, for practical purposes, 
simple but reliable procedures are more desirable. One such cost/loss 
analysis procedure is described below. 

Cost/Loss Analysis Procedure 

The expected dollar loss of an equipment system due to earthquakes 
depends on the earthquake risk and the total worth of the system. The 
following two situations are considered: one communications system in a 
given seismic risk area, and "n" of these systems in that area. 

Single System Cost/Loss Analysis - Consider the situation where there 
is one communications system located within a given contour, as illustrated 
in Figure l3A. Assume that regional earthquake protection is incorporated 
to ensure survival of the system for the environment indicated by its loca
tion on the contour map (Figure 2). The specific earthquake protection 
installed is determined by the damage profile (Figure 8) of the equipment
framework system. 

• 

• • 

• 

A, SINGLE-SYSTEM CASE B, N- SYSTEM CASE 

Figure 13. Monetary Losses for Communications Systems during Earthquake 

If earthquake protection were not incorporated in the system, the 
expected losses over the 50-year facility service life would be equal to the 
value of the equipment, i.e., c .. When earthquake protection is inClUded, 

l 
this loss is reduced to 

(1 ) 

where Pf is the probability that the design environment will be exceeded 

during the facility service life, i.e., the exceedance probability is 0.10. 
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Thus, the expected loss is 

L :;; 0 .. 10 c .. 
e l 

The earthquake protection cost ratio 0 (i.e., protection cost divided 
by eQuipment value) for communications facilities is typically 0.004 to 
0.02, depending on the type of equipment and its protection design level. 
Therefore, an expenditure 

p 0.004 c. to 0.02 c. 
l l 

results in a reduction of expected losses, L , from c. to 0.10 c
l
" which 

e l 

obviously makes the earthQuake protection cost-effective. 

Multiple Systems Cost/Loss Analysis - When there is more than one 
system within a given contour (Figure l3B), the situation is different. 
Each system is eQually vulnerable and has a certain likelihood of failure 
during a given time period. Furthermore, joint failures of a number of 
systems also may occur. 

Let the "n" similar systems in Figure 13B be denoted as a,b,c, ... ; let 
Pf(a),Pf(b), ... - be the respective failure probabilities; Pf(ab), 

Pf(bc), ... ,Pr(mn) the joint failure probabilities for two systems; and 

Pf(abc),Pf(bcd), ... ,Pf(lmn) the joint failure probabilities for three 

systems, etc. Then the total expected earthquake loss for these "n" systems 
is 

If each system has earthquake protection to ensure survival for the 
environment indicated by its contour location, then the failure prObabil
ities of single systems within the contour are identical - i.e., Pf(a) :;; 

Pf(b) = ••• = Pf(n) ~ Pf = 0.1 - but the joint failure proLabilities of two 

or more systems are not known. The calculation of these joint failure 
probabilities is complicated, because the correlation between events of 
multiple failures is difficult to evaluate. However, if these systems are 
geographically separated so that their failure can be treated as independent 
events, then it can be assumed that Pf(ab) = Pr(a)Pf(b), 

Pf(abc) == Pf(a)Pr(b)Pf(c), etc. and the expected loss can be expressed as 

From the equation ab.ove note that higher-order terms contribute very little 
to the total loss; this is expected because these terms correspond to 
higher-order joint failures, which are extremely small. If these terms are 
neglected for n > 2 in the above equation, then a lower-bound estimate 
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of the earthquake loss is given by 

nc .. 
l 

Therefore, since the protection cost for "n" similar systems is P = uoc., 
l 

where 0 is typically 0.004 to 0.02, it can be concluded that earthquake 
protection is cost-effective. 

The relatively simple cost models described above demonstrate that 
earthquake protection of communications facilities increases system 
reliability, and can be incorporated into the system in a cost-effective 
manner. 

CONCLUSION 

(6) 

This paper has described procedures developed to en:3Ure telephone 
equipment reliability in various earthquake-risk regions. For a given 
system the following elements must be determined: the nature of the earth
quake environment, equipment tests, and the cost of the ~rotection as 
opposed to the possible system loss. The study showed that earthquake 
protection practices that were designed according to these ~rerequisites 
increased system reliability in a cost-effective manner. 

lL' S C lU, • • 

Procedures 
University 
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SUMMARY 

This paper deals with the problem of the seismic design of free stand
ing chimneys. of constant as well as tapered eros s sections. It is more 
particularly shown that seismic deisgns based on the so-called critical 
excitations of these structures are conservative, but not overly conserva
tive, and that they should be appropriate either for localities in which 
ground motion records are scarce or for structures whose loss would have 
serious consequences, economically or socially. This conclusion is based 
on computed "critical design factors" which are the ratios of the response 
peaks generated by a critical excitation to those produced by an actual 
ground acceleration of same intensity. These factors were found to be in 
the order of 0,93 to 1.3 for at least one structural design variable of each 
of the two structures. implying the conclusion that design based on the 
critical excitation method would be more. but not greatly more, conser
vative than one based on an already observed ground motion, Design cal
culations for the additional steel reinforcement implied by those factors 
confirm this conclusion. 

INTRODUCTION 

Free standing chimney are comparatively susceptible to seismic 
damage s due to their inherent weak supporting condition and lack of struc
tural redundancy. The most damaging (critical) ground excitation for an 
assigned design variable (moments, shears, or deflections) possesses 
characteristic frequency contents, duration, and energy level. The first 
two characteristics are dependent on the structural properties while the 
other depends on the nature and intensity of the ground motion. 

Structural response is characterized by the frequencies of the modes 
of its free vibrations. Intuitively, one should expect the most damaging 
(i. e .• the critical) excitation of a structure to have a frequency spectrum 
that matches that of the structure. This is actually the case, as experience 
indicated. It is known, for instance, that ground motion matching in 
frequency with the lower vibration modes of a structure is likely to cause 
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severe damage in it. It is also well known that excitations at short dis
tances froIn the epicenter which exhibit intense vibrations at high frequen
cies may induce damage in apparently strong but rigid structures, yet light 
or no damage to seeIningly weaker but flexible structures. Mathematical 
confirmation [3J of these observations shows that the critical excitation of 
an elastic structure, for a given intensity and relative to one of the design 
variables, is the time-reversed impulse response of that variable. 

It develops however, that the kind of precise frequency matching which 
is afforded by the time -reversed impulse response is not in general achiev
ed by realistic gro1md motions. In other words, the response peaks to 
which it leads are typically much too large, and the designs that would eS
cape damage, much too conservative to be useful. It has accordingly been 
necessary in this study to Inodify the time -reversed impulse response and 
to treat the modified excitation as the critical. To distinguish the original 
and its modification, they are called the "first-class" and the second-
clas s" critical excitations in what follows. 

This paper starts with a discussion of the first-class critical excitation 
for structures with a single-degree-of-freedoIn. as well as some assuInp
tions and concepts that are pertinent to it. and then proceeds to the case of 
Inulti-degree-of-freedom systems. The idea of the second-class critical 
is introduced next. The succeeding sections present the methods and the 
results of the analyses of the two types of chimney. narnely one with con
stant and the other with tapered cross sections. A critical discussion of 
the results is contained in the concluding section. 

EFFECTIVE DURATION AND INTENSITY OF GROUND EXCITATION 

The response y(t) of a design variable of an elastic structure to a 
ground acceleration xg(t) is given by the Duhamel integral 

y(t) = J x (7) h(t-7) d7 (1) 
o g 

in which h(t-7) is the unit impulse response at a time (t-'r). For a structure 
with a single degree of freedom it is given by 

1 _Cw(t-T) 
h(t-7) = - e S sin w (t-7) (2) wD D 

where w
D 

= wR is the damped frequency, w is the undaInped frequency, 
and £ is the damping ratio. Thus. if the maximum response of a structure 
occurs at tiIne t e , the duration of excitation needs not be taken longer than 
the value of (te -to} so that h(t e -to)::: 0, or more practically h(t e -to) decays 
to a certain percentage of the maximum of h(t). The decay percentage can 
often be left to the judgment of the designers. For example, if the decay 
to a ten percent was assigned to a structure based on its fundamental 
period of vibration of 2 seconds, with a damping ratio of 5% then the dura
tion of excitation need not be taken greater than 

(t -t ) = - In O. 1 = 
e 0 ~w 

2.3
2 

= 14, 6 seconds 

0.05 -f 
(Za) 



271 

The definition of the intensity of ground excitation has been the subject 
of extensive discussions. In this paper, following the derivation of refer
ence [3]. the intensity of an excitation was defined as 

t . 
e 1 

E = [J x2 
(t) dtfi (3) 

t g 
o 

Since the duration of excitation (te -to) used for the critical excitations and 
the comparative recorded excitations, as will be seen in the later dis cus
sions, are the same, the intensity of excitation defined here is similar to 
that defined by Housner [6] 0 

E = .l J x2 
(t) dt 

tog 

FIRST-CLASS CRITICAL EXCITATION 

(4) 

The maximum response of a multi-degree-of-freedom system repre
sented by modal superposition is as follows: 

t 
e 

Yk(t e ) :::: 'Z1' <Pk· l1 ·(t )= f x (i) 'Z9k' P. h.(t -T) dT 
11 e t gill 1 e 

o 

t e 
=: f X (T) h(t -T) d'T (5) 

t g e 
o 

where Yk (t ) is the kth response variable, <P k' is the kth element oj t~ ith 
mode sliap~, r).(t )isthe normal coordinate of ith mode, Pi::::<prM I/9iM<\>i 
is the ith mod~ p~rticipation factor with M as the mass matrix and 
I is a vector with I' s or 0' s to indicate the existence Or not of excitation in 
the vector elements of Yo Squaring the response Yk and setting up the in
equality, the following relation is obtained. 

t 
e 

Yk2(t ) = [J X (T) 11 (t -T) dT] 2 
e t g e 

o 

t 
e 

< [J x2 
(TldT] 

t g 
o 

t 
e 

rj' h{t -i)dT] 
t e 
o 

(6) 

or Yk{te ) < EN 

where E is the intensity of excitation as defined in Eq. (3) and N
2 

is the 
square integral of the unit impulse response. The maximum response is 
the product EN and can be obtained by applying a first-class critical exci
tation 3C c 1 (t), so that 

(7) 
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The shape of the unit impulse 11 (t) and xcl (t) are shown ill Fig. 1. 

h(t) 

X 
cl 

Fig. 1. SHAPE OF h(t) AND xcl 

The maximum response due to the first class critical excitation is 

h(t -T) • h (t -7") dT 
e e 

.:::EN (8) 

The intuitive inte rpretation of this result was already rnentioned in the 
Introduction. It indicates that the frequency content of the first class 
critical excitation matches exactly with that of the structural vibration 
and therefore that the corresponding critical response Yc 1 is the maxi
mum peak among those produced by all the excitations with same inten
sity E. 

SECOND-CLASS CRlTICAL EXCITATION 

It has been mentioned in the introduction, that the response peaks pro
duced by the first-class critical excitations often are too large to be real
istic, and the results reported below for two free-standing chimney will be 
seen to confirm this. It has therefore been found necessary to intr','. uce a 
modification which is called the "second-class critical excitation" here. 

The second-class critical excitation is obtained by superposition of a 
number of recorded groung excitations (or artificially generated excitations) 
and least-square fitted with the first clas 5 critical excitation as follows: 

and 

n 
x Z(t) ::: ~l c. x.(t) c 1= 1 1 

t 
e J [x (t) - x (t) ] 2dt = minimum 

t cl cZ 
a 

(9) 



t 
e I x2 

(t) dt = E 2 
t c2 

o 

The response to the second-class critical excitation is 

t 

Ie h (te -T) Xc2 (T) dT 
t 
o 
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(10 ) 

The second-class critical excitation x Z resembles the recorded 
excitations more closely than the first-cla~s one and the peak of its re
sultant response y 2 is more reasonable. However it is still larger than 
that of any of the rgsponses due to the component excitations used for the 
least-squares of it. 

In order to find the first-clas s critical excitation x 1 and the COr
responding response y 1 for a particular structural deiign variable based 
on the time -reversed u'int impulse response, the designer only needs the 
specification of a reference ground motion intensity E. However, in order 
to obtain the second-class critical excitation xc 2 which is a least-squares 
fit, a number of appropriate ground motions must be selected to make the 
cOITlbination as shown by Eq. (9). Finally, in order to have a basis of 
cOITlparison, a few recorded accelerograms must be selected and struc
tural responses calculated for them as well. This section describes the 
choices that were made for these purposes. 

In regard to the first requirement of obtaining the least-squares fitted 
excitation x c 2' twelve accelerograms were selected including two of the 
three selected for comparative studies, These accelerograms were chosen 
with the following stipulations: 

1. The ground excitations are characterized by relatively short 
epicentral distances, say 25 to 30 kilometers. 

2. The shape of the accelerogram should have a gradual build-up 
period. 

3. The site conditions of the selected earthquakes should re
semble as much as pos sible the condition prevailing at the 
location of the structure. 

The third stipulation may be difficult to satisfy unless a choice can be 
made from a rather large variety of accelograms, probably larger than 
now exists. At any rate, in the present study twelve ground ~otions re
corded in Southern California were chosen and assumed to be representa
tive for the locations of the chimneys to be analyzed below. Appendix 1 
lists these twelve earthquakes and their intensities E. 

Typic'll examples of second -clas s critical excitation obtained in this 
way are shown in Fig. 2. 
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For comparative studies, three accelerograms were selected frOll1 
the published results 12]. namely, (1) 1971 San Fernando. Pacoima S14W, 
(2) 1940 Imperial Valley, El Centro SOOE, (3) 1954 Eureka N79E. Each of 
these three accelerograms has certain special characteristics: the first 
is the strongest (1. 17g) that has ever been recorded, the second one is 
strong and of relatively long duration, while the third one is moderately 
intense and of relatively short duration. 

CHIMNEYS WITH CONSTANT CROSS SECTIONS 

Chinmeys with constant cross sections are sill1ple prisll1atic canti
levers. Its natural frequency of vibration of the ith ll10de is given by [lJ : 

w. = a~~ EI4 
1 1 ll1L 

where a. is obtained frOll1 the transcendental equation 
1 

cos a. cosh a. ::: -1 
1 1 

The mode shapes are given by 

with 

'"'i( xL) ::: S1'n a ~ 
'r iL 

. h x A( h x x) sm Q i L + i cos Cl.'i L - cos Cl.'i L 

sin Q. + sinh a. 
A. 

1 

1 1 
::: 

cos a. + cosh a, 
1 1 

( 11) 

( 12) 

(13) 

In the above expressions, E is the modules of elasticity. I is the mOlnent 
of inertia, m is the distributed mass per unit height, L is the height of the 
chimney, and x is the distance froll1 the base of the chimney. 

For a reinforced concrete chimney of 304.80 m in height. 18,288 m in 
outside diametel;"" and O. 4572m in thickness, the mass per unit height is 
1910.677 Kg- sec':::/m2. Based on modulus of elasticity 2.9489 x 109 kg/m2 and 
moment of inertia 1018.5m4 , the period of vibration in seconds of the first 
six modes are 2.400, 0.383, 0.137, 0.070, 0.042 and 0.028. The participation 

factors JLCPi dx/ JLCP;dx are 0.783, 0.434, 0.251, 0.001 for the first 
o 0 

four modes. The design variables selected are top deflection.6, base 
moment M, and base shear V. The results of the dynamic analysis for 
the three reference earthquakes are shown in Table 1. The entries in the 
table are more specifically the respons e peaks generated by these excita
tions shown in the left column. The peaks to which the first-class critical 
excitation leads are seen to be consistently much higher than those due to 
the actual ground motion. 

Those produced by the second-class critical are however much more 
realistic. The ratios of those peaks to the one s generated by the actual 
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ground motions are listed in Table 2, under the heading of "critical design 
factors. n These factors are seen to range over values from 1 to 3. 

TABLE 1. RESPONSE PEAKS OF CHIMNEY WITH 
CONSTANT CROSS SECTION 

Excitations Intensity Rest onse Variables 
E Top Deflection Base Moment 

3/2 (~) 5 M 
(cm/ sec ) (10 Kg-m) 

Pacoima Darn O. 676 10288.8 
1 s t cl. critical 6.471 2. 396 26151.1 
2nd cl. critical 5. 101 59678.2 

E1 Centro 0.432 4967.4 
1 st cl. critical 2.572 O. 953 10394.4 
2nd cl. critical 2. 028 23720.6 

Eureka 0.243 3423.3 
1 st cl. critical 2.008 O. 744 8115.5 
2nd cl. critical 1. 583 18519.9 

TABLE 2. CRITICAL DESIGN FACTORS OF THE 
CHIMNEY WITH CONSTANT CROSS SECTIONS 

Base Shear 

(103~) 
1280. 2 
1194. 3 
3565. 7 

349. 9 
474.7 

1417.3 

286. 6 
370.6 

1106.5 

Excitations Top Deflection !::,. Base Moment M Base Shear V 

Pacoima Darn 
El Centro 
Eureka 

3.54 
2. 21 
3.06 

2.54 
Z. 09 
2. 37 

T APE RED CHIMNE Y S 

o. 93 
1. 36 
1. 29 

Most chimneys have tapered shapes. Although expressions similar to 
(11) and (13) for frequency and D20de shapes can be derived. it is simpler 
to use discrete lumped mass approach. 

The chimney selected for this study is a 304. 8 m free standing tapered 
reinforced concrete cylinder. The bottom outside diarneter is 25. 298 m 
with wall thickness of 0.889m. The top outside diameter is 10. 262m with 
a thicknes s of O. 216 m. The O. 64 cm steel lining is not considered as the 
integrated structural element. The detailed vertical chinmey wall cross 
section is shown in Figure 3. 

A disc rete finite element method was used to find the free vibration as 
well as dynamic analysis. The height of the chimney if:: divided into 17 
sections with the respective horizontal eros s sectional arGa and moment 
of inertia computed as shown in Table 3. The lumped mas ses at the nodal 
points are also shown in Table 3. The condensed stiffness matrix refers 
to the horizontal displacements at the nodal points corresponding to each 
mass point. The mode shapes and periods of vibration are shown in 
F~gure 4. The design variables selected for study are again the top de
flection D.. the base moment M, and the base shear V. The dynamic 
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TABLE 3. AREA, MOMENT OF INERTIA AND 
LUMPED MASSES OF TAPERED CHIMNEY 

Ar~a Moment of Inertia 
(m ) (m4) Node 

7.005 93.420 18 

7.505 114.90 17 

8.125 145. 791 16 

8.999 186.856 IS 

10.448 24. 652 14 

12. 293 330.866 13 

14.888 450.039 12 

18.334 617.540 11 

22. 956 823. 209 10 

25.348 1044.520 9 

28. 108 1274.539 8 

31. 010 1540.536 7 

34.056 1846. 109 6 

37.242 2194.955 5 

41. 448 2644. 194 4 

54. 024 3684.179 3 

66. 189 4788.865 2 

1 

Lumped Mass 
(Kg-sec 2/m) 

10119.08 

27976.28 

37648.93 

40476.32 

45535.86 

53571. 6 

62053.77 

76934. 77 

93006. 25 

110268. 21 

122321.82 

134970.67 

148363.57 

162351. 71 

176935.09 

200149.45 

290477.12 
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analyses of this chimney led to results which are summarized in Tables 4 
and 5. Table 4 lists the response peaks that were generated by the actual 
ground motions, along with those due to the first-class and second-class 
critical excitations of the same intensities. Table 5 presents the critical 
design factors. 

TABLE 4. RESPONSE PEAKS OF CHIMNEY WITH 
TAPERED CROSS SECTIONS 

Excitation Intensity Response Variables 
E Top Deflection Base :Moment Base Shear 

(m/ sec3 /1 (M) 
5 M 

(10 Kg-m) 
V 

(104 Kg) 

Pacoima Dam 10 383 5536. 6 703.6 
1 st cl. critical 6.996 3.849 10930.4 1044.0 
2nd cl. critical 21. 924 58122.5 5191.0 

El Centro 0.694 2134. 7 313.3 
1 st cl. critical 2.895 1.594 4523.7 432.1 
2nd cl. critical 9.074 22684.8 2148.4 

Eureka 0.448 1580.3 2307.4 
1st cl. critical 2.034 1. 119 3177.9 3035.3 
2nd cl. critical 6.373 15935.9 15092.2 

TABLE 5. CRlTICAL DESIGN FACTORS OF THE 
CHIMNEY WITH TAPERED CROSS SECTIONS 

Excitations 

Pacoima Dam 
El Centro 
Eureka 

Top Deflection 6. 

2.78 
2.51 
2.50 

Base Moment M 

1. 97 
2. 12 
2.01 

Base Shear V 

1. 48 
1. 33 
1. 32 

A design of the base cross section of the chimney was also made, 
based on the elastic design approach as well as on an inelastic one with 
ductility factor of j.1 = 4. The results are shown in Table 6. The re
inforcing that would be required for adequate strength against the second
clas s critical is considered to be rather high, but not beyond reason, when 
compared with that needed against the El Centro ground motion. 

CONCLUSIONS 

The proposed method of assessing seisITlic resistance of structures, 
based on the second-class critical excitation, was applied to uniform 
cross sectional and tapered chimneys. The conclusions from this study 
are as follows. 

1. The method proposed here is an upper bound analysis in view of 
the fact that precise nature of earthquake, frequency of occurrence, inter
action of structure and soil, and other earthquake related factors are not 
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readily available. 

2. In the structural design of the two chimneys, the method appears 
to be effective, though still somewhat conservative. If desired, further 
reduction of the bound can be achieved by the judgment of the design en
gineer in reducing the specified intensity E, or in eliITlinating SOITle of the 
selected cOITlponent earthquakes in the least-squares fitting process. By 
observation of the coefficient of the least-squares fitting process, it appears 
that the earthquakes which most resemble the shape of the time-reversed 
unit impulse response excitation are the one s which ITlay cause larger re
sponse. If these earthquakes are not likely to occur at a given location. 
they can be profitably omitted. 

3. Both the intensity of the earthquake E, and the square integral N 
depend on the effective duration te-to used in the integration process. In 
general, the duration depends on the fundamental period of vibration and 
the damping of the structure, being shorter for shorter period and larger 
damping. It is suggested that one may use the duration of decay of the unit 
iITlpulse response to a judiciously selected percentage (say 20%) of the peak. 

4. When plastic behavior is considered by using a ductility factor of 
3 for a recorded earthquake, a ductility factor of roughly 6(:=2x3) is re
quired for the same structural strength against the least-squares fitted 
excitation. This ductility factor appears somewhat on the high side but 
not entirely out of proportion. 

5. Based on the above discussions, it is suggested that the assess
ment of seismic resistance based on critical excitation be used for struc
tures with major importance the destruction of which would cause severe 
human and economic losses. Another instance for adopting this approach 
is for those localities where seisITlicity is active but reliable ground 
motion data are scarce. 

6. The practicality of the method is still undergoing examination by 
applying to various realistic structures at the time of this writing. Hope
fully, consistent comprehensive recoITlmendations can be drawn from these 
results in the near future. 
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SUMMARY 

A method is presented for the nonlinear dynamic analysis 
of three dimensional space structures stressed into the 
elastic-plastic range. The procedure is an extension and 
modification of previously published static analyses. These 
modifications take place in the description of the stiffness 
matrix and in the interaction equations required for three 
dimensional elastic-plastic flow. The modal superposition 
method is used to reduce the order of the nonlinear dynamic 
equations to a more manageable form. 

INTRODUCTION 

The more efficient use of structural materials has led 
to design based on the ultimate capacity of structures, 
rather than their elastic limit. This has created a need 
for computational procedures to evaluate structural response 
in the complete range of material behavior. While a large 
amount of effort has been expended on the computation of 
planar elastic-plastic response, very little work has been 
published on the elastic-plastic analysis of three dimen
sional frameworks, even under static load (1). The dynamic 
response problem has been considered in (2) and (l3). How
ever, the latter paper was restricted to linear response 
computations. Herein will be presented a procedure for the 
computation of the nonlinear elastic-plastic response of 
arbitrary frameworks whose members can be struts, beams or 
cables. 
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MATHEMATICAL FORMULATION 

The approach utilized herein is basically that employed 
in static analyses by Jonatowski and Birnstiel (7). However, 
certain modifications to their procedure have been made. 
First of all, it should be noted that, whereas in (7) sta
bility functions are used, this work uses the usual stiff
ness values unmodified by the effect of thrust. While 
stability functions were applied in some of the early 
static analyses, their use did not make a difference in the 
final results. It was felt that the large amount of computer 
time required to generate the stiffness values in dynamic 
analyses did not justify the refinement of sta.bility func
tions. The dynamic equations can be written in the following 
matrix form 

( 1) 

in which (MJ = mass matrix. It is made up of the lumped 
masses consisting of half the weight of each member framing 
into a node. The rotary inertia contribution was computed 
by assuming that half of each member rotates as a rigid bar 
about the node, while the torsional inertia iE; computed as 
the product of the polar moment of inertia and the mass den
si ty of the beam. Matrix [C] = the damping matrix and {Df = 
the displacement watrix (u,v ,w ,eX' ey and ez clt each node) • 
The e~ements of fDJ are the velocities at the nodes while 
the {D} matrix contains the accelerations. Matrix {p} = 
the force matrix, made up of concentrated forces and couples 
at the nodes. The matrix [K) is formed from member stiff
ness matrices [kJ evaluated at the deformed position of the 
member. The matrix elements of Eg. I are refe,rred to a 
global system of coordinates; therefore, the elements o~ 

(kJ are referred to these coordinates as well. Matrix [kJ 
may be determined from 

(2) 

where [rJ is ~he member r'?tation matrix (4, 7) and[k~ is 
the member st~ffness matr~x in local coordinates. The 
basic difficulty in the analysis concerns the evaluation of 

[k*] so attention will be focused on this problem. 

It ~s assumed that all plastic behavior, when it 
occurs, ~s concentrated at the nodes of the system. Since 
loads are applied only at the nodes, these are the sec
tions at which maximum bending stresses will occur. The 
stress-strain equation for the material is defined by 
(5,7) 

(J' • 
EE: 

(1 + 
(3 ) 



in which E == modulus of elasticity, b = constant defining 
the shape of the stress-strain curve, <T = unit stress, (, = 
unit strain and ~u = the ultimate stress. For an elastic
perfectly plastic material u will be taken as u, the 
yield point of the material. uThe moment at the no~e is 
expressed by a relationship similar to Eq. 3 (5,7) 

M = ~ 
------:-:---b' 1/ 
(1 + I ~ I) b 

(4) 

Jonatowski and Birnstiel derived a matrix [k*] based 
on Eq. 4. However, their procedure has two defects: one 
practical, the other theoretical. The practical defect is 
that their member stiffness matrix is not symmetrical. 
This means that a complete band width algorithm must be 
used in all computations, rather than the half band width 
procedures customarily employed in structural analysis. A 
second defect in their matrix is that it violates statics. 
This is easily proven by computing the shear a a node 
directly from their stiffness matrix and comparing that 
value with the shear computed by dividing the sum of node 
moments, obtained from the same matrix, by the member 
length. The two values should coincide but in the elastic
plastic case they do not. It must be emphasized, however, 
that the error in statics arises only when the member 
undergoes plastic flow. The error cannot be large because 
their results compare very favorably with those of other 
workers. A modified symmetrical form of the [k*] matrix 
is expressed by the following elements 

287 

k* = k* == -k* ::: AE k22 = kS8 = -k* = Bl + B2 (Sa) 
11 77 17 28 

k26 = k68 = 

k~3 = - k39 = 

gL 

Bl k2,12 = -

k99 = Cl + C2 
L 

k~, ,4 

k * = 2EIv 5,11 

k g,12 == B2 

k35 - k59 

- ktlO 

4EI 
W 

P 

L 

(5b) 

::. Cl 
(5c) 

kio 10 = GJ (Sd) 
, L 

k * = 2E1 (5e) 6,12 W 
rW 

( 5f) 
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where 

B = EIW (4 + 2 ) 
1 

L2 
P rW 

B2 == ElW (4 + ~) -
~ 

s rW 
( 6a) 

Cl = ElV (4 + 2) 

L2 
h rV 

C2 = ElV (4 + ~) 

~ 
d rV 

(6b) 

and 

h == (1 + I a i (>\,) i. r) lib (7 a) 
(M ), 

pv ~ lib I ! b d == (1 + a j (1"\,) 'I ) (7b) 
(Hp\~ 

rV == 2 hd rW 
_. 
~ ( 7c) 

(h+d) (p+s) 

U, V and W denote the principal axes for the me,mber. The a, 
and a. values will be defined later. For the present they~ 
can bJ taken as 1.00. Then the plastic factors g, h, p, d 
and s are identical to those developed in (7) while rV is an 
averaging factor introduced to insure that the stiffness 
matrix satisfies statics and is symmetrical. In this formu
lation, unlike that of Jonatowski and Birnstiel, the exist
ence of plastic flow at a node i influences the stiffness 
at the opposite member node j. This is reasonable, although 
it is possible to describe this influence in other ways (2). 

The primed stress resultants in Eqs. 8 are those computed as 
if the member were completely elastic. Terms with P sub
scripts denote the yield values of the stress resultants. 

(If the member is a cable, P is the ultimate force.) Pp is 
easily computed, but the yield moments depend on the inter
action of the moments about both axes and the thrust acting 
on the section. This requires an interaction equation of 
some type. Both Jonatowski and Birnstiel, and Bockholdt and 
Weaver ultilized the interaction equations developed by 
Santathadaporn and Chen (II). However, the solution of these 
equations requires a trial and error procedure, and is quite 
time-consuming, even for simple static problems. In a 
dynamic analysis, the computer time would seem to be prohib
itiveo It was decided to employ an approximat'~ solution to 
the problem of interaction. In their work on H columns 
under biaxial loading, Tebedge and Chen introd1lce the follow
ing interaction equation (12) 
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1.0 ( 8) 

wherein 

~w = 1.18 F Z (I-F) 
y w p ~FyZw ( 9a) 

p 

~v = 1.19 FyZV (1- (F ) 2) ~ FyZv 
P 

(9b) 
p 

e = 1. 60 - Pip 

------E 
(10) 

2 In F/p 
p 

Eq. 8 was used in the following manner: at nodes i and j 
the left hand side of Eq. 8 was computed and called a. and 

.1. a.. If a. or a. is less than 1.00, it is set equal to 1.00, 
w~ile if It is ~reater than 1.00 its computed value was 
used in Eqs. 7 along with values of Mpv and MpW found from 
Eq. 9. This procedure insures interaction between the 
various moments only when Eg. 8 results in a value greater 
than 1.00. Since Eg. 8 is an upper bound equation, it can 
be expected that its use will results in an over-estimation 
of the yield load on a section. This defect was corrected 
somewhat by substituting ~ for Mv and ~ for Mw' 

In order to solve dynamic problems it is necessary 
that unloading of a section be properly defined. If un
loading is to occur at a point 0 on the moment-rotation 
curve, a residual moment, ~MOI the difference between 
the elastic-plastic moment at 0 and the elastic moment, 
MI I is introduced. Along the unloading curve, D. MO 
is taken as a residual moment in th9 definition of M'. 
For examJ?le, in Eq. 7, NV become s l'iV - 6 fllVO where, as 
usual, MV is computed as if the member were elastic. 
This insures that unloading occurs the proper curve. 
Along this unloading curve, Mp remains as previously 
defined and Eqs. 5, 6 and 7 are again used with this 
modification. 

All operations with the [rJrnatrices are identical 
to those described in (7) and will not be reproduced 
here. It should be noteci, hO\vever, that the geometric 
nonlineari ties are introduced in the [rJ matrices; 
these matrices are functions of the defor~eG position 
of each member. The influence of member thrusts on the 
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stiffness matrix can be added to the member stiffness after 
it has been expressed in global coordinates 

k, , = k, , - FL (i=1,2,3,7,8,9,) 
~,~ ~,~ AE 

k, '+6 = k, , 6 + FL (i=I,2,3) 
~,~ ~,~+ AE 

The value of F is the compressive force acting on the 
member. It can be expressed by 

F = F o - AE AL 
L 

in which Fo the initial compressive force and 

A L = 1 ( (x, -x ,) (u, -u, ) 
L J ~ J ~ 

+ (y. -y ,) (v, -v .) + (z, - z . ) 
J 1. J 1. J 1. 

(lla) 

(lIb) 

(12) 

2 (w , -w,) + 0.50 «u , -u , ) + 
J ~ 1. J 

2 2 
(v, -v . ) + (w. -w.) ») (13) 

~ J J 1. 

Eqs. 11 introduce the second geometric nonlinc:arity into 
the stiffness matrix as F is a nonlinear function of the 
displacements. 

Once the stiffness and mass matrices have been ade
quately described, the dynamic response compu1:ations 
differ little from those required for the nonlinear elastic 
case (9). Eqs. 1 were solved with the aid of the modal 
response method and Newmark's linear acceleration method 
(3 ,9). The mode shapes were determined with the aid of the 
Givens-Householder method (10). 

NUMERICAL RESULTS 

The theory developed in the previous section was pro
grammed and run on an IBM 360 computer. Several problems 
were run; the most informative example is presented in 
Fig. 1. The simple three dimensional frame of Fig. 1 was 
analyzed as a check on the static formulation (2,8). A 
comparison of previous work (8) and that proposed herein 
is presented in the figure. It cannot be claimed that 
the agreement is very good; however, in view of the 
assumptions made, the results are as could be expected. 
Jonatowski and Birnstiel used the interaction equations 
of (11); they are lower bound values. In this work, Eq. 9 
represents an upper bound. Therefore, the point at which 
yield will occur differs for each model. This is evident 
from the figure. However, once yielding occurs for each 
system, the behavior becomes the same for both solutions. 
It can be concluded! therefore! that the description of 
plastic flow proposed herein is adequate but that the 
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stress state at which flow starts may be overestimated. It 
may be of some interest to note that the same frame was 
analyzed in (2) using a yield point stress of 33 ksi. The 
values obtained plotted slightly above those in (8). 

Dynamic analyses were carried out for the frames pre
sented in

2
Figs. 1 and 2. In both cases F = 36 ksi 

(248 r·1N/m ) and b = 10. Damping was 2.5 per cent of criti
cal in each mode. A dead load of 100 kips (445 kN) was 
taken at each node of the simple frame of Fig. 1. In com
puting the mode shapes, inertia terms corresponding to 
rotational accelerations were multiplied by the factor 
0.01. This corresponds to-neglecting rotational accelera
tions. The mode shapes take the familiar configurations 
for a simple frame: the fundamental mode is a displacement 
in the Z direction at a frequency of 0.790 Hz while tne mode 
corresponding to motion in the X direction is the third at 
a frequency of 1.34 Hz. Modes 2 and 4 correspond to com
bined motions in the X and Z directions at frequencies of 
1.06 and 2.25 Hz. It should be noted that modes 5 through 
8 describe motion in the Y direction at frequencies 
bunched around 14.9 Hz. 

As a test case for the simple frame, it was analyzed 
for a harmonic load of 5 kips (22.25 kN) acting at a 
frequency of 4.70 radps applied at node 2 in the Z direc
tion. This load is close to that required for resonance 
of the first mode. The response amplitudes are given in 
Table 1. The linear elastic solution employed the first 
4 mode shapes at a time step of 0.07 seconds, correspond
ing to 1/6 the period of the highest mode, in this case, 
mode 4. It is evident that in order for the modal res
ponse method to be applicable to an elastic-plastic solu
tion, all stress resultants must be found with great 
accuracy. The linear elastic four mode response satis
fied this requirement. Elastic-plastic 1 denotes a four 
mode elastic-plastic response usingAt :: 0.07 sec. The 
solution failed to converge at the step N = 47. However, 
the structure revealed an instability at the previous 
time step. This is found from an investigation of the 
moment values in the columns and the girders. It is 
obvious that for this frame the moment about the W axis 
for member 4-5, call it H7' should just about <~qual the 
moment about the V axis for member 3-4, call i 1: M2 • At 
N=45, M7=-479 in - kips while M2 ~ - 482 in-kips 
(54,500 N-m). At N=46, MI = -1.0 in-kips while M2 = 
-520.4 in-kips; the resu ts are completely wrong. This 
form of instability revealed itself in all elastic
plastic analyses of the frame. 

In previous work on the nonlinear elastic analysis 
of cable stiffened structures (9), it has been found that, 
when the number of mode shapes needed to describe a re
sponse has been chosen, the time interval corr€~sponding 
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to the accuracy of this description is fixed at T min/6o 
That is, if not enough modes are chosen, the analysis will 
not yield an accurate description. However, its accuracy 
can be improved only by using more modes, not by decreasing 
the time step. For the elastic-plastic solution this may 
not be true. For that reason elastic-plastic 2 was run 
with four modes and a time step of 0.035 seconds. As can 
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be seen, the results are basically the same as the previous 
case, indicating that the maximum time step for numerical 
stability is accurate enough for the description of elastic
plastic behavior. 

Unlike the case for the linear elastic solution, the 
two elastic-plastic response solutions did not describe 
all the stress resultants accurately. The moment values 
checked out until instability occurred, but the thrusts in 
the columns were off somewhat. The vertical accelerations 
are very small; therefore the column thrusts should add 
up to around 400 kips (1789 kN). At N=37 in Elastic
plastic I, their sum was 356.6 kips, a significant error. 
In order to determine how important an influence this 
defect in the solution has on the description of the struc
ture's behavior, Elastic-plastic 3 was run. This response 
computation utilized 8 modes and a time step of 0.01 
seconds. The column thrusts balanced completely, but other 
than this change, no differences exist between this solu
tion and the previous two. It was decided that only four 
modes would be needed in elastic-plastic solutions. 

An attempt was made to analyze the frame's response 
when subjected to earthquake loading. This was accom
plished with the artificial accelerograms of (6). These 
accelerograms were generated by multiplying a stationary 
Gaussian process by a time dependent deterministic func
tion. The stationary process and deterministic functions 
are chosen on the basis of statistical properties of the 
desired earthquake. Artificial earthquake 3 of (6) was 
chosen and 5 seconds of response were computed. The 
maximum acceleration of the quake in this time interval 
is around 0.108 gravity but this value was increased or 
decreased by multiplying the accelerogram by the neces
sary factor. Quake directions along the X axis and at an 
angle of 45 degrees with the X and Z axes were chosen. 
Very little plastic flow occurred in the frame prior to 
instability. However, when flow did occur in the columns, 
enough hinges were formed to start a collapse mechanism. 
The biaxial quake did not lead to any interaction effect 
on u4 until failure occurred. That is, u4 is basically a 
plot of the response of the frame to an accelerogram 0.707 
times that of the artificial quake. Interaction, however, 
did lead to failure at a smaller amplitude. 

The large frame (192 degrees of freedom) of Fig. 2 
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was also analyzed. Every floor has the same s,ize girders 
while the columns change every two stories. Its static 
capacity was checked under the proportional loading system 
ShovlU. The loads are in the ratios Py :=: 6Px a.nd P z = 2 Px 
with half loads applied at the top story. Instability 
occurred at a load of Px = 2.06 kips (9.16 kN); yield 
moments were exceeded at all columns in the bottom two 
stories. The displacements at node 1 were u = 1.71 inches 
(4.35 cm) and w = 6.03 inches (15.3 cm) i very little non
linear behavior was revealed prior to the collapse load. 
The mode shapes for the structure were computed using an 
assumed dead load of 20 psf (958 N/m2 ) on each floor. The 
fundamental frequency was 0.646 Hz corresponding to motion 
in the Z direction, while the second mode's frequency was 
.687 Hz and its displacement pattern indicates motion in 
the X-Z plane. All the mode shapes are what one woula 
expect for the frame. Only the first nine mode shapes 
were computed ( = 2.73 Hz) and no vertical motion mode 
appeared among t~em. Response was computed for an earthquake 
acting in the Z direction with the acceleration of 0.486 
gravity. The first 9 modes were used at a time step of 
0.06 seconds. Again instability arose suddenly with 
little difference between the linear elastic solution and 
the nonlinear elastic-plastic solution until failure. Just 
as for the static case failure arose due to yielding of 
all the columns in the bottom two stories. In this solu
tion, the column thrusts balanced out so that no error 
existed in the stress resultants. Until the final time 
step iterations converged in at most three trials; at 
the final step no convergence was reached after 20 iter
ations. 

The dynamic analyses of the two frames were some
what unsatisfactory in that their behavior could be 
described quite well by a linear elastic analysis. Such 
frames have no overload capacity when subjected to earth
quake loadings. All columns yield together and form a 
collapse mechanism. A structure which does not reveal 
this type of behavior is shown in Fig. 3. This figure 
represents a planar cable-stayed bridge analysed 
elastically in a previous work (9). Its dead load was 2 taken as 16 K/ft. 1~e girder area is 8 sq. ft. (0.7 m ) 
and its moment of inertia is 45 ft4 (0.39 m4 ) while the 
corresponding tower properties are 3 sq. ft. (0.3m2 ) and 
20 ft 4 (0.173 m4). A cable cross sectional area of 1.10 
sq. ft. (0.1 m2)was assumed; the cable tensions are 9696 
kips (43 MN) in cable 2-3 and 11,500 kips (51 MN) in cable 
3-5. Plastic properties were chosen to make thl~ system 
yield under the applied dynamic load; F = 2000 ksf 
(95.8 MN/m2) for the girder, 5000 ksf (2~9.4 MN/m2) for 
the tower and 21,800 ksf (1,050,000 MN/m2) for the cable, 
along with Zw = 45 ft.4 (0.39 m4 ) for the girder and 18 
ft.4 for the tower. A comparison of solutions obtained 
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for a load of 500 kips (2.2 MN) applied at node 7 and vary
ing as cos 3.00 t is shown in Table 2. 3 modes were all 
that is required for accurate results. The elastic solu
tion was obtained from a previous nonlinear solution, where
in 100 kips (450 kN) were applied, by multiplying the 
response by 5.00. This structure is basically linear so 
this would not introduce any error. Any correction would 
make the elastic solution larger because a cable-stayed 
bridge behaves as a softening spring. The results of the 
analysis are presented in Table 2. Behavior is as could 
be expected. However, it must be noted that significant 
plastic flow occurred in the system even in the first cycle. 
This is because the dead load moments must be included in 
the dynamic analysis. The interaction of thrust and 
moment resulted in large amounts of plastic flow at moments 
slightly larger than the dead load moments. 

CONCLUSION 

A method has been presented for the computation of 
the static and dynamic response of three dimensional space 
frameworks. h'hile certain modifications were made in 
accepted static analysis procedures, these modifications 
appear to have a minor influence on the accuracy of the 
solutions obtained. On the other hand, complete nonlinear 
elastic-plastic solutions are possible with the use of 
little more computer time then is required for nonlinear 
elastic solutions. Of course, this does not mean that the 
amount of computer time needed to solve such dynamic prob
lems is small; even nonlinear elastic solutions are quite 
time-consuming. The use of the modal superposition method 
does lead to a great saving in computer time because it 
makes it possible to use a much larger time step than the 
direct solution of the dynamic equations would permit. 
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SOille simple examples are given to show how the limit 
equilibrium extreme principles of elastic-plastic systems 
can be used to calculate box-unit buildings. The box-unit 
buildings are presented in the form of the system of imbound 
boxes i.e. in form of system with single-side ties. 

INTRODUCTION 

To calculate the ultimate load for the box-unit building 
one can use the limit equilibrium methods, devised by 
A.A.Gvozdev [3J and developed by S.M.Bernshtein [2J for systems 
with single-side ties. 

The calculations of stability against overturning 
commonly used are particular cases of static (or kinematic) 
limit equilibrium principles application. These principles 
can be used to find destruction mechanism of the systems with 
single-side ties. 

It is a~so important to take into account the fact that 
reactions in ties between boxes can have only one direction 
under dynamiC load and vibrations. Application of extreme 
principles of the systems with single-side ties may simplify 
calculation in this case. 

Structural system of box-unit building may be considered 
as a system with single-side ties. 

BOX-UNIT COLUMN UNDER STATIC HORIZONTAL LOADS 

The limit equilibrium box-unit column is considered. It 
is assumed that all boxes are identical. Calculation scheme, 
dimensions, loads and possible destruction mechanism are 
shown in Fig.i. 

The load factor Pi, corresponding to i-th possible 
destruction mechanism can be obtained using the equation 

A eowi -t- A tJe'Z = 0 
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where A tOCld - action of load 

A lJllJI. - action of vertical forces of stability 
against overturning. 

For the i-th possible destruction mechanism 
effects are expressed as follows: 

hi 

Aeoaci = Pt- J q(x)(h-L -x) ~d x = PL mfoacLt.p 
A 0 ~ lT€2 

lJe~=-G-~2'LP =-M L Lf 
in which h, - storey height 

~oC1cl.. 
tnt.- - moment of load unit 4(x) 

these 

U€.'L 

M L - moment of stability against overturning 
(other symbols are given in Fig.1). 
jj'rom equations (1), (2) and (3) the result is 

Pi. = 
Mt·~ 
me.odd 

l.. 

The limit value of load factor 
the following extreme problem 

p. = ffi,Lrt Pi. 
L. l 

can be obtained from 

(5 ) 

If q(x) sign is not changed along axis :x: minimum Pi. is 
reached by i. = n., 

Normally the necessary reliability of structure is 
secured introducing into formula the respective reliability 
factors. In above formular reliability factors_of materials 
resistance can not be used. Therefore value o£ p should be 
decreased 1.5 times and design load value P e~, should be 
determined from the following equation: 

MU"e'L 

P
des n. 

= 0.67 m.f-oa4. 
n. 

and weight of boxes haS to be taken into acco~Qt with the 
coeiTicient of correction 0.9. 

T,l... 1 f . d . d 'I wind '. d . .ue va ues 0 summar~ze w~n pressure - 1'1> ana es~gn 

load by (4 C
) Q des acting on a box - unit building diameter 

made of two box-unit columns are shown in Fig. ;~. }'or those 
calculations the following initial data. is accE~pted: 
G = 9.55t., b = 5.2m., h = 2.75m. 

As appears from Fig.2 ultimate height of box-unit building 
should not exceed 16 storeys, if boxes are not tied together 
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The above mechanism corresponds to a rotation of column 
around the edge of lower joint, the contact area of lower box 
being equal to zero and compressive stresses being infinitely 
large. 

It would be correct to take into account deformations 
and limite~ strength of materials and so bi-linear stress
strain diagram for mortar joint should be taken into considera
tion (Fig.3). 

This diagram is characterized by 3 value: G IJ - yield 
stress, U~ - displacement of begining yield~ ~u - maximum 
displacement. 

The limitation on displacements by ~u is equal to limita
tion stipulating failure of concrete or mortar joint. 

To simplify let us assume that all joints are identical. 
In this case the box-unit column strength has to be determined 
by strength of lower joint ~s given above However, forces of, 
stability produce moment MLe~ about center of gravity of 
compressive stress epure in contact area. It leads to decreas 
~n the load bearing capacity_ 

So, load factor is to be ca1cu~ated by formula (4 1
) , 

but ultimate load has to be reduced by coefficient ~ 
which is 

Where 

p= (6 ) 

2 - distance between above centre of gravity and o center of the column. 

If boxes res~ upon each other with 4 sides, valuep, as 
a rule, can be about 1. It boxes rest with 2 longitudinal 
sides, ~he value p can be obtained thus: 

tC.y2_ 7'f + 3) 
~ = 1 - t 7 (2 - l{J) 2. ('7 J 

2rtG- S-~ r = b~ 0JOLJ1t " & \J U 

bjOlrtt - surn.m.arized width of joints 

As regards the above example, the values ~des were 
calculated by accounting for the coefficient~ 2 ~ 
Which was calculated by (6), where 6~ = 130 kg/em , 0JoLnt =20cm, 
\.\J::: 1 or 0.1 

These values are shown in Fig.2~ 

'rhe decrease in the load bearing eapaci ty is 10-15%. 
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NATURAL VIBRATIONS OF BOX-UNIT COLUMN 

The static load upon the D.ox-uni t colUlIlJa. was consiciered 
above. 

There is under consideration single-degree of freedom 
system shown in fig.4. 

If small natural vibrations are considered equation of 
mass notion to the right can be written as follows 

~ = f (Lf) A 
2 

(8) 

2. O.5G 9 
J\. = 0-l2-tO.25&2) (9) 

f(t.p) = SLCjtt(Lp) em) 
~ - gravity acceleration 

(Cf. Fig.4). 

Since J et.p) = - J (-4» non-linear equation (9) can be 
suffiCiently preCisely replaced by the lineal' equation [1 J 

~ + k
1 t.p =0 (-Ii) 

in which 

A - amplitude of vibrations 

As it is followed from (11) the frequency of natural 
vibrations depends on the amplitude and not on the mass. 
The diagram frequency of natural vibrations - amplitude is 
shown in rig~5. In the design scheme under consideration the 
value ~ was accepted as equal 2/3 of the building he~ght. 
~Xperimental results obtained by vibration tests are ~hown in 
Fig.5 too. 

As it follows from Fig.5 the experimental values can 
become equal to theoreti~al values when the amplitude is 2-3cm. 

Hence, it is necessary when calCulating to take into 
account the considered above vibra~ion form. 

CONCLUSION 

Thesimple example dealt with in this paper show, that the 
box-uni t buildJ.ng can be calculated by means of the limit 
equilibrium method. 

More complicated cases require usiI].g lin(~ar programming 
and extreme propeties of ultimate load [1,2J, deformation time 
and residual deformation [4J. 
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These examples confirm the fact, calculations of the 
elastic-plastic systems and systems'with single-side ties are 
analogous. 

The authors express their deep acknoledgement to their 
scientific adviser prof.G.A.Shapiro D.Sc.(Eng.) for his kind 
suggestion in carrying out "this worK. 
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II1 Ihi~ paper, the dynamic respollse of slrel multi - slory Iwildillgs (I'ilh a COli crete - corr, 
supporlrd 011 a fle.rihle ioundation alld snbjccud 10 an arbitrary rlYlUullic jorce or 10 alwri:onlai 
mO(Jcment of Ihl' grolllld indllced hy an ('arlhqual.'e, is estahlished In; 0111111/:111;; all equi()alent 
conlinuOitS model. This model ('ollsisls 0/ ({ ('(iII/i/('c'r!' <i'illi il'(!1/s/aiio!llli (liid rola/lollaL springs 
at its sllpport, carrying II (OIlNlltralrd massI's lit Ihe Iloor I('('e/s. Th!' [Ill/11m!'!' uj Ihe rotatory 

inertia oj the masses as \\'1'11 as of an jllitwl cOllslal/ I cOlllpr!'ssi VI' ju/'('I' actillg 1£1 IiiI' INC end of 
the can tilev!'r, are a/so inclurll'rl. The jrel' and jo(crrilllolioll oj Ihl' a/(}rellll'll tirllll'{l IllOriel is ill >lC

s liga led, US/II [!, [!,fII crali:.cd june lions. 

It is loulld Iha!,' a) the c/Ifel oj Ihl' Ir(ZIIslali()lIal spri!lg Oil 1Ii(' cI{.[!'lIjl'('((II(,lIcies oj 111(' lirst 
ihrel' modes is cOllsidrrah!y higher thall thai oj the 1'0111/1011111 sprillg; I)) IiiI' elieci oj the IrallslCl
tional and the rotatory inertia oj Ihe lIICiSS of the fOlinclatiull Oil IiiI' jrcljl/I'liry oj IIII' jill/clamI'II tal 

mode is appreciable. 

Introduction 

Recently. for economic and structural reasons. a great number of high - rise steel buldings with a 

reinforced concrete - core, resisting the wind and earthquake forces, have been constructed. The dynamic 

response of such buildings is usually establishd by an:tlyzing an equivalent model made up of a massless 

cantilever with concentrated masses at the floor levels. A more accurate model will include the effect of the 

mass distribution of the core. Moreover, if the building is constructed on relatively soft soil, it may be 

necessary to consider the effect of the di splacement of the foundation. Investigations of earthquake res

ponse have shown that the support flexibility has little effect on the ,t[(::oS distribution in the bllilding ; 

however, it may have a significant influence on the eigenfrequcncic~,[21. 

In this investigation, a rigorous analysis of the dynamic respon"e of a cantilever beam with transla

tional and rotational ela:,tic springs at its support, carrying n concentrated masses. is presented.The influ

ences of the rotatory inertia of the masses and of an initial constant axial compressive force P are also 

included. 

A closed form solution for the determination of eigenfrequencies and mode shapes. is given in ma

trix form. Furthermore, the differential equation for establishing the modal amplitude of the cantilever 

beam-column, subjected to an arbitrary dynamic force or to a horizontal movement of the support induced 

by an earthquake, is also presented using generalized functions [1] [3] 
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Mathematical analysis 

Assuming that the concentrated masses M1, M2, ••• , Mn are attached at points located at all aa.· .. 1 

an = l respectively from the support of the cantilever (Fig. 1), the equation of motion is 

Ely"" + [ m + ~~: Mi 0 (x-ai) F' -n~>i o' (x -aD Y' + Py" = f(t) [P(x) + ~~: Fi S(x - ai) ] (1) 

where f(t) is the forcing function taken the same for all applied forces; p(x) = po [H(x-xj)-H(x-xk)l 
is a distributed lateral load per unit length extending over a portion of the length of the beam Xk-Xj 

(Xk>Xj) ; Fi (1, 2, ... , n) is a concentrated lateral force acting on the ith concentrated mass. 

I(t~_ 

f(tlFn-2 
~-

~
--------- --- ---

f(tlpo 
------~ - ~----- ::-Ifr 

I x. 

Fig L Cantilever beam ~ column with attached masses 
supported on flexible afoundation 

The solution of equation(1) must satisfy the following conditions at the ends of the cantilever beam 
- column: 

at x=O: Ely" (0, t) = Cd (0, t) + JoY' (0, t), 

at x=l: Ely" (l, t)=-Jny' (l, t), 

Ely'" (0, t) = - C2y (O,t)- Py' (0, t}-MoY (0, t)} 
Ely''' (l, t) = May (I, t)-Py'(l, t) -f (t)Fn (2) 

where Cl , C2 are the rotational and translational spring constants, respectively. In the case of a 
lateral movement ys of the support of the cantilever beam - column, as for example in motion induced 
by an earthquake, the acceleration of the support is usually a known function of time Ys=Yso ret), where 
Yso is the maximum support acceleration and f(t) is the time function for support acceleration. Equations 
(1) and (2) are valid for this case, if y is taken as the relative displacement of th!~ axis of the beam with re-
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spect to its support, while the term in brackets on the right - hand side of equation (1) IS replaced by 

r 
- m};so - Yo" n~1 M; s(x-a;)] and Fll in equation (2) is replaced by - YsoMn. 

L=l 

Free Vibrations 

For free vibrations, the solution of equation (1) is of the form 

y(x, t) = Y(x)eiWl 

Introducing the nondimensional coordinates 

~ x Y) Y _ Ui 
C, = T' (1', = T' Ui = --( 

and substituting (3) into (I) and (2), the following relations are obtained 

~d~~C,)- - k4 [1+n~1 MJ3(c, -Ui) 1 Y (C,) + k4 rni
l 

j,i),(c, -a;) jd:~C,) +~2 -~~r:;l = 0 
'-0 1=1 ll=l" '-0 

at" = 0: ~2X(OL = C dY(O) -k~j dyeO) , dSY(O) =~- Y(O)~R2 dY(O) + k4M YeO) 
'-0 dc,2 1 dc, 0 ds dc,3 C2 I-' de, 0 

at ;:: = 1; d
2
Y(I) = k4j," dY(l) dSY(l) = _k4M Y(I) _R2 dY(O) 

'-0 de,2 ~ dc,3 II f' de, 

where 

- Ji . 
J;= mla (1=0,1, ... , n) 

_ C zl3 
c 2 = -Ef 

(3) 

(4) 

(5) 

(6) 

(7) 

Taking the Laplace transform of the differential equation (5) and the kinematic boundary conditions of 

(6), solving for the Laplace transform and inverting the result. the following solution is obtained 

j=l 

where H is the Heaviside function and . 
4'1(S) = FI(S) -(C:l- MO)F2(1~) 

(9) 

E= 

i ~c 0, 1, 2, ... ,n 

Differentiation of equation (8) yields 
n -\ * it 

Y(c,) ~ 4"l(E,)Y{O)-- 4"2(1',) Y(O)+- ~ H(E,~I.ii)[Miy(a;)F'2(c, -a;)~JiY'(ai)F"2(c,-ai)1 (10) 
1--1 

Using equation (8), the natural boundary conditions in relations (6) give 

n-I * * 
fl(I)Y(O)+f~(I)Y'(O)+ ~ [M,Y(a,)cI\(l~iii)-JiY(a,)cI:>l(1 -a;)J~O 

i I 
(II) 

n-[ * * 
fa(J)Y(O) -j- f~(I)Y(O) + 2. [M,Y(Ui)<l>2(1 -ail -JiY(u,)C!>'2(1 -ai)]··'= 0 

i 1 
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where 

f1(1) = <Pl"(I) -jn'Pl'(I) 

<-

fa(l) = 'Pl'''(l) + Mn'Pl (I) + P2'Pl' (I) 
* f4(1) = 'Pz"'(l) + Mn<pz(l) + p2<p' (1) (12) 

<I>1 (1 -iii) = F 2" (1 -ai) -in F 2' (I - iii) <I>2(1 -iii) = F2'''(l -Oi) + MnF2(l -Ui) + p2F2 '(l-Ui) 

By evaluating equations (8) and (10) for s=a]> ... , UIl-l and using equations (1 J), the following system 

of 2n homogeneous equations is obtained on the unknowns YeO), y(al),"" Y(an-I)' YeO), Y'(Ul),"" 

Y(iin-l)' 

where 

An =1-<PI(ii1) 

. 'PI (u2) 
! 

-1 ... 

-I. .. 

... 0 

.. .0 

! 'PI (Ull-1 ) 

I_fl (1) 

M1 F 2(an-l-U1) J.,'tFz«(1n_l-aJ ... Mn-2Fz (U'l-l-a,,-J -1 

M1(1\(l-u1) M21>1(1-U2) ..•.•. Mn-21>1(I-u n-2) M n- I 1>I(l-an-l) 

, 
I i !\lz(Un-l) -i1F' 2(Un-l-UI) 

!_ fz(I) -i 1 <I> '1 (I-al) 

AZI ='-'P'I(al) 0 ... 

0 ... 

* * 
-] zF' 2(Un -1-0(2) .• -J n-2F' lUll-1-Un_. 2) 

0 ... 

... 0 

.. .0 

o 

. .. 0 

... 0 
-I I <P'I (az) M I F z(az-u1) 

l'cp'l(iirl~'l;MlF' z(all-1-U1) o ! 
:_'"3(1) j\:t1>z(l-a1) 

* .. 
Mz<:llil-iiz) ....... Mll- 2<:llil-all-2) 

A22 =:-<P'2((11) -1. .. 

cp' 2(a2) -jl F2"(a2-al) -1. .. 

* .. * 

Mn- 1<:llzCl-Ull-lLI 

" . 0 

... 0 

I 
<p' Z(aU_I)-J1F2" (all_1-al) -]2FZ"(ull-1-a2) .... -JIl - 2Fz"(aJl-I-an-z) -1 

l_f4(1) -j1<!l' z( J -iii) -jz(\)' Z(1-(12)' ...... -tl-2(\)' z(1-Un-2)----'Jn - I (\)' z(l-an-IL 

Y,= {yeo) y~a~), ... , y(a~l-])} ~ } 
y={y(O)Y(UI), ... , Y(Ull-1l}f 

(13) 

(14) 

(15) 

(16 ) 

(17) 

(18) 

where the superscript T indicates the transpDse Df the m1trix. For a nDn - trivial solution, the determinant 

of the system (13) must vanish, resulting in the following frequency equation 

(19) 

Computation of Mode Shapes 

When the natural frequencies CUm are established, the corresponding mode shapes of the cantilever 

beam - column may be obtained as follows: 
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By evaluating equation (8) for S = OJ, az • ... , all-I, equation (10) for ~=al' (12" .. , all _I' I and using the 
first of equations (11), the following system of 2n equations is obtained 

[~: ~: 1 [:':,J :...1 (20) 

where the matrices Arl, A\"z afe given by equations (14), (15) for CO=CO m re~pectively, the column 
matrices Y lll , Y'm are given by equations (IS) and 

A m_'-tp'1(U1) 
21-' 

0 ... 

(jl"I(Uz) 

-I... 

0". 

