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ABSTRACT

In this thesis, two problems are investigated which commonly

arise in the study of the response of randomly excited discrete

dynamical systems.

Fir st examined is the problem of obtaining the nonstationary

stochastic response of a nonlinear system subject to deterministi­

cally modulated stationary Gaussian random excitation. An

extension of the generalized method of equivalent linearization is

used to obtain an approximation to this response. The accuracy

of this approximate technique is investigated by means of

Monte Carlo simulation.

Attention is then turned to the first passage problem for the

stationary response of a lightly damped linear oscillator excited

by white noise. A method is developed to generate approximate

values for the limiting decay rate of the corresponding first

passage probability density. This method is extended so that an

approximate first passage probability distribution may be calcu­

lated when the oscillator response is nonstationary. The accuracy

of this approximate distribution is examined.

As a practical application, it is indicated how this technique

may be used to determine an earthquake-like random process

which generates a response spectrum consistent with given data.

The accuracy and range of validity of the procedure are indicated

by a simulation study.
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The approximate solution of the first pas sage problem is

combined with the equivalent linearization technique to yield a

procedure for computing approximate first passage probabilities

of a weakly nonlinear oscillator. The errors introduced by this

procedure are investigated.
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CHAPTER I

Introduction

The destructive effects of strong ground shaking are a matter

of significant concern in all seismically active regions of the globe.

In such regions, the importance of incorporating seismic considera­

tions into engineering design criteria is generally well recognized.

The analytical tools employed in the design of structures and

equipment to withstand earthquake motions range from the very

simple to the highly sophisticated. Building codes commonly

recommend an 'Iequivalent" static analysis for estimating the earth­

quake response of a structure. (See, for example, reference [37].)

Though easily applied and computationally economical, the accuracy

of such an approach may prove inadequate in the presence of severe

design constraints. Among the most accurate methods for deter­

mining the response of a system to seismic excitation is that of

numerical integration of the equations of motion. Time histories

of the system response to several characteristic earthquake

accelerograms are generated, from which the design adequacy may

be surmised. This method is also one of the most costly, so

that it is often used only as a check of the final design configura­

tion of the most important structures.

The use of linear response spectra represents a compromise

between these two approaches. The displacement response

spectrum is a representation of maximum response displacement

attained by a single-degree-of-freedom linear oscillator excited
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by a particular earthquake. Velocity and acceleration response

spectra are defined analogously. For a given damping ratio, the

maximum response is plotted as a function of the natural frequency

or period of the oscillator.

For a multidegree -of-freedom linear system, response spec­

trum information may be used to determine the maximum response

magnitude of any particular mode of the system. The modal con­

tributions to the maximum response of the system may then be

combined by any of several methods [38]. Depending on the

method used, an upper bound or a most probable value for the

maximum response will be obtained.

When it is not possible to disregard the nonlinearities of a

dynamical system, the information contained in a linear response

spectrum is not strictly applicable. Though this fact has long been

recognized, respons e spectra are still quite often the only data

provided as seismic design criteria.

An approach for circumventing this difficulty is proposed herein.

Es sentially, two separate elements are involved. The first of these is

to determine a random process that generates response spectra consis­

tent with the data provided, and that has sample functions reasonably

similar to actual earthquake excitation. To find such a process, it is

necessary to have the capability of computing the probability that the

response of a randomly excited linear oscillator will remain below the

corresponding response spectrum value. In the study of stochastic

processes, the calculation of such probabilities falls into the category

of "first passage" problems.
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The second element of the suggested approach is to determine

the stochastic response of the nonlinear system excited by the

appropriate artificial earthquake process. This, and the first

passage problem for the nonstationary response of a linear

oscillator comprise the two basic analytical problems involved in

the use of linear response spectrum data to estimate the seismic

response of a nonlinear system.

It is the obj ective of this thesis to develop approximate

methods for solving these two problems. The earthquake model

chosen is a stationary Gaussian random process multiplied by a

modulating envelope function. This model is considered to be

relatively realistic [19, 32 -35 J, yet it is simple enough to remain

analytically tractable in the problems to be examined.

The stochastic response of a nonlinear multidegree-of-freedom

system subject to deterministically modulated stationary Gaussian

noise is considered in Chapter II. This problem is of considerable

practical importance in a number of fields. Hence, it is treated

first, and without special reference to the particular application

in mind.

An extension of the generalized method of equivalent linear­

ization is used to develop a set of nonlinear integral-differential

equations for the elements of the covariance matrix of the

response. The existence of solutions to these equations is dis­

cussed and a numerical example is performed so as to indicate

the degree of accuracy and efficiency that may be expected from

the method.
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In Chapter III, the first passage problem for the stationary

response of a linear oscillator excited by stationary white noise is

examined. A semi-empirical technique is developed to calculate

the approximate distribution of the time to first excursion across a

symmetric double barrier. This method is then extended to the

case of nonstationary oscillator response to modulated stationary

Gaussian noise with non-white spectral density. A procedure for

using this method to obtain an artificial earthquake process that

is consistent with given response spectrum data is then discus sed.

Finally, it is demonstrated how the techniques developed in

Chapters II and III may be combined to obtain first passage proba­

bilities for a weakly nonlinear oscillator. A number of simulation

studies throughout Chapter III serve to indicate the range of validity

and degree of accuracy of the methods discussed.

The numerical examples chos en in this investigation are

intended to illustrate the basic principles involved in the analyses

performed. As a consequence, the examples are relatively simple

and do not necessarily reflect the actual problems arising from a

specific engineering application. However, it is felt that these

examples do represent non-trivial problems and hence demonstrate

the usefulness of the approximate methods developed.
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CHAPTER II

The Nonstationary Response of a Nonlinear System Subject
to Deterministically Modulated Stationary Gaussian Noise

2. 1 Introduction

In many situations of engineering interest, a dynamical sys-

tern is subject to excitation of a random nature, and the system

response can only be described probabilistically. In such cases,

it is often adequate to model the input as a stationary Gaussian

proces s multiplied by a deterministic modulating time function.

If the system is linear, it is well-known that the response

to such excitation will itself be a Gaussian process [1] which is

completely specified, in the stochastic sense, by its mean value

vector and its cross-correlation matrix. For the linear case,

these two functions may be expressed explicitly and hence, the

theory for this special case is complete.

If the system is nonlinear, the problem is considerably more

complicated and the general theory is not sufficiently well devel-

oped to obtain exact statistical response characteristics for most

cases.

When the excitation is a white noise process, the problem

may be formulated in terms of a Fokker -Planck-Kolmogorov

equation for the transition probability density of the response

process. Although explicit solutions to this equation are rare for

nonlinear systems, this formulation does serve to unify the theory

for the white noise case. A paper by Caughey [2] provides an

exhaustive review of the cases for which exact solutions to the
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Fokker -Planck-Kolmogorov equation have been found.

When exact response statistics cannot be explicitly obtained,

one must generally rely on approximate techniques. When the

excitation is of constant intensity in time, (i. e., the modulating

function is a constant), one may be interested in the stationary

system response. Iwan and Yang [3 ] have developed an equiv­

alent linearization technique for obtaining the approximate station­

ary response of multidegree-of-freedom nonlinear systems subject

to stationary Gaussian noise of arbitrary spectral density. With

the additional restriction that the nonlinear terms in the equations

of motion must be small, Crandall [4] obtains an approximate

solution to the same problem by means of classical perturbation

techniques.

When the nonstationary response of the system is of interest,

one must resort to slightly more sophisticated methods. Iwan and

Spanos [5J have developed a technique for finding the approx­

imate envelope response statistics of a narrow-band single -degree­

of-freedom nonlinear oscillator subject to unmodulated white noise

as it approaches steady-state from zero initial conditions. This

method first uses equivalent linearization and the narrow-banded­

ness of the response to derive an approximate first-order differ­

ential equation for the envelope response. The associated Fokker­

Planck-Kolmogorov equation is then solved by eigenfunction

expansion for the transition probability density of the envelope

response. The problem of the response of a multidegree-of­

freedom system to modulated stationary Gaus sian white noise was
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approached by Kaul and Penzien C6] within the context of a

particular type of nonlinear system. Without stating all of the

assumptions, a time-varying equivalent linear system is found,

and the associated Fokker-Planck-Kolmogorov equation is formu-

lated. This is then used to obtain a Liapunov-type matrix dif-

ferential equation for the covariance response of the equivalent

linear system.

In this chapter, an equivalent linearization technique is used

to develop a method for finding the approximate transient co-

variance response of a multidegree-of-freedom nonlinear system

subject to deterministically modulated stationary Gaus sian noise

of arbitrarily specified spectral density. The simplifications that

arise in certain special cases are noted, and the accuracy of the

method is then checked by means of Monte-Carlo simulation.

2.2 Derivation and Solution of the Equations Governing the
Parameters of the Equivalent Linear System

2.2. 1 Review of the Generalized Method of Equivalent Lineariza­
tion - Stationary Response

The equations of motion for a discrete n-degree-of-freedom

dynamical system may be written in the general form

+ h (x, x) =-- - f{t) (2. 1)

where (.) == (d/dt). M is the n X n mass matrix, and x, h, and f- -- --
are n-vectors, x_ representing generalized displacements. h.(x, x)

1- -

is the total internal generalized force associated with the ith degree

of freedom for 1 ::;; i ::;; n, and £(t) is the external generalized force-
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vector, a function of time.

Suppose that a time-independent linear system with the same

mass matrix as (2.1) is subjected to the same generalized force

vector f.{z) as in (2.1). That is

Mil + Cil + K2f.1 = fit) (2.2)

where C and K are the stiffness and damping matrices, respec­

tively, and ~l is the generalized displacement vector of the linear

system. Due to the wealth of theory on the response of linear

systems, it is assumed that (2.2) may be solved explicitly for

any given M, C, and K matrices, and f.(t) specified. It is clear

that generally ~ and -el will differ. However, if one could choo se

C and K in such a way as to minimize some measure of the dif­

ference between the two systems, then ~l would be a candidate

for an approximate solution to (2. 1)

This is the essence of equivalent linearization techniques,

and the aforementioned minimization is accomplished in the

following way. The solution of (2. 2), ~l (t), is expres sed explicit­

ly as a function of M, C, K, and t, and then substituted into the

left -hand side of (2. 1) in place of ~(t) to obtain

(2. 3)

In this representation, it is clear that fit) + i(t) is the input to

the nonlinear system that would be necessary to cause its

response to be ~1 (t).
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The difference between the nonlinear system (2.1) and the

linear system (2.2) is defined to be a([14(t) lh, where II· [[ denotes a

vector norm, and a(·) is an averaging operator, the choice of

which is generally dictated by the physical situation. Since

adh(t) \1> is an explicit function of the elements of C and K, it may

be minimized with respect to these in the usual fashion, i. e. ,

oa(!!£(t)ll)

oc •.
1J

= 0

v..
1,)

i, j = 1, ... , n (2.4)

oadld(t)ll) = 0
ok ..

1J

At this point it should be remarked that in order to remain

consistent with the assumption that C and K are constant in time,

the averaging operator should possess the property that a(lld(t)lh

is time independent. The interested reader is referred to [5]

and [7J for a detailed discussion of this and other properties of

this operator.

The expression in (2.4) constitutes a set of 2n simultaneous

equations, linear in c .. and k... Spanos has derived necessary
1J 1J

and sufficient conditions for the existence and uniquenes s of

solutions to thes e equations [g J. When a solution does exist, the

resulting C and K matrices may be inserted into (2.2) and this

set of differential equations are then referred to as an equivalent

linear system, the solution of which may be found by standard
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techniques applicable to autonomous linear systems.

In the next section, an equivalent linearization technique

will be formulated in application to the stochastic response of a

nonlinear system. In many aspects, it is similar to the

generalized method of equivalent linearization just described;

however, a significant difference results from allowing the

equivalent linear system to be time -varying. The usefulness of

time-varying equivalent linear systems for nonlinear problems

with deterministic excitation is questionable since the solution of

the equivalent linear system may require as much computational

effort as would a numerical solution to the original nonlinear

system of equations. However, for the stochastic problem it

will be shown that its introduction produces a considerable

savings in the computational effort required to obtain response

statistics in comparison with other applicable techniques that

are currently available.

2. 2.2 The Equivalent Linear System for Nonstationary Response
of a Nonlinear System

As described in (2. 2.1), the strategy of equivalent lineariza-

tion is to replace the nonlinear system with some member of a

class of linear systems, the corresponding solutions of which are

known. The m.em.ber of the class which is chos en is one which

minimizes some average measure of the equation difference. The

solution to the linear system is then taken as an approximate

solution to the original nonlinear system of equations.
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It should be pointed out that the minimization of the equation

difference with respect to the linear parameters does not

necessarily guarantee that a minimization of the solution difference

has been achieved, and this may be considered a drawback of

averaging methods. However, it is evident that, for a system

with sufficiently small nonlinear terms, the approximate solution

obtained by equivalent linearization will become asymptotic to the

exact solution with decreasing nonlinearity.

For cases of steady-state response to periodic excitation and

stationary random response, equation difference averaging is

performed with respect to time, and the equivalent linear system

is assumed to be time invariant. This procedure could also be

applied to the nonstationary stochastic response of a nonlinear

system by again assuming that the equivalent linear system is

time invariant and integrating over some fixed interval of time.

However, there are several observations which suggest that more

accurate approximate solutions might be obtained if the class of

systems to be considered as candidates for the equivalent linear

system were permitted to vary with time.

