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ABSTRACT

The interior joints of reinforced concrete moment-resisting frames are vulnerable to

severe bond deterioration of the beam main bars passing through the column during severe

cyclic loadings such as might occur in a major earthquake. In conventionally designed interior

joints, cracks form on the beams at both faces of a column and if their main reinforcing bars

are sufficiently strained, these bars can be simultaneously pulled from one side and pushed

from the other. The bars could then slip through the columns, greatly reducing the stiffness in

the beam-column assemblies. An approach for obviating this problem by avoiding the high

straining of the bars at the face of the column by forming the plastic hinges with the resulting

significant cracking away from the column faces is suggested. Two schemes for achieving this

by proper detailing of the main beam reinforcement are reported. One such scheme involves

bending some of the main beam bars at a properly computed distance from the column. In the

alternative scheme some of the bars are cut off at a properly determined distance from column

faces. Experimental results show that the approach of forcing the development of the plastic

hinges away from the column is very promising for solving the problem of severe bond

deterioration of the main bars passing through the column, and that for the subassemblage

tested, either of the schemes used gave excellent results.
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1. INTRODUCTION

1.1. General

Strength is not the sole criterion in designing a building to withstand earthquake loading.

To obtain an efficient building, a structure must also be ductile, that is, it should be able to

undergo large inelastic deformations without collapse. The input earthquake energy is thus

absorbed and dissipated by the hysteretic behavior of the structural system. In order to develop

large inelastic deformations, special care must be taken in the detailing and placing of the rein­

forcement, especially in the lower levels of the structure where the shears in the girders and

columns, caused by lateral earthquake loads, are largest. To achieve ductility in concrete the

potential brittle types of failure, such as crushing of confined concrete, sudden loss of bond and

anchorage, and shear failure must be prevented, and loss of stiffness under cyclic loading

delayed and minimized.

It has been shown that under present detailing practices one of the most critical regions in

a ductile moment-resisting space frame, which requires a strong column - weak beam design

approach, may be the interior beam-column joint [1,2]. Present methods of designing, propor­

tioning, and detailing members of these ductile frames result in inelastic deformations concen­

trated in regions of beams, usually called plastic hinges, which develop near the column face.

In these cases the bond of the beam main reinforcement along the beam-column joint

deteriorates under cyclic loading [2,3]. Under seismic loading reversals the alternating yielding

of the beam main reinforcing bars at both faces of the interior column and the concomitant

cracking cause bars to be pulled from one side and simultaneously pushed from the other with

forces equal to or higher than their yielding forces. In addition, the total anchorage provided

for the continuous bars is reduced to a length somewhat smaller than the width of the column

at the joint. Reduced anchorage and repeated reversals of the simultaneous push and pull

action on the bars can ultimately cause complete loss of bond, enabling the bars to slip with

very little resistance through the column at the joint. The attendant drop in stiffness of the
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joint can be detrimental to the behavior of the whole building. Large deformations can lead to

very expensive nonstructural damage and, in certain cases, to collapse of the structure.

Based on observations of the above behavior in experiments conducted at Berkeley, Ber­

tero and Popov [1,3] have recommended methods to minimize or avoid the problems created

by the slippage of the beam main bars through the interior joint. The suggested approach

requires that plastic hinges form away from the face of the columns. According to this

approach, significant bar slippage could then be prevented, or at least delayed, until very large

displacements occurred. The purpose of this study was to investigate the feasibility of this

approach.

1.2. Objectives and Scope

This study is a continuation of one reported in references 2 and 3. The objective was to

study the effects of forming the critical section of the beam away from the face of the column

using two different detailing techniques. The model used was a beam-column subassemblage

prototype taken from a third-story level of a 20-story office building that was used in the earlier

studies. The parameters studied included the strength, stiffness, ductility, and energy absorption

and dissipation of the subassemblages. Two specimens, BC5 and BC6, were constructed and

tested.

Specimen BC5 was designed so that the plastic hinge would form 406 mm (16 in.) away

from the column face. The critical section was formed by bending two of the top beam bars

downward and the corresponding bottom bars upward, to intersect 406 mm (16 in.) from the

column face. After additional bending, the bars extended to the end of the beam. The beam

bars located in the outer corners of the stirrups were continuous.

Specimen BC6 was designed to form plastic hinges 610 mm (24 in.) away from the

column faces on both sides. The critical sections were designed to occur at the selected loca­

tions by cutting off the two interior bars on the top and bottom of the beam 610 mm (24 in.)

from the column faces. Both specimens were subjected to the same loading program so that
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2. TEST SPECIMENS

2.1. Design of Specimens

The specimens used in this investigation were designed to model, as effectively and

economically as possible, the behavior of a multistory reinforced concrete structure when sub­

jected to large lateral deformations due to seismic loads. A 20-story office building (Fig. l) was

chosen as the prototype for determining the dimensions and appropriate loading conditions [2].

The structure was designed as a ductile reinforced concrete moment-resisting frame according

to UBC and ACI codes [4,5].

To model the behavior of a structure as complex as the one outlined above, it is

insufficient to study the behavior of each element separately because of the complex interaction

between the various elements, such as beams, columns, and joints. Therefore, a beam-column

subassemblage was chosen as an effective model for determining overall structural behavior

(Figs. 1 and 2).