* * 
M zF'2(CIl-l-a2)'" Mll--zF'z(UlI-l-aJl-Z) 

* * M 2F' z (1-02), ••.•. Mil_iF' 2( I-Ull-B) 

-\,'" 

* 

. .. 0 

" .0 

o 

M ll- 1 F' 2(1 -all-I) 

" ,0 

" .0 

-1 

* * * 
-J2Fz"(I-·cU,,· .-Jll-zFi"(l-all-Z) -Jll-1Fi"(1 -Un-I) 

'lim = {00, .. , , Y'III(I)}T 

The above system of equations may be inverted to yield 

[ 

Ym 

Y'm 

Am 
II 

(21) 

(22) 

(23) 

(24) 

Consequently Y m, Y'm are determined as functions of the arbitrary constant Y'm(l) =/; O.YIIl , Y'm de

termined, as discussed above, may be substituted in equation (8) to yield the corresponding mode shapes, 

The general solution obtained by superimposing the characteristic shapes is 
_ x 

y(~, t) = ~ Y!ll(~,) [Cnsincolllt + DmCOSOlmt] (25) 

where y=y/ I is the dimensionless diflection and Co, Dm are constants which are determined from the 
initial conditions, 

Forced Motion 

The dynamic deflection may be expressed in series of the characteristic mode shapes 

y(x,t) = L Ym(x)Am(t) 

where Am(t) is the modal amplitude, 

(26) 

U sing the Lagrange equation of motion, the following differential equation for establishing the modal 

amplitude Arn(t) may be obtained 

.. 2 f(t)[iP(X)Y'IJ(X)dX + [~1 F8'm(ai) J 
Am(t) + co mAm(t) =--[--- n ---------

.- 2 -2. - ,2 m.! Y m(x)dx+ L [MlY m«li) -t- JiY meal)] 

(27) 

o ;-1 

In the case of lateral motion of the support having a ~'s = :';so f(t) acceleration, the term in the brackets 

in the numerator of the right - hand side of equation (27) must be replaced by - [mySO i Ym (x)dx + 
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YSOi~l MjY m(ai) ] For this case, equation (27) may be rewritten in nondimensionalized coordinates as 

where 
Ys 

TJ=
l 

t 
T=

Tm 

(28) 

(29) 

Am(r) is the molal amplitude of the rdative displacement of the axis of the cantilever with respect to 
its support; Tm is the natural perioj of the mth mode; 1m is the modal participation factor defined as 

1 0 _ 

f Ym(~)d~ + L MjYm(uj) 
r - 0 i=l _____ ~ 

!l1 - J Y~ (~)d~ + £. [Mi Y~(ai) + ]iY'! (ai)J 
(30) 

o i=1 

The integrals in the above expression for 1m are evaluated as follows 

1 

.rYm@d~=[Y!l1 Y'ml {rill Sill)' (31) 
o 

where 

Sm = {Sr' S~". "S:-lY 

O~2,.", n-1) } (32) 

1 

rr' = J lPl(E,)dE" 
o 

1 

ST = J<p2(E,)dE" 
() 

ai 

Rm =[- m m rn 
[11 rI2'" rl, 0-1 

Sm= 

m m 
T22' •• r2,0-j 

Symmetr. 

Symmetr. 

m 
r n-l,n-l 

q~~ , .. q ~n.n_ 1 

Symmetr, 

a; 

i with: 
m 1 2 

rll = .r <PI (c,)dE, 
o 

* I 
r;j =Mj flPl(c,)F 2(c,-aj)dl; (j = 2, .'" n-l) (33) 

oj 

" " I r!j = MiMi J Fl~-i:ii)F2(E,-iii)dE, (j>i andj, i=2", " n-l) 
ai 

1 

with : S~ = .rcp~(~)dc, 
o 

aj 
(34) 

* * 1 
S~ = JiJiJF'2 (~-Uj»)F'2 (E,-Uj)dc, U;;'i andj, i=2, .. "n-l) 

iij 

1 

: with : q~ = JlPl(E,)<P2(E,)dE, 
o 

• 1 

q;~ = - JjjlPl(~)F'2(E,-ai)d~ (j = 2, '" ,n-I) (35) 

aj 
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In case the cantiliver beam-column is initially at rest (t = 0) the solution of equation (28) is given by the 
Duhamel integral as 

(36) 

Numerical Results 

The frequency equation (19) depends on the stiffness ratios C1 =C11 lEI, C2 =C2 13 (EI, the mass 

and the moment of inertia ratios K.i = Mi Jmi, :Ii = Ji /m13 (i = 0, I, 2, ... , n) respectively, the length 

ratios Qi = Ui /l(i = 1, 2, ... , n) and the nondimensional axial force p = ~2 =PI2/EI. 
The frequency equation (19) is evaluated numerically for cantilever beam - columns carrying up to 

two attached masses; the nondimentionalized frequencies Qrn (m = 1,2, 3) of the first three modes are 

Table I. Nondimensionalized Eigenfrequencies Qm (m=1, 2,3) 

N U m e r I C a 1 ct (l t Q 
1 

"'m 
Qm=~ 

<:1 Cz p Mo /viI /'.;2 10 J, j2 

3·5' 6 

co 00 0 0 0 0 0 0 0 22·034 

6' ·70' 

, ·074 

1 0::> 0 05 a 0 05 0 0 4·583 

22·218 

O· 743 

IC1~ !>~ , 1 0 05 0 0 05 0 0 1. 326 

- C2 
5.306 

2. , 28 

= "" 0 0 05 0 0 05 0 8·302 

2 '2.9" 

0·810 

+ 1 00 0 05 05 0 05 05 0 3.642 
~~ M,J, 8.314 ,., 

-t ~~ 
0.632 

, , 0 05 05 a 05 05 0 0·987 , C2 
Y""W~'"' wv, 'I 3.659 

t 
p 1. 4 6, 

~~M2.J2 0 0 05 025 0 05 025 3.331 = QO 

9.65 B 

- O· 672 

t· I 
1 eo 0 05 05 025 05 05 025 2.499 

)M, J, 
4.001 

+,~ re , 
Mo,J o 

0.370 

~~ , 1 05 05 05 025 05 05 025 0.773 C2 ( 
"" .",~. l. A04 6 
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obtained numerically on a G. E. 235 digital computer by a trial and error technique, and are given in 
Table 1. As evident from Table I, the effects of the translational and rotational. inertia of the concentrated 
masses, of the axial constant compressive force, of the translational and rotational springs as well as of 
the translational and rotatory inertia of the mass of the foundation, tend to d(~crease the natural frequen
cies and to bring them closer together. This implies that in the solution for forced motion of cantilever 
beam - columns having rotational and translational springs at their support and carrying concentrated 
masses, it will be necessary to retain more terms in the expansion of the displacement components in 
series of the characteristic shapes than in the case of fixed - end cantilever beams without concentrated 
masses. 

In Table II, the frequencies of the first three modes of vibration of a cantilever beam without con
centrated masses and with a translational and a rotational spring at its support, are presented. It can 
be seen that the effect of both springs on the frequency of the first mode is appreciable. However, only 
the translational spring has an appreciable effect on the frequencies of the second and third modes. 

I 
I 

I 

In case of an elastic support, the effect on the fundamental frequency of the m lSS of the foundation 

«nd of its rotatory inertia is presented in Table III. As it can- be seen, for C~ ....... 0, C2:::"., 0.10 or 

Table II. Effect of Springs on the Eigenfrequencies Qm (m=1, 2, 3) 

Numerical I Rotational spring Translational spring 

Values 

Om 
(Om % change of Q m Om= 

(Om % change of nm 
of V EI from that of rigid V EI from that of rigid 

- -
m·l4 mY Cl , C2 support support 

3.516 0 3.516 0 
00 22.044 0 22.034 ° 61.701 0 61. 701 n 

3.509 0.2 3.504 0.3 
1000 21.991 0.2 21.013 4.6 

51.575 0.2 53.173 13.8 
I 

3.438 1.9 I 3.386 3.7 

I 100 21.620 l.9 
I 

14.304 35.1 
60.570 1.8 

1 

33.954 45.0 
1 

2.968 15.6 I 2.447 29.6 I 

I 

I 

10 19.356 12.2 7.017 68.2 

I 55.519 10.0 30.570 50.4 

1.557 55.7 I 0.976 72.2 
I 1 16.250 26.2 

\ 
5.731 74.0 

50.897 17.5 ___ I 30.261 51.0 I 
0.541 1:546 

I 
0.315 91.0 i 

0.1 15.512 29.6 

I 
5.605 74.6 I 

50.065 18.9 30.233 51.0 I ---
0.173 93.1 j 0.100 97.1 I 

0.01 15.428 30.0 

I 

5.595 74.6 
I 49.975 19.0 30.221 51.0 I 

I I 0.055 98.4 
I 

0.031 99. I 

0.001 15.420 30.0 

I 

5.595 54.6 I 
49.966 19.0 30.221 51.0 I 

I 
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<:1=0.10, C2 :--:". 10 or c;. =10, <:2 '" 00 the effect of the translational inertia of the mass of the fou

ndation is negligible, whereas the effect of its rotatory inertia is appreciable. Conversely, for C2 '" 0, 

CI :--:"'0, 10 or C2 =0.10, C) :--:".\ 0 orC2 = 1O,'C1 '" 00 the effect of the translational inertia of the mass of 
the foundation is appreciable, whereas the eff eet of its rotatory inertia is negligible. Finally, if both 

spring constants Cl, <=2 have the same numerical value, less than 1000, the effect of the transla
tional and rotatory inertia of the masse of the foundation is substantial. 

Table III. Effect of Mo.10 of the Mass of the Foundation on the Fundamental Frequency 

:"-,-
C2,M \~ i o Jo' 

8 
1

0 

I 

001 
.01 
.1 
I 

10 

~ Jo' I~ 

, ci I 

>. I 

'" I '" .. i -
I 

.-
.ro .. 
'" 

I I I 

I 

.001 
1 ----

I 
0.G28 
0.Q28 
0.027 

I 
0.021 
0.009 

.001 ! 

I 
0.054 

I 

.001 

0.055 

0.055 

i. C. To\' M;, .001 I 

I ~ ~ , __ 0._03_2_ 

-o 

:2 

i§ 

'-' 
oj 

I Jo\);1) 

.001 
.01 
.1 
1 

10 

Jo\, Mo 

.001 
.01 
.1 
I 

10 

0.315 

.001 I 
I 

2.273 
2.273 
2.263 
2.131 
0.981 

--
Cr =0.001 I 6 = OJ 

.01 I .1 1 10 'Mo\ Jo arbitrary 
1--- ~.-~ 

0.028 I 0.028 0.024 0.010 .001 0.032 

0.028 0.028 0.024 0.010 .01 0.031 
0.027 0.027 0.024 0.010 .1 0.030 
0.021 0.021 0.021 0.010 1. 0.022 
0.009 0.009 0.009 0.008 10. 0.009 

.01 i .1 1 10 IKl0 jo .001 .01 .1 I 1 10 

.001 0.280 0.280 0.278 0.243 0.098 
.01 0.279 0.279 0.277 0.242 0.098 

0.272 0.272 0.240 0.053 0.048 0.027 0.010 .1 0.270 0.098 
0.210 

I 
1. 0.216 0.216 0.216 0.098 

I 10. 0.095 0.095 0.095 0.D95 0.094 

----- --~-------

.01 .1 10 M~Jo! .001 .01 .1 10 

0.054 0.048 0.027 0.010 
>. 

0.535 0.528 0.473 0.273 0,098 

'" '-0 .--- ._--

0.541 0.534 0.477 0.274 
_ 0.0:J 

.ro 
0.054 0.048 0.027 0.010 '-' 

'" 

C, =10 (:1 = 1000 

0.01 .01 .1 I 1 10 

0.032 0.031 0.030 
I 

0.022 0.009 

---

.01 1 __ '_1 __ 11 __ 1 ___ 10 __ 1 ;"?""/I 
0.031 I 0.030 0.022 0.009 : 

0.314 I 0.300 0.223 

.Of .1 1 

2.271 2.246 1.986 
2.270 2.245 1.986 
2.261 2.237 1.933 
2.130 2.115 1.935 
0.981 0.981 0.981 

arbitrary 

2.959 
2.955 
2.920 
2.462 
0.982 

0.095 '-0 

'" 
0.315 0.314 0.310 0.223 0.095 

.0)1 .01 .1 1 1 10 10 lo\M'ol 
---I 

0.950 
0.950 
0.950 
0.950 
0.98l 

2.464 2.480 2.441 2.072 0.951 

JO\MU _______ a_T_b_i_r_t _a_r~y _____ ~ __ 

g Ii 

.: ~ 3.495. 

.n 
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Conclusions 

A rigorous analysis of the dynamic response of a cantilever beam-column with translational and 
rotational spring at its support, carrying concentrated masses, is presented. The effects of the rotatory 
inertia of the masses, as well as of the translational and rotatory inertia of the mass of the foundation 
are also included. 

A closed-form solution for the determination of natural frequencies is established in matrix form. 
The effect of various param;:ters on the frequency of the first three modes has been established by 
numerical evaluation of the results for cantilever beam - columns having up to two attached masses. 
Furthermore, if is found that in case of an elastic support, the effects of the nnss of the foundation and of 
its rotatory inertia on the fundamental frequency of the cantilever are appreciable. A procedure 
for determining the mode shapes is also given. 

Finally, the differential equation for establishing the modal amplitUdes of cantilever beam - columns 
subjected to an arbitrary dynamic force or to a movement of the support, is presented. 
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Summary A beam and its supporting soil foundation are represented by a 
layered beam system. Each beam in this system is either a classical beam 
or a shear beam, and each is separated from its adjacent beams by spring 
layers. Natural frequencies and normal modes are obtained by two different 
methods: the state space method and power series method. Numerical exam
ples are given. In a succeeding paper, orthogonality conditions will be 
derived for these modes and applied to the investigation of forced vibra
tions. 

INTRODUCTION 

The interaction between the soil foundation and the supported struc
ture is of great importance in many engineering problems such as earth
quake structural engineering and high speed ground transportation. This 
paper concerns the vertical reaction of the soil foundation on the sup
ported structure. Generally, the Winkler foundation model [13J is used 
for this purpose. This model assumes that the foundation consists of 
closely spaced, independent linear springs. Pasternak proposed a founda
tion model (3] which includes the shear interaction between the spring 
elements of the Winkler foundation. Later, Kerr [4] proposed a two-lay
ered foundation model which is a modification of the Pasternak model. 

In this paper, the general case of a two-dimensional, n-layered 
foundation is considered. As a first phase of this type of investigation, 
the supported structure is replaced, for simplicity, by a beam. The length 
and width of the foundation are assumed to be the same as those of the 
supported beam. This beam-foundation system is referred to as a layered 
beam foundation. Analytical methods are developed for the study of free 
and forced vibrations of this foundation. 

The natural frequencies and the normal modes for the layered beam 
foundation are obtained by two different methods: the state space method 
[10] and power series method [1]. Numerical examples are given. 
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For the forced vibration analysis of a structure, orthogonality and 
normalizing conditions for the modes of the structure are needed. In the 
succeeding paper [2J, these conditions will be found and applied to the 
investigation of the forced vibrations of the layered beam foundation. 

1. EQUATIONS OF MOTION 

The layered beam foundation shown in Fig. 1 consists of n beams. 
Each beam is either a classical beam or a shear beam and is separated from 
the adjacent ones by the spring layers. 

The mass of the spring layer introduces dynamic coupling terms in the 
governing equations for the system. The mass density is assumed to be 
constant across the thickness of each layer. The mass and stiffness of 
the elastic layers and the beams are allowed to vary along the length. 
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The equation of motion for the jth beam is derived as follows: First 
the potential energy and the kinetic energy for the jth beam, jth layer, 
and (j+l)st layer are obtained; then the Hamilton principle [5] is applied 
to derive the equation of motion. 
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The potential energies of the classical beams and layers are ex-
pressed as follows: 
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To find the kinetic energy of the jth layer, it is assumed that the dis
placement is linearly distributed along the thickness of the layer. The 
kinetic energy, 6T£j' in the section of the layer of length ~x, shown in 

Fig. 2, is expressed as 
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Similarly, 
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Equation (12) implies that the Euler equation for the integral A. 

is the differential equation of motion for the jth beam. The Euler eq~a
tion [6] is as follows: 

di:. 3 (8L.) 3 ~ __ -.J.. __ 
()y. 8x 3y~ dt 

J J 
( ;~~) 

J 

The substitution of expression (10) for 

( 
di:. ) d2 (' di:.) 
3y~t + 8x3t I ~ 

J J 

(13) 

L. 
] 

in equation (13) gives: 

bro. (x) 
] 

bro. (x) 
J -~j (x) 

.. .. 
Yj 

- Yj 
- Y. 1 3 6 ]-

bmj+l (x) 
Yj 

-
bmj+l (x) 

Yj+l 3 6 

(14) 

If th .th b . h b h e J earn 1S a s ear earn, t en 



319 

9, )2 1 dy. =j -bG.(x) (~ dx 2 J dX 
o 

(15) 

and the second term in equation (13) becomes 

3 3L. 3y. 
- ) )' - ax (ayt ~ h (x) -?x (16) 

The equation of motion for the jth shear beam is obtained by replacing 
the last term in equation (14) by the right-hand side of equation (16). 
The equations of motion for the jth beam are re-arranged as follows: 

Classical beam: 

where 
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2. FREE VIBRATIONS 

For free vibration analysis 
iAt y.(x,t) = w.(x) e 

J J 

(17) 
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After equation (19) is substituted in equation (17), the resulting fourth
order equation is reduced to the following four first-order ordinary 
differential equations: 
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Similarly, equation (19) can be reduced to the following two equations: 
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In this way, the layered beam system can be represented by a system of N 
linear, first-order, ordinary differential equations. N is given by the 
following expression: 

where 

nb number of beams in the system, 

n number of shear beams in the system. 
s 

These N equations can be expressed in matrix form as 

where 

~ {y} = [A] {y} 
dx 

{y} [NXl] state vector 

(24) 

(25) 
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{uI ' li2 , ... , lij' ... , uN} (26) 

{u. } {w .• l/!j' m
j

, V
j

} for beam (27) 
J J 

{w. , V. } for shear beam (28) 
J J 

and 
[AJ coefficient matrix. 

Two methods, the state space method and power series method, are used 
to solve equation (25). 

3. STATE SPACE METHOD 

This method is used for the cases where the matrix 
Let w(x) be a fundamental matrix of equation (25) at 
solution of equation (25) is 

{y} 
x=x 

where 

{y} 
x=x 
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¢N(x) {y}x=O 

state vector at x=x 

state vector at x=O 

[AJ is constant. 
x = O. Then the 

(29) 

normalized fundamental matrix at x=O 

transfer matrix [7]. 

For x=£, equation (29) becomes 

(30) 

Based on the boundary conditions at x=O and x=£, the submatrix [~]D 

which is (N/2 x N/2), is derived from the matrix ¢N(£)' The value of ~, 

which makes the determinant of [¢]D equal to zero, is the eigenvalue of 

the system. The corresponding eigenfunction is obtained from equation 
(29) . 

Examples I & 2. These examples illustrate the state space method. 
In both examples, a beam supported by a two-layered foundation model, a 
modified Pasternak model as shown in Fig. 3, is used. In the first exam
ple, the beam and the shear beam are simply supported. In the second 
example the beam and the shear beam have free-free boundary conditions. 
The data for these two examples are the same, as follows: 
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BEAM 

UPPER LAYER 

SHEAR BEAM 

LOWER LAYER 

L e --.~ 
Fig. 3 Beam on Elastic Foundation (Modified Pasternak 

Model) of same Width and Length 

E212 105 Ibs-ft2 Gl 2xl05 Ibs/ft 

2 2 2 3 
~2 .5 Ibs-sec /ft m2 6 Ibs-sec /ft 

2 3 
~l 0 ml 18 Ibs-sec /ft 

k2 105 Ibs/ft 3 b 1 ft 

kl 33,333.3 Ibs/ft 3 
R- IO ft 

Tables 1 and 2 give the first eight eigenvalues for Examples 1 and 2, 
respectively. To obtain the accurate eigenfunctions, it is necessary to 
calculate the corresponding eigenvalues for eight significant digits. 
Since the eigenfunctions are symmetric or anti-symmetric with respect to 
the midspan, their accuracy can easily be checked. The orthogonality 
conditions of these eigenfunctions, derived in paper [2], provide 
another check. 

Table l. Eigenvalues for Example 1. Table 2. Eigenvalues for Example 2. 

. Eigenvalue , rad/sec Eigenvalue, rad/sec 
State Space Finite Element State Space Finite Element 

Mode Method Method Mode Method Method 

1 64.5031 64.5968 1 50.9513 50.9516 
2 99.5431 100.4874 2 64.0285 64.1241 
3 152.2749 155.779l 3 94.5255 95.4871 
4 2l2.2243 222.0954 4 139.5464 142.7728 

5 262.1208 262.7381 5 198.7639 207.2009 
6 267.2531 278.1600 6 256.6565 259.9604 
7 277.8812 288.8704 7 259.9603 261. 9398 
8 317.7203 322.9463 8 263.0352 273.1839 
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For comparison purposes, the finite element method developed in [9] 
is used to find the eigenvalues and eigenfunctions for these two examples. 
The eigenvalues found by the finite element method are included in Tables 1 
and 2. As the consistent mass matrix i~ used in the finite element devel
opment, the eigenvalues obtained by this method are larger than the exact 
ones. 

For a beam on the Winkler foundation the difference between nth and 

(n+l)st eigenvalues is monotonically increased as n increases [11]. This 
is not true for the two examples considered here. Because the state space 
method is based on the trial-and-error approach, it would be easy to miss 
two eigenvalues which are close to each other. One way to reduce this 
difficulty is to consider a small increase in the value of A at every 
step. Computationally, this is an expensive approach. Another way to 
eliminate this difficulty is to use a Sturm sequence. as discussed below. 

Let [M] be the mass matrix and [K] be the stiffness matrix of the 
beam-foundation system. These matrices are developed by the finite ele
ment method discussed in [9]. [M] and [K] are symmetric and positive 
definite. The leading principal minors, f (A) of [[M]-A[K]], possess 

r 
the Sturm sequence property [8]. Consequently, the number of changes in 
sign of consecutive members of the sequence f (A), starting with 

r 
f (\) = 1, is equal to the number of eigenvalues of [[M]-A[K]] which are 

o 
smaller than A. This property provides a test to check whether any eigen
value has been missed. The leading principal minors of [[M]-\[K]] are 
computed using a variant of Gaussian elimination [12] which preserves 
information necessary for evaluating the required determinants. 

Because some natural frequencies are close, a beating phenomenon may 
take place between the two beams during free vibrations. 

Figures for eight corresponding eigenfunctions for each example are 
drawn in the Appendix. The eigenfunctions of Example 1 are divided into two 
groups, in-phase and out-of-phase groups, as there are two layers in the 
beam-foundation system. Eigenfunctions 1-4, 6, and 8 belong to the in
phase group and the eigenfunctions 5 and 7 belong to the out-of-phase 
group. The first and fifth eigenfunctions constitute a pair. There is 
an infinite number of such pairs. In each pair, the one belonging to the 
out-of-phase group has a higher eigenvalue. For an n-layered beam
foundation system, there are n such groups. In the first group, the 
individual normal modes of the beams are in-phase. In the second group, 
only one individual normal mode is out-of-phase. In the i th (i < n) group, 
a total of (i-I) individual mode shapes are out-of-phase. Similarly, the 
eigenfunctions of Example 2 can be divided into two groups. 

4. POWER SERIES METHOD 

the matrix [A] is not constant, the state space method cannot be 
However, the power series method can be used if matrix [A] is 

for 0 < x < t. This means k. (x), m. (x), ll4 .(x), f:l(x), and 
- - J J OJ J 

When 
applied. 
analytic 
-1 

gj (x), j=1,2, ••• ,n, are analytic for 0 < x < t. Under this condition, 
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there exists a unique solution Y(x) of equation (25) which is analytic 
for 0 < x <!L Thus, this solution has the following power series 
representation: 

co 
k 

Y(x) = I Yk(x-x) o < x - x < Q, 
k=O 0 - 0 

where 

Yk is a constant (NX1) vector and x 
0 

According to Taylor's theorem, 

Yk+l = 
1 Y (k+l) (x ) (k+l)! 0 

1 L~ Y'(X)] (k+l)! 
x=x 

0 

Substitution of equation (25) in equation (33) 

O. 

gives 

(k;l)! [d:k (A(x) Y (x)) J X'X 

o 

k = 0, 1, 2, 3, ..• 

Applying Leibnitz's rule, equation (34) reduces to 

1 [k k (i) (k-i) ] 
Yk+l = (k+1)! i:O (i) A (xo ) Y (xo ) 

As [A] is analytic. according to Taylor's theorem, 

co 

[A(x)] = 

where 

['\] = k! 

Substitution of equations (33) and (36) in equation (35) gives 

1 
k 

Yk+1 =-- I [Ai] Yk . k = 0, 1, 2, ... 
k+1 i=O 

-1 

where 

Y = Y(x ) o 0 

Substitution of equations (38) and (39) in equation (31) gives 

Y(x) o < x < .Q, 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 
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where 

[B
k 

ex)] k 1,2,3, •.. 

and 

[B (x) ] = [I]Y 
o 0 

The series in equation (40) converges absolutely and uniformly to Y(x). 
This implies that this series can be rounded-off to any desired accuracy. 
So the equation (40) can be expressed as 

Y(x) "" [1j!(x)]Y 
o 

(41) 

in which [Ij!(x)] is the partial sum of the series which gives the desired 
accuracy. 

For x = 9." equation (41) becomes 

Y(9.) '" [1j!(9.)]Y o 
(42) 

As before, a sub-matrix [1J!(9.)]D is derived from the matrix [1j!(Q,)], 

according to the boundary conditions at x=O and x=9.. The value of A 
which makes the determinant of [1j!(9.)]D zero is an eigenvalue. The corre-

sponding eigenfunction can be obtained from equation (41). Three examples 
are solved to illustrate the power series method. 

Examples 3 & 4. A simply supported beam is resting on the Winkler 
foundation as shown in Fig. 4. The following data is common to these two 
examples: 

5 2 
ElIl = 10 lbs-ft L 10 ft 

Fig. 4 Beam on Winkler Foundation 

In Example 3, 

kl (x) = 104 (1 + i ) lbs/ft
3 

and 

~l 

In Example 4, 

2 2 
0.5 lbs-sec 1ft 

o < x < 10' 

BEAM 

SPRING 
LAYER 
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and 

( X) 2 2 ~l(x) = 0.5 1 + L lbs-sec 1ft o < x < 10' 

The first four eigenvalues in radians/second, for Example 3, are 
177.5078, 247.9721, 433.4473, and 727.1568. For Example 4, they are 
55.776, 86.0725, 162.2364, and 273.6375. The corresponding eigenfunctions, 
calculated from eigenvalues with eight significant digits, are drawn in the 
Appendix. The eigenfunctions are no longer symmetric or anti-symmetric with 
respect to the midspan. Only the first eigenfunction can be predicted 
qualitatively. This is not true for the other eigenfunctions. In Example 
3, stiffness of the foundation increases as x increases. Thus, the modal 
deflection for the first eigenfunction should be smaller at x = 8' than 
at x = 2'. For the second mode it is completely opposite. This is neces
sary so that the second eigenfunction is orthogonal to the first one. 
Similar comments are applicable to Example 4. 

Example 5. In this example, a two-layered be~m, represented by a modi
fied Pasternak model, as shown in Fig. 3, is considered. The stiffness of 
each layer increases linearly. The data for this example are as follows: 

E2I2 105 lbs-ft
2 ~2 0.5 lbs-sec

2
/ft 

9.- 10 ft ~l 0 

(1 + 1;) 105 lbs/ft 3 2.0 2 3 
k

2
(x) mZ lbs-sec 1ft 

1 6.0 
2 3 

kl(x) 3' k2 (x) ml 
= lbs-sec 1ft 

G
l 

5 
2xlO L lbs/ft. 

The first eight eigenvalues in radians/second obtained by the power 
series method are 73.6654, 106.081, 156.5450, 217.072, 274.4609, 304.1648, 
326.2989, 339.0188. Figures representing the corresponding eigenfunctions 
are alotted in the Appendix. Comments regarding the eigenvalues and the 
eigenfunctions obtained by the state space method in Example 1 are also 
applicable here. 

CONCLUSION 

The problem of interaction between a structure and its supporting 
foundation is of current interest. In this paper, the structure (repre
sented by a beam) and its supporting soil foundation are modelled by a 
layered beam system for free vibration analysis. In a forthcoming paper, 
forced vibration will be analyzed. With this background, we are currently 
investigating the problem of a moving elastic system on a beam supported 
by a layered foundation. We may also extend our res~arch to investigate 
the interaction between a complex structure and its supporting soil 
foundation. 
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NOMENCLATURE 

E. (x) 
J 

width of the beam-foundation system 

modulus of elasticity of the jth beam 

shear modulus of the jth shear beam, lbs/ft G. (x) 
J 

I. (x) 
J 

k. (x) 
J 

2-

~j ex) 

m. ex) 
J 

M. ex) 
J 

Tbj 

T.Q,j 

Vbj 

f · . f h . th b area moment 0 lnertla 0 t e Jearn 

stiffness of the jth layer, lbs/ft 3 

length of the beam-foundation system 

mass per unit length of the jth beam 

mass of the jth layer per unit contact area 

. h .th b moment In t e Jearn 

kinetic energy of the jth beam 

kinetic energy of the jth layer 

potential energy of the jth beam 
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v . 
J 

v. ex) 
J 

w. (x) 
J 

y.(x,t) 
] 

Wj ex) 

A 

. 1 f h .th 1 potentla energy 0 t e ] ayer 

shear force in the jth beam 

~ deflection of the jth beam 

deflection of the jth beam 

slope of the jth beam 

frequency of harmonic vibration 

APPENDIX 

Normal modes for Examples 1-5, reduced and simplified from [9], are 
plotted here as Figs. 5-9, respectively. The mode numbers are indicated 
within the figures. 

1~-,~ 
1 

5 

!--==-=- -- - ~ t 

----~---- ~~ 
3 7 

r=-~-,,-c:::::;,-'--T 

Fig. 5 Eight Normal Modes of Example 1 
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F=--,----.------, 

1 5 

I U. ,. ~--------

b-==- -
2 

[~----

7 L __ ' ____ _ 

-":II'~ - -- - --

4 
8 

---~.- ------

Fig. 6 Eight Normal Modes of Example 2 

Fig. 7 Four Normal Modes of Example 3 
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~ 
~~ 

Fig. 8 Four Normal Modes of Example 4 

-~, 

~~ .:..0----1 

Fig. 9 Eight Normal Modes of Example 5 
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An investigation has been made to explore a method of generating 
response spectra from displacement and velocity time history input instead 
of acceleration time history. The ability to generate response spectra 
from digitized displacement and velocity time history input is required in 
order to show that the displacement input used for some component tests or 
analyses is, in fact, equivalent to the input when specified in terms of 
acceleration. 

In many instances, the component structure analysts use dynamic models 
which utilize displacement and velocity input. This is often the case of 
the tests where digitized displacement is specified. Since the floor re
sponse spectra are usually determined in a conventional analysis by using 
acceleration input, it is necessary to ascertain that the response data 
produced by using displacement and velocity input are consistent with those 
generated by using acceleration excitation. 

The analytical approach used in this investigation was successively to 
integrate by parts the expression of the absolute acceleration response of 
a single degree-of-freedom oscillator and the final results are in terms of 
Duhamel's integrals involving only displacement and velocity excitations. 
The numerical computations of these integrals were facilitated by making 
use of recurrence relations. The response spectra obtained were compared 
with those generated by conventional methods using acceleration input. 
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1. INTRODUCTION 

The determination of seismic response through the use of the response 
spectrum method has long been a standard practice in dealing with linear 
systems. However, in recent years many structural components are modelled 
as nonlinear systems whose governing equations are formulated in absolute 
coordinates. The expressions of these equations contain boundary displace
ment and velocity as excitation input rather than the support acceleration 
terms as commonly encountered in the conventional linear an'alysis methods. 
For the same reason, when these nonlinear component structures are qualified 
by test methods, the excitation is usually specified by digitized displace
ment input. Since the support motion of a component structure is usually 
defined by acceleration time history data along with the floor response 
spectra, it is necessary to establish the equivalency of using displacement 
excitation input. 

A response spectrum is defined as the maximum response of a damped, 
single degree of freedom linear oscillator to a specified support motion 
plotted versus the natural frequency or period. The calculations are then 
repeated for various damping values. These curves provide a description of 
the frequency characteristics of the support motion and give the maximum 
response of single-degree of freedom systems to the excitation, By modal 
super-position, the response spectrum techniques can be applied to the 
analysis of complex multi-degree of freedom structures such as buildings, 
nuclear power plants, and equipment. 

The generation of response spectra normally requires the numerical 
computation of the response of a simple oscillator to a specified base 
acceleration. The motion of the oscillator is described by a second order, 
linear, inhomogeneous differential equation, and if a digita~ ~scription of 
the support excitation is available, the response can be obtained by numer
ical integration. 

For some engineering applications, dynamic models for the component 
structures are used where displacement and velocity time history inputs 
are required. This is often the case of tests where digitized displacement 
is specified. In this case, the response spectra must be generated from 
the displacement and velocity time history records. 

In this investigation, the acceleration response is in terms of dis
placement and velocity time history. Therefore, the analytical approach 
used in this study was successively to integrate by parts the expression of 
the absolute acceleration response to a single-degree of freedom oscillator, 
and the final results are in terms of Duhamel's integrals involving only 
displacement and velocity excitations. 
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2. MATHEMATICAL FORMULATION 

The exact expression for the relative displacement of a single degree 
of freedom, damped, linear system with zero initial conditions excited by 
base motion yet) is [lJ: 

j t y .. (T)e-WL;(t-T) ~-2 ( sin wy1 - I;, t - T)dT 
o 

S (t) 

where W is the undamped natural frequency, and L; is the fraction of 
critical damping. 

(1) 

By differentiating equation (1), the exact expression for the rela
tive velocity can be obtained: 

VCt) - jt yCT)e-WI;,(t-T) cos W j1~2 (t - T)dT 
o 

i t Y··(T)e-WI;,(t-T) r;,-----2 ( ) sin W y1 - I;, t - T dt 
o 

The "absolute" acceleration of the mass may be derived by further 
differentiating equation (2) with respect to t: 

aCt) 
w(l - 21;,2) 

J1- 1;,2 

+ 2 wI;, i
t 

o 

i
t 

Y(T)e-WL;(t-T) sin w /1 - 1;,2 (t - T)dT 
o 

-wI;, (t-T) I 2 y(T)e cos W y1 - I;, (t - T)dT 

If we let c = wI;" B ~ /1 - 1;,2, the first integral yields: 

i t .. ( ) -C(t-T) ( y T e sin W B t - T)dT 
o 

. t 
[D(t - T)Y(T)] 

o 

where D(t - T) 
-C(t-T) 

e sin W B(t - T) 

The expression j(t ;(T)d~T DCt _ T)dT can be successively 
o 

(2) 

(3) 

(4 ) 
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integrated by parts, so that the first integral can be written as: 

JCt Y(T)e-C(t-T) sin w B(t - T)dT = y(t)U(o) - y(o)U(t) 
o 

- ~T U(t - T) L.=t yet) + IaT U(t - T) I T=O yCO) 

f
t 2 

+ yeT) ~ V(t - T)dT 
o 

Since the initial velocity and displacement are usually zero and 

3~T U(t - T)/T=t yet) = -wBy(t) 

equation (3) is reduced to the following expression: 

where A 

aCt) ABw 2y(t) + Aw j[t yeT) 3~; UCt - T)dT 
a 

(1 - ZC;2) 

) 1 - t;;2 

+ 2c j[t Y(T)e-cCt- T) cos w BCt - T)dT 
a 

t 
The second integral 2c y T e cos W B(t - T)dT f OOC) C(t-T) 

o 

(5 ) 

(6 ) 

may also be successively integrated by parts and after a somewhat lengthy 
derivation the final expression may be written as: 
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yeT) 8T2 UCt - T)dT 

it ()2 

+ 2c yCT) c)c2 VCt - T)dT 
a 

(7) 

where u(t - T) = e -C(t-T) 
cos w B(t - T) 

The expression for aCt) is finally given as: 

aCt) = (1 - 2~2) w2y(t) + 2w~y(t) - 2w 2t;;2y(t) 

i t -W~(t-T) ° ) 2 - D e Sln W 1 - t;; (t - T)y(T)dT 
o 

- E j[t e-wt;;(t-T) cos w )1 - t;;2 (t - T)y(T)dT (8) 

o 
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where 

D 

and 

E = 2w 3 s(1 - 2S2) + 2s2(1 - 2S2)W 3 

yet) is the displacement time history and yet) is the velocity time 
history. Since yet) and yet) are known, aCt) can be evaluated as soon as 
the values of the two Duhamel's integrals 

and 

are determined. 

It -WS(t-L). /1 
e Sln W -

o 

S2 (t - L)Y(L) dT 

It e-WS(t-L) cos W /1 - S2 (t - T)Y(T)dT 

o 

3. EVALUATION OF DUHAMEL'S INTEGRALS 

(9) 

The two Duhamel's integrals as shown in Equation (9), can be evaluated 
by using a numerical integration technique [2], However, for excitations 
of longer duration, an accurate computation for these integrals is almost 
prohibitive due to the cost of the computer time unless a recurrence re
lation can be found. 

For a small time increment ~t, the expression of the first integral in 
Equation (9) may be written as: 

j[t+~t e-c(t+~t-L) sin w B(t + ~t - T) Y(T)dT 

o 
or 

j
t+M 

e -c(t-L) 

o 
• e-c~t[sinWB(t-L)cosWB~t+coSWB(t-T)sinwB~t]Y(T)dT 

which can be written as 

i t e-C(t-L) P sinWB(t-T)y(L)dL + P 
o i

t +M 
-C(t-T) 

e sinwB(t-L)y(T)dT 
t 

f
t+L1t 

e -c(t-T) 

t 
coswB(t-T)y(T)dT i

t -c t-T 
+ Q e ( ) coswB(t-L)y(L)dL + Q 

o 

,.;here P and Q are constants defined by 

p -c/\'t 
e coswB~t 

Q 
-c~t 

e sinwBl:.t 

(10) 

(11 ) 
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In the same manner, the second integral, for a small increment, yields 

I
t+6t . 

e-c(t-T+M) cos w B(t - T + M)y(T)dT 
o 

(12 ) 

which may be expressed as: 

i t -C(t-T) 
e cOSWB(t - T)y(T)dT 

o 

P 

+ p I
t+6t 

-c t-T e ( ) coswB(t - T)Y(T)dT 
t 

- Q I
t 

-c t-T e ( ) sinwB(t - T)Y(T)dT 
o 

I
t+6t 

- Q e-C(t-T) sinWB(t - T)Y(T)dT 
t 

(13) 

By examlnlng the eight integrals in Equations (11) and (13), one can 
conclude that there is a recurrence relation in each of the Duhamel's 
integral for a small time increment. Therefore, the numerical data of the 
four integrals may be stored in the computer in the form of the original 
Duhamel's integrals multiplied by a constant P or Q. 

For each time increment, there are only two integrals to be evaluated 
for the particular small time increment only. The integrals are: 

I
t+l'.t 

-C(t-T) 
(P - Q) e sinwB(t - T)y(T)dT 

t 

and 

I
t+l'.t 

(P + Q) e-c(t-T) cosWB(t - T)y(T)dT 
t 

Since the integration for the two integrals is limited from (t) to (t + 
l'.t), both the computation time and core storage are drastically reduced. 
The trapezoidal rule is usually accurate enough to evaluate these two 
integrals for small time increment l'.t. 
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4. NUMERICAL RESULTS 

In this section, results are obtained to demonstrate that the 
response spectra generated by digitized displacement and velocity time 
history input are essentially the same as the ones generated by acceler
ation time history. Moreover, the results will be compared between the 
response spectra generated by acceleration input and those generated by 
displacement time history alone, i.e., with velocity time history neg
lected, for a low damping case. 

In order to perform the n~merical calculations described in the 
previous section, a computer code, DISPEC, was developed. The output of 
the code includes numerical values and graphical displays of the computed 
response spectra. The input data are digitized time history values of 
displacement and velocity input generated by integrating an acceleration 
trace whose response spectra are known. The accuracy of the DISPEC code 
has been tested against an existing computer program EQUAL [9] which 
generates response spectra from acceleration time history input, and the 
comparison shows that the agreement is excellent. 

A. Comparison of Response Spectra (using both displacement and velocity 
input for DISPEC). 

Two response spectra plots as well as a numerical tabulation due to a 
1 g horizontal ground motion of an artifical earthquake are shown. One is 
the result from the program using acceleration input (Figure 2), and the 
other is the result of DISPEC code using displacement and velocity time 
history input (Figure 1). In both cases, the damping factor is 5%. 

For the purpose of improving the accuracy of the integration process 
in the high frequency range, the time step ~t for integration was chosen 
for this test case, as 0.0001 second when the period is less than 0.06 
second. For all other period values, satisfactory accuracy can be 
achieved with a more economical integration step of 0.001 second. 

B. Comparison of Response Spectra (using only displacement input for 
DISPEC). 

It was shown in the equation (8) for the undamped case that the 
response spectra can be generated from displacement time history alone. 
For a lightly damped structure, such as a steel structure, or an uncracked 
concrete building [3], it is also possible to generate an approximate 
response spectra of acceptable accuracy from only the displacement time 
history input by using Equation (8). 

A series of comparisons was made to find a maximum damping value for 
which the response spectra generated from acceleration can be approximately 
generated by displacement time history alone. The need for this investi
gation is due to the fact that the velocity input trace in a test is 
sometimes unavailable. 
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By comparing Figure 2 and Figure 3 as well as Table 2, one can 
easily conclude that the spectra for 0.05 damping computed by DISPEC 
without yet) input is quite different from the one computed by EQUAL. In 
the high frequency range the difference. is quite large but decreases to an 
acceptable region when the period reaches approximately 0.2 second. Above 
this period, the difference is considered to be acceptable from the engi
neering point of view. 

As shown in Equation (8), the term 2wSy(t) is the only term contain
ing the velocity time input yet). The effect of this term is obviously 
quite small if the product of wand s is small. The smaller of the damp
ing value S, the less effect this term has on the overall response aCt). 
Since the circular frequency w is a variable its effect at low frequencies 
will be small. 

It is shown in Figure 4, Figure 5 and Table 3 that the difference of 
the response spectra, computed respectively by DISPEC and by EQUAL has 
been improved considerably as the damping is reduced from 0.05 to 0.01. 
The maximum deviation at the lowest period of 0.03 second is 17.6%. 
However; the difference decreases rapidly as the period increases until 
the discrepancy is only 2.12% at a period of 0.1 second. As shown in 
Table 6, some steel, reinforced or prestressed concrete structures without 
cracking or joint slip where the stress level is low or well below pro
portional limits are representative of structures with critical damping 
in the neighborhood of 1.0%. 

Similar results are obtained for 0.008 damping as can be seen by an 
examination of Table 4, Figure 6 and Figure 7. The difference of the 
response spectra computed by DISPEC and computed by EQUAL has been reduced 
slightly. The maximum discrepancy is about 14 percent, and it decreases 
to 2.02% at T = 0.1 second. 

For a structure with 0.005 damping value or lower, the response 
spectra can be generated by using displacement time history alone. From 
Figure 8, Figure 9 and Table 5, the response spectra generated by DISPEC 
and by EQUAL are almost identical except in the low period range which 
still has some minor differences. From Table 6, steel structures with a 
low stress level of 0 < 1/4 0y and without joint slip, reinforced or 
prestressed concrete structures without cracking, with the stress level 
well below proportional limit, etc., are structures typically encountered 
in this damping range. 
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5. CONCLUSIONS 

An analytical technique has been developed for generating response 
spectra from displacement and velocity time history input instead of 
acceleration time history. Recurrence relations are developed which 
provide an economical means of solution for the numerical evaluations of 
the Duhamel's integrals involved. A comparison shows that agreement 
between spectra generated by the two methods is excellent. 

It is further shown, that for very lightly damped cases, the response 
spectra may be generated by displacement time history input alone. At 
0.5% critical damping or lower, the response spectra for a structure may 
be generated by displacement time history alone with only minor error (of 
the order of 5%) in the low period range (T < 0.08 second). 

For a structure with damping values in the 0.008 to 0.01 range, one 
can expect about 15% error introduced for a period T less than 0.06 
second. For damping values higher than 0.01, the response spectra gener
ated by displacement time alone are not recommended for use and the contri
butions from the relative velocity terms must be included. 
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COMf-ARISON OF RESPO~S[ SPECTRA OU:E 10 1 G il)Pl.1l0KTAL COMPOHENT 
OF SA ARTIFlClAL EARTll1lJAkf 

.05 Dao!>tll9 

Spectra Ccnputed by OISPEC Spectra ComPUted by EOUAl. 

Per1od, Sec. Max, Ace. (0) H4x. Ace. (9' 

.03 1.21 1.14 

.001 1.27 1.24 

.06 1.87 1.83 

.08 2.001 2.20 

.1 2 •• 7 2.58 

.2 3.35 3.37 

.3 3.03 3.03 

.4 4.19 4.19 .. 2.9!5 '.05 

.S 2.09 2.09 

1. 1.57 1.57 

1.2 1.79 1.79 

1.4 1.13 1.13 

1.6 1.35 1.35 

1.8 1.39 1.39 

2.0 1.20 1.20 

COMPARISON OF RESPONSE SPECTRA ruE TO 1 G HORIZONlAL COtPot£NT 
OF SA ARTIFICiAl EARTHQtLI.k£ 

0.01 fl.aq>tng 

Sp~ctra computed b.v DISPEC: 
(without i:!tl 1n~ut} 

S~e(tt'a C5!!!iuted b;r: EQUAl.. 

PerIod. Sec. .. ,. Ace. (Sill Kll(, A"e. (9) 

.OJ 1.93 1.59 

.04 1.80 1.53 

.~ 2.84 2.40 

.08 3.63 3.84 

.1 4.51 4.71 

.l 6.36 5.42 

.3 6.62 6.62 

.4 6.25 6.24 

.6 4.01 4.02 

.8 3.39 3.40 

1. 2.31 2.31 

1.2 2.33 2.33 

1.4 1.96 1.96 

1.6 1.79 1.79 

1.8 1.67 1.67 

2.0 1.41 1.41 

C(lMPAR1S-0N DF RESPONSE SprCTItA roE TO 1 G HQRIZONTAI... COMPOHENT 
OF G.A ART! FIC.lAL £AIlTHQum 

.eli O-IlIIIItng 

Spec:troa Computed by DISP[C 
IwH.~out ill) tn~tl 

-S-~ectr.a C!!S!l.Itd bl EglJAl. 

Period, Sec. "". Ace. (~ Mix.. Ace. (9) 

.03 US 1.14 

.04 4.14 1.2t 

.06 3.40 1.83 

.08 2.98 2.20 

.1 2.84 2.58 

.2 3.40 3.37 

.3 3.10 3.03 ., 4,07 •. 19 

.6 2.91 2.95 

.8 2.18 2.09 

1. 1.55 1.57 

1.2 1.17 1.79 

1.4 1.12 1.13 

1.6 1.36 1.35 

1.8 1.40 1.39 

2.0 1.21 1.20 

COM?ARISON Of RISPQNSE SPECTRA DuE TO 1 G. HORUOHTAL C(J';P()NtNT 
OF SA ARrIFICIAl EARTIIlUAKE 

.008 0IMp11l9 

S~ctr. Callputed by DISl>EC 
{wHh-Out 2J t} 1 n~t} S~c:t)"lI t~t.e-d bl E~ 

Pedod. S&. Max. Ace. (gl Max. Ace. f9) 

.03 1.17 1.64 

.04 1.7~ 1.56 

.06 2.84 2.43 

.08 3.n 3.97 

.1 4.85 4.9~ 

.2 '.85 6.89 

.3 7.1S- 7.15 

.4 6.41 •• 39 

.6 4.06 4.06 

.8 3.49 3.50 

1. 2.40 2.41 

1.2 2.37 2.37 

1.4 2.OS 2.OS 

1.6 1.85 1.84 

1.8 1.ti9 1.69 

2.0 1.42 1.42 
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The seismic response of structures was studied by using a small 
and large displacement analysis for a one and two story model. Both 
the small and large displacement analyses used in this study include 
the effect of a bilinear or elasto-plastic force-displacement relation
ship. In addition, the large displacement analysis includes the large 
displacement coupling term relating the horizontal and vertical dis
placement, the P-delta effect and vertical ground motion. 

The P-delta effect in the analysis evolves from a consideration 
of the stiffness of a fixed-fixed column with axial forces applied at 
the ends. In the dynamic analysis, the axial forces acting on the 
columns include the gravity, or dead loads of the structure, in addition 
to the vertical inertia loads resulting from vertical accelerations. 
The vertical acceleration of the structural mass depends not only on 
the vertical ground motion but also on the large displacement coupling 
term. Due to axial forces, the horizontal restoring force of the columns 
will decrease for large horizontal distortions. 

The objective of the study was to determine the significance of 
these additional effects on the seismic response of the one and two story 
models. In order to evaluate the effect of these additional terms the 
small displacement differential equations of motion were solved and used 
as a baseline for comparison with the solutions from the large displace
ment differential equations of motion. 

A complete parametric study was conducted over the frequency range 
of .2 cps to 10 cps. The effects of various levels of elastic and plastic 
action, damping and vertical ground motion on the response of the one 
and two story models were investigated. 

The results showed that the large displacement considerations in
cluded in the analysis do have an effect on the seismic response of 
structures. This was found to be particularly true for the lower 
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frequencies (2 cps or less) when a large amount of plastic action was 
allowed to take place. 

The seismic response studies for the one and two story models 
strongly indicate that vertical ground motion could be a significant 
factor for tall structures. 

INTRODUCTION 

When a structure is subjected to an earthquake, the base of the 
structure essentially moves with the ground while the upper stories 
move relative to the ground. These relative motions can be of such 
large magnitudes that plastic deformations occur causing permanent 
offsets in the structure. The extent of the damage, especially the 
amount of permanent offset, will determine the useability of the struc
ture. 

The problem of designing a structure to mlnlmlze damage caused 
by earthquakes has been of considerable interest for sorrre time. Some 
of the earliest published work done in this area was by Martel (1)* 
and Green (2)* on the flexible first story concept. Martel studied 
the response of a single bent excited harmonically. His studies show 
that the flexible first story concept will not reduce the accelerations 
of the upper stories if the period of the fundamental frequency of the 
earthquake is greater than the fundamental period of the bent. Essentially 
the same conclusion was reached by Green. By using a single degree of 
freedom spring and mass system, he showed it would be very difficult to 
isolate the upper stories from low frequency ground motions. 

A more recent publication, that of Fintel and Khan (3)* extends 
the flexible first story concept by designing a shock ahsorbing system 
into the structure of the first floor. Their studies show that by 
using a shock absorbing system with a bilinear force-displacement 
characteristic, it is possihle to keep the force input t:o the upper 
stories below a specified level as well as confine the damage to the first 
floor. They analyzed the response characteristics of their one story 
model within the completely plastic to 10 percent elastic range. For 
clarification of the plastic and elastic terms refer to page 10. 

Thomaides (4), made a study of bilinear single degree of freedom 
systems. He investigated the response characteristics over a much wider 
range, from zero to 25 percent elastic action. One of his conclusions 
which is of particular interest in regards to this study is that a 
structure will sustain less permanent offset when the anlount of elastic 
action is increased in a structure. 

None of the references previously cited included the effect of verti
cal ground motion. 

*The number in parenthesis refers to a reference included in the 
bibliography. 
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The existing seismic building codes are reviewed in references (5), 
(6) and (7). They are primarily based on the concept of absorbing energy 
to prevent catastrophic failures by allowing large amounts of plastic 
action to take place within the structure. This requires designing 
buildings with high ductility factors. The code also requires a quasi
static earthquake loads analysis which consists of applying lateral loads 
at the different floor levels of the structure. These late~al loads are 
based on a number of considerations. Some of those considered are gravity 
plus dynamic loads, seismic zone factors, site soil factors, etc. The 
dynamic loads used in the code are based essentially on results obtained 
from single degree of freedom models. The effects of large displacement 
coupling, P-delta effect and vertical ground motion, have not been con
sidered in arriving at the present codes. 

The analytical work by Smith, Ernst and Maheshwari (12) points out 
the importance of designing with steel that does not have a yield plateau. 
They show that the use of this type of steel in the design of structures 
will Significantly reduce the amount of permanent offset. The results 
from the experimental work at Nebraska, conducted by Smith, Ernst, 
Riveland, and Pierce (13) substantiates their analytical results. From 
this work, a new design philosophy has evolved which is the designing of 
buildings with as much reserve elasticity (elastic action) as possible 
in order to minimize permanent offset and damage. 

An area in which a lot of development work has taken place is use of 
the finite element technique to study the linear and non-linear seismic 
response of structures. A number of large scale linear three dimensional 
and non-linear two dimensional programs are available. To the writer's 
knowledge, no large scale non-linear three dimensional frame analysis 
programs are available at this time. A large scale two dimensional non
linear program was not used in this study because of the difficulty of 
conducting simplified parametric studies. It was also felt the cost 
involved would be prohibitive. 

The objective of this study is to determine the combined effect of 
large displacement coupling, P-delta effect, vertical ground motion, and 
bilinear action, on the following structural response characteristics: 

(1) Distortion 
(2) Permanent offset 
(3) Lateral force coefficients 

DERIVATION OF THE EQUATIONS OF MOTION FOR THE ONE AND TWO STORY MODELS 

The differential equation of motion which include the large displace
ment coupling term, the P-delta effect, and the vertical ground motion was 
derived as follows for the one story structure which is shown schematical
ly in figure lao The equation was derived with the restriction that the 
mass m moves parallel with the horizontal plane. This restriction is 
realistic since most buildings are built such that this type of motion 
will predominate. This restriction is substantiated by pictoral document
ation of earthquake damaged structures. For instance, figure 3,15 page 
156 of reference (11) shows the deformed shape of a reinforced concrete 
structure damaged by the San Fernando earthquake of February 9, 1971. 
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This figure shows that the columns are deformed approxllTIately in the fixed 
-fixed mode shape while the first floor remains horizontal. It is further 
assumed in the derivation that the inertial effects of the column and its 
axial deformation are negligible. 

The large displacement coupling term relating the vertical (l1V) and 
horizontal (l1

H
) displacements, shown in figure 2, was obtained by using an 

approximation method. First, the shape function, equation 1, which repre
sents the deformed shape of a fixed-fixed column was determined. 

2 3 
y(x) '" (3x _ 2x )6 (1) 

£2 £3 H 

N h · 1 1/£ (dx)2d d . h . 1 ext, t e lntegra 2 0 dx x was use to apprOXllTIate t e vertlca 

displacement (l1V) caused by the horizontal displacement (l1H)' The result
ing equation relating these two displacements is; 

(2) 

This equation shows that large horizontal displacements, which a structure 
will experience during severe earthquakes, will cause significant vertical 
displacements. The validity of the above equation was substantiated by 
experimental tests. A comparison of the experimental and theoretical 
curves is given in figure 3. 

The P-delta effect is included in the analysis by using a geometric 
stiffness term for a fixed-fixed column with axial forces applied at the 
ends. The important effect included in the analysis, by using the geo
metric stiffness, is that the columns horizontal stiffness decreases as 
the axial load increases. In the dynamic analysis the axial load is the 
sum of the dead loads (gravity loads) plus live loads which herein are 
considered to include inertia loads. 

The input to the mathematical models include the horizontal and ver
tical acceleration, velocity and displacement time histories. 

The equation for the horizontal motion of the mass ml was obtained by 
using the concept of dynamic equilibrium, or D'Alembert's principle. The 
coordinates 0HI' yv and YH shown in figure 1 are independent. 0Hl repre
sents the horlzontal dispIacement of the mass ml while yV and YR aefine 
the vertical and horizontal displacement of the ground. Vertical dis
placement of the mass is defined by 0lll and is expressed in terms of 0Rl 
yy and YR' The horizontal restoring torce due to the relative dis- ' 
p acemen~ of a column is; 

Q 
(3) 

where the first term in parenthesis is the geometric stiffness and the 
second term in parenthesis is the relative horizontal displacement between 
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the mass ml and the ground. The relative displacement term is referred to 
as distortion. 

The free body diagram of the mass ml is given in figure lb. By sum
ming moments about points a and b which represent the inflection points of 
the columns, equations are obtained for the axial loads CPR and P

L
) in the 

right and left columns. These equation are: 

ml SHI Ie, m0l>-y 
p = __ (~ _ ~) _ ~ [~_( H1 H)] 

L w 2 2 w 2 2 

mIg o-y 
+ _ [~_( HI H)] 

w 2 2 

where 

The differential equation for the horizontal motion of mass m
1 

was 
derived by summing the horizontal forces which gives; 

.. 
m1oH1 + kL(oHl-YH) + ~(oHl-YH) o 

where 

(4 ) 

(5) 

(6) 

Now, by substituting for the axial column loads PR and P
L 

and rear
ranging, equation 6 becomes: 

m g m ° 
6 + 2 [12EI _ ..L (...1- _ 1 VI)] (6 ) 

ml HI 3 5£ 2 2 HI-YH 
£ 

o 

This equation gives an interesting insight into the problem. For 
instance, the restoring force in the above equation is decreased by the 
static gravity term ( mig) and increased by the large displacement 

2 .. 
coupling acceleration term mloVl 

<-2-)' 

(7) 
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• • 2 " 
Noting that 0Vl = (18/152)(oHl-YH)(oHI-YH) + (oHI-YH) ] + Yv and 

adding a viscous damping term. the large displacement response equation 
for a one story structure is; 

where: 

21;w 
n 

- a 

---
D 

a = percent elastic action 

8 percent plastic action 

D 

o = horizontal displacement of mass m
l 

(in) 
HI 

g 

w n 

horizontal ground motion (in) 

vertical ground motion (in) 

acceleration of gravity Cin/sec2) 

damping factor 

length of columns (in) 

fundamental frequency of one story model for small 
displacements (rad/sec) 

The first three terms on the right hand side of the equal sign, 
when CD=l), is the equation of motion for mass ml considering small dis
placements. This is the equation which G. M. Smith, G. Ernst, and 
Maheshwari (12) have investigated quite thoroughly. The next three 
terms are due to large displacement coupling and P-delta considerations 
while the last term comes from including vertical ground motion. 

(8) 
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Equations for the two story model were derived in the same manner as 
for the one story model. A set of coupled non-linear differential equa
tions was obtained which defines the motion of masses ml and mz as shown 
in figure 4. The independent coordinates used in the analysis are 0Hl 
and 0HZ which represent the horizontal motion of masses ml and mz while 
the horizontal and vertical ground motions are defined by YH and YV, re
spectively. 

The vertical displacements of masses ml and m2 can be expressed as 
a summation in terms of the independent coordinates. These equations 
are: 

9 2 
°Vl 159,1 (oHl-YH) + Yv 

9 Z 9 Z 
°V2 159,1 (oHl-YH) + 1St (oH2-oHI) + YV Z 

The differential equation of motion for mass m2 is determined by 
summing forces in the horizontal direction in figure Sa. After making 
the necessary substitutions, we obtain; 

( 9) 

(10) 

Again, we find that the horizontal restoring force is decreased by 
the gravity term and increased by the vertical acceleration term. 

The differential equation of motion for mass ml is derived by sum
ming the horizontal forces in figure 5b. Upon substituting for the axial 
column loads PLl , PRI' PLZ ' and PR2 , the equation becomes; 

mloHl + [2(~Z~I - 5~1 (mIg - mloVl + mzg + mZoV2 )] (oHl-YH) 

1 

_[Z(~2~I) - 5~z (mzg - mz6VZ )] (OH2-oHl) 

2 

o (12) 

Again it is noted, for the first set of terms in brackets. the grav
ity term reduces the restoring force while the vertical acceleration in
creases the restoring force. However, for the last set of terms in 
brackets, the gravity term increases the restoring force while the ver
tical acceleration decreases it. 

Arter substituting for the vertical accelerations and the addition 
of the forces due to viscous damping, the differential equation for 
masses mz and ml are; 
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108 2 .. 108 • • 2 
+ 2 (oH2-oH1) °H1 2 (oH2-oH1) (oH2-oH1) 

75i2D2 75i2D2 

6 .. 
--- (oH2-oH1)YV 5i2D2 

(13) 

(14) 
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[1 + 108 2 
D2 

75£2 
(oH2-oHl) ] 

z 

Dl [1 + 108 (8 _y)2 + 108 
m2 · 2 

2 HI H 759,~ 
(m

l
) (oHl-YH) 

75£1 

216 m2 + 108 mZ 2 

75£122 (~)(OH2-oHl)(oH1-YH) 75£2 
(~)(oHZ -oHl) ] 

1 
Z 1 

~ percent of critical damping 

w 
n 

fundamental frequency of two story model (Rad! 
sec) with mZ = m

l
/2. 

lumped mass representing second floor (lb-sec2/in) = m
l

/2 

lumped mass representing first floor (lb-sec
2
/in) 

horizontal displacement of mass m
Z 

(in) 

horizontal displacement mass IDl (in) 

length of columns supporting mass m
Z 

(in) 

length of columns supporting mass m
l 

(in) 

y = vertical displacement of ground (in) 
V 

YH horizontal displacement of ground (in) 

g = acceleration of gravity (in/secZ) 

The two equations, 13 and 14, are referred to as the large displace
ment equations for the two story model. 