For example, it is well known that the equivalent linear

stiffness for the stationary response of a damped duffing oscilla­

tor is a monotonically increasing or decreasing function of the

variance of the response, depending on whether the coefficient of

the cubic term is positive or negative. For nonstationary

response, the variance will change with time. Since the

statistical response varies with time, and the effective system
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parameters depend upon the response, it is only reasonable to

propose that the system parameters should also be allowed to

change with time.

With this somewhat heuristic justification, the class of linear

systems from which the equivalent linear system will be chos en

will be treated as time varying. However, the explicit dependence

of the equivalent linear parameters is on the response statistics

rather than on time. In order to emphasize this functional

dependence, a special notation is introduced. Let S(t) represent

some statistical description of the response of the equivalent linear

system at time t. Then, an expression of the form

denotes that the quantity B, which may be a scalar or a matrix,

is an explicit function of the statistics of the response of the

equivalent linear system, which are in turn functions of time.

With the foregoing discussion in mind, consider once again

the nonlinear dynamical system described by

with the initial conditions

~(to) = ~

~(tO) = ~O

(2. 1)

(2.5)

There is no loss of generality in assuming to = 0, and this will
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be done henceforth. Let !,it) represent a random process with an

infinite number of sample functions ki(t). The sample functions

k
~(t) of the response process ~(t) then obey

(2.6)

= --eO

k = 1,2, ...

The desired response statistics are, in general, non-

stationary. For reasons already discus sed, therefore, let the

propos ed equivalent linear system have the form

(2. 7)

1, 2, ...k =
,.eo

= "yO

Let the vector ki be the difference between the left -hand

side of equation (2.8) and that of equation (2.7). Written ex­

plicitly, then k..§. is given by

(2. 8)

A measure of this equation difference is given by the square of

the Euclidean norm of k.§. denoted by

(2.9)

k T kin which .§. denotes the transpose of the vector .§..
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Let [0, 'l"J be the time interval during which the transient

response of (2.1) is of mterest, where 1" is required to be a

constant. Furthermore, let [3 be a scalar random variable

defined by

(2.10)

then, [3(k) is the (temporal) average value of the instantaneous

equation difference corresponding to k.!(t).

For an ensemble of M samples, the ensemble error eM

may be defined as

e s.!..
M M

(2. 11)

Hence,
M 'l" T

E[ [3J = Lim ~ L ./ k l(t) k1 (t) dt
M"'co k=l a

= Lim .!.. e
'l" MM"'co

. (2. 12

where the assumption is made that the limit exists. It is apparent

that E[ [3J provides a measure of the total equation difference

resulting from replacing the original nonlinear system (2.6) by the

linear system (2. 7).

The equivalent linear system will be defined as that system

which causes E[ [3] to attain its minimum value. Thus, it is

desired to find the time -varying matrices C[S(t) J and IB [S (t) ]
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such that

(2.l3)

Using (2. lO) and the properties of the expectation operator, equation

(2. 13) Inay be written as

IniniInuIn VC[S(t}], 3[S(t}]

(2. 14)

Expression (2. 14) is the stateInent of a calculus of variations

probleIn where the functional does not depend upon the derivatives

of the varying functions, and the integration liInits are not

variable. The appropriate Euler equations for this probleIn are

OE [n ~(C,3, t) ll: ]
0be .. =

1J
(2. IS)

oE [1l2.(C,3, t)ll: J
0=

ab ..
1J

It should be pointed out that equations (2.15) are independent of the

tiIne interval [0,1"] over which the rniniInization is to be perforIned.

Using (2.9) and inverting the order of differentiation and ex-

pectation, (2. IS) becoInes
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From (2.8), the components of 1 are given by

o = [ I: (c .x. + b . x.) ] -m mJ J mJ J
j =1

h
m

(2.16)

(2. 17)

Therefore,

E[b ~ ij (8m
2)] = 0 Vi ~m

(2.18)

E[ b~ij (8m
2)] = 0 V i 1m

thus (2.16) is equivalent to

E[~ ]= 0 i, j =1, ... , n

(2.19)

E[~ ]= 0 i,j=I, ... ,n

Performing the differentiation in (2. 19) yields
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[

00. ]
E 0 1 = 0
i~

[

0 o. ]
E 0iObi~ = 0

Using (2. 17) then gives

i, j =1, ... , n

i, j =1, ... , n

(2.20)

00.
1

j=l, ... ,n
~

= x.
1J J

(2.21)

00.
1 j=l, ... ,nob .. = x.

1J J

Substituting from (2.21) and (2.17) into (2.20) yields

E[{ ~ (c. X + b. x) - h.} x.] = 0L...J 1m m 1m m 1 J
m=l

E[{jl (cirnXm+ bimxnJ -h}j] = 0

Rewriting (2.22) in matrix notation

i,j=l, ... ,n

(2.22)

i,j=l, ... ,n

where

i=l, ... ,n (2.23)

(2.24)
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and

.Ei >:< = ith row vector of the lB(t) matrix

C." = ith row vector of the C (t) matrix.-,.••<

Equivalently, (2.23) may be written in the form

(2. 25)

the elements of the IB and C matrices, respectively.

2n2 equations linear in b .. and
1J

In [7]

Expression (2.25) represents

c .. ,
1J

and [8], a set of equations are derived which are nearly identical

to (2.25), the difference being that the expectation operator E [. J,

which may be time -dependent, is replaced by a general time-

invariant averaging operator G:(.). The assumption of the time-

invariance of G:, however, is not essential for several of the

results derived in [8J, and some of these results will be mentioned

here.

Note that the expectation operator has the properties

(2. 26)

and

Va(t)1-0 (2.27)

It is proven in [8J for an averaging operator possessing the

properties (2.26) and (2.27), that if a solution to (2.25) for [IB, C ]

exists, the corresponding value of E [~T i J is an absolute (global)

minimum. There may be more than one such solution, but no
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one of these will be any better (or worse), in the sense of the

minim.ization criterion (2. 13), than any other.

Furthermore, it is pointed out in [8] that equations of the

form of (2.25) will have a unique solution only if E[~~TJ is non­

singular. When E[XyT ] is singular, the existence of a solution

is not guaranteed, and when a solution does exist, it is not unique.

There is a well-known result of probability theory which

states that the covariance matrix of the probability distribution of

an N -dim.ensiona1 vector y.. is singular if and only if there exists

a set of constants La. ; 1 SiS N} such that
1

(2.28)

where Pr[' ] denotes the probability of occurrence of the situation

described inside the brackets. For a proof of this result, see

Feller [16 J. In words, (2.28) says that, with probability one, at

least one of the elements of y is expressible as a deterministic

linear combination of the rest of the elements. In terms of the

response of a dynamical s.ystem, (2.28) can be true only if the

governing equations of motion contain a redundant equation, or if

an uncoupled degree of freedom is subject to deterministic ex-

citation only. In such cases, the probability distribution of the

response process:t is said to be degenerate in an N-dimensional

space. It is always possible, in this event, to eliminate from the

equations of motion the equation or equations irrelevent to the non-

deterministic response of the system, thereby creating a
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non-degenerate response process in a space of lower dimension.

Without sacrifice of generality, therefore, one may require

the nonlinear system under consideration to have a non-degenerate

response process. If this requirement is imposed, then the co­

variance matrix E [.,yyT J will never be singular so that a unique

solution to (2.25) for [IS., C] always exists.

2.2.3 Special Case of Gaussian Distributed Excitation

In the study of random vibrations, much attention is given

to sources of stochastic excitation that have a Gaussian probability

density. There are several good reasons for this, not the least

of which is that a number of important natural sources of random

excitation, including strong -motion earthquakes, exhibit, at least

approximately, a Gaussian distribution [9-l2J. The excitation

from such natural sources may often be considered as the

resultant sum of many independent addtitive random effects, so

that modeling such excitation as a Gaussian process is consistent

with the central limit theorem. Further, the response of a linear

system to Gaussian excitation is also a Gaussian process, which

permits the distribution of the response process to be completely

described statistically by its mean value vector and its covariance

matrix.

In the context of equivalent linearization, there is an added

attraction to restricting the random input to Gaussian processes.

For the case of a jointly Gaussian vector process y(t) with mean

Q, Atalik and Utku have found an explicit solution to (2.25).
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This solution is given by

b ..
IJ

:: E[ Ohi ]ox.
J

[

Oh. ]
c .. :: E ~

1J U x.
J

(2.29)

To make use of this solution form, it is necessary to assume

that .b(:~:.) is sufficiently smooth that the partial derivatives in (2. 29)

exist. Atalik and Utku apply this solution to the case where ~(t) is

stationary, but the assumption of stationarity is not used in the

derivation of the solution (2.29). It is therefore applicable to the

nonstationary process ,.y(t} in (2. 25).

So that advantage may be taken of the solution from (2.29),

only systems of the following form will be considered

"-

Mx + £. (~> JE) :: !(t) r(t) (2.30)

where r(t) is a stationary Gaussian random process with zero mean

""
and power spectral density S(w}, and !(t) is a deterministic

modulating vector function of time. It will also be required that

hi be an odd function of its arguments for i =1, ... , n, and zero

initial conditions will be impos ed, i. e.

~(O) :: Q

and

~(O) :: 0

(2.3l)
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It is clear from symmetry considerations that the oddhess of

.h and the zero initial conditions will ensur e that the mean value of

the response process is zero. Thus,

and

E[x{t) ] = 0

(2.32)

Although the requirement that h be odd does restrict somewhat the

class of nonlinearities that can be analyzed, it should be pointed

out that this property is quite commonly found in actual non­

linearities arising in engineering applications. Further, the zero

initial conditions reflect the most commonly assumed initial

situation for. engineering applications.

The equivalent linear system for (2. 30) will be

(2.33)

where C and IS are given by equation (2.29).

It will be noted that the use of (2.29) in (2.33) generates a

set of stochastic differential equations with coefficient matrices that

are functions of the statics of the response proces s, which are, at

this point, unknown. In order to transform (2.33) into an equation

containing only the statistical parameters of the response process,

it is necessary to make use of some results of the theory of linear

stochastic differential equations.
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2. 3 Some Results of the Theory of Linear Stochastic Differential
Equations

2.3.1 A Generalized Form of a Result Obtained by Caughey and
Stumpf [12]

In reference [12J, the response of a single-degree-of-

freedom damped harmonic oscillator subject to stationary Gaussian

random noise is considered. The oscillator is given arbitrarily

specified initial conditions, and a solution is then obtained for the

mean value and the variance of the response as a function of time.

The following is a straightforward extension of this result to

include time-varying multidegree-of-freedom linear systems subject

to deterministically modulated stationary Gaus sian random excita-

tion.

Consider a set of N time-varying linear differential equations

y = A(t) Y + !(t) r(t) y(O) = ~ (2. 34)

where A(t) is an N X N deterministic matrix continuous in time,

r(t) is a stationary Gaussian random process with zero mean and

power spectral density S«(,t), ~ (t) is a deterministic modulating

N-vector time function, and y.. is the N-vector response process.

Let Y(t) be the fundamental solution matrix associated with (2.34),

defined by

Y(t) = A(t) Y(t)

and (2.35)

Y(O) = I

where I is the N X N identity matrix. Then, the solution to
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(2.34) may be written

t 1
= Y(t)~ + Y(t).f Y- (s) 6(s) r(s) ds

o ~

(2.36 )

Taking expectations on both sides of (2. 36), and noting that

Y and 6 are deterministic,....,

E [xJt) ]

By as sUInption,

which leads to

t 1
= Y(t)~ + Y(t) -{ Y- (s) !(s) E [r(s)] ds

E [ r(s)] = 0

E [Z(t)] = Y(t)~

(2.37)

Hence, for zero initial conditions, It is clear that

Vt ~ 0 (2.40)

This confirms an earlier statement, and the zero start will be the

case of interest henceforth.

It is necessary to know the covariance matrix E [XXT ]

in order to completely define the probability density of the

response, p(y), at a given value of time for a Gaussian random

process. The cross -correlation matrix E [X(t
l

) XT (t
2

)] may be

obtained in a straightforward fashion. Using (2.36) gives
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l'Jtl)yT(tZ) = { Y (t l ){I y-
I

(sl) ~,<sl) r(sl) dS I )

. {Y(tz){z y-l(sZ)!(sZ)r(sZ)dsz } T

yT(Sz)t.

J

(2.41)
or

Taking expectations gives

The autocorrelation function R of the random process r(t) is

given by



-26 -

(2.44)

By assumption, r(t) is a stationary process, so R(sl' s2) can only

be a function of the difference between s 1 and s2' and not on the

actual values thems elves. That is

where

(2.45)

S :5 (2.46 )

Using the fact that the autocorrelation function of a stationary

process and the power spectral density of the process are Fourier

transform pairs, R(s) may be written

co
r iwsR(s) = J S(w)e dw

co

From (2.46), it is obvious that

iws iws 1 -iW s2
e = e e

Thus,

(2.47)

(2.48)

co iws -iws
.f 1 2

S(w) e e dw
_cc

(2.49)

Substituting (2.49) into (2.43) yields

cc

.f K(w, t
l

) r*T(W, t
2

) S(w) dw
_co

(2.50)
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where

!(W, t) (2. 51)

*and.E denotes the complex conjugate of F.

The covariance matrix Q(t) is given by

Letting t
1

= t
2

= t in (2.50) gives

(2.52)

Q(t) =
co

"'T.J!(w, t) !'1' (w, t) S(w) dw
_00

(2.53)

It is of interest to note that the N -vector quantity r(w, t) as

defined in (2.51) satisfies the differential equation

x = A(t) F + !(t) eiwt

with the initial condition

(2. 54)

E(O) = Q (2.55)

Thus, E(w, t) has an immediate physical significance. It is simply

the response of the linear system of equations (2. 34), except that

the excitation r(t) is now harmonic and deterministic rather than

randoIll.