The beam-column subassemblage consists of a column cut off at midheight above and

below floor level, and two beams connected to the column and cut off at the midspan of both

bays (Fig. 2). The models used in these tests were made to one-half scale.

The models were designed to correspond to the third floor level of the 20-story building.

It is in the lower levels where the most serious damage usually occurs during a severe earth­

quake, due in part to the high shear and moments that are developed as well as in part to the

large vertical forces which develop in the columns due to dead and live loads in the upper lev­

els. When the structure is subjected to lateral forces, these vertical forces cause additional

moments to occur at the joints. At large displacements this well-known P-'i) effect is important

in designing tall structures for earthquake loads.

Under these conditions the plastic hinges in the lower stories of a tall building tend to

form near the column faces because the effect of the gravity load is small in comparison to that

of the lateral load. Therefore, the points of zero moment would lie very near the midspan of
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the beams and the midheight of the columns, which justifies the pinned ends in the columns

and beams used in these experiments (Figs. 3-5).

2.2. Description of Test Specimens

The 20-story reinforced concrete prototype building used in this study was designed

according to the UBC for a zone 3 location [4]. Each half-scale beam-column subassemblage

consisted of two beams, 229 mm (9 in.) wide by 406 mm (16 in.) deep (Is = 3073 in 4), on

either side of a square column 432 mm by 432 mm 07 in. by 17 in.). The effective lengths of

the column and each beam were 1.83 m (6 ft), Fig. 5. (See Table 1 for specimen properties.)

The columns for both specimens were reinforced with the same amount of steel. The

longitudinal reinforcement consisted of 12 #6 bars (area of steel = 1.8% gross area). Three

overlapping closed transverse ties were placed at one section to offer proper lateral restraint to

the main bars as well as proper confinement and shear strength. These ties were formed from

#2 bars and spaced 40.6 mm 0.6 in.) apart.

The major difference between the two specimens was in the detailing of the main beam

reinforcement. For both specimens the beam reinforcement at the column face consisted of 4

#6 bars on top and bottom. Thus, top and bottom steel were equal, which is more conserva­

tive than the minimum required by ACI 318-71 [5]. Section A.5.3 of this code states: "The

positive moment capacity of flexural members at column connections shall not be less than 50%

of the negative moment capacity." The beam steel ratio at the column face was 0.0135.

The plastic hinges for the specimens were designed using two different schemes. In speci­

men BC5 the two top interior main bars were bent downward, and the two corresponding bot­

tom bars were bent upward, to cross 406 mm 06 in.) from the face of the column as shown in

Fig. 6. All inclined bars were bent 60 degrees from the horizontal. After additional bending

the bars extended horizontally to the end of the beam. All corner bars were both straight and

continuous. In the second specimen, BC6, the interior bars on the top and bottom of the

beams were cut off 610 mm (24 in.) from the face of the column. The plastic hinge was
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located by the requirement that the steel at the column faces begin strain hardening just before

the critical section reaches its maximum strength (see Appendix A).

The plastic hinge in BC5 was closer to the column because the large amount of diagonal

steel at that section substantially increased the moment capacity of the section. In BC6 the bars

were cut off at a point slightly beyond where analysis indicated that the plastic hinge would

occur because it was anticipated that with bond deterioration the plastic hinge would gradually

move toward the column face. In both specimens the beams were reinforced against shear with

#2 double stirrups placed 89 mm (3.5 in.) apart, except in the plastic hinge region where a

more conservative stirrup spacing of 4.5 times the bar diameter or 51 mm (2 in,}, was used to

prevent buckling of the main reinforcement (Fig. 7). Grade 60 steel was used for all reinforce­

ment. Shear transducers were attached at the ends of the beams to measure vertical reactions.

Steel plates were attached at the top and bottom of the columns and were used to connect the

specimens to the testing frame and the loading device.

2.3. Materials

A summary of the main mechanical characteristics of the materials are given in Table 1.

The specimens were designed for a 28-day concrete strength of 27.6 MPa (4000 psi). Because

of an error in the mixing process, the concrete for spedmen BC5 was not of uniform quality.

Whereas the concrete in the columns reached the specified strength, that obtained in the beams

was only 14.5 MPa (2100 psi). However, since the tests were conducted primarily to study the

behavior of the subassemblages after the steel has yielded, the steel had a far greater influence

on the specimen's performance in the inelastic range than the concrete, and the overall results

were not greatly affected. In this design, the bond at the joint was not critical. The yield

strength for the #6 bars was 441 MPa (64 ksi), and the ultimate strength was 731 MPa (106

ksi).
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2.4. Fabrication of Test Specimens

The concrete specimens were cast in place in plywood forms stiffened with battens. The

concrete was compacted with a high-frequency vibrator. The reinforcement cage was con­

structed to close tolerance and was securely tied with 16-gage wire. Plastic chairs were used to

hold the reinforcement cage in position in the oiled wooden frame.