354 

The small displacement equations for the two story model are obtained 
by setting Dl = D2 = 1, and keeping the first two terms on the right hand 
side of equation 13 and the first five terms on the right hand side of 
equation 14. All the other terms in equations 13 and 14 come from consid
ering the large displacement coupling term, the P-delta effect and vertical 
ground motion. 

PROCEDURES FOR THE SOLUTION OF THE ONE AND TWO STORY MODEL EQUATIONS 

The differential equations of motion were solved using a digital 
computer program which functions as an analog computer. For the one 
and two story models, the computer program uses an idealized bilinear 
hysteresis loop to represent the force-deflection property of reinforced 
concrete. In order to mathematically define the bilinear hysteresis 
loop a and B parameters were used. Smith, Ernst and Maheshwari (12) 
give a detailed discussion on the various interpretations that may be 
given to the a and B parameters. Herein, the a and B parameters simply 
represent the percent of elastic and plastic action, respectively, allowed 
for a particular structure. By using these terms, the restoring force 
Q can be expressed as: 

Q = Qa + QS 

where Qa a(Q) elastic restoring force 

QS Seq) plastic restoring force 

a + B = 1 

The bilinear restoring force as related to the a and S parameters 
is shown in figure 6. Initially, at point 0, the structure is unloaded. 
With increasing distortion, the structure will go partially plastic which 
is shown to occur at point a. For any additional distortion, the QS 
term remains constant while Qa continues to increase. The sum of Qa 
and QB gives the total restoring force Q. 

Corrected versions of the San Fernando earthquake of February 9, 
1971 were used to excite the one and two story models. These records were 
obtained from the National Earthquake center at the California Institute 
of Technology in Los Angeles. Information regarding this earthquake data 
is given in references (14) and (15). The data points defining the 
acceleration-time histories are supplied at time increments of ,02 seconds. 
The velocity and displacement time histories of the earthquake, which are 
required for the solution of the non-linear differential equations, were 
obtained by integrating the acceleration-time histories. 

As stated in the introduction, the objective was to determine the 
significance of the additional terms on the response of the one and two 
story dynamic models. In order to evaluate the effect of the additional 
terms the differential equations for small displacements were solved and 
used for comparison purposes. 
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A parametric study waS made for the following parameter values: 

a = percent elastic action (0., .5, 1.0) 

6 percent plastic action (1., .5, 0.) 

~ damping factor (.03, .1) 

w /2n 
n 

fundamental frequency (one story model) (.2 to 10 cps) 

f w /2n =/.293(2(12EI)) = Fundamental frequency (two story model) 
n n 7 23 

(.3 to 10 cps) 

Up K(Ue) 
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where Up distortion level at which plastic action starts 

K fraction of maximum linear distortion (.4, .6, .8, 1.) 

Ue maximum elastic distortion 

The parameter K determines the level of distortion at which plastic 
action occurs (Up). For example, the completely elastic (a=1.0, 6=0.0) 
response for the one story model is shown in figure 7. Thus, when 
bilinear runs are made for a particular S value, distortions above the 
line K = .6 would cause plastic action to occur in the structure. 

All the response-time histories for the one and two story models 
were solved using the 4th order Runge-kutta integration method. The 
computer program was checked by comparing the small displacement response 
solutions with those obtained by Smith, Ernst and Maheshwari (12) for 
linear and bilinear cases. For a linear case, the analog solution of 
Smith, Ernst and Maheshwari gave a maximum distortion of 5 inches while 
the program used gave 5.12 inches maximum distortion. This small difference 
in distortion is representative of all the cases run. When considering 
the possible errors in the analog simulation approach and the round off 
errors, etc. for digital computation, the writer feels that the agreement 
between the two solutions is very good. 

An exact check on the solution of the large displacement problem was 
not possible because no published results were available for comparison. 
Since the main harmonic components of the San Fernando earthquake are 
below 0.3 cps it was felt that a high frequency model should respond 
about the same for either a small or large displacement analysis. 
Therefore, check runs were made using the small or large displacement 
analyses for a high frequency model. Since the results for the two 
solutions compared almost exactly, it is an indication that the large 
displacement differential equation was programmed correctly. 
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The equations for the two story model were solved using a mass ratio 

m 
of (~ 2) for the first and second floors. The damping in the model 

m
2 

is the same viscous damping term (2~wn) used in the one story model. 
The w term is the first mode frequency of the two story model and was 

n 
used as the basis for plotting the results. The computer codes for the 
two story model (small and large displacement analyses) were checked in 
the same manner as the one story model. 

COMPARISON OF RESULTS BETWEEN THE SMALL AND LARGE DISPLACEMENT ANALYSES 

The response characteristics of the one and two story models were 
investigated over a frequency range of .2 to 10 cps. It was found that 
for frequencies over 4 cps, the small and large displacement analysis 
gave essentially the same results. Therefore, the response information 
for the one and two story models is plotted for a frequency range of 0.2 
to 4.0 cps. The results obtained for cases where K = .6 or K = .8 compared 
closely with the results for the completely linear cases (a~ 1 and S = 0). 
Because of this, response information on the cases where K = .6 or K = .8 
has not been included since they would have added v.ery little useful 
information. 

The maximum distortion response solutions for the first story of the 
one and two story models are shown in figures 8, 9 and 10. For the 
completely elastic cases shown in figure 8, the small and large displacement 
analyses compare very closely for frequencies above 0.7 cps. Below this 
frequency, the two solutions differ. For example, the small displacement 
analysis for the one story, figure 8a, shows a sharp increase in distortion 
below 0.7 cps while the large displacement analysis shows a decrease to 
.5 cps. For the two story model, the difference in the first story 
distortion determined by the two analyses is shown in figure 8b. Again, 
the differences occur below 0.7 cps. 

As the amount of plastic action is increased, the large displacement 
terms become more significant. This can be seen by comparing figures 
8 and 9. The difference in distortion between the small and large 
displacement analyses for the one story model has increased significantly 
for frequencies below 1.0 cps. For example, at .75 cps the large 
displacement analysis shows an increase of 35 percent. For the two story 
model, the point at which the small and large displacement analyses differ 
considerably in first story distortion has moved up from .7 cps to about 
1.7 cps. The effect of reserve elasticity on distortion is shown in 
figure 10. For the case with a = S = .5, the region of difference between 
the small and large displacement analyses for maximum distortion has 
dropped below 0.7 cps. This compares very closely with the completely 
elastic case. 

A comparison of the results obtained for permanent offset for the 
small and large displacement analyses are shown in figures 11 and 12. 
There is a considerable difference between the small and large displacement 
analyses in the amount of offset for the one story model. This is shown 
in figure lla. For example, at 0.75 cps the large displacement analysis 
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shows an increase of 72 percent in the amount of permanent offset. The 
two story model also shows a large difference in offset of the first floor 
up to about 1.6 cps. When the amount of elastic action is increased, the 
magnitude of permanent offset is significantly reduced. These results, 
when a ~ S = .5 for the one and two story models, are shown in figure 12. 
For the one story model, the large displacement analysis, in comparison 
to the small displacement analysis, shows an increase in offset below 
0.9 cps and a decrease in offset from O.~ to 1.5 cps. For the two story 
model, the large displacement analysis shows an increase in permanent 
offset over the small displacement analysis for frequencies below 2.7 cps. 

While investigating the maximum distortion and permanent offset 
characteristics for the large displacement analysis, runs were made to 
determine which large displacement terms were significant. It was found 
that the static gravity term, which is the P-delta effect, accounted for 
most of the differences between the small and large displacement analyses. 

The vertical acceleration caused by the large displacement coupling 
term was evaluated for the one and two story models. The maximum vertical 
first floor accelrations due to the large displacement coupling term 
for structural models with a fundamental frequency of 1.3 cps was found 
to be 0.06 GIS and 0.074 G's, respectively, while the maximum acceleration 
for the second floor was 0.076 GIS. These acceleration levels are quite 
low in comparison to the maximum vertical ground motion acceleration of 
0.71 GIS for the San Fernando earthquake ... 

o 
The lateral force coefficients, C =( Hl)max , for the case (~= 0.0, 

g 

S = 1.0) are shown in figure 13. There is a slight increase in the lateral 
force coefficient when large displacements are included in the analysis 
for the one story model. However, for the two story model, the opposite 
situation is true. In general, the large displacement analysis shows a 
reduction in the lateral force coefficient. 

The effect of vertical ground motion for the case when (a= 0.0, 
S = 1.0) is shown in figure 14. Cases were run with and without vertical 
ground motion using the large displacement analysis. No difference in 
maximum distortion was found for the one story model. However, for the 
two story model, the vertical ground motion did have an effect on the 
horizontal distortion. For instance, a 1.3 cps building showed an 
increase of 21 percent in maximum distortion for the first story when 
vertical ground motion was included. 

CONCLUSIONS AND DISCUSSION 

The results obtained from the small and large displacement analyses 
show that the large displacement terms and vertical ground motion do have 
an effect on the seismic response of buildings under certain conditions. 
As the amount of plastic action increases in a structure the more signifi
cant their effect becomes. In general, the large displacement terms have 
a significant effect at low frequencies. 
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For the one story model the maximum distortion and permanent offset 
show a difference between the small and large displacement analyses for 
frequencies below 1 cps while the two story model shows a difference 
below 1.7 cps. The fact that the frequency range, which shows this 
difference, has moved from .7 cps for a one story structure to 1.7 cps 
for a two story structure indicates that large displacement terms including 
vertical ground motion could become even more significant for taller 
buildings which would have frequencies within this range. 

It should be kept in mind, when considering these results, that one 
and two story structures usually do not have fundamental frequencies 
under 2.0 cps. 

Results from the small and large displacement analyses also show a 
difference for the lateral force coefficients. This difference extends 
over the frequency range of 1 to 4 cps for the one story model and 0.2 
to 4 cps for the two story model. A maximum difference of 29 percent 
was calculated for the two story model which has a frequency of 1.9 cps. 
This also indicates that large displacement terms including vertical 
ground motion should be used in the dynamic analysis for the determination 
of lateral force coefficients. 

The results showed that the vertical ground motion had essentially 
no effect on the horizontal response for the one story model. For the 
two story model the results obtained from the vertical ground motion 
effect study showed a difference over a frequency range from 1 cps to 
4 cps. A maximum difference in distortion of 21 percent was obtained 
for the two story model. These results strongly indicate that taller 
buildings could be effected significantly by vertical ground motion. 
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Relation between restoring force and distortion 
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Free body diagrams for two story model 
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The dynamic response of a single degree of freedom spherical structure 
restrained elastic-plastically and submerged in a fluid of infinite extent 
is investigated by taking into account the fluid resistance given by Basset 
in terms of added mass, vicous drag and Basset history integral. The elas
tic-plastic behavior of the structure is characterized by a bilinear resis
ting force displacement relationship. The governing equation of motion is 
solved numerically for the response of the submerged system subjected to 
El Centro earthquake. 

The study covers the effects of the ductility factor, Stokes number, 
diameter and density of the sphere and natural frequency. To facilitate 
the design of such structural system, response spectra for the N-S compo
nent of the El Centro earthquake May 1940 are generated for different va
lues of the parameter in practical ranges. Response spectra in terms of 
the optimum yield displacement which may be used as a guide in selecting 
the member when the displacement is an important constraint in design ate 
also generated. 

INTRODUCTION 

The dynamic response of a structure submerged in a fluid depends on 
physical properties of the fluid as well as those of the structure itself. 
The forces exerted by a real fluid on a submerged body moving arbitrarily 
are very complicated and, in principle, they can be determined by integrat
ing stresses acting on the structure around the surface of the structure. 
However, it involves solving the nonlinear Navier-Stokes equations and an 
exact solution even for a sphere is not known. 

A solution for the forces acting on an accelerating sphere submerged 
in a viscous fluid of infinite extent derived by neglecting the convective 
acceleration terms from the Navier-Stokes equations was given by Basset 
(1,2) in 1888. Such a solution is valid for high acce:eration and small 
motions and for oscillation of small amplitude (3,6,7,10 and 11). Basset's 
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analysis gives the fluid resistance F in the form 

F 

t •. 
3 :2 J- J xd,. -d P TI\! --: 
2 f o~ 

(1) 

in which P
f 

and \) are the density and kinematic viscosi t.y of the fluid, d 
the diameter of t.he sphere, t the time, x the displacement of the sphere 
and the dot denotes derivative with respect to time. The first term re
presents the added mass, the second is the steady state viscous drag, and 
the last term is known as Basset history integral. 

Basset.'s expression for forces acting on a sphere was used in the study 
of dynamic behavior of elastic spherical st.ructures submerged in a viscous 
fluid (4,5 and 8). Basset's' expression is used again here in the study of 
dynamic response of an elast.ic-plastic spherical structure submerged in a 
viscous fluid shown in Fig. 1 to earthquake motions. 

In this study, inelastic deformations are taken into account in the 
analysis of a single degree of freedom spherical structure submerged in a 
viscous fluid of infinite extent. The elastic-plastic behavior of the 
structure is described by a bilinear resisting force displacement relation
ship shown in Fig. 2. in which it.s limiting cases are the elastic and elas
tic perfectly plastic. Response spectra and the optimum response spectra 
(12) for the N-S component of t.he May 1940 El Centro earthquake are genera
ted for the elastic perfect.ly plastic case for different values of the den
sity ratio of fluid to sphere, Stokes number, and ductility factor (13). 

EQUATION OF MOTION 

The equation of motion of a spherical structure submerged in a fluid 
shown in Fig. 1 and obeying the bilinear resisting force-displacement rela
tion shown in Fig. 2 can be written in the form 

t .. 
Mu" ( d) • 3:3 J- Jr u d ,. + 3Pf VTI+cu+ Q +2"dPf TI\I -=== 

t oJ t-,-
3 - r "dT 

+2"d2 pf JnvJ ~) 
oJ t-T 

(2 ) 

. h' h M ( 1 )TId:3. h . 1 ~n w l.C = Ps +2" Pf 6 l.S t e vutua mass, Ps 
relative displacement of the sphere respectively, 

and u are the density and 
y the displacement of the 

base, c the structural damping coefficient, and Q the resisting force which 
can be expressed as 

Q Q. + ak(u-v.) (3) 
J J 

in which 
a 6(0'- 1) + 1 (4) 

and 
6 0 in the elastic PhaSe} 
6 1 in the plastic phase 

(5 ) 

In the above equations, 0' is the strain hardening coefficient, k the elas
tic stiffness, and Q. and v. are the phase constants which denote the 

J J 
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coordinates 

tion of the 

ra tio p 

of ' the phase change in the resisting force-displacement reI a

system. Introducing damping ratio C == c/ (2 JkMs )' density 

a Pf/p and Stokes number N ,j\)/CWd 2 ), Eq. 2 can be written in s s 
the form 

u + 

l8p wN 2 
o S. 
1 Y -

l+-p 2 0 

9P
O
rwN

S 

jTI(1+1 Po) 

9p JiliN o s 
t .. 

S~ o ,;t::T 

-y 

(6) 

where M is the mass of the sphere and w == Jk/M is the natural frequency 
s 

of the submerged system in the absence of damping and effect of fluid his-
tory. 

PHASE TRANSITION 

Starting from the system at rest where Q == Vo = 0, the first phase 
change from elastic to plastic takes place wh~n \Q\ > Q where Q1 is the 
yield resisting force. Plastic to elastic phase transiEions will occur 
whenever u = O. Further elastic to plastic transitions will occur if 
IQ - Q. \ > 2Q • 

J 1 

It is also necessary to check whether reversal of direction occurs 
within the elastic phase. This occurs when u == 0 during the elastic phase, 
and the elastic to plastic transitions occur when (u - v.) changes sign. 

J 

NUMERICAL INTEGRATION 

The acceleration is assumed to vary linearly over a small time inter
val ~t = t(~) - t(£-l). The displacement and velocity can thus be ex
pressed as 

u(£-I) + lItu(£-I) + (1l~)2 [ 2u(.e-I) +i.i(£) ] 

uee-I) + A2t [ liU-I) +uU) J 
(7) 

(8) 

The Basset history integral can be decomposed into two terms to avoid the 
problem of singularity as 

t J lid T 

o~ 

t-L'It t 
\ lidT + \ lid ,. 

Jo~ t~AtJt-,. 
(9) 

Integrating the first term on the right side of Eq. 9 numerically and ex
pressing u in the last term as a linear function of ,. and integrating yield 
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t r lidT 

JO~ 

1,-1 

! \' L' li(p-l) + liCP) J"O I dp) - dp-l)]-
2 L Jd.R,)-tCp-l) JtCO-tCp) L 

P"'l 

Substituting Eqs. 7, 8 and 10 into Eq. 6 leads to 

r 
11 
L 

+ ,wllt 

Jl+-fPo 
+ 

[ ~wt.t + 

Jl +i Po 

_ [ 2, w + 

Jl +!po 

l8p wN2 
o s 
1 

1 +-p 
2 0 

9p wN 2 1.1t 
o s + 

1 l+-p 
2 0 

9p wN2 l:;t 
o s + 

1 l+-p 
2 0 

l8p wN 2 
o s 
1 + 

1 +-p 2 0 

2(1,\)2 l2p JW N JAt] 
aw 6 t + 0 / lice) 

JTI (l+.-p ) 
2 0 

aw2 (t'lt)2 6 P ,jW N Jlit] 
+ o s u(i-l) 

3 
JTI(l+l.p) 

2 0 

aw2 At ]uU,-I) - aw2u(i-l) - y(t) 

li(p)+Y(p) -Ir ] ;-;:-::'4.. 2.. ]} 
+ JtU,) _ dp) J L dp) - dp-I) + tV llt L"3YCe.) + 3 y (i-I) 

(10) 

(ll ) 

starting from a system at rest where the initial displacement, velocity and 
phase constants are zero and u = - y at t = 0 in accordance with Eq. 6, the 
acceleration at time t = t(i) can be determined from Eq. 11 and the corres
ponding displacement and velocity can then be determined from Eqs. 7 and 8 
respectively. 

In carrying out the numerical integration, the time increment of O.lT , 
where To is the undamped natural period in vacuum, was normally used and 0 

whenever To is greater than 0.5 second 6t = 0.05 second was employed. 

LATERAL FORCE COEFFICIENT 

The lateral force coefficient spectra for the elastic perfectly plas
tic case (a= 0) with Stokes number Ns :; 0.0001 and damping ratio C = 0.02 
are generated for different values of the density ratio and ductility fac
tor, ~ = umax/v 1 where umax is the maximum displacement and, v

1 
the yield 

displacement which is the displacement at the first phase change. The 
lateral force coefficient C, defined as the ratio of the maximum resisting 
force to the weight of the sphere, for the bilinear system can be expressed 
as 

C (12) 

where g is the acceleration of gravity. 
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For each set of damping ratio, Stokes oumber, density ratio, strain 
hardening coefficient and undamped natural period in vacuum, the maximum 
relative displacements were obtained for various values of the yield dis
placements. The yield displacements corresponding to ductility factors of 
2, 4 and 6 were then determined by graphical interpolation as illustrated 
in Fig. 3. Lateral force coefficient spectra for ~ = 1 (elastic), 2, 4 and 
6 corresponding to Po = 0.25, 1 and 2 are computed by Eq. 12 and given in 
Figs. 4, 5 and 6 respectively. 

OPTIMUM YIELD DISPLACEMENT 

For each set of the damping ratio, Stokes number, density ratio and 
undamped natural period in vacuum, there exists an optimum value of the 
yield displacement at which the response in term of maximum displacement 
is a minimum (12). This optimum yield displacement can be determined 
graphically (9) as shown in Fig. 3. The response spectra in terms of the 
optimum yield displacement and the corresponding maximum displacement are 
given in Figs. 7(a) and 7(b). 

CONCLUSIONS 

Based on the results obtained in this study, the dynamic response of 
a spherical structure submerged in a fluid is significantly influenced by 
the density ratio and ductility factor. An increase in the density ratio 
leads to increasing period of vibration but does not necessarily lead to a 
higher response. The range of Stokes number in civil engineering field 
lies between 0.0001 and 0.001. Studies on the response in this range of 
Stokes number reveal that there is no significant difference in the res
ponse from the case of zero Stokes number, and hence only the spectra for 
the case where N = 0.0001 are given here. s 

The result obtained for the elastic perfectly plastic system shows 
that the lateral force coefficient decreases appreciably as the ductility 
factor increases as shown in Figs. 4 to 6. This behavior is somewhat simi
lar to the effect of damping on the response of the elastic system. For 
the optimum response spectra, the results shown in Fig. 7 indicate that the 
maximum displacement of the elastic perfectly plastic system corresponding 
to the optimum yield displacement is always less than that of the corres
ponding elastic system. 

Although no parametric study was carried out for elastic strain har
dening submerged structures, the analysis can be performed readily by the 
proposed formulation. 

For the range of parameters in civil engineering purposes, the lateral 
force for the elastic perfectly plastic systems submerged in a fluid is in 
general larger than that vibrating in vacuum or in air. Consequently, the 
structural system submerged in a fluid such as water should be made stron
ger than its counterpart in air. In case where the displacement is an im
portant constraint in the design, the optimum response spectra given in 
Fig. 8 may be used as a guide in selecting the structural members. 
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A model of the shear beam-Winkler spring-retaining wall system is 
employed to describe the interaction between the backfill and the wall. 
The wall is assumed to be a rigid body and undergoes horizontally trans
lational and rocking motions. A set of coupled integra-partial differen
tial equations describing the vibration of the whole system is reduced 
into a set of coupled ordinary differential equations by employing 
Galerkin's method. Then the model analysis is served to solve the equa
tions. For certain cases the frequencies and the corresponding mode 
shape are calculated. The force and moment on the wall during design 
earthquake are also presented. The significance of the effect of wall 
motion on the responses is also shown. 

INTRODUCTION 

The pressure developed on a retaining ~al1 d~ring earthquake is 
usually calculated by mononobe-Okabe method\2),(3). The analysis basing 
on this method shows that the pressure distribution increases linearly 
as the depth and the tot~l force locates at 1/3 height from the base of 
wall. Recently, Scott(4) proposed an alternative approach in which he 
considered the backfill as an one-dimensional shear beam attached to the 
wall by springs representing the soil-wall interaction. The results eva
luated by employing the model show that the point of action of force is 
at 2h/ instead of h/3. This result is close to O.6h that is measured 
by Seed and Whitman(5) with small scale experiments. However, in Scott's 
approach, the effect of wall motion on the earthquake-induced force and 
moment is neglected. In this paper, Scott's model is adopted, and the 
translational and rocking motion of wall are taken into consideration such 
that the significance of the effect of wall motion can be investigated. 

THEORETICAL ANALYSIS 

As shown in Fig. 1, consider a cross-section of an infinitely long 
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rigid wall and backfill with horizontal surface. The backfill is modelled 
as a shear beam. The shear beam is connected to both wall and original 
soil with a continuous Winkler spring material which has infinitesimal 
thickness with spring constant. k. The foundation material is assum~d to 
be rigid and to undergo a horizontal earthquake motion specified by Uo(t), 
where the dot denotes differentiation with respect to time, t. The 
equations of motion for the backfill. horizonta1 transration and rocking 
of the wall are, respectively 

11 a2u - Gl Q
2
u + 2ku - kU + (x - ah)Vjh = - /1 Uo ~ t 2 dt2 (1) 

tbhU + khU - k~ (1 - 2a)V - k tUdX = - fobhUo 
o 

(2) 

-}- to bh2(l - 3a + 3aZ)V + -}- khZ(l - 3a + 3aZ)V 

--i- khZ(l - 2a)U + k~h (x - ah)udx = 0 (3) 

with boundary conditions 

where 

qu(o,t) = 0 
o x 

u(h, t) 0 (4) 

ah = 
b = 
G = 
h = 
1 = 

u(x,t)= 
U(t) 

Uo( t) = 
V( t) = 

f = 
f., = 

distance between the top and the mass center of wall 
thickness of wall 
shear modulus of backfill 
height of wall 
length of backfill 
relative horizontal displacement of shear beam to foundation 
relative horizontal displacement of wall to foundation 
earthquake horizontal displacement of foundation 
horizontal displacement induced by 11 (t),rotation of mass 
center of wall 
mass density of backfill 
mass density of wall 

The equations (1), (2) and (3) ~re coupled integro-partial differen
tial equations. Galerkin's method{l) is adopted to reduce them into a 
set of ordinary differential equations. Let 

n 
u(x, t) = ~q}t)cos Ajx (5) 

with Aj = (2j - 1)7t. j2h. The function q.(t) is thE: amplitude varying 
with time and cos AjX satisfies boundary co~ditions (4). Substitution 
of Eq.(5) into Eq.(l), then multiplying both sides by cos ~ix and inte
grating from 0 to h gives n equations 
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i=1,2, ..... ,n (6) 

Substitution of Eq. (5) into Eqs. (1) and (2) gives 

kh J1. 1 j-1 1, bhU + khU - -2 (1 - 2a)V - kt--~ (-1) q. 
o 1 I\J J 

- /0 bhUo (7) 

l ~bh2(1 - 3a + 3a2)V + l kh 2(1 - 3a + 3a2)V 

1 2 ~ 1 [ j-1 1 ] - "2 kh (1 - 2a)U + k 1-...1 T. h(1-a)(-l) - T. qj 0 
J J 

(8) 

As i dentifi ed by Scott, k may be taken as 8G(l - V ) 11 (1 - 2.1» in 
which V i~ Poisson's ratio. The standard procedure applied in mod~l 
analysis(l) may be employed to solve (n + 2) coupled ordinary differential 
equations of which n equations, (6), contribute n modes of shear beam 
vibration and two equations, (7) and (8), contribute wall vibration. 
However, for simplicity but without lossing to show the effect of the wall 
motion, only the first equation in (6) will be chosen to couple with eqs. 
(7) and (8) with n = 1. For convenience, three coupled equations are 
written in matrix form 

em,] {q] + k {q} = {QJ .' (9 ) Uo 

where 

1/2 

['m,] =J 1 Ie b/f 1 

fo b(l-3a+3a2)/3! 1 

(Gl iI4kh2+2)/2 -2/71 2 (l-a-217l )17l 

( k J = k -2/7r 1 -(1-2a)/2 

2(1-a-2/71 )IT[ -(l-Za)/2 (1-3a+3a2)/3 

[ q} = el 
(_2m 

1 Q J ~ f 1 -~ blf I 
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Employing the expansion theorem the response can be described as a 
superposition of the normal modes in the form 

(10) 

where 0 is the modal matrix obtained from the solution of eigenvalue 
problem 

(11 ) 

in which the natural frequency, w2, is the eigenvalue determined from 
the above equation, and It} is the generalized coordinates which is the 
solution of the equation 

(12 ) 

with the participation factor 

(13 ) 

The maximum displacement qi due to a specified design earthquake 
can be found from the equation m 

3 
q. = B (~L. S . N. / OJ. ) (14) 

1m 1 1J vJ J J 

where SVj is the maximum relative velocity at the frequency ~j. Thus 
the most probably maximum forces {F}m is given by the expression 

where 

K 

F. =[~(K .. q.)2)1/2 
1m ~ 1J Jm 

K .. is the element of the matrix 
1J 

[

h (G 1 7[2/4 k h 2 +?)/2 

k -2h/7T: 

2h2( 1-a-2/n ) /n 

-2h/7r 2h(1-a-2/1L )/7C 

-h(1-2a)/2 

h
2 (l-3a+3a 2) /3 

To illustrate the significance of the effect of wall motion, two 
cases with the same flfo:= 0.8, h/l = 0.8, a = I, J)= 1/3, 
h( f /G)~ = 0.1 sec and with different h/b are calculated in detail. The 
case for h/b ~ 15 gives the results: the frequencies, ~1 = 33.93 rad/sec, 
Wz ~ 47.32 rad/sec, ~3 = 171 rad/se~, the most probably maximum force, 

Pm ~ 4.86G, the most probably moment, Mm = 3.07Gh and the point of action 
of force, 0.63h from base. For the other case, h/b = 10, the results is 

WI = 33.1 rad/sec, cu2 = 39 rad/sec, w3 = 142 rad/sec, Pm = 4.83G, 
Mm ~ 2.92Gh and the point of action of force is located at O.605h from 
the base. It is mentioned that Pm and Mm are calculated by employing a 
response spectra curve in Ref. 6. 
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It is noted that both the frequencies of fundamenta1 modes are lower 
than 48.1 rad/sec predicteti by Scott's formula without considering the 
effect of wall motion. The frequency of second mode of the thinner wall 
is close to 48.1 rad/sec but the frequency for the thicker wall is much 
lower than it. The point of action of the forces Pm for the two cases 
are both close to that calculated by Scott's formula, O.637h (=2h/7r) 
from the base. However, it should be pointed out that the magnitude of 
the force and moment of two cases are much higher than those calculated by 
Scott's formula, Pm ~ 1.73G, and Mm ~ 1.1Gh, respectively. 

CONCLUSION AND REMARK 

A model of the shear beam-Winkler spring-retaining wall system is 
employed to investigate the dynamic responses of the wall during earth
quake. The wall motion as well as the soil motion is taken into consi
deration. The calculated results show that the effect of wall motion is 
essential in the evaluation of the earthquake-induced force and moment. 
However, the effect of flexibility of wall is neglected in this investi
gation. In many soils, the soil properties vary with depth. The study 
of earthquake responses of a wall interacting with such soils is also 
necessary. The two subjects mentioned above are currently investigated 
and the results will be presented in due course. 
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This paper deals with the analytical and experimental 
verification of an orthogonal bridge grid (consisting of longi
tudinal beams and cross beams) subjected to a moving force 
under constant velocities. The natural frequency, mode shapes 
and the dynamic response of the bridge grid are carried out 
for two cases, lumping the masses at the joints, in one case 
for the self weight of grid and in the second case, for the 
self weight of grid plus the 'Neight of the slab. The modal 
analysis is used for the evaluation of dynamic response of 
the bridge. The moving force is treated as a transient pulse 
which is triangular in nature and assumed to be acting at the 
modal points~ The resulting differential equation is solved 
by using laplace transfonnation, taking into account the two 
dimensional behaviour of the structure. Theoretical and expe
rimental comparisions are carried for forced vibration. The 

results have been compared with Timoshenko~s beam theory. The 

variation in impact factors are studied for the load moving 

on different be~~s. 

INTRODUCTION 

The study of the vibration of bridges caused by the moving 



394 

force is very essential for the design of any bridge. For 
the calculation of response under moving force or any earth
quake force the accurate knowledge of force and forced vibra
tion is very essential. The existing method of analysis for 
the open grid structure can be broadly classified as follows: 
a) Treating the bridge grid with masses lumped at joints 
(lumped mass approach), b) By orthotropic plate theory. 

The bridge impact problem has been recognised at least 
from l848.WILLIE R.(15) obtained a mathematical theory for a 

load crossing the beam, the self weight of the beam being 
neglected. In 1905 KRYLOV(9) obtained a solution for the case 
in which the mass of the load was negligiable. A more gene
ralised solution was obtained by considering masses of the 
load as well as the beam. The solution was obtained by 
JEFFCOTT(8) in 1929. In connection with the Railway bridges 
impact problem much work has been done by early 1890' s. fllost 
of the work on railway bridge are carried out by TIIdOSHEN-'-.reO' s (14) 
and INGLIS(6) for the dynamic behaviour of the structure consi

dering the case of a moving force which was intended to repre
sent the hammer blows of a steam locomotive. Recently SCHALLA,.-q
KAMP(12) and HILLEBORG(5)A. presented some refinements to the 

theory. Though all of the above said solutions are theoretically 
useful, none have been successfully used or applied to the 
practical problems of highway bridge vibrations under actual 
conditions. 

For highway bridges on the other hand very little theore
tical work 8J."1.d much experimental details are available, based 
on the fact, that the highway bridges are extre~ely complicated 
by virtue of their complicated assembly of elements, varying 
geometry, different material constJts and spanso YlISE,J .Ao (16) 
BIGGS, J.J\l.IIERBER:I!, S. and LOAW, J.I"l~, LDJGARI, J.S. and WILSOiJ(lO) 

and GESUND, H and YOUNG, D(4) contributed ill detail to the dyna
mic response of highway bridges. In each of these the investi-
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gators treated the bridge as a prismatic bem.1 simply supported 
on either ends subjected to a moving load and loads moving at tanden • . 
tanden. The solution of the eQuations formulated are solved 

by finite difference method or by solving the actual diffe

rential e~uation obtained. 

D-Ll..TCI"',r,"" A\TT\ DO~,'l"TTALD1- (2) ,',,,n,T R T[ ~nd rp'ORT])l-S (17) and L' .L;A','j. .!.II '...I .;.:~.u..i.\ J.\'.J. U , • .J...:i.l'~ • J.~. a. ~ ...r... .l,.. 

F.V.FI1HO(3) developed methods for calculating the response of 

bemns and frames subjected to time dependant force moving with 

constant velocity. The !.'lass distribution is constituted by 

lum:?ed masses with trcLllslational degrees of freedom. The methods 
followed by the above investigators used for the solution of 

simply supported beaDS, continuous beams and frames for diffe

rent geometrical ~arameters and for different constant veloci

ties. In all these methods, lumped mass scheme for the mass 

distribution of the sliructure is assumed. 

THEORETICAL DEVE10P~IENT 

In the present analysis, the bridge grid is idealised, as 
open grid with masses lumped at various nodal points. Analy
sis is made both for free and forced vibration~ The response 

of the grid is analysed by modal analysis. 

For the forced vibrations, the modal is traversed by a 

vertical force moving '.'lith a constant velocity V , while the 
force crosses the strcwture each mass point is excited by a 
tra:clsient force of triangular variation(Fig.l). This results 

in n n"'U..'1lber of d.ifferential equation equivalent to the 
number of L1asses excited by the moving force. The solution 

of these equations are obt~ii1ed by laplace transformation 
teclmiQ.ue. By the superposition of the modal values to the 

foregoing solution, time deflection reJ.ationships are obtained. 

The differential e~lation of motion in the'w' co-ordinate 

system takes the matrix form. 

•• (1) 
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Applyin8 co-ordinate transformation, 

wet) ::; [.0J 1')(t) •• (2) 

in which [.0J • ::; the(nxn) matrix, the COlumrlEl thctt are foroed 

by the ampti tudes of the normal modes, and 'q (t) the (nxl) 

c011.41111. matrix of the dynamic factors relative to each normal 

mode. 

and 

From eQuation (2) we have 

iwJ == [,0J71(t) 

1. ;;} ~ [¢]t~ ( t ) } 

substituting equation (3) and (4) in equation (1) we get, 

•• (5) 

Now pre;:ml tiplying the equation (5) by the transpose of 

,0, equation (5) becomes 
T 

[,0)(m][,0]fn} + [,0JT[KJ[,0J£~1 = [,0]Tip(t)1 .• (6) 

from the orthoganality relationship, it follows that 

substituting equation (7) and (8) in (6) we get 

[1"IKJi7}(t)} + [~I(.J[=~J{71(t)} ::; [,0]Ti.y(t)} 

(7) 

( 8) 

•• (9) 

where em] = the (nxn) diagonal matrix formed by the lumped 

masses mi = (i == 1, 2, •.•• n). 

[11E) is the (rum) diagonal matrix formed by the generalised 

elastic Iilasses relative to each normal modet:r(t)} ::; the(nxl) 

column matrix formed by the forces that excite tile masses. 

Hence the differential equation for the d;ynamic displace

ment relative to the Kth normal mode 1'JK(t) is 

• (&VJ. element jj .. represent the displacements at i in the 
Jth norm.al m6~e) 

"' ... 4J1<. = Natural frequency of the Tl10de K 



•• (10) 

After applying the laplace trrulsfor&ation, the final 

differential equation reduces to 

.~ 

w.(t) = P 
1 0 

ill /J., 
~ J.K 

k=l Mx~ 

[(t~ti-1)-zSk Sin ~k(t-ti_1)J -

- L?t' + At~ ) U (t-ti) [(t-ti) ~ 
~ 1 1+1 

- t.~r:SinWI((t-ti)J+ ll. t u (t-t i +1 ) 
r- 1+1 

[(t-t i +1 ) - J./<Sin q/1«t-ti+lP} •• (11) 
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in which ill = the number of modes that are taken in to account 
and J=l,. The equation gives the displacement for a particular 
masS point i for different positions of the load. 

AiULYSIS 

The computations of the dynamic influence of the bridge grid 
under the passage of moving load are made through Fortran pro
grammes. These programmes are carried out on CDG 3600-l60A. 
(Digital computer). The follovdng parameters are trucen into 
account in the anslysis(The mode shapes and the frequencies 
obtained from the free vibration datthas been used in the 
study of forced vibrations) & 

1) The dynamic response of the bridge grid under moving force 
18 studied for different velocities (Fig. 2(a) and 2(b). 

2) The action of the slab is taken by distributing its mass 
towards the joints. 

----------------------------------------~h-----------------------••• Wi(t) = Deflection associated with t 1 degree of freedom 

~ B-C.- ~i"N1L) b- /{. Ra.,.."",JC a.S N'N)~~y.......p~· (l97~· Fr~ wby-."..;fpl"\ "'& 
J}'-n'.tg: on "dO'- p'res€V\~ @ ~ ~!AG<A- ~ ~ '15 ~~c~ A.Z... /S~ 
I\~ a.-..$ t1f\.""""'r(J'--- ·Hd:9 oJ- 9·9·1·1IJ~· 
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3) By taking the ratio of the dynamic deflection to that of 
static deflection the respective impact factors are calculated 

for different velocities. 

Fig. 3,4,5 and 6 shows the variation of impact factors 

without lumping the mass resulting due to the slab and taking 
into account the additional masses resulting due to the slab. 
The graphs are drawn for a particular position of the mass point. 

EXPERIIJENTAL VERIFICATION 

Experimental verification is carried out on prespex 

model to ver~fy the correctness of the theoretical analysis. 
Prespex is chosen as a model material since it satisfies the 
theoretical assumption of load moving on a smooth surface. 
Fig. 7 and 8 shows the track la.yout the instrU:'nentation arrange
ment for the forced vibration study. The observed values are 
compared with theoretical values and are shown in Fig.10 and 11. 

DISCUSSION AIm COHCLUSIOHS 

i) Refering to Fig.3 it is observed that the maximum 
impact factor of 1.56 is obtained for the velocity of 150 cm/ 
sec. theoretically. 

ii) Referring to Fig.4 the impact factor is observed to 
be more for the load moving on the end beam OD than on the 
central beam AB, the values being 1.56 ~nd 1.36. 

iii) From the Pig.5 and Fig.6 it is observed that impact 
factor reduced considerably by considering the effect of 
lwJl.ping the self weight of the deck slab in the forB of addi
tional masses at each nodal point of the grid. By comparing 
the impact factors the d.ifference was f01..Uld to be 0.20. The 

experimental result ShOViS the s8.t"l1e results with i:::npact factor 

of 1. 37 for additional masses lumped and impact factors of 1. 57 

without lumping any additional masses(as observed frou Figs. 
10 and 11). 
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iv) The observed impact factors are conpared with 

Timoshenko's beam t:i.leory and with the moment impact factors 

of I.S. code of practice. The values obtained by the authors 

are more tha~'1 the values obtained by Timoshenko and I. S. code 

of practice. This difference may be due to vehicle and 

structural damping. 

v) As the theory is general the results have to be 

interpreted v'Ti th respect to a definite relation -which has to 

be brought out with respect to specific prototype of the 

bridge grid. of any ::lateria1. The analysis has to be done 

taking into account their res:pec~ive geometrical properties 

and simulate the actual loading conditionso 

Load 
Position 

a) 

AB 

CD 

Velocity 
(cm/sec) 

TAl3LE - 1 

Theoretical 
Impact 
Factor 

Impact/ 
Factors 
by :Sea.l}} 
Approach 

Without lu.rrrpine any additional mass 

150 1.48 0.98 
120 1. 41 0.96 
100 1.35 0.92 

30 1. 29 0.90 
150 1.560 0.98 
120 1.032 0.96 
100 1.465 0.91 

30 1. 320 0.88 

I.S. Code 
(lJosent 
ImDact 
factors) 

1. 35 

1. 35 

b) By lumpin;~~ additional masses of 0.3 Kg. to the nodal 
points of the grid. 

CD 

150 
120 
100 

30 

150 
120 
100 

30 

1.280 
1.180 
1.140 
1.100 

1. 356 
1. 301 
1.240 
0.225 

0.92 
0.90 
0.88 
0.84 
0.92 
0.98 
0.89 
0.94 

1. 35 

1.25 
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Introduction 

INTERNATIONAL SYMPOSIUM ON 
EARTHQUAKE STRUCTURAL ENGINEERING 

St. Louis, Missouri, USA, August, 1976 

A NEW METHOD FOR NUMERICAL INTEGRATION 
OF EQUATIONS OF MOTION 

by 

John E. Goldberg 
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Several of the techniques currently employed in earthquake design of 

structures depend, at one stage or another, upon numerical integration of 

the equation of motion. For example, if the spectral approach is used, the 

response spectra are generated by numerical integration using the recorded 

ground motion of a real earthquake as a forcing function and determining 

the response of damped simple oscillators--that is, damped single-degree

of-freedom systems--over a broad range of natural frequencies and damping 

ratios of these systems. Alternatively, ensembles of recorded earthquake 

ground motions or of artificially generated hypothetical earthquakes are 

sometimes used. Another possible technique is to integrate numerically 

the response of a structure in each of its several significantly responsive 

modes to a real or artificial earthquake and then to combine these 

responses either by superposing the individual responses in real time or 

combining, in some presumably judicious manner, the maximums of the model 

responses. 

A number of numerical integration processes already exist and, 

depending to some extent upon the desired or expected accuracy or upon the 

familiarity of the engineer with the various processes, these are used in 

connection with the design techniques mentioned above on in connection with 

other techniques and problems. Some of these numerical integration pro

cesses have found favor among engineers. Among these are finite differences, 

the Runge-Kutta methods, Newmark's beta-method and certain methods which 

have the character of predictor-corrector methods. These well-known pro

cesses have been adequately described in the literature and it is therefore 

unnecessary to deal at length with them. 

The purpose of this presentation is to describe, in the context of 

earthquake engineering problems, a new method for numerical integration of 

differential equations. The new method appears to have certain advantages 

over some of the methods that are currently in use. 
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The process is self-starting and the interval or step size may be 

varied arbitrarily during the computation. Properties of the system and 

characteristics of the forcing function may also vary during the computa

tion. These are advantages that do not accrue to all methods which are 

in current use. The method does not require more than one pass over each 

time-step as predictor-corrector and iterative processes require. The 

process is stable. Accuracy is high and may be further increased as will 

be discussed later. 

Theory 

The equation of motion for a damped one-degree-of-freedom system is 

my + cy + ky f(t) (1) 

in which 

m = mass 

c = damping coefficient 

k spring stiffness 

f forcing function 

and each dot over a variable represents one differentiation with respect to 

time (y = dy/dt, Y = d2y/dt 2 ). The system coefficients (m, c and k) may 

vary with time. The procedure may be modified to take into account, at 

least approximately and with a fair degree of accuracy, variations of these 

coefficients with displacement, velocity and acceleration. 

Equation (1) is transformed into a Volterra integral equation of the 

second kind by introducing the following substitution: 

Then 

yet) 

Y (t) 

t 

( Y(T)dT+C
1 Jo 

t 

i (t-T)Y(T)+Clt+C2 
o 

(2) 

(3) 

(4) 
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It is easily seen that 

y (0) (5) 

y (0) (6) 

For convenience, these initial values will be written respectively as Yo 

and y . Similarly Y (0) will be written as Y In general, the inte-a 0 

grations will be carried out over each time-step or interval so that Y 
0' 

Yo and Yo will be the starting values at the beginning of that step or 

interval; and generally will change from interval to interval. 

Substitution of Equations (2) - (6) into Equation (1) transforms the 

latter into a Volterra integral equation of the second kind: 

or 

t 

mY+f [C+k(t-T)]YdT 
o 

t 

mY + (c + kt) f Y dT 
o 

+ (c+kt)y +ky 
o 0 

f 

(c+kt)y +ky 
o 0 

(7) 

f (8) 

There are several ways in which Equation (7) or (8) can be solved 

numerically, the choice depending upon circumstances and desired accuracy. 

One class of approaches is to represent yeT) by a truncated series of 

appropriately chosen functions: 

Y (T) (9) 

in which Al, ... ,A
n 

are arbitrary constants, the values of which will be 

chosen in some way so as to obtain a good approximation to the exact solu

tion. An obvious simple and, it turns out, convenient choice is to take 

the functions to be powers of the independent variable, t, within the 

interval: 

(10) 
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Substi tution of Equation (9) or (10) into Equation. (7) or (8) trans

forms this equation into an equation involving the n arbitrary constants, 

to A and the chosen time functions. 
n 

There are now several ways in 

which to arrive at the values of these constants which will give a good 

solution over the interval. A particularly straightforward and useful way 

is the collocation method. The interval is divided into n subdivisions. 

It is convenient but not necessary to make these subdivisions of equal 

length. The division points together with the end of the interval will 

constitute a set of n instants (t
l
,t 2, ... ,t

n
). Substitution of each of 

these times into the equation obtained by substituting Equation (9) or (10) 

into Equation (8) or (9) will yield a set of n simultaneous algebraic 

equations in the unknown coefficients, Al to An' from which the values 

for these coefficients are readily obtained. These values are now to be 

substituted into Equation (9) or (10). Having, now, the interpolating 

function for Y, values of Y, y and y at the end of the interval (and 

at interior points if desired) can be calculated by means of Equations (2), 

(3) and (4). If there are no discrete jumps in Y, y or y at the end of 

the interval as a consequence of impulses, change in system coefficients or 

so on, the terminal values at the end of the interval become the initial 

values (Y y' and y) for the next interval. 
0' 0' 0 

If, for example, Y is taken in the general quadratic form 

Y (OstSA) (11) 

then 

t 

( Y dT 
Jo 

J TY dT 

so that Equations (7) and (8) become 

m(Y
O

+Al t+A2t 2) + c(Yot+ i Al t2 + -§-A2t 3 ) 

12 1 3 1 4' • 
+ k ( '2 Yo t + "6 Al t + IT AZ t ) + cy 0 + kty 0 + kyo f (12) 
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Denoting the length of the time-step or interval by A and taking the 

collocation points at t = A/2 and t = A (i.e., substituting t = A/2 and 

t = A into Equation (12)), the following pair of simultaneous equations in 

Al and A2 is obtained: 

(13) 

in which 

A 1 ~U2] 1 1 Gll = - [m + -CA + G21 A (m + "2 cA + "6 kA 2] 
2 4 24 

A2 11k 2] 1 1 2 G
12 

- [m+ -CA + - A G22 A 2 (m + "3 cA + IT kA ] 
4 6 48 

G
13 

1 !U2 G
23 

m + CA + lU2 (14 ) m+ -CA + 
2 8 2 

G
14 

c + .lkA 
2 

G
24 

C + kA 

GIS G2S k 

Then, by Cramer's rule, the following formulas for Al and A2 are obtained: 

(15) 

in which 

(16) 

Fl = f(>'/2) -G13Yo-G14Yo-GlSYo 

(17) 

F2 feA) - G23Yo - G24
yo - G2SYo 
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The calculated values of Al and A2 can now be substituted into 

Equations (3), (4) and (10) to obtain expressions for the acceleration, 

velocity and displacements within and at the end of the interval, A; 

y ¥=:¥ +At+At2 
o I 2 

y (18 ) 

y 
I 1 . 
-A t 3 + -A t4+y t+y 
6 1 12 2 0 0 

Using these formulas, the values at the end of the interval, t =: A, can 

be calculated. If the motion is continuous into the next time-step or 

interval, the values thus obtained at t =: A become the starting values for 

the next interval. 

It may be noted, in passing, that the necessary formulas are easily 

obtained if one desires to use interpolating polynomials of higher or lower 

degree. For example, a cubic or quartic polynomial may be used in place of 

the quadratic expression represented by Equation (11). Collocation will be 

established at the end of the interval and at either two or three inter

mediate points, depending on whether the cubic or quartic form is used. In 

either case, the subdivisions within the interval can be taken to be either 

equal or unequal. Equations (13) will be replaced by new sets of either 

three or four simultaneous equations involving the apPTopriate number of 

undetermined coefficients with corresponding changes in Equations (14) - (17). 

If, for any reason, results are desired for the simpler assumption of 

a piecewise linear variation in the acceleration, it is only necessary to 

set A2 equal to zero in Equations (11), (12) and the second of (13) and 

to use the formula, 

in which F2 and G
2l 

have the definitions given by Equations (14) and 

the second of (17). 
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Still higher order polynomials may be used as the interpolating func

tionals to further increase the accuracy obtainable with given interval 

sizes. The computing effort and cost will increase correspondingly. 

Alternatively, functions other than simple powers of t may be used in the 

interpolating functional. 

A computer program is easily written for running at a regular computer 

installation. Programs may be written for running on a desk-top computer. 

Programs may also be written and successfully ran on some of the currently 

available programmable hand calculators, depending of course, and the 

amount of interval memory. 

Example 

For purposes of an illustrative example, the motion of a system for 

which 

m = 1 c o k = 4 

is computed for the range 0 ~ t ~ 2n with initial values yeO) = 0, yeO) = 2, 

and yeO) = 0 and with f = O. The example is simple, but serves nevertheless 

to demonstrate the accuracy and rate of convergence that can be obtained. 

A computer program was written based on the quadratic form of Equa

tion (11). The program was run on a CDC 6500 and results were obtained 

for five different interval sizes: n/8, n/16, n/32, n/64, n/128. The 

program calculates and prints results at the end of each interval and, if 

desired, at intermediate points. Tables la, lb and Ie present abridged 

results transcribed from the complete printout along with the exact solution 

for this problem. It may be mentioned that the total computer charge for 

input-output, central processing and printing for the five runs was $0.21. 

Results were also obtained using the piecewise linear assumption so 

that the accuracies of the linear and quadratic assumptions could be com

pared. Abridged results are presented in Tables 2a, 2b and 2c. It can be 

seen that these results are quite good for the smaller interval sizes and 

show that results obtained with the coarser divisions may also be useful. 

It is worth noting that the savings in computer charges with respect to 

the charges for the quadratic calculation was less than two cents. 
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Table lao Calculated Accelerations -- Quadratic Analysis 

Time Time-Step Size Exact 
t 11/4 1r/8 1r/16 if/32 if/64 

0 0 0 0 0 0 0 

Tr/8 -2.82700396 -2.82834050 -2.82842174 -2.82842679 -2.82842713 
2if/8 -3.97181123 -3.99858865 -3.99991608 -3.99999482 -3.99999968 -4.00000000 
3if/8 -2.82870483 -2.82844963 -2.82842861 -2.82842722 -2.82842713 
4if/8 -0.03425563 -0.00240575 -0.00015434 -0.00000971 -0.00000061 0.00000000 

STr/8 2.82530207 2.82823137 2.82841488 2.82842636 2.82842713 
6'JT18 3.97151579 3.99858720 3.99991607 3.99999482 3.99999968 4.00000000 
7Tr/8 2.83040467 2.82855875 2.82843547 2.82842765 2.82842713 

7T 0.06850872 0.00481150 0.00030867 0.00001941 -0.00000121 0.00000000 

97T/8 -2.82359916 -2.82812223 -2.82840802 -2.82842593 -2.82842713 
107T/8 -3.97092492 -3.99858431 -3.99991605 -3.99999482 -3.99999968 -4.00000000 
llTI/8 -2.83210349 -2.82866788 -2.82844233 -2.82842807 -2.82842713 
l2if/8 -0.10275671 -0.00721725 -0.00046301 -0.00002912 -0.00000182 0.00000000 

13Tr/8 2.81289522 2.82801308 2.82840116 2.82842550 2.82842713 
14if/8 3.97003868 3.99857996 3.99991604 3.99999482 3.99999968 4.00000000 
15Tr/8 2.83380129 2.82877700 2.82844920 2.82842850 2.82842713 

27T 0.13699716 0.00962300 0.00061734 0.00003882 0.00000242 0.00000000 

Table lb. Calculated Velocities -- Quadratic Analysis 

Time Time-Step Size Exact t if/4 Tr/8 Tr/16 if/32 if764 

0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 

Tr/8 1. 41442626 1.41422720 1.41421442 1.41421362 1.41421356 
2Tr/8 0.00862469 0.00060165 0.00003858 0.00000243 0.00000015 0.00000000 
37T/8 -1.41357527 -1.41417264 -1.41421099 -1.41421340 -1.41421356 
4if/8 -1.99992561 -1.99999964 -2.00000000 -2.00000000 -2.00000000 -2.00000000 

Sif/8 -1.41527674 -1.41428177 -1.41421785 -1.41421383 -1.41421356 
67[/8 -0.02587342 -0.00180495 -0.00011575 -0.00000728 -0.00000045 0.00000000 
h/8 1.41272377 1.41411807 1.41420756 1.41421319 1.41421356 

iT 1.99970246 1.99999855 1.99999999 2.00000000 2.00000000 2.00000000 

97T/8 1.41612670 1.41433633 1.41422128 1.41421404 1.41421356 
107T/8 0.04312023 0.00300825 0.00019292 0.00001213 0.00000075 0.00000000 
1l7T/8 -1.41187176 -1.41406350 -1.41420413 -1.41421297 -1.41421356 
12rr/8 -1.99933057 -1.99999674 -1.99999999 -2.00000000 -2.00000000 -2.00000000 

137T /8 - 1 .41697616 -1.41439089 -1.41422471 --1.41421426 -1.41421356 
14TI/8 -0.06036384 -0.00421155 -0.00027009 -0.00001699 --0.00000106 0.00000000 
15if/8 1.41101923 1.41400892 1.41420069 1.41421276 1.41421356 

2Tr 1.99880995 1.99999421 1.99999998 2.00000000 2.00000000 2.00000000 
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Table le. Calculated Displacements - Quadratic Analysis 

Time Time-Step Size Exact t n/4 n/8 nil 6 n/32 n/64 

0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

n/8 0.70675099 0.70708513 0.70710544 0.70710670 0.70710678 
2n/8 0.99295281 0.99964716 0.99997902 0.99999870 0.99999992 1.00000000 
3n/8 0.70717621 0.70711241 0.70710715 0.70710670 0.70710678 
4n/8 0.00856391 0.00060144 0.00003858 0.00000243 0.00000015 0.00000000 

5n/8 -0.70632552 -0.70705784 -0.70710372 -0.70710659 -0.70710678 
6n/8 -0.99287895 -0.99964680 -0.99997902 -0.99999870 -0.99999992 -1.00000000' 
?n/8 -0.70760117 -0.70713969 -0.70710887 -0.7071 0691 -0.70710678 
n -0.01712718 -0.00120288 -0.00007717 -0.00000485 -0.00000030 0.00000000 

9n/8 0.70589979 0.70703056 0.70710200 0.7071 0648 0.70710678 
1 On 18 0.99273123 0.99964608 0.99997902 0.99999870 0.99999992 1.00000000 
lln/8 0.70802587 0.70716697 0.70711058 0.7071 0702 0.70710678 
12n 18 0.02568918 0.00180431 0.00011575 0.00000728 0.00000045 0.00000000 

13n/8 -0.70547381 -0.70700327 -0.70710029 -0.7071 0638 -0.70710678 
14n /8 -0.99250967 -0.99964499 -0.99997901 -0.99999870 -0.99999992 -1.00000000 
15n/8 -0.70845032 -0.70719425 -0.70711230 -0.7071 0713 -0.70710678 

2n -0.03424926 -0.00240575 -0.00015434 -0.00000971 -0.00000061 0.00000000 

Table 2a. Calculated Accelerations -- Linear Analysis 

Time Time-Step Size Exact t n/4 n/8 n/16 n/32 n/64 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

TI/8 -2.6058 -2.7689 -2.8133 -2.8246 -2.82.84 
2n/8 -3.4476 -3.8783 -3.9728 -3.9935 -3.9984 -4.0000 
3n/8 -3.1666 -2.9314 -2.9314 -2.8555 -2.8353 -2.8284 
4n/8 -2.2276 -0.8346 -0.2333 -0.0600 -0.0151 0.0000 

5T1/8 1 .9244 2.5968 2.7704 2.8139 2.8284 
6n/8 2.0083 3.6987 3.9591 3.9926 3.9983 4.0000 
?n/8 3.5807 3.0839 2.8971 2.8459 2.8284 

TI 3.5252 1 .6305 0.4657 0.1200 0.0302 0.0000 

9n/8 - 1 . 1538 -2.4157 -2.7269 -2.8032 -2.8284 
1011/8 0.2694 -3.3479 -3.9318 -3.9908 -3.9982 -4.0000 
11n/8 -3.8290 -3.2257 -2.9381 -2.8565 -2.8284 
12n/8 -3.3512 -2.3510 -0.6965 -0.1799 -0.0453 0.0000 

1 3n /8 0.3299 2.2263 2.6827 2.7924 2.8284 
1 4n /8 -2.4346 2.8419 3.8909 3.9881 3.9980 4,0000 
15T1/8 3.8999 3.3564 2.9784 2.8671 2.8284 

2n 1. 7781 2.9626 0.9250 0.2398 0.0604 0.0000 
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Table 2b. Calculated Velocities -- Linear Analysis 

Time Time-Step Size Exact t IT/4 IT/B IT/16 1T/32 IT/64 

0 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 

Tr/8 1.4884 1.4348 1.4195 1 .4155 1 .4142 
2TI 18 0.6461 0.0587 0.0587 0.0150 0.0038 0.0000 
3rr/8 -1.1681 -1 .3506 -1. 3982 -1.4102 -1.4142 
4rr/8 -1.5825 -1.9537 -1.9966 -1. 9998 -2.0000 -2.0000 
5rr/8 -1.7397 -1.5141 -1.4405 -1.4209 - 1 .4142 
6TI/8 -1.6686 -0.6356 -0.1759 -0.0451 -0.0113 0.0000 
7rr/8 0.7937 1 .2617 1. 3766 1.4048 1 .4142 
n 0.5044 1. 8169 1.9862 1 .9991 1 .9999 2.0000 

9n/8 1. 91 05 1.5882 1.4612 1.4262 1.4142 
1 Orr /8 1.9945 1 .0266 0.2925 0.0751 0.0189 0.0000 
llrr/8 -0.3826 -1.1684 -1.3546 -1.3994 -1.4142 
12rr /8 0.7843 -1.5960 -1.9690 -1.9980 -1.9999 -2.0000 
13n/8 -1.9928 -1. 6568 -1.4815 -1.4315 -1.4142 
14rr /8 -1.4878 -1.3701 -0.4082 -0.1051 -0.0264 0.0000 
15n /8 -0.0463 1.0712 1 .3323 1.3940 1.4142 
16n/8 -1.7456 1.3012 1.9451 1. 9964 1.9998 2.0000 

Table 2c. Calculated Displacements -- Linear Analysis 

Time Time-Step Size 
Exact t rr/4 n/8 TI/16 TI/32 rr/64 

a 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
TI/8 0.6519 0.6922 0.7033 0.7062 0.7071 

2TI/8 0.8619 0.9696 0.9932 0.9984 0.9996 1.0000 
3TI/8 0.7916 0.7329 0.7139 0.7088 0.7071 
4TI/8 0.5569 0.2086 0.0583 0.0150 0.0038 0.0000 
5TI/8 -0.4811 -0.6492 -0.6926 -0.7035 -0.7071 
6rr/8 -0.5021 -0.9247 -0.9998 -0.9981 -0.9996 -1.0000 
h/8 -0.8952 -0.7710 -0.7243 -0.7115 -0.7071 

rr -0.8813 -0.4076 -0.1164 -0.0300 -0.0076 0.0000 
9rr/B 0.2885 0.6039 0.6817 0.7008 0.7071 

10rr/8 -0.0673 0.8370 0.9829 0.9977 0.9996 1.0000 
llrr/8 0.9572 0.8064 0.7345 0.7141 0.7071 
12rr/8 0.8378 0.5877 0.1741 0.0450 0.0113 0.0000 
13TI/8 -0.0825 -0.5566 -0.6707 -0.6981 -0.7071 
14TI /8 0.6087 -0.7105 -0.9727 -0.9970 -0.9995 -1.0000 
15rr/8 -0.9750 -0.8391 -0.7446 -0.7168 -0.7071 
16n 18 -0.4445 -0.7406 -0.2312 0.0600 -0.0151 0.0000 
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Analysis and design tecluJiques are herein described for a II-story RC 
building, part of the Sheraton Hotel project in Santo Domingo, Ibm. Rep.; 
constrl1ction methods are briefly outlined. Hain features of the structure 
are the typical 9 stories high pierced shear \Valls on top of 2-story frames. 