Once Q(t) is found, the probability density p(y(t» may be

written explicitly. For a jointly Gaussian distributed N-vector

variable y, with Illean Q and covariance matrix Q, the probability

density will be given by



p(y) =

-28-

1

[(21T)N det (Q) ] i
(

1. T -1 )exp -2"y Q 1. (2. 56)

2.3.2 Simplifications Resulting from Gaussian White Noise
Excitation

Consider the special case where the power spectral density

S(W) is a constant in W. That is

S(W) = So if W, _co < W < co (2.57)

The autocorrelation of the process r(t) corresponding to (2.57) is

given by the inverse Fourier transform of S(w). Using (2.47)

co

R(s) = So .f e
iWs

dw = 21TSO o(s)
co

(2.58)

where O(s) is the Dirac delta function. Recalling the defini:tion

(2.44) of R(s), (2.58) may be written as

(2.59)

Substituting from (2.59) into (2.43), then yields

1f
tl

t 2 1· T 1T ) T
~ (zrrSoly(t1l\ 0 -{ y- (slle(sl)e (sZ)Y- (sZ)li(sl-sZldsZds l Y (tzl

(2.60)

From a well-known property of the Dirac delta function, the

inner integral may be expressed as
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_ -1 e eT -1 T
- Y (slL(sl) (sl)Y (sl)

(2.61)

Letting t 1 = t 2 = t in (2.60) and (2.61) yields

Q(t) = 2rrS
O

Y(t) G(t) yT(t)

where

(2.62)

(2.63)

Expressions (2.62) and (2.63) constitute an explicit representa-

tion of Q(t) and may be evaluated for any value of t once the

fundamental solution matrix y(t) is known. It is also possible to

solve for Q(t) directly without first computing Y(t), which may

prove convenient in some applications. This may be accomplished

as follows.

Differentiating both sides of (2.62), one obtains

(2.64)

Substituting from (2.37) for Y and using (2.63), (2.64) becomes

(2.65)

Simplifying this, and using (2.62) yields

Q(t) = A(t) Q(t) + [A(t) Q(t) ] T + 2rrSOi(t)iT (t) (2.66)
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where the fact that Q(t) is syTIunetrical has been used. The

Liapunov type matrix differential equation (2.66) must be solved

with the initial condition

Q(O) = 0 (2.67)

It should be remarked that equation (2.66) can be derived in

a somewhat less direct fashion from the Fokker -Planck-Kolrnogorov

equation that governs the transition probability density of the

response process y. In the abs ence of other criteria, the choice

of derivations was here made in favor of the more intuitive

approach.

It is appropriate at this point, to remark on the relative

merits of using (2.66) versus (2.62) and (2.63) for the purpose of

computing Q(t). Expressions (2.62) and (2.63) involve the

fundamental solution matrix y(t), which is obtained by solving a

system of N 2 first order time -varying differential equations.

Further, (2.63) requires the evaluation of the integrals .of

N(N + 1)/2 time functions. Alternatively, (2.66) involves only the

solution of N(N + 1)/2 first order time-varying differential equations,

generating Q(t) directly. In the most general case, one must

expect that any of the above procedures would have to be performed

numerically, in which case, the use of (2.66) is considerably less

time consuming. However, in the special case that y(t) may be

expressed explicitly, the use of (2.62) and (2.63) may be more

expedient.
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2.3.3 Remarks on the Use of the Results

Throughout sections (2.3.1) and (2.3.2), the matrix A has

been written as an explicit function of time. Due to the fashion in

which the results from these two sections will be used, it is of

importance to consider whether expressions (2.53) and (2.51) for

the covariance matrix Q(t) are still valid if the matrix A(t) is

replaced by the implicitly time -varying matrix A [S(t) ] .

Upon examination of the foregoing analysis, it is apparent that

the validity of these expressions depends critically upon the exis-

tence of the fundamental solution matrix Y(t). Once the existence of

such a matrix is established, all the results in (2.3.1) and (2.3.2)

follow.

When the A matrix contain s functional dependence upon S(t),

Y(t) must satisfy the equations

Y(t) = A [S(t) ] Y

and (2.68)

Y(O) = I

It is a well-known result from the theory of ordinary differential

equations that if A is continuous in time, then a unique solution to

(2.68) exists. (See, for instance, reference [17J). Therefore, if

S(t) is such that, given any arbitrarily small positive constant ~,

and any value of t in the interval of interest [0, 1" J, there exists

a positive constant \1 such that

Ia .. [S(t +\1)] - a .. [S(t)] I :=;: (
1J 1J

1 :::; i, j :::; N , (2.69)
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then a unique solution to (2.68) for yet) exists.

Since Set) depends upon the solution of the equivalent linear

system, there is no way to know a prior i whether A [ S (t) ]

satisfies (2.69) or not. Therefore, when applying the results of

(2.3. I) and (2. 3. 2) to an equivalent linear system, it will be

initially assumed that A [Set) ] is continuous in time. This being

the case, the equations governing Q(t) in (2.3.1) and (2.3.2) will

be valid. As will be discussed in section (2.4), this will lead to

a set of nonlinear equations for Q(t). For the case of Gaue-sian

excitation, knowing Q(t) is equivalent to knowing S(t), and hence,

A [Set) ] . If a solution to these nonlinear equations exists such

that A [set) ] is indeed continuous in time, it will be taken as the

approximate solution for Q(t). If no such solution exists, then the

initial assumption of the continuity of A [Set)] was incorrect, and

the method is not applicable.

The applicability of the method will depend upon the nature of

the nonlinear function h(x.). It may be 120ssible to determine the

most general class of such functions for which the method applies;

however, such a task seems formidable, and deviates from the

objectives of this thesis. ' In practice, the final check on the

continuity of A [Set) ] should serve as an adequate criterion for

determining whether or not the method is applicable.

2.4 A Method for Generating Approximate Statistics for Nonlinear
Systems

At this point, all the results necessary for finding a set of

approximate statistics for the response of a multidegree -of -freedom
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system Wlder Gaussian excitation have been developed. All that

remains is to tie these results together so as to define a clear

procedure for generating these statistics.

Recall that statistical characteristics are sought for the non-

linear problem defined by (2.30) and (2.31) as

" "MX + ~(~, x) = ~(t) ret)-
~(O) = 0

x(O) = 0

(2. 30)

(2. 31)

The proposed equivalent linear system is given by (2.35) and

(2.33) as

~(O) = 0

~(O) = 0

,.,
= ~(t) ret) (2. 35)

(2.33)

It should be pointed out that (2.30) and (2.33) were formulated as

second order differential equations only because this form makes

the application to dynamical systems more readily apparent. For

the purpose of conciseness, let these now be rewritten as first

order equations. Thus (2.30) and (2.31) become

i = hey) + ~(t) ret)

y(O) = 0

(2. 70)

(2. 71)
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where

£(t) - { 2. )
M-le(t)

h(n - [: : ] (: 1- L-l:(~ ~I

(2.72)

(2.73)

(2.74)

In (2.74), I denotes the n X n identity matrix. The equivalent
n

linear system described by (2.33) and (2.31) becomes

where

y = A [S(t)] Y + ~(t) r(t)

y(O) = 0

(2.75)

(2. 76)

A [S(t)] _ [ 0

- _M-l~[S(t)]
(2. 77)

As shown in section (2.22), the elements of the C [S(t)] and

~[S(t)] matrices must satisfy (2.25),

(2. 25)

Since the input excitation to the linear system (2.75) is a Gaussian

random process, the response y(t) will also be a Gaussian process.

Hence, the solution for C and ~ given by equations (2.29) is

applicable. Rewriting (2.29) in 2N -space notation, gives
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[Dh.]
a .• = E ~

1J uy.
J

i,j=l, ... , 2n (2.78)

where (a .. ) are the elements of the A matrix.
1J

It has been established that the mean value of the response

process will be E. for the duration of the response so only the co­

variance matrix E[yyTJ must be found in order to determine the

probability density of the response process at each instant. Using

the notation of (2.3. 1),

Q(t) = E[y(t)y.?(t)]

and Q(t) is given by

00

Q(t) = f !(w, t) !~:~T(W, t) S(w) dw
00

where !'(w, t) satisfies

!(w,O) = 0

(2.52)

(2.53)

(2.54)

(2. 55)

For the special situation when r(t) is a white noise process,

a simpler method for determining Q(t) is to solve equation (2.66)

with the initial condition

Q(O) = 0

(2.66)

(2.67)
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Using the fact that .:y is a jointly Gaussian distributed vector,

the elements of A may be expressed in terms of Q as

a ..
1J

= E[OhiJ =oy:-
J

00 00 oh.
f ... (2n) ... f ~ p(y) dYl· .. dY2uy. - n

_00 _00 J
i, j =1, ... ,2n

(2. 79)

where

1 ( ~ T -1)exp -"21: Q :t. (2.56 )

Since each element of A is an explicit function of the elements of

Q, equation (2.66) is a set of 4n2 nonlinear ordinary differential

equations which must be solved with the initial condition (2.67).

Due to the symmetry of Q, only n(2n + 1) of the equations are

distinct.

In the more general case of non-white excitation, equation

(2.54) must be solved simultaneously with equation (2.53) to

generate Q(t). In appendix A, a discussion is given concerning

an approach to the solution of (2.53) and (2.54) using numerical

techniques.

To summarize, the problem of finding approximate response

statistics for the nonlinear system described by (2. 30) and (2.31)

has been reduced to the solution of the equations given by (2.53),

(2.54), and (2.55). For the special case of modulated white noise

excitation, (2.66) and (2.67) provide a more tractable formulation.

The usefulness of the approximate technique hinges on two

important considerations. First is the effort required to solve
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the appropriate nonlinear equations (i. e., (2.53), (2.54), and (2.55))

produced by equivalent linearization. With sufficient time and

effort, accurate response statistics may be obtained by simulation

of the original nonlinear system (2.30) and (2.31) on a digital or

analog computer. If the effort requi~ed to obtain the approximate

solution through equivalent linearization is not considerably less,

then it is not really justifiable. Since there is no general method

to determine a priori just how large an ensemble of time history

simulations will be necessary to produce accurate statistics, this

question is rather difficult to answer analytically. However,

experience has shown that, in terms of computer time, the analyt­

ical solution tends to be much less time-consuming. It is not

uncommon for the ratio of the time l' equired for a simulation

solution to that required for the analytic solution to be greater

than 100.

The second consideration relating to the usefulness of the

approximate method concerns the accuracy of the solutions obtained.

Establishing useful analytical bounds for the error incurred by

equivalent linearization techniques has proven to be a most difficult

problem. Though some preliminary efforts have been made along

these lines [14, 15 J, there are currently no analytical techniques

for generating such bounds. As a consequence, the us:ual proce­

dure for checking the accuracy of these methods is to compare the

approximate solution with the numerically generated "exact" solution

for a few specific cases. Obviously, one cannot draw general

conclusions about the accuracy from this type of procedure, and
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this would seem to be a major drawback of averaging techniques

in general. However, due to the widespread usage of equivalent

linearization methods, there exists a fairly large body of results

from a variety of applications, the precision of which have been

checked either by experiment or numerical simulation, usually

with favorable conclusions. In fact, even for quite severely non-

linear systems, the approximate solutions produced by equivalent

linearization are often adequate for engineering applications.

2. 5 Numerical Example - Duffing Oscillator

As an application of the techniques described In the previous

sections, consider the example of a Duffing oscillator subject to

modulated Gaus sian white noise. The equation of motion is

"8(t) w(t) "m,c,k>O, f;;~0 (2.80)

where w(t) is Gaussian white noise with spectral density SO' The

parameter E' is a measure of the degree of nonlinearity of the

system (2.80). When € = 0, the system is linear, and one may

find the theoretically exact statistical solution.

Let (J~ be defined as

~=O
1ft (2.81)

where [0, 'fJ is the interval during which the response of (2.80) is

of interest. Then, a dimensionless form of (2.80) may be

obtained by introducing the variable x defined as
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x __'f_
CJ Wm

Equation (2.80) may then be written as

where

" 2
E: = E: cr~m

e (t) w(t)

(2.82)

(2. 83)

e =
"e

mCJljrm

and

c =
c

To remain consistent with previous sections, (2.83) will be

converted to the form of two fir·st order equations. Let y be

defined by

{::l = 1:\
, Then (2.83) may be represented as

where

(2.84)

(2.85)
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(2. 86)

and

(2.87)

The equivalent linear system for (2.85) will have the form

1. = A[S(t)Jx. + !(t)w(t) (2.88)

Since y... is assumed to be Gaussian, the elements of A are given

by equation (2.78). Evaluating these elements by means of (2.78)

and (2.86) gives

o
(2.89)

The covariance matrix Q(t) may be represented explicitly as

(2.90)

Hence, from (2.90), (2.89) may be written as

(2.91 )
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Since the excitation in this example is modulated white noise,

the covariance matrix satisfies the Liapunov-type differential

equation (2.66). Applying equation (2.66) yields

(2.92)

From (2.90), it is obvious that q21 = q12.

When 8(t) is a constant, the stationary response may be found

by letting q.. = 0, for i =1,2 and j =1,2 in (2.92). Letting 8(t)
i)

equal unity, (2.92) then reduces to

2 + 3 £qll) 0q22 - WOqll(l =

rrSO
q22 = 2Cw O

...