The specimens were cast in a vertical position in the course of one day, in three separate

lifts with a delay after each to allow for settlement of the concrete. The lower section of the

column was cast first, up to the bottom of the beams. Later the beams and finally the top part

of the column were cast to finish the process. After the specimens were cured and the forms

removed, metal hinge assemblies were attached at all four ends of the specimens. These were

made of steel for the column and of aluminum for the beams. The aluminum hinge assemblies

were designed to act as transducers for measuring the reaction forces acting on the beams dur­

ing the experiments. (See reference 6 for further details on transducers, clip gages, and other

experimental procedures.)
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3. EXPERIMENTAL TEST SETUP AND INSTRUMENTATION

3.1. General

A large steel testing frame, designed and constructed for studying steel beam-column

subassemblages [6], was used. The top hinge of the column was connected to the frame and

prevented from translating. A 2090-kN (470-kip) axial load was applied to the bottom hinge by

means of a hydraulic jack supported on a movable cart. This load represented the dead and live

forces acting on the column and was kept constant during the experiments. After the axial load

was applied and the column permitted to undergo the consequent contraction, the ends of the

beams were connected to the frame on horizontal guides in such a way as to permit rotation

and lateral translation but not vertical displacement.

The effect of lateral load was simulated by applying a force or displacement at the bottom

hinge by means of a double-acting hydraulic cylinder which moved the hinge back and forth in

the plane of the frame. The applied forces and reactions are shown schematically in Fig. 5b.

As can be seen from that figure, the reactions in the beams were caused, not only by the

applied lateral load H, but also, by the additional moment due to the P-fj effect.

By summing the moment about the top hinge of the column, each beam reaction became

V = H 12 +Pfjl (2h), assuming VE = Vw = V and noting that L = h. Thus, each beam had an

additional force due to the vertical load equal to Pfj/(2h), where P was the total vertical load, fj

was the bottom hinge displacement measured from the top of the column, and h was the story

height measured from top to bottom hinges. Since the subassemblage corresponded to a lower

story of a building, the axial load was large. Therefore, the P-fj effects were very significant for

large story displacements.

To eliminate errors due to the effects of friction on the rollers of the cart, a transducer

was used to measure directly the horizontal force H transmitted to the specimen. With this

arrangement, the actual horizontal load applied to the lower column hinge was accurately meas­

ured.
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3.2. Instrumentation

The main parameters studied in these experiments were the loads, Le., the applied loads,
~ -

the reactions in the beams and columns, the strains in concrete and reinforcement, the rota-

tions (average curvature) and shear deformation at the critical regions, and the displacements

of the beams under applied loading. Special instrumentation was used for obtaining reliable

data on each of these parameters.

3.2.1. Load and Reaction Measurements

Load transducers were used to measure the horizontal and vertical forces Hand P applied

to the bottom hinge of the column. As mentioned above, specially designed aluminum trans-

ducers were bolted to the ends of beams to measure their reactions, VE and Vw (Fig. 5b) [6].

3.2.2. Column and Displacement Measurements

During the experiments, the displacement of the bottom hinge was measured by a 381-

mm (I5-in.) linear potentiometer and was recorded continuously on an XYY' recorder. The

lower column hinge displacements were measured periodically by a precision theodolite to

check the accuracy of the deflection readings by the recording equipment.

Readings were also taken at the top hinge using the theodolite. The lateral load applied to

the specimens induced some deformations of the steel testing frame. The horizontal displace-

ment of the top hinge could be calculated from the theodolite readings and that measurement

was used to determine the true displacement of the bottom hinge relative to the top hinge.

3.2.3. Rotations or Average Curvature Measurements

Average curvatures were calculated from measurements made at five different locations

on both the east and west beams. These measurements were made using clip gages [6]. These

clip gages were attached to pins embedded in the concrete. Five long steel pins were placed

vertically in the vertical plane of symmetry of each beam before the concrete was poured and

thus cast with the specimen. The first pin was placed 76.2 mm (3 in.) from the column face,
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the second 146 mm (5-3/4 in.) from the first, and the remaining three at 184-mm (7-l/4-in.)

intervals. The first pin was placed close to the column face in order to measure possible cracks

there or to measure slippage or yielding of the main bars in the region of largest moment. The

clip gages were then attached to the tops and bottoms of the pins for curvatures C2 to C5

inclusive (Figs. 8 and 9). The gages were connected to a low-speed scanner powered by a

NOVA computer to measure the relative displacements of the pin ends. Knowing the relative

displacements of the tops and bottoms of the pins and their respective length, it was possible to

determine the rotations of the sections, providing data for calculating the average curvatures.

The rotation at the region adjacent to the columns (first curvature CO, was measj.lred by means

of linear potentiometers, whose output was plotted continuously on an XY recorder.

Other curvatures were also measured by means of clip gages attached to steel pins sol­

dered directly to the main longitudinal reinforcement bars. By comparing the rotations deter­

mined from the bars and those from the concrete, slippage of the bars could be determined.

Because the column was much stiffer than the beams, no appreciable column deformation

was expected, and no extensive measurements were made over the length of the column.