Hind forces, DEC earthquake forces J and those obtained froE1 an elasto
dynamic analysis ".'ere compared using prograElS ,Kitten for an IBH 1130 with 
8-K core capacity. The Equivalent Half Fr8.J:1)8 Hethod \Vas used for lateral 
loads analysis, and the design was based on the. ACI 318-71 Building Code. 

INTROrucrION 

The Caracas earthquake in 1967 (a) made quite evident, in certain 
cases, the poor detailing of beam.-coluoJO joints and the adverse effect of 
abrupt chan8es in buildL'l.g stiffness fraLl floor to floor, when not ccmpre
hensively considered in plarJIling and design (dramatic shear failures oCLlrred 
in colUlJU"ls of the l'1acuto Sheraton Hotel). Recognition of these facts is 
present in the Special Provisions for Seis~ic Design, incorporated for the 
first time in the ACI Buiding Code in 1971. 

Several architectural premises "Jere do.llinant in selecting the final 
structural scherr.e: a) all roms 'l,vere planned to have seashore vieH; and 
b) first avo stories were mainly for COIII!1ercial use. Seis,luc probability in 
the D. R., occupying the eastern 2/3 of Hispaniola, can be classified as equal 
to tbat of the Ildghboring Puerto Hico, that is, Zcne 2, according to DEC 
stmldards. Conditions ,<-ere then similar to that of buildings affected in 
the Caracas earthquake. 
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The purpose of this paper is to describe a seismic design application 6£ 
a complex structure, following ACI latest requirements, and to shOW' the exis
tence of a simple accurate rrethod for handling the corresponding lateral loads 
effects. 

GENERAL DESCRIPITON OF' 11 - S1DRY BUILDING 

Layout of reinforced concrete columns two stories high are shmvn in 
fig. 1 , together v.rith the concrete shafts and shear waUs extending the 
11 stories of the building. All columns are 0.70 meters (27.56") square; 
concrete shafts are mainly 0.178 m. (7") thick, other shear walls are 
0.254 m. (lO") thick. Slab thicknesses are : a)0.14 meters (5.51") for the 
first two floor levels, each slab being supported by beams on the four sides; 
and b) 0.17 meters (6.69") for all other floors, without beams. 

A typical floor plan for the 9 top stories is shown in fig. 2 ; pierced 
shear walls are inclined 60 degrees at the ends, with respect to the longi
tudinal axis. Corbelling of the 9 top stories shear walls can be observed 
in the vertical section of the building in fig. 3 . There is no basement and 
f01.mdations (fig. 4) are resting on a heterogeneous thick layer of calcareous 
fractured rocks with scattered small ''pockets'' of sand and clay; rrortar injec
tions were necessary for stabilizing the soil conditions" 

ANALYSIS 

Three computer programs written for rEM 1130 with 8··K core capacity were 
used for the analysis of the structure (b): 

1) TORSO - Three Dimensional Seismic Analysis. 

The purpose of the program is to perfonn the elasto-dynarnic analysis of 
the building subjected to a prescribed earthqual<e taking hito consideration 
horizontal rotation at floor levels due to structural eccentricity. The 
program was also used to estimate the building torsional response related to 
the spatial derivatives of the grmmd rrotion, that is, the floor inertia 
torques developed by ground rotation. 

The Equivalent Half Frame M2thod (c) was used for substituting the ac
tual frames (APPENDIX I-A), taking into consideration the axial defamation 
of the columns supporting the shear walls (APPENDIX I-B). Special input 
fonns (b) greatly reduced the task of cOlIlpiling pertinent data for the 3 pro
grams herein described. 

Floor loads. story shears and overturning moments were obtained corres
ponding to the elasto-dynamic analysis and the Unifonn Building Code criteria. 
Conparison of both sets of values indicated the degree of ductility requireci 
for final design. Ulti.nE.te transverse seismic leads were taken as (1/2.4) of 
elasto-dynamic response to Taft Earthquake, 1952, with 7% of critical damping 
and 1550 m/sec (5000 ft/sec) shear wave velocity. These forces are slightly 
larger than min:inum values of UBC, Zone 2, tirr.es 1.87 (ACT factor), just above 
the 3rd floor level and smaller below that level; base sh<>.8r is higher than 
UBC value. 
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2) ANA3D - Three Dimensional Distribution of lBteral Loads. 

This program was used to obtain the distribution of the total wind and/ 
or seismic loads benveen the different resistant frames and shear walls of the 
building, taking into consideration horizontal rotation at floor levels due 
to torsion related to eccentricity of the lateral load. 

The resistant el~lts were also described in terms of Equivalent Half 
Frames taking into account, as before, axial cmd shear defonnations of the 
equivalent collum. wtput data included, at all floors and for each load 
case, the force distributed to the resistcmt element and its corresponding 
horizontal displacement. The floor forces, and their moments with respect 
to the base, were also accumulated by the program to yield shear and over
turning nanent at base level. 

3) BERNI - General Analysis of Frames Loaded jn Their Planes. 

This program is quite similar to STRESS, but admits actual stiffness of 
coupling beams for shear walls ,and orthogonal rigid anns needed for simu
lation of special conditions in pierced shear walls (APPENDIXES I-C, and I-D). 

There are 16 transverse lines of "frames" for resisting vertical and 
lateral loads in that direction; in the longitudinal direction only the con
crete shafts and walls having a significant c~onent vrere ass~2d for resis
ting lateral loads. Only 10 lines of frames \Vere analysed in the transverse 
direction, some of which are showll. in fig.5. Three loading conditions \Vere 
considered for each symnetrical frame, and five, for unsynmetrical frames 
for obtaining reversed stresses; maximum horizontal load cases were selected 
from the output of ANA3D program. Total cCLlputer time for the 3 programs was 
10 hours. 

DESIGN 1ECHNIQUES 

HinimJrn reinforCEment on the gross section of typical 9-story shear walls 
(indicated as closed stirrups in both directions) was governed by the torsio
nal stresses induced by the des continued balcony slabs supported at the in
clined ends. Corbels were designed following the "shear-friction" criteria. 
"Transitionff beams supporting the pierced shear walls, were hatmdled at the 
ends, thus allowing a reduced section of col1.J[ifiS on the "fa93-de" ; special 
confinement reinforcement details were indicated at these beam-column con
nections. Longitudinal beams in the first nvo stories, ,vere indicated for 
increasing resistance of beam-column connections. 

Coupling Beams with axial tension and troments were designed by "exten
ding" the interaction diagrams available for columns. Eight coupling beams 
vJere made of welded plates, totally encased in concrete (fig.6); plastic 
design was used for these steel beams. 

Conc~ete classes included 240 Kg/cm2 (3500 psi) concrete for footing~ and 
280 Kg/cmL (4000 psi) concrete for all other structural members. Grade 40 
reinforcing steel was selected throughout. 
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CDNSTRucrrON FEATURES 

Conventional formvorks were used for the first bvo stories. The 9 top 
stories are being constructed with ttflying, ft or travelling fonns for the slabs 
handled by a climbing crane (fig.7 ).-

Shrinkage effects in this 67 meters (220 t) long building will be minimized 
by using: 1) a tenporary Itcontro1 stript. ~) , 2) controlled quantities of mi
xing "later and cement, 3) retarders, and 4) curing compounds. Since total 
annual temperature change is approximately 15 degrees centigrade (2rF) its 
effects were neglected. Concrete masonry partition walls, although fixed at 
the bottom, "lill be separated from the rest of the structure by using stan
dard dovetail slots and anchors. 

CONCWDING REMARKS 

International meetings on earthquake structural engineering are spreading 
present knowledge on the subject. This is mainly needed in developing coun
tries, \vhere tall buildings are now appearing (recent news of earthquakes are 
catastrophic). It is hoped that known institutions sponsor special educatio
nal programs in order to be rrore effective in preventing excessive distress 
in eathquakes. 

AQ<N~1EJ:"1TS 

'Ihe author wishes to thank Mr. Christian Maluf, 1;.mO shared the task of 
the structural design in question, and Prof. Bernardo Deschapelles (G.P.O. 
Box 4167, San Juan, Puerto Rico, 00936) who kindly authorized that part of 
Ius lecture notes (b). were included here~_ as ApPendix I. 

i· 

FIGURE 7 
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APPENDIX I -A) DEFlNITION OF THE EQUIVALENT HALF FRAME, FDR lATERAL STIFFNESS 
CALCUlATIONS 

STORY (K) 

HEIGHT=h 

ACTUAL FRAME 

~ 
Kcc Ic/h 

A~ rZ I 
0--------0----:..0--6- - -- -[]-- ---{] 

I FIGURE 8 I I LCENTE~ OF GRA~'TY 
OF COL.UMN AREA 5: LAo Zeo 

1. - Equivalent Column· Properties at Story (k): 

EQUIVALENT 
\ 

BEAM ROTATIONAL 
STIFFNESS, Kb 

( 

Ko =L'Kc 

I~SPAN. L 

[
0----
I 

- Z -2 
Ac=~Ac Z I L 

a) Inertia/story heigh~Sum of (Inertia/story height) values of all columns 

2 Kc ='LKo 
b) Area x Span =Second rmment of all colurm areas, with respect to their 

center of gravity: _ -2 2 
Ao L = I:'A~ Z 

For any arbitrary length of the span 'C, area Ac may be calculated. 

c) Shear area, As of the equivalent column could be in.eluded <1S: 

As = L. As 
Sum all shear column areas. 

2.- Equivalent Beam Properties at Floor (k): 

Rotational stiffness at end rigidly connected to the column, that is, 
ratio of rranent applied to rotation produced, is appro:xiroately equal to 
the sum of antisymmetrical bending stiffness of all floor beams: 

a) Case in \vJ.lich col1JIIIJ:l width nuy be ignored: 

Contribution of each beam is 6E Ib/l for each end; then, Kb = ~ (12EIb/t) 

SEIbh ~~~ with wit rotation at each end. S
· ~ '\ 6 E1b/L Fig. 9 Beam antisyrrmetrical bending, 

~ I l--t 



b) Case in ,vhich column ,.;idth can not be neglected: 

This is the typical case of a lintel connecting tHO \valls; the ,valls are 
then said to be "coupled" and the lintel is called the "coupling beam. It A 
p~erced shear wall may be considered as coupled walls acting in the same 
plane. 

J C 
LI t I t 

l SHEAR! WALL I COUPLING 

I 

._._.-+ 
r------S-E-A-M--..I SHEAR i WALL 

COUPLING BEAM 

ANTI SYMMETRICAL 

BENDING 

CLEAR SPAN 
FREE BODY 

I 

I +,.l 
'll,+~I-'-' 

Vo 

RIGID ARMs[\~1 . tV. 
FREE BODY ) 

Mo 

. 
• 

I 

: . SEIb 
'~MOC-+ 

~,==-, ~lT2 ~ l 

~~VO=ZMo/L 
~Vo 1 

M~~~ 
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ANTISYMM. BENDING STIFFNESS AT 

LEFT END: MotYoL11S Mo(l-l-2l,lL) 

ANTISYr.1r,l, BENDING STIFFNESS AT 

RIGHT. END :c Mo + Vo l2 = Mo ( 1+ 2 LzlL) 

FIGURE 10 

Contribution of the coupling beam (fig. 10) to the Equivalent Beam Rotational 
Stiffness is then, 

r~LL ]2 Mo(l+ 2CI)+MO(I+2~?:) c 12ELlb X t 
Toe Equivalent Beam Rotational Stiffness, calculated as described above, 

is a reasonable approxliDate value. tbre accurate result can be obtained 
using the particular ITXJI.nent distribution teclmique described elsewhere (c). 

If shear deforrn.ations are considered, the Equivalent Beam Rotational 
Stiffness should be divided by 1+ cP , where, 

~ .. 12 E I 
- GAs L2 
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Shear strain pararreter (Przerni.eniecki J. ''Theory of futrix Structural 
Analysis." McGraw-Hill Co., P. 71) 

Assuming E=2.25 G, as for concrete and As=1.2 Ac, form factor in rectangular 
sections, it can be obtained: 

cp = 2.7 (d/L)2 

APPENDIX I-B) EQUIVAlENT lW1... PANEL FOR COUJMN SUPPORTING A SHEAR WAll. FOR 
lATERAL SITFFNESS CALCUlATIONS 

1-
1 

---I'l.,-..--

SHEAR 

WALL) 

"TRANSITIONI! 
f--...L.---"~!..I..U..j _LEVEL I 

Let A, As and I represent the geanetrical 
properties of the column related to axial 
shear and bending strains. 

Let Aw and \, stand for shear area and m:::: 
ment of inertia of the wall panel equiv8 
lent to the supporting columns. 

FIGURE 11 

Consider DVO degrees of freedom that define the state of deformation of the 
shear wall at level 1, due to the action of lateral loads: u1 will represent 
horizontal displacement "mile u2 will stand for rotation. First, we shall 
recall the elastic constants corresponding to the stiffness matrix of a beam 
elefnent, including shear strain, v;rith manent of inertia I, shear area As, and 
length H: the shear defamation depends on a "form factor," £, that is equal 
to 6/5 in rectangular sections; assuming a shear modulus of elasticity G equal 
to 0.4E, the so-called "shear factor," g, is expressed by: 

O=6fE! IGAs HZ = lSI IA8H
2 

(Gere, J. M. ''t1::ment Distribution," D. Van Nostrand Co., Chapter 6). The ten 
of the stiffness matrix related to transverse and rotational displacements at 
one end, with fixity at the other end, are shO\oJ[1 belov7: 

K GEl 
,r I .f ~ ~U~- H2( 1+2g) 

FIGURE 12 

I-Q 2El 
--~"r1m'171h711V 1<22 X - 1:1 -

...... ~ 2+Q H 

U2 = [, , U It:O 



Contributions of the Supporting Columns to the Stiffness M3.trix 
Related to Horizontal and Rotational Displacements. ~'lill Then Be 
as Shown: 

CASE 2 

r----~----------_r----~--~ 
I 
I 
I 
I 

I 
H 

~+---~L~---+----

CASE I 

UI = I 
U2= 0 

(
AIA2EL 4E ~! 2E L Ig ) --=--- T - -- + --
HLA LH 1+2g LH, 1+2g 

A.}-I r:. A 
I ... ____ ~ 
I 
I 

FIGlJRE 13 

I 
1+2g 
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General expressions for properties of equivalent wall panel will then be 
obtained as follows: let l.w and AW represent rocroent of inertia and shear area 
of the equival~t 'i!1.11 panel. The corresponding "shear factor," g;N, has 
the value 181W/(AW H ) and the diagonal tenus of the stiffness IlBtrix, related 
to horizontal and rotational displacements at levell, have expressions: 

! 2 EI W and 4 EIw 2+0 w 
KII &: K22 = --.--~ 

H 3( I+ZOW) H 2 +4Q w 
In accordance with previous discussion, the contributions of the supporting 
col"l]1l]1S to the s~ stiffness matrix are as follows 

and - 4E~' 2E ~ II 
K22=EI+ H L.I'c+1iL-°c c 

1-2 
where Ie stands for Ic/(l+2gc> and I=A,A2l: / l: A represents the 2nd 
m::xnent of the coltrrm areas, A I, and 42, with respect to their CDITlIDn center 
of gravity. 

Equating both expressions of the same tenn unkno;.ms IwandAw may be calcu
lated in terms of the data that describe the actual supporting colunms. 
The reader .is urged to verify the following: 

1 W = I + ~ Ic -{- 2 L go 10 

'36L r'o 1'w 
Aw • 2· I 

H Iw-~Ic 

APPENDIX I -C) COUPLING BEAM EIASTIC CONSTANTS, EXPRESSED BY MEANS OF 1HE 
STIFFNESS MATRIX. 

LI L 1/ L2 

L 

® ® 
D - - - --- 0 

~ '[1] 3 

I= (II; INERTIA= I 1=(0 

FIGURE 14 



OJ 

Z 2 
FI = 4 ( I + 3 L J Il ... 3 L. I L ) 

2 2 
F;& = 4 ( I of. 3 Lz/l + 3 LZ/l ) 

[0 [!] 

-fTA -ETa 
,-

~ 
Fir 

~ 
FzI. 

~ 
F3I~ 

APPENDIX I-D) 

y 

, 

[!] 

~A 

I 
(F1 + f2)T 

r 
(Fz +F3 'L 

~I 
{F.+ZF2,vF3 )2 

~ 

ex a COS .g. 

[!] 

68 -

I 
-(F. +Fz)T 

-(F+F).!.. 
2 3 L 

r 
-(F1+2f2+ f3)-Z 

L; 

I'" 
I 

tFa+2. fa+ f a )2 

'Z 

FIGURE 15 

Cy!llsin ~ 
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Q,. 

ACx2 + ACxCy - -ACxCy+ -AozCx-

I-----_fi-!.-I I~+_-l -A 01 Cx+ -Aa ICy- -A 0,Q2+ 

J--_A_a_,Z __ ~-=G~ky _ G~kx F2 I 

~------~--------+--------+------~~ 
2. 

A Cx + ACx Gy- Aa~Cx + 

F, =4(1+ 3LI/l +3 Lf/l2) 

FE:: 2( 1+ 3 L, Il + 3 Lz/L + S L, Lz/L2) 

F3 =4(1+3L2/l + 3 L~/L2) 

Gill F,+ 2F£+ F3 

GZII FI+F2 

G3 11 ~+ Fa 
APPENDIX II. - REFERENCES 

Glr C 2 G;,I Cx_ 
f--= t: - X--+-= L 

(a).- Fintel, M. "Behavior os Structures in the Caracas E~rthquake," 
Civil Eng. ASCE, Feb. 1968 

(b).- Deschapelles, B. '~cture Notes for Advanced Course in Seismic Engi
neering," Unpublished, Scmto D:Jmingo, D. R., Jan-Feb 1975 

(c). - D2scha"}Jelles, B., "Analytical Model for Lateral wads Effectson Buil
dings," jm.rrnal of the Structural Division, ASCE, vol. 96, No. st. 6, 
JW1e 1970 

(d) . - Finte1, M. "Theme Report: Creep, Shrinkage and TEmperature Effects," 
Proceedings of the International Conference on Planning and Design of 
Tall Buildings, Vol III, Pag. 741, 1972 
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INTERNATIONAL SYMPOSIUM ON 
EARTHQUAKE STRUCTURAL ENGINEERING 

S1. Louis, Missouri, USA, August, 1976 

REVERSING LOAD TESTS OF FIVE ISOLATED STRUCTURAL WALLS 

A. E. FIORATO, R. G. OESTERLE, Jr., and J. E. CARPENTER 

Senior structural Engineer, Associate Structural Engineer 
and Former Principal Structural Engineer 

Structural Development Section 

Portland Cement Association 

Skokie, Ill. U.S.A. 

SUMIv'JlRY 

An experimental program is being carried out to develop design crite
ria for reinforced concrete walls used as lateral bracing in earth~uake 
resistant buildings. Primary items of interest include the ductility, en
ergy dissipation, and strength of the walls. 

Tests of five walls are described. The model walls were 15-ft. 
(4.57 m) high and 6-ft. 3-in. (1.91 m) wide. Wall thicknesses were 4 in. 
(102 rom), All specimens were subjected to in-plane horizontal reversing 
loads. 
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Controlled variables included the shape of the wall cross section, the 
amount of main flexural reinforcement, and the amount of hoop reinforcement 
around the main flexural reinforcement. 

Two specimens were subjected to high nominal shear stresses. The fail
ure mode for these specimens was associated with web shear distress. 

Three specimens were loaded with low nominal shear stresses. Two of 
these had ordinary column ties. One had lateral confinement reinforcement 
around the main flexural reinforcement in the boundary elements. Capa
cities of these specimens were governed by damage to the boundary elements 
as alternate tensile yielding and compressive buckling of the main flexural 
reinforcement occurred. 

Lateral confinement reinforcement in the boundary elements helped to 
limit bar buckling and to contain cracked concrete within the core. Con
finement provided a wall with somewhat greater ductility, but no signifi
cant increase in strength. 
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INTRODUCTION 

A combined experimental and analytical investigation of structural walls 
is being carried out by the Portland Cement Association. The investigation 
is sponsored in part by the National Science Foundation through Grant No. 
GI-43880. This investigation is intended to develop design criteria for re
inforced concrete walls used as lateral bracing in earthclUake resistant struc
tures. As part of the experimental program, tests of isolated structural 
walls subjected to reversing loads are being carried out. Primary items of 
interest in this investigation are the ductility, energy dissipation and 
strength of the walls. 

OBJECTIVES AND SCOPE 

The following are overall objectives of the investigation of isolated 
walls: 

1. To determine load versus deformation characteristics for a wide 
range of configurations of wall specimens. 

2. To determine the ductility and energy dissipation capacity of 
walls subjected to reversing loads. 

3. To determine the flexural and shear strengths of walls subjected 
to reversing loads, and to compare these strengths with the 
strengths under monotonic loading. 

4. To determine means of increasing the energy dissipation capacity 
of walls where required. 

5. To develop design procedures for walls of adequate strength 
and energy dissipation capacity. 

In this paper, tests on five reinforced concrete walls are reported. 
lne test specimens represent approximately 1/3-scale models of full-size 
walls, although no specific prototype walls were modeled. Test specimens 
were subjected to in-plane lateral reversing loads. The controlled vari
ables in the program have been the shape of the wall cross-section, the 
amount of main flexural reinforcement, and the amount of hoop reinforce
ment around tbe main flexural reinforcement. 

Table 1 provides a summary of the test specimens and their material 
properties. 

TEST PROGRAM 

Geometric and material properties of the specimens tested are given 
in this section. In addition, construction, instrumentation, and testing 
procedures are described. 



TA
BL

E 
1

. 
SU

M
M

AR
Y 

O
F 

M
A

TE
RI

A
L 

PR
O

PE
R

TI
ES

* 

R
ei

n
fo

rc
em

en
t 

S
p

ec
i-

B
O

lm
da

ry
 

m
en

 
S

ha
pe

 
E

le
m

en
t 

W
eb

 
C

on
fi

ne
m

en
t 

f 
f 

P f 
f 

f 
Ph

 
P n 

f 
f 

y 
su

 
y 

su
 

y 
su

 
(k

si
) 

(k
si

) 
(%

) 
(k

si
) 

(k
si

) 
(%

) 
(%

) 
(k

s
i)

 
(k

si
) 

F
l 

I 
I 

6
4

.5
 

1
0

2
.6

 
3

.8
9

 
7

6
.2

 
1

0
2

.2
 

0
·7

1
 

0
.3

0
 

-
-

B1
 

----
--

6
5

.2
 

1
0

2
·7

 
1

.1
1

 
7

5
·5

 
1

0
0

.8
 

0
.3

1
 

0
.2

9
 

-
-

B
2 

I
I
-
-
l
i
I
 

5
9

.5
 

1
0

0
.8

 
3

.6
7

 
77

 .
2

 
1

0
1

. 6
 

0
.6

3
 

0
.2

9
 

-
-

R
l 

-
-

7
4

.2
 

1
1

1
.0

 
1

.4
7

 
7

5
.7

 
1

0
1

.5
 

0
.3

1
 

0
.2

5
 

-
-

B3
 

II
t-

--
--

fI
 

6
3

.5
 

1
0

1
.0

 
1

.1
1

 
6

9
.4

 
9

5
.5

 
0

.3
1

 
0

.2
9

 
6

9
.4

 
9

5
.5

 
-

-
-

-
-

-
-

-
-
-
-
-

_. 
.
-
-
-
-
~
 
'
-
-
-
-
-
-
-
-
-

"
-
-
-
-
-
-
-
-
-
-

-
-

-
-

* 
10

00
 p

si
 

1
.0

 k
si

 
7

0
.3

 k
g

f/
sq

.c
m

. 

**
 

A
v

er
ag

e 
p

ro
p

e
rt

ie
s 

fo
r 

lo
w

er
 

6 
ft

. 
(1

. 8
3m

) 
o

f 
w

a
ll

. 

C
on

cr
et

e*
'*

 

fl
 

f 
c 

r 
P

s 
(p

si
) 

(p
si

) 
(%

) -
55

75
 

63
5 

-
76

85
 

']'
30

 

-
77

75
 

71
0 

-
64

90
 

65
5 

1
.2

8
 

68
60

 
63

5 
-
-
-
-
-

-
-
-
-
-
-

, 

E
 

I 
c 

(k
si

 )'
 

36
90

 

40
80

 

42
00

 

40
30

 

39
60

 

.J:
:>

 
W

 
<.

.0
 



440 

Description of Test Specimens 

The dimensions of the test specimens are shown in Fig. 1. Height of 
each wall, from the top of the base block to the center of the top slab, 
was 15 ft. (4.57 m). The horizontal length of the wall was 6 ft. 3 in. 
(1.91 m) and its web thickness was 4 in. (102 mm). 

Three different wall cross-sections were investigated. These are 
flanged, barbell, and rectangular sections. The nominal cross-sectional di
mensions of the three sections are shown in Fig. 2. 

The base block shown in Fig. 1 was used to secure the specimens to the 
laboratory floor during testing. The slab on top of the wall, also shown in 
Fig. 1, was used to transfer the loads to the test specimen. 

Design of Test Specimens 

The first step in design of the test specimens was to select a nominal 
percentage of main flexural reinforcement. This was either 1% or 4% based 
on the area of the boundary element. For rectangular sections, the 1fbound
ary element" was considered to extend 7.5 in. (191 mm) from each end of the 
wall. The percentages of flexural reinforcement were chosen to give section 
moment capacities corresponding to both low and high nominal shear stresses. 

Nominal vertical web reinforcement provided in the walls was 0.25% of 
the gross concrete area of the horizontal wall section. This is the mini
mum amount permitted by the 1971 ACI Building Code.(l) 

Once the vertical reinforcement was selected, bar sizes and locations 
were determined based on construction requirements. The moment capacity of 
the section w~s)then calculated according to the 1971 ACI Building Code, 
Section 10.2.,1 Design yield stress of the steel was 60,000 psi (4218 
kgf!sq.cm) and design concrete strength was 6000 psi (422 kgf!sq.cm). 
Following ACI Building Code assumptions, strain hardening of the steel was 
neglected in calculating the moment capacity. 

ment 
1971 

HoriZontal shear reinforcement was provided so that the calculated mo
capacity would be developed. The s4ear design was made according to the 
ACI Building Code, Section 11.16.(1) 

The vertical and horizontal reinforcement was constant over the height 
of each specimen. 

Reinforcement 

Reinforcing details for the five specimens tested are shown in Fig. 3. 
All ryinfqrcing steel was detailed and fabricated according to standard prac
tice.,1,2) 
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Except for Specimen B3, no special reinforcing details were used. Tie 
spacing~ were selected according to the 1971 ACI Building Code, Section 
7.12.(1) 

Specimen B3 was constructed with confinement reinforcement in the lower 
6 ft. (1.83 m) of the boundary elements. In all other respects, Specimen B3 
was similar to Specimen Bl. The confinement uoops were designed according 
to Appendix A of the 1971 ACI Building Code ll ) and were spaced at 1-1/3 in. 
(34 rum) center-to-center. 

, . 
In the specimens, bars conforming to ASTM Designation A615 Grade 60 

were used as reinforcement. Deformed 6mm hot rolled bars with properties 
similar to Grade 60 bars were also used. Deformed wire, size D-3, was used 
to represent smaller bar sizes. This wire was heat-treated to obtain stress 
versus strain characteristics similar to those of Grade 60 bars. 

The physical properties of the reinforcement used in the test specimens 
are summarized in Table 1. 

Concrete 

A concrete mix using a maximum aggregate size of 3/8 in. (10 rum) was 
selected for the walls. Type I cement, sand, coarse aggregate and water 
were combined to provide concrete with a slump of 3!1/2 in. (76±13 mm). 

Physical properties of the concrete used in each specimen are given 
in Table 1. 

Construction of Test Specimens 

Test specimens were constructed in the vertical position. Each wall 
was cast in six lifts. 

At the start of construction, a heavy reinforcing cage for the base 
block was constructed. This cage was placed on a level base platform. The 
vertical wall reinforcement was then placed in the base cage and secured in 
position. After the vertical reinforcement was placed, the base block was 
cast. 

Following casting of the base block, the construction joint was pre
pared and the horizontal reinforcement for the next lift was placed. 
Formwork for the lift was then set, and the concrete was cast. Subsequent 
wall lifts were constructed in the same manner. Each wall lift was 36-in. 
(914 rum) in height. Figure 4 shows Specimen B1 during construction. 

Construction joints between lifts were made following procedures des
cribed in ACI Specifications 301-72.(3) The surface of the concrete was 
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roughened with a cold chisel, and 
cleaned of laitance and loose parti
cles prior to placing the adjoining 
concrete. 

Test Apparatus 

The apparatus for testing the 
walls is shown in Fig. 5. Each spec
imen was post-tensioned to the floor. 
The specimen was loaded as a vertical 
cantilever with concentrated forces 
at the top. Hydraulic rams on each 
side of the specimen alternately ap
plied force first to one side then 
the other side of the top slab. 

Instrumentation 

During each test, applied loads, 
displacements, rotations, and steel 
strains were measured. 

Fig_ 4 Specimen BI During 
Construction 

The applied loads were measured by load cells attached to one end of 
each ram. The load cells have a capacity of 200 kips (90,719 kgf) in com
pression and can measure loads to within about 20 lb. (9.1 kgf). 

Horizontal displacements were ITleasured at six levels, as shown in Fig. 
5(a). For the lower three levels, measurements were made at each end of the 
wall. Diagonal displacements were also measured at the lower three levels 
to define the geometry of the deformed wall. Using this system, both flex
ural and shearing distortions were determined. 

As shown in Fig. 5(a), the horizontal and vertical displacement gages 
were supported on reference planes located on each side of the test specimen. 
As a check, the reference planes were instrumented to monitor any possible 
movement. For the fiVe tests reported in this paper, movements of the 
reference planes were negligible. 

Rotations in the lower 6 ft. (1.83 m) of the wall were obtained by 
measuring vertical displacements along each end of the wall. Three sets of 
measurements were made. One set was made between the top of the base block 
and the bottom of the wall over a nominal gage length of 3 in. (76 mm). The 
other two sets of measllrements were made over nominal gage lengths of 36 in. 
(914 mm). 

Displacement measurements were obtained using linear potentiometers 
and direct current differential transducers (DCDT). These gages have sen
sitivities from 0.001 in. (0.025 mm) to 0.003 in. (0.076 mm). 
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Strain gages were placed both on the vertical and on the horizontal re
inforcement. In addition, strains were measured on several of the hoops and 
supplementary cross ties of the confinement reinforcement of Specimen B3. 

In addition to the instrumentation previously described, dial gages were 
used to measure relative slip at construction joints. Crack widths were 
measured during testing with a hand microscope containing a scale with grad
uations of 0.001 in. (0.025 mmJ. A complete photographic record was obtained 
for each test. In addition to color slides and black and white photographs, 
three time-lapse cameras recorded each cycle of loading. 

Test Procedure 

Each of the first five test specimens was loaded in about three incre
ments of force until yielding occurred. At each force increment, three com
plete cycles of loading were applied. Subsequent to yielding, loading was 
controlled by deflections in I-in. (25.4 mm) increme~ts. Three complete 
cycles were again applied at each deflection increment. 

TEST RESULTS 

A load versus deflection relationship for Specimen B3 is shown in Fig. 
6. The deflection is that at the top of the specimen. Only the first 
cycle of each increment and only new maximum increments were plotted. Num
bers on the figure refer to the sequential n~~ber of the load cycle. The 
envelope of the load versus deflection relationship was obtained by pass
ing lines through the peak points of each new maximum loading cycle. 

Load versus deflection envelopes for all five specimens are compared 
in Fig. 7. In general, two types of behavior were observed in the walls. 
These types Were distinguished by the magnitude of the applied shear stress. 

Walls Subjected to High Shear Stress 

Specimens Fl and B2 were subjected to high shear stress. Maximum nom-
inal shear stresses v > 7 1fT (1.86 1fT) were applied. In these speci-

max c c 
mens the cracking pattermand failure modes indicated that the effects of 
shear predominated. 

The test of Specimen F1 was terminated by web crushing at a nominal 
shear stress corresponding to 10.5 If1 (2.78 1fI). The load observed 

c c 
after web crushing was 50% of that prior to crushing. Six complete in
elastic cycles were applied to the specimen before web crushing occurred. 
Figure 8 shows the specimen after web crushing. 

The test of Specimen B2 was terminated by a shear·-compression fail
ure. Capacity of the specimen then dropped bz-about 40%. Specimen B2 
carried a maximum load corresponding to 7.2 If' (1.91 1fI). A photograph 
of the specimen is shown in Fig. 9. C C 
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Fig. 8 Specimen F1 After Web 
Crushing 

Fig. 10 Specimen B1 After Testing 
to Destruction 

Fig. 9 Specimen B2 After Shear
Compression Crushing 

Fig. 11 Specimen B3 After Testing 
to Destruction 

Fig. 12 Specimen Rl After Testing 
to Destruction 
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Walls Subjected to Low Shear Stress 

The three specimens subjected to low shear stress were Bl, Rl, and B3. 
Maximum nominal shear stresses v < 3.1 1fT (0.82 1fT) were applied. In 

max c c 
these specimens the cracking patterns and observed failure modes indicated 
that flexure predominated. For these specimens, deterioration of the bound
ary elements by alternate tensile yielding and compressive buckling of the 
main tensile reinforcement was observed. Eventually the main reinforcing 
bars fractured. The fractures were undoubtedly influenced by prior bar 
buckling.' - Loss of load capacity in these specimens was gradual as oars 
fractured and as oroken concrete pieces in the boundary elements were lost. 

Specimen B3 was similar to Specimen Bl except that confinement re
inforcement was provided in the lower 6 ft. (1.83 m) of each column. As 
indicated in Fig. [, ductility was significantly greater in the specimen 
with confinement. Photographs showing Specimens Bl and B3 after testing 
to destruction are shown in Fig. 10 and II, respectively. 

Because of the confinement reinforcement, the concrete in the core 
of the columns of Specimen B3 was contained. The confinement hoops also 
helped to limit, but did not prevent bar buckling. However, the length of 
the buckled portion of the bar was shorter in the confined specimen. The 
specimen with confinement underwent 29 inelastic cycles prior to bar frac
tures. The specimen without confinement withstood 21 inelastic cycles. 

Web concrete in Specimen B3 was more extensively damaged than that in 
Specimen Bl. However, the primary zone of damage in the walls did not ex
tend above the 6-ft. (1.83 m) level where the confinement hoops were termi
nated. 

Figure 12 shows Specimen Rl after testing to destruction. This speci
men carried q maximum load corresponding to a very light shear stress of 
1.4 If' (0.37 1fI). Because the specimen was lightly reinforced in flexure, 
the coiicrete in the wall was not crushed prim:- to bar fracture. 

Observed and Calculated Loads 

Design 19a1s for each specimen calculated according to the 1971 ACI 
Building Code\l) are given in Table 2. Also listed in Table 2 are the 
observed and calculated values of the yield and maximum loads. 

The ACI design does not account for strain hardening of the rein
forcement. It should be noted that in three of the specimens, maximum bar 
spacing re~uirements led to a significant over-design for shear. The in
tent was to design the shear reinforcement to permit development of the 
design flexural capacity. All specimens exceeded the calculated ACI de
sign strengths. 
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The calculated yield and maximum loads were obtained from a flexural 
analysis of each cross section for monotoni~ loading. Analysis of the 
section was based on satisfying the applicable conditions of equilibrium 
and strain compatibility. A linear distribution of strain over the section 
was assumed. Measured material properties were used. The analysis con
sidered complete stress versus strain relationships for concrete and steel, 
including strain hardening of the reinforcement. Yielding was defined as 
first yield of the main flexural reinforcement. A limiting concrete strain 
of 0.004 was selected for the calculations. The maximum calculated loads 
were taken at this limiting strain unless the maximum capacity occurred at 
a lower strain. 

When calculating loads, no attempt was made to account for variation 
in strength resulting from load reversals. All the walls reached a maximum 
load within 17% of the calculated flexural capacity for a monotonically 
loaded wall. Specimens Fl and B2, which failed in shear, reached capaci
ties in excess of that which could be carried by the horizontal reinforce
ment alone. Thus, even with reversing loads, the concrete contributed to 
the shear capacity. 

CONCLUSIONS 

The following observations are based on data from tests of five iso
lated wall specimens: 

1. All specimens had a capacity greater than that indicated by the 
strength provisions of the 1971 ACI Building Code.(l) This was 
the case even though the walls were subjected to a large number 
of inelastic cycles of load. 

2. Two specimens were loaded to produce relatively high nominal 
shear stress. The failure mode for these specimens was asso
ciated with web shear distress. In one of these specimens, 
the test ended with sev~e web crushing at a nominal shear stress 
v = 10.5 1fT (2.78 yf'), For both specimens, observed maxi-

max c c 
mum loads indicated that the concrete contributed to the shear 
strength. 

3. Two specimens were loaded to produce relatively low nominal 
shear stress and had ordinary column ties. Capacities of these 
specimens were governed by damage to the boundary elements. 
Tensile yielding and compressive buckling of the main flexural 
reinforcement in these specimens led to bar fractures. This 
along with the loss of broken concrete not contained by the rein
forcing cage caused the specimens to loose strength. 

4. Lateral confinement hoops were added around the main flexural 
reinforcement in the boundary elements of a third wall loaded 
with a low nominal shear stress. These hoops helped to limit 
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bar buckling and contained broken concrete within the core 
of the boundary elements. 

5. The load capacity of the confined specimen was approximately 
the same as that for a companion specimen without confinement. 

6. The confined specimen had an overall top deflection ductility 
factor about 50% greater than that for the companion specimen 
without confinement. 

7. For all specimens, the primary area of distress was within a 
height equal to the horizontal length of the wall. 

8. All specimens had post-yield deflection capabilities under 
reversing load. 
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NOTATION 

ASh ~ Area of transverse hoop bar (one leg) 

E Modulus of elasticity of concrete 
c 

f' Compressive strength of standard 6x12-in. concrete cylinders 
c 



f ~ Modulus of rupture of concrete 
r 

f = Yield strength of reinforcement 
y 

f = Tensile strength of reinforcement su 
h Wall thickness 

~h Maximum unsupported length of rectangular hoop 

~ Horizontal length of wall 
w 

sh = Center-to-center spacing of hoops 

V Shear force 

v Nominal shear stress = 

v ~ Maximum nominal shear max 

v 
0.8t h w 
stress 
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= Ratio of main flexural reinforcement area to the gross concrete area 
of the boundary element. For rectangular sections, the boundary 
element was taken to extend 0.1 £ from each end of the wall. 

w 
Ratio of horizontal shear reinforcement area to the gross concrete 
area of a vertical section of the wall web. 

Ratio of vertical reinforcement area to the gross concrete area of a 
horizontal section of the wall web. 

Ratio of effective volume of confinement reinforcement to total 

2 ASh 
volume of core = 

~h sh 
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The paper reports results of dynamic tests and 
complementary dynamic analyses of a reinforced concrete 
spray tower. The tower has an overall height of 80 feet 
(24.38m). The 25' (7.62m) diameter x 54' (16.46m) high 
cylindrical section is supported on four 42" (l.07m) 
diameter columns. The structure is founded on 42" (1.07m) 
diameter caissons carried to lava bedrock 20 feet (6.l0m) 
below grade. 

The structure was excited by cylic air pressure 
waves in an associated redwood demister. The structural 
response was determined at the top of the support columns 
and at the top of the tower. The primary natural fre
quency, mode shape, and an estimate of the damping were 
determined. 

A series of theoretical dynamic analyses of the 
structure were carried out using a finite element computer 
program. The analyses gave good agreement with the 
measured primary natural frequency and mode shape. The 
effect of varying some of the analytical assumptions 
is also reported. 

A second dynamic test of the structure was carried 
out approximately 4 years after the first test. The 
primary natural frequency of the structure was found to 
be unchanged. The results of a response spectrum earth
quake analysis of the spray tower are also reported. 
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INTRODUCTION 

Seismic design, in contrast to design for other load 
conditions, is highly dependent on theoretical concepts 
and analyses. This is because documented experience of 
the response of structures to earthquakes is very limited. 
Only a few structures designed by modern ea:rthquake design 
methods have been subjected to severe earthquake loads. 
It is also extremely difficult and expensive to apply 
simulated earthquake loads to structures and to observe 
field performance. 

Because of the dependence of seismic design on theo
retical analyses, it is important that the analytical 
methods and assumptions be correct. One of the most 
important aspects of earthquake design is correct deter
mination of the structure's natural frequency. This 
paper reports results of dynamic tests of a reinforced 
concrete spray tower located at Soda Springs, Idaho. 
The results of the dynamic tests are compared with theo
retical analyses of the structure. Good agreement is 
found between the two. The relative importance of some 
of the analytical assumptions is also discussed. 

STRUCTURE 

Fig. 1 shows the spray tower during construction. 
The view is from the south southwest. Fig. 2 shows 
details of the structure, together with the arrangement 
of the associated redwood demister, demister support 
structure, and the fan which drives the air through the 
system. The spray tower is built of reinforced concrete 
and consists of a 25'-4" (7.72m) dia. x 53'-7" (16.33m) 
high cylindrical portion supported on four 42" (1.07m) 
ctiameter columns. The columns are 26 ft. (7.93m) long 
and are founded on 42 inch (I.07m) diameter caissons 
each of which is approximately 20 ft. (6.l0m) long. 
Type III A high early strength cement was used for all 
concrete. 

A fan and drive motor are mounted on the top of the 
spray tower. The fan serves to drive air through the 
spray tower and into the adjacent redwood demister. The 
fan and motor support pedestals and the supporting slab 
are designed with natural frequencies three times the 
710 rpm fan operating speed. In this manner, resonant 
pedestal and floor vibrations are avoided. 

The demister is made of redwood staves tied together 
by intermediate stiffening bands. The demister is tied 
to a steel support structure which is itself partly 
supported on the reinforced concrete spray tower. 
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FIG. I - SPRAY TOWER STRUCTURE - SOUTH SOUTHWEST VIEW 

VIBRATION EXCITATION 

On start-up, it was observed that vibrations were set 
up in the demister. It was also observed that the frequency 
and severity of the vibrations could be altered by open-
ing and closing the air stream damper. Adjusting the damp
er also affected the indicated fan amperes. In order to 
define the source and nature of the vibration, pressure 
probes were installed in the demister. These probes indi
cated a regular rotating pressure wave. Seismometers were 
installed on the top of the spray tower and on the demister, 
and a series of readings were taken relating indicated fan 
amperes to frequency and peak to peak pressure. The results 
of these tests are shown in Fig. 3. As can be seen from 
the figure, the relationship between indicated fan amperes 
and pressure, and between indicated fan amperes and fre
quency is approximately linear. The vibration and pressure 
readings also confirmed that the pressure wave frequency 
and the structural vibration frequency were the same. 
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A dynamic characterization of the structure was under
taken using seismometers mounted on the top of the structure 
and at the top of the reinforced concrete columns. Vibra
tion of the structure was observed for different damper 
settings. Fig. 4 is a series of plots of amplitude of vibra
tion vs natural frequency. In some cases, it was not possi
ble to determine the predominant frequency from the vibration 
traces. Accordingly, the relationship shown in Fig. 3 for 
fan amperes vs frequency were used to determine the dis
turbing frequency. 

DYNAMIC TEST RESULTS 

Two series of tests were carried out. 'I'he first 
series was affected by an ovalling resonance of the de
mister at a frequency of approximately 157 cpm. This 
resonance can be seen as a peak on the Fig. 4 response 
curve for the NE leg. A program of stiffening the demister 
to eliminate this resonance was carried out, and a second 
series of dynamic tests performed. The spray tower response 
curves after stiffening of the demister, are also shown on 
Fig. 4. All three curves indicate a resonance in the range 
of 126 to 129 cpm. Damping values can be calculated from 
response curves by use of the following formula (Ref. 3): 

l.n which, 
d 
f 
df 

d =: Af 
2f 

damping factor (%) 
resonant frequency 
difference in frequency of the two points 

on the response curve with amplitudes of 
ljvT times the resonant amplitude. 

Applying the above formula to the three curves in 
Fig. 4, the following values of damping are obtained: 

NE leg NS direction - no stiffening 
NE leg NS direction - after stiffening 

3.4% 
== 2.8% 

Top of tower EW direction - after stiffening ~ 2.3% 

The higher value of damping that occurs with the 
unstiffened demister is to be expected because, in this 
case, there are larger movements and a greater working 
between the redwood staves. The tests indicate a damping 
value of between 2% and 3% for the reinforced concrete 
spray tower. 

Fig. 5 shows the variation of displacement with 
direction at the top of the reinforced concrete columns. 
The increase in displacement in the SW-NE direction is 
explained by the different lengths of the caissons, and 
by the caissons on the west side being offset 2 ft. (.6lm) 
in an easterly direction. The different length caissons 
Were required because of the varying depth of bedrock. 
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.!. 

170 

---~--- = TOP OF NE LEG) N-S DIRECTION AFTER STIFFENING 
-----0---- = TOP OF TOWER) E-W DIRECTION AFTER STIFFENING 

FIG. 4 - SPRAY TOWER RESPONSE CURVES 

DYNAI1IC ANALYSIS 

A finite element model of the structure was developed 
and a theoretical analysis was carried out using the 
McDonnell Automation Company version of the STRUDL DYNAL 
Program. The finite element model is shown in Fig. 6 (a). 
This model has the caissons included. A separate model, 
without caissons included, was also analyzed. Concentrated 
masses were added at the top of the structure to account 
for the fan, concrete pedestals and the demister. For 
member properties, gross cross section moments of inertia 
and transformed areas were used. 28 day cylinder strengths 
showed an average concrete strength of 4500 psi (31026 kPa). 
From this value, a modulus of elasticity of 3875 ksi was 
calculated using the standard ACI formula (Ref. 1). 
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As can be seen, a relatively coarse model was used 
for the analysis and a number of simplifying assumptions 
were made. In particular, no increase for dynamic effects 
was included in the modulus of elasticity and for bending, 
gross cross section moments of inertia were used. 

A normal mode analysis gave the fallowing frequencies 
for the first mode of vibration. 

Spray tower, caissons not considered 
Spray tower, caissons included 

for ~omparison; 

155 cpm 
135 cpm 

Measured natural frequency = 126-129 cpm. 

As can be seen, the theoretical analysis, even with 
simplifying assumptions, gives good agreement with the 
measured natural frequency. The effect of length change of 
the caissons is significant. The analytical assumption 
that the caissons are laterally supported was confirmed 
by dynamic test measurements. Fig. 6 (b) shows the spray 
tower's first mode deflected shape. The largest contri
bution to lateral deflection is bending ana axial change 
of the columns. Because of it's stiffness, the cylindrical 
spray section acts as a rigid body. Fig. 6 (b) is a normal
ized deflected shape upon which two measured deflections 
have been superimposed. The measured deflections confirm 
the rigid body behavior of the cylindrical spray section. 
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SEISMIC ANALYSIS 

Design spectra for 
southeast Idaho are shown 
in Fig. 7. Based on 7% 
damping and the model 
shown in Fig. 6 (a), 
a response spectrum 
analysis was carried out. 
The deflections and tower 
and column forces and 
moments which result, are 
shown in Fig. 8. For the 
spray tower structure, 
the minimum factor of 
safety on ultimate load 
is 1.23 at the critical 
section at the base of 
the columns. The value 
of 7% damping is based 
on the recommendations 
of Newmark, Blume and 
K2pur (Ref. 2). Taking 
into account the large 
displacement that occurs 
under the maximum earth
quake condition, the 7% 
value is consistent with 
the measured 2-3% for 
low amplitude vibrations. 
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EFFECT OF CONCRETE STRENGTH 

Separate analyses were made using the modulus of 
elasticity for 3000 psi (20684 kPa) and 5000 psi (34473 kPa) 
concrete. The first mode natural frequency was 18% higher 
for the 5000 psi (34473 kPa) concrete than for 3000 psi 
(20684 kPa) concrete. 

EFFECT OF TIME 

The spray tower structure was constructed during the 
period August through December 1970. Dynamic testing was 
carried out in February 1971. In April 1975, a second 
dynamic test was carried out and the primary natural 
frequency of the structure was found to be unchanged. 

CONCLUSIONS 

1. For the reinforced concrete spray tower described in 
the paper, a relatively coarse dynamic analysis 
gives good agreement with observed dynamic performance. 

2. The dynamic tests indicate a damping value in the 
range of 2-3% for low amplitude vibrations. 

3. After four years of service, the measured natural 
f~equency of the spray tower structure remains un
changed from the value measured one month after 
construction. 
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In order to obtain the information on the hysteretic characteristics in 
the inelastic range of steel reinforced concrete (SRe) columns and frames, a 
parametic experimental study was carried out on the strength, deformability, 
failure mechanism and shapes of hysteresis curves under repeatedly applied, 
well-defined loads using 27 column and 9 frame specimens. Variables chosen 
for the experiments were the magnitude of the constant axial load and the 
composition of column cross section; full-web (H-shaped) steel component, 
open-web (battened) steel component and reinforced concrete sections (without 
steel component) for the comparison of the characteristics with SRC counter
parts. All column specimens were of the rectangular cross section (15 cm x 
15 cm). Well-defined cyclic loading was applied to all the specimens by con
trolling the deflection amplitude. Main discussion waS concentrated on the 
strength, the behavior before and after the attainment of the maximum strength, 
failure mechanism and hysteretic characteristics involved in the large defor
mation range under repeated loading. 

1. INTRODUCTION 

Recently, dynamic analyses and designs are increasingly made on steel 
reinforced concrete (hereinafter abbreviated to SRC*) structures. In order 
to establish a reasonable dynawic design method, researches are re~uired to 
clarify not only ultimate strength of structural members and frames but also 
their inelastic behavior up to fracture. Especially re~uired is the know
ledge of hysteretic characteristics of SRC members and frames under repeatedly 
applied external forces that alter with the range beyond the yield strength 
of the members or the frames (1'\0 4). 

* Also, reinforced concrete structure, member, etc. will be abbreviated 
to RC structure, member, etc. throughout this paper. 
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The intended by this paper is to experimentally clarify the elastic
plastic deformation behavior of SRC columns, which are regarded to involve 
most substantial ductility problems among the structural members, under re
peatedly applied external loads. 

2 . EXPERIMENTS 

2. 1 Outline of Experiments 

The total of 36 specimens were tested under repeatedly applied, well
defined loads; 27 column specimens and 9 frame specimens. 

Features of the test specimens are tabulated in Table, and their cross 
sections are shown in Fig. 1. Test specimens were grouped into four series. 
Series 1 was to know the deformation behavior of columns subjected to constant 
axial compression and repeatedly applied pure bending. Series 2 was to know 
the deformation behavior of columns with h/D=6, where h is the column length 
and D is the column depth, subj ected to constant axial compression and repeat
edly applied bending and shear. Column specimens were designed so that the 
flexural failure was predominant. Tests of Series 3 were very similar to 
those of Series 2 except that the column dimensions were such that h/D=3, and 
shear failure was predominant over flexural failure. Series 4 was to investi
gate the behavior of one-story, one-bay portal frame when subjected simultane
ously to constant vertical load on columns and repeatedly applied horizontal 
load. The column members were the same as the specimens in Series 2, hence 
the flexural type of ·failure should take place prior to shear failure. 

Variables chosen for the series of experiments were the magnitude of the 
constant axial compression and the composition of member cross section. Test 
specimens were denoted in such a manner that the combination of the experi
mental variables could be easily recognized from the specimen names. In the 
names of test specimens, the first numerals, 1, 2, 3, or 4, represent the 
series number and the second characters, F, B, or R, represent the cross sec
tional composition; F for SRe column with full-web (H-shaped) steel component, 
B for SRC members with open-web (battened) ste.el component. and R for RC mem
bers (without steel component) for the comparison of the structural charac
teristics with SRC counterparts. The third numerals indicate the magnitude 
of constant axial compression loaded on the specimens. The numerals, 0, 3, 
and 6 correspond to n=O, 0.3, and 0.6, respectively, where n is the ratio of 
applied axial compression, N, to the load carrying capacity of centrally load
ed SRC column, No, which is obtained by superimposing the capacity of RC cross 
section upon that of steel cross section. 

2. 2 Configuration and Dimensions of Test Specimens 

All the test specimens had the same sQuare cross section of 150mm x 150 
rum, as is shown in Fig. 1. Full-web steel section was the nominal IT-100 x 
50 x 4 x 6 of SS41 grade steel (min. yield point = 25 kg/mm2

). Open-web 
steel section was the same size and material only with flame-cut, rectangu
lar openings of 75mm x74mm in the web, as is illustrated in Fig. 2. 

The numbers and the diameters of the longitudinal reinforcements were 
so chosen that the moment capacities of SRe and RC columns in each series of 
experiments were approximately the same. The longitudinal bars used were 
DIO and D13 of SD35 grade (min. yield point = 35 kg/mm2

). Web reinforcements 
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had the diameter of 3mm and were of annealed mild steel e~uivalent to SR 24 
grade (min. yield point ~ 24 kg/rum;). Web reinforcements were spaced at 
every 50mm in all the RC specimens and all the column specimens of Series 3. 
For the Re speciw_ens in Series 1, 2 and 4, the spacing of web reinforcements 
was reduced to half, in order to prevent the transition of failure mode from 
flexural type to shear type. For the column specimens in Series 1, 2, and 
3, rigid anchor blocks were provided at both ends of each specimens as shown 
in Fig. 3(a) and (b). For the frame specimens of Series 4, the amount of 
longitudinal reinforcements in the beams were twice as much as that in the 
columns, and the steel shapes of the same dimensions were used in both beams 
and columns, as is shown in Fig. 3(c). This was to let the flexural failure 
occur only in columns. To provide the column bases with enough rigidity, 
the base beams were designed to have the sections of l50mm x 200mm and to 
contain the steel wide flange shape of H-150 x 75 x 6 x 9. Thus, the base 
beams were more rigid and stronger than bearnE and columns. Anchor blocks 
were provided on the outside of the beam-to-column connections, 150mm long 
each, and longitudinal reinforcements of beams and columns were anchored, 
in order to prevent the failure at the reinforcement anchors from occurring 
in the region of beam-to-column connections. 

2. 3 Materials and Making of Test Specimens 

Mix design of concrete was common to all the specimens; water-cement 
ratio was 65%, mix ratio in weight was cement 1 : sand 2.95 : gravel 2.82, 
and the slump was 21cm. Concrete was cast in vertical position for all the 
specimens. The age of the concrete when the specimens were tested was ap
proximately two months for all specimens. Mechanical properties of concrete 
material were obtained by testing concrete cylinders of 150mm x 300mm for 
compressive strength, Fe, and split tensile strength, Ft, when corresponding 
specimens were tested. 

2. 4 Testing Apparatus 

Test set-ups for each of the test series and different loading systems 
are shown in Figs. 4{a), (b) and (c), and their theoretical models are 
sketched in Figs. 5(a), (b) and (c). 

For Series 1, steel loading beams were bolted with high strength bolts 
to the anchor blocks on the ends of the specimen as is shown in Fig. 4(a). 
The load was applied on these beams by a pair of manual oil jacks, to in
troduce the external moments on the column ends. By changing the point of 
load application, cyclic external moments were applied on the specimens. 
Constant axial compression was applied by a manual oil jack. 

For Series 2 and 3, referring to Fig. 4(b), another set of steel loading 
beams were bolted to end anchor blocks with high strength bolts. The lower 
loading beam was fixed to the rigid testing floor through a universal joint, 
and the upper loading beam was jointed, through another universal joint, 
to a reversible manual oil jack, with which cyclic load was introduced to 
the test specimen. Constant axial compression was put on by a manual oil 
jack located at a specimen end. With all of the above test set-up, the 
specimens of Series 2 and 3 were tested under repeatedly applied bending and 
shear as well as the constant axial compression. 
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Table Test Program 
--

Experimental 
Reinfo r:::cmen ts Variables 

Name of Type LOading Planned Co11Jlllll Sectional Axial Longitudi- \,Teb 
Test of Condition Failure Le.ngth composion Compression nal Reinforce-
Specimen Specimen 110 de Cmm; Ratio n Reinforce- ments 

menta 

1 Fa 0 
3¢-SOmm@ 1 F 3 Constant Flexural F * 0.3 4-DlO 

1 F 6 axial 0.6 
compression failure 

1 II 0 and 0 
3Q-50rrnn@ Series 1 1 \I 3 alternately 600 0.3 4-D10 B 

1 \I 6 applied 0.6 
pure bending 

l"R 0 0 
3<P-ZSmm@ I R 3 R 0.3 6-D13 

l-'R 6 0.6 

2 F 0 0 
3<P-SOmm@ 2 F 3 Constant Flexural F 0.3 4-DlO 

2 F 6 axial 0.6 
compression failure 

2 B 0 and alter- 0 
3<!>_]01llll\@ Series 2 2 B 3 column nat ely 900 B 0.3 4-010 

2 B 6 spplied 0.6 
bending and 

2 R 0 shear 0 
3<1>_2Smm@ 2 R 3 R 0.3 6-D13 

2 R 6 0.6 

3 F 0 0 
3<P-SOmm@ 3 F 3 Shear F 0.3 4-D13 

3 F 6 failure 0.6 

3 B 0 0 
3<P_50mm@ Series 3 3 B 3 450 B 0.3 4-D13 

3 B 6 0.6 

3 R 0 0 
3<l>-50-~ 3 R 3 R 0.3 8-D13 

3 R 6 0.6 

4 F 0 Cons tant 0 
3<P_50 mm

@ 4 F 3 vertical Flexural F 0.3 4-010 

4 F 6 load and failure 0.6 (8-D13~* 
alternately 

4 B 0 applied 0 
3CP-50~ Serie8 4 4 B 3 Frame horizontal 900 B 0.3 4-D1O 

4 B 6 load 0.6 (8-D13; 

4 R 0 a 
3~25mm@ 4 R 3 R 0.3 6-D13 

4 R 6 0.6 (12-D13) 

* F denotes full-web type SRe member, 
B for battened-web type SRC member, and 
R for Re member provlded for comparison purpose. 

** Numerals in parentheses are the reinforcements in the beams. 

F Series B Series R Series F Series B Series R Series 

Series 1, 2 and 4 Series 3 
Fig. 1 Column Cross Sections (unit: rom) 
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Fig. 6 Loading Program 

For the tests of frame specimens of Series 
~ loading apparatus is shown in Fig. 4(c). 
The frame specimen and the horizontal load ap
plicator frame were fixed onto the supporting 
frame with high strength bolts. The rollers 
were placed between the supporting frame and 
testing machine to prevent any resistance to 
horizontal displacement of the supporting frame. 
Constant vertical load was applied on two 
columns of the test frame by a hydraulic test
ing machine. Care was taken to load the two 
columns equally. Cyclic loading of the hori
zontal force was accomplished by a reversible 
oil jack attached-to the horizontal load ap
plicator frame. Horizontal displacement(sway) 
of the frame was measured at the mid-point of 
the beam. 

In all tests, applied loads were censored 
by load cells; and deflections and displace
ments "rere measured by electrical displacements 
gages and/or mechanical dial gages. Also, in 
Series 2 and 4, average curvature and average 
axial strain were measured by mechanical dial 
gages over the column length of 150mm from the 
ends. 

2. 5 Loading Programs 

One of the loading programs for the tests 
is shown in Fig. 6. This was the one for 
Series 2. Well-defined cyclic load waS applie-d 
to all the test specimens by controlling the de
formation, that is, deflection or displacement 
and the deformation amplitude was increased at 
every other cycles of loading. 