(2.93)

For this particular example, the exact covariance matrix

corresponding to stationary response may be found by solving the

stationary part of the associated Fokker-Planck-Kolrnogorov

equation as described in reference [2]. It will be noted that the

expressions for q 12 and q22 in (2.93) are actuillly exact in this
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case. Solving for q 11 yields

(2.94)

This result was also obtained by Iwan and Yang [3 J. The standard

deviation of displacement (J"x is defined by

(2.95)

In. reference [3 J, it is observed that, even for arbitrarily large

nonlinearity, the value of (J" given by (2.94) and (2.95) deviates
x

from the exact value by less than 7.5%.

Letting (approach zero, (2.94) reduces to

(2. 96)

which is the exact solution for the linear case.

To determine the nonstationary response of (2.83), it is

necessary to solve the differential equations given by (2.92) with

zero initial conditions. It is apparent that this cannot be done

analytically for nonzero f. The solutions to (2.94) presented

herein were obtained numerically. The nume'rical method us ed

was a fourth-order Adams -Moulton predictor -corrector scheme

for solving initial value problems.

Becau se an important application of this approximate technique

is to earthquake engineering, the modulating function 8(t) was chosen
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so as to resemble the "envelope" of a typical strong -motion ground

acceleration record. Specific forms for such envelope functions

have been suggest~d by a number of authors. (See, for instance

[18, 19J). For the present example, the form chosen was

(2.97)

where y is a free parameter which may be interpreted physically

as the reciprocal of the time required for the excitation to build

up to its maximum intensity. In this example, y was chosen so

that

For a linear system with a natural frequency of 2.0 Hz, this

simulates roughly the envelope behavior of the North-South

component of the Helena, Montana earthquake of October 31, 1935

[21 ].

As a check on the accuracy of the equivalent linearization

technique, a Monte-Carlo simulation study of equation (2.83) was

also performed. The white noise process w(t) was approximated

by a model similar to that employed in reference [20 J. In brief,

an ensemble of m sample functions of a white noise process were

generated over an interval [0, TJ. The interval was divided into

n equal subintervals of duration .6.t. For each sample function,

a sequence of n + 1 normally distributed numbers G l ,···, Gn +l

was generated. The members of this sequence were then assigned
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to ordinates at equally spaced intervals according to the rule

(2.98)

where to is a random variable with uniform density over the initial

subinterval [-6:. t, 0], and density zero elsewhere. It was assumed

that

(2. 99)

and that w varies linearly over each subinterval.

This procedure may be repeated m times to obtain an·

ens emble of m sample functions. If each ordinate G. is then
~ J

multiplied by the constant (ZIT 5
0

16:. t)2, the power spectral density

S(w) of the new proces s so generated is given by

S( w ) = So.;:.,6_-.;:.,8_c::..:o:..:s~(-=w:..:6:.=t:;.J.)--:-+-=,2 _c.;:.,0::..:s=--.l(.:;;:2...:;W.;;..:;6:.~t)

(w 6:.t)4
(2. 100)

For w approaching zero with constant 6:.t, S(w) approaches SO'

As mentioned in reference [20J, this expression for S(W) remains

within 5% of So for w6:.t < 0.57, and within 10% for w6:.t < 0.76.

Thus, if 6:.t is made sufficiently small, the simulated process may

be made to have a power spectral density which approximates that

of a white noise process to within a given error tolerance out to

any desired frequency.

where

In this study, 6:.t was set equal to TllOO,

(2.101)



-45-

That is, T is the natural undamped period of the oscillator (2.83)

when ( = O.

The ensemble size m was 200 for this simulation study. For

nonzero values of (, equation (2.83) was solved numerically using

the previously mentioned predictor -corrector scheme. The 200

time histories so obtained for each (value were then used to

compute the time dependent covariance matrix E[x.(t)yT(t)] .

In figures 2.1 through 2.5, the elements of the covariance

matrix are plotted as a function of dimensionless time tiT for

values of ( ranging from zero up to 1. O. The simulation results

for the off-diagonal element, E[xv ] = q12' were not plotted.

This is due to the fact that it is considerably more costly to

obtain accurate values for E [xv] by simulation than it is to obtain

comparably accurate values of E [x2] or E [v2 ]

The reason for this becomes apparent when one realizes that

E[ xv] is proportional to the derivative of E [x2 ]

it is recognized that

Specifically,

= 2E[xv] (2.102)

where v = dx/dt. Whereas an ensemble of m time histories may

produce acceptable accuracy in the E [x2 ] function, to make this

function smooth enough for its time derivative to be accurate

would require a much larger ensemble. In an attempt to determine

how large an ensemble would be needed to obtain convergence of the

E [xv] function, an ensemble of 2000 time histories was obtained
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for the linear case (E: = 0.0). Although the E[x2 J function so

produced was considerably smoother than that obtained with the

ensemble of 200, its derivative still fluctuated chaotically enough

to indicate that E [xv J had not yet converged. The cost of

increasing the ensemble size still another order of magnitude was

prohibitive, even for the linear case, so dependable simulation

results for E [xv J remain unavailable.

Examining figures 2.1 - 2.5, it is apparent that the correlation

between the simulation results and the approximate analytical

solutions is very good, even for the case where e: = 1. 0, which

represents a moderately large nonlinearity. It is observed that

the approximate solutions have the slight tendency to err on the

nonconservative side, but these errors are relatively small, and

would not be significant in most engineering applications.

As a final remark, it is of interest to compare the relative

amounts of computational effort required to obtain the simulation

results versus that for the analytical solution. For a single non­

zero value of (', the CPU time required to produce 200 simulated

time histories using an IBM 370/158 was approximately 40 minutes.

To obtain the corresponding covariance response by the approxi­

mate analysis, using the same computer, required about 20

seconds of CPU time. It is concluded that, for the type of system

in this example, the approximate analysis performed herein is

quite accurate and highly economical.
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CHAPTER III

The First Passage Problem for a Linear Oscillator

3. 1 Introduction

In the study of the response of dynamical systems to random

excitation, a classical problem is to determine the probability that

the value of some response variable remains below a given thresh-

old throughout a specified time interval. The probability distribu-

tion of the time required for the variable to first exceed the

threshold is referred to as the first passage probability distribution.

Knowledge of this distribution is of great practical importance in

many engineering problems.

For an arbitrarily specified stochastic process, there is no

generally applicable procedure for finding the first passage distri-

bution or density, so a more restrictive specification of the

problem must be made in order to proceed toward a solution. One

of the simplest configurations of interest in the study of random

vibrations is that of a linear oscillator subject to stationary

Gaussian white noise. The equation of motion is

(3. I)

where , is the fraction of critical damping, and Wo is the un­

damped natural frequency.

Let W(T) be the probability that the magnitude of x remains

less than the threshold level b throughout the interval [0, TJ,

where b is a positive constant. W is therefore defined as
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- Pr [Ix(t) I < bmax (3. 2)

where Pr[' ] denotes the probability that the bracketed expression

is true. Rather than attempt to solve directly for W(T), it is

common to seek a solution for p(T) where

P (T)
dW= - dT (3. 3)

Note that p(T) dT is then just the probability that first passage

occur s during the interval [T, T + d T ] . The quantity p(T) is

called the first crossing probability density. To date, an exact

analytical solution for p(T) has not been found.

When the first passage problem is formulated as in (3.2.),

b is referred to as a type-D barrier. Often, it is desired to

know the probability distribution of time to the first crossing of

b by the variable x rather than Ix I. In such situations, b is

called atype-B barrier. A third type of barrier arises when one

considers a threshold level for the envelope process a(t), where

"2.a 2.= x +
. 2.
x

W 2
o

(3.4)

In this case first passage occurs when a first exceeds b. The

level b is then known as a type-E barrier.
,,2 .

Note that a IS pro-

portional to the total energy of the linear system (3.1). For

future reference, when the variable of interest is below the

specified threshold level, it is said to be in the f'safe region".
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Likewise, when it is above this level it is said to be in the

"unsafe region". This terminology obviously stems from applica­

tions where first passage represents failure or possible failure.

Although these terms are not really appropriate for all applications,

when interpreted literally, their meaning in the context of first

passage problems seems to be rather universally understood, and

hence, they will be used herein.

It is clear that there could be more varieties of threshold

levels, however only the aforementioned three types will be

considered herein. Of these, most attention will be given to the

type-D barrier as it is of perhaps the greatest importance in

earthquake engineering applications.

The first passage probability density for all of the barrier

types will be dependent upon the initial conditions imposed upon

equation (3.1). However, it has been observed by Crandall and

others that the effects of the initial conditions on this density tend

to die out as T becomes large compared with the natural period

of the oscillator [22]. Specifically, it has been observed

experimentally that W(T) eventually approaches a decaying

exponential of the form

W(T) ,.... -aTe (3. 5)

regardless of the initial conditions [23J.

In many applications, the mean time to first passage is

substantially greater than the interval during which the effects of
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the initial conditions are important. Hence, (3.5) is often

employed as an approximation for W(T). The parameter a is

called the limiting decay state of the first crossing density.

Much of the effort in this chapter will be directed toward deter-

mining this decay rate. Since the value of a is unaffected by

the initial conditions on (3. 1), these conditions will often be left

unspecified.

3. 2 Problem Formulation in Terms of Transition Probability
Density

It is well known that the response of a linear oscillator

excited by white noise is a two -dimensional Markov process [24 J.

By this it is meant that, given only the state (x, x) at time t
l

,

the future probability distribution P
l
(x,x,t2 ), where t

2
> t

I
, will

be the same as if the entire time history Cx(t), x(t) ] over the

interval [0 ::;; t ::;; t l ] were given. Thus, for a Markov process,

once the present state is known, the states at all previous times

become irrelevant to the future probability distribution. This

property is quite important to the exact formulation of the first

passage problem.

Referring to the type-D barriers, where the safe region is

defined by [x; Ix I < b], consider the two -dimensional phas e

space associated with the response of equation (3.1). Letting

v == x, the ordered pair [x(t), v(t)] trace out trajectories in the

phase space as t varies. Suppose that, at time t I , a trajectory,

which has not yet left the safe region, is at (Xl' vI)' Let (x2,v
2

)

also be in the safe region and let q(x l ,v l !x2,v2 ; .6.t)dx dv be the
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infinitesimal probability of the trajectory reaching the differential

element of area dx· dv centered at (xZ' v Z) at time t l + .:6.t with­

out leaving the safe region, given that it was at (xl' v I) at time

t
l

, For obvious reasons, q is called the conditional transition

probability density. It is apparent that knowledge of q would

provide sufficient information to solve the first passage problem.

Specifically, if the oscillator had initial conditions (xO' v 0) at

time t =0, one could write

(3.6)

A direct result of the Markovian nature of the response

proces s [x(t), v(t) J is that the conditional transition probability

density satisfies the Smoluchowsky integral equation given by [24J

co b
= /' ./q(xO,vOli,~;t - .:6.t)q(x,vli,~;.:6.t)did~

_00 -b
(3. 7)

By standard techniques [24J, one may derive from (3.7) a Fokker-

Planck-Kolmogorov equation which governs q. This is given by

(3.8)

where So is the spectral density of W(t).

Equation (3.8) must be solved with the initial condition

(3.9)
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and with the boundary conditions

_CXl < v ~ 0

Vt :::: 0

(3. 10)

The boundary conditions (3.10) are required since it is obvious

that no traj ectory could cross +b with a negative velocity or -b

with a positive velocity without having been outside the safe region.

Figure 3.1 shows the phase plane with the safe region and the

boundary conditions (3.10) indicated.

Though expressions (3.8), (3.9), and (3.10) constitute a

precise formulation of the first passage problem, a solution to

these equations has not been found, to date. One of the difficul-

ties in effecting a solution becomes apparent when an attempt is

!nade to separate variables in (3.8). Using the (x, v, t) coordinates,

in which the boundary conditions are simple, only the time part of

q separates out.

obs ervation.

This does, however, provide for an interesting

Attempting a solution of the form

q = T(t) F(x, v)

one obtains from (3.8)

(3. 11)

T
T = -v:; + 2CWo(1 + v;)+ W02x; + 71"SoF;V = -A

(3. 12)
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Though little can be said about the "spatial" eigenfunctions F(x, v),

the form of the temporal eigenfunctions can be readily obtained.

From (3. 12), one may write

T .(t)
J

= e
-A..t

J (3.13)

where A.. > 0; j =I, 2, ... , since q may not grow unbounded as
J

t - 00. Hence, q may be written

00 -A..t
q = LF.(x,v)e J

j =1 J

Integrating (3. 14) over the safe domain yields

(3. 14)

where

W(t)
00 -A. t

= L: A. e j
j =1 J

(3.15)

co b
A. = ././ F.(x,v)dxdv

J _00 -b J

Let the eigenvalues be ordered such that

As t increases, one would expect the principal eigenvalue to

eventually dominate in (3.15). Thus, for large time,

(3.16)

(3.17)

(3. 18)
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Letting Al = 1 and Al = Ct, this becomes identical with expression

(3.5). In addition to the experimental observations, therefore,

there is some theoretical justification for using (3.5) as an

approximation for W(t).

As a final note on theoretically exact formulations of the

first passage problem, it is of some interest that if one considers

a first order linear system instead of the harmonic oscillator

(3.1), the problem may be solved exactly. A detailed discussion

of this problem is given in reference [25 J .

3.3 Discussion of Some Currently Available Approximate Solutions

In the absence of an exact analytical solution to the first

passage problem for the harmonic oscillator (3. 1), numerous

approximate solutions to the problem have been proposed. Of

these, the most accurate schemes generally involve solving

approximately for the conditional transition probability density

governing first passage.

An obvious approach of this sort, though not especially

elegant, would be to attempt numerical solution of (3.8) utilizing

modern numerical analysis techniques. An interesting variation

of this idea is based on a discretized version of the Smoluchowsky

integral equation (3. 7). This so-called "diffusion of probability"

method has been employed by Crandall, et al. [23J, to obtain

apprOXimately the limiting decay rate Ct for a number of damping

values over a range of barrier levels [23 J. For a sufficiently

fine discretization, this procedure generates values of Ct that agree
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well with those obtained by Monte-Carlo simulation.