3.2.4. Shear Deformation Measurements

Shear deformation was measured at the critical location on each beam. At each critical

section two diagonally crossing clip gages, D1 and D2, were attached to pins soldered to the

main bars (Figs. 8 and 9), and then connected to the low-speed scanner. By measuring the

relative movement of the two diagonal points, the average shear distortion can be determined

from the following relationship:

Y av = [a; ~ II ~I
where a and a are the diagonal displacements, d is the undistorted diagonal distance; and band

h are the respective horizontal and vertical distances between the points (Fig. 10). This equa­

tion is valid only for uncracked sections, or regions with vertical flexural cracking; it does not
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apply to inclined cracks traversing only one diagonal clip gage. Nonetheless, the equation does

give an idea of the average shear even after a diagonal crack crossed the instrumented region.

The cracking history of the west beam in the region of the plastic hinge was monitored by

taking photogrammetric pictures of a rectangular grid drawn on the beams. The grid consisted

of lines drawn horizontally and vertically at 89-mm (3.5-in.) spacing, extending from a point

25.4 mm 0 in.) from the column face to 825.5 mm (32.5 in.) away. Before the lines were

drawn, the beams were whitewashed to heighten the contrast for ease of reading. There were

also five targets placed in the shape of a cross on the face of the column at the beam-column

joint. These provided reference points for determining relative distortions of the beam

(column distortion was negligible). The grid pattern was also helpful in serving as a check of

the beam curvatures and tip displacements. The photogrammetric camera was mounted on a

separate steel tripod away from the testing frame.

3.2.5. Strain and Deformation Measurements

Strain measurements in the main bars were made by means of strain gages attached at a

number of critical points in the specimens. For BC5, the gages were placed at the face of the

column on all main bars. They were also placed inside the joint 89 mm (3.5 in.) from the

column face on two of the continuous bars. The bent bars had a number of gages in the areas

of the plastic hinge on both sides of the column (Fig. 11).

The strain gage readings were recorded on the low-speed scanner at the end of each cycle

of load application, at maximum displacements, and also at the point of zero column displace­

ment.

In specimen BC6 strain gages were placed at the face of the column on the continuous

and cutoff bars to monitor any possible yielding in that region. Gages were also placed on the

continuous bars in the middle of the plastic hinge area 419 mm 06.5 in.) from the face of the

column of specimen BC6 and recorded continuously on the XY recorders to determine the

onset of yielding for the main bars. Additional gages were placed at various locations, as shown
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in Fig. 12.

3.2.6. Pull-Out Measurements

Pull-out of the main longitudinal bars from the columns was measured by linear poten­

tiometers attached to pins soldered to each main bar 76 mm (3 in.) from the face of the

column, and recorded continuously on XY recorders.

3.3. Data Acquisition System

The loads, displacements, and strains were continuously plotted by XY and XYY' record­

ers and at particular stages of loading, by the low-speed scanner in the NOVA computer. Since

the number of XY recorders was limited, only the most important results were plotted, while

the majority was read with the scanner. The output from the clip gages used to measure curva­

tures and shear deformations and nearly all output from the strain gages were recorded on the

scanner. Eight XY and XYY' recorders were used in each experiment to obtain continuous

plots of displacement B, pull-out, and strains of the main bars in the plastic hinge region versus

the measured horizontal load H

3.4. Test Procedure

After the specimens were placed in the steel testing frame and before applying axial load,

the column had to be plumbed in order to eliminate undesirable forces.

As pointed out in section 3.1, the column was allowed to contract before the hinges at the

ends of the beams were secured in position. When all the hinges were securely fastened, the

lateral load was applied to the bottom hinge. The magnitude of the applied lateral load Hand

the bottom hinge deflection B were continuously plotted on an XYY' recorder. The H-B

record served as a guide for controlling the loading history throughout the test. The first few

lateral load cycles were conducted in the working range primarily to check the working condi­

tion of the instrumentation and recording equipment. The loading program shown in Fig. 13

was used for both BC5 and BC6 and indicates the deflection applied to the bottom hinge at each
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load cycle. At LP 9 there was enough lateral displacement to induce first yielding of the main

bars in the plastic hinge region. The strain in those bars was continuously plotted on XYY'

recorders. A sudden and rapid increase in strain signified the onset of yielding, and the lateral

displacement was immediately stopped. The column was then displaced in the opposite direc­

tion until yielding of the main bars in the plastic hinge was again observed. The experiment

proceeded at progressively increasing displacements after the first yield as shown in Fig. 13.

Two cycles were made at each peak displacement selected in the test program.
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4. EXPERIMENTAL RESULTS

4.1. General

One of the most important measures of the specimen's overall performance is determined

from the curves of the bottom hinge lateral displacement S versus the applied lateral load H

Figure 5b indicates that if there were no axial load, the horizontal load could be easily deter-

mined from the load transducer at the bottom column hinge. Ifaxial load is neglected, then

from the summation of moments about the top column hinge:

Since in this case L = h:

Thus, the horizontal load can be determined by adding the shears in each beam. When axial

load P is included, the summation of moments about the top hinge yields:

which reduces to:

H+ PS
h

Thus, the sum of the beam shears represents the total horizontal load H plus the P-S effect,

giving a total equivalent horizontal load, Heq .