3. RESULTS OF EXPERI~illNTS 

3. 1 Hysteresis Loops and Failure Modes 

Hysteresis curves obtained from the tests 
are shown in Fig. [,8,9 and 10 for Series 1, 
2, 3 and 4, respectively. Shown in Fig. 7 are 
the hysteresis curves obtained for each test 
specimens in Series 1. Ordinate of the dia
grams represents the external moment M, applied 

at the column ends, and abscissa gives the mid-point deflection, 0, or the 
curvature~. Figures 8 and 9 show the hysteresis loops for Series 2 and 3. 
Ordinate is the load, Q, applied to the column specimen by the oil jack, 
and abscissa represents the measured slope deflection, R. Hysteresis 
curves of test frames in Series 4 are shown in Fig. 10. Ordinate repre
sents the applied horizontal force, H, and abscissa gives the horizontal 
displacement (sway), /::', of the test frame. 
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For the column specimens in Series 1 on which no axial compression was 
loaded (n=O), there was no strength deterioration observed due to the ef·~ 
fect of cyclic bending u~ to the deflection amplitude of five times the 
elastic deflection, and the hysteresis loop obtained was the spindle-shaped 
one that implied the large capacity of energy absorption. When n=O.3, the 
load carrying capacity was improved with the help of axial compression, 
whereas the deflection at the maximum strength was considerably small and was 
found to be approximately twice the elastic deflection. After the attain
ment of the maximum strength, considerable deterioration in strength due to 
the influence of cyclic bending was observed, and the column collapsed by 
the fracture in compression concrete and the buckling of compression rein
forcements at the deflection amplitude of four times the elastic deflection. 
This tendency was further emphasized in the columns of n=O.6, which showed 
very limited amount of deformability. When the load carrying capacity was 
reached, compression concrete fractured suddenly and accompanied overall 
buckling lead to the collapse of the column. The deformation after the col
lapse exhibited a very unstable hysteretic characteristics. Therefore, in 
the hysteresis loops of the Series I columns, there was no appreciable dif
ference observed between the SRC columns with full- or open-web steel and the 
RC columns owing to the difference in the composition of cross section, and 
only the effect of the magnitude of axial compression was clearly seen. For 
Series 2 and 3, however, hysteresis curves indicated the apparent difference 
between the full-web type SRC columns, open-web type SRC columns and RC 
columns ow-ing to the influence of applied shear force. 



474 

- -~ 

II /' 

£' I 
I I 

,!11J(5/1~ 

lJ ~ (b) 2F3 

2B3 

(h) 2R3 

(c) 2F6 

2B6 

2R6 

Fig. 8 
Hysteresis 
Loops 
for 
Series 2 

For the column specimens 2RO and 2BO (n=O) in Series 2 (h!D = 6), flex
ural and diagonal tension cracks were created and developed with the in-
crease of deformation amplitude and of the number of loading cycles. Even 
in last stages of cyclic loading, no perceptible deterioration in strength 
occurred. The load-deformation curves showed reversed S-shaped loops with 
the increasing amplitude. One of the reasons to this lies in the plastic 
hinge formed at the column end; the plastic hinge was not the one due to 
pure bending but was apparently the shear type hinge with diagonal tension 
cracks. On the other hand, no diagonal tension crack was formed in the 
full-web type SRC column 2FO through the entire life of cyclic loading, and 
the flexural cracks developed in the direction approximately perpendicular 
to the column axis. Hysteresis loops showed very stable spindle-like shape 
when the slope deflection reached 0.015 rad., and Showed the tendency of 
gradually approaching to the loops of pure steel columns as the deflection 
amplitude increased. When n=O.3, for all the column specimens 2F3, 2B3 and 
2R3, the occurrence of flexural cracks ,diagonal tension cracks and 
concrete failure were limited in the region approximately l50mm, equal to 
the column depth, away from the column ends. The column fracture followed 
by the buckling of compression reinforcements showed apparent shear-com
pression type of failure. All of the above three column specimens reached 
their load carrying capacities within the cycle of the deformation ampli
tude of R=O.Ol rad., and did not show the reversed S-shaped loops after the 
attainment of the maximum capacities. When n=O.6, all the column specimens 
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Fig. 9 
Hysteresis 
Loops 

3R6 for 
Series 3 

exhibited very limited capability of deformation, and collapsed w"hen R=O.005 
rad. due to the IOQal failure in compression concrete and the buckling of 
compression reinforcements. 

As is shown in Fig. ll(a), the pattern of crack development in the 
column specimens of Series 3 (hiD = 3) were, despite the difference in 
crOSs sectional composition and the magnitude of applied axial compression 
such that the diagonal tension cracks were formed first and developed into 
shear-bond cracks along the longitudinal reinforcements and steel flanges 
with the increase in the deformation amplitude and the number of loading 
cycles, finally to exhibit shear-bond type of column fracture. This was 
one of the reasons why the hysteresis loops had the reversed S-shape. The 
hysteresis loops of the columns 3RO and 3BO (n=O) were very similar to each 
other; the slope deflection at the maximum load capacity was approximately 
e~ual to 0.01 rad. and very gradual deterioration in strength was observed 
after the maximum capacity, showing apparent reversed S-shaped hysteresis 
loops. Diagonal tension cracks were found in the specimen 3FO at the load 
larger than those found in 3RO and 3BO. The steel web was considered to 
have carried some shear until the diagonal tension cracks were formed. 
With the increase of deformation amplitude, shear-bond cracks developed 
along the longitudinal reinforcements and the steel flanges. Rather stable 
shape of the hysteresis loop was obtained, different from the reversed S
shaped loops of 3BO and 3RO, and the loops indicated the tendency to con-
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verge to the ones of the pure steel columns. Deterioration in strength 
after the attainment of the maximum capacity was very small. When n~O.3, 
the loads at Which the diagonal tension cracks took place were larger than 
the specimens with n=O. This means that the compressive stress in concrete 
due to axial compression helped raise the diagonal tension crack loads. The 
diagonal tension crack loads themselves, however, were approximately equal 
to the maximum strength of the columns, and the column specimens 3R3 and 
3F3 showed considerable deterioration in strength after this stage, giving 
apparent reversed S-shaped loops. For 3F3, the deterioration was not large 
and the hysteresis loops were spindle-shape. In all the columns of 3R6, 3B6 
and 3F6 (n=O. 6), shear-bond cracks along the longitudinal reinforcements 
and the steel flanges occurred along w::_th diagonal tension cracks, and the 
columns collapsed at R=O.005 rad. One of the most distinctive features 
brought up by the shear failure modes of the columns in Series 3 is that 
the bondage between concrete and steel flanges can not be expected in the 
SEC columns in which the shear-bond cracks cause the shear-bond failure of 
columns when subjected simultaneously to cyclic bending and shear. The 
shear capacity of a steel shape with battened web is only equal to that of 
Vierendeel beam. Therefore, the SRC members tested had very small shear 
capacity, and the hysteretic characteristics of the RC columns and the SEC 
columns with battened steel web were very similar to each other. 
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For the frame specimens in Series 4, regardless of SRC or RC frames, 
the maximUTI load carrying capacity was maintained up to f'l==30mm "Then n==O, the 
deterioration in strength initiated at f'l=15 '\., 20Illfl when n=O. 3, and the frame 
collapsed in the loading cycle of f'l=lOmm when n=O.6. Failure modes at the 
column bottom portions of these frame specimens were very similar to those 
at the member ends in Series 2. Shear-bond cracks were formed along the 
longitudinal reinforcements and developed all the way through the entire 
column length. This caused the hysteresis loops to be of reversed S-shape 
and the strength deterioration was considerably large. Hysteresis loops of 
the full-web type SRC frames of n=O and 0.3 showed spindle-like shapes which 
were very similar to those of the pure steel frames. They had better Quali
ty in both strength capacity and ductility than that of other frame speci·· 
mens. Locations of failure in columns, which lead to the collapse of the 
entire frames, differed depending on the magnitude of applied constant ver
tical loads. That is, the failure occurred in the column ends when n=O, and 
in the regions approximately 150mm (eQual to the column depth) away from the 
ends when n=0.3 and 0.6 as shown in Fig. ll(b). Local flexural cracks and 
diagonal tension cracks took place also in the beams of all the frame speci
mens, but they did not induce the frame collapse. 

Shown in Fig. 12 are the nondimensiona1ized average curvatures, ¢D (¢ is 
the average curvature measured over the column length of 150mm, Find D is the 
column depth) and the average normal strain, €, at column ~Dds, which were the 
top ends when concrete was cast, obtained from the tests in Series 2. In 
the figure, ordinate represents the applied load. Q, and abscissa represents 
either the nondimensionalized average curvature, ¢D, or the average normal 
strain, s. Hysteretic behavior of all the spec.imens in Series 2 are as 
shown in the figures for the nondimensionalized curvature are very si:m:jo'lar 
to that obtained for the column slope deflection, R. The hysteretic be
havior for the average normal strain, however, were different depending on 
the magnitude of axial compression; normal tensile strain was accumulated 
when n=O, and compressive strain was accumulated when n=O.3 and 0.6, regard
less of the cross sectional composition. The accumulation of compressive 
strain was accelerated as the deformation approached to the amplitude of the 
memb er fail ure . 

3. 2 Relationship between the Specific Damping Capacity and the Number of 
Loading Cycles 

Shown in Fig. 13 is the relationship between the magnitude of energy 
consumed within every half cycle of loading and the number of loading cycles, 
computed from the hysteresis loops of Series 2 and 3. In the figure, ordi
nate represents the specific damping capacity, ~ = f'lw/w, which is in propor
tion to the amount of energy consumption and is nondimensionalized, where f'lw 
is the aw~unt of energy consumed within a half cycle of loading, and w is 
the potential energy in the same loading cycle. Abscissa represents the 
number of cycles. For the open-web type SRC columns and RC columns in 
Series 3, the specific damping capacity, ~, decreased from 1.50 to 0.40 with 
the increase in the number of loading cycles and in the deformation ampli
tude. Within the same cycle of loading, the values ~ for the reloaded loops 
were smaller than that in the virgin loop, and this tendency was more clear
ly seen in the loops of the smaller amplitude of deformation. For the full
web type SRC columns in Series 3, the value of ~ increased from 0.80 to 1.10 
as the deformation amplitude increased. For the open-web SRC column and RC 
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Fig. 14 Normalized Characteristic Loops 

columns in Series 2, except those of n=O.6, the value of the specific dam~
ing capacity increased from 0.70 to 1.20, and for the full-web SRC columns, 
the value increased from 0.60 to 1.15. 

3. 3 Normalized Characteristic loops 

Some of the normalized characteristic loops obtained from the tests of 
column specimens with n=O and 0.3 in Series 2 and 3 are shown in Fig. 14. 
In the figure, ordinate represents the nondimensionalized load carrying 
capacity, Q, which is the ratio of the load carrying capacity at each load
ing stage to the maximum strength in the corresponding loading cycle. Ab
scissa represents the nondimensionalized slope deflection ,R, which is the 
ratio of the column slope deflection at each loading stage to the maximum 
slope deflection of the corresponding loading cycle. For both cases of 
flexural failure and shear failure, the normalized characteristic loops of 
the battened-web SRC columns and RC columns had reversed S-shapes and were 
similar to each other, while the loops of full-web type SRC columns ex
panded the spindle-like shape with the increase of deformation amplitude 
and converged to those of pure steel columns, for both cases of flexural 
failure and shear failure. 

4. CONCLUSIONS 

Stated below are the conclusions drawn from the experimentally ob-' 
tained hysteretic characteristics of the SRC columns and frames under well
defined, repeatedly applied loads. 

1) If the column is subjected to repeatedly applied bending and shear as 
well as constant axial compression, there are obvious differences in the 
hysteretic characteristics between SRC columns with full-web steel shapes, 
those with open-web steel shapes and RC columns, due to the shear defor
mation in the elastic-plastic region caused by applied shear force and to 
the shear failure. 

2) Among the failure modes of SRC and RC members, there is the shear-bond 
failure besides the ordinary diagonal tension failure and shear-compres
sion failure. In the SRC member that shows the shear-bond failure, the 
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bondage strength between concrete and steel flanges can hardly be expected. 
3) Therefore, the steel section with battened-web in an SRC member has the 

property equivalent to that of a Vierendeel member. Hence the hysteresis 
loop of an SRC member with usual configuration and dimension containing 
battened steel section is very similar to that of an RC member, and is of 
re.versed S-shape with very small capability of energy consumption. 

4) As to the full-web type SRC member under repeatedly applied bending and 
shear, the hysteresis loop shows very stable, spindle-,like shape with 
large capability of energy consumption. This is true for both cases of 
flexural-type and shear-type failures. 

5) The deformability of an SRC column containing either full-web or batten
ed-web type steel shape, however, is highly dependent upon the magnitude 
of the axial compression working on it. When the working axial compres
sion is equal to 60% of the load carrying capacity of centrally loaded 
column, no ductility shall possibly be expected. 

6) The hysteretic characteristics of an SRC frame, in \{hich the column 
failure, is predominant, when subjected to well-defined, alternately 
applied horizontal load, is very similar to that of a single column member. 
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The report presents the objec~ives, methods and results 
of static and dynamic tests of a large-size 10-storey model 
of a frameless seismic resistant building, built from in
situ reinforced concrete on a natural soil foundation~ 

Brief description of the model structure and its 
erection methods is given. The results of the model design 
considering the actual physical and mechanical characteristics 
of the structure materials and the yielding of the soil 
foundation are shown. The joint behaviour of piers and lintels 
as well as the interaction between the model and its soil 
foundation at different intensities of horizontal inertia 
loads applied by means of vibrators is analysed. 

INTRODUCTION 

The expanding volume of construction of frameless in
situ reinforced concre~e public and residential buildings in 
seismic active zones of the Soviet Union and the increase of 
their height has required that safe seismic resistance of 
these buildings should be pro~ided in combination with 
rational material consumption for supporting structures and, 
first of all, of reinforcing steel and concreteo The 
investigations into the behaviour of building structures 
under the effect of earthquake loads are carried out by the 
TSNI~P zhylischa Institute in three directions~ theoretical 
research~ tests of fullscale buildings and their structural 
elements, tests of large-size modelse 

STATIC AND DYNAMIC TESTS 

The tests of a 10-storey model have been aimed at 
studying the features of actual behaviour of frameless in
situ reinforced concrete buildings under force effects of 
differen~ nature and intensities and at making more accurate 
the methods of their design and calCUlation on these bases, 
including design schemes at different stages of behaviour. 
'Phe erection of the model on a natural soil foundation also 
offered the opportun$ty to study the interaction between the 
supporting structure system and soil foundation. 
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The model presented a section of the building with load 
bearing transverse and interior longitudinal walls which was 
built in a scale of one fourth of the naturru. size of the 
building (Fig.1)6 The model dimensions in plan were 3. 3m x 
x 3.34 m, the height was 7me The thickness of walls and floors 
was 4cm according to the adopted scale of geometrical 
dimensions. 

The areas of in-situ reinforced concrete transverse 
walls along both sides of an interior longitudinal corridor 
were joined by in-situ reinforced concrete lintels into 
transverse loarl bearing membranes. Horizontal membranes were 
in-situ reinforced concrete floor slabs. The model foundation 
was a solid reinforced concrete slab. 

The model walls and floors were reinforced with flat 
welded reinforCing meshes, the lintels - with flat welded 
reinforcing cages. The principal reinforcement of meshes and 
cages was made from hot-rolled steel, its design resistance 
being 2100 kgf/sq~cm. 

Preliminary approximated design for the model was carried 
out as for a full-scale building considering vertical service 
and horizontal earthquake loads. 

The rigidity and dynamic parameters of 'the system were 
determined taking into consideration flexure and shear of 
structures assuming their behaviour being at an elastic stage 
as well as allowing for foundation yielding at rocking 
vibrations of the model. Theuutial characteristics were the 
modulus of deformation of the model concrete, Ec, being equal 
to 140,000 kgf/sq.cm, and the coefficient of foundation 
rigidity, K,'f' calcu~ated for the soil of standard compressive 
strength 2 Kgf/Sqecmo 

The period of the first tone of rocking vibrations in a 
transverse direction was 0.195 sec which corresponds to the 
frequency of 5.1 hert~. 

The carrying capacity of the model at an elastic stage 
was provided, according to the preliminary d.esign, for an 
earthquake load not less than 8 MSK-64 points. 

The moulding of the model structures was carried out by 
means of metal progressive gang forms. During one cycle, walls 
or a floor slab for one storey was concreted.. As a result of 
breaks between two adjoining cycles of concreting which 
amounted to 2-3 days, horizontal construction joints were 
formed at places of contact with lower and upper planes of 
floor slaDs. 

The model was tested by applying horizontal loads -
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static and dynamic ones~ Separate fragments of the model 
(walls and lintels) were also statically tested which made 
it possible to analyse the influence of different structural 
factors on the behaviour of the system as a whole. 

Static te sts of the model were carried out by me ens of 
a frame-strainer. Horizontal loads were applied at the le
vel of floors. At the end of static tests the value of the 
total horizontal load was increased up to a half of the 
design load, i.e. it was equivalent to 7 MSK-64 points in 
total transverse force, applied at the top level of the 
foundation slab. At this load value as well as at lower 
loads, non-linearity of structure deformation was not consi
derable, indicating their behaviour at an elastic stage. 

Dynamic tests were carried out by means of vibrators 
designed at the TSNIIEP zhylishcha. During dynamic tests 
the dynamic parameters of the system f including the nature 
of vibrations, were determined and the nature of joint 
behaviour o~ structural elements as well as the interaction 
between the model and its soil foundation was studied 
depending upon the intensity of force effect. 

Horizontal and vertical displacements of the super
structure, vertical displacements of the foundation slab 
bottom relative to the ground level and stresses at separate 
points of the walls were recorded by recording apparatus 
including vibrometers, tensors and oscillographs. 

A vibrator was placed on the top floor of the modelQ 

The first series of tests was carried out by means of 
a vibrator of low capacity, the second series of tests-with 
a vibrator of high capacity. 

Each series of tests consisted of several stages differ
ing in the value of a horizontal inertia load~ The load was 
increased from stage to stage, its maximum value exceeded 
the design one by more than three times. 

The process of changes in the nature of the interaction 
between the model structure and its soil foundation can be 
conditionally divided into three phases. At the first phase 
the behaviOur of all structures was at an elastic stage 
whil~ the soil under boundary zones of the foundation slab 
was partially compressed Que to elastic-plastic deformations~ 
The initial parts of the charts for rigidity parameters 
variation correspond to this pnase, Fig.3. 

The initial part of the chart for rigidity variations 
of the model naa the shape being near to a linear one while 
that of the charts for rigidity variations of the foundation 
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and the whole system is curvilinear, which indicates the 
appearance of the first siglls of non-lineari tiY in the be
haviour of the system, mainly, due to the soil foundation. 

At the second phase, due to crack fOrnla1iion at the 
abutting of lintels and walls and over the planes of 
construction joints, non-linear reduction of the system 
rigidity occurred due to both the soil foundation and the 
structure. Soil compression under the foundai:iion boundary 
zones during rocking vibrations of the model continued with 
the increase of horizontal inertia loads whi(~h resulted in 
the formation and gradual opening of a gap between the fOUIl
dation and the SOil. 

At the third phase oblique cracks appe~red and developed 
in the walls of the ground and first floors. With further 
increase of loading the concrete in the zone of wall and 
foundation junction failed, and then concrete splintering at 
the extreme areas of 'the ground floor walls occurred as well 
as crack formation in the walls of two lower floors over the 
whole their surface. The integrity of walls "being broken, 
the deformabilit;y of the model greatly increased. This was 
the major cause that non-linearity in the system behaviour 
continued to increase even in a greater degree than at the 
previous phases. 

By the moment the inertia load has achieved its maximum 
value, the first tone frequency of the system natural vibra
tions, amounting to 5 hertz at the beginning of tests, 
decreased 2063 times as compared to the initial one, and the 
amplitude increased 33 times, as is shown in the charts, 
Fig.4. 

A substantial reduction of rigidity of the model and of 
the system as a whole changed the nature of dependence bet
ween the amplitude and the inertia load: an ascending branch 
of the curve was replaced by a descending one. This principal 
change :reflected the process when despite th.e increase of 
counterweights on the vibrator and the growth of vibration 
amplitude of the model top, the total inertia force was not 
already increasing but was decreasing. Such phenomenon was 
predicted earlier theoretically. 

The loss of the carrying capacity by the system occurred due 
to failure of the model ground floor walls 8.t cyclic loading 
during which in the boundary zones of piers eccentric tension, 
which coused concrete failure in piers, alternated with 
eccentric compression, wh~ch led to concrete splintering and 
buckling of exposed reinforcement. 
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CONCLUSIONS 

1. Construction joints in walls, being formed following 
the breaks in concreting at cyclic erection of walls and 
floors, contributed to deformability inc~ease of in-situ load 
bearing structures of the modelo The same joints in the lower 
floors of the model were the zones of local damage (cracks)~ 

2. Lintels were the most vulnerable elements of the 
frameless in-situ reinforced concrete modelo The rirst cracks 
appeared in lintels earlier than in other elements of the 
structure. 

30 Non-linearity in the behaviour of the whole system 
increased with the growth of horizontal inertia loads. l~e 
degree of non-linearity in1'luence in the behaviour of the 
foundation or the model structure varied due to the irregular 
development of non-elastic processes in them depending upon 
the value of horizontal inertia loads. 

4. As regards the load bearing capacit,y, the limit state 
of the ''building-soil foundation" system can depend upon the 
:fact whether the carrying capacity of superstructure or 
foundation is exhausted, depending upon their rigidity 
parameter relationship. 

The authors express their deep acknoledgement to their 
scientific adviser Prof~ G.A.Shapiro, D$Sc.(Engo), and to all 
researchers of the Strength ~est £aboratory of the TSNIIEP 
zhylishcha working under his guidance, who took part in 
conducting model tests and treatment of test results. 
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SUMMARY 
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More than twenty of one-storied and one-spanned reinfor-

ced concrete braced frames with small size, were tested, subje

cted to alternating repeated horizontal loads at the top beam 

level with constant axial load at the two tops of the columns. 

These tests were intended for obtaining some basic data on ear

thquake resistance capacities of reinforced concrete truss 

frames. 

The variables considered in this investigation are the 

slenderness of the members composing a frame, the longitudinal 

reinforcement ratios of the members, the level of axial load 

and the reinforcement arrangements in connections. 

The test results show that braced frames have considera

ble ductility in addition to high stiffness and high strength. 

INTRODUCTION 

In such countries having the large temporary load sei-

smic load) as Japan, it is necessary to have such strong members 

or frames which can resist against the above load as earthquake 

resistance walls. The objective of this paper is to review re-

h(2) . d H . h . U' . d cent researc carrle out at lros lma nlverslty an to use 
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these results to provide a means of determining seismic design 

for truss frames of reinforced concrete,including braced frames 

which can be arranged more freely in buildings than walls. 

TEST PROGRAM 

Two series of tests have been conducted. Usual reinfor

cement arragements were used at connections of braced frames in 

the Series A, while special arrangements were made in the Series 

B as shown in Fig.l. 

1) Series A:A specimen consists of two symmetrical bra

ced frames, the size of which is about one-fifth - tenth of pro

totype with the dimensions of the height, the span of frames and 

the standard section of members being 60cm,60cm and 10cmxlOcm 

respectively. Seventeen frames were tested in total as shown in 

Table 1. Five frames(I) including one rahmen frame were subjected 

to monotonic horizontal load at beam level while eight frames( 

II,and III) subjected to alternating reversed horizontal load. 

The other three frames(N) were subjected to alternating reversed 

horizontal load,with constant vertical loads at the tops of col

umns. Only the specimens designated B_H and B-Hp have the mem

bers of non-standard sections(5cm x locm). The reinforcement ra

tio of main bars ranged from about 1 - 3.8 %,with the hoop rein

forcement ratio being about 0.1 % and 0.2 % for the members ha

ving standard section and non-standard section respectively. Mu

ch more amount of hoops were,on the other hand, used to enclose 

main bars in connections against anchor failure except for five 

frames(I) of monotonic loading as shown in Fig.l. Maximum size 

of aggregate of concrete was 5 mm and the cylinder strength at 

test was 0.21 - 0.23 t/cm2. Main bars were 6¢ with yield stren

gth of about 2.70 t/cm2 except for two frames( 4.65 t/cm2 for B-

I,R-I). Hoops were 2~ Horizontal displacement at beam level 

as well as elongation of each member and strains of main bars 

embedded were measured by dial gauges and wire strain gauges res

pectively. 
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2) Series B Six frames including a wall and a rah~ 

men were subjected to alternating reversed horizontal loads 

with constant vertical loads at the tops of columns except for 

the specimen of B-H~I without vertical loads. Structural ro

und bars SR 35 ( 9¢) were used as main bars with special arra

ngements in connections as shown in Fig.l (d) and (e). Loading 

and measuring methods as well as materials were nearly the sa

me as in the Series A. 

TEST RESULTS 

In Table 2 are listed up the results of tests on stren-

gth. In Figs. 3 - 8 are shown typical load-deflection curveS 

and failure patterns. Based on the results of 23 tests, the 

following trend were observed: 

1) The stiffness before crack can be estimated for bra

ced frames, by assuming every connection as a pin-joint and 

both concrte and main bars in every member as linearly effecti

ve. The calculated value as rigid joint is only 6% higher even 

for the specimens with the depth to length ratio of 5 than that 

as pin- joint. ( Fig. 9 ). 

2) First cracks were observed at the bottom of column 

subjected to tension. The stress at first crack is about 0.08 

0.125 Fc ( Fc; cylinder strength) ,obtained by assuming as 

rigid joints. The deflection ( ratio to height) at first cra
-':! 

ck is about 0.15 mm ( 0.25 x 10 rad.) for the specimens with~ 
-3 

out axial loads and about 0.30 mrn ( 0.5 x 10 rad.) for the spe-

cimens with axial load of 40 kg/cm2.(Table 2 and Fig.10). 

3) The yielding load is 14 - 40 % higher for the speci

mens ( 11,111 and N ) of the Series A except for the I type 

specimens,than that caluculated by assuming every connection 

as a pin-joint and all main bars in tension members as yielding, 

that means that yielding strength is proportional to the rein-

forcement ratios of main bars. These percentage can be attri-

buted mainly to bending and shear resistances of compression 
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members. The deflection ( ratio to height) at yielding load 

is about 1.5 - 2.1 rom ( 2.5 - 3.6 x 16~rad.),increasing with 

maln bar reinforcement ratios and with axial 10ads(Table 2). 

4) The I type specimens in the Series A failed at con

nections before or about reaching the yielding strength calcu

lated as pin-joints. The specimens of braced frames in the 

Series B,on the other hand, failed at compression members. For 

the former, being preliminary test specimens,the failure at 

connections might be able to be avoided if projecting parts 

were made at loading points in the same way as the specimens 

( 11,111 and N ), but test results indicate, at the same time, 

that some amount of hoops are needed to prevent the breaking 

out of main bars in connections. The cause of the premature 

failures for the latter will be explained below.(Table 2,Fig.l) 

5) The specimens( 11,111 and N) In the Series A hold 

the load higher than the yielding load calculated as pin-joi

nts, up to the deformation angle of frames( ratio of deflec

tion to height) of 1/50, except for the specimens of B-3-N. 

It should be noted that truss frames of reinforced concrete 

have considerable ductility, compared with shear walls,usually 

having the deformation angle of only 1/250 at ultimate. This 

can be infrred from the fact that the members composing truss 

frames have much larger ratio of length to depth than walls 

( Fig. 12 ). 

6) It 1S found desi,-able for braced frames having the 

members with little amount of hoops to obtain sufficient duc

tility,that axial force ( ratio to cylinder strength times con

crete area) of the compression members at the yielding load, 

calculated as pin-joints mentioned above, is below 0.4, which 

is the axial force level at balanced point in axial force -

moment diagram,although there were the ductile specimens ha

ving the members with the axial force ratio of more than 0.4 

( B-2-N and B-3-I1). It is also clarified that maximum shear 

stress(nominal) for the members of braced frames should be 
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( I) 
within 0.1 Fc( Fc = cylinder strength) to obtain sufficient du-

ctility. ( Figs. 13,14 and 15) 

7) The column of B-H-II specimen failed in buckling, 

shortly after the negative horizontal load following unloading 

at the deformation angle of 1/40 in the positive loading were 

applied. The load of this specimen was not well recovered even 

at the reversal of small deflection. The scale of the specimen 

leaves room for discussion but members with the length to dep

th ratio of more than 10 seem undesirable for truss frames. 

8) Simpler anchor methods( one bolting or plate welding) 

in connections than usual arragements were tested. These speci

mens failed at compression members below the yielding load ca

lculated as pin-joints because of the axial force ratios' being 

far beyond 0.4 for compression members at yielding load, altho

ugh main bars of larger diameter than in the Series A were used. 

It is,however,found that braced frames have higher resistance 

capacities than walls having the same volume of concrete and 

reinforcements ( Fig. 8 

CONCLUSIONS 

The main conclusions of these experimental studies are 

as follows; The truss frames of reinforced concrete including 

braced frames can be considerably ductile in addition to high 

stttfness and high strength if much care is taken of the both 

compression members and connections. Further researches are 

needed on practical simple anchor methods in connections. 
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TABLE 1 PROPERTIES OF SPECIMENS 

Symbols of 
Section of Members Axial 

--~ 

Stress 
Series 

Specimens 
Columns and Braeings Beams 

Appl ied 

Kind 
1) I 2) 

Type bXD (em') Pg (%) bXD (em') Pg (%) (kg/em') 

.-

J 
B -H r----- 10 x 5 2.07 10 x 5 2_07 0 

II 

I Column lOx 10 1.03 
B-Hp r----- 10 X 10 1. 03 0 

II 
Bracing lOX 5 2.07 

J 0.96 0.96 
I--

II : 0 
B-1 ~j 10 X 10 10 X 10 

1. 03 1.03 

N I 40 

A I 1. 93 a.96 
r--~, 

~-l 
0 

B-2 !-'m 10 X 10 10 X 10 

2.07 1. 03 

I N 40 

I----
I 10 X 10 3.86 10 X 10 I. 03 

1--' . --_ . 

II 0 
B-3 I------!I:, 13 X 10 3.18 13 X 10 0_80 

-_.-_.-

40 
I 

R I 10 X 10 0.96 10 X 10 0.95 0 

I 
! 

0 
B-H 

~ 
7 X 7 4_16 7 x 7 4 _16 -------

40 

I I r Columns lOX 10 2.08 
B B-Hp H 10 X 10 2.08 40 

.1 II • 

Bracings 7 X 7 4 _18 

W i I I Frame bD=loxlO, Pg=2.08% Plate t =2. 5em, Pw=1.26% 40 

R I 
I 

10 X 10 2.08 10 X 10 2_08 40 

Note 1) B = Braced Frame R= Rahmen W=Wall 

2) See Fig. 1 for Braced Frames 
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TABLE 2 RESULTS OF TESTS 

Symbols of 
Fi rst Crack Yield Load Maximum Load 

Series Spesimens 
I Deflection 

1 ) 1 ) 
Load Load Ratio to Deflection Load Ratio to Deflection 

--
-~ 

(ton)\ 
Calculated Calculated 

Kind Ty. 
(mm) (ton) i Value (mm) (ton) Value (mm) 

i 
, I 3.0 I 0.14 7.0 0.73 1.5 8 0.83 4.0 

I 

I 

B-H I 
II 2.6 0.12 11.0 1.14 1.6 12.8 1. 33 1.7 

i 
I. 

I 3.5 0.14 9.0 0.94 1.5 9.8 1. 02 4.0 
B -Hp 

II 3.5 0.16 13.0 1. 36 1.6 13.7 1.42 2.2 
i - .--- l-

I 
I I 5.0 0.15 16.0 1. 05 2.1 16.0 1. 05 3.0 
; 

II 5.5 0.14 13.5 1.40 l.6 13.7 1. 43 5.0 
! 

B-1 - -----~- ----_ .. 
, 

III 6.0 0.16 13.2 1. 38 1.7 13.7 1. 43 3.0 

i 
iN I 

12.0 0.3 24.0 1.36 1.7 24.0 1.36 1.8 , 

A I 5.5 I 0.14 18.0 0.92 1.8 23.0 1.17 6.0 
! --- - ----- -------

I I 1.30 I II 7.0 0.16 
125 . 0 1.9 26.0 1. 35 3.5 I ; 

B-2 I 

III 6.0 0.14 123.0 1.19 1.9 23.3 1. 21 4.5 , 
i 

I 
N 16.0 0.3 35.0 1.28 1.9 36.0 1.32 2.1 

I 
I 7.0 ; 0.16 36.0 0.96 2.2 40.0 1.06 3.6 

; II 8.5 0.17 46.0 1.19 2.1 48.0 1. 25 7.0 
B-3 

III 10.0 0.14 45.0 1.17 2.0 47.7 1. 24 7.5 

I N 21.0 O. 3 60.0 1. 22 2.1 60.0 1.22 2.2 

! R I 0.9 0.13 2.3 0.92 4.0 3.27 1. 31 12.0 
! 

, I 8.0 0.2 18.0 0.56 1.0 - - -
B-H 

II 
I 

8.0 0.19 26.0 0.82 3.6 27.5 0.86 9.4 

I I 12.0 0.30 30.0 0.85 3.9 32.2 0.89 7.1 
B B -Hp 

I 

II 12.0 0.30 29.5 0.81 3.7 31. 0 0.86 4.8 

I W i I 8.0 0.2 18.0 1.18 1.4 22.5 0.48 2.9 
I 

, I 

, 

R I 2.0 I 0.14 4.5 t.37 2.0 5.7 1. 73 2.6 

)Jote 1) Calculated values for braced frames were obtained by assuming every connection as a pin -joint 

and all main bars in tension members as yielding. 
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The behaviour of two quarter full size seven storey reinforced 
concrete coupled shear walls, with conventionally and diagonally 
reinforced coupling beams, subjected to static reversed cyclic 
loading to simulate seismic effects, is compared in terms of stiff
ness degradation, ductilities attained and energy absorption 
capacitys In the walls coupled by conventionally reinforced 
coupling beams, the sliding shear failure of the beams limits the 
energy absorption capacity of the structure. In every respect the 
superior performance of the structure containing diagonally reinforced 
beams is established. The use of ductile diagonally reinforced 
coupling beams enabled a considerable portion fof the total energy 
to be dissipated by the coupling system thereby relieving plastic 
hinges in the walls. The results show that with careful detailing, 
coupled shear wall structures can be made to possess all the 
desirable features of an effective earthquake resistant structure. 

INTRODUCTION 

In many tail buildings coupled shear walls provide the required 
stiffness and strength to resist lateral loads resulting from gravity, 
wind and earthquake effects. The fundamental behaviour of the typical 
coupled shear wall structures has been identified in numerous stUdies 
(5,7,8 and 9). It is now recognised that it is not economical to 
resist forces generated by seismic disturbances within the elastic 
range of behaviour. Therefore, for most earthquake resistant 
structures ductile behaviour is an essential prerequisite. Building 
codes (1,4) generally require the shear walls to be designed for 
resisting larger equivalent lateral forces compared to the rigid 
jointed frames of identical fundamental periods of vibration. 

However, definite experimental evidence (6) is now available 
to show that carefully designed and detailed shear walls can be made 
to behave in a ductile manner. This paper reports briefly the 
results of this inVestigation (3). 
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Quarter full size shear wall models (Figures 1) one with 
conventionally reinforced beams and the other with diagonally 
reinforced spandrels, were subjected to high intensity alternating 
cyclic loading simulating seismic effects. The reinforcements in 
the walls of both these specimens were identical. 

Both the walls were designed in such a way that yielding 
could be expected to occur at the base of the walls only after all 
the coupling beams had yielded. This was in accordance with the 
sequence of plastification desired in a proto type structure where 
the designer would wish to protect the walls against permanent damage 
(2). Lateral point loads of equal intensity were applied at the 
3rd, 5th and 7th floors in alternate directions. This simulated a 
triangular distributed load commonly used in building codes (1,4). 
Some of the load was limited to produce stresses within the elastic 
range, but generally large yielding was imposed upon the structure 
in a cyclic fashion. 

For convenience the models Were tested in a horizontal po~ion. 
As Figure 2 shows wall B was attached to a steel truss which provided 
the base fixity required. In the background is wall A which was 
erected after destruction. 

LOAD-DISPLACEMENT RELATIONSHIPS 

The most revealing comparison of the two structures can be 
made by studying the load-displacement relationships obtained during 
the test for each model. Figure 3, giving the deflection at the 
top ,floor level of Wall A with conventional beams, shows that 
considerable ductility was attained with little loss of strength 
during cyclic loading. However, the pinching of the hysteresis 
loops, characteristic of the breakdown of shear resisting mechanisms 
in reinforced concrete members, aDd the loss of overall stiffness 
are evident. 

Figure 4 presents the load-roof deflection relationShip for 
Wall B with diagonally reinforced coupling beams. It shows con
vincingly the superior performance of this structure. The hysteresis 
loops not only show large ductilities With no loss of strength but 
also indicate the stable characteristics of a ductile steel structure. 

When the difference in the responses of the two test structures 
are examined 1 t 'becomes evident that the pinching 1n the hysteresis 
loops? 1.e., the inferior energy absorption capaci'ty, of Wall A 
results from the inferior performance of conventionally reinforced 
coupling beams. 

It is inevitable that with each excursion past; yield SOme 
damage occurs in a reinforced concrete structure. the damage and the 
consequent loss of stiffness of each of the components in a coupled 
shear wall will determine the overall structurel stiffness. A 
progressive softening, as a result of high intensity cyclic loading, 
particularly at low levels of loading, may lead to undesirable 
dynamic response during certain instants of the seismic excitation. 



It is desirable therefore to design and detail the structure in 
such a way that a reasonable stability in stiffness is ensured. 
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As the reinforcing of all the walls of the two test specimens were 
the same, the degradation of overall stiffness during similar load 
cycles can be attributed to the performance of the coupling beams. 

DUCTILITIES ATTAINED 

The displacement ductility with respect to the top floor lev~l 
of the test specimens is defined in Figure 5a. The displacement 
ductility in the :first load cycle is fi l = .D.. 1/ '!:::"y<> In the second 
and third load cycles the imposed ductilities may be defined as 
M 2 = D. c,/ 1::::. Y and ,M 3 = Jj,3/ JJ. y respectivelye 

Displacement ductilities, thatcorrespond with positive or 
negative (reversed) loadings, are plotted for each of the two test 
specimens in Figure 5b. The peak loads, associated with the maximum 
ductilities imposed in the "plastic" cycles, are also recorded. 
It is seen that cycles 5 and 9 are the first high intensity cycles 
for Walls A and B respectivelys In both walls the imposed ductil
ities in the final cycles were of the order of 10 to 15. The 
ductility in Wall B during the final cycle would have been much 
larger had an unexpected buckling failure at ground floor level not 
occurred. 

To demonstrate once more the aPllity of these coupled shear 
walls to be ductile Figure 5c is presented. In this the maximum 
static load sustained is plotted against the cumulative ductility as 
the test loading progressed. Because of the strain hardening of the 
reinforcement, for which no allowance was made in the prediction of 

* * the ultimate load capacity Pu (A) and Pu (B) of the mOdels, upto 
18% higher loads were attained in the tests. According to the Code 
definition of rtadequate" ductility the minimum cumulative ductility 
required in each direction is 4 x 4 = l6 with a strength loss of 
not more than 20%. Figure 5b shoWS that the superior wall suffered 
negligible loss of strength while twice the minimum cumulative 
ductility (i.e. 2 x 16 = 32) was imposed upon it. This demonstrates 
a remarkable performance for a reinforced concrete structure. It 
suggests that carefully detailed ductile coupled shear walls are 
likely to offer the highest degree of protection against both 
moderate and very large seiSmic disturbances. 

ENERGY ABSORPTION PROPERTIES 

The term "ductility", discussed in the previous section, is 
generally used to indicate the overall energy absorption capacity 
of the structure. However, in real structures this evaluation is 
incorrect, for there is no allowance made in it for the possible 
loss of strength and the degradation of stiffness, both of which 
will reduce the ability to dissipate energy. 
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To quantify the energy absorption characteristics the total 
energy~, absorbed by the models, was expressed in terms of the 
base shear P and the top floor displacement ~, based on an assumed 
linear deflection profile of the walls as shown in insert of 
Figure 6. 

Numerous measurements showed that nearly the entire lateral 
wall deflection resUlted from elastic and plastic deformations near 
the base and that above first floor level the walls remained 
practically straight. 

The energy absorbed by the model is thus: 
E = 0.70 x area enclosed by the hysteresis loops of Figure 3 

and Figure 4 for Walls A aDd B respectively. 

The factor 0.70 has been introduced to take into a.ccount the work 
done by the resultant force P at fifth floor level. 

Figure 6 shows the relationship between the eUmulative energy 
absorbed and the cumulative displacement ductility for each of the 
models which appears to be linear. During the final cycles the 
energy absorbed up to the maximum loads attained, and the estimated 
energy recovery were considered to assess the cumUlative energy 
dissipated 0 The figure shoWs that for the Same cllmulative displace. 
ment ductility the energy absorbed by wall B is nearly twice as much 
as that by Wall Ao 

ENERGY DISSIPATION BY THE COMPONENTS OF' WALL B 

Extensive strain and displacement measurement at all stages of 
the loading of model Wall B enabled the approximate evaluation of 
the energies stored during the elastic part of the response and also 
the energies dissipated by the components during postelastic 
deformations. The total energy absorbed at any stage of the loading 
E may be expressed as the sum of the energies absorbed by the 
coupling beams E:b and by the Walls E:w• In each of' these two sets 
of components the energy absorbed may be divided into two parts. 
One originates from energy stored during the elastic range of 
behaviour. 1.e6 Ebe and Ewe' and the other is the energy dissipated 
during excursions into the plastic range of deform.ation, i.e. Ebp 
and ~. 

For a typical elasto-plastic load cycle (such as cycle 9 shown 
in Figure 4), the four energy components defined above, are shown 
in separate bands in Figure 7. A detailed analysis for obtaining 
these energy components has been reported elsewher<e (8). For con
venience the energy absorbed by the structure at any load is 
expressed as a percentage of the total energy absorbed at the 
attainment of the theoretical ultimate load P:. The load is shown 
as a fraction of the theoretical ultimate value. The energy 
stored during the elastic part of the response and the energy 
dissipated through plastic deformations are separated into two 
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broad bands. The total energy absorbed by the model structure 
was obtained from the area under the load-deflection curve for 
cycle 9 given in Figure 4. As expected, this was a little larger 
than the sum of the four energy components derived independently. 
This is because the energy absorption due to axial and shear 
forces in the walls and anchorage displacements at foundation level 
were not included. The major part of the energy absorption due to 
these causes, denoted in Figure 7 as "others", is likely to be 
irrecoverable. It wa~ found to be less than 10% of the total 
energy at any stage of the loading. Figure 7 reveals that at the 
onset of yielding in the walls 20% of the energy was already 
dissioated, mainly by the coupling beams. The disSipation dueto 
plastic distortions increased to over 30% when the theoretical 
ultimate load was reached. At the maximum load attained in this 
cycle, corresponding with a displacement ductility factor of 2, 
over 60% of the total energy was dissipated and this dissipated 
energy was over 150% of the total energy absorbed at the theore
tical ultimate load. It is also seen that the major source of the 
energy dissipation till the attainment of over 110% of the theore
tical strength of the structure originated from the coupling system 
and not from the walls~ This must be considered as a desirable 
feature of the elasto=plastic behaviour. 

ENERGY - STIFFNESS CONSTANT 

The energy absorption capacityE may be computed as explained 
previously. To evaluate quantitatively the loss of stiffness 
during progressive cyclic loading, the load sustained by each of 
the mOdels in the corresponding cycles at a displacement equal to 
twice the theoretical top floor yield displacement i.ee linch 
(2.54 em), is taken as the representative stiffness S during that 
cycle. Generally, researchers have found it difficult to quanti
tatively assess the performance of structures based on the dual 
criteria of stiffness during service load and ductile behaviour at 
ultimate stages. This difficulty may be OVercome by devising a 
constant termed Energy Stiffness Constant. This energy-stiffness 
constant ESC is defined as t he product of total energy E: and. the 
representative stiffness S during the cycle under consideration 
divided by the square of the theoretical ultimate load Pu.' • 2 
1.e. ESC = (E x s)/(PU ) • Figure 8 shows the cumulative energy 
stiffness constant for the various cycles for the two models. 
The larger the value of energy stiffness constant, the better is 
the performance. The performance of Wall B is about 3 times better 
when compared with that of Wall A. 

FAILURB MECHANISMS 

Wall-A: During the final load cycles the deterioration and 
the consequent spalling of concrete in the narrow compression zODe 
of the tension wall was severe near the inner single layer of 
compression reinforcement. (Figure 1)0 These two vertical bars 
buckled outward. Probably even larger ductilities could be 
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attained by providing at least two layers of verti.cal bars in the 
inner faces ot the walls and by effectively contalning the concrete 
in this region by binding steel. The average slope of the structure 
at failure was approximately 1:15. 

Wall B: The fal lure was 1ni tiated in the compression wall 
during the final load cycle. An inadvertent misalignment in the 
form-work resulted in a kink at the junction of the base block 
and the wall, and this caused the compression wall to buckle. The 
line of failure at ground floor level is clearly visible in Figure 1. 
In prototype structures, this type of failure cannot occur because 
of the restraint offered by the floor slabs. Henc~e this wall could 
have exhibited conSiderably more ductility. The average slope of 
the structure at failure was approximately 1:28. 

Figure I shows the models after test. It is evident that in 
Wall A during the final cycle all the beams failed by sliding shear. 

In spite of large yielding in the beams of Wall B, the beam 
distortions were much smaller and the damage was rnuch less than in 
Wall Ao 

APPLICATION TO DESIGN 

The improved performance of wall B results from the behaviour 
of diagonally reinforced coupling beams. Thus adequately detailed 
coupled walls, with diagonally reinforced coupling beams, fail 
predominently in flexural mode. For such Walls higher lateral forces 
when compared with rigid jointed frames as requir~~d by the code (4), 
need not be considered. This would result in the reduction in the 
cost of the shear core because of the savings in the quantity of 
steel .. 

CONCLUSIONS 

The performance of the two models, upon which very severe 
displacements were imposed, were compared in terms of stiffness 
degradation, ductilities attained and energy-stiffness criteria. 
In every respect the superior performance of Wall B, containing 
diagonally reinforced coupling beams, was identified. The reason 
for this was the arrangement of reinforcement, pa~ticularly in the 
beams, which enabled the major parts of the critical internal 
forces to be carried by steel rather than concrete. 

With careful detailing, particularly in areas where yielding 
can occur, coupled shear wall structures could be made to posses 
all the desirable features of an effective earthquake resistant 
structure .. 

The improved performance of the coupled shear wall with 
diagonally reinforced spandrel beams could be made use of and the 
coupled shear cores may be designed for apprOximately the same 
equivalent lateral seismic force as rigid jointed frames. This 



would lead to considerable reduction in the cost of shear core 
because of the savings in the quantity of steel. 

ACKN OWLEOO EMeNTS 

The above investigation was carried out in the Department of 
Civil Engineering, Uhiversity of Canterbury, Christchurch, New 
Zealand when the author was a Commonwealth Research Scholar under 
the supervision of Prof.T. Paulay and the financial assistance 
was providea by the New Zealand University Grants Committee. 

APPENDIX I - REFERENCES 

1. "Building Code Requirements for Reinforced Concrete, (ACI 
317-71) If, American Concrete Institute, Dotroi t, 1971, 78 pp. 

507 

2. Paulay, T., ttSome Aspects of Shear Wall Designlf, Bulletin of 
the New Zealand Society for Earthquake Engineering, Vol.5, NO.3, 
Sept. 1972, pp. 89-105. 

3. Paulay, T and Santhakwnar, A.R., "Ductile Behaviour of Coupled 
Shear Walls 11 , Journal of the structural Division, ASCE:, Accepted 
for Publication. 

4. "Recommended Lateral Force Requirements and Commentary"~ 
Selsmologic Committee, Structural Engineers, Association of 
California, (SBAOC) , 1968. 

50 I~esponse of Multistorey Concrete Structures to Lateral 
Forces", Publication SP 36, American Concrete Institute, Detroit, 
1973. 314, pp. 

6.. Santhakumar, A.Ro, "The Ductility of Coupled Shear \'1a115", 
Ph.D. TheSiS, university of Canterbury, Christchurch, New Zealand, 
Oct. 1974, 412 pp. 

7. stafford Smith B. and Coull, A., l~lastic AnalysiS of Tall 
Concrete Buildings ,t , State of the Art Report No.1, Technical 
Committee 21, Joint Committee for Tall Buildings Reports~ 
Vol.1II-2l, pp.9-23. 

8~ "SympOSium on Tall Buildings with Particular Reference to 
Shear Wall Structures", University of Southampton, April, 1966, 
Oxford, Pergamon Press, 1967. 

90 Winokur, A. and Gluck, J., "ffitimate Strength Analysis of 
Coupled Shear Walls", Proceedings,American Concrete Institute 
Journal, Vole63, NOo12, Dec. 1968, PPel029-1035. 



,. \)
 

, . ~
 ,l
 

S
H

E
A

R
 W

A
LL

 A
 

if
-P

ia
 

, 
" 1 1 "{

 

S
H

E
A

R
 

W
A

L
L

 
B

 

FI
G

U
R

E 
1 

TH
E 

RE
IN

FO
RO

EM
EN

T 
IN

, 
AN

D 
~H

E 
OR

AO
K 

PA
T

T
E

R
N

S 
O

F.
 

Q
U

A
R

TE
R

 F
U

L
L

 
SI

Z
E

 
SH

EA
R

 
W

A
LL

 
M

O
D

EL
S 

SU
B

JE
C

T
E

D
 

TO
 

R
EV

ER
SE

D
 

C
Y

C
L

IO
 

LO
A

D
IN

G
 

U
1

 
o C

O
 



A
 

T
 P 1
P

2P 3
 

W l 
W

2 

G
(;

 

R
 

y N
 

13
 

FI
G

U
R

E 
2 

DO
UB

LE
 

C
A

N
TI

LE
V

ER
 L

O
A

D
IN

G
 

SY
ST

EM
 

W
AL

L 
A

 A
FT

ER
 F

A
IL

U
R

E 
AN

D 
W

AL
L 

B
 S

ET
 

U
P 

FO
R 

TE
ST

IN
G

 

M
od

el
 

S
h

ea
r 

W
al

l 

B
al

an
ci

n
g

 T
ru

ss
 

S
ta

ti
o

 L
oa

ds
 

S
im

u
la

ti
o

n
 o

f 

G
ra

v
it

y
 L

oa
ds

 

G
u

id
in

g
 C

h
an

n
el

s 

C
en

tr
al

 R
ea

ct
io

n
 

Y
o

ke
 

C
en

tr
al

 P
in

 

B
as

e 
B

lo
ck

 

U
l 

o 1.
O

 



510 

14' DeflectiollL (inches) 
f--~~--,lfHW-~ Firs t yield in coupling beam 
l7'4-+lUf-.....Ii''--+1H-U.rl'irst wall yield 

1.0 ( 1 inch = 2.54 em. ) 
LC+-'l-+~~-l 02 

FIGURE :5 LOAD-ROOF DEFLECTION RELATIONSHIP FOR WALL j, 

First wall y1e1d- pf' 

First beam yield. 1.1 ffiT~~~"'=7t'~ 
1.Q 

Cycles 1 to 8 

o • ~ ~::....r---If--+-7fr----7'f--1 

2 , 4- ~ 
Defleo'tioll ( inohes ) 

...... """----...irlJt ,tall yield 

L£....../I;r ............ ~O '1rat l)eam yield 
L=~~~~~~~~~1.2 

16 t:14 12 10 
Qyole No.'" 

FIGUD 4 LOAD-ROOF DEFLEO~IOlf RELATIONSHIP FOR WALL B 
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FIGURE;8 ~ DEFINITION OF DISPLAOEMENT DUCTILITY 
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FIGURE 5b OVERALL DUCTILITIES ATTAINED 
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FIGURE 50 COMPARISON OF CUMULATIVE DUCTILITIES 
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A structural model of a guyed tower (scaled by dimensional analysis 
principles) is subjected to simulated earthquake ground motion, by means 
of a shake table driven by electro-hydraulic apparatus. 

The guyed tower structural model has been scaled from a prototype 
previously reported in the literature. A total of fifteen variables are 
scaled, including ground and structure acceleration, velocity, and dis
placement, material constants and density, structure geometry, stress 
levels and gravitational constant. 

Brass in commercially available sizes is the material selected to 
model the tower mast and guy cables. 

The prototype structure is 1200 ft (365.8 m) in height, and the 
structural model (with a length scale factor of 106.4) therefore stands 
135.3 in (3.438 m) high. 

The shake table upon "which the model is mounted consists of a 3 ft 
(0.914 m) by 3 ft (0.914 m) by 3 in (7.62 em) steel plate (with aluminum 
struts to anchor the guy cables) mounted on linear bearings. 

The structural model is subjected to a series of sinusoidal base 
motions of constant frequency and maximum amplitude, for successively 
larger amplitudes of base motion. 

The guyed tower mast is instrumented with five accelerometers at 
the mast top and base, and at the three cable junctions. The tower mast 
is supported by a force transducer which senses the dynamic base shear 
of the tower mast in the direction parallel to the base motion. 

The acceleration and force signals are amplified by charge ampli
fiers and recorded on a multi-channel tape recorder. The raw data is 
then digitized, and velocities and displacements obtained by numerical 
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integration. 

Curves are plotted for maximum transverse mast displacement versus 
driving frequency, for successively larger amplitudes of base motion. A 
series of curves is also constructed for the magnitude of the maximum 
dynamic base shear (a measure of energy input) as a function of forcing 
frequency for given amplitude of base motion. 

INTRODUCTION 

The dynamic response of a structure subjected to earthquake-induced 
ground motion may typically be generated in one of three ways: 

1. by instrumenting a prototype structure, and recording and pro
cessing any subsequent ground motion. Many important structures have 
been permanently instrumented in this manner. 

2. by subjecting a mathematical model of a structure to simulated 
earthquake ground motion, which may consist of digitized records of 
actual ground motion, or a statistically generated earthquake record. 

3. by subjecting a structural model (scaled by dimensional analy
sis principles) to simulated earthquake ground motion, by means of a 
shake table driven by electro-hydraulic apparatus. 

For structures such as guyed towers, the approach outlined in (3) 
is particularly valuable. Guyed towers are of simple geometric configu
ration, and contain relatively few secondary and non-structural compo
nents. A structural model of the prototype structure may therefore be 
constructed with reasonable accuracy. 

Moreover, the geometrically nonlinear response of guyed tower struc
tures to earthquake ground motion renders mathematical modelling infeasi
ble (no suitable mathematical model of a guyed tower structure has as 
yet been g3nerated). 

Model test:i.ng, in the absence of data recorded from existing proto
type structures (1), is therefore currently the most feasible method of 
determining the response of guyed towers to earthquake ground motion. 

STRUCTURAL MODEL 

The prototype guyed toper structure parameters used to perform the 
dimensional analysis (1,7,8) are excerpted from a paper by Goldberg and 
Gaunt (6). The overall geometry of the prototype tower is given in 
Fig. 1, while the prototype cables and mast parameters are summarized in 
Table 1. Symbol definitions are tabulated under Appendix II. - Notation. 
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TABLE 1. - PROTOTYPE TOWER PARAMETERS 

Parameter Level 1 Level 2 Level 3 
(1) ( 2) en (4) 

D , in inches 1.375 1. 750 2.250 
(~illimeters ) <:34.93 ) (44.45 ) 57.15) 

W , in pounds 3.94 6.38 10.55 c (57.5) 93.1) 154.0) per foot 
(newtons per meter) 

E A, in ki1opounds 28,400 46,000 76,000 
( ~ilgnewtons ) (126,000) (205,000 ) (338,000 ) 

A , in square inches 64.0 64.0 64.0 
(~entimeters squared) (413.0) (413.0) (413.0) 

1m, in inches to the fourth 3.455x10 5 3.455xl0 5 3.455x10 5 

power (centimeters to the (1. 438xlO 7 ) ( 1. 438x10 7) (1. 438xlO 7 ) 

fourth power) 

P , in kilopounds 5,790 5,790 5,790 
(1I!ilonewtons) (25,750) (25,750) (25,750 ) 

H , in kilopounds 15.3 18.6 20.1 
( ~ilonewtons ) (68.1) (82.7) (89.4) 

Table 2 summarizes the results of the dimensional analysis, as a 
function of the length and elastic modulus scale factors A~ and Ae' 

TABLE 2. - MODEL SCALE FACTORS 

Scale Factor 
( 1) 

Ground, structure displacement, Aug' 

Ground, structure velocity, A ,A vg vs 
Ground, structure acceleration, A , ag 
Cross-sectional area, A a 
Moment of inertia, A. 

l 

Material density, A p 
Stress level, AO 

A us 

A as 

Function 
( 2) 

AQ, 
A 1/2 

Q, 

1 

A2 
Q, 

A~ 
A A_l 

e Q, 
A e 
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The relationships given in Table 2 for the assumption of unit gravity 
scale factor may be verified, for example, in Newmark and Rosenblueth (8). 

Brass in commercially available sizes is the material used to fabri
cate the structural model. Based on the selection of .049 in (1.24 mm) 
brass wire for the model mast elements, the length scale factor At is 
computed as 1/106.4, and the overall height of the structural model is 
therefore 135.3 in (3.438 m). 

Table 3 summarizes the structural model parameters computed on the 
basis of the data summarized in Tables 1 and 2. The cable anchor tension 
is computed as a function of the cable geometry and the horizontal com
ponent of cable pretension (9,12). 

TABLE 3. - MODEL PARAMETERS 

Parameter 
( I) 

Mast inertia, inches to the fourth 
(centimeters to the fourth) 
Mast weight, pounds 

(newtons) 
Buckling Load P , pounds 

(newtons) m 

Cable diameters, 
inches (millimeters) 

Cable unit weights, 
pounds per foot 
(newtons per meter) 

Cable anchor tension, 
pounds (newtons) 

Cable anchor stress, 
kilopounds per sq in 
(newtons per sq meter) 

level I 
2 
.3 

level 1 
2 
3 

level 1 
2 
3 

level 1 
2 
3 

Exact Scale 
( 2) 

2.70xI0- 3 

( 0.112) 
1l.5 
(51.2) 
257 
(1140 ) 

.013 (.330) 

.016 (.406) 

.021 (.533) 

.00153 (.0223) 

.00248 ( .0362) 

.00411 (.0600) 

0.781 (3.47) 
1.27 (5.65) 
1.74 (7.74) 

5.97 (4.12xl0 7
) 

5.98 (4.12xl0 7 ) 

4.96 (.3. 42xlO 7 ) 

Actual 
(3) 

2.70xlO- 3 

( 0.112) 
1l.5 
( 51. 2) 
257 
( 1140) 

.018(.457) 

.020 (.508) 

.022 ( .559) 

.00153 ( .0223) 

.00248 ( .0362) 

.00411 ( .0600) 

0.781 (3.47) 
1.27(5.65) 
1.74 (7.74) 

3.06 (2.11xI0 7
) 

4.05 (2.79xI0 7 ) 

4.58 U.16xl07) 

Inspection of Table 3 indicates that, with the exception of the 
cable stresses, the structural model satisfies all scale factors identi
cally. 

The cable anchor tensions are computed in order to properly preten
sion the model guys during installation of the structural model. Wherever 
required, lead stripping and bead is utilized to obtain the required mass 
magnitude and distribution. 
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Figs. 2 and 3 indicate the overall configuration ~d detailed geome
try of the installed guy tower structural model. 

SHAKE TABLE AND DRIVING APPARATUS 

The shake table upon which the model is mounted consists of a 3 ft. 
(0.914 m) by ) ft. (0.914 m) by ) in. (7.62 cm) steel plate (with aluminum 
struts to anchor the guy cables) mounted on linear bearings. A hydraulic 
actuator capable of providing a stroke of plus or minus 0.25 in. (0.635 
cm) in the frequency range 0 - 10 Hz drives the shake table. Fig. 4 illu
strates the test configuration. 

SIMULATED GROUND MOTION 

The structural model is subjected to sinusoidal base motion of con
stant frequency and maximum amplitude. For a given load cycle, steady
state response is generated for 10 sec. duration. The input signal is 
then cut and the transient response of the model is recorded for an addi
tional 20 sec. duration. 

In this manner, the dynamic response of the structural model is moni
tored, for given maximum base double amplitudes of .005 in. (.127 mm), 
.010 in. (.254 mm), and .015 in. (.381 mm), over the frequency range 2.0 -
9.0 Hz at 1.0 Hz intervals. 

SIGNAL GENERATION AND DATA PROCESSING 

The guyed tower mast is instrumented with five accelerometers at the 
mast top and base, and at the three cable junctions. 

The tower mast is supported by a force transducer which senses the 
dynamic base shear of the tower mast in the direction parallel to the 
base motion. Fig. 3 illustrates the method of support of the tower mast, 
which rests on a knife edge (oriented normal to the direction of motion) 
supported by a vee-block secured to the force transducer. The accelero
meter mounted at the tower base is also visible in Fig. 3. 