For type-D thresholds, the best approximations for O!

currently available have been obtained by Mark [26 J . Mark

considers the case of the lightly damped oscillator ('« I). The

observation is made that, for small enough damping, the sample

functions of x(t} have an approximately sinusoidal appearance.

The magnitudes of the peaks of these quasi-sinusoidal sample

functions are treated as a one-dimensional, continuous -state,

discrete time Markov process. The approximation that is made

is that the peaks are separated by intervals of exactly Ll.t = rrlwO'

an assumption which will become increasingly valid as the damping

decreases. A conditional transition probability density function

p(aOlal ;Ll.t} for the magnitude of a peak aI' given the value of the

'"preceding peak a O' is then derived. This leads to an integral

equation, similar to the Smoluchowski equation, which is solved

numerically.

For type-E barriers, an approximate analytical solution,

which is accurate for small damping, was presented by Helstrom

in 1959 [27J. For a lightly damped oscillator, it may be shown

[28J that the envelope process a(t} defined by (3.4) satisfies

approximately the differential equation

(3.19)

where cr 2 is the variance of the stationary response of x in (3. I).
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The process described by equation (3.19) is a first order Markov

process, and hence, the transition probability density q(aoIa; t)

satisfies the Fokker -Planck-Kolrnogorov equation

(3.20)

... I" "where a(a
O

a; t) da is the probability that the envelope which starts

at a O initially reaches the differential element centered at a a time

t later without having left the safe region (a < b). The initial

condition

and the boundary condition

(3.21)

'1ft > 0 (3.22)

must be imposed on (3.20). Helstrom obtains the Laplace trans-

form of q in terms of confluent hypergeometric functions, and

presents a series solution for q itself.

It has been suggested [1] that, when the damping is small,

the limiting decay rate for a type-E barrier Q'E should serve as a

good approximation to the limiting rate for a type-D barrier Q'D.

The reasoning behind this is fairly straightforward. An E crossing

indicates that the total energy of the system is sufficient to exit

from the type-D safe region if there were no dissipation and no

external force on the oscillator. If the damping is sufficiently

small, the dissipation will be small and the oscillator response
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will be narrow-band. Thus, the probability of an E crossing

being inunediately followed by a D crossing will be near unity.

However, experiments have shown that for damping ratios as

low as 0.01, the approximation is not especially good [22J.

Further, the deviation of Q'D from Q'E increases with increasing

barrier level b. Roberts [29 J has recently presented some

analytical evidence to suggest that for barrier levels b in the

range [0 < b s; 50"} reasonable correlation between Q'D and Q'E

may be expected provided'S; 10 -3. Such a restriction on ,

will often prove too severe for practical applications. Hence,

this approximation will not be employed herein.

In order to apply either of the approximate analytical

solutions discussed thus far, it is necessary to perform a

substantial amount of numerical computation. The strictly

numerical schemes, such as Monte Carlo simulation and diffusion

of probability, require even more computational effort.

There does exist a number of approximate analytic solutions

for the limiting decay rate which, although not as accurate as

those already mentioned, are simpler and require much less effort

to implement. Of these, the simplest involves the assumption that

the barrier crossings are statistically independent events. This

will be approximately true when the barrier level b is large

c:ompared with (J" so that the average interval between successive

up-crossings of b becomes very long. Ii this assumption were

correct, the times at which such up-crossings occur would

constitute a Poisson process, and the intervals between
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up-crossings would be exponentially distributed.

For a stationary random process with probability density

PI (x, x), the average rate of up-crossing of the level x =b,

denoted by vb is given by [11 ]

co

vb = / xPI (b, x) dX
o

(3.23)

For the case of the stationary oscillator response, PI is given by

(3.24)

Performing the integration in (3.23) yields

(3.25 )

The rate of down-crossings of -b will be the same as vb' due

to the symmetry of PI (x, x). Thus, the average of the number of

crossings out of the safe region per unit time is just 2v
b

for

type-D barrier s. This gives the Poisson process average rate, so

that

(3.26 )

"Let T represent the length of the interval between two succes sive

crossings out of the safe region. Then, the probability distribu-

"tion of T is given by
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= W(T) (3.27)

For barrier levels of practical interest, this approximation is

often highly conservative, in the sense that it predicts average

first-passage times much shorter than actually occur. For very

high barrier levels, however, the approximation becomes quite

good, and in fact, (3.26) becomes asymptotic to the actual

limiting decay rate as b ... CX) [30 J . The Poisson average crossing

rate 2"b provides a convenient normalizing factor for other

estimates of the limiting decay rate. Hence, such estimates are

often presented in the non-dimensionalized form a/2"b'

For type-E barriers, an analogous estimate for aE may be

found by asswning that the up-crossings of b by the envelope

process ~ are independent. This leads to a different Poisson

average rate by the same procedure used to obtain "b for

D-crossings. In this case, PI is given by [22 J

where

.
'" '"PI (a, a) =

,.,
a exp (3.28)

.1- tan - 1 (2' j 1 _ ,z)}2
] i

'IT 1 _ 2,2
(3.29)

One finds that the average frequency n b of up-crossings of the

level b by i is given by
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= _l_~ exp [-i b~ ]
ili rr rr

(3.30)

Vanmarcke [31 ] has proposed a modification of this latter

scheme to obtain improved approximations to aE and Q'D from 1l1J.

The stationary envelope response a is treated as a two state,

continuous time, Markov process in which state 0 corresponds to

;. < b, and state 1 corresponds to a > b. The intervals TO and

T 1 spent in states 0 and 1, respectively, are assumed to be

independent random variables with exponential distributions. This

leads to the approximation

(3.31)

Vanmarcke [3d estimates the fraction of E-crossings that are

immediately followed by a D-crossing on the basis of a physical

argmnent. This generates the estimate

1 - exp (-i~)
Q'D = 2"'b (3.32)

_ exp (-ib~)1
rr

As mentioned earlier, the approximate methods which are

based on solving approximately for the transition probability density

of first passage are quite accurate for a lightly damped oscillator.

The accuracy of the other methods varies with damping and barrier
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level. Generally, as the barrier level increases, the se simpler

methods tend to give more accurate results. Figure 3.2 shows a

comparison of the accuracy typical of the methods discussed for

type-D barriers. Vanmarcke's method (C) is clearly more

accurate than the Poisson process approximation (A), and predicts

the correct qualitative behavior of Q' with variation m barrier

level. For this reason, Vanmarcke's method may be considered

the best simple approximation currently available.

3.4 A Semi-Empirical Approach

The object of this section is to develop an approximate

method for generating the limiting decay rate for a type-D barrier

that displays good accuracy for barrier levels in the range of

engineering interest, while, at the same tiIne, avoids excessive

computational effort. In what follows, it will be assumed that the

oscillator is lightly damped so that the response trajectories appear

quasi-sinusoidal over one natural period of the oscillator. It will

also be assumed that the oscillator has attained its stationary

response distribution.

It is widely agreed that the basic reason the Poisson process

approximation for aD breaks down for low barrier levels is that

the crossings out of the safe region are, in fact, not statistically

independent events. Since the envelope varies slowly, when a

peak occurs above the threshold level, the probability is higher

than usual that the next peak will also be above the threshold.

Thus, D-crossings tend to occur together in clumps. For
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From Reference [22].
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decreasing damping ratio or barrier level, the tendency toward

clumping will increase.

If allowance were made for the clumping tendency, one might

expect a more accurate estimate for Q'D to result. Before showing

how this may be done, it is necessary to define some terms.

The clump size cs will be defined as the number of successive

peaks that occur outside the safe region with no intervening peak

inside the safe region. Since it has been assumed that the

response is quasi-sinuoidal, successive D-crossings in a clump

will be separated by an interval of approximately 1/2 \)0' where

(3. 33)

Therefore, it is reasonable to define the clump duration T 1 as

(3. 34)

Following the end of a clump will be an interval in which the

oscillator response will remain in the safe region. Let the length

of this interval, between the end of one clump and the beginning

of the next, be denoted TO. The sum of the sequential intervals

TO and T 1 will be the length of the interval between the beginning

of one clump and the beginning of the next. During this time,

cs D-crossings will have occurred, so that the quantity

will represent the average number of D-crossings per unit time.
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If the response process is ergodic, this will be the same as 2v
b ,

since vb was defined as the expected number of up-crossings of

the +b level per unit time.

It will be assumed that

Hence,

E [cs] (3.35)

Taking expectations in (3. 34) yields

(3. 36)

(3.37)

Subtracting (3. 37) from (3.36) then gives

(3.38)

It is assumed that TO has an exponential distribution of the

form of (3. 5). Explicitly, this is written

e
- aT0

W(T
O

) =

From (3.39), it therefore follows that

Hence, (3.37), (3.38), and (3.40) imply

(3.39)

(3.40)
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(3.41)

The problem has thus been reduced to the determination of

where

Let the probability distribution of T 1 be denoted P T (t)
1

P
T

(t) :: Pr [T 1 > tJ
1

(3.42)

To determine the detailed structure of P
T

would be very difficult.
1

However, it is possible to surmise the qualitative behavior of

P
T

(t) (particularly for large t) from physical considerations.
1

Consider the conditional probability

(3.43 )

where P [A 1B J is the probability that A is true given that B is

true. It is apparent that P(n + lIn) represents the probability that

a clump, which already contains n D-crossings, will continue for

at least one more D -eros sing. The probability that a clump will

contain exactly n D-crossings is given by

(3.44)

Dividing both sides of (3.44) by P T (~) yields
l~\)O
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(3.45)

Therefore, one obtains

(3.46 )

The fact that clumps of D-crossings are more probable than

isolated D-crossings may be interpreted as meaning that Pr[cs =n]

is an increasing function of n for small enough n. Since P T l2~O)

is a monotone decreasing function of n, it is therefore certain,

from (3.46), that P(n+lIn) will vary with n for sufficiently near l.

As n becomes large one would expect P(n + lIn) to lose its

dependence on n. That is, as the time from the beginning of a

clump becomes large, the probability that the clump will continue

becomes less and less influenced by the time of the initial

D-crossing. Thus P(n + lIn) should approach a constant value as

n .... co. Let this limiting value be denoted by P~~ where

P~:~ - Lim P(n + lIn) = Lim
n .... CO n .... co

(3.47)

The probability density of T I' PT (t) is defined as
1
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PT (t) ­
1

dF
T

(t)
1

dt (3.48)

Suppose PT (t) were of the form (3 exp (-(3t). Then P
T

(t) would
1 1

be exp (-(3t), and P(n+lln) would be a constant for all n. However,

this would not provide for the dependence of F upon n for n near 1.

To allow for this dependence, let PT (t) be approximated by some
1

member of the class of densities fp(t) given by

f (t) = _1_ t P exp (-(3t)
P C N

p ~ 0, t ;;:: 0 (3.49)

where eN is the normalizing constant. For p > 0, f p increases

initially but eventually decays toward zero as t -> ~. This is the

same qualitative behavior that would be expected of PT (t).
1

The probability distribution F p (t) associated with fp (t) has

the form

1 [ p PtP -1= C (3 exp (- (3t) t + +
N -(3-

Hence, it may be easily shown that

+ ...J (3.50)

Lim exp (- -L)2\)0
(3.51)

Since P
T

(t) IS being approximated by Fp (t), equations (3.51) and
1
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and (3.47) imply that

P* = exp(2~~ ) (3. 52)

For all P > 0, f p and Fp will exhibit qualitative behavior consis­

tent with what is known of the behavior of PT and P T '
1 1

respectively. However, P has been left undetermined. It is

proposed to determine the optimum value of p empirically as

follows.

Let PT (t) be approximated by fp(t). Then E [T I ] may be
I

evaluated in the usual fashion as

[ ] p + 1
E T 1 = -(3- (3.53)

If P~:~ could be evaluated analytically, 13 would be determined by

equation (3.52). Equations (3.53) and (3.41) would then relate

QI to P. Available data on limiting decay rates could hence be

used to determine the most consistent value of p.

To implement this scheme, it is necessary to find P~~.

Toward this end, let q(xo1Xl ; t)dx l be the probability that a

trajectory, which starts at x o' reaches the differential element of

measure dx1 centered at Xl a time t later. Therefore q is the

transition probability density of x. Let Wd be defined as

W "" W J1 - ,2
d 0 (3054)

Then rr/wd will be one half of a damped natural oscillator "period".
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For t = rrlw
d

, q IS given by [12J

exp (3.55)

where

and

!J.' = - Xo exp (- rr , W 0 I Wd )

(3. 56)

(3. 57)

Suppose the oscillator is at a peak during a clump in which

k D-crossings have already occurred. Let Pk(r) be the conditional

probability density of such peaks, given that r ~ b. That is,

Pk(r) = 0 for r < b. Due to the narrow-bandedness of the response,

it will be assumed that any two successive peaks will be separated

by an interval of rrlw
d

, and that x changes sign during this interval.

With this assumption, Pk+l (r) may be expressed as

Pk+l (r)

00

= Ak/Pk(X)q(-xlr;rrlwd)dx
b

= 0

r~b

r<b

(3.58)

The first argument of q is - x rather than +x to account for the

assumed sign change of x, since r is always positive. The factor

A.k will be determined from the condition
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co

/ Pk+1(r) dr = 1
b

Imposing this condition leads to

(3.59)

1
Xk

co co

= / / Pk(x)q(-x!r; Tr/Wd)dxdr
b b

(3.60)

The quantity on the right of equation (3.60) will be recognized

as the probability that the clump will continue for at least one

more D-crossing given that k D-crossings have already occurred.