The shear values at the two beam hinges were added together automatically during the

experiment by connecting the leads from their respective transducers in series and plotting the

sum continuously on an XYY' recorder. The value of H was recorded on the same instrument

using the lateral load transducer at the bottom column hinge. Since lateral force H must over-

come the frictional forces in all four metal hinges, the measured force H was greater than the

actual one. To correct for this error it was possible to work in reverse by calculating the P-S

effect in the Heq-S diagram (Figs. 14 and 15), and then to construct the actual H-S curves.
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As mentioned earlier, the H eq force was obtained by summing the shears of the beams so that

the frictional effect did not enter into the results. Since the deflection, S, was continuously

recorded, the P-S effect could be determined at each point on the Heq-S curve. Horizontal

load H could be calculated from the equation:

H

The frictional effects are excluded from this equation. The two H -S curves so obtained are

shown in Figs. 16 and 17. The H -S curves including frictional effects are shown in Figs. 18

and 19. As can be seen, these effects accounted for approximately 13.3 to 22.2 kN (3 to 5

kips) of additional horizontal load. The H ~S and Heq -S curves are compared in Figs. 20 and

21. Note that the H-S curve gives the erroneous impression that the structure loses lateral

resistance after LP 13, whereas the H eq-S curve indicates an increase in strength up to LP 21.

The Heq-S curves give the most direct measure of performance for the subassemblage

during cyclic loading because Heq represents the combined action of the lateral force and the

P-S effect on the subassemblage, i.e., it gives the real measure of the lateral resistance

(strength) of the subassemblage. During the first few cycles of tip displacement in the working

stress range, the slope of the Heq-S curve was nearly linear for both specimens, and only a

very small amount of energy was dissipated due to hysteresis. Hairline cracks began to form at

LP 1 for both beams, but they were essentially vertical flexural cracks at this stage of loading.

4.2. Overall Behavior

4.2.1. Specimen BC5

Initial yielding of the main longitudinal bars in the plastic hinge region of specimen BC5

occurred at LP 9 at a displacement of the bottom column hinge of about 15 mm (0.59 in.).

This displacement represents a lateral drift of 0.008 times the story height of 1.82 m (6 ft),

which is about 64% greater than the recommended 0.005 [7]. It should be noted that these

values are not directly comparable because (1) the value recommended by code is not at first
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yielding of the bars but represents the displacement calculated from the applied code lateral

forces multiplied by a factor equal to 1/k, and (2) the subassemblage tested failed to incor­

porate the contribution of the floor slab to lateral stiffness. --The subassemblage was able to sus­

tain a 178-kN (40-kip) horizontal load at that deflection. When the subassemblage was loaded

in the opposite direction, yielding of the bars on the opposite sides of the beams began at a dis­

placement of 15.2 mm (0.60 inJ. After one or more cycles at this yielding displacement, suc­

cessively larger displacements were applied at multiples of the deflection ductility ratio, p.,. In

this report the ductility ratio is understood to be the ratio of the imposed displacement (of the

bottom hinge) to the displacement at first yield of the main reinforcing bars. The following

observations can be made from the Heq-a graph [Fig. 14].

First, the strength of the subassemblage increased after first yielding of the main bars.

The largest increase occurred between LP's 9 and 13, Le., between p., = 1 and p., = 2. At LP 13

the specimen resistance was 212 kN (47.6 kips), 18% greater than LP 9. The peak strength

occurred at a ductility ratio of 5 (LP 21). The 235-kN (52.5-kip) force was 31% greater than

the value of H eq at first yield. A ductility ratio of 5 for this member corresponded to a story

drift of 0.040 times the story height, or more than 8 times the recommended code value of

0.005. Although at ductility ratios greater than 5 the capacity of the subassemblage under cyclic

loading began to decrease at a higher rate than before, the specimen was capable of resisting a

lateral load corresponding to an Heq of 218 kN (49 kips) when forced at LP 25 to a deformation

of 102 mm (4 inJ, which corresponded to a displacement ductility of 7.1.

Secondly, the capacity of the subassemblage was reduced at each repeated cycle at the

same displacement. The drop in strength between the first and second cycles after first yielding

ranged from about 2% to 6.7% of the first load. However, at a ductility of 7 (LP's 25 and 27),

the drop in strength of the second load cycle was about 24% of the first value at that displace­

ment. Although only two complete cycles were made at anyone displacement, the capacity of

the specimen for a third displacement can be determined from the curve at the point where the

succeeding cycle passes through the previous displacement. Although the capacity of the sec-
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tion continues to decrease for ductility ratios of 5 or less, the percentage decrease is of the
-.'

same order of magnitude as it was for the previous cycle.

Thirdly, the initial loading stiffness of the subassemblage, represented in these graphs by

the slope of the curves, decreased after each loading cycle, as can be seen in the graph of Fig.

14, which was generated in a clockwise manner. On the other hand, during unloading the

stiffnesses of two cycles at the same ductility were nearly identical. The largest drop in stiffness

occurred in the loading portion of the graph between LP's 26 and 27.