The acceleration and force signals are amplified by charge ampli
fiers and recorded on a seven-track magnetic tape recorder. 

The raw data is then digitized at a rate of 103 samples per second, 
resulting in a Nyquist (cutoff) frequency (2,4,5,13) of approximately 
50 Hz. 

Prior to performing the numerical integration, the raw acceleration 
data are smoothed using Hanning's weighing coefficients (4,5.1). 

a. = 0.25a. 1 + O.50al· + 0.25al·+1 lnew l- (1) 

Accelerations are assumed to vary linearly within a time increment 
h, yielding a parabolic variation in velocity and a cubic variation in 
displacement. 
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FIG. 2. - MODEL TOWER CONFIGURATION 



520 

FIG. 3. - MODEL GEOMETRY 

FIG. 4.- SHAKE TABLE CONFIGURATION 
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h 
v. + ~2 a. + a. 1) 

l l l+ 
( 2 ) 

h
2 

xi + 1 = xi + hv i + 7! 2ai + a i + 1 ) ( :3) 

Zero initial conditions for displacement and velocity are assumed to 
hold at the beginning of each steady-state run. 

After computing the uncorrected velocities CEq. 2), a least-squares 
minimization procedure is applied in order to adjust the uncorrected 
accelerations (3,4,5,10,13). 

where, for 

A 

the correction 

a. lcorr 

/T v( t)dt 

,/T 
C 

6 
I 

coefficients Co' Cl ' 

C 300A + 
0 T3 

Cl 
1800A 

+ 
~-

B fT v(t)t2dt 

v(t)t3dt 

C2 are given by (10) 

900B 630C 
~-~ 

5760B 4200C 
~ + ---;.r;-

C = _ 1890A + ~ _ 4725C 
2 T 5 T -----:;r-

where T represents the time duration of processed velocities. 

( 5 ) 

(6) 

In order to generate the integrals A,B,C, Waddlefs formula (with 
an error of order h~ is used (11). 

The smoothed, uncorrected accelerations are then adjusted using 
Eq. 4, and the subsequent corrected accelerations are integrated twice 
to obtain velocities and displacements. 

Because of drift generated by the integration, it is necessary to 
compute and remove the mean accelerations and velocities prior to inte
gration. This is physically equivalent to zero mean displacement drift, 
which characterizes the system under consideration. 
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TOWER RESPONSE 

Figures 5 and 6 summarize envelopes of maximum dynamic base shear 
and maximum mast tip displacement for the double amplitudes +.005 in. 
(.127 rum), +.010 in. (.254 rum), and +.015 in. ( .381 rum) over-the 
frequency range 2.0 Hz to 9.0 Hz at 1.0-Hz intervals. 

These curves may be interpreted as "inverse" response spectra, since 
the model structure parameters are held constant, while the amplitude and 
frequency of the harmonic forcing function are varied. 

For a condition of steady-state oscillation, the dynamic base shear 
is proportional to the energy absorbed (and therefore dissipated) by the 
structure. As Fig. 5 indicates, the magnitude of the maximum base shear 
is clearly a function of the amplitude of base motion. 

Note that the maximum recorded magnitude of base shear, 7.7 Ib 
(34 N), is approximately half the total model structure weight of 14.2 lb 
(63.2 N). 

Examination of Fig. 6 indicates that the envelopes of maximum mast 
tip displacement are also clearly related to the magnitude of base 
motion. Moreover, the overall maximum displacements are seen to occur at 
the low end of the driving frequencies. This reflects tower mast 
response to the cable fundamental frequencies, which fall in the range 
1.7-2.5 Hz (perturbation and visual count during pretensioning). 

CONCLUSIONS 

A guyed tower structural model has been designed, fabricated, 
instrumented and subjected to harmonic base motion. 

Envelopes of maximum dynamic base shear and maximum transverse mast 
tip displacement as a function of amplitude and frequency of base 
excitation have been presented. 

The data presented therein are directly applicable to earthquake 
design of guyed towers in areas prone to long ground motion exhibiting 
prevailing periods of vibration. 
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APPENDIX II. - NOTATION 

The following symbols are used in this paper: 

a. acceleration at time interval i 
l 

v. velocity at time interval i 
l 

x. displacement at time interval i 
l 

h time increment 

D cable diameter c 
W cable weight c 
E mast elastic modulus c 
A mast cross-sectional area c 
I mast moment of inertia m 
P mast buckling load m 
H horizontal component of cable tension c 

At length scale factor 

A elastic modulus scale factor 
e 

A A ground, structure displacement scale factor ug' us 
A A ground, structure velocity scale factor vg' vs 
A A ground, structure acceleration scale factor ag' as 
A cross-sectional area scale factor a 
A. moment of inertia scale factor 

l 

Ap material density scale factor 

A stress level scale factor a 
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This paper presents the experimental studies carried 

out on reinforced concrete columns with double spiral web

reinforcements wound and welded on longitudinal bars by the 

machine which has been developed, aiming at the prefabrica

tion of reinforcement bars assemblages as well as the impro

vement of columns as regards as earthquake resistance capaci

ties. 
About thirty specimens have been tested,subjected to 

alternating repeated anti-symmetrical loads with constant 

axial load. The variables considered in this investigation, 

are shear span ratio, axial load level, the amount and diame

ter of web reinforcement, the angle between web and longitu

dinal reinforcements and the with or without welding between 

both the reinforcements. 

It has been found from the tests that double spiral web 

reinforcements are much more effective for reinforced concrete 

columns than conventional web reinforcements. 

This study is sponsored by Japan Public Corp. of Housing 
with the supports of The Ministry of Education of Japan. 
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INTRODUCTION 

One of the most important factors in the design of 

tall buildings in such countries having large seismic loads 

as Japan, is how to obtain sufficient shear strength for the 

columns with small shear span ratio. 

The objective of this paper is to review recent resea

cJ~~arried out at University of Hiroshima, on reinforced con

crete columns ,fabricated by the machine as shown in Fig.?)and 

to use these results to provide a means of determining seismic 

design for columns with double spiral web reinforcements. 

TEST PROGRAM 

The tests specimens ,as shown in Fig.2,are one-third fu

II scale of the columns which are subjected to anti-symmetri -

cal lateral loading with or without constant axial load as 

shown in Fig.4. The variable elements of the specimens are 

shown in Table 1. Structural deformed bars SD35(D25,s0Y 3.82 

t/cm2 and D29,5Uy = 3.75 t/cm2) were used as logitudinal rein

forcements in columns and steel wire( 5~,9¢ ) and structural 

round bars SR24(9~ ) were used as double spiral hoops(web re

inforcements) and conventional hoops respectively. The stress 

strain curves for these hoop materials are shown in Fig.3. 

The ordinary mixed concrete consisted of portland cement, ri

ver sands and usual size aggregates were used and their com

pressive strength of cylinder are shown in Table 1. 

Specimens were subjected to more than ten times alter

nating lateral loads up to ultimate to study their hysteretic 

loop characteristics. The relative displacements due to the 

rotation between both up and down gauge houlders were measured 

as shown in Fig.4. The strains for both reinforcements and 

concrete were also measured by using wire strain gauges. 

* KB1504 in JIS ( Japan Industrial Standard ) 



TEST RESULTS 

The results of tests are shown in Table 2 and Fig.5-

13. Based on the results of 26 tests, the following trends 

were observed: 
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(1) The maximum load of double spiral hoop specimens wi

thout axial load is about 30% higher ,regardless of the shear 

span ratio 'a'nd web reinforcement ratio, than that of conventio

nal hoop specimens with the same ratio of web reinforcement. It 

Is about 24% and 15% higher for the specimens with axial load 

of 36.7 kg/cm2 and 73.3 kg/cm2 respectively( Table 2, 8) col.). 

(2) The maximum load is not influenced by the diameter of 

web reinforcement or the angle between web and longitudinal re

inforcements ( Table 2,8) col. No.3 _ lospecimens). 

(3) The loop of load-deflection is nearly the same In po

sitive and negative loadings for double spiral specimens while 

it is smaller in negative loadings for conventional hoop speci

mens( Figs. 5 - 13 ). 

(4) The resisting load does not decrease so much even in 

the range of large deflection for the double spiral hoop speci

mens with the web reinforcement ratios of 1.2% and 1.8% ( Figs. 

5 - 13 ). 

(5) The maximum load of the specimens with web reinforce

ment ratio of 1.8% is nearly the same with that of specimens wi

th w.r.r. of 1.2% but the resisting load at large deflections 

does not decrease even under high axial stresses of 73.3 kg/cm2 

Table 2, 6) col. Fig .10 ) . 

(6) The resisting load at small deflection is small for 

the specimens without welding, compared with that of specimens 

with welding but they are nearly the same at large deflection ( 

Figs. 5,6 ). 
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(7) The difference of loops between double spiral hoop 

and conventional hoop is larger for the shear span ratio of 1.5 

partly due to the fact that the double spiral hoop specimens 

reached their bending capacities ( Figs 11 - 13 ) . 

General examinations were made into the test results,on 

the crack strength, maximum strength and ductility. 

(8) There is little difference between double spiral hoop 

specimens and conventional hoop specimens regarding stress le

vels of bending crack, bending shear crack or middle inclined 

crack from which loads deflections increase more remarkably th

an before. Diagonal line crack or shear compression loads are, 

however, higher for double spiral hoop specimens. The relati-

ons among bending crack stress, middle inclined crack stress, 

axial stress applied and web reinforcement ratios are shown in 

Figs. 15- 16. Calculated value in these figures are based on 
(J) . 

Arakawa formula. ( Table 2 and Flg.14) 

(9) Web reinforcement share,Tw, in ultimate shear stren

gth of double spiral hoop specimens can be estimated by 

Tw =: 0.5.pw.s(}y ( pw.s6y f 80 kg/cm2 ) (1) 

in which pw is web reinforcement ratio and sOy is effective yl

elding strength for steel wire not having a definite yield poi

nt( 0.85·s6B ) while concrete shareTuc is calculated by Ono-A-
(3) 

rakawa formula. The above equation is also supported by the 

results of embedded strain gauges for steel wire as shown in 

Fig. 21- 23 . ( Fig. 19) 

(10) The deflection at maximum load increase with the va-

* 0.085 
Te =kc ( 500 + Fe ) M/Qd + 1.7 

** 
Tuc ( 0.90 + 0.115 

6/250 ).ku·kp M/Qd + 0.115 ( 180 + Fc ) 

ke,ku,kp: Coefficients dependent on d,d,and pt,respectively 
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lues of pWosOy, which is approximately calculated by the truss 

analogy as shown in Fig.20). It is also found that there is 

considerable confinement effects of double spiral hoop on the 

diagonal members in increasing ductility but little effects in 

increasing strength in the range of over 50 kg/cm2 in pw'SOy va

lues { Figs. 17 and 18). 

CONCLUSIONS 

The results from these tests are summarized as follows: 

(1) The maximum load of the specimens with double spiral 

hoop is much higher than that of conventional hoop specimens 

and the loop of load deflection curves is much more stabilized 

even at large deflections. 

(2) The web reinforcements share in ultimate shear stre

ngth for double spiral hoop specimens can be calculated by assu

ming the half of reinforcements reaching the effective yielding 

strength s 6 B ). 

(3) Further researches are needed to establish design for

mula of taking into considerations the loop stabilities at large 

deflections. 
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TABLE I-PROPERTIES OF SPECIMENS 

Symbol of Main Bar Web Re inforcement 
8) I 9) 

Specimens h/2 D. 2) I 3 ) 4) > 5) I 6) I 7) C(Jil" , ~o z 
No. 

I Pt (%l ~ P w (%) ¢ (mm) e (deg.) i Weld. ! s(Jv (kg/em') (kg /em') : (kg/em ) 

1 1.0 1.69 O. ---- I 
,-

j - ! - -- 203 
j 

O. , 
---- , -

2 1.0 1.69 O. -.- -- -- _ .. _-- i 203 73.3 ! 

3 1.0 I 1.69 0.6 9 65 Weld 5630 I 220 O. 
I 

4 1.() 1. 69 0.6 9 65 I Weld 5630 I 218 i 73.3 
! I 

5 1.0 1.69 0.6 6 63 Weld 5504 203 
1 

O. 
i 

-- -----

6 1.0 1 1.69 0.6 6 63 Weld 5504 
, 

203 36.7 
~-- ------ - ----._----- , ---- -.-

7 1.0 
I 

l.69 I 0.6 6 63 Weld 5504 , 203 73.3 

8 

~ 
l.69 i 0.55 9 i 45 Weld 4490 173 O. 

----.. .--- ---

9 l.0 l.69 0.55 9 45 Weld 4490 173 73.3 
--+ 

10 l.0 l.69 0.6 9 
I 

90 No Weld 3057 203 73.3 

11 1.0 1.69 1.2 I 9 65 Weld 5630 220 O. 

I 
l.69--1.21 

------ '-

12 1.0 9 65 Weld 4490 173 36.7 
------, 

13 1.0 ! 1.69 1.2 9 65 Weld 5630 218 73.3 i ----_. 

9 ! 65 
-- ----------. 

14 1.0 
! 

1.69 1.2 ;\10 Weld 4490 173 O. 
-'---'" -- ~-!----, -- --- -----

15 1.0 1.69 1.2 
I 

9- 65 No Weld 4490 173 73.3 
I -------- '-- ._----.-

16 1.0 I 1.69 1.2 9 90 No Weld 2943 220 O. 
'-. ._----- --0 - - -- -- - --<- ---

17 1.0 I l.69 1.2 9 90 :"0 Weld 2943 218 73.3 

18 l.0 ! 2.14 • 1.8 I 9 65 Weld 4490 173 O. +--- -------;...- , 
--- ---" --- --- '---- -0-I 

19 l.0 : 2.14 11.8 I 9 65 Weld 4,190 173 73.3 

20 1.5 
I 

1.69 I 0.6 
I 

9 65 Weld 5630 203 O. 

l. 5 I 
----- --- -_. ~---- ---_._.- -

21 1.69 i 0.6 9 65 Weld 5630 211 73.3 
--_ ... 1-----.. 

r ---I 
I 

-

22 l. 5 , l.69 0.6 1 9 90 No Weld 3057 231 73.3 

23 1.5 l.69 I l.2 9 65 Weld 5630 203 O. 
1--- I 

24 I 1.5 1. 69 1.2 9 65 Weld 5630 211 73.3 
t-.-- _. I - 1-----·-_·" -- --- --'--- -. -;1-- ----- .. ------

25 l.5 l.69 
1.2 -r, I ~;-f.0 Weld 

2943 203 O. 

I 
1.2 9-]-- 90 No ~~-I 

- - ----- -----,----- --- e 

26 1.5 l.69 2943 I 211 , 73.3 

Note -- 1) Shear Span Ratio, h : Clear Length of Column, D: Depth of Column. 

2) Tension Reinforcement Ratio, Pt = at/bD, at: Tension Reinforcement Area, 

b : Width of Col umn. 

3) '" b R . f R . P 2aw. 8 '" b R . f A "e eln orcement at10, w = -bx- Sin, a":,, e em orcement rea, 

x: Pitch, 8: Angle of Web Reinforcement against Main Ear. 4) Diameter. 

6) Spot Welding between Web Reinforcements and Main Bars 

7) Yield Point or Effective Yield Point (0.85 SO'B) 

8) Cylinder Strength. 9) il.verage Stress of Axial Load Applied. 
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TABLE 2-RESULTS OF TESTS 

Specimen I 1) 2) 3) 4 ) 5) 6) 7) 8) 91 10 ) ll) 
PB.C. PB.S.C. r B.S.C. P M.I.C. rMLC. P max, Tmax. P max. P rriax. Or. max. Failure 

No. ! (ton) (ton) (kg/em') (ton 1 (kg/em' ) (ton) (kg/em 2 
) 

- --- --

(em) C.fl.Pmax. Ca- P B.Y. Mode 

1 17.8 17.8 13.0 17.8 13.0 39.1 28.6 - 0.46 0.50 S.c. 

2 -- 44.9 32.9 35.0 25.6 44.9 32.9 - 0.32 0.25 j S.C. 

3 20.0 30.0 22.0 41. 8 30.6 70.8 51. 9 1. 30 0.82 1.06 ! S.c. 
------ 1-

4 40.0 46.5 34.1 50.0 36.6 67.3 49.3 1.12 0.57 0.50 S.L.B. 
---- _ .. - ----f- --~~:---

i 
5 17.2 20.0 14.7 30.0 22.0 70.8 51. 9 1. 30 0.83 0.50 

6 ; 29.5 40.0 29.3 56.0 41.0 70.0 51.4 1. 22 0.62 0.50 

7 30.0 50.0 36.6 30.0 22.0 70.0 51.4 1.16 0.50 0.20 

8 
I 14.0 18.0 13.2 20.0 14.7 65.7 48.1 1. 32 0.77 0.52 

9 I 
28.5 65.0 50.0 47.6 36.6 69.5 50.9 1. 27 i 0.56 0.25 I -1--c-----,- .--- ,- -.-

j 10 ,45.0 45.0 . 33.0 28.5 20.9 60.0 44.0 1.00 
i 

0.43 0.25 

11 r 20.0 20.0 14.7 15.3 11.2 89.5 65.6 , 1.28 I 1.03 0.97 
! 

12 28.0 50.0 36.6 57.0 41.8 92.7 67.9 1. 26 0.89 ! 1.03 

13 74.0 74.0 54.2 63.5 I 46.5 91.5 67.0 1.14 I 0.70 0.50 

14 20.0 30.0 i 22.0 42.0 30.8 77.8 57.0 1.12 0.91 2.04 

15 40.0 48.3 
I 

35.4 48.3 35.4 75.0 55.0 0.97 : 0.61 1. 14 
i i 

16 25.0 18.0 13.2 30.0 22.0 70.0 51. 3 1.00 I 0.82 ! 0.50 

17 62.8 49.0 i 35.9 60.0 44.0 77.2 55.6 1.00 I 0.59 0.50 

18 20.0 30.0 22.0 40.0 29.3 92.4 67.7 -
! 

0.87 0.85 

19 30.0 50.0 36.6 58.0 42.5 91.3 66.9 - 0.64 1. 00 
--- .... --

20 15.0 15.0 11.0 30.0 22.0 55.0 40.3 1. 32 0.95 1. 50 
c--- -- - -- ------ -----------_. -- - - ---- --- --

21 36.0 42.0 30.8 42.0 30.8 57.0 41. 8 1.08 0.66 1.50. 

22 27.5 50.0 36.6 40.0 29.7 53.0 . 38.8 1.00 0.61 0.75 

23 \ 15.0 30.0 22.0 30.0 22.0 68.8 \ 50.4 1.30 1. 19 3.08 

24 
; 

46.0 50.0 36.6 50.0 36.6 76.8 56.3 1.14 0.89 1. 50 
-- -c----- -- -

25 I 14.0 22.5 16.5 37.5 27.5 53.0 38.S 1.00 0.91 1. 50 

26 25.6 48.8 35.8 55.0 41.0 68.0 49.8 1.00 0.79 1. 50 

Note -- 1) Bending Crack Load (Initi~lly Observed). 

2) Bending Shear Crack Load. 3) Average Shear Stress at 21. 

4) :'liddle Inclined Crack Load. 5) Average Shear Strees at 4). 

6 ) :'Iaximum Load. 7) Average Shear Stress at 6). 

8) Ratio to :'lax. Load of Conventional Hoop's Specimen with the Same Web Reinforcement Ratio. 

91 Ratio to Bending Yield Load Calculated. 

S.c. 

: S.c. 

S.c. 

S.c. 

S.c. 

S.c. 

S.c. 

S.c. 

S.C. 

S.c. 

S.c. 

S.C. 

S.L.E. 

S.C. 

S.C. 

S.C. 

S.L.B. 

I 
S.c. , 

B. 

S.c.L.B. 
---

S.C. 

S.L.B. 

10) Deflection at :'Iax. Load. 11) S : Shear Failure Type, S.C.: Shear Compression Failure Type, 

B : Bending Failure Type, L.B.: Lateral Buckl ing. 
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The induced torsional response of a one storey structure was 
studied. The authors proposed and tested a simplified analysis 
technique. The technique properly recreated the periodicity of the 
torsional motion, but was disappointing in not accurately predicting 
the peak response. Examination of these somewhat "negative" results 
still revealed some interesting patterns of behavior. The main posi
tive results are an extension of some well known earlier work, and an 
insight into probable response at large eccentricities. 

Introduction 

Torsional response of structures to earthquake ground motion is 
of increasing concern to structural engineers. One cause of torsion
al motion is an eccentricity between the center of stiffness and cen
ter of mass of the structure. This torsional response occurs even 
when the ground motion is purely translational, and is known as in
duced torsion. It is the subject of this study. 

Newmark and Rosenblueth report in their text the results of 
several earlier studies. Most significant are the results originally 
published by Rosenblueth and Elorduy. These results show that an 
analysis neglecting the eccentricity (a purely translational analysis) 
always produce conservative values for the storey shears. This, 
however, leaves the analyst with the necessity of estimating the in
duced torsional moment. Typically, this is done by the "static 
method" where the moment is estimated as the storey shear times the 
plan eccentricity. This method may drastically underestimate the 
storey torque. The authors hoped to obtain better results with their 
"simplified analysis" which will be described in the following sec
tion. Unfortunately, the "simplified analysis" was not as immediate
ly successful as the authors might have wished. 
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The Model and the Simplified Analysis 

The general configuration of the model is shown in Figure 1. 
The structure is a one storey, square rigid slab supported by four 
corner columns. The three independent variables are the two trans
lations and the rotation at the geometric center of the slab. This 
point is coincident with the mass center. The total lateral stiff
ness for the four columns remains constant; the ratio of stiffnesses 
between pairs of columns will vary to move the center of stiffness 
and thus create the eccentricity. The equation of motion for the 
system is 

[M]{u} + [cHid + [K]{u} = {F(t)} 

In this formulation the mass matrix [M] is diagonal. The off dia
gonal terms of the stiffness matrix represent the effect of the 
eccentricity. The eccentricity is modeled in only one direction, 
normal to the applied ground motion. The damping matrix, [C], is 
selected to produce Rayleigh damping of 2.5% of critical. 

The Excitation 

Unlike the earlier study, (Rosenblueth and Elorduy) which used 
a spectrum analysis, the loading is a time dependent acceleration 
record representing a strong motion earthquake. The record is an 
artificial one produced by the program PSEQGN. It has a peak sur
face acceleration of O.5g and a duration of 10 seconds. Its spec
trum resembles those produced by real earthquake records. 

JI.1ethods of Analysis 

The basic analysis method is a straight-forward numerical 
solution using the Wilson-e method. Theta was always set to 1.37 
and the time interval was less than one tenth the shortest struct
ural period. 

The static method of estimating storey torque has already been 
mentioned. In this method a solution is required only for the 
lateral response of the structure. The torsional moment is then 
estimated as the maximum lateral force times the eccentricity. 

The authors' "simplified analysis" was intended to replace 
the three-dimensional "exact" analysis with a series of steps in
volving one-dimensional analyses. The first step consists of 
finding the lateral force (as a function of time) for the purely 
translational structure. The second step multiplies this record 
by the eccentricity, resulting in a time-varying torsional moment 
forcing function. In the third step the torsional forcing func
tion is applied to the purely torsional structure, giving a tor
sional response as a function of time. These steps may be restat
ed as: 

1) Find H(t) from Mu + cli + Ku 



2) Find Mt(t) as Mt(t) = H(t)*Eccentricity 

3) Find e(t) from IpS + ce + Kte = Mt(t) 

Results 

Fifteen cases were analyzed. The ratio of rotational to trans
lational modal natural frequencies took five different values; for 
each ratio eccentricities of 10, 20, and 30% of the plan dimension 
were used. The ratio was expressed as MK/Jk which is the square 
of the ratio of the frequencies. This ratio took the values 3, 2, 
1, 0.96 and 0.5. 

The results of the proposed analysis method were disappointing 
when compared to the exact results. The amplitude of the maximum 
torsional moment was often more accurately predicted by the static 
method. The error was found to increase with the eccentricity for 
modal ratios greater than 1 and decrease with the eccentricity 
for modal ratios less than 1. When the moment records are compared 
(Figure 2) it is seen that the moment-time plots are similar~ this 
is true as long as the system is removed from resonance. Work is 
being done to see if the proposed method can be corrected, main
taining its accurate periodicity and upgrading its estimation of 
peak response. 

The results from the exact analysis are presented in Figures 
3 and 4. This presentation is the same one used by Rosenblueth and 
Elorduy. Figure 3 shows the dynamic shear (from the exact analyses) 
divided by the "static" shear, which is obtained from analyzing a 
one degree of freedom translational structure. Figure 4 shows the 
ratio of dynamic torsional moment (from the exact analysis) to the 
static moment, which is simply the static shear times the eccentri
city. 

There are, however, some results which may not have been sus
pected. The static shear is always conservative as an estimate of 
lateral force, but the curves in Figure 3 change shape for differ
ent values of the eccentricity. Structures with low eccentricity 
are characterized by a sharply increasing curve near resonance, 
while other structures display much less of a peak. The results 
from Rosenblueth and Elorduy (for 5% eccentricity) indicate a 
ratio fairly close to 1 except in the area near resonance; for 
larger values of eccentricity this is not the case, 

Figure 4 shows good general agreement with the other authors' 
results for the eccentricity magnification factor. These curves 
drop off more sharply than the corresponding plots of shear force. 
This implies that, outside of tbe resonance region, the static 
method is adequate for estimating torsional moments. 

Results are further displayed in Table I, listing tbe torsion
al moments from the exact analysis and from the simplified approach. 
As already mentioned, the corres~ondence is not good. Of great 
interest, however, is that in the resonant region (MK/Jk=1,=0.96) 
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the moment produced at 30% eccentricity is less than that produced 
at 20% eccentricity. This is explained by the fact that the eccen
tricity alters the natural frequencies of the system, separating 
the two modes. Resonance should be defined with respect to the true 
frequencies, including the effects of eccentricity. 

Conclusions 

The last mentioned result is significant in assessing the non
linear performance of structures. Were a structure, with its original 
eccentricity, near the resonant state, an earthquake loading would 
immediately produce severe torsional moments. This loading, however, 
could be expected to cause non-linear action, resulting in a re-dis
tribution of stiffness. A migration of the shear center would be 
expected. Therefore, the resonant state will be only temporary. 
This will be the subject of future work. 

The results of the time history analyses themselves compare 
closely with results of the earlier study where smooth spectra were 
used. Those results have now been somewhat extended to include sys
tems with greater eccentricities. It was shown that the translation
al analysis for "static shear" may err more than expected for large 
eccentricities, though the error is conservative. The static method 
of analysis for storey torques still is unsuitable in the region near 
resonance. The method developed by the authors, based on an inter
esting physical model, was in error. The method still retains some 
promise, ahd fUrther work is heeded. 
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TABLE I 

Torsional Moments - Exact Method and Simplified Method 

MK/Jk Eccentricity M exact M. M tiM. 1 
% slmpl. exac Slmp. 

x 107 x 107 

2 10 0.4414 0.7311 0.60 
20 0.5429 1.358 0.40 
30 0.6498 2.068 0.31 

1 10 1.307 2.920 0.45 
20 1.430 5.422 0.26 
30 0.9420 8.261 0.11 

0.96 10 1.247 2.939 0.42 
20 1.446 5.458 0.26 
30 1.034 8.312 0.12 

0.5 10 0.6420 0.3952 1.62 
20 0.9429 0.7339 1.28 
30 1.253 1.118 1.12 
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SUMMARY 

This paper evaluates the reliability of current methods of establish-
ing design earthQuakes for structures located at sites near potential 
source(s) of major earthquakes. Problems associated with the establishment 
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of such earthQuakes are reviewed and present methods are summarized. Em
phasis is placed on assessing the reliability of the method which derives 
inelastic design response spectra directly from a linear-elastic design 
response spectrum. The suggested spectra are compared with response spectra, 
computed for accelerograms derived from records obtained near the fault rup
ture of the 1971 San Fernando earthQuake. The aseismic design implications 
of the results of this comparison are evaluated on the basis of the dynamic 
responses of single and multiple degree-of-freedom systems subjected to avail
able accelerograms of near-fault ground motions. Guidelines for improving 
present methods of establishing design earthQuakes are suggested and recom
mendations for future research are offered. 

INTRODUCTION 

One of the most challenging problems for a structural designer is to 
achieve an economical, serviceable, and safe design for a building located 
at a high seismic risk site. To achieve such an efficient aseismic design, 
it is necessary to predict the mechanical behavior of the structure under the 
critical earthQuake conditions. Building damage may result from different 
effects of an earthQuake, e.g. (1) ground failures due to fault ruptures or 
those due to the effects of seismic waves (soil vibrations creating fissures, 
landslides, lurching, nonuniform compaction and associated differential settle
ment, and liQuefaction); (2) vibrations transmitted from the ground to the 
structure; (3) seismic sea waves (tsunami) and tsunami-like disturbances and 
seiches in lakes; and (4) other consequential phenomena such as fires, and 
floods caused by dam failures and by landslides plugging rivers or increasing 
the water level of lakes. The effect which usually concerns the structural 
engineer, and is presently accounted for by seismic resistant design provi
sions of building codes, is the response of a structure to ground shaking. 
This is the only source of damage that will be considered in this paper. 
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The general 
problems involved in 
predicting the seis
mic response of a 
building are symbol
ically defined and 
schematically illus
trated in Fig. 1. As 
stated above, the 
structural engineer 
is concerned with pre
dicting the response, 
X4 (Fig. 1), which 
results from shaking 
at the foundation, X3. 

EARTHQUAKE OF MAGNITUDE ML As indicated in Fig. 
1, the term X4 can be 

FIG. 1 FACTORS USED TO PREDICT SEISMIC RESPONSE 
obtained by multiply
ing X3 by a dynamic 
operator, D. Although 

this is a simple expression, the uncertainties involved in a realistic 
estimation of X3 and D give rise to serious difficulties in obtaining an 
accurate numerical evaluation of X4' 

For an earthquake of specified magnitude, ML, and focal distance, Rl, it 
seems analytically feasible to estimate the base rock motion at the given site, 
Xl (Fig. 1), if the fault type is known [Xl = f(Rl,ML)J [lOJ. Prediction Qf 
X3' however, must account for the effects of the soil layers underlying andl 
or surrounding a building. These effects can be classified in two groups: 
one is related to the influence of the dynamic characteristics of the dif
ferent soil layers during the transmission of Xl to the free ground surface, 
indicated in Fig. 1 by an attenuation or amplification factor, A [X2 = A-XIJ; 
the other is related to the interaction between structure and soil founda
tion, symbolically represented by a factor, I. At present, large uncertain
ties exist regarding the realistic values of A and I, and major errors could 
be introduced by trying to .guantify these two factors using available ana
lytical techniques. Even if Xl could be predicted with engineering accuracy, 
attempts to quantify the influence of soil conditions on Xl to attain X2 and 
X3 would result in a wide range of predicted values. Thus, the designer 
should not rely exclusively on results obtained from a single deterministic 
analysis. Bounds on the possible variations in A and I should also be con
sidered. 

The precise evaluation of X4 at any point in the structure would require 
the establishment of its three translational and three rotational components. 
To simplify the discussion, however, it is assumed that for aseismic design 
the only significant components are the two horizontal translational ones, 
and that each of these components can be considered independently. Thus, 
X4 can be defined by evaluating the total lateral displacement, t,Hi' of each 
floor (Fig. 2). The prediction of the lateral displacement response of a 
particular building to a specific ground motion will depend upon the exci
tations acting on the structure and on the dynamic characteristics of the 
whole soil-structure system. In general, the main excitations acting on a 
structure during an extreme earthquake are due to: (1) gravity forces, 



LOW CYCLE Si 
G(t), with the associated effects due to 
creep of the material, especially in the 
case of concrete structures; (2) changes in 
environmental conditions, 6E(t), such as the 
stresses produced by changes in tempera-
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ture; and (3) at least the three translational 
components of the foundation shaking, x3(t). 
As shown in Eq. lea), the dynamic character
istics of the whole system, which change con
tinuously as the structure is deformed into 
its inelastic range, might be summarized by 
representing them symbolically as the instan

FIG. 2 LATERAL STORY SHEAR- taneous values of: (1) mass, M(t); (2) damp-
DISPLACEMENT RELATIONSHIP ing coefficient, ~(t); and (3) resistance 

function, (R vs. 6Hi )(t). As illustrated in 
Eq. l(b), the dYnamic characteristics of the soil-structure system can alsn 
be symbolically represented by the instantaneous values of: (1) fundamental 
period, T(t); (2) damping coefficient, ~(t); (3) yielding strength, Ry(t); and 
(4) energy absorption and dissipation capacity as represented by the instanta
neous available ductility, wet), which is a function of ~Hi(t). Thus: 

X4 l'>Hi(t) =0 F{[G(t), fill(t) , X
3
(t)], [M(t), ~(t), (R vS. l'>Hi)(t)]} [lea)] 

X4 ~H. (t) F{CG(tl' ~E(t), X
3
(t)], [T(t), i;: ( t ), Ry ( t ), '>l ( t )] } [l(b)] 

1 
\ ..J \. J -- 'v' 

Dynamic Characteris- Dynamic Characteristics of 
tics of Excitations Whole Soil-structure System 

Analysis of the parameters included in Eqs. lea) and (b) clearly 
indicates the magnitude of the problems involved in trying to predict 
response to earthquake ground motions. One problem arises from the fact 
that all these parameters are functions of time, although the gravity 
forces and changes in environmental conditions usually remain nearly con
stant for the duration of an earthquake. In general, therefore, this is a 
dynamic problem for which it is necessary to consider two important effects 
of the time variation of the excitations and of the response: first, the 
effect of inertial forces developed by the mass; and second, the effect of 
rate of change in the intensity of strains with time (rate of loading or 
straining). This rate may be high enough to considerably affect the so-called 
static-mechanical characteristics of the materials on which the dynamic 
characteristics of the structure [T(t), ~(t), R (t), and wet)] are usually 
predicted. y 

Another problem is that ~Hi(t) depends on the response of the whole 
soil-structure system rather than that on the structural system alone. 
Soil-structure interaction affects the so-called free-field ground motion, 
X2(t) (Fig. 1), which is the ground motion usually measured. Furthermore, 
the response of the building depends, to a considerable extent, on the 
interaction between structural elements and nonstructural components, and 
this interaction is very difficult to predict accurately. 

To carry out an efficient aseismic design, it is necessary to predict 
the building's response to the worst combination of excitations that can 
occur. To do this it is necessary to establish the controlling (critical) 
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ground motions, X3, commonly referred to as "design earthquakes," and to 
obtain information regarding the dynamic characteristics of the whole soil
structure system. More specifically, it is necessary to know the actual 
excitation-deformation relationship or restoring force characteristics of 
the Whole soil-structure system which include stiffness, strength, energy 
absorption and energy dissipation capacities, and the different sources of 
damping. Although it is not possible to study independently the problems 
associated with establishing design earthquakes from those problems 
associated with the dynamic characteristics of the building, in this paper, 
emphasis is placed on the problems associated with the establishment of 
design earthquakes. 

OBJECTIVES AND SCOPE. - The main objectives of the study reported herein 
are, first, to evaluate the reliability of present methods for specifying 
design earthquakes for structures located at sites near [less than about 10 
mi. (16 km)] potential source(s) of major earthquakes, and, second, to assess 
the implications of the results obtained in order to improve such methods. 

To achieve the above objectives, different methods of specifying the 
design earthquakes are briefly reviewed. Emphasis is placed on the method 
which derives an inelastic design response spectrum (IDRS) directly from a 
linear-elastic design response spectrum (LEDRS). The suggested LEDR and 
IDR spectra are compared with the response spectra derived from the 
records obtained near the fault rupture of the 1971 San Fernando earthquake. 
The implications of the differences identified from this comparison are 
evaluated based on the results obtained in a series of analyses on the 
linear-elastic and nonlinear dynamic responses of single and multiple 
degree-of-freedom systems to some of the ground motions either directly 
recorded or derived from the San Fernando earthquake records. 

ESTABLISHMENT OF DESIGN EARTHQUAKES 

The general philosophy of earthquake-resistant design for buildings 
other than essential facilities has been well established. Significant 
aspects of this philosophy are: (1) to prevent nonstructural damage in 
minor earthquake ground shakings, which may frequently occur during the 
service life of the structure; (2) to prevent structural damage and mini
mize nonstructural damage in moderate earthquake shakings, which may occa
sionally occur; and (3) to avoid collapse or serious damage in major earth
quake ground shakings, Which may rarely occur. 

Before this philosophy can be implemented for a given building, it is 
necessary to establish what constitutes minor, moderate and major ground 
shaking at the building site and to describe quantitatively the correspond
ing earthquake ground motions that should be considered as the critical 
excitations at the building foundation. In other words, it is necessary 
to establish the design earthquake(s). 

EVALUATION OF PRESENT METHODS. - In the past, the design earthquake has 
been specified in terms of a building code zone, site intensity, or site 
acceleration [14J. In aseismic design, it is generally recommended that 
a structure be proportioned to withstand the effects of horizontal base 
translation assumed to take place nonconcurrently along each of the two main 
horizontal axes of the structure. Thus, the structure is usually designed 
for the envelope, rather than for the effects of the two horizontal 



555 

excitations acting simultaneously [23J. 

Ground motions actually have six components: three translational and 
three rotational. For sites located near active faults (or, more generally, 
near the earthquake source), each of the six components can have a signi
ficant effect on the overall response of a building, and prediction of 
response should be based on the simultaneous action of all six components. 
Actual records of all ground motion components should be obtained in future 
earthquakes in order to study their effects on building response and to 
determine the minimum data required by structural engineers to adequately 
define design earthquakes. Determination of these data is not simple because 
they vary according to the limit states controlling the design of the 
structure. Depending on the function and type of structure, different 
limits of usefulness can control the design. At least two main cases should 
be considered; one in which the design is controlled by service limit states, 
and the other, by ultimate limit states. In the former case, the structure 
should essentially remain in its linear-elastic range of behavior to avoid 
functional failure; in the latter, inelastic behavior up to the point of 
incipient dynamic collapse could be tolerated. 

Service Limit State Design Earthquakes. - One of the most common practices 
is to specify the design earthquake by only a peak site acceleration. The 
reliance on such an acceleration alone, however, is generally inadequate. 
From available ground motions and building response data, it is now gener
ally accepted that one of the best ways to describe quantitatively the ser
vice level design earthquake is through an average or smooth response spec
trum [2]. This spectrum is best obtained by a statistical analysis of the 
linear-elastic response spectra of ground motion records resulting from 
earthquakes with comparable magnitudes and obtained at sites with similar 
epicentral distances and soil conditions. Analyses of this type conducted 
by Newmark, Blume, and Kapur [20] show that the basic data necessary to 
construct possible design response spectra are the peak acceleration, 
velocity, and dynamic or transient displacement of the critical ground 
shaking at the site of the structure. Therefore, to establish the design 
spectra the following questions must be answered: (1) what reasonably 
expected types of earthquakes represent the most severe seismic hazard at 
the site; and (2) for these types of earthquakes, what ground motions are 
reasonably expected at the site? 

Although there are sufficient seismic and geological data to estimate 
the minor, moderate, and major expected earthquakes for certain sites [21, 
29J, in most cases, these data are unavailable or insufficient, particularly 
for major earthquakes. If the peak ground acceleration, velocity and dis
placement at a site are known, it will be possible to construct smoothed 
LEDRS for selected values of damping using spectral amplification factors 
[20]. When only the peak ground acceleration is available, it has been 
suggested that reasonable estimates of the peak ground velocity and dis
placement may be made "for a number of areas in the world •.. either on firm 
ground, soft rock or competent sediments of various kinds," by multiplying 
the ground acceleration (expressed as a fraction of gravity) by 48 in./sec. 
(122 em/sec.) and 36 in. (91 cm), respectively [18]. 

Ultimate State Design Earthquakes. - Comparison of lateral design forces 
derived from LEURS for major earthquakes with those specified by present 
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code regulations indicates that it would generally be uneconomical to design 
all structures to resist elastically a major earth~uake. Design forces lower 
than those derived from LEDRS may be used by taking advantage of the struc
ture's inelastic energy dissipation capacity. The inelastic deformations, 
however, must be kept within the acceptable limits imposed by the available 
structural deformation capacity and/or by the degree of nonstructural damage 
usually associated with such large inelastic deformations that can be toler
ated. Preliminary design loads can be obtained from IDRS that are derived 
by evaluating the nonlinear dynamic response of st'ructural models with real
istic hysteretic idealizations subjected to various ground motions having 
characteristics appropriate to the site, e.g. see Ref. 16. Because of the 
complexities involved in such nonlinear dynamic analyses, simpler methods 
which derive the IDRS by directly modifying a LEDRS are more commonly used 
[2,19J. The LEDRS is modified by using factors obtained from analyses of the 
elasto-perfectly plastic response of single degree-of-freedom systems [18J. 
These methods, however, are based on results obtained with limited numbers 
of ground motion records and caution should be exercised when applying them 
to sites that can be subjected to significantly different kinds of ground 
motions. Furthermore, such methods may not be suitable for multiple degree
of-freedom systems, or in cases where the actual hysteretic behavior is likely 
to differ from the assumed elasto-plastic idealization [6,18J. 

The validity of deriving the IDRS directly from the LEDRS can be 
seriously questioned because the types of excitations taht induce the maxi
mum response in elastic and inelastic systems are fundamentally different. 
The information used for computing (and therefore contained in) an LEDRS, 
although necessary, is insufficient for predicting the maximum inelastic 
dynamic response. This information should be complemented with data on the 
duration of strong ground shaking and the number, se~uence and characteris
tics of intense, relatively long acceleration pulses (i.e. pulses inducing 
large ground velocity increments) that can be expected. 

The need for this additional information can be found by reviewing the 
results obtained by applying the vibration theory to single degree-of
freedom systems. In the case of a linear-elastic system, the critical dy
namic excitation is of a periodic type having a frequency equal to that of 
the system because this induces an engineering resonance phenomenon. For 
this type of excitation, the dynamic ma~nification operator, D, can reach 
a maximum value approximately equal to~. Thus, for values of ~ ranging 
from 2 to 10 percent, D can attain value5 ranging from 25 to 5. Since the 
largest value of D for an impulsive excitation is only 2, severe long 
acceleration pulses are usually not critical for linear-elastic response. 
In an inelastic system, however, such long pulses can become critical. This 
is particularly true for a structure having a hysteretic yielding resistance, 
Ry ' equal to or less than the inertial force c?rresponding to the effective 
ground acceleration of the pulse, i. e., Ry .::.. I1X3 , where M is the mass of the 
structure. In the case of elasto-plastic systems, the existence of periodic 
short acceleration pulses in the ground motion contributes only to building 
the response of the system up to its yielding level. Once the system 
begins to yield, the phenomenon of engineering resonance is depressed since 
the energy dissipated through even small inelastic deformations is equiva
lent to very large values of~. Therefore, very large inelastic deforma
tions are not expected during each yielding excursion. Although the exist
ence of periodic short pulses can induce a series of yielding reversals, it 
is doubtful that the number of these reversals can lead to a phenomenon of 
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low cycle fatigue. This is because the amount of inelastic strain developed 
in each reversal will usually be so small that the number of reversal cycles 
required to induce fracture would even exceed the number which can occur in 
the longest conceivable strong motion of an actual earthquake. 

The above discussion indicates that the amplification factors to be 
applied to the maximum ground accelerations in order to obtain the maximum 
linear-elastic response of a structure are u8ually controlled by the engineer
ing resonance phenomenon. On the other hand, considerably larger deforma
tions can be induced by the presence of just one, long pulse with an effective 
acceleration equal to or just greater than that corresponding to the yield
ing strength of the structure. Furthermore, repeated applications of severe 
long acceleration pulses can lead to the accumulation of sufficiently large 
inelastic strains which could induce one or a combination of the two types 
of failure illustrated in Fig. 2, i.e. low cycle fatigue and incremental 
(crawling) collapse. Of these two, the author believes that the critical 
failure against which the structure should be designed is the crawling type 
of collapse. This is because the number of cycles of large inelastic strain 
reversals necessary to attain fracture of the structural material is usually 
so great that it is doubtful that it can be developed by the number of severe 
long pulses that could exist in even the longest conceivable strong motion 
of an actual earthquake. 

It should be clear from the above discussion, that even for a given 
site, the design earthquake is not unique. The critical ground motion 
depends on the type of behavior that is expected to control the response of 
the building at the site or on the limit state(s) controlling the design. 

From results already available on the response of single degree-of
freedom systems to impUlsive forces, it becomes clear that in the case of 
seismic ground motions, the larger the intensity of the effective accelera
tion of a pulse with respect to the yielding strength of the structure and 
the longer the duration of the pulse relative to the fundamental period of 
the structure, the larger the amount of inelastic deformations that will 
develop. In order to specify ~uantitatively the inelastic design earth
~uake, however, it is necessary to determine: (1) the severity of the long 
acceleration pulses that can be developed during an earthquake; and (2) the 
manner in which these pulses can be defined. An attempt to resolve these 
problems follows. 

Analysis of 1971 San Fernando Earthquake Records. - It is possible to address 
the first problem by analyzing the records of the two strongest motions ob
tained from the San Fernando earthquake of February 9, 1971. The only strong 
motion accelerograph record near the fsult rupture of this earthquake was 
obtained at Pacoims Dam (PD), Fig. 3. A seismoscope record was slso ob
tained at the abutment of the lower Van Norman Dam (VND) which was located 
near the fault zone. 

Pacoima Dam Record. - This record [Fig. 4(a)J contains the highest 
ground acceleration registered to date, 1.25g. Several investigators 
[22,21,J have indicated that the irregular surface topography in the vici
nity of the accelerometer significantly affected the fre~uency content of 
the record, especially for frequencies greater than 1 Hz. Analysis of the 
dam and adjacent geological structures has led to a derivation of the ground 
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motion at sites below the base of 
the dam [Fig. 4(b)] [27J. Since 
the effects of local surface and 
interaction of the dam with its 
foundation have been removed from 
the derived record, it is probably 
more representative of ground mo
tions at other nearby sites than 
the actual PD accelerogram. (Note 
that the derived record was based 
on an erroneous orientation ini
tially reported for the PD record.) 

The derived Pacoima Dam (DPD) 
record [Fig. 4(b)) indicates that 
the high peak accelerations regis
tered at the PD after 6 sec. may 
not be characteristic of ground 
motions experienced at other sites. 
Both records, however, contain two 
severe acceleration pulses, each of 
about 2/3 sec. duration, at about 

FIG. 3 LOCATION OF STRONG f'IIOTION SEISf'IIOGRAPHS IN SAN FERNANDO AREA 
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FIG. 4 NEAR-FAULT GROUND MOTION RECORDS OF SAN FERNANDO EARTHQUAKE 
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2-4 sec. These unusual acceleration pulses resulted in very large incre
mental ground velocities [PD, 61.9 in./sec. (15T cm/sec.); DPD, 54.6 in./ 
sec. (139 cm/sec.)J and ground velocities (Fig. 4). They also led to 
unusually large linear-elastic response spectrum values for periods larger 
than 0.8 sec. (Fig. 5). 

Van Norman Dam Records. - The ground motion necessary to produce the 
seismoscope trace obtained at the abutment of the lower Van NormEn Dam 
[located near the fault zone about 6 mi. (10 km) from Pacoima Dam] has 
been computed [24J. The north components of this record and one which 
resulted by filtering out the freQuencies above 5 Hz, are shown in Figs. 
4(c) and (d). Although many of the characteristics of this ground motion 
are different from those of the PD record, as would be expected, the VND 
contains a series of long acceleration pulses that led to large incremental 
ground velocities, the largest being 6T.6 in./sec. (172 em/sec.). 

Characteristics of Near-fault Records. - For the second problem stated 
above, it may be possible to determine the characteristics of long accelera
tion pulses by examining the records of near-fault ground motions. Some 
studies have already indicated that the severe long acceleration pulses 
recorded during the San Fernando earthQuake may be typical of near-fault 
ground motions. Similar ground motion characteristics have been reported 
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FIG. 6 COMPARISON OF THEO
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for several other earthQuakes at sites 
close to the fault zone on firm ground [IT]. 
Analytical studies based on simple two-
and three-dimensional fault dislocation 
models [8,27J have verified that the near
fault ground motions of the San Fernando 
earthQUake were characterized by large 
ground velocity pulses of the type exhibited 
by the records in Fig. 4. These pulses are 
directly related to the faulting process and 
are not a result of local geological con
ditions. Studies of stick-slip faulting 
[T,10,28J have also indicated that such 
pulses are not peculiar only to thrust 
faulting (Fig. 6). Such studies have led 
Boore and Zoback [7J to conclude that the 
peak particle velocity may be a better basis 
for establishing the design earthQuake than 
peak acceleration, and the initial portions 
of the PD records containing the large velo
city pulse shown in Fig. 4 may be appro
priate for the aseismic design of structures 
located close to potential faults. 

To have an idea of the severity of the 
structural effect that can be induced by 
long acceleration pulses developed as a con
seQuence of fault ruptures, it is at least 
necessary to estimate the maximum incremental 
velocity and the associated effective accel
eration of such long pulses. Another impor
tant factor is the rise time of each pulse. 
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In a recent study, Seed et al. [25] determined the relationships between 
peak accelerations and peak velocities for earthquakes with magnitudes of 
about 6.5 and epicentral distances equal to or greater than 9.3 mi. (15 kill). 
Unfortunately, little empirical data are currently available on the peak 
ground acceleration and velocity for epicentral distances less than 9.3 mi. 
(15 km). 

Ambraseys [lJ and Brune [9] have conducted some theoretical studies 
which enabled them to place the upper limit for the peak near-fault particle 
velocity in the range of 39.4 in./sec. (100 cm/sec.) to 58.1 in./sec. (150 
cm/sec.). Newmark and Hall [18J have also indicated that it is unlikely 
for the maximum ground Velocity to exceed 4 ft/sec. (122 cm/sec.) or 5 ft/ 
sec. (152 cm/sec.). Although significant, this information is insufficient. 
What is needed is the estimation of the maximum incremental, rather than 
the maximum, velocity and the associated acceleration that can be developed 
for different soil conditions taking into account the mechanical character
istics of each type of soil. If this can be established, the structural 
designer will at least know the upper bound of the energy input that can be 
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transmitted to the foundations of the struc
ture and can design the structure accord
ingly. The solution t~ this problem will 
require close cooperation between geolo
gists, seismologists, soil engineers and 
structural designers. Integrated experi
mental and analytical studies should be 
carried out in this area. 

EFFECTS OF GROUND MOTION RECORDS WITH 
SEVERE LONG ACCELERATION PULSES ON 

INELASTIC RESPONSE OF STRUCTURES 

The importance of considering the 
interrelationship between types of ground 
motions and the mechanical behavior of the 
structure in selecting design earthquakes 
is best illustrated by the results of a 
series of analyses on a single degree-of
freedom system subjected to the simple 
idealized ground accelerations shown in 
Fig. 7 [4J. Some of these results are 
presented in Figs. 8 and 9 and permit com
parison of the relatiVe displacement time
histories for two different idealizations 
of the mechanical behavior (linear-elastic 
and elasto-perfectly plastic) of a struc
ture when subjected to ground motions having 
different dynamic characteristics such as 
those specified as 1, 2, 3 and 4 of Fig. 1. 
The yielding strength of the elasto
perfectly.plastic hysteretic model was 
selected to be equal to Mg/3. The main 
results obtained from Figs. 8 and 9 are 
compared in Fig. 10. 
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Analysis of the results presented in Figs. 8 through 10 not only con
firms the observation that the critical ground motion depends on the type 
of behavior expected to control the response of a structure, but also indi
cates the difficulty of finding simple relations that can be used to derive 
the inelastic deformations directly from results obtained assuming only 
linear-elastic behavior. Furthermore, if the ground motion can contain long 
acceleration pulses, it would be necessary to design the structure with a 
yielding strength somewhat greater than the inertial forces corresponding 
to the largest effective acceleration of these pulses. This need is accen
tuated when one considers the possibility that the ground motion can contain 
two or even more of these long pulses having the same acceleration sign, as 
clearly illustrated by the comparison of the results 6btained in the elasto
plastic model when subjected to ground motions 3 and 4. This type of motion 
can undoubtedly lead to incremental collapse, Fig. 2. The results presented 
in Fig. 9 for ground motion 4 also illustrates the detrimental effect of a 
stiffness degrading system when subjected to this type of motion. Compari
son of results between ground motions 2 and 3 or 4 also points out how the 
building up of the response due to a periodic motion can contribute signifi
cantly to an increase in the inelastic response to a long severe pulse. 

Evidence of the effects of seVere long acceleration pulses contained 
in actual earthQuake motions was obtained from the analytical studies of 
the damage induced in the newly constructed buildings 0f the Olive View 
Medical Center, located near the fault rupture of the San Fernando 
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earthquake. A discussion of these studies follows. 

ANALYTICAL STUDIES OF OLIVE VIEW EARTHQUAKE DAMAGE. - An analysis of the 
capacities of the buildings of the Olive View Medical Center complex show 
that they had seismic resistance coefficients far in excess of then exist
ing code requirements [3J. For example, the six-story main building had 
story seismic resistance coefficients exceeding 0.3. In spite of this, 
the permanent drifts [greater than 30 in. (76 cm)] and the associated 
damage suffered by this reinforced concrete building were so large that 
it had to be demolished. 
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Maximum displacements (Fig. 11) computed for 
a simplified model of the main building were much 
smaller than the actual residual displacements 
for the s16°E component of the DPD record and for 
a simulated ground motion (based on the dynamic 
characteristics of records obtained at sites 
other than Pacoima Dam) with a O.5g peak ground 
acceleration [11]. However, the computed response 
to the simulated ground motion consisted of many 
displacement oscillations having amplitudes close 
to the maximum one. This was not compatible with 
the observed damage which was primarily the result 
of a few, large displacement excursions. The 
response to the DPD record, although smaller than 
that observed, was consistent with the actual 
damage. When the intensities of the two records 
were arbitrarily doubled, the displacements for 
the DPD record significantly increased and were 

characterized by a single, large displacement excursion coinciding wi0h the 
largest amplitude pulse in the ground velocity. The displacements for the 
amplified simulated record were still smaller than the observed damage, 
hmrever. Although some of the local structural damage to the main building 
was attributable to the inadequacy of the structural system, poor member 
detailing and deficient construction workmanship, it is believed that the 
overall damage pattern and the large residual displacements observed were 
primarily a consequence of severe long acceleration pulses similar to 
those experienced at the Pacoima and Van Norman Dams. 

RELIABILITY OF NONLINEAR ASEISMIC DESIGN OF STRUCTURES 
USING SUGGESTED INELASTIC DESIGN SPECTRA 

The reliability of aseismic designs using IDRS derived directly from 
LEDRS for structures whose sites are located near possible sourceCs) of 
major earthquakes, is evaluated by analyzing the nonlinear responses of 
several single degree-of-freedom systems and of a ten-story moment-resisting 
frame to the San Fernando records of Fig. 4 and then by comparing these 
responses to those obtained under some of the more standard records used 
in the derivation of LEDRS. 

SINGLE DEGREE-OF-FREEDOM (SDOF) SYSTEMS. - The basic equilibrium equation 
controlling the motion of a viscously damped, SDOF system subjected to a 
ground acceleration time-history, u , is given by: 

g 
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Mu + 2MW~~ + R :: M" - u g 
(2) 

in which M is the mass of the system; ~ is its viscous damping ratio; w is 
the system's natural circular frequency; R is the force resisted by the 
system; and u and u are the system aeceleration and system velocity, respect 
ively, at any time. For elastic systems, R is equal to the product of the 
stiffness, K and displacement, u, of the system. In the elastic case, 
Eq. 2 reduces to: 

-u g 

which is convenient for design purposes since the response of all systems 
with given values of period, T = 2~/w, and damping to a particular ground 
excitation can be determined using a single analysis. . 

To obtain useful design charts for nonlinear structures, it is desi
rable to rewrite Eq. 2 in a nondimensional form which accounts for yielding. 
To do this, Eq. 2 is divided by uy (the yield displacement of the system's 
load-displacement relationship) and M to obtain: . 

u R ~ + 2i;w--- + -- = 
u u Mu 

Y Y Y 

u 
-.£. 
u 

y 
(4) 

By noting that K W
2

M and Ry = KUy and by introducing variable transfor
mations ~ = u/liy and p = R/Ry , Eq. 4 becomes: 

.. 
u 

g 

It is useful to express the ground acceleration as a fraction of the peak 
ground acceleration in the record, ug . In this case, the nondimension
alized equation of motion, Eq. 5, can~~ written as: 

2 w 
n 

(6) 

In the above equation, the value of n is the ratio of the seismic 
resistance coefficient to the peak ground acceleration expressed as a 
fraction of gravity, i.e.: 

R 
n = --,y"--- = 

c 
y 

in which g is the acceleration of gravity, and Cy is the system's seismic 
resistance coefficient (i.e., the yield resistance, Ry , divided by its 
weight, Mog). Thus, the nondimensional hysteretic response of a nonlinear 
~ystem (~ and p) to a particular nondimensionalized ground motion (ug(t)/ 
Ug max) , can be evaluated in terms of n in addition to the parameters wand 
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~ needed for an elastic system. From this relationship, it is possible to 
construct charts in which the required displacement ductility, ~, of an 
SDOF system to a given ground motion is a function of ~, T and n. Using 
such charts for a given ground motion record, ~ can be determined if T, S, 
Cy , and ug are known. Alternatively, the value of Cy required to obtain max .. 
a desired va~ue of ~ can be derived if T and ~ of the system and ugmax of 
the ground motion are known. 

The response of elasto-perfectly plastic SDOF systems, with values of 
~ equal to 0.02, 0.05 and 0.10; with n varying between 0.2 and 1.0; and 
with periods ranging between 0.1 sec. and 2.0 sec. were computed for the 
DPD, the original and filtered VND, and the El Centro ground motion records. 
The 'main results of these computations are presented in the charts shown 
in Fig. 12. In these charts the maximum absolute values of the computed 
displacement ductility, ~, for each of the values of S and for each of the 
ground motion records are plotted as a function of period in a series of 
curves. Each curve corresponds to a constant value of n. These charts 
can be useful for design purposes, as shown in the following example. 

GIVEN: A building to be designed in a region of high seismic risk 
with a maximum expected ground motion similar to the DPD 
record having a ug of 0.4g and where, according to the 
function of the bu~~aing, the limit state of collapse con
trols the design. The structure can be modeled as an SDOF 
system with an effective M, with an ~ of 5 percent, and with 
a first estimation of T resulting in a value of 0.4 sec. 

REQUIRED: Assuming that the structure can develop a maximum displace
ment ductility. ~max. of 6, it is necessary to determine 
the value of Ry to be provided to the structure. 

SOLUTION: The required value of Ry is obtained from Fig. 12(b) as 
follows: 

Using T = 0.4 and ~ = 6, Fig. 12(b) giVes n = 0.8, and 

c C 
n = 0.8 Y.. = h Then C = 0.8 x 0.4 

.. 
/g 

y 
u 

gmax 
R 

Since C = ...JL the. required R 0.32Mg :::; 0.32W 
Y Mg 

, 
Y 

0.32. 

The charts of Fig. 12 can also be used to determine the parameters 
necessary for establishing ultimate state design earthquakes. This figure 
shows that for the three ground motions considered, ductility demands gen
erally increase with decreasing values of nand T. For any given value of 
n, the ductility demands for both the DPD and VND records are generally 
much greater than for the El Centro record. except when n approaches unity 
in the short period range (T < 0.5 sec.). 

The results of Fig. 12 indicate that if the ductility demands are to 
be kept at presently acceptable levels (4 to 6), the value of n must be 
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near unity in the short period range for any of these ground motions. This 
value of n must also be maintained at this level at longer periods for the 
DPD and VND records than for the El Centro record. 

The required ductilities shown in Fig. 12 generally decrease for 
constant values of n as the period becomes longer. The relatively lower 
ductility values for the high period structures should not be interpreted 
as justification for selecting flexible, rather than rigid, structures. 
The following observations should be kept in mind wnen the ductility fac
tors represented in Fig. 12 are used. First, the design base shear required 
by current building code provisions generally decreases as the period 
increases. Thus, for a specific design earthquake, the value of n used in 
practice is likely to decrease with increasing periods, rather than remain 
constant as in each of the curves plotted in Fig. 12. In this case, dif
ferences between present ductility requirements for short and long period 
structures may not be as great as implied by the curves of constant n in 
Fig. 12. Second, one of the main reasons for presently using considerably 
lower values of n for long period buildings is the fact that in obtaining 
IDRS from LEDRS, the allowable design ductility factors are usually assumed 
to remain constant over the entire range of periods. The value of the 
acceptable ductility factor should depend, however, on whether structural 
or nonstructural damage controls the design. While the use of a constant 
ductility factor may be appropriate if structural damage controls the 
design, it is not so in cases where nonstructural damage is the controlling 
factor. The latter usually depends on the total amount of tangential story 
drifts [15J. For example, story drifts corresponding to a constant value 
of ductility will generally increase with period for similar buildings. 
Thus, where nonstructural damage must be considered, acceptable design 
ductility values should decrease with increasing period to account for this. 