Hence l from equation (3.43),

1
Xi<

"= P(k +11 k) (3.61)

"As k .... co
1 p .... P~:~I and Pk(r) approaches a stationary density pco(r).

This stationary density must therefore satisfy

co

pco(r) = ~~:</ Pco(x) q{ -xl r; TrIWd)dx
b

(3.62)

The integral equation (3.62) does not seem to be amenable to

exact l closed-form analytical solution. However, the precise

form of Pco is not really of interest here. It is necessary only to

determine the eigenvalue ~~:<. There exist several methods for

determining approximate eigenvalues for integral equations of the

form of (3.62). These include Galerkin's method, the collocation

method l and Picard iteration. Of these methods I it was felt that

Picard iteration was the easiest to implement for this particular
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problem.

In Picard iteration, a function fO(r) is chosen to approximate

the eigenfunction pco(r). A series of functions f.(r) are then
1

generated using the regenerative scheme

co

= Ai / fi(x) q( -xl r; 7T/Wd ) dx
b

(3.63)

When the functions fi(r) and f i +1
(r) become IIsufficiently close" over

the range b S; r < co, the iteration is stopped. The eigenfunction is

then approximated by fi +1(r), and the principal eigenvalue is

approximated by Ai' 1£ the initial gues s f O is a good approximation

to Pco' this method should converge very rapidly.

Consider the oscillator in stationary response with probability

density p wheres

p (x) =s (3.64)

Let it be given that at time t
I

, x(t
I

) ~ b, then the probability

density of x becomes p where
c

p (x)
p (x) s x ~ b=c co

/ P (u)du
b s (3.65)

p (x) = 0 x <bc

It is proposed that p (x) provides a reasonable approximation toc
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Pcx:>(x). Therefore, let fO(x) ::: pc(x). After some tedious algebra,

£1 (x) may be evaluated from equation (3.62). This yields

where

exp [-~:i x
Z

] . hrfc [{b -c 3X)JcZ/Z]
:::

j ";z ~~' erfc [~ ~ ]

(3.66 )

c
1

:: exp (-'lTCW Olw 1)

1
2 4- c
l + c

l
c

2
::

(f2( 1 2- c
l

)

(3.67)

2
c

l
c

3
:::

2 4
1 - c l + c

l

1
c

4
:::

2 4
1 - c

l + c
1

To continue the iteration procedure, numerical integration

methods would be required to evaluate f. (x) for i ;:=: 2. This would
1.

be a very time-consuming procedure, which would only be

warranted if the accuracy of the first order approximation were

found to be inadequate.

Thus, for the present investigation, P>:< will be approximated

by P where
c

P :::
C

1

11.0
(3.68)
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Equation (3.59) requires that

Hence, one obtains

(3.69)

co

/'
b

P
c

(3. 70)

f
l
(x)

Due to the complicated form of --, an exact evaluation of
r..O

P cannot be performed analytically. Consequently, it must be
c

evaluated either numerically or by some approximate analytical

method. One such method is suggested by the shape of the curve

fl(r)/r..O. Let the mean value of peak magnitude associated with

[l(1"l/I-O be denoted E/rl In the neighborhood of EI[rJ, fl(r)/r.. O

strongly resembles a Gaussian density. Therefore, it will be

undertaken to approximate (3.66) with the Gaussian density which

has the same mean value and standard deviation as £1 (r)/r..O. Let

this Gaussian density be denoted £G(r), and let PeG be given by

(3.71)

To obtain an indication of how closely P CG approximates PC'

these two quantities were evaluated for C ranging from 0.001 to

0.08. These comparisons are shown in figure 3.3. As can be



o . .....
.

I 0
0 o I

l!l 5

~
=

0.
00

1

4l!
l

I!J 3 bi
er

2l!
l

[!J
(!

)
..

.
•

)(
PC PC

G
o 01

I
I

I
I

1

l.
J)

Q
...

•
o

F
ig

.
3

.3
C

o
m

p
a
ri

so
n

o
f

P
c

a
n

d
P C

G
a
t

V
a
ri

o
u

s
D

a
m

p
in

g
R

a
ti

o
s

a
n

d
B

a
rr

ie
r

L
e
v

e
ls

.



-81-

seen from the figure, PCG is extremely close to Pc except for the case

where' = 0.001. Even then, the approximation seems to be quite good.

It should be mentioned that when P~:~ is very close to zero or

very close to 1, the approximations used for p* (i. e., P CG or PC)

are not really adequate. The reason for this is that, near these

two extremes, the limiting decay rate ex is very sensitive to small

changes in Pl<. This can be seen by solving for ex in terms of P>:~.

From equations (3.52), (3.53), and (3.41), one obtains

-1

"'b )
"'0

(3.72)

As p* approaches zero, the derivative d~>:~ [.en (P~l<) ] = ~* becomes

very large, and a small inaccuracy in the evaluation of P~:~ can

drastically affect the resulting value of ex. Further, as P>l< -+ 1,

-.en Pl< -+ 1 - P*, so that the difference 1 - P>:~ becomes important.

A small percentage change in P~:~ will then create a large percent-

age change in .en(p>:~) so, once again ex becomes sensitive to small

inaccuracies in P>:~.

For small damping (' ::;; 1), the situation where p:~ -+ 0 will

only occur when the barrier level is large. For such levels,

the value for ex given by equation (3. 72) tends to err on the high

side. Therefore, when (3.72) gives a value for 2~ which is
b

greater than unity, it is disregarded, and ex is set equal to 2'J
b

since2"'b is the limit ex approaches for large b.
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The situation where p:~ ... 1 will occur when the damping is

extremely small (C < .005), since the correlation between the

values of two consecutive peaks is then very high.

From the available data [23J, it was determined that letting

p = 1 (3.73)

produces the most consistent results for damping ratios in the

range 0.01 :::;; C :::;; 0.10, and barrier levels in the range 1 :::;; b :::;; 5.
er

For P significantly less than 1, Q' tends to be overly conservative

(i. e., too large). Conversely, if p is significantly larger than unity,

the corresponding values of Q' tend to underestimate the first crossing

rate.

In figures 3.4 and 3.5, the variation of 2~b with barrier level

bier is displayed for two values of damping. For comparison,

simulation results and the corresponding values from Vanmarcke1s

two -state Markov process approximation are also presented. The

present analysis is seen to correspond well with the simulation

results.

3.5 Application of Approximate Solution to Earthquake Engineering

3.5.1 Extension of Results to Nonstationary Response

The random processes involved in earthquake engineering

are, in general, nonstationary. Therefore, the usefulness of an

approximate method for generating first passage probabilities will

be greatly enhanced if the method may be extended to such

processes. Corotis [31] has extended, by analogy, Vanmarcke1s
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approximate solution to include nonstationary response processes,

with favorable results. This approach will also be taken herein.

Let x represent the response of a linear oscillator, initially

at rest, subject to deterministically modulated stationary Gaussian

white noise. The response is then governed by

•• ,.. 2
x + 2.., WOx + WOx = e (t)w(t)

(3.74)

x(O) = 0 x(O) = 0

where 9(t) is the modulating function. Let So be the spectral

density of w(t). The Fourier transform of the autocorrelation of

the excitation will then be e2
(t)So' This may be thought of as a

time dependent intensity or " spectral density".

Let the nonstationary probability density of the respons e be

denoted by p. This density will have the general form
r

where

and

p (x, x, t) =
r

1 r 1. T -1 ],.-- exp L-2~ Q (t)~

2lTJ Det[Q(t) ]

(3.75)

(3. 76)

(3. 77)

Suppose p varies slowly enough in time so that, over anr
2lTinterval of a single oscillator period t, t + , Pr may be
Wd
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considered as approximately stationary. Then it would be

reasonable to assume that the first D-crossings during this interval

will occur with approximately the same frequency as if p were
r

truly stationary. If this is assumed, an expression for the

instantaneous first crossing rate a(t) may be derived in a fashion

entirely analogous to the derivation of the limiting decay rate given

by equation (3.72). For the nonstationary case, this expression

takes the form

= .:.L en
2

(3. 78)

Except for the time dependence of a, \)b' and P*, this expression

is identical to (3.72).

As in the stationary case, \)b is given by equation (3.23).

However, the probability density in the integrand must be replaced

by Pr(x,x). Thus \)b(t) may be expressed as

(X)

\)b(t) = /' xp (b,x,t) dX
Or·

Let

Substituting from (3.75) into (3.79) then yields

(3.79)

(3.80)

= JDet (Q)
1Tql1
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It should be mentioned that, as in the case of stationary

response, one method for obtaining approximate first crossing

probabilities is to assume that the D-crossings occur according to

a Poisson process. In the case of nonstationary response,

however, the Poisson process is inhomogeneous, with time-

dependent rate 2V
b (t).

The procedure to obtain P*(t) is similar to that followed in

section 3.4 to determine the corresponding quantity P~:~. However,

since the excitation intensity is now e2 (t)SO' expression (3.55) for

the transition probability density q must be replaced by

(3.82)

I I
where (J and fJ. are given in equations (3.56) and (3.57), respec-

tively.

With \)b(t) and P~:~(t) thus specified, equation (3.78) may be

used to obtain approximate first passage probabilities for non-

stationary response. The fraction of trajectories which realize a

first D-crossing during the interval [t, t + .6.tJ is a(t).6.t + ~ (.6.t2 ).

:By definition, this is just the probability of first crossing during

this infinitesimal interval. Recalling definition (3.2) of W(t), the

first passage probability, one may write

a (t).6.t = W(t) - W(t + .6.t) + ~ (.6.t)2

Regarding (3.80) yields

(3.83)
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W(t + ~t} - W(t} = _a(t) + lS(~t)
~t

Taking limits as ~t -> 0 then gives

dW
dt = -a(t}

It is required that

W(O) = 1

Hence, it is obvious that

W(t) = exp [ {a(s) ds ]

(3. 84)

(3.85)

(3.86)

(3.87)

From (3. 3) then, the first passage probability density p(t) 1S

p(t) = a(t) exp [ {"(B)dSJ (3. 88)

3.5.2. Numerical Example - Calculation of First Passage
Probability Density

To obtain an indication of the accuracy of this extension,

an example was performed in which

6{t} = 1 '1ft ~ 0 (3.89)

The three independent elements of the covariance matrix Q may

be attained by solving equation (2.66). In this case, they are

given by
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E[x2 (t) ]
7TSO

1 - exp ( - 2'W 0t)
1 CwO .

= + W- sm2wdt
2' W 3 1 _ ,2

0 Cl

,2 2W o
2w

d
t

W 2
cos

d
(3. 90)

E [x(t) x(t) ]
7TSO . 2= 2 exp (- 2Cw ot) Sln wt (3.91)
wd

Cl

E [x2 (t) ]
7T So

1 - exp (2 'wot) 1 CWO
sin 2 wdt= 2CWO

- --
I _ C2 Wd

(3.92)

Figures 3.6 through 3.8 show the first passage probability

density p(t) as a fW1ction of tiT where T is the W1damped natural

oscillator period. The integration in equation (3.88) was

performed nurnerically, using Simpson I s rule. For comparison,

simulatio n results from reference [23] are also shown. Also

displayed is the approximation to first passage density resulting

from the Poisson process assumption. The accuracy of the

present approximation is clearly far superior to the latter. It is

interesting to note that the Poisson process assurnption produces

luore accurate results for the more heavily damped case. This

is to be expected since the correlation between D-crossings drops

c)£f as the damping increases.
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3.5.3 Applications Involving Response Spectrum Data

The practice of specifying the effects of seismic excitation by

means of lldesign ll response spectra has become increasingly common

in recent years. When using response spectrum data for design

purposes, a major difficulty arises if the system subject to the

seismic excitation is nonlinear, since a response spectrum generally

gives information about the maximum response of linear systems

only. In such cases, it is desirable to Ilinvert ll the response

spectrum, that is, to find a class of earthquake-like excitation time

histories which produce the given design spectrum over some given

range of frequencies [ wP.' Wu ] . These time histories may then be

taken as possible inputs to the nonlinear system.

To approach this problem analytically, it is necessary to have

an appropriate model for earthquake excitations. A relatively

realistic model of this sort consists of a zero -mean stationary

Gaus sian random proces s multiplied by a deterministic envelope

function. The appropriate spectral density S(w) of the stationary

process is usually inferred from site conditions and possibly rec­

ords of previous ground acceleration time histories [10, 19,32 -35 J.

This model will serve to indicate the principle of the method to be

described. However, it should be mentioned that this method could

be adapted to accommodate more sophisticated models such as those

described in references [9] and [36 J.

A linear 0 scillator subj ect to this artificial earthquake excita­

Hon will satisfy the equation



-94-

(3.93)

where 8(t) is the envelope function and g(t) is a stationary Gaussian

random process with spectral density function S(w). It will be

assumed that the oscillator starts from rest. Let '[" be the earth­

quake duration. Hence, for t < 0 and t > '[", 8(t) = o. Let

Ixm(WO' ')\ represent the maximum displacement magnitude of the

oscillator due to this excitation. Then, Ixm(w O' ')1 must occur

during the interval [0, 'f] where

(3.94)

For a single sample function of the excitation, Ixm (wO' C) I will

be a deterministic function of , and WOo For a constant value of

damping " the associated displacement response spectrum SD,(WO)

will then be precisely defined as

(3.95)

However, the excitation is not just a single function of time, but

rather an entire ensemble of possible time functions. Therefore,

Ixm «(.u O' C) I is actually a random variable, so that a probabilistic

interpretation of response spectrum information is needed.