4.2.2. Specimen BC6

The behavior of BC6 was similar to that of BC5. Most of the general observations made

above are applicable. The first yield of the main bars in the plastic hinge occurred at LP 9 at a

displacement of 15.2 mm (0.60 in.) and a load, Heq , of 190 kN (42.8 kips), see Fig. 15. The

maximum strength of this subassemblage occurred, as it did in BC5, at a ductility ratio of about

5 at 73.7-mm (2.9-in.) displacements (LP 21). The 233-kN (52.4-kip) maximum Heq load was

nearly identical to that of BC5. At LP 25 the experiment was temporarily halted because of

significant damage and shear distortion at the critical region. However, after analysis of the

Heq-8 plots, it was decided that it would be advantageous to force this specimen to the same

maximum lateral displacement as that for specimen BC5, 8max = 102 mm (4 in.). The results

from these additional tests are represented by the dashed lines in Figs. 15, 17, and 21.

Upon subsequent cycling as shown in Figs. 15 and 17, the resistance of the specimen

started to deteriorate and at a lateral displacement of 102 mm (4 in.) at LP 27, the resistance

was 165 kN (37 kips), which was considerably smaller than that observed for specimen BC5,

218 kN (49 kips), at the same displacement. At this load point a n.early horizontal slope of the

hysteretic loop could be observed, indicating that the capacity of the specimen had been

exhausted. Similar observations apply to the largest reversal cycle, where a definite decrease in

the capacity of the subassemblage appeared, first at LP 28 and finally, at LP 29 (Fig. 15).

As in BC5, the capacity of the subassemblage was reduced at the second cycle of the same
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deflection. The drop in strength ranged from less than 1% to about 6.7% of the first cycle capa­

city. In general, the reductions tended to be somewhat less than those recorded for BC5. As in

BC5, the-stiffness of BC6 degraded in successive cycles. While unloading, the stiffnesses of two

successive cycles at the same displacement were often nearly identical. However, after the first

loading at a displacement of about 76 mm (3 in.)' after unloading, and at the initiation of

reversed loading, the stiffness of the second cycle suddenly dropped. The sudden loss at this

point was due primarily to large shear distortion at the plastic hinge region and slippage of the

main bars in this region. This observation will be commented upon later.

4.3. Energy Dissipation

The area enclosed in the Heq-ij curves is a mea<mre of the subassemblage's energy dissi­

pation characteristic, which in turn is one the best indices for judging the structure's perfor­

mance during an earthquake. The H eq-ij graphs show that just as the strength of the specimen

increased for higher ductility ratios, I-t, to maximum strength at a I-t of about 5 and decreased at

each repeated cycle, energy dissipation increased with higher ductility ratios and decreased at a

repeated cycle of the same displacement. The energy dissipated during the different cycles have

been measured and are given in Tables 2 and 3.

4.3.1. Specimen BeS

The drop in area from the first to second cycle at a ductility ratio of 2 was about 10%. At

a ductility ratio of 5 the drop in area of the second cycle was still only 9.2% of the first cycle.

However at a ductility ratio of 7, the area of the second cycle was 33% smaller. This consider­

able drop was a consequence of deterioration in strength [which decreased from 217 kN (48.8

kips) to 165.5 kN (37.2 kips ») and stiffness. As can be seen by comparing the increases in the

areas of the first cycle loops with the increase in the ductility ratios, although the areas are

increasing, they are increasing at a slower rate.
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4.3.2. Specimen BC6

The hysteretic loops of BC6 had properties similar to those of BC5. For repeated cycles at

the same displacement the energy absorption capacity dropped about 10% at a ductility ratio of

2 and about 14% at a ductility ratio of 4.8. As shown in Tables 2 and 3 and Fig. 22, this latter

drop was higher 04% vs. 9%) than that observed in specimen BC5. At a ductiUty of 7 the

energy dissipation capacity of BC6 was only 21.2 kN-m 096.3 k-in,), which represents a drop

of 38% with respect to that obtained for specimen BC5. It is interesting to note the large

increase in energy dissipation in the cycles. after initial yield. Although the displacement at

cycle 13-14 was only twice that at cycle 9-10, the energy dissipation increased by a factor of

more than 7 (Table 3). Comparison of the energy dissipations of BC5 and BC6 shows that

despite the more stable, rounder shapes of the curves for BC5 (see Fig. 22), the total 'energy

dissipated was nearly the same up to f.L = 5. After LP 16 and up to LP 24 the BC5 areas were

larger by about 2% to 7%. It should be remembered that the concrete strength of BC5 was

much lower than that of BC6 so that the capacity of BC5 might have been larger had the correct

design concrete strength been obtained for this specimen.

4.4. Beam Deflections

If the whole subassemblage were allowed to rotate as a rigid body about the top hinge, it

can be concluded from geometry that the total vertical movement of the end of either beam

would be equal to the horizontal displacement of the bottom hinge (Fig. 23). In this experi­

ment the ends of the beams were constrained from displacing in the vertical direction. There­

fore, the deflection of the beams as measured from the tangent to the beam at the beam­

column joint is approximately equal to the horizontal displacement of the bottom column hinge.

The actual tangential deflection of the beam was somewhat smaller due to 0) flexibility of the

columns and (2) possible beam-bar pull-out at the column face (fixed-end beam rotation).