For the level of Cy currently required by building codes, Fig. 12 
indicates that very large ductility factors will result if peak ground 
accelerations greater than O.3g occur, particularly for short period 
buildings. nlrthermore, for structures near active faults, if IDRS based 
on values of effective ground accelerations lower than the expected peak 
values or on ground velocities obtained assuming standard ground spectrum 
shapes [2,18J are used, undesirably large ductilities could result if 
these structures are subjected to ground motions similar to the DPD or VND. 

Code commentaries usually refer to effective damping ratios (2 to 10 
percent) and allowable ductility ratios (4 to 6) as justification for the 
low specified seismic design forces. If these ratios cannot be increased, 
it will be necessary to design structures located near the source of po
tential major earthquakes for forces considerably higher than those presently 
specified by building codes. To illustrate this, the ·Cy values required by 
elasto-perfectly plastic systems, with 5 percent damping to achieve a duc
tility of 4 for a peak ground acceleration of O.5g, were interpolated from 
Fig. 12 and compared in Fig. 13 with current SEAOC recommendations [26]. 
The Cy values obtained from two IDRS, derived according to the procedure 
described in Ref. 18, for peak accelerations of O.5g and using two different 
ground spectrum shapes are also plotted in this figure. The IDRS curve 
labeled 24 in./sec. (61 cm/sec.) was based on the shape recommended in Ref. 
18, and the curve labeled 53 in./sec. (134 cm/sec.) was obtained by scaling 
the ground spectrum values for the DPD to O.5g. While the Cy values required 
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by the 24 in./sec. (61 cm/sec.) IDRS are 
acceptable for the El Centro record, they 
are generally unconservative for the DPD 
and VND records. The 53 in./sec. (134 cm/ 
sec.) IDRS results in Cy values that, 
except for T < 0.4 sec., are too conser
vative for all the ground motions, as 
seen in Fig. 13. In all of these cases, 
the forces required to achieve a ductility 
of 4 are significantly higher than those 
currently recommended by the SEAOC. 

Although structures could be detailed 
and constructed to accomodate the large 
ductility demands that would result if 
they were designed for the SEAOC or simi
lar low design forces, this may not be 
desirable except for short period struc
tures. In more flexible buildings, large 
ductility factors would lead to large 
lateral deflections resulting in non
structural damage to the building. Com
prehensive studies or more rational 
methods for determining the acceptable 
ductility factor, particularly its varia
tion with the flexibility of the struc
ture, are needed, as are investigations 
into the economic impact of designing 
structures either for higher seismic re
sistance coefficients or for design duc
tility ratios higher than those presently 
assumed. 

It is also helpfQl to compare the 
curves of ~ vs. T with the same n cor
responding to different values of ~ for 
any of the ground motions considered in 
Fig. 12. In order to ~acilitate such 
comparison, the curves, n = 0.8 and 0.4, 
for the DPD motion with ~ = 0.02 and 0.10, 
are compared in Fig. 14. Except for 
values of T = 0.1 sec. and 0.2 sec. where 
the values of the ratio between the 
response for ~ = 0.02 and 0.10 exceed 2, 
all ratios for values of T are consid

erably less than 2. For example, for an n = 0.8, the average value of the 
ratio for all periods except T = 0.1 sec. is 1.34. If this value is com
pared with the ratio between the relative values of spectrum amplification 
factors for the different amounts of damping suggested in Ref. 18 (for 
smoothed LEDRS) and reproduced in the table, it can be seen that under the 
actual inelastic response, the ratio between the amplification factors for 
~ = 0.02 and 0.10 is 2.86 for the acceleration region and 2.15 for the 
amplified velocity region. 
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TABLE OF SPECTRUM AMPLIFICATION FACTORS As indicated by this 
comparison, the effect of 
damping is considerably 
less in the case of ine
lastic response than in 
the case of linear-elastic 
response. This obser
vation is another reason 
for the reservations ex
pressed regarding the 
present method of estab
lishing design earthQuakes 
by IDRS derived directly 
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from LEDRS. It is also 
interesting to note that even in the case of 
elastic response, the effect of increasing the 
damping from 2 to 10 percent is considerably 
smaller than that indicated by the suggested 
amplification factors'shown in the table. 

TEN-STORY FRAME. - The three-bay, ten-story 
frame of Fig, 15 was designed according to a 
five-step computer-aided procedure [5] which 
tries to achieve an economical and practical 
minimum weight design that is serviceable, and 
safe from collapse during a major earthquake. 
The seismic forces for the safety design were 
obtained from an IDRS with an effective peak 
ground acceleration of 0.5g, a W of 4, and an 
~ of 5 percent. 

The designed frame had a Cy value of 0.18, 
FIG. 15 TEN-STORY FRAME and a first mode period of 1.67 sec. At this 

period, the pseudo-velocity used in its design 
was 14.8 in./sec. (38 em/sec.), higher than a value of 11.4 in./sec. (29 
cm/sec.) corresponding to the currently suggested IDRS [18] with a 0.5g 
peak ground acceleration. 

Detailed results obtained for this frame, when subjected to normalized 
005g Taft and El Centro records, are presented in Ref. 5. The results 
obtained for the main response parameters under these ground motions are 
compared in Ref. 6 with those corresponding to the DPD record normalized to 
0,3g and 0.5g. The parameters include the story shears and overturning 
moments, lateral displacements, story drift indices, curvature ductilities, 
and inelastic rotations at the critical regions of columns and girders. 
From the results of this comparison, it was concluded that while this 
frame performed satisfactorily under the El Centro and Taft records, it 
performed poorly when subjected to the DPD record. The response of the 
same structure was recently analyzed under the VND record. The results 
indicated that the performance was even poorer than that obtained under 
the DPD record. 

To illustrate the difference observed in the above analyses, the 
lateral displacement time-histories of the first floor and roof of the 
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frame for the O.5g El Centro, DPD, and VND accelerograms are shown in 
Fig. 16; also shown in this figure are the input accelerograms. It is 
evident from examination of Fig. 16 that the inelastic response of the 
frame to the DPD and VND records are more severe than the response to the 
El Centro record: the maximum roof displacements under the VND and DPD 
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motions were 24.2 in. (61 cm) and 25.0 in. (64 cm), respectively, while it 
was only 13.3 in. (34 cm) for El Centro. Thus, the DPD results in a maxi
mum total roof displacement nearly 1.9 times larger than that obtained under 
El Centro. The difference is even greater for the first floor displacement, 
where the severity of response to the VND and DPD was about 3 and 2.4 times 
the value for El Centro, respectively: 6.9 in. (11.5 em) for the VND, 5.6 
in. (14.2 cm) for the DPD and 2.3 in./sec. (5.8 cm/sec.) for El Centro. 

The results presented in Fig. 16 also permit the elastic and inelastic 
responses to these ground motions to be compared. A brief discussion of 
this comparison for each of the ground motions follows. 

Response to 0.5g El Centro. - Although there are differences, the overall 
inelastic response during El Centro is generally similar to the linear
elastic response. Initially, the inelastic response is smaller than the 
elastic. This difference may be attributed to the fact that at the initial 
stages of the responses, the ground motion consists of a periodic type of 
input with relatively short pulses. The dynamic magnifications of the 
displacements in the elastic, as well as inelastic, models are essentially 
the result of an engineering resonance phenomenon. The inelastic model's 
displacement could therefore not reach large values in this initial phase 
because each time the model response was building up, the resonance pheno
menon was depressed at the point of yielding by the energy dissipated through 
the small plastic deformations that started to develop. Energy dissipation, 
through even small plastic deformations, has effects similar to that of 
considerably increasing the damping in an ,elastic response. 

Greater differences between the elastic and inelastic response under 
El Centro begin to develop at about 4 sec. At this time, considerable 
inelastic increases in the response of the first floor and roof can be 
observed. Comparison of these response time-histories with the input 
accelerogram reveals that the increases coincide with a relatively long 
pulse having an initial peak acceleration of 0.26g, an effective (average) 
acceleration of about 0.16g, and a velocity increment of 36 in./sec. (91 cm/ 
sec.). Although this pulse had an effective peak acceleration, normalized 
by the gravity acceleration, somewhat smaller than the seismic resistance 
coefficient of the frame, 0.18, it induced a large increase in the lateral 
displacement of the first floor of about 2 in. (5 cm) in the negative direc
tion. At the time it was hit by the long pulse, the frame was already 
building up its motion in this direction. This combined effect res111ted 
in a total lateral displacement for the first floor of 1-2.31 in. (5.8 em) 
which was the maximum value computed. The long pulse also caused an in
crease of about 1-6.51 in. (16.5 em) in the roof displacement, resulting 
in a maximum inelastic roof displacement of 1-13.31 in. (33.8 em). This 
was the maximum value of inelastic roof displacement obtained for the 
frame under the El Centro motion and it was only about 16 percent larger 
than the maximum computed displacement of the elastic model [11.4 in. (28 
em)]. It is believed that the fairly close agreement between the elastic 
and inelastic response time-histories explains why this frame, designed 
using the derived IDRS, performed relatively well under the El Centro 
ground motion. 

Response to 0.5g DPD. - There is quite a discrepancy between the response 
time-histories for the elastic and inelastic models. 'rhe elastic 



572 

displacement of the roof appears to be an almost first mode type of 
response which in no way resembles the response of the inelastic structure. 
In the latter case, the frame underwent a mostly inelastic, lateral 
displacement under the action of the first large pulse that occurred at about 
2.4 sec. of the input ground motion. 

The damaging effect of large pulses ,is well illustrated by the first 
story response. After the first pulse, the first floor displacement in
creases in absolute value to 1-3.91 in. (9.6 cm), which corresponds to a 
story drift index of 0.022, already an unacceptably high value. A further 
increase in displacement is prevented by the second pulse, which is opposite 
in sign to the first; the second pulse forces the structure back to a dis
placement of 1-2.31 in. (5.8 cm). Oscillation of the structure subsequently 
occurs about a displacement of -3.1 in. (7.8 cm). No significant increases 
in the first floor lateral displacement occur until near the end of the 
ground motion. At about 7.6 sec. this displacement increases from 1-3.81 in. 
(9.6 cm) to 1-5.61 in. (14.2 cm), the latter being the maximum computed 
value, corresponding to a story drift index of 0.032. This increase was 
induced by two successive acceleration pulses, having the same sign, which 
began at about 7.6 sec. Subsequent oscillation of the first floor occurs 
about a deformation of -4.9 in. (12 em) corresponding to a story drift 
index of 0.027. 

A closer look at the elastic and inelastic displacement time-histories 
of the first floor reveals that the respective maximum values up to ·7.6 
sec. are similar, both being about 4 in. (10.2 em), although they are the 
results of completely different phenomena. A large inelastic displacement 
of -3.9 in. (9.9 cm), 70 percent of the maximum, results from the first 
large, long acceleration pulse; at the end of this pulse, the elastic dis
placement is -2 in. (5.1 cm), only about half the inelastic value. The 
elastic maximum is reached at about 7.9 sec. in the fourth cycle of an 
increasing oscillation induced by engineering resonance. Note that during 
the series of acceleration pulses after 7 sec., the displacement of the 
elastic model decreases, whereas the displacement of the inelastic model 
increases by more than 43 percent. 

The roof response shows similar trends to those already noted for the 
first floor, although the response is smoother and the effect of the two 
pulses after 7.6 sec. is not as distinct. Toward the end of the 
response, the roof oscillates at about 20.3 in. (51.6 em), of which almost 
25 percent is due to the displacement of the first floor. 

Response to 0.5g VND. - The findings from a comparison of the response time
histories of the elastic and inelastic models under the VND motion are 
similar to those made for the response under the DPD record. The damaging 
effect of large pulses is again demonstrated by the first story displacement 
response. Until 8 sec. the displacement response of the elastic and ine
lastic models are not dissimilar and the maximum values do not exceed 1.9 
in. (4.8 cm), despite that the maximum ground peak acceleration already 
occurred at about 7 sec. Only after the first large acceleration pulse 
occurred, corresponding to an incremental velocity of about 80 in./sec. 
202 em/sec.), did the first story displacement of the inelastic model 
undergo a considerable increase, to a value of 1-5.81 in. (14.7 cm) while 
the elastic increased to a value of only 1-3.71 in. (9.4 cm). Comparison 
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of the increases obtained under the first large pulse of the DPD and VND 
[3.9 in. (9.9 cm) vs. 5.S in. (14.7 cm)] confirms the previous statement 
that the larger the incremental velocity of the pulse, the larger the ine
lastic response if the effective acceleration of the pulse is eQual to or 
greater than that reQuired to produce yielding in the system. This obser
vation is generally true except in cases involving different rise times. 

Concluding Remarks. - The response of this frame indicates that elastic 
response cannot be used to predict a reliable inelastic response. The 
type of response expected from ground motions with long acceleration pulses 
is characterized, not, as inferred from elastic response, by numerous 
intense oscillations, but rather, by a few large displacement excursions. 

With respect to application of results obtained using the SDOF system 
to the analysis of the response of the ten-story frame, it should be noted 
that for a structure with a period of 1.67 sec., the Cy value reQuired to 
obtain a ductility of 4 for an ~ = 0.05 for the 0.5g El Centro motion would 
be close to 0.10. For the 0.5g DPD record, this value would be slightly 
less than 0.20; for the O.5g VND, it would be slightly greater than 0.20. 
Although the frame had a Cy value of 0.18 (close to the upper bound for 
all three records), the response was still rather poor. Such differences 
are to be expected, since the analysis of SDOF systems neglects the effects 
of gravity loads, geometric nonlinearities, etc. Furthermore, the lateral 
load-deflection relationship for multistory frames is not generally elasto
perfectly plastic. Extrapolation of results for SDOF systems to multiple 
degree-of-freedom systems should therefore be done with great caution. 

EFFECTS OF DIFFERENT AMOUNTS OF DAMPING. - Aft.er first est!1blishing the 
critical ground motion controlling the design of a builuing, it is necessary 
to determine the effect of damping in order to obtain the seismic design 
forces. This is usually done by estimating an equivalent viscous n8mrine; 
factor and accounting for its effect on the response of the building by 
directly modifying the design response spectra. Thus, the effect of damping 
for designs of linear-elastic systems is accounted for by using spectrum 
amplification factors as shown in the table [18J. By multiplying the values 
of the ground spectrum--the effective ground acceleration, velocity and dis
placement--by these amplification factors, a LEDRS can be obtained which 
accounts for the effect of the estimated damping. 

Since the IDRS is~sently obtained by dividing the values of the 
LEDRS by either ~ or 12~-1, this method assumes that for a given or selected 
structural system, the damping is the s&~e for both service and ultimate 
limite state designs. This assumption is Questionable, however, since 
critical excitations for ultimate limit state designs have been shown to 
differ from those for service limit state designs and the effect of damping 
in structural response is known to differ depending on whether the dynamic 
ground excitation is periodic or impulsive and on whether the response is 
strictly elastic or demands significant inelastic deformation. 

To illustrate this point, the ten-story frame was analyzed using dif
ferent amounts of damping. The time-histories of the lateral displacement 
of the first floor and roof under the VND and DPD are plotted in Fig. 17 
for 2 percent and 10 percent damping. A brief evaluation of the effects 
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of these amounts of damping follows. 

On Elastic Response to DPD. - From analysis of the elastic response time
histories shown in Fig. 17(a), it is clear that as the damping increased 
from 2 to 10 percent, the responses of the first story and roof were sig
nificantly suppressed. For example, while the maximum response of the first 
story for S = 2% is 4.8 in. (12.2 cm) and occurs at 6.8 sec. after four 
complete oscillations, the maximum response for S = 10% is only 2.6 in. 
(6.5 cm) and occurs at 1.8 sec., just after the first complete oscillation. 
The ratio between these maximum values, 4.8/2.6 = 1.85, clearly shows the 
importance of damping in the elastic response and, therefore, in the aseis
mic design for service limit states. It should be noted, however, that 
this ratio is smaller than the ratio between the suggested values of the 
spectrum amplification factors for 2 percent and 10 percent critical damp
ing (208/1.3 = 2.15 for the velocity region of the LEDRS, see table). Simi
lar conclusions can be drawn by analyzing the responses of the roof with 
similar percentages of damping. The ratio between the values for the maximum 
response is 40.0/27.6 = 1.45. 
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On Inelastic Response to DPD. - The curves shown in Fig. li(a) reveal that 
each of the inelastic response time-histories of this figure had two main 
peak responses; one at about 1.1 sec. after the first, long severe accelera
tion pulse (Fig. 16) and another at about 6.5 sec., just after the last, 
long severe pulse. 

The ratio between the values of the first main peak for 2 percent 
and 10 percent damping for the first story and roof are as follows: 

First story: =~:c = 1.15 Roof: -25.8 = 1 19 
-21. 7 . 

These values indicate the extremely small effects of damping in the response 
to an impulsive load. 

Similar ratios between tbe values of tbe second main peak lead to the 
following: 

First story: =~:~ = 1.31 Roof: -2i.2 = 1 54 
-11.1 . 

These ratios are considerably higher than the previous values, and thus 
reflect the effects of different amounts of damping on the building up of 
the elastic response that takes place between 1.1 sec. and 6.5 sec. 

The values for the ratio between the maximum responses are: 

First story: =~:~ = 1.31 Roof: -21.2 
-21.1 

1.25 

These values are smaller than the corresponding values for the elastic 
response, particularly the value corresponding to the first story (1.31 
vs.1.85). 

On Elastic Response to VND. - By increasing the damping from 2 to 10 per
cent, there was a considerable decrease in the oscillations of the system 
during the part of the ground motion containing the long severe pulses, 
i.e. at 7 sec., 17(b). By comparing the values of the successive response 
peaks for the first floor, the following ratios can be determined: 

=~:; = 1.15 ;:~ = 1.36 =~ :; = 1. 96 

where 1.36 is the ratio between the maximum values of the response. Cor
responding ratios for the roof displacement are: 

-21.9 = 1 14 
-24.5 . 

40.6 
31.2 

= 1.30 -40.9 = 
-25.3 

1.62 

where the ratio between the maximum peak values is equal to 1-40.91/31.2 
:= 1.31. 

As expected, analysis of these values indicates that the effect of 
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damping increases with the number of oscillations. However, the ratios 
(1.36 and 1.31) between the maximum peak values are considerably smaller 
than the ratios between the suggested values for the spectral amplifica
tion factors (2.15 for the velocity region and 2.86 for the acceleration 
region, see table). 

On Inelastic Response to VND. - From comparison of the curves shown in 
Fig. 17(b), it is evident that the effect of higher damping for the inelastic 
model is not as well-defined as for the elastic model. After the first long 
acceleration pulse, the ratio between the peak first floor displacement 
values is eQual to -6.3/-4.9 = 1.28. Although this ratio is as high as 
that for the elastic model, it cannot be directly attributable to the effect 
of damping during the response to the pulse. Rather, it is due to the 
fact that yielding began much earlier for the case of 2 percent damping 
than for 10 percent damping. This is because the elastic response that 
occurred before the initiation of long severe pulses for 10 percent damping 
was considerably more suppressed than that for the 2 percent case. This 
observation re-emphasizes that by building up the motion of the structure, 
due to the elastic engineering resonance phenomenon, short periodic pulses 
preceding a long severe pulse can significantly increase the inelastic 
response that the long pulse alone could have induced. Similarly, the ratio 
between the maximum values of the first floor response, -7.8/-5.0 = 1.56, is 
more a conseQuence of the effect of damping on the elastic response that 
takes place between 8.5 sec. and 11.4 sec., than on the effect of damping on 
the response to the severe pulse alone. Similar observations can be made 
for the roof displacement by comparing the corresponding peak values. In 
this case, the ratio between the maximum values for displacement with 2 and 
10 percent damping is eQual to -25.6/-19.9 = 1.28. 

SUMMARY AND CONCLUSIONS 

The results of the studies reported herein have permitted evaluation 
of the reliability of present methods for establishing design earthquakes 
when their use is extended to building located near potential source(s) of 
major earthquakes. These methods have been assessed in view of the dynamic 
characteristics of ground motions observed in accelerograms directly obtained 
or derived from records of the 1971 San Fernando earthquake, and on the 
basis of the observed building damage caused by this earthquake. 

Conceptually, the design earthquake should be that ground motion which 
is "critical," i.e. which drives the structure to its critical response. 
The application of this simple concept in practice meets with serious 
difficulties, however, because even for a specific structural system, the 
critical response will vary according to the different limit state(s) that 
could control its design. 

DESIGN EARTHQUAKES FOR SERVICE LIMIT STATES. - In cases where service limit 
states control design, structures should remain essentially in their elas
tic range. In these cases, the most effective way of defining the design 
earthquake is through the use of a LEDRS. Simple methods have already been 
suggested for the construction of such a spectrum. These methods have been 
based on so-called standard severe earthquake motions at moderate distances 
from the causative fault. For building sites located near these faults, 
however, the LEDRS should be based on the actual maximum values that can be 
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expected for the parameters defining the ground spectrum: effective ground 
acceleration, velocity and displacement. These values should be deter
mined from an~lysis of available records and/or from theoretical predic
tions based on the faulting process at the causative fault. Estimates of 
the peak ground velocity and displacement obtained by multiplying the 
expected ground acceleration by suggested coefficients obtained from analy
sis of standard earthquake ground motions alone can lead to unconservative 
LEDRS. If no records are available for sites near causative faults, and if 
acceptable predictions of the effective peak values for the ground accel
eration, velocity and displacement cannot be made, then establishment of 
the "critical" earthquake ground motion can be based on techniques suggested 
by Drenik, Wang, and Wang [12J or Hoshiya, Shibata, and Nishiwaka [13J. 

Further studies on the subject of spectral amplification factors for 
different amounts of damping are needed. Significant differences were 
found between the values of the ratio of maximum elastic responses cor
responding to different amounts of damping (obtained for the DPD and VND 
ground motions) and those corresponding to presently suggested amplifica
tion factors. 

DESIGN EARTHQU,~S FOR ULTIMATE STATES. - When safety rather than service
ability controls the design, large but controllable inelastic deformations 
can be tolerated. The amount of nonstructural and structural damage should 
be limited so as to prevent loss of human life and personal injury during, 
as well as after, the earthquake. One of the most pressing problems in 
establishing design earthquakes for ultimate states involves determining 
whether the damage or collapse of non structural or structural elements con
trols the criteria for acceptable deformations, and in each of these cases, 
the type of deformation inducing the damage. 

Use of IDRS derived directly from recommended LEDRS through displace
ment ductility factors as suggested by present methods, does not appear to 
be conservative for buildings located in the immediate area of causative 
faults. The LEDRS and, therefore, the derived IDRS do not account for the 
duration of strong motions during major earthQuakes. Determining the 
maximum inelastic deformation excursion, as well as the maximum number of 
reversals of inelastic deformations, for the structure's critical regions 
is essential for the proportioning and detailing of these regions. Although 
some information has recently become available on the duration of strong 
shaking for certain areas [29J, data for most seismic regions of the U. S. 
remain scarce. 

The main drawback of present methods is that direct derivation of 
IDRS from LEDRS has been shown to be basically untenable due to the fact 
that the dynamic characteristics of the critical ground excitations for 
elastic and inelastic responses are completely different. While periodic 
pulses having frequencies eQual to those of the predominant modes of the 
vibration of the building constitute the critical ground motions for 
linear-elastic systems, a critical inelastic response can be induced by 
just one or a few long acceleration pulses with effective (average) peak 
accelerations of equal to greater value than the effective seismic resistance 
coefficient of the structure. 
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Near-fault records of the San Fernando earthQuake, such as those for 
the Pacoima and Van Norman Dams contain severe long acceleration pulses 
which resulted in large velocity increments. This was found to be charac
teristic of near-fault motions. Results of an analytical study of a build
ing near the fault zone using the DPD record correlated well with the 
observed damage. This damage appears to have been the result of only a few 
large displacement excursions rather than of numerous oscillations. 

Unusually large ground velocities may be developed at near-fault sites. 
t1ethods for constructing elastic and inelastic design response spectra 
should reflect the larger values recorded at such sites. Additional 
research is needed to establish bounds on the different parameters that 
define the characteristics of severe long pulses, i.e. the largest incre
mental velocity and the associated effective acceleration that can be 
developed according to the mechanical dynamic characteristics of the soil 
present at a site. These values will enable the design engineer to deter
mine an upper bound on the energy that can be transmitted to the foundation 
of the structure so that the structure can be designed accordingly. It is 
also necessary to know the number of long severe pulses that can occur at 
the site since repeated pulses can lead to an incremental (crawling) type 
of collapse. 

Obtaining all the information considered necessary for the establish
ment of reliable design earthquakes for near-fault sites will reQuire 
extensive investigation and research. Until this is done, the following 
procedure may be implemented. 

For the case of single degree-of-freedom systems, charts similar to 
those presented in Fig. 12 should be prepared. These charts should take 
into account the different hysteretic models (at least the bounds of all 
possible stiffness degradation and strain-hardening) and all earthQuake 
ground motions previously recorded at sites near faults as well as those 
which can be obtained from theoretical consideration of fault mechanisms. 
Once sufficient records are available, statistical analysis of the results 
obtained should be conducted in order to formulate inelastic design earth
quakes in the form of IDRS (Cy vs. T). This will require the establishment 
of acceptable ductility factors. Current methods usually recommend the use 
of a constant ductility. Even for a specific structural system, however, 
the amount of acceptable ductility will vary depending on whether non
structural or structural damage controls the design. If design is con
trolled by nonstructural damage, the allowable ductility will decrease with 
increases in the flexibility (period) of the selected structure. Since 
present methods do not distinguish between the types of damage controlling 
a design, the first step in formulating inelastic design earthquakes as an 
IDRS should be to seek more reliable methods for establishing values of 
acceptable ductility. 

For multiple degree-of-freedom systems, the charts derived for SDOF 
systems may be used only as design guidelines. The response of different 
multiple degree-of-freedom systems to severe ground motions like those 
resulting from the San Fernando earthquake should be extensively investi
gated. At present, it is common to evaluate the reliability of an aseismic 
design by analyzing the designed structure under numerous ground motions 
obtained by normalizing recorded earthquake accelerograms to some maximum 
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selected value of the peak acceleration. Unfortunately, in many cases, 
these ground motions are the result of earth~uakes with different magni
tudes, and recorded at sites located at different distances from the earth
~uake sources and having different soil conditions. Indiscriminate use of 
such a technique, when significant inelastic behavior is expected under 
severe ground motions, can lead to highly misleading results. For example, 
accelerograms obtained on soft soil at sites distant from the earth~uake 
source usually contain very long pulses. If these accelerograms are nor
malized to a large peak acceleration, these pulses may become unrealistically 
severe. 

In view of the results of this study, there is an urgent need to obtain 
actual records for all six ground motion components and to study their 
simultaneous effect on the response of structures located near sources of 
possible major earth~uakes. 
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This paper addresses itself to the design of structures subjected to 
three components of earthquake when the analysis is carried out by the 
response spectrum method. It is a cornmon practice to calculate the max
imum probable value of any response as the square root of the sum of the 
squares (SRSS) of the responses obtained in various modes of vibration for 
the three components of earthquake, (a coupling matrix is introduced in 
case of modes with closely spaced frequencies). In many design problems 
the strength criterion is based on values of more than one quantity at 
an instance. However the above procedure gives the maximum probable 
value of each of the quantities which do not occur simultaneously. In 
many current design practices the structure is conservatively designed 
as if these probable maximum values were occurring simultaneously. 

A theory has been presented which postulates simultaneous variation 
in various responses of a structure. It is also shown that the response 
in several modes of vibration under three components can be represented 
by the response in a small number of Equivalent Modes, thus reducing the 
number of calculations required in the design analysis. Modal Space 
and Subspace have been defined. The response values which are expected 
to occur simultaneously and to cause an extreme probable effect lie on a 
Interaction surface in the Modal Subspace. 

With the theories presented in this paper, one should be able to 
design any type of structure analyzed by the response spectrum method. 
Application of these theories to some frequently encountered design 
problems is illustrated. 

1. Introduction 

The seismic analysis of complex structures is often carried out 
by the response spectrum method. The maximum responses are calculated 
in each significant mode of vibration under each component of earthquake. 
Probabilistically the combined maximum response is taken to be the square 
root of the sum of the squares (SRSS) of the responses obtained in each 
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mode of vibration for the three components of earthquake(l) 

where 

R2 
e 

R. R. In In 
(1) 

R 
e 

effective response value (any displacement, stress or force) 

R. In maximum response in nth mode of vibration due to excitation in 
ith direction (i ~ 1, 2, 3) 

The repeated sub 
imply summation. 

or superscripts in Equation (1) and later in this report 
For example, in the case of Equation (1), 

R. R. = Z Z (R. )2 
In In i n In 

For modes with closely spaced frequencies, Equation (1) is modified to 
include a coupling matrix s (2) 

mn 
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mn mn 

where 0 is the Kronecker delta mn 

o 
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In this case 

1 when m 
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R2 0 R. R. 
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R. R. In In 

n 

n 

(2) 

which is the same as in Equation (1). Obviously, Equation (2) is more 
general and Equation (1) is a special case of Equation (2); therefore, 
in further discussions only Equation (2) will be used. 

In many design problems, the strength criterion is based on values of 
more than one quantity at an instance. However, Equation (2) gives the 
maximum probable value of each of the quantities, which in general do not 
occur simultaneously. For the lack of a better approach in many current 
design practices, the structure is conservatively designed as if these 
probable maximum values were occurring simultaneously. 

In the next section a theory is presented by which simultaneous 
variation of various quantities can be postulated within the framework of 
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the definition given by Equation (2). In Section III it is shown that the 
response in several modes of vibration under three components of earth
quake can be represented by the response in a small number of Equivalent 
Modes, thus reducing the number of calculations required in the design 
analysis. Using the concept of Equivalent Modes, it is shown in Section 
IV that the variation of responses contributing to a design criterion can 
be represented by an Interaction Surface. Application of the theories 
presented in this paper to the design problems is illustrated in Section V. 

It is observed in this paper that the modal vectors lie in a 
Riemannian Space designated as Modal Space. The Equivalent Modal Vectors 
represent a Cartesian Space, which is designated as Modal Subspace. 

In three sections (II, III and IV), seemingly three different methods 
have been presented, which can be derived independently of each other (not 
presented in this paper). However, it is shown in this paper that all 
three methods are interconnected and essentially follow the same basic 
theory developed in Section II; hence, the nomenclature "Unified Approach" 
in the title of this paper. 

II. Probable Simultaneous Response: The Modal Space 

In the response spectrum method of analysis, the maximum value of 
any response quantity R is known in any mode n due to ith direction of 
excitation, denoted here by Rin' At a given instance the response can 
be expressed as the weighted algebraic sum of response in various modes 
due to various excitations: 

R Ct) K. Ct) R. In In 
(3) 

The value of R(t) given by Equation (3) is bounded by value of R 
e 

given by Equation (2), or 

IR (t) I > R 
e 

(4) 

Now consider the instance at which a given response at a specified location, 
U reaches its maximum value U. Equation (3) gives: , e 

or 

where 

Equations (2) and (6) give 

K. U. U In ln e 

K. u. ln ln 

u. 
In 

s u. u. mn 1m In 

I 

u. lu In e 

1 

(5) 

(6) 

(7) 
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If there are N modes excited in each of the three components of earthquake, 
then according to Equation (7) u. is a unit vector in a 3N Riemannian 
spacJ3)whose metric tensor is re~~esented by s . This space is designated 
here as the Modal Space. Consider, another ar~~trary unit vector u. in 

In the same space. Again 

E V. v. 
mn lm In 1 (8) 

According to Equation (4) 

IK. v. I < 1 
In In -

(9) 

Since, v. is any arbitrary unit vector, without loss of generality one 
can writ~n 

K. 
lll1 

C E v. 
mn In 

Equations (9) and (10) give 

Ic E V. v. I < 1 mn lffi In 

which with Equation (8) yields 

I C I < 1 

Now, substitution of Equation (10) into Equation (5) gives 

C E U. V. ~ 1 
mn lffi In 

The angle between the vectors u and v is given by 

cos (u, v) ~ E U. v. 
mn lm ln 

Therefore, Equations (13) and (14) give 

C ~ l/cos (u, v) 

or 

lei ~ 1 

The only way to satisfy both Equations (12) and (15) is to set 

ICI = 1 

Therefore, 

I cos (u, v) I 1 

or 

(10) 

(ll) 

(12) 

(13) 

(14) 

(15) 

(16) 



which is possible only when 

v. 
1m 

Equations (10) and (18) yield 

K. 
1m 

U. 
lffi 

s u. 
ron 1n 
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1 (17) 

(18) 

(19) 

Since s is positive-definite by definitio~2~ it can be inverted to obtain 
y ,suml: that 

ron 

y s '" 6 
mi in mn 

(20) 

Now, Equations (7), (19) and (20) give 

Y K. K. mn un ln 
1 (21) 

Finally, therefore, Equation (3) gives the values of all relevant 
responses R(t) at any instance which may cause extreme probable effects on 
the structure when K. varies according to Equation (21). 

1n 

To check if Equations (3) and (21) are compatible with Equation (2), 
consider the following extremum problem: 

R = K R. + \ (y K. K. - 1) 
in 1n ron 1m 1n 

where \ is a Lagrangian multiplier. For R to be maximum, 

(lR 

8K. 
ln 

Multiplying Equation (22) by K. , one gets 
ln 

R + 2\ = 0 

Multiplying Equation (22) by Stn Rit one gets 

or by Equations (3) and (20), 

Equations (23) and (24) give 

R2 

o 

o 

(22) 

(23) 

(24) 
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which is same as Equation (2) with 

R = R 
e 

thus proving the validity of Equation (21). Equations (22) and (23) also 
give 

K. 1m 

s R. 
mn 1n 

R e 
(25) 

wnen R is maximum (=R). Note, Equation (25) can also be derived from 
Equation (19). e 

III. The Equivalent Modal Response Method 

Consider a design problem in which only a small number, M, of the 
response values Rr (r = 1, M) contribute. For instance, for a beam column 
subjected to combined axial force and bending moment 

M 2 
Rl Axial force 
R2 Bending moment 

Obviously, there are many design problems with M=2, 3 etc. Let the design 
criterion be specified as 

<p < ¢ (26) 
allowable 

where 

(27) 

In Equation (27), Ar represents M influence coefficients, which have been 
assumed to be locally constant to make Equation (27) linear. In other 
words, even if the actual design criterion is nonlinear in Rr, it is still 
valid to use it in locally linear form, such as Equation (27), if the 
response spectrum analysis is applicable. 

For nth mode, ith excitation, 

'" Ar 
R: 'in ln 

(28) 

Equations (2) and (28) give 

¢2 Ar AS E R~ R~ 
e mn lm lU 

(29) 

or 

¢2 Ar AS Grs 
e 

(30) 
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(31) 

It is obvious from Equation (30) that for design purposes it is sufficient 
to know Grs and it is not necessary to know R:. The array Grs is symmetric, 
as defined by Equation (31) and has M (M+l)/2

l
Gnique elements, which is 

equal to 3 for M=2. If the total number of modes in each of the three 
excitations of earthquake is N, then R: has 3MN elements, which is equal 
to 60 for M=2 and N=lO. In 

For convenience, as will be apparent later, Equivalent Modal Response, 
is introduced here, such that 

(32) 

The Greek subscripts have a range equal to the number of Equivalent Modes, 
say M'. In terms of the Equivalent Modal Response 

R R 
C( C( 

(33) 

(34) 

which follow directly from Equation (32). 

The values of ~ are arbitrary except that Equation (32) must be 
satisfied. EquationCl.(32) represents M(M+l)/2 equations; however. as will 
be shown here, there are more conditions to be satisfied. The Rr can be 
represented in terms of unit vectors and their amplitudes as C( 

R(r) rr 
e C( 

(35) 

The superscript in parenthesis means that the implied summation has been 
suppressed. Substituting Equation (35) into Equation (32) one gets 

Grs = R(r) R(s) rr r S 

e e a a 

cos (r, s) (36) 

where (r, s) represents the angle between rth and sth vectors. 

It is observed from Equation (36) that there are (M-I) (M-2)!2 equations 
of the type 

(r, t) (r, s) + (s, t) (37) 

where M > t > S > r > 1 

Therefore, Equivalent Modal Response ~ should satisfy a total of 
M(M+I)/2 equations represented by Equation ~32) or (36) and (M-I) (M-2)/2 
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equations represented by Equation (37). 
determined is M. M'. Therefore, 

The number of elements F:r to be 
Ci 

M . M' > M (Mtl) + (M-I) (M-2) 
2 2 

or 

M • M' > 

or 

M' > M (38) 

or 

M'. 
m~n 

M (39) 

When M' = M, "Rr 
is a square array of the size M x M. 

which can be s~lected arbitrarily are: 
The number of elements 

if- (if - M+l) = M-I (40) 

As shown above, usually one will choose to have the m~n~mum number of 
Equivalent Modes which is equal to the number of responses which contribute 
to a given design criterion, M. Examples of Equivalent Modes are given 
later. 

The Equivalent Modal Responses ~ can be considered as a Modal Sub
space of'the order M in the original Modal Space, R~ of the order 3N. 
The Modal Space R: in general is a Riemannian s~ac~nwith a positive 
definite metric t~Rsor E ,the Modal Subspace R is Cartesian (Equation 
35), which is a special ~se of the Riemannian Space. The Modal Subspace 
also satisfies Equations (3) and (21), derived earlier with proper 
substitutions. 

w'ith 

IV. Interaction Surface 

K -P:: 
(l Ci 

K K 
Ci I). 

(41) 

1 (42) 

Equations(4l) and (42) represent a surface in the Modal Subspace. 
The points on this surface represent the values of Rr that can be expected 
to occur simultaneously to cause the extreme probable effect. The 
equation of this surface can also be written explicitly as discussed below. 

Assuming that R: is a square array of the order M, one can write from 
Equation (4) a 

K 
a. 

(43) 



where 

and 

Substituting Equation (43) into Equation (42) one gets 

K K ~ Rr rr RS r S = 1 
a a a a 

or 

1 

where 
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(44a) 

(44b) 

(45) 

(46) 

Equation (45) gives the desired Interaction Surface. The coefficient matrix 
Hrs given by Equation (46) can be represented in more direct from without 

-=r 
calculating the Equivalent Modal Response R. Equations (32) and (46) give 

a 

which with Equation (44) gives 

Hrs cst = ort (47) 

Therefor~, H
rs 

is inverse of the matrix cst, which is given by Equation 
(31) . 

v. Application to Design Problems 

With the theories presented in the preceding three sections one 
should be able to design any type of structure analyzed by the response 
spectrum method. Application of these theories to some frequently en
countered design problems is illustrated below. However, the application 
is not intended to be limited to these problems. 

A. Design of Building Cross Section 

Figure 1 shows a building cross section which is subjected to axial 
force SN and the story overturning moments SM , SM. Vertical reinforcement 
is designed to resist the vertical stresses wtich ~re given by 

- x I ) + SM 
xy y 

I 
x 

I 
Y 

12 
xy 

(x T ,,-y1 ) 
1'::.1' xy 

(48) 
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where 

A area of cross section 

I moment of inertia about x axis 
x 

I moment of inertia about y axis 
y 

I product of inertia xy 

One way of calculating the effective stress distribution is to calculate 
stresses at various locations in the cross-section using Equation (48) 
for each mode of vibration under each excitation of earthquake. If there 
are 10 modes and 3 directions of earthquake, this calculation will have to 
be performed 30 times for each location in the building cross section. 
Then, the effective stress at any location can be calculated using 
Equation (2). 

The obvious alternative is to use the Equivalent Modal Response method 
presented in Section III of this paper. 

Following the notations of Section III 

Rr (SN, 8M , 8M )T 
x y 

G
11 

E SN. 8N. 8N
2 

mn 1m ln e 

G
22 

E 8M . 8M . 8M
2 

mn X lID Xln xe 

G
33 

E SM . 8M . 8~ 
mn ylm yln ye 

G12 G
2l 

E: 8N. 8M mn 1m xin 

G
13 

G
3l 

E: 8N. 8M . mn 1m yln 

G
23 

G32 E: SM . , 8M • 
mn X lID yln 

The Equivalent Modes are 

Rr 
= (8N , 8M , SM )T 

CI. CI. XCI. yCi. 

Equation (51) has 9 unknowns. Two of the unknowns can be selected 
arbitrarily (Equation 40). 

Let the first arbitrary selection be 

8N 
e 

(49) 

(50) 

(51) 

(52a) 



Therefore, appropriate conditions from Equation (32) yield 

SN == SN == 0 2 3 

and 

Next, let the other arbitrary selection be 

Again, Equation (32) gives 

SM == 0 
x3 

SM2 _ SM2 ) 1/2 
yl y2 
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(52b, c) 

(52d) 

(52e) 

(52£) 

(52g) 

(52h) 

(52i) 

The above values of the Equivalent Modes are also given in Table 1. 

TABLE 1 Equivalent Modes For The 

Design of Building Cross Sections 

Equivalent SN SM SM 
Mode x y 

1 SN G
12 G13 

e -- --
SN SN e e 

2 0 (SM
2 _ SM2 )1/2 (G23 - SM 1 SM 1) xe xl x l 

SM
x2 

3 0 0 (SM2 _ S~ - S~ )1/2 
ye yl y2 

\ 

Once the three Equivalent Modes have been determined as above, one can 
compute the stress at any location in the section for each Equivalent Mode. 
The effective stress can then be obtained using Equation (1) or (33). 
Simplification of the problem is obvious. 

B. Design of Base Slab 

Consider a building whose cross section is shown in Figure 1, sup
ported on a base slab on a soil subgrade. The slab is subjected to the 
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same axial force and overturning moments which the building cross-section 
is subjected to. Once again, the three Equivalent Modes are determined as 
discussed in the previous problem. The slab is analyzed individually for 
each Equivalent Mode, thus giving at any slab section three moments: 
M , M ,M ,Figure 2. If the failure direction is e, the design flexural 
c~pacitiegYin x and y directions are given b~4) 

* = Me (M +M tan8) 
a ct x XJ': CI-M 

Mee x 
(53a) 

* 
E Mea (M + M cote) 

M a 'l xy CI-

Y Mee 
(53b) 

where 

M = M cos
2

e + M sin2e + 2 M sine cose e x y xy (54) 

The critical direction e is arbitrary, except that, it should satisfy 
the following conditions 

M* > M 
x - xe (55a) 

M* > M 
Y - ye 

(55b) 

More detailed treatment of the problem is provided in Reference 4. 

C. Design of Reinforced Concrete Column 

Consider a reinforced concrete column subjected to axial forces Nand 
bending moment, M, shown in Figure 3. One common method of designing 
such column sections is to draw the N-M capacity interaction diagram and 
to ensure that all of the N-M load points are within the capacity inter
action diagram. For seismic loading the variation of seismic N-M is given 
by Equation (45), which for the present problem can be rewritten as 

(56) 

where 

(57a) 

(57b) 



and 

G
l2 

= E N. M. 
mn 10m l.n 

(57c) 

(57d) 

Equation (56) represents an ellipse, designated here as Interaction 
Ellipse. As shown in Figure 4, the Interaction Ellipse should be 
completely enveloped by the capacity interaction diagram. 

When the design procedure is digitized on computer, then the com
parison between the capacity and the loading is made using several points 
on the interaction diagram. Any point on the Interaction Ellipse is given 
by (Equation 41) 

(58a) 

M (58b) 

in which KI and K2 should satisfy the following condition (Equation 42) 

(59) 

Nand M (a = 1, 2) in Equations (58) represent Equivalent Modes and may 
b~ calculated as described in this Section and in Section III. 

Several well distributed sets of the_values_of KI and K2 are selected 
which satisfy Equation (59); each set of Kl and K

Z 
gives a point on the 

Interaction Ellipse by substituting it into Equatl.ons (58). 

Procedures similar to those described above can be used for the 
design of reinforced concrete columns subjected to axial force and biaxial 
bending moments. Similar methods can also be used for the design of steel 
colunms. 

D. Analysis and Design of Base Slab With Local Uplift 
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It is possible that under the combined action of static and seismic loads 
the base slab uplift in certain areas. If the uplifted area is significant 
a detailed nonlinear analysis of the complete structure-base slab-soil 
system may be required which is beyond the scope of the present discussion. 
However, if the uplift is local in nature, it can be assumed that the 
actual dynamic behavior of the building does not significantly depart from 
that predicted by the response spectrum analysis of the decoupled building 
system. 

In the latter case the seismic axial force and the overturning moments 
acting on the base slab can again be represented by three Equivalent Modes, 
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derived in Subsection V-A above. Values of axial force and overturning 
moments expected to occur simultaneously are then given by 

SN K SN (60a) 
lJ. C( 

SH K SM (60b) 
x C( xC( 

SN K SM (60c) y CI. yC( 

and 

K K 1 (61) 
0, CI. 

Where subscript 0, has a range 1 to 3. Various sets of Ret can be selected 
which satisfy Equation (61), and the corresponding vaLues of SN, SM and 
SHy are calculated from Equations (60). For each set of SN, SM , S~y so 
caiculated, the base slab should be analyzed nonlinearly accounting Lor 
the uplift. Such as analysis should include all the other static loads 
together with the seismic loads. 

Since the nonlinear analysis is usually expensive, an effort should 
be made to reduce the number of such analyses. This may be achieved by 
first analyzing the base slab linearly under each of the three equivalent 
modes. Maximum probable deflection at various locations in the base slab 
is calculated using the standard procedures. Locations most critical to 
uplift can thus be determined. At such a location P, the seismic deflection 
is given by 

This deflection is maximum when 

where 

K C( 

(62) 

if 
(63a) 

e 

(63b) 

according to Equations (1), (25) and (35). The set of SN, S~, SM which 
would cause this maximum displacement can be determined by substitZting 
the value of K from Equation (63a) into Equations (60). The slab is 
then analyzed gonlinearly applying the values of seismic SN, SM , SM so 
calculated. The above process should be repeated considering a~ man~ 
locations critical to uplift as necessary. 

Conclusions 

A theory which postulates simultaneous variation in various responses 
of a structure based on the response spectrum method of analysis has been 
presented. Furthermore, it is shown that the response in several modes of 



595 

vibration under three components of earthquake can be represented by the 
response in a small number of Equivalent Modes, thus reducing the number of 
calculations required in the design analysis. 

The modal vectors lie in a Riemannian Space designated as Modal Space. 
The Equivalent Modal Vectors lie in a Cartesian Space which is designated 
as Modal Subspace. The order of Modal Subspace is equal to the number of 
responses included in a design criterion. The response values which are 
expected to occur simultaneously to cause extreme probable effect lie on 
an Interaction Surface in the Modal Subspace. This concept facilitates the 
use of a graphical design procedure when the design criterion can be 
represented in terms of a capacity interaction diagram as in the case of 
the design of a reinforced concrete beam column section. 

Application of the theories developed in this paper has been illustrated 
for four design problems. However, application of these theories is not 
limited to these illustrations. Indeed any structure which can be analyzed 
by the response spectrum method can also be designed using the methods 
presented in this paper. 

Within the assumptions of Equation (1) or (2), the theories and the 
methods in this paper are exact thus eliminating the conservatism inherent 
in many of the existing practices. 
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SUMMARY 

The object of this paper is to present a design procedure based on op
timality criteria, treating the expected ground motion as a dynamic force on 

the structure. Elastic systems are designed for minimum weight while satis
fyinq all the design requirements. The design requirements are in general 

strength and stiffness under all loading conditions including those result
ing from expected ground motion. 

I NTRODUCTI ON 
The pressure for building bigger and safer structures is relentlessly 

increasing because of the ever increasing population around the world. 

Large high-rise buildings, nuclear reactors, storage tanks with inflammable 
substances and toxic gases and water retaining structures such as dams are 
the prime candidates for catastrophic failure due to ground motion induced 

by seismic conditions. The problem becomes even more acute as the popula
tion centers move closer to the fault regions in search of open space and 

untapped resources. There is a great deal of effort around the world to 
develop rational design criteria for seismic design. This effort is greatly 

enhanced by the revolutionary development in digital computers and the 
design methods. Even before computers, the successful design of Latino 

Americana Tower in Mexico provides evidence that it is feasible to evolve an 

adequate design criteria to withstand moderate to severe seismic motions(l). 
In addition to the seismic conditions, ground motions are induced by 

waves coming from underground blasts. The motion on uneven pavement sur
faces may also be treated as ground motion in designing landing gears and 
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other wheel bays in vehicles. The ground motion effects are in general 
dynamic and random in nature. The rapid ground motion generates inertia 

forces which in turn produce differential displacements and stresses in the 

structure. The adequacy of the structure to withstand these forces depends 

on the intensity of the ground motion, the natural frequencies and the duc
tility of the structure. In addition the soil structure interaction can be 
a major factor. 

The normal practice is to design structures to dead and live loads 

(other than those induced by ground motion) and check the adequacy of the 
resulting structure to the expected intensity of ground motion. Depending 

on the region in which the structure is to be located the past history of 
the ground motion can provide a deterministic condition for checking the 
deSign. With the increased analytical capabilities it is now possible to 

include this expected ground motion condition with all the other dead and 
live load conditions. 

Whether it is stated explicitly or not. design has always been an opti
mization problem. The simplest and probably the most useful objective fun

ction is the weight of structure. Then the objective is to minimize the 

weight of the structure while satisfying all the design requirements. The 
design requirements are in general strength and stiffness under all loading 

conditions (including those resulting from expected ground motion). 
The object of this paper is to present a design procedure based on 

optimality criteria (2), treating the expected ground motion as a dynamic 

force on the structure. Only elastic case is considered here. However, it 
is realized that a realistic design procedure must consider elastoplastic 

behavior of the structure (3). It is also tacitly assumed that the struc
ture has adequate ductility. The optimization procedure pertaining to 

dynamic case is discussed here and the discussion for the static case is 
given in Reference (5). 

ANALYSIS FOR GROUND MOTION 
The generalized displacements of a structure subjected to ground 

motion can be represented by 

r :: r + r 
-c -G -

(1) 

where r is the vector of the total displacements of the structure. r 
-c -G 

is the vector of displacements imparted by the ground to the structure as 



rigid body motion. The vector ~ represents elastic deformation of the 
structure. 

The dynamic equation governing the motion of the structure due to 

ground motion can be written as 

M r + C r + K r = 0 
- -c 
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(2) 

In Equation (2) no other forces other than ground motion is acting on the 

structure. The matrices ~, ~ and K represent the generalized mass, damping 
and elastic stiffness of the structure. The mass and stiffness matrices of 

the structure are given by 

n 
a~ M I m. a. + M 

i = 1 -1 -1 -1 -c (3 ) 

n 
a~ K I k. a. 

i = 1 -1 - 1 -1 
(4) 

where a. is the compatibility matrix of the ith element (4). The matrix M 
_ 1 -c 

represents concentrated or lumped masses due to non-structural attachments 

such as floors, equipment, etc. This non-structural mass matrix is assem
bled by adding the mass of the attachments to the diagonal elements of M -c 
corresponding to their points of application. If they are lumped masses 

without specific geometric dimensions, only the translational degrees of 

freedom will be effected. When the masses are located between the discrete 
points of the structure the equivalent effect on the generalized mass can be 

derived by D'Alembert's principle and the principle of virtual work. 

The damping matrix C is assumed to be proportional to the mass and 

stiffness matrices by the following relation 

C = 28 M + ex K 

where 8 and ex are the proportionality constants. This proportionality 

assumption facilitates decoupling of the dynamic equations by a modal 
analysiS. 

(5) 

It is evident from Equation (2) that the last two terms are effected 

by only the relative motion of the structure and not the ground motion. It 
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is further assumed that no other dynamic force other than ground motion is 

acting on the structure. However, in actual design additional loading con
ditions including some static and dynamic cases must be considered. An 

extensive discussion of optimization for static loads and periodic dynamic 

forces was presented in References 5 and 6 respectively. 
Substitution of Equation (1) in (2) gives the dynamic equation in the 

fonn 

.. .. 
M r + C r + K r = - ~ ~G (6) 

The response of the structure can be represented by a finite number of 
normal coordinates in the form 

r = ljJ q 

where each column of the matrix ljJ is a normal mode and is obtained by a 

standard eigenvalue analysis of the problem 

(7) 

2 
w ~ ~ = ~ ~ (8) 

The vector q represents a set of normal coordinates. Substitution of 

Equation (7) in (6) and premultiplication by ljJt gives 

The uncoupled Equation (9) may be written as 

If S is represented as 

6· = e + 1/2 
1 

2 
a w. 

1 

then the characteristic equation becomes 

(S2 + 2sS + w~) q = 0 
1 

The roots of Equation (12) are given by 

(10) 

(11 ) 

(12) 



s - s· ± 113 2 2 
I i - w. 

1 1 

Then S can be written as 

S· 1 
( 8 a J l~ + a o wi 

where 8
0 wi and a = 2/ wi and 

0 

e + a < 1 - -, e CJ. > o 0 
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(13 ) 

(14 ) 

(15 ) 

represents underdamped, critically damped and overdamped cases respectively. 

Only the underdamped case is of interest in this paper. The parameters 8
0 

and Co represent the cases when the damping is proportional to the mass and 

stiffness matrices respectively. 
In Equation (10) the ground acceleration !G may be represented as 

(16 ) 

where !G is a vector with elements in the direction of the ground motion 

while all other elements are zero. Unless the dimensions of the body impart

ing the mass at a point is specified, the elements corresponding to the 
rotational degrees of freedom are all zero. The function f(t) represents 

time variation of the ground acceleration. Now Equation (10) can be written 
as 

( 17) 

The solution of this uncoupled equation can be obtained by the use of 

the convolution integral in the following form: 

t 
~i ~ ~G 

2 D; (t) 
w. M. 

1 1 

where D.(t), the dynamic load factor, is given by 
1 

(18) 
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D. (t) 
1 

2 

It Wi -S.(t-T) 
1/2 e 1 

2 2 o (w.-s.) 
1 1 

(19 ) 

Here t represents the time at which the response is desired and T is the 

intermediate variable. Substitution of Equation (19) in (7) gives the 

response of the structure in the following form 

r I 
i=l 

C. 1/1. 1 _ 1 
(20) 

where p is the number of modes required to represent dynamic response. The 

parameter Ci is given by 

C· 1 

t 
~i ~ ~G 

2 w. M. 
1 1 

D. (t) 
1 

(21) 

In Equation (20) the total response is represented as the sum of the modal 

responses. The nature of the ground motion and mass distribution determine 

the number and type of modes that participate in the response. 

The dynamic load factors in each mode require evaluation of the inte

gral in Equation (19). If the function f(t) is periodic, the integral can 

be evaluated by expanding the function in a Fourier Series. On the other 

hand if f(t) is aperiodic but a known analytic function, the Fourier inte

gral representation can precede integration. But in the case of ground 

motion neither of these procedures is feasible because the ground motion 

information is often available as accelogram readings at discrete time steps. 

In such cases a numerical integration scheme would be more convenient. 

The numerical integration scheme consists of slicing the duration of 

the forcing function into a number of intervals. Each interval covers a 

number of accelogram readings. At the end of each interval all the dynamic 

load factors are evaluated by Simpson's rule as follows: 

h. 
D = _1 [D. + 4 D + 2 D + + 4 D + 0 ] (22) i 3 10 11 i 2 . . . i n-l in 

where h. is the interval at which accelogram records are available. 0 .. is 
1 lJ 
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the value of the integrand in Equation (19) at the jth accelogram record. 

It is possible by using this procedure, to determine at least approximately 

the values of the dynamic load factors during different instances of the 

ground motion. The load factors for all the modes can be determined at 

equal intervals of time during the ground motion. The peak response of the 

structure is needed for design. However, the peak values of the dynamic 

load factors may not be reached at the same time for all the modes. Even 

if they do the peak response may not be the critical response for all the 

components (elements)of the structure. An actual design must consider the 

response at various time slices as being that of multiple loading conditions 

and design the structure accordingly. Normally design for multiple loading 

conditions can be quite cumbersome and this effect of peaks reaching at 

different times becomes significant only when a large number of modes parti

cipate in the dynamic response. However, in most practical cases only a 
few modes would be significant, and the assumption that all dynamic load 

factors reach their peak values at the same time would at best yield conser

vative results. This is the procedure adopted in this paper. 

CONDITIONS OF OPTIMALITY 
Basically the procedure presented here is similar to that discussed in 

Reference 6. The optimality criteria is derived for a structure vibrating 

in one of its natural modes, and it is subjected to a dynamic stiffness 
requirement which is expressed as a Rayleigh quotient in the vibrating mode. 

Most structural optimization problems can be stated as follows: 

Minimize the objective function 

W W( A) 
n 
I e. A. L 

i::1 1 1 1 

subject to the constraints 

Z. < E. 
J - J 

(23 ) 

(24) 

where W is the weight of the structure, A is the design vector that repre

sents the sizes of the structural elements and Z. is the constraint expressed 
J 

as a stiffness requirement involving the entire structure. In a finite ele-

ment formulation the weight of the structure can be expressed as the sum of 
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the weights of the elements. If the stiffness of the structure can also be 

expressed as the sum of the stiffnesses of the individual components, then 

an optimality criterion involving uniformity of an energy functional across 

the elements can be established, 

Combining Equations (23) and (24) a new function ¢ can be written as 

P 1 
¢ = W (A) + I ~ Y

J
, 

j=l J 
(25) 

where Aj is the Lagrangian multiplier and Yj is given by 

y. = z. CA) - E. < 0 
J J., .... J -

(26) 

The summation is over the number of stiffness constraints involved. 

The necessary condition for a stationary value of ¢ is obtained by 

p 

f.-(l~.(Yj) ~ = _a_ [W(A)] + I = 0 (27) aA. aA. j=l 1 1 J 1 

After simplifying Equation (23) the optimality condition can be written as 

follows: 

e e .. 
l .-J..!..

. 1 A. -
J= J 

( 28) 

where e .. can be interpreted as an energy density function and is of the 
J 1 

form 

e .. 
Jl a~.cW(A)J 

1 

(29) 

The quantities eji are the ratio of the gradients of the constraint and 

objective functions. They can be interpreted as some energy density func

tions in the structure depending on the type of constraint conditions (2). 

The sufficient condition for a minimum is obtained by 



/¢ > 0 
~ 
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(30) 

Both the necessary and sufficient conditions assure only relative minimums 
in the neighborhood. 

The dynamic stiffness of the structure vibrating in the natural mode is 

defined as 

(31) 

. h . th 1 d f h Th' K d M where ~. 1S t e J natura mo e 0 t e structure. e matr1ces an are 
-J ~ -

the stiffness and mass matrices of the structure respectively. Substitution 

of this stiffness requirement in Equation (27) gives the optimality condition 

as foll ows: 

e. 
A = ---;---,1,--_ 

t 
~. M ~. 
~J ~ -J 

(32) 

where e. is the ratio of the difference in strain and kinetic energy densities 
1 

to the mass density of the ith element in the given mode and it is given by 

(33) 

h d M h · ff d . f h . th 1 . h were K. an . are t e Stl ness an mass matrlces 0 tel e ement 1n t e _, _1 

structure coordinate system. 
Since the Lagrangian multiplier is constant, Equation (32) can be true 

only when all the elements of the structure have the same e value in the 
given mode. This means that a structure has optimum distribution of the 

material if the quantity e has the same value in all its elements in a given 

mode of vibration. 

From Equations (23) and (32) the Lagrangian multiplier A can also be 
written as a total system parameter as follows: 

(34) 
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where W is the weight of the structure and n is the ratio of the structural 

modal mass to the total modal mass and it is given by 

t 1/J. M lji. 
= -J ~s -J 

11 t 
1/J. M 1/J. 
-J - -J 

(35) 

where M is the structural mass only. The case of a zero nonstructUral mass 
~s 

results in the trivial case of zero weight structure. 

The optimality criteria as expressed in Equation (32) is valid only for 

a structure vibrating in one of its natural modes. However. the same criter

ion will be used as an approximation to a general dynamic response case (6). 
The Rayleigh quotient in such a case is defined as 

z (36) 

The response r is designated as the dynamic mode and it is represented as the 

sum of the modal responses in Equation (20). The quantity e i in this case 

is defined as the ratio of the difference in strain and kinetic energy densi

ties to the mass density of the ith element in the dynamic mode, and it is 

given by 

(37) 

where Z is the Rayleigh quotient in the dynamic mode. 