In accordance with the probabilistic nature of Ixm (W 0' ') I, it

will be required that a reliability level P s be specified in addition

to the damping ratio and natural frequency.
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Then, the response spectrum SD,(wO' Ps) will be defined as

the displacement magnitudes such that

With this interpretation of response spectra, and with an

earthquake model specified, it is possible to state more precisely

the problem at hand. Given a response spectrum SD, (w 0' Ps),

where , and Ps are specified constants, it is desired to find an

envelope function 9(t) and a spectral density function S(w) such that

the response of the oscillator (3.93) satisfies equation (3.96).

To obtain realistic artificial earthquake excitation, e(t) should

resemble actual earthquake envelopes. Let it also be required

that e(t) be smoothly varying during the interval of excitation

[0, T'J. Other than these restrictions, the choice of e(t) may be

made arbitrarily. Suggestions for actual envelope shapes may be

found in references [19, 32 -35 ] . Once an appropriate choice for

9(t) has been made, the problem is reduced to finding the

corresponding spectral density function.

To determine S(w), let equation (3.93) be rewritten in the

vector form

~ := A~ + e(t) g(tL~2

(3.97)
~(O) := Q

where

(3.98)
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A = L~ (3.99)

(3. 100)

Since ?£ is Gaussian with mean 0, the covariance matrix Q will

determine the probability density of the response. Let !,(w, t) be

the solution to the equation

r. = AF + £2 9(t) exp (il.0t)

(3.101)

F(O) = .£

Then, as shown in section (2.31), Q(t) may be expressed as

co

Q(t) = / !(w, t) F>l<T(w, t) S(W)dw
_co

(3. 102)

>l<T
When '« 1, all the components of the matrix !(w, t) ~ (w, t)

are sharply peaked at the resonant frequency w = wOo In this case,

it may be shown that [12 ]

co

Q(t) f';-j S(w
O

) / F(w, t) F>:<T(w, t) d w
_co - -

provided S (w) has no sharp peaks and is a smoothly varying

(3. 103)

function of W in the neighborhood of W = w
O

'

The approximation to Q(t) given in (3. 103) is the exact ex-

pression for the covariance matrix that would result if get), in
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equation (3.93), represented white noise with constant spectral

density So = S(wO)' Hence, for each value of wO' a good approxima­

tion to the stochastic response of (3.93) may be obtained by replacing

g(t) with white noise of spectral density s(wo) provided , is suffi­

ciently small. Since response spectra are usually constructed only

for lightly damped systems, this will not be a severe practical

restriction.

Since the methods for approximating first passage probabilities

described in section (3.5. 1) are designed for a lightly damped

oscillator excited by modulated Gaussian white noise, they may now

be applied to this problem. The appropriate expression for W(t) is

given in equation (3.87), where W(t) is the probability that Ix I will

not exceed b during the interval [0, t J. In this application, the

interval during which the maximum response must occur is [0, T] .

It has been specified, in equation (3.96), that the probability that

I x I will not exceed SD,(WO' Ps) is equal to Ps. Hence, for each

value of Wo in the range [w 1.' wuJ, the threshold level b will be set

equal to SD,(WO' Ps), and the condition

W(T) = Ps (3. 104)

will be imposed.

For a given envelope function e(t), increasing the spectral

density So will cause W(T) to decrease, and vice versa. Hence,

for a given value of W O' it is a simple matter to vary the value of

So until equation (3.104) is satisfied to within some tolerance.

When the agreement between W(T) and Ps is sufficiently close,
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So is taken as the value of S(w
O

)' Repeating this procedure for

many different values of Wo in the range [Wi!' wuJ will thus

generate, pointwise, the desired spectral density of g(t) appropriate

to the given response spectrum and reliability value. Recall that

an assumption essential to implementing the above procedure was

that S(W) varies smoothly with (v, and has no sharp peaks. Once

S(w) has been found, therefore, this assumption must be checked.

It is noted that, once an appropriate envelope function 8(t) is

chosen and the corresponding spectral density S(w) is determined,

the method described in Chapter II may be applied to determine

analytically the approximate response of a nonlinear system to

such artificial earthquake excitation. By this procedure, therefore,

a response spectrum may actually be used to estimate nonlinear

respons e statistics.

3.5.4 Numerical Example - Response Spectrum Prediction

The practicality of the procedure described thus far will

depend heavily upon how accurately the approximate method of

section (3.5.1) can predict W('T). To check this accuracy, a

simulation study of equation (3.93) was performed. The excitation

used in this study was the same as that used in the simulation

study of section (2. 5). The equation of motion simuJa ted was thus

o ::;; t ::;; 'f'

(3.105)

where C is a dimensionless constant, and ~(t) is the nearly-white
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noise process described in section (2.5) . The spectral density S(w)

...
of w(t) is approximately equal to a constant So over the range of

values of W o studied. The earthquake duration ,.' was taken to be

4/Y. At t = 4/Y, the envelope function C'Vt exp (""'Yt) has decayed

to approximately 20% of its maximum value. Typical values of ,.'

may be in the range of 10 to 30 seconds, depending on the severity

of the earthquake.

Since (3.105) is a linear equation and the excitation consists of

many piecewise linear segments, the theoretically exact solution may

be found for each member of the ensemble of excitation time

histories.

Nine values of Wo and three values of damping were considered.

For each combination of , and wO' 250 time histories were simulated,

a.nd the maximum value of Ixl was recorded for each time history.

These maxima were then arranged in the increasing order

For any level b such that Ixm 11 < b < Ix m '250' an integer n may be

found such that

Ix I ::;; b < Ix Im n m n+l

Then, corresponding to the level b, Ps was taken to be

(3. 106)

Ps = --1l...
250 (3. 107)



-100-

By this procedure, response spectra corresponding to Fs

values of 0.5, 0.7, and 0.9 were com.puted for C = 0.02. Also

computed were the spectra corresponding to Fs = 0.5 for C = 0.04

and C = 0.001.

The analytical approximate technique described in this section

was used to generate the corresponding theoretical response spectra.

These results are compared in figures 3.9 and 3. 10. The

response spectra are plotted as a dimensionless pseudovelocity

PSV

where PSV is the usual pseudovelocity given by

(3. 108)

The horizontal axis in these figures is the dimensionless frequency

'f/F where

(3. 109)

Figure 3.9 shows that the approxim.ate analytical spectra

corresponding to C = 0.02 are in good agreement with the simula-

tion results over the range

for all the values of Fs considered. In all cases, however, there

is a noticeable discrepancy at 'fl F = 5, the lowest frequency
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considered in these response spectra. This is almost surely

attributable to the fact that, at this frequency, the earthquake

envelope exhibits relatively large changes over one natural

oscillator period. Hence, the response probability density also

changes rapidly over a cycle, which violates one of the assumptions

of section (3.5. 1).

Figure 3. 10 shows the variation of response spectrum level

with <: for Ps = 0.5. It is seen that the theoretical and simulation

results agree well for <: = 0.04 and <: = 0.02, when 'rtF;;:: 10. For

, = 0.001, however, it is apparent that the approximate analytical

curve is relatively undependable. It is roughly 30% below the

simulation results at the low-frequency end of the spectrum, and

;a.bout the same percentage above at the high-frequency end. As

discussed in section (3.4), appreciable error of this sort is always

to be expected for exceedingly small damping ratios due to the

Jresulting sensitivity of Q' to small inaccuracies in the evaluation of

3.6 First Passage Probabilities for a Nonlinear Oscillator

Consider a nonlinear oscillator subject to modulated Gaussian

white noise, with equation of motion

(3. 1I0)

If this system is lightly damped and if the nonlinearity parameter

E" is sufficiently small, the response trajectories of (3.110) will

often be quasi-sinusoidal in appearance provided 9(t) does not vary
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too rapidly in time. When this is the case, the methods of

Chapter II may be used to create a relatively simple extension of

the procedure described in section (3.5.1) to determine approximate

first passage probabilities for the system (3. 110).

The equivalent linear system for equation (3. 110) may be

written

where

and

x = A [ S (t) ] ~ + ! (t) wet)

~(t) - I0 I
- e(t)

(3.111)

(3. 112)

(3. 113)

A [set) ] =

(3.114)

Hence, the covariance matrix Q{t) may be obtained by solving the

corresponding matrix differential equation (2.66). The nonstationary

probability density of the response p (x, X, t) will then be given by
r

equation (3.75), and \/b' the rate of up-crossings of the level b,

will be given by equation (3.81).

Observing the form of equation (3.114), it is natural to define

the instantaneous equivalent r'natural ,r frequency wand dampinge

ratio C bye
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W 2 2
~E[~J- - a Z1 = Wo +e

2C W - - a Z2 = ZCWo + f: E[~Je e

Equations (3. 12) imply

~

W = (w~ + (E[~]re

and

C = w~ ~wo + IE[~])e

(3.115)

(3.116)

(3.117)

Following section (3.5.1), suppose that p varies slowly in
r

time so that it is nearly stationary over an interval of a single

oscillator "period" [t, t + ~: J. Then, over such an interval,

Col.} and' will be nearly constant, and the system (3. 110) will
e e

behave approximately like an autonomous linear oscillator with

natural frequency We and damping ratio 'e'

From this, a procedure analogous to that of section (3.5.1)

follows directly. In the derivation of P~:~(t), the transition

probability density q(xO Ix; rrlW
d

) will still be given by equation (3.82),

I I
except that (f and IJ. must now be redefined as

(3.118)

(3.119)
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wlie;re Wd is given by

(3. 120)

P*(t) may hence be derived by the procedure of section (3.4).

Thus, equation (3.78) generates a(t) and the first passage

probability may be found using equation (3.87).

To check the accuracy of this method, an example was

performed with the cubic hardening system used in the simulation

study of section (2.5). The equation of motion for this system is

•• ,.. 2 3
x + 2 ...WOx + Wo (x + f'x) =

In this case

t exp (- yt) w(t) (3.121)

and

As in section (3. 5),Y was chosen so that

1
= 10 iT

and the duration T' of the excitation was

The damping ratio , was 2%.

(3. 122)

(3. 123)
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The same simulated time histories that were generated for

the example of section (2.5) were used in this study to obtain the

probability distributions of the maximum displacement Ix I corre­m

s ponding to each value of (.

each E: value.

The ensemble size M was 200 for

In analogy to the response spectrum notation, let SD( f:, Ps)

represent the displacement magnitude which is exceeded by (1 - Ps)M

of the time histories in the ensemble having nonlinearity parameter

( . The value of SD( Ii;, Ps) was obtained from the simulation

results for E: values ranging from 0 to 1. 0, and Ps values of 0.5,

O. 7, and O. 9 . The corresponding values of SD were also computed

by means of the approximate analytical method of this section.

It is noted that there are actually two independent SOurces of

possible error inherent in this analytical technique. The approxima­

tions made to generate first passage probabilities of a linear

oscillator provide one source, while the substitution of an equivalent

linear system for the original nonlinear oscillator introduces another.

The accuracy of the approximate first passage probabilities for the

linear case has already been investigated in section (3.5.4). Hence,

it would be desirable to uncouple the errors observed in section

(3.5.4) from the new errors introduced by equivalent linearization.

'"To do this, let .6.( E: ,Ps) be defined as

'".6.(E:,Ps)
"= SD( E:, Ps) - SD(O, Ps)

SD(O,Ps) (3. 124)
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Thus, 6 represents the relative change observed in SD as E: varies

from zero to €. Note that

6(0, Ps} - ° (3.125)

Thus, a comparison of the value of 6 obtained by simulation with

that resulting from the approximate analysis should give a better

indication of the magnitude of the errors attributable to the

equivalent linearization approximation than would a direct comparison

of actual SD values.

Figure 3.11 shows 6(~, Ps} plotted as a function of E: for the

three values of Fs. The approximate analytical results show the

correct qualitative behavior and are in reasonably good agreement

with the values obtained by simulation. It is noted, however, that

the discrepancies appear to grow as Ps increases. This tendency

is probably attributable to the detailed shape of the peaks of the

nonlinear oscillator response. The response resembles a sine

wave with slowly varying amplitude and phase, except that the

largest amplitude peaks are somewhat "flattened" as a result of

the stiffening restoring force. This flattening tends to reduce the

value of the absolute maximmn excursion more severely than it

does the mean square displacement. The equivalent linearization

method replaces the actual oscillator with a system that exhibits

more nearly sinusoidal trajectories, but which attains very nearly

the same mean squar e displacement as the original oscillator. As

a result, when one attempts to determine a displacement level

corresponding to a value of Ps near unity, that is, a level which



-109 -

is exceeded infrequently, the approximate analytical technique will

generally predict a slightly higher level than is actually observed.
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CHAPTER IV

Summary and Conclusions

Considered in Chapter I is the problem of estimating the seismic

response of a nonlinear dynamical system when the description of the

input excitation is provided in the form of response spectra. A solution

approach is proposed which breaks this problem down into two distinct

parts:

(l) Find a random process that is amenable to analytical

description which has reasonably earthquake -like

sample functions, and which generates response

spectra consistent with the data provided.

(2) Develop an analytical method to determine the

stochastic response of the nonlinear system when

it is excited by such a random process.

It is suggested that earthquake excitations may reasonably be

modeled by a stationary Gaussian random process, with appropriate

spectral density, multiplied by a judiciously chosen envelope function.

With this model, problem (I) reduces to finding an envelope fW1ction

and spectral density which generate ·a process that meets the

requirements stated in (l). It is recognized that this requires a

solution to the first passage problem for the nonstationary response

of a linear oscillator.