However, both sources of deformation were small and the error was negligible since the

columns were so much stiffer than the beams. Most of the beam deflections were accounted

for by flexural and shear deformations in the critical regions of the plastic hinge. Clip gages
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placed at the top and bottom of the beams measured the relative displacements between sec­

tions, from which the rotations could be calculated and the tip displacements (due to flexural

deformations) determined. These beam defle-ctions are given in Tables 4 and 5 and shown

graphically in Figs. 24 and 25. The shear distortion at the plastic hinge region was measured by

the diagonally crossing clip gages (Figs. 8 and 9).

4.4.1. Specimen BC5

The results for BC5 indicate that very little deflection was caused by shear deformation.

Table 4 also indicates that most of the rotation was contained in the C3 and C4 regions (see

Figs. 24a and 25), corresponding to the location of the plastic hinge, which for BC5 was at the

diagonal crossing of the main bars. The deflection due to rotation of region C3 accounted for

nearly 50% of the total beam displacement. This indicates that the plastic hinge formed very

close to the desired location. At larger displacements the contribution of the first curvature Cl

to the total displacement increased to about 16% of the total. This was due to the large strain

of the main bars at the face of the column. The rotation of the Cl region more than doubled

from LP 19 to 21, whereas the increase in other regions was no greater than 45%. The strain

history of the west top bar is shown in Fig. 26a. Yielding of the bar at the section where the

gage was placed started at LP 12.

Figure 24a and Tables 4a and 4b show a significant amount of error between the actual

deflection and that calculated from the beam displacement measurements. Part of the error is

due to the fact that not all of the rotations in the beam were captured by the installed instru­

mentation. There was some cracking in the vicinity of the beam ends where the metal trans­

ducers were attached.

Total rotation in the C3 and C4 regions at maximum load (LP 21) was 0.0396 rad. From

LP 21 to LP 22, i.e. for a complete reversal deformation (see Fig. 14), the plastic hinge rotated

0.078 rad., which, for a length of 15.5 in. is an extremely significant inelastic rotation. At LP

26 these rotations had increased even further to 0.058 rad., or 0.115 rad. for the cycle from LP

26 to LP 27.
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4.4.2. Specimen BC6

Tables 5a and 5b give the components of tip displacement due to different sources. The

-

plastic hinges in specimen BC6 were located 'at the bar cut off 610 mm (24 in.) from the

column faces. It is in this region that the largest rotations occurred. Initially, most of the cur-

vature formed in the C5 region (see Fig. 9 and Table 5), which measured the curvatures of the

beam just beyond the point where the bars were cut off. Later in the experiment at larger dis-

placements, the curvature in the C4 region, whose center was 498 mm (I9.6 in.) from the

column face, became larger as the plastic hinge moved toward the face of the column. During

the last few cycles that region contributed to about 67% of the total flexure. (See Fig. 24b for

the contributions to the tip displacement from the five measured regions of rotations.)

For BC6 shear distortion in the plastic hinge region contributed a significant amount of tip dis-

placement, over 30% of the total measured tip displacement at the last few cycles. At the end

of the cycle at JL = 5 (LP 25) a shear offset of about 19 mm (3.4 in.) was measured at the plas-

tic hinge where the two parts of the cracked beam slipped relative to each other (Fig. 60).

There was practically no yielding of the main bars at the column face (Figs. 35 and 36) so that

the curvature at that region was small for the full duration of the test and contributed little to

the total tip displacement. Although there were some errors between the calculated and

observed values of the tip displacement, they were considerably smaller than those observed for

specimen BC5. From the photographs of Figs. 56 through 60, one can observe that the large

number of cracks in the beams beyond the points where measurements were being made could

account for some of the discrepancies in deflection calculations.

4.5. Reinforcing Steel Strain Measurements

The strain history of the reinforcing steel offers valuable insight into the mechanical

behavior of the specimens. The strains of the main bars in the plastic region were plotted con-

tinuously on XYY' recorders for both BC5 and BC6. Those in other locations were recorded

with the aid of the low-speed scanner. Graphs plotted from the scanner are only approxima-

tions of the true behavior since for anyone cycle the readings at only four loading points were
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available, giving the strains at maximum displacement and zero lateral force. However, in most

cases these readings gave a good indication of the overall behavior. Selected strain gage results

for BC5 are plotted in Figs. 26 through 34. Those for BC6 are plotted in Figs. 35 through 43.

4.5.1. Specimen BC5

Figure 26 represents the strain history for one of the continuous top bars on the west

beam at the column face. The graph shows the strain versus the reaction at the beam end. The

bar was in tension at even-numbered load points and in compression at odd ones. As evident

from the graphs, as LP 12 the bar started to yield at the column face, and at LP 22 significant

yielding occurred which corresponded to the large rotation recorded by the potentiometers

(Table 4). The graphs also indicate that no ftill reversals of steel strains occurred. Under ten­

sion the bars were free to elongate because the concrete was cracked and could provide no

resistance. However, when the load on the beam was reversed, the crack closed and from then

on concrete carried most of the induced compressive forces. Therefore, only at the beginning

of loading does the steel develop the major part of its compressive stress, and because of crack

closure no significant strain reversal in the steel can take place.