OPTIMIZATION ALGORITHM 
A recursion relation to achieve the optimality criterion can be derived 

by writing Equation (32) as follows: 

t Z rt M. r] 1 [r K. r -
,\ '" 

__ 1 __ 1 

rt M r p. A. i. 
1 1 1 

(38) 

The design variable vector A is written as 

A A a (39) 
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where A is the normalizing or scaling parameter and a is the relative 

design variable vector. Multiplying both sides of Equation (38) by A
2, we 

can write it as 

(40) 

After multiplying both sides of Equation (40) by a~ and taking the square 

root the expression for the design variable may be written as 

, ,1/2 
a· A = C a,(U'/T') 

1 111 
( 41) 

where T'. and U~ are the relative volume and energy terms of the element and 
1 1 

they are given by 

, 
T· 

1 

U '. 
1 

(42) 

(43) 

C is a constant term and it is the same for all the elements. It is given 

by 

1 C = -....,.;..--
A rt M r 

(44) 

Since C/,. exists on both sides of Equation (41), the resizing formula may be 
1 

Wli tten as 

1/2 
(a1• A) +1 = CCa.) [U~h:J v 1 v 1 1 v (45) 

where v refers to the cycle of iteration. In the case of multiple loading 
conditions the resizing formula may be written as 

8 ,1/2 
Ca i A)v+l '" (a i \) [L CJ.(U .(j)h~)J 

j = 1 1 1 
(46) 

where Cj are the weighting constants for the individual loading conditions 
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and they are given by Equation (44). A recursion relation similar to Equa

tion (46) was used on a number of occasions for designing for static loading 

conditions involving displacement as well as uniform stress constraints (5) 

acting separately. However, when the constraints are mixed, convergence to 

the optimum is not as smooth as it is when they are treated separately. Also 

Equation (46) was hardly ever tried for designing with multiple dynamic 

loading conditions. 

It should be noted that structures are hardly ever designed just for 

ground motion. It is more likely that ground motion is considered as one of 

the loading conditions along with a host of other static and dynamic loading 

conditions. The only dynamic case considered in this paper is the ground 

motion. Structures are designed for this case in conjunction with other 
static loading conditions. When the static and dynamic loading conditions 

are combined, the weighting constants and energy terms for the static case 

are given by (5) 

(47) 

(48) 

where r is the displacement vector due to the static loading case and Z is 

the generalized stiffness requirement as defined by (5) 

or 

1 t Z = - R r 2 _ (49) 

(50) 

for displacement constraint problems. In both Equations (49) and (50) R is 

the applied load vector. In Equation (49) r is the displacement vector re

sulting from the applied loads. In Equation (50) f is the displacement vector 
-due to a unit load at the point and direction of the constraint displacement. 

DESIGN PROCEDURE AND EXAMPLES 
An outline of the resizing procedure using optimality criteria algo

rithm is given here: 

1. The design starts with an initial solution of equal sizes for all 

the elements. 

2. The structure is analyzed for static loads. 



3. The structure is scaled to satisfy static stress and displacement 

requirements. The details and implications of scaling in static case are 

discussed in Reference 5. 

4. 

5. 

The eigenvalues of the structure are determined. 

The dynamic load factors for the ground motion are determined by 

22. 
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Equation 

6. 

7. 

The eigenvectors of the structure are determined by inverse iteration. 

The dynamic response due to ground motion is determined by using 

Equation 20. 

8. The ground motion response is then added to the static response 

determined in Step 2. 

9. The structure is again scaled to satisfy the combined static and 

dynamic stress requirements. The proportion of structural to nonstructural 

mass determines the effect of this scaling on eigenvalues (6). The three 

possible cases are as follows: 

Case l. No non-structural mass. 

The eigenvalues and modes are un effected by scaling. 

Case 2. Structural mass is insignificant. 

The eigenvalues can be scaled in the same proportion as the design 

but the eigenvectors have to be modified. 

Case 3. Structural and non-structural masses are of similar proportions 

Both eigenvalues and eigenvectors of the scaled structure have to 

be up-dated. 

In the first case the design can proceed to the next step. In the second 

case Steps 5 thru 8 have to be repeated. In the last case Steps 4 thru 8 

have to be repeated. 

10. The feasible weight of the structure is determined. 

11. The structure is resized using combined static and ground motion 

response in Equation 46. 

12. Repeat Steps 2 thru 11 so long as the design improves. 

EXAMPLES 
A cantilever column and a portal frame shown in Figures 1 and 2 are sub

jected to ground acceleration representative of 1940 El Centro, California 

Earthquake (North South motion). The duration of the earthquake is 29.32 

seconds. The accelogram readings are available at 0.005 seconds interval. 

The total number of readings are 5864. For numerical integration of load 

factors the duration is sliced at 60 division increments (see Fig. 3). For 
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the cantilever problem only the first two modes are considered. Actually 

the first mode is significant. For the portal frame the first six modes are 

considered. The qualitative distribution of the moment of inertia is given 

in Tables 1 and 2. 

The procedure presented in this paper fits quite well with the popular 

finite element analysis methods. The adequacy of the designs however, have 

to be checked with procedures that take into account the behavior in the 

elasto-plastic range. The ductility and the soil structure interaction are 

additionally important parameters left out in this design. An empirical 

procedure must augment this elastic design to introduce these parameters 

into the design. 
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Table 1. Moment of Inertia Distribution-Cantilever 

E1. No. 1 2 3 4 5 

I 3.00 7.96 13.10 18.28 23.48 
..... 

Table 2. Moment of Inertia Distribution-Portal Frame 

E1. No. 1 2 3 4 5 6 7 8 

I 189.25 112.75 45.77 61.07 131 .00 130.92 67.20 19.56 
--

E1. No. 9 10 11 12 13 14 15 

I 60.12 130.68 141 .23 76.89 58.15 112.43 184.07 
-
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IUctility factors are commonly used in inelastic analyses of building 
structures to ~uantitatively describe maximum deformations. Improved 
methods based on such factors have recently been suggested for preliminary 
seismic-resistant design and for detailing of critical regions. Definitions 
of several basic ductility factors are examined in detail in this paper 
noting problems that may be encountered in applying them to real structural 
systems. Alternative definitions are suggested for systems subjected to 
reversed plastification. The reliability of curvature ductility estimates 
obtained using conventional lumped, rather than more realistic spread, 
plasticity models is investigated. Systematic errors introduced by two
component models are examined. The implications of these results for the 
analysis and design of seismic-resistant structures are discussed. 

INTRODUCTION 

Economic considerations generally require that some of the energy input 
to a structural system during severe earthquake ground motions be dissipated 
by inelastic deformations. Because of uncertainties regarding the nature of 
future ground motions and the dynamic behavioral characteristics of actual 
structure-foundation systems, buildings must be capable of dissipating sub
stantial energy. While large inelastic deformations may be tolerated for 
seismic events that occur infrequently, these deformations must be con
trolled to prevent loss of strength, large deflections or other actions 
that can lead to structural collapse or loss of life. To evaluate the 
seismic response of a structure, it is desirable to describe the main 
features of its hysteretic behavior using a few numerical indices. Since 
the hysteretic behavior of actual structural systems is complex, its pre
cise ~uantitative description is difficult. 

It has been common in inelastic structural analyses to express maximum 
required deformations in terms of ductility factors [Mahin & Bertero, 1975]. 
Such factors are generally defined as a particular system deformation 
divided by the corresponding deformation present when yielding occurs. If 
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FIG. 1 DEFINITION OF DUCTILITY FACTORS 

the load-deformation relation
ship under study can be ideal
ized as being elasto-perfectly 
plastic, the history of the cor
responding ductility demand will 
precisely define the complete 
hysteretic behavior. Unfortu
nately, the hysteretic behavior 
of real systems usually differs 
significantly from this simple 
idealization (Fig. 1), and 
although ductility factors can 
be used to describe maximum 
deformations, they generally 
fail to ~uantify energy dissi
pation. 

PROBLEMS IN ESTABLISHING DUCTILITY FACTORS 

In most cases it is neither convenient nor even possible to examine the 
hysteretic behavior of a system in detail. Ductility factors as previously 
defined are useful comparative indices of the severity of inelastic defor
mations. As such, ductility factors may be applied to nearly any response 
parameter including displacements, relative displacements (drifts), rota
tions, curvatures, and strains. It must be realized, however, that duc
tiliy factors based On different response parameters will generally not have 
similar numerical values. Furthermore, the load-deformation relationship 
for each of these parameters does not usually exhi bi t a definite yielding 
point. Conse~uently, the response parameters used as the basis of a par
ticular ductility factor and the method used to determine its yield value 
must be clearly identified. 

DEFINING DUCTILITY FACTORS. - Real structural systems may not have distinct 
yield points (Fig. 1). This may be due to material mechanical properties 
or because yielding in multistory structures does not generally occur in
stantaneously at all locations necessary to develop a collapse mechanism. 
Structur€S may therefore experience gradual, rather than sudden, reductions 
in their stiffness. For example, the base shear-roof deflection relation
ship computed for a two-story reinforced concrete frame (Fig. 2) differs 
significantly from an ideal elasto-perfectly plastic shape. The lateral 
load-deflection relationship for such multipl~ degree-of-freedom systems 
is not uni~ue and depends on the distribution and history of loading. Many 
other parameters, such as variations in gravity loading, high rates of 
loading, changing environmental conditions, stress redistribution due to 
long-term loading, and so on, can also substantially affect the lateral 
load-deflection relationship. Precise determination of a yield value may 
not be possible in such cases. Possible estimates of the yield value 
include the deflection when yielding first occurs, the deflection corres
ponding to the collapse load had the structure remained elastic, or the 
yield deflection of an elasto-plastic system with the same energy absorption 
as the real structure (Fig. 3). In many cases the physical significance of 
the yield displacement may be lost. 

Additional problems arise when cyclic inelastic deformations occur. 
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While ductility factors as previously defined are good indices of the maxi
mum deflection of the system, they do not necessarily measure the severity 
of the largest inelastic deformation. To resolve this problem, schemat
ically illustrated in Fig. 1, a cyclic ductility factor, v*, may be used 
[Mahin & Bertero, 1915J. The origin used to measure the system deforma
tion in this case shifts to account for prior inelastic action. 

The sum of the absolute values of all inelastic deformations divided 
by the yield value is also a useful index of the severity of the total 
inelastic deformation [Gael, 1968J. A definition of ductility which more 
directly measures the total inelastic energy dissipation would be useful, 
particularly for systems which substantially degrade in stiffness and/or 
strength. One such definition equates the total hysteretic energy, EH, 
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dissipated by the real system with that dissipated by an equivalent elasto
perfectly plastic system having the same yield strength, Ry , and yield 
deformation, ny, as the real system. The ductility factor for the equiva
lent system is given as: 

u . equlv 
(1) 

Furthermore, it is desirable to supplement information regarding the 
ductility of a system with the number of cycles of severe inelastic defor
mation and reversal. This data combined with the various ductility factorE 
provides a better basis for assessing the hysteretic behavior of a system 
than the use of a specific ductility factor alone. 

DUCTILITY FACTORS FOR OVERALL RESPONSE. - Ductility factors can be classi
fied in two general categories: (1) factors used to describe the overall 
response of a structural system, and (2) factors used to describe the 
behavior of individual critical regions. The first category generally 
comprises ductility factors based on displacement and drift. 

Displacement Ductility Factors. - Comprehensive preliminary aseismic 
design methods have recently been suggested in which equivalent static 
lateral design forces are determined using a selected value of overall 
lateral displacement ductility factor [Bertero & Kamil, 1975J. These 
design forces are established using ductility factors computed for single 
degree-of-freedom systems with different mechanical and dynamic charac
teristics subjected to various earthquake ground motions [Newmark & Hall, 
1973; Anagnostopoulos, 1972; Murakami & Penzien, 1975J. 

There are a number of problems inherent in this approach (see Bertero, 
Herrera and Mahin, 1975). For example, the complex inertial loadings that 
occur in multiple degree-of-freedom systems during earthquakes makes it 
impossible to identify a unique single degree-of-freedom system with non
linear dynamic characteristics equivalent to those of the actual structure. 
Specifically, the actual structural hysteretic behavior may not be ade
Quately represented by the elasto-perfectly plastic mechanical idealization 
generally assumed to derive design forces. For this idealization to be 
valid, all of the plastic hinges participating in a collapse mechanism would 
have to form instantaneously. Plastic hinging usually develops only in 
critical regions located in a few stories at a particular time; the stories 
that experience yielding change with time [Mahin & Bertero, 1975J. It has 
also been found that higher mode effects may prevent the formation of a 
complete collapse mechanism. Design forces based on assumed elasto
perfectly plastic behavior may not be appropriate in such cases. 

Design procedures based on a selected overall displacement ductility 
factor do not account for the cumulative damage that may occur due to 
reversed inelastic deformation. Where low cycle fatigue may be critical, 
design might be more appropriately based on the cyclic or equivalent duc
tility factors previously defined, or on other types of factors that account 
for the total energy dissipation demand on the structure. 

To quantitatively inspect the implications of the various types of 
ductility factors, the nonlinear behavior of two single degree-of-freedom 
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systems is discussed. Both of these systems had initial periods of 0.2 
sec. and an effective seismic resistance coefficient (C = VULT/W) of 0.16. 
For the 1940 El Centro (N-S) accelerogram, used as the seismic excitation, 
the ratio of the resistance coefficient to tne peak ground acceleration 
(expressed as a fraction of gravity) was 0.48. Viscous damping in both 
models was assumed to be equal to 5 percent of critical. A simple stiffness 
degrading hysteretic model was assumed for one of the systems and the other 
system was based on a conventional elasto-perfectly plastic model. 

Response time-histories computed for the two systems are shown in Fig. 
4(a). The apparent period exhibited by the stiffness degrading system was 
considerably 10nger than the initial period and its maximum deflections 
were larger than those for the elasto-perfectly plastic system. Consider
able inelastic deformation including many cycles with reversed plastifica
tion occurred in both nonlinear systems as indicated by the hysteretic 
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curves in Figs. 4(b) and 4(c). Maximum displacement ductilities computed 
for the elasto-plastic and stiffness degrading models Were 12.3 and 18.9, 
respectively. The cyclic displacement ductility factors computed for the 
elasto-plastic and stiffness degrading systems were 21.0 and 33.4, respect
ively. While these values indicate that severe inelastic reversals do 
occur, they still fail to reflect quantitatively the large number of severe 
inelastic reversals indicated by the hysteretic curves. As shown in the 

NUMBER OF 
EVENTS 

pas. YIELD 
EXCURSIONS 

NEG. YIELD 
EXCURSIONS 

YIELD 
REVERSALS 

ELASTO-PLASTIC 
SYSTEM 

12 

12 

13 

STIFF. DEGRAD. 
SYSTEM 

2 

2 

3 

accompanying table, the 
initial yield shear is reached 
considerably more often by the 
elasto-plastic system. The 
stiffness degrading system 
nevertheless experiences 
numerous cycles with large 
inelastic deflections [Fig. 
4(c)]. Because of the de
graded stiffness, the initial 
yield shear is not developed 
during these deflections. 
Consequently, the number of 
yield excursions and yield 

reversals obtained for stiffness degrading systems may be misleading. A 
better indication of the total inelastic deformation is given by the com
puted hysteretic energy. The hysteretic energy dissipated by the elasto
plastic system was 316 k-in. (35.7 kNm) and the value for the stiffness 
degrading system was 407 k-in. (46.0 kNm). The stiffness degrading system 
dissipates substantial energy during cycles in which shears remain well 
below the yield level. Equivalent displacement ductility factors (Eq. 1) 
of 74.4 and 95.4 were computed for the elasto-plastic and stiffness degrad
ing systems, respectively. Comparison of these values with the previously 
reported maximum displacement ductility factors clearly indicates that the 
systems developed substantial inelastic reversals. 

Drift Ductility Factors. - While displacement ductility factors gen
erally provide a good indication of structural damage, they do not usually 
reflect adequately the damage to nonstructural elements. This is an impor
tant limitation in aseismic design since a significant portion of the hazard 
to occupants and of the total cost of repairing earthquake damage is a con
sequence of nonstructural damage. Nonstructural damage is mOre dependent 
on the relative displacements (drift) than on the overall displacements. 
To obtain a reliable measure of nonstructural damage, maximum drifts must 
remain unnormalized or be divided by the value of drift corresponding to 
the damage threshold. Nonstructural damage estimates based on drift duc
tilities may be misleading. For example, nonstructural damage for rela
tively rigid structures may be small even for large values of displacement 
ductility since the yield displacement may be well below the nonstructural 
damage threshold. On the other hand, the nonstructural damage and lateral 
displacements for flexible structures may become untolerably large even 
before significant yielding develops. 

To produce safe and economical structures, aseismic design methods must 
incorporate drift (damage) control in addition to lateral displacement duc
tility as design constraints. Story drifts and drift ductility factors may 
also be useful in providing information on the distribution of structural 
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damage. Unfortunately, conventionally computed story drifts may not ade
Quately reflect the potential structural or nonstructural damage to multi
story buildings. In some structures, a substantial portion of the hori
zontal displacements results from axial deformations in columns. Story 
drifts due to these deformations are not usually a source of damage [Fig. 
5 (a) J. 

A better index of both structural and nonstructural damage is the 
tangential story drift index, R. As schematically indicated in Fig. 5(b), 
the intent of this index is to measure the shearing distortion within a 
story. For the displacement components shown in Fig. 5(c) and assuming 
that floor diaphragms are rigid in their own plane, the average tangential 
drift index is eQual to: 

R 

in which L is the bay width and H is the story height. The first term on 
the right-hand side of EQ. 2 is the conventional story drift index and the 
second is a correction applied for each bay accounting for the slope of 
the floors above and below the story. It may not be appropriate to average 
the values of R for a story when the pattern of axial column deformations 
varies greatly across the structure (e.g., frames with structural walls). 

Although drift indices and, in particular, tangential drift indices, 
provide a good measure of the distribution of structural deformations, it 
may be difficult to compute corresponding yield drifts. One possible method 
for computing the yield drift includes taking the drift present at the 
appropriate location when the building, loaded with eQuivalent seismic 
lateral forces, reaches its yield displacement; another is by computing a 
story shear-drift relationship for a subassemblage consisting of the story 
in question with appropriate boundary conditions. 
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FIG. 5 COMPUTATION OF DRIFT INDICES 

DUCTILITY FACTORS FOR CRITICAL REGIONS. - A comprehensive evaluation of the 
seismic response of a structure, as required in the final stages of design, 
may require thorough analysis of the behavior of individual critical re
gions. In flexural members, plastic rotations and curvatures are commonly 
used to monitor inelastic deformations at these regions. To design and 
detail critical regions, it would be ideal to examine their entire hys
teretic behavior. Since this is generally impractical for large structural 
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systems, it is desirable to have at least a measure of the maximum inelastic 
reversals that may be re~uired at a particular critical region. 

Rotation Ductility Factors. - Joint rotations and plastic hinge rota
tions are response parameters commonly used as the basis of ductility fac
tors. It is, however, difficult to determine meaningful values of yield 
rotations, particularly when inelastic deformations in critical regions 
are idealized by concentrated plastic hinges [Anderson & Bertero, 1973]. 
The rotation at a critical section corresponding to yielding depends on the 
stiffness, strength and loading of the structure as a whole. While yield 
rotations for members with simple loading conditions may be readily cal
culated, such factors as gravity loads, nonuniform cross-sectional proper
ties, unsymmetric boundary conditions and so on, make such computations 
more difficult. Moreover, it is possible that a member's boundary condi
tions and/or gravity loadings are such that the joint rotation at yield 
is zero, resulting in infinite rotation ductility factors for all plastic 
rotations. 

When the spreading of plastic deformations along a member is consid
ered, the yield rotation may be based on the rotation that develops over 
the yielded region when yielding first occurs. Computation of this yield 
rotation, as well as the plastic rotation capacity, reQuires knowledge of 
the plastic hinge length, the moment variation and the moment-curvature 
relationships for the member. Because of these complexities, plastic 
rotations are usually presented unnormalized rather than in terms of rota
tion ductility factors. These unnormalized values may then be compared 
directly with rotation capacities obtained from experiments on similar 
regions under similar loading conditions. 

Curvature Ductility Factors. - Yield and ultimate curvatures depend 
only on material and section properties. Moment-curvature relationships for 
most structural steel wide flange shapes can be adeQuately represented by 
an elasto-plastic idealization. The yield curvature can be established 
without difficulty. For some structural steel and many reinforced concrete 
sections, however, such idealizations may not be appropriate. An addi
tional problem in defining curvature ductilities is that the ultimate 
flexural capacity of a steel or reinforced concrete section is generally 
a function of the applied axial load. Thus, it is possible for the flex
ural capacity to change during a yield excursion and for the moment at 
which yielding initiates to change from cycle to cycle due to variations in 
axial load. In such cases, it is difficult to establish meaningful defi
nitions for yield moment. An eQuivalent curvature ductility factor based on 
EQ. 1 may be appropriate [Mahin & Bertero, 1975J. 

Evaluation of the possible behavior of individual critical regions to 
seismic excitations is complex since there are currently no ade~uate 
failure criteria based on curvature (or rotation) ductilities. Ultimate 
curvatures and plastic rotations may be estimated assuming monotonically 
increasing deformations. It is not clear whether these estimates are 
appropriate for cyclic loading, however, and only limited experimental data 
are currently available regarding energy dissipation or cumulative ductili
ties. To compensate for the lack of precise ~ailure criteria and for un
certainties in the predicted nonlinear response , critical regions should be 
designed and detailed to have substantially larger energy dissipation 
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capacities than computed. Nonetheless, it appears that curvatures and 
curvature ductility factors are quite useful comparative indices of the 
severity of inelastic behavior in critical regions. 

ANALYTICAL PREDICTION OF CURVATURE DUCTILITY FACTORS 

In nonlinear structural analyses, inelastic deformations in flexural 
members are usually assumed to occur at concentrated plastic hinges (lumped 
plasticity models). One of the most extensively used analytical techniques 
to simulate the flexural behavior of mem~ers with bilinear hysteretic 
moment-curvature, M-~, characteristics is the two-component model shown in 
Fig. 6. One of these components is an infinitely elastic element with a 

Me/My 
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q 

COMBINED 

ELASTO· PLASTtC 
COMPONENT 1 

p+q=1 M(j~ ~ ~) 
ELASTIC J LPLASTICJ M 

P r=-COMPONENT HINGE 
1£--=i-======~CPI<pv LOCATIONS 

I 

FIG. 6 TWO-COMPONENT MODEL 

fraction p of the actual M-~ 
stiffness, and can be inter
preted to represent the real 
M-~ strain-hardening stiffness. 
The other component has an 
elasto-perfectly plastic M-~ 
relationship with the remain
ing elastic stiffness and 
strength fraction q (q :: l-p). 
Inelastic deformations are 
concentrated in plastic hinges 
at the ends of the elasto

perfectly plastic component. When flexural members with bilinear M-¢ 
relationships are subjected to moment gradients, however, plastic deforma
tions will be concentrated at discrete points only if the rate of strain
hardening, p, equals zero. Thus, idealizations such as the two-component 
model cannot exactly represent the behavior of flexural members with 
pilinear sectional stiffness characteristics [Powell, 1972J. 

The reasons for this can be clarified by noting that while the combined 
M-¢ relationship for the two-component model is identical to the real mem
ber's bilinear M-¢ relationship, this relationship is only applied at the 
end sections of the model. At other sections, the curvatures developed 
after both ends of the beam have yielded are controlled by the M-~ stiff
ness of the elastic component alone. In a member with bilinear moment
curvature relationships, the curvatures developed outside the critical 
regions are controlled by the initial M-~ stiffness of the member. This 
discrepancy usually leads to errors in evaluating curvature ductilities. 

Effects of assuming lumped, rather than the more realistic spread, 
plasticity can be quantitatively evaluated by comparing results obtained 
using a two-component model with the exact solution based on bilinear sec
tional stiffnesses. 

RESULTS FOR STATIC LOADING. - To simplify these discussions, a beam with 
constant plastic strength, Mp ' and stiffness, EI, over its length, L, will 
be examined for the case of monotonically increasing antisymmetric end 
moments. Differences in the post-yielding moment-end rotation relation
ships computed for this example beam will be examined, and the reliability 
of curvature ductility factors obtained with two-component models will be 
assessed. Due to the antisymmetric loading, only half of the example beam 
(Fig. 71 need be considered. To facilitate the following discussions, the 

I 
two-component model will be referred to as the model beam and the 
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As soon as the yield 
moment is reached in the 
two-component idealization 
of the example beam, the 
stiffness of the member is 
controlled entirely by the 
elastic component, and the 

post-yielding end rotation, ~e~, is given by: 

_L_J 
6pEI p 

where ~ is the amount by which the applied moment acting on the two
component model exceeds the plastic moment (i.e., ~M~ = M-Mp )' In the 
case of the real beam, the post-yielding deformations are controlled by the 
incremental curvature distribution shown in Fig. 7. Thus, 

~~ L (~R l1J1) L ( L L) 2 _p_+ -.£_-.£ --..12.. __ --..12.. _ 
6El pEl El 2 2 3 L 

(4) 

where Lp is the length of the plastic region and the superscript R denotes 
the real beam. The total moment-end rotation relationships for the real 
and model beams can be computed by adding the appropriate yield values to 
the post-yielding moments and end rotations obtained in E~s. 3 and 4. 
Reference to Fig. 8, or comparison of E~s. 3 and 4, clearly indicates that 
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the end rotation predicted by the two-component model can be substanti~~ly 
larger than that for the real beam if the same moments are applied to both 
(i.e., ~~ = ~~). On the other hand, if the smae end rotations are 
imposed on both (i.e., ~8~ = ~8~), the two-component model will underesti
mate the reSisting moment. 

Differences between the beam and model can be further clarified by 
examining the beam's post-yielding secant stiffness, KT = ~Mp/~ep' For 
the real beam, this stiffness may be expressed in terms of the curvature 
ductility factor, ~p, by noting that: 

6JvjR R J L p(~¢-l) R ~ P '" ---.l2. (~p - 1)p/2 = L 2(M +~J') R 
2[l+P(~rp-1)] 2M 

P p P 

thus, 

~ 
:= 

KEL 

LO 

0.5 

o ----

[p + 

R 

3 (l-p) 
P(~¢-l) 

p 
R 

2[1+P(]Jp-ll] 

REALISTIC iwlODELS eASEO ON BILINEAR 
1.4-0/> RELATIONSHIP 
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p =0.1 P' 0.01 

o 5 10 15 20 J1-.R 25 
~ 

FIG. 9 TANGENT STIFFNESS VS. 
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[ R r] -1 

P(fl~-l) 
- 2(1-p) 

2[l+P(~~ -1)] 
(6) 

in which KEL is the beam's initial 
elastic stiffness, KEL:= 6EI/L. 

Fesults of Eq. 6 are plotted in 
Fig. 9 which illustrates that the real 
beam's post-yielding stiffness de
creases rapidly with the onset of 
yielding. On the other hand, the two
component model's tangent stiffness 
reduces immediately with the initia
tion of yielding to p times the 
initial elastic stiffness. 

To analyze the errors involved 
in using the two-component model, 
it is convenient to compute the fol
lowing rati(') : 

p + 
[ 

P(fl;-l) J 2 
2(1-p) R '" 

2[1+P(]Jrp-l)] 
(7) 

where the approximate linear relationship is obtained by assuming Ip « L 
and by disregarding higher order terms of p. Examination of the results of 
Eq. 7, plotted in Fig. 10, reveals that the two-component idealization may 
substantially underestimate the post-yielding stiffness of the member. 

Plastic Rotations. - It is important to note that ~8M and ~8R given by 
p P 
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Eqs. 3 and 4 represent the end rotation of the member and not the actual 
plastic rotation. Plastic rotation is generally defined as the permanent 
rotation present at the end of the member when the end moment is reduced 
to zero. For this definition a rotation equal to ~M~L/6EI and 6~L/6EI 
must be subtracted from Eqs. 3 and 4, respectively, to determine the actual 
plastic rotation. Plastic rotations usually reported for two-component 
models are generally based on Eq. 3 (this represents the rotation developed 
in the plastic hinge), and they will differ from the plastic rotations by 
a small amount for typical values of strain-hardening. 

Because of the differences between the flexural stiffness of the model 
and real beams, it might appear that the seismic response predicted using 
two-component models would differ significantly from that predicted using 
realistic elements. If the flexural stiffness of a yielding member is 
small in comparison to adjacent elastic members, however, the incremental 
structural displacements and the nonlinear member deformations are con
trolled by the elastic deformations of the stiffer adjacent members; thus, 
the post-yield rotations computed using two-component models should be 
nearly correct. This may not be so for structures consisting of only a 
few elements or when a collapse mechanism forms. 
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Moments and Curvature Ductilities. - If the incremental rotations 
developed at the ends of the real beam and the model are assumed to be 
identical, the following relationships apply: 

- 1 
(8 ) 

- 1 

From this equation, it is clear that relationships between incremental 
moments and curvature ductilities are also given by Eq. 7. As seen in 
Figs. 8 and 10, the two-component model would underestimate the maximum 
strain-hardening moments and curvature ductilities developed in a member 
for a given end rotation. Since the rate of strain-hardening is generally 
small, the error in the total moment (i.e., M = Mp+6Mp) may not be 
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significant for most practical applications. However, curvature ductility 
estimates made on the basis of two-component idealizations may substantially 
underestimate actual ductility requirements, particularly at low values of 
ductility and strain-hardening. This is clearly shown in Fig. 11, which 
plots the following relationships obtained from Eqs. 7 and 8 

R3 M R2 
M M 

1 3 2)JcjJ R ~ 2 1 2 
YcjJ + -(- - 2VcjJ - 3hlcjJ P (l-P)VcjJ (l-2p+p ) + 2(2-3p+p ) 0 

2 P 2 
P 2p 

(9a) 

r (M - 1) r R 2 1 I lJ p or for L « L, lJcjJ '" -+ - l 1 + 6 (9b) 
p 3 3 p 

Relationship between Curvature, Plastic Hinge Rotation and End Rota
tion Ductility Factors. - The simplicity of the example beam permits duc
tility factors based on response parameters other than curvature to be 
readily calculated. Comparisons of these factors further illustrates the 
differences between the model and real beams. For example, the rotation 
over the length of the plastic hinge can be divided by the rotation de
veloped over that length at first yield to give a ductility factor based 
on the plastic hinge rotation. The basis of this definition for the real 
beam is shown in Fig. 12. Using Eq. 5, the relationship between curvature 
and plastic hinge rotation ductilities is given by 

R 
]J8 

p 

R2 R 
p(]Jp - 1) + ]Jp + 1 

R 
p(]J¢ - 1) + 2 

(10 ) 

Since the length of the plastic hinge is zero for the two-component model, 
this definition cannot be applied to the model beam. 

Ductility factors can also be based on end rotations. Such a factor 
is a measure of the overall deformation of the beam. The end rotation duc
tility factor is equal to ]Je = (~ep'/ey) + 1, in which ~8p may be taken'from 
Eqs. 3 or 4 and By is equal to MpL76EI. For the real beam, the relation
ship between the end rotation and curvature ductilities is given (using 
EQ. 5) by: 

(n) 

Corresponding computations for the two-component model indicate that the 
end rotation ductility factor is numericall~ equal to the curvature ducti
lity factor (i.e., lJ~ = ]J~). 

Results obtained from Eqs. 10 and 11 are plotted in Fig. 13. This 
figure clearly shows that the curvature ductility for the real beam can be 
considerably larger than ductilities based on plastic hinge rotat~on. These 
in turn are usually much larger than ductilities based on end rotation. 
This simple example reaffirms the need for explicit identification of the 
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definition of a ductility factor. 

RELIABILITY OF TWO-COMPONENT MODELS. - In view of the results obtained for 
the preceding example, it is necessary to carefully evaluate and interpret 
analytical results based on two-component models. If the loading 
conditions and member properties found in practice resemble those shown 
in Fig. 7, analytical results obtained using two-component models can be 
interpreted us~ng the above relationships. It must be remembered, however, 
that these relationships are only approximate for other loading conditions. 
Moreover, the relatively large difference between the post-yielding tangent 
stiffness of real and model beams may have a significant effect on the over
all response of structures to both static and dynamic loading. In this 
case the assumption that plastic rotations in model and real beams are 
identical may not be justifiable and it will be difficult to estimate 
ductility re~uirements on the basis of results of two-component models. 

Improvement of Reliability. - A simple method for reducing the error 
between the moment-end rotation relationships for the real and model example 
beams (see Fig. 8) might be to increase the yield moment assumed for the 
two-component model (i.e., ~ > ~). The optimum magnitude of this increase, 
however, is not known and thls approach may not be applicable to other 
loading conditions. Another method for improving the reliability of two
component models is to subdivide a member (especially the critical regions) 
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into a series of elements. It is expected that as the size of the sub
divisions becomes smaller, the results would approach those for a member 
with bilinear moment-curvature relatio~ships, but at the cost o~ increasing 
computational effort. Significant improvement may be obtained, however, 
by representing each critical region by a single element. 

Implications for Aseismic Design and Analysis. - The seismic response 
of simple framed structures computed using lumped plasticity models with 
no strain-hardening has been compared with results obtained using refined 
nonlinear finite element structural idealizations [Latona, 1970J. The 
correlation between the results was poor. An investigation is currently 
being conducted by the authors to further assess the reliability of plastic 
rotations and curvature ductilities predicted using two-component models 
and to ascertain methods for interpreting these results. 

It is believed that two-component models should provide valuable infor
mation regarding seismic response. Because of uncertainties involved with 
response prediction based on the two-component model and its tendency to 
underestimate curvature ductility requirements, critical regions must be 
detailed to have considerable reserve ductility capacity. 

CONCLUSIONS 

Ductility factors are useful indices of inelastic deformation for 
aseismic design and analysis. Because of the complex hysteretic behavior 
that may develop in real structural systems during seismic excitations, 
ductility factors require careful definition and interpretation. It is 
generally necessary to supplement ductility requirements with information 
regarding the number of severe yield excursions and reversals. Definitions 
for cyclic and equivalent ductility factors have been presented as possible 
indices of reversed plastification. Problems in implementing ductility 
factors based on displacement, drift, rotation and curvature have been 
discussed. While ductility factors based on curvature were comparatively 
easy to define, conventional methods for analyzing the nonlinear response 
of structures were found to introduce systematic errors in curvature duc
tility predictions. In spite of their limitation, properly interpreted, 
ductility factors can be useful design guidelines. 
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In the earthquake-resistant design of Nuclear Power Plant facilities, 
structures are sometimes modeled by lumped-mass method. Due to this 
simplification, the shear coefficient has to be calculated and the total 
shear forces properly distributed. The shear coefficient is important 
because the deformations due to shear effect are generally significant. 
The distribution of the total shear force is a highly statically indeter
minate problem and requires solutions of a large number of simultaneous 
equations for complex wall configurations. In this paper, the results of 
shear coefficient and shear distribution calculations due to both the thin 
wall beam theory method and the rigidity method are presented for several 
elementary structural shapes. These results are compared with those 
obtained by Cowper through the integration of the equations of three
dimensional elastic theory. 

Dynamic Analysis is performed On a two story structure by using above 
two approaches to generate lumped-mass model. The results of dynamic 
analysis are compared with those obtained by constructing a finite element 
model. The Dynamic Analysis is performed in two orthogonal directions. 
Results and applicability of each approach are discussed. 

Introduction 
In the earthquake resistant design of nuclear power plant facilities, 

the shear forces and moments are obtained from the dynamic analysis of a 
structural model subject to the earthquake ground motion. Due to the labor, 
large computer core storage space and high computer cost involved in the 
dynamic finite element analysis, structures are frequently simplified by 
using a lumped - mass stick model. By simulating the wall system or portion 
of it by a single stick, it is necessary to determine the equivalent 
effective shear coefficient and the shear flow for each floor elevation. 

The shear coefficient, which defines the effective shear area for a 
particular floor plane, is important in the analysis of nuclear power 
plant facilities because of the low aspect ratio of these structures. The 
deformation due to shear effect is generally significant in comparison to 
that due to bending effect. The shear coefficient will not only affect the 
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magnitude of the resulting shear forces due to ground motion but will 
affect the calculated natural frequencies as well. 

The shear flow diagram, which show the distribution of a unit shear 
force acting at the shear center of a wall system, is important in the 
design application. The results obtained from the seismic analysis of the 
lumped-mass model are total shear forces for the entire wall system. This 
force should be distributed properly to each wall element for design. The 
distribution of shear force is a highly statically indeterminate problem 
and requires solutions of a large number of simultaneous equations for 
complex wall configurations. In this paper, both the rigidity approach (1) 
and the thin wall beam approach (3, 4, 5) are presentedo 

For the thin wall' beam theory approach, the shear flow for each wall 
element at a particular floor elevation is calculated using the beam theory 
and the principle of virtual work (3, 4). The detailed theoretical proce
dure will be discussed under the Approximate Methods section. In the 
rigidity approach, one simplifying assumption is made, i.e. only the in
plane rigidity of the wall is considered. The relatively small out-of
plane rigidity is neglected. Thus, the overall effective coefficient in an 
apparent principal direction is directly proportional to the ratio of the 
area of wall elements parallel to the direction of interest to the total 
cross-sectional area. 

The results obtained using the above two approaches are compared in a 
tabulated form with those obtained by Cowper (2) through the integration 
of the equations of three-dimensional elastic theory. The reSUlting shear 
coefficients and distribution of the shear forces are presented for various 
structural shapes such as box, I, T, angle, etc., for engineering design 
application. 

A case study, including modal analysis and structural response analysis 
is performed, using the thin wall theory approach, the rigidity approach 
and the finite element approach. When the thin wall theory approach is used 
the stick representing the characteristics of the wall system is placed at 
the shear center about which the summation of moment of all the wall ele~ 
ments vanishes. Consistently, the torsional constant is also calculated 
using the same approach. When the rigidity method is used, the members are 
located at the rigidity center and the torsional constant is calculated 
about that point. A finite element model is constructed for this structure 
and subjected to same time-history motion. Results due to two lumped mass 
methods are compared with those due to finite element analysis under the 
Case Study section. Conclusion~are drawn with regards to accuracy and 
applicability of each approximate method. 

Approximate Methods for Computing Sectional Properties: 
In this section two approximate approaches, viz, the thin wall beam 

theory approach and the rigidity approach are outlined. The procedure used 
for calculating the shear coefficient and torsional constant is indicated. 
Results from these approximate methods are compared with those due to three
dimensional elasticity approach. Fig. 1 shows floor plans of a two-story 
Diesel Generator building of a Nuclear Power Plant. Discussions in the 
following sections pertain to such shear wall cross-sections. 

Thin Wall Beam Theory Approach: Following step wise procedure is used 
in this study to compute shear coefficient. Detailed mathematical derivation 
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can be found in Ref. 4. For the sake of discussion only one direction 
(x-direction) will be considered, same procedure is used to obtain the 
shear coefficient in other direction. 

1. First, the shear flow in each wall element (such as AB, Be, etc. 
in Fig. la), due to shear force, Vx, acting through the shear 
center along the x-direction, is calculated using the thin wall 
beam theory. For the section which has closed loops (such as 
A' B' C' D' in Fig. 1b), this problem becomes indeterminate since 
the continuity at each junction of the wall elements must be 
maintained. This indeterminacy is solved from the condition that the 
rotation of each closed loop must be zero since the shear force 
is acting through shear center. Note that this results into as 
many number of simultaneous equations as closed loops in the 
section. 

2. Secondly, the shear strain in each wall element, due to shear force 
of one unit in x-direction, is calculated. This is done by 
first obtaining the shear stress in each element and then dividing 
it by the shear modulus, G. The shear stress and shear strain 
have parabolic distribution along the length, s (fig. la), of a 
rectangular wall element. 

3. The virtual displacement (of entire cross-section) per unit 
height, ox, due to shear force Vx can now be expressed in terms 
of the integral of the product of shear stress and strain over 
the entire cross-sectional area, A. For a cross-section consis
tency of n wall elements, this integral can be replaced by summa
tion over the n terms. 

4. From the basic beam theory: 

ox Vx . - - - - - - - - - - - - - -(1) 
G Asx 

where, Asx = effective shear area in x-direction 

S. Equating the ox of eq. (1) and that obtained in step 3, one can 
compute Asx. 

6. Finally, shear coefficient, Kx, is defined by following relation
ship 

Kx Asx 
A 

- - - - - - - - - - - - - - - (2) 

similarly, Ky is obtained. 

The torsional constant for the open sections is calculated by using 
the familiar formula, 

J 
n 
I: 

i=l 

- - - - - - - - - - - - - (3) 
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where, J - torsional constant, bi = length of i th element, ti = thickness 
of the ith element and n = no. of elements in a cross-section. For the 
sections with closed loops, torsional constant is calculated from the 
condition that under pure torque the angle of rotation of each closed loop 
will be the same. Again, this results into a set of simultaneous equations 
of size one less than the number of closed loops. 

Rigidity Approach: In this approach, assumptions are generally made 
to simplify the calculations and to eliminate solving simultaneous equa
tions. Continuity of intersecting walls is neglected. 

The rigIdity of the wall element is considered only along the length 
of the wall and this rigidity is calculated using the simple formula (1): 

I 
6 

h 3 + h 
l2EI G As 

- - - - - - - - - - - - - - - - - -(4) 

where, A = rigidity of the wall element, 6 = deflection of the wall ele
ment due to unit load, h = height of the wall, E = elastic modulus, 
As = effective shear area, and I = moment of inertia of the wall element 
about the axis perpendicular to the length of the wall. 

The effective shear area in the x-direction (or y-direction) is ob
tained, by first summing the areas of the wall elements whose longer 
dimension is parallel to x-axis (or y-axis), and then dividing by 1.2 for 
the rectangular wall section. Again, shear coefficient is calculated 
from Eq. (2). 

Total rotational stiffness, AR, is obtained from the following 
relationship: 

(Yj - Ycr)2 + L Ayk· (Xk - Xcr)2 -------------(5) 
k 

where, j walls are parallel to x-axis and k walls are parallel to y-axis, 
and, Xk, Yj, Xcr , Ycr = coordinates of center of wall elements and the 
rigidity center from a reference point. Xcr and Ycr are obtained in 
similar manner as center of gravity. Here, the moments of rigidities are 
taken about the reference point: 

Xcr 
L Axj • Yj 
j 

L: Axj 
j 

- - - - - - - - - (6) 

Torsional constant is calculated from elementary relationship: 

GJ 
h 

- - - - - - - - - - - - - - - - - - - - - - - - - -(7) 
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From eq. (4), it is evident that torsional constant for this method 
is dependent on height, h, of the cross-section. However, for structures 
with low aspect ratio, second term in eq. (4) will be the governing term, 
and J will be relatively independent of height. 

Theory of Elasticity Approach - Cowper (2) derived the Tiuloshenko 
beam equation by integration of the equations of three-dimensional 
elasticity theory. From this approach he derived a formula for the shear 
coefficient, K, which takes into account the shear stress distribution in 
both cross-sectional directions. He presented results for many cross
sectional shapes. 

Discussion of Shear Properties Calculations: Table 1 lists the 
results of shear coefficient calculations for some common shapes. Results 
from beam theory compare quire well with those from the Cowper's formula. 
The differences range from the 0.5% for the Tee-section to 2.6% for the 
thin-walled square box. For the same shapes, the differences from the 
rigidity approach are 7.8% and 2.7%. It is found that for symmetrical and 
relatively elementary shapes two approximate methods give closer results. 
However, for complex unsymmetrical sections, these results differ greatly 
as shown in the case study. 

Shear coefficients resulting from beam theory are independent of 
Poisson's ratio, v. The value of v used here for Cowper's formula in Table. 
1 is 0.17. This value is selected as representative of the structural 
concrete. Ebner and Billington (3) compared the shear coefficient for two 
~ shapes using beam theory and Cowper's formula. They also found very 
good agreement. 

Because of the relatively low height to width ratios of nuclear power 
plant structures, one would expect that the natural frequencies of these 
structures will be affected by the shear coefficient. Ebner and Billington 
investigated the effect of K On natural frequencies for a fixed-fixed 
beam. For the case investigated, a difference of 2.1% in the K-values gave 
a difference of 1.75% in the fundamental frequency and 3.87% in the fifth 
natural frequency. 

Table 2 shows the shear force distribution over the section for some 
simple shapes. It is noted that the zero forces in an element does not 
necessarily mean zero stress everywhere in the element, for the beam 
theory approach. These two methods give quite different distributions 
in case of complex sections as shown in case study. Torsional constant 
for open sections could differ very greatly from two approximate methods. 
Thin wall beam theory gives much lower values for this particular case. 
Locations of shear center and rigidity center will also be radically 
different for open sections. These aspects will be illustrated in case 
study. 

Case Study: 
In this section, a case study involving the first two stories 

Diesel Generator building of a Nuclear Power plant is undertaken. 
Dynamic Analysis, using time history load, is performed. 

of a 
A 
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The floor plans are shown in Figs. la and lb. The height of the first 
story is 24' (7.32m), and that of the second story is 20' (6.10m). The 
thickness of the slab at each floor is 2' (.6lm). Two three dimensional 
lumped-mass models according to the beam theory and the rigidity approach 
are developed for this structure. A finite element model is also developed 
for the same structure. The foundation is considered fixed for all three 
models. 

Lumped-mass Models: In the lumped-mass technique the shear walls 
running between floors are combined as one structural member. Thus, there 
are two structural members for the case under consideration. For the beam 
theory members are located at the shear center, and for the rigidity approach 
they are located at rigidity center. The location of mass concentration 
is characterized as a mass center (or joint) in the lumped-mass model. Mass 
centers are located at each floor level. These mass centers include the 
dead load of slab and half the dead load of walls above and below. No 
live load is considered in this study since the finite element used is not 
capable of generating rotatory masses. However, it was found that the 
effect of rotatory inertia was negligible in the lumped-mass model due to 
the rigidity approach. These mass centers and elastic members are connected 
by rigid links. Thus, the eccentricity of the mass in both x and y direc
tion is taken into account. Fig. 2 show the location of mass-center, 
rigidity center, and shear center for the first floor. The second floor 
has a sumrnetrical cross-section and all three centers coincide with geometric 
center. 

Table 3 shows the calculation of shear properties. For the first 
floor, which is unsymmetrical about x-axis, the shear coefficient values 
differ greatly. However, for the symmetrical sections these values are 
close to each other. The major difference in two models is the torsional 
constant and eccentricity between the mass and elastic member of the first 
floor. However, for the second floor, the torsional constant from both the 
approach are much closer. One should note that torsional constant from 
rigidity approach is height dependent, unless the structure has a very low 
aspect ratio. 

Fig. 3 shows the shear force distribution in each wall element of 
the first floor, due to a force of 100kips (45360.0 kg) acting though the 
shear center in x and y direction. As seen in figs. 3a and 3b, these results 
are significantly different for unsymmetrical axis. The rigidity approach 
gives zero forces in the walls perpendicular to the applied force. The 
distribution of shear force in each wall has significant impact in the 
design of those walls. 

Finite Element Model: A three dimensional finite element model ivas 
generated for this building. The model consisted of 264 joints and 544 
elements. The element used is triangular plate bending and stretching 
type. It has five degree-of-freedom and considers both the in-plan and 
plate bending forces. A sixth degree of freedom is added so that the 
element can be used to model the three dimensional structure (6). 

Discussion of Results: 
lation for all three models. 
and the finite element model 

Table 4 shows the natural frequencies calcu
The agreement between the rigidity approach 

is quite good in general. It should be noted 
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that the finite element model has a number of localized modes reflecting 
the local bending, of walls. The first frequency of the thin wall beam 
model is extremely low. This is primarily due to low torsional stiffness of 
the first floor. The higher frequencies from the thin wall beam model are 
in reasonable agreement with those due to other models. 

All three models are subjected to the same acceleration time history 
with duration of 14 seconds and maximum acceleration of O.lg. This time 
history is applied in both x and y direction separately. The response 
spectra of this time history envelops the response spectra specified by 
the NRC Regulatory Guide 1.60 (Revision 1). 

Fig. 4 Ca, b, c, d) shows the results of these time history analyses 
for both x and y directions. 

Due to very flexible lower story, the maximum acceleration response 
of the thin wall model is much lower than the maximum ground acceleration 
(Fig. 4a). The results due to the rigidity approach are in good agreement 
with those due to the finite element model. In the y-direction (the struc
ture is essentially symmetric, W.R.T. y-axis), the acceleration responses 
due to the all three models show better agreement (Fig. 4c). Due to the 
high flexibility, the thin wall beam model gives higher displacements 
(Fig. 4d). However, the shear forces from the two lumped-mass models show 
good agreement in y-direction (results not shown here). It was shown in a 
previous case study (ref. 4) that both the approximate methods give close 
results, for the structure consisting of closed wall sections. 

Conclusions: 
Following conclusions are made in this study. It should be noted that 

the following remarks, generally apply to the case under consideration. 

1. For symmetrical sections, both the thin wall beam method and the 
rigidity method give close values for shear coefficients. However, 
for unsymmetrical section, these values may differ considerably. 

2. Again, the shear force distribution will vary greatly for unsymmet
rical sections. 

3. For open sections, the thin wall beam method gives very low 
torsional constant. For the structures with open wall configura
tions similar to the case studied, the rigidity approach appears 
to generate results which correlate better with those due to the 
finite element model. 

It must be pointed out that, great care is needed in introducing 
fictitious cuts to the cross-section for calculating the sectional proper
ties. For the thin wall beam theory approach, the fictitious cut is taken 
care of by adjustment to satisfy the deform~tion requirements. However, 
for the rigidity approach, the results will be affected by the cuts. 
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SUMMARY 

A finite element procedure is presented for obtaining the approximate 
mass coefficients of two-dimensional dam-reservoir systems. The procedure 
is applied to obtain the dynamic response of a specific dam. The results 
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are compared with the case in which the presence of the reservoir is not 
considered. It is concluded that for the large rockfill dam studied in the 
example, the added mass terms do not alter the dynamic response significantly 
when water is assumed to be incompressible. 

INTRODUCTION 

A problem of practical interest in the earthquake analysis of dams is 
determination of the effects of the reservoir on the dynamic response of 
the structure. The presence of a body of water affects the vibrational 
properties of a dam in tlVO ways. First, the hydrodynamic pressure exerted 
by the reservoir during vibration caused by an earthquake alter the period 
of the structure, and may force a change in its frequency response. This 
effect is more important in tall arch dams which are relatively light . 
Secondly, the seepage of water into the body of an earth or rockfill dam 
changes the state of stress there as well as the properties of the consti
tuent materials. 

The finite element method has been used extensively for the earthquake 
analysis of earth, gravity and arch dams (e.g. 5,4,6,3,9) where the body of 
the dam is idealized into an assemblage of two or three dimensional elements. 
The presence of the reservoir is generally incorporated into the analysis 
in one of three different ways : One is to idealize the water as a structural 
finite element with zero shearing modulus (11). This method is computationally 
costly since one has to choose a grid layout for the reservoir as well as 
for the dam and the grid size grows rapidly. The second approach is to solve 
the coupled fluid and soil problem by taking into account the compressibility 
of water (14). Inasmuch as the governing equations for both components must 
be solved simultaneously, this procedure is also computationally difficult. 
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Also, it leads to non-symmetric matrices. The third approach is a special 
case of the previous one, and can be applied only if water is assumed to 
be incompressible. This leads to an uncoupled problem and is termed the 
"added mass" approach (14). In this, the effect of hydrodynamic pressure 
is approximately included in the analysis by calculating a set of influence 
coefficients which are simply added to the mass matrix of the dam. 

The purpose of this paper is to present a method of calculating the 
added mass coefficients using a finite element code and to obtain the 
comparative dynamic response of a particular dam with and without the 
inclusion of these coefficients in the mass matrix. The method is also 
applicable to other two dimensional submerged structures. 

ANALYSIS OF EARTHQUAKE RESPONSE 

The cross section and the finite element arrangement selected for the 
dynamic analysis of Keban Dam, studied without the incorporation of reservoir 
effects in a previous paper (1) are shown in Fig. 1. The dam, which ranks 
among the largest in the world, has a height of approximately 210.0 m above 
the foundation and actually comprises a gravity section as well. The materials 
used in the rockfill portion can be grouped in three main categories : 
compacted rockfill, an impervious clay core, and a concrete core at the 
bottom of the axis (1). 

Macroseismic data does not indicate the occurrence of an earthquake 
with a magnitude larger than M=6.0 within an 80 km radius of the dam (13). 
Although the location of the dam falls within a relatively earthquake-free 
zone in the earthquake categorization map of Turkey, an extension of the 
North Anatolian Fault is situated at a distance of approximately 100 km 
to the north. It would be a justifiable excercise to consider the long 
distance effects of a very large earthquake directly associated with this 
fault or the effects of a smaller magnitude event centered more closely. 
In order that comparisons may be made" with results presented earlier (1), 
the same earthquake excitation was employed in the present study. Examination 
of the design calculations for the dam has shown that a slope stability 
analysis considering an equivalent lateral load of 15 percent of gravity 
has been done but no dynamic analysis was carried out (7). In this paper 
the results of a discrete parameter dynamic analysis considering an artifi
cially generated earthquake intended to describe the ground motion for a 
magnitude 7.5 event at an epicentral distance of 40 km will be presented. 

The mathematical model which was employed to portray the ground motion 
at the dam site is the same as that suggested in (2) and (8) : an approxima
tion of white noise of a chosen duration was passed through a second order 
filter, and this process was followed by mUltiplying the ordinates by an 
envelope function to make the process nonstationary and to scale the maximum 
ground acceleration peak to a desired value. Although the total duration to 
the generated base motion in both the horizontal and vertical directions 
was 30 seconds, response calculations will be presented only for the 
approximately 9 second long portion of both components depicted in Fig.2. 
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METHOD OF ANALYSIS 

A consistent way of calculating the added mass matrix due to reservoir 
effects with finite elements involves the solution of the appropriate 
boundary value problem as outlined in (14). For a two dimensional reservoir 
model, if the water is assumed to be i~compressible, the excess dynamic 
pressures developed due to the motion of the boundaries are obtained from 

~n the reservoir, with boundary conditions 

Clp 
3n 

on the dam surface, and 

p = 0 

0) 

(2) 

( 3) 

on the free surface of the reservoir. In Eqs. 1-3, p denotes the dynamic 
pressure, P is the density of water and a is the component of the 
acceleration of the boundary in the direc¥ion of the unit normal n. Solving 
Eq. 1 sussessively by giving each node on the dam-reservoir interface a 
unit acceleration in the normal direction, the relation between the pressures 
PI' P2' .:., P developed at m nodes on the boundary and the applied 
accelerat~on c~n be obtained as 

.e M a 
-a -n 

(4) 

where M represents the added mass matrix. Further if a suitable inter.
-a 

polation matrix N is used, the normal forces f are obtained from 

f -na 

- -na 

N M a 
- -a -n 

(5) 

By us~ng an appropriate coordinate transformation matrix A for the x - and 
y- directions, Eq.5 is transformed into 

f = AT N M A a 
-a - -a -

= M a -a - (6) 
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Here, it should be noted that the m by m added mass matrix ~a is not 
necessarily symmetric unless the interpolating matrix N is of the same 
order as the finite element approximation for p and unless the mesh is 
uniform at the interface. Only the uniformity of the mesh quarantees a 
symmetric N with equal diagonal elements and symmetric matrix M ,and yields 

- -a a symmetric matrix N M 
- -a 

The equation of motion for the discrete structure ~s 

M r + C r + K r f (t) (7) 

where 

M = the mass matrix which ~s a diagonal lumped matrix ~n the present 
analysis 

C damping matrix 

K stiffness matrix 

r relative displacement vector with (.) indicating time differentia
tion 

acceleration vector 

f (t) time depandent load vector. 

Under an earthquake loading 

where 

f (t) -M r 
- -g 

r ground acceleration vector. 
-g 

(8 ) 

Equation (6) now can be couple~ with Eq. 7 by modifying the mass 
matrix term to include the sum M + M to yield 

-a 

(~ + M ) r + C r + K r ~ 
-a M r - -g (9) 

A mode superposition algorithm was adopted in solving Eq.(9) to obtain 
the response of the structure, for which the undamped free vibrational 
eigenproblem. 

K <P 
-n (10) 
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must be solved, which yields the n th mode shape ¢ and the n th natural 
frequency w . Here, although M is diagonal, M is-

n 
not, and therefore 

M + M is a~anded matrix with maximum band -a width of m. 
- -a 

FINITE ELEMENT IDEALIZATIONS 

The finite element mesh of the dam cross-section is given in Fig.l. 
The structure is treated as a plane strain problem. For the dynamic 
structural problem, an arbitrary four-node isoparametric quadrilateral with 
u and v displacements as unknowns at each node was used (14). For the 
static analysis of the structure under body forces and hydrostatic pressure, 
an improved version of this element with an additional internal degree-of
freedom was used (12). 

For the calculation of the added mass matrix, a separate finite element 
mesh for the reservoir cross-section was chosen so that the nodal points at 
the dam reservoir interface coincide for both the solid and the fluid. The 
reservoir was assumed to have a length to height ratio of four in the 
upstream direction. An arbitrary four-node isoparametric element with p as 
a degree-of-freedom was used in solving Eq.l to obtain the added mass 
coefficients. 

A computer program was coded to solve Eq.l for m times (m : 10 in this 
case) for the reservoir and to calculate M . The program then forms and solves 
response equation (Eq.7) by the mode supe~position method. The method given 
~n (10) was used for the time integration of modal equations. 

As seen in Fig.l, the chosen mesh was not uniform at the interface; 
consequently the matrix M was not symmetric. For computational convenience 
however, it was made sy~~tric here simply by taking the averages of the 
off-diagonal terms. 

DISCUSSION OF RESULTS 

The elastic material constants assumed for the different zones of the 
dam cross-section are indicated in Fig.l. Inasmuch as experimental data 
was not available, these constants were based on the known general average 
characteristics of similar materials. A viscous damping of 10 percent of 
critical in each mode was assumed, and the contribution of the lowest seven 
modes were included. For the numerical integration of response for each 
mode the linear acceleration scheme with 0.02 second time interval waS used. 

The lowest four free vibration mode shapes and the corresponding cir
cular frequencies with and without the added mass effect are shown in 
Fig. 3. There was insignificant difference in the normalized mode shapes 
and this difference could not be indicated in the figures. The differences 
for the frequencies are generally within 5 percent, and can be explained 
by noting that the massive structure is insensitive to masS property 
variations caused by the presence of a body of water on the upstream face. 
The two dimensional behavior of the cross-section is apparent from Fig.3. 
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A comparison of the magnitude of the resultant acceleration at the tip 
of the dam (point A in Fig.l) may be seen in Fig.4. Except for small shifts 
in the extremum points, this figure indicates a general agreement between 
the two cases. Both the periodicity of the motion as well as the peaks are 
generally the same. The maximum absolute acceleration is reached near time 
t = 7.5 sec. with a magnitude of 0.60 g. The darn appears to be vibrating 
almost entirely in the first mode for which the period is about 1.0 sec. 

In Fig.5 the variation of the normal stress component in x-direction 
for point B (Fig.l) is indicated. In the figure, the stress at t = 0 is due 
to self weight plus static water pressure. While the time variation of the 
stresses generally conform to the case where the presence of the reservoir 
is not considered, tensile stresses of significant magnitude are experienced 
at t = 7.5 sec. This would seem to indicate local failures in the cross
section during the strong ground motion. 

CONCLUSIONS 

This paper has presented a comparative dynamic study for the rockfill 
part of Keban darn which is presently in operation. The free vibration 
properties and the response, in terms of absolute acceleration and a normal 
stress component at selected points in the cross section, to a fairly strong 
artificial earthquake are given. It is noted that consideration of the 
hydrodynamic effects of the reservoir (under the assumption that water is 
incompressible) as an additional body of mass associated with the upstream 
face of the dam does not cause significant differences either in the mode 
shapes or in the general response. For a massive structure such as a large 
rockfill dam the interaction between the reservoir and the solid phase may 
be neglected without serious error. This effect however, may be significant 
for a gravity or an arch dam. 
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Mode I 

W~.JO = 5.96 Rod/sec 

Ww = 5.74 4' 

Mode 2 

<..uw/O = 7.50 Rod/sec 

LV'll = 7.34 ;,. 

Mode 3 

WW/O = 9.49 Rod/sec 

Ww = 8.89 ;, 

Mode 4 

W..,,/o = 11.05 Rod/sec 

LV'll = 10.30 

Fig. 3 - Free Vibration Mode Shapes and Frequencies (Modes I to 4) 
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