Problem (2) becomes that of determining the nonstationary

response of a nonlinear system excited by deterministically
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modulated stationary Gaussian noise of arbitrarily specified spectral

density. This problem is considered in Chapter II. To obtain an

approximate solution, a method is proposed which is based on the

concept of equivalent linearization. The equivalent linear system

is treated conceptually as a time-varying system, though it is

pointed out that the equivalent parameters are explicitly solution­

dependent rather than time-dependent. This leads to a set of

nonlinear integral-differential equations for the covariance matrix

of the response. In the special case of white noise excitation,

the problem reduces to the solution of a set of nonlinear

differential equations.

In the last section of Chapter II, the method is illustrated by

means of a specific example. The response of a Duffing oscillator

to modulated white noise is considered. The method is used to

compute the time history of the covariance matrix elements. The

diagonal elements exhibit excellent agreement with the corresponding

results of a Monte-Carlo simulation study. Although there are

currently no analytical methods for generating useful errOr bounds

for this approximate method, the evidence accumulated to date

indicates that accuracy acceptable to engineering applications may

generally be expected.

fu. Chapter III, the first passage problem for a linear oscillator

excited by white noise is considered. The special case of the

stationary response process is first considered. An approximate

expression is developed for the limiting decay of the first passage

probability density in terms of the expected "clump duration".
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The probability distribution of clump durations is considered, and

its qualitative behavior is surmised from physical considerations.

It is undertaken to approximate this distribution with some member

of a class of distributions which exhibit the proper qualitative

behavior. The expected clump duration is then found to depend

upon two undetermined quantities, one of which is considered a

c\onstant, to be evaluated empirically. The only other unknown is

a conditional probability which is shown to be related to the eigen­

value of an integral equation having a non-symmetric kernel.

Picard iteration is employed to determine the eigenvalue approx­

inlately.

This method is then extended to include the nonstationary

response of a linear oscillator subject to modulated stationary

Gaussian white noise. It is pointed out that, if the excitation is

not white, the method may still be applied provided the spectral

density of the excitation is sufficiently well-behaved.

The simulation studies described in Chapter III indicate that

the method for generating limiting decay rates is relatively

accurate provided the oscillator damping is not excessively small

or the barrier level extremely high. The extension to nonstationary

response demands the additional restriction that the response

probability density may not change too extensively over a natural

period of the oscillator. However, when the response density is

slowly varying, and the damping ratio is a few percent, this

analysis appears to predict first passage probabilities with

accuracy sufficient for most applications.
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The final section of Chapter III indicates how the equivalent

linearization technique of Chapter II may be used to extend the

approximate solution of the first passage problem to the response

of a weakly nonlinear oscillator. A numerical example is per­

formed with a hardening DU££ing oscillator. The distribution of the

maximum oscillator excursion is obtained both by the approximate

analysis and from simulation results. The distributions obtained

by these two methods are in good agreement over the range of

exceedence probability investigated. It is noted, however, that the

approximate analysis tends to be more in error as the exceedence

probability becomes small. This tendency is interpreted as the

effect of the deviation of the large-amplitude nonlinear oscillator

peaks from sinusoidal appearance.

The principal motivation for using the approximate analytical

methods described in this thesis is the savings in computational

effort afforded. Indeed, the computer time required to obtain

dependable results from a simulation study was generally several

orders of magnitude greater than that which was required to obtain

the corresponding approximate analytical result. Because of the

generally favorable indications of these simulation studies, it is

concluded that the approximate techniques developed in Chapters

II and III constitute substantial progress toward a solution of the

original problem posed in Chapter 1.



-115 -

REFERENCES

1. Lin, Y. K., Probabilistic Theory of Structural Dynamics,
New York: McGraw-Hill, 1967.

2. Caughey, T. K., IINonlinear Theory of Random Vibrations, II
Advances in Applied Mechanics, v.11 (1971).

3. Iwan, W. D., and Yang, 1. M., "Application of Statistical Linear­
ization Techniques to Nonlinear Multidegree-of-Freedom Systems,'1
J. App!. Mech., v. 39 (1972) pp. 545-550.

4. Crandall, S. H., IIPerturbation Techniques for Random Vibrations
of Nonlinear Systems, II J. Acoust. Soc. Amer., v. 35, no. 11
(1963) pp. 1700-1705.

5. Iwan, W. D., and Spanos, P. -T., "Response Envelope Statistics
for Nonlinear Oscillators With Random Excitation, 11

J. Appl. Mech., v. 45 (1978) pp. 170-174.

6. Kaul, M. K., and Penzien, J., "Stochastic Seismic Analysis of
Yielding Offshore Towers, II J. Engrg. Mech. Div., v. 100,
no. EM5, Trans. ASCE (1974) pp. 1025-1038.

7. Iwan, W. D., IIA Generalization of the Concept of Equivalent
Linearization, II IntI. J. Non-Linear Mech., v. 8 (1973)
pp. 279 -287.

8. Spanos, P. -T. D., IILinearization Techniques for Nonlinear
Dynamical Systems, 11 Ph. D. Thesis, California Institute of
Technology, 1977.

9. Saragoni, G. R., and Hart, G. C., 'ISimulation of Artificial
Earthquakes, II Earthquake Engrg. and Struct. Dyn., v. 2 (1974)
pp. 249-267.

10. Singh, M. P., and Chu, S. L., IIStochastic Considerations in
Seismic Analysis of Structures, " Earthquake Engrg. and Struct.
~, v. 4 (1976) pp. 295 -307.

11. Rice, S. 0., IlMathematical Analysis of Random Noise, " in
Selected Papers on Noise and Stochastic Processes, Nelson Wax,
ed., New York: Dover Publications, Inc., 1954.

12. Caughey, T. K., and Stumpf, H. J., 'ITransient Response of a
Dynamic System Under Random Excitation, II J. Appl. Mech.,
v. 28 (1 96 1) pp. 56 3 - 566 .



-116 -

13. Atalik, S. T., and Utku, S., "Stochastic Linearization of
Multidegree-of-Freedom Nonlinear Systems, II Earthquake
Engrg. and Struct. Dyn., v. 4 (1976) pp. 411-420.

14. Fatula, E. I., and Iwan, W. D., liOn the Validity of Equation
Difference Minimization Techniques, II Intl. J. Nonlinear Mech.,
v. 7 (1972) pp. 1 - 17.

15. Prelewicz, D. A., lIRange of Validity of the Method of Averaging,lI
Ph. D. Thesis, California Institute of Technology, 1970.

16. Feller, W., An Introduction to Probability Theory and its
Applications, New York: John Wiley & Sons, Inc., 1971,
Chapter III.

17. Coddington, E. A., and Levinson, N., Theory of Ordinary
Differential Equations, New York: McGraw-Hill, 1955,
Chapter 1.

18. Reference 9, p. 252.

19. Iyengar, R. N., and Iyengar, K. T., llA Nonstationary Random
Process Model for Earthquake Accelerations, II Bull. Seism.
Soc. Amer., v. 59 (1969) pp. 1163-1188.

20. Clough, W. C., and Penzien, J., Dynamics of Structures,
New York: McGraw-Hill, 1975, Chapter 28.

21. California Institute of Technology Earthquake Engineering
Report no. 70-21, IIStrong Motion Earthquake Accelerograms. II

v. I, Part B, p. 185.

22. Crandall, S. H., "First Crossing Probabilities of the Linear
Oscillator, II J. Sound Vib., v. 12 (1970) pp. 285-299.

23. Crandall, S. H., Chandiram.ani, K. L., and Cook, R. G. ,
lISome First Passage Problems in Random Vibration, II

J. Appl. Mech., v. 33 (1966) pp. 532-538.

24. Wang, M. C., and Uhlenbeck, G. E., liOn the Theory of
Brownian Motion II, II in Selected Papers on Noise and Stochastic
Processes, Nelson Wax, ed., New York: Dover PUbhcahons,
Inc., 1954.

25. Siegert, A. J. F., liOn the First Passage Time Probability
Problem, II Physical Review, v. 81, no.4 (1951) p. 617.

26. Mark, W. D., lIOn False Alarm Probabilities of Filtered Noise,ll
Proc. IEEE, v. 54 (1966) p. 316.



-117 -

27. Helstrom, C. W., "Note on a Markoff Envelope Process, "
IRE Trans. Information Theory, v. IT-5 (1959) p. 139.

l.8. Stratanovich, R. L., Topics in the Theory of Random Noise,
v. II, New York: Gordon and Breach, 1963.

Z9. Roberts, J. B., tlFirst Passage Time of a Randomly Excited
Linear Oscillator, 11 J. Sound Vib., v. 46 (1976) pp. 1-14.

30. Cram~r, H., "On the Intersections Between Trajectories of a
Normal Stationary Stochastic Process and a High Level, "
Arkiv. Mat., v.6 (1966) p. 337.

31. Corotis, R.B., Vanmarcke, E.H., and Cornell, C.A., "Power
Spectra and First Passage of Nonstationary Processes, II

J. Engrg. Mech. Div., v. 98, no. EM2, Trans. ASCE (1972)
pp. 401-414.

3Z. Bolotin, V. V., f'Statistical Theory of the Aseismic Design of
Structures, II Proc. of the Second World Conference on Earth­
quake Engineering, Tokyo and Kyoto, Japan, 1960, v. 2,
pp. 1365 -1374.

33. Amin, M., and Ang, A. H. -S., "Nonstationary Stochastic Model
of Earthquake Motions, II J. Engrg. Mech. Div., v. 94, no. EM2,
Trans. ASCE (1968) pp. 559-583.

34. Shinozuka, M., and Sato, Y., f'Simulation of Nonstationary
Random Processes, II J. Engrg. Mech. Div., v. 93, no. EMI,
Trans. ASCE (1967) pp. 11-40.

35. Jennings, P. C., Housner, G. W., and Tsai, C., 'ISimulated
Earthquake Motions for Design Purposes, " Proc. of the Fourth
World Conference on Eartht?iuake Engineering, Santiago, Chile,
1969, v. 1, A-I, pp. 145-1 O.

36. TrHunac, M. D., "A Method for Synthesizing Realistic Strong
Ground Motion, II Bull. Seism. Soc. Amer., v. 61 (1971)
pp. 1739 -1753.

37. International Conference of Building Officials, Uniform Building
Code, Whittier, California, 1976, Chapter 23.

38. Housner, G. W., "Design Spectrum, II in Earthquake Engineering,
R. L. Wiegel, ed., Englewood Cliffs, N. J.: Prentice Hall, Inc.,
1970.



-118-

APPENDIX A

Efficiency Considerations in the Numerical Evaluation of
the Covariance Matrix

As shown in the text, when a nonlinear system is excited by

modulated stationary Gaussian noise of arbitrarily specified spectral

density S(W), the covariance matrix is approximately described by

the equation

co

Q(t) = /I(W,t)E~:~T(W,t)S(W)dW
_co

where X(w, t) satisfies

(AI)

d~ [!(W, t) J = A [ S(t) J!( w, t) + !(t) exp (i wt) (A2)

f(W,O) = 0

The matrix A [S (t) ] depends explicitly on the elements of Q as

(A3)

indicated by equations (2.79) and (2.56). Hence, numerical evalua-

tion of the improper integral of equation (AI) would be a very costly

numerical procedure since equation (A2) must be solved numerically

over the range of W for which S(w) 'I- o. Furthermore, the elements

of X(w, t) tend to oscillate quite rapidly as t becomes large, thereby

requiring more and more evaluations of E(w, t) as t increases in

order to obtain accurate numerical values for the elements of Q(t).

The purpose of this appendix is to derive a differential equa-

tion for Q(t) which is more amenable to numerical solution than

equations (AI), (A2l, and (A3).
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Let §(w, t) be defined as

l,.

Q(w, t) = [S(W) ] 2 f(w, t)

Then equation (AI) implies

CX)

Q(t) = / G("'" t) g~:~T(w, t) d w
(X)

Clearly, .Q(w, t) must satisfy

(A4)

(AS)

1,.

= A [ S(t) ] G(W, t) + !(t) [S(w) ] 2 exp (i wt)

(A6)

Ta.king the complex conjugate transpose of equation (A6) yields

where the arguments of G and A have been deleted for convenience.

Noting that

equations (A6) and (A7) lead to

(A9)

Integrating both sides of equation (A9) with respect to W over the
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interval (_0:>, <Xl) and using equations (A4) and (AS) yields

where

CXl

!.<t) = / S(W) exp (-iwt) E(w, t)d W
_<Xl

Let the fundamental solution matrix Y(t) be defined by

d~ [Y(t)] = A [3 (t) ] Y(t)

Y(O) = I

Then, from equations (A2) and (A3), F(W, t) may be expressed

t 1
,f(W,t) = Y(t)/"y- (sL~.(s) exp (iws)ds

o

(A10)

(All)

(AI2)

(A13)

Sub stituting from equation (A 13) into equation (A 11), and rever sing

the order of integration yields

t [ 00
!(t) = Y(t)/ / S(w)

o _<Xl

It will be recognized that

exp [iw(s -t) JdW]y-l(S)~(S)dS
(A14)

0:>

/ S(w) exp [iw(s -t) ] dw = R(s -t)
_0:>

(A15)
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where R is the autocorrelation function of the excitation. Hence,

!(t) may be expressed as

!(t)
t 1= Y(t)./Y- (s)~(s)R(s - t) ds

o
(Alb)

Equation (AlO) may now be solved simultaneously with equations

(A12) and (Alb) to generate Q(t). The integration in equation (Alb)

must generally be performed numerically at each time step in the

differential equation (A 10). Thus, considerable computational effort

will still be required to obtain Q(t); however, the procedure will

not be as costly using this formulation as it would if the integra-

tion over the frequency domain in equation (AI) were attempted

directly.