Significant yielding of the main bars at the column face observed at LP 22 was therefore

delayed until large frame displacement had been achieved (Fig. 26). At LP 22 bottom hinge

displacement was about 77 mm (3 in.) .In previous tests on beam-column subassemblages

significant beam steel bar yielding at the column face occurred very early. It was this early and

significant inelastic straining that was the main reason for the large stiffness reduction eventu­

ally leading to early failure of the specimen [2]. When the beam main bars on both sides of the .

column face underwent a large amount of yielding during one full cycle of deformation rever­

sal, simultaneous pushing and pulling of the bars, with forces at yielding or a higher intensity,

occurred. These caused, upon subsequent cycling of the specimen, deterioration of the bond of

these main bars along their embedment (or anchorage) length, which was reduced to just, or

somewhat less than, the width of the joint.
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As pointed out before, in the experiment of specimen BC5 this type of behavior at the

joint faces was delayed (by forcing the plastic hinges to form away from the column faces) up

to LP 22, i.e., until large frame displacement had been achieved. This means that up to LP 22

the bond was only destroyed at the plastic hinge region forming away from the column face,

which left the beam main bars with an anchorage length substantially larger than the width of

the column joint.

Figure 27 shows the strain history of one of the continuous bottom bars at a point 76 mm

(3 in.) near the face of the column but inside the joint. These curves indicate no yielding of

the main bars occurred through LP 22; hence, little, if any, slippage occurred at the joint up to

this load point. Unfortunately, at that point the strain gage ceased to function. The strain at

LP 22 was about 2200 microstrains, which was close to yielding. It is possible that at the next

cycle it would have yielded. However, this load point corresponded to the last cycle of the test,

which represented a displacement of about 102 mm (4 in.), or a displacement ductility of nearly

7.

An interesting observation can be made from analyzing the results presented in Figs. 29

and 31, which show the strain history of the diagonally crossing bars in the plastic hinge region

of the east beam. Figure 29 is a graph of the strain in bar B2 measured by a gage located 356

mm (14 in.) from the face of the column; Fig. 31 shows the strain of the crossing bar T2, being

the strain measured by a gage located 444 mm (17.5 in.) from the column face. These graphs

indicate that these two bars were in tension throughout the test, regardless of the direction of

the shear force. In Fig. 29 when VE was applied downwards, the neutral axis shifted to a point

low enough to induce tensile force in the bar. For example, at LP 21 the shear on the east

beam was downward-acting and the neutral axis was below the intersecting point of the bars.

Hence, both inclined bars were stressed in tension by bending. The bars were also stressed by

the effect of shear acting in the region where the bars were bent. Because the effectiveness of

concrete in resisting shear at this region was reduced at large displacements, most of the shear

resistance had to be provided by the diagonally crossing bars. Therefore, the downward-acting
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shear caused compression in the instrumented bar of Fig. 29 and tension in the instrumented

bar of Fig. 31. At LP 22, when the shear was acting in the opposite direction, the bar in Fig.

29 had larger tension than the bar in Fig. 31, .\yhich explains the different patterns in the cres­

cent shape of these graphs.

To observe the variation of strains in the bent bars a short distance from the plastic hinge,

a strain gage was placed on bar B2 in the west beam at 572 mm (22.5 in.) from the column

face. The strain history is shown in Fig. 33. The largest strain, 1440 microstrains, indicates

that no yielding occurred in this region. The large difference in strains between LP's 12 and 14

was caused by cracking of the concrete in the nearby region. At LP 13 the bar was in tension.

When the load was reversed the cracks in the concrete closed before large compressive forces

could be taken up by the bar. Thus, the previously induced tensile deformation could not be

overcome, which led to the well-known phenomenon of beam elongation.

The graphs in Fig. 34 show the variation of strain along the length of bar B2 in the west

beam. This bar was one of the two that were bent. These graphs were constructed from gage

readings at 572 mm, 444 mm, 229 mm, and 0 mm (22.5, 17.5, 9, and 0 in.) from the column

face at two different load points: LP 9 (first yield) and LP 21 (maximum strength). The

graphs show large strains at the column face where the moment was largest, with the strains

getting smaller due to the moment gradient as the distance from the column face increased

There was bond loss in the plastic hinge region due to significant concrete cracking, which

caused a sharp drop in the strain at that region. As the bond developed in the region outside

the plastic hinge, the strains reached a maximum and then decreased as the moment

approached zero at the end of the beam. The two curves are similar in shape but the strains are

larger at LP 21 by nearly one order of magnitude.

4.5.2. Specimen BC6

Figures 35 and 36 indicate that the strains in the continous beam bars at the face of the

column did not reach their yield value during the test. However, the strains at the last load

point, LP 24, were very nearly the yield value for the steel. There was an observable, but
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negligible, amount of slippage of the bars in the columns, as can be seen from the results in

Fig. 37. Slippage is shown by the migration of the strain at odd-numbered load points. When

the bar is in tension at even-numbered load p()jnts, it slips- a small amount. When the load is

reversed and the bar is in compression the slippage cannot be reversed completely, leaving a

residual elongation strain in the bar.

The strain gage placed on the cutoff bar on the east beam 520.7 mm (20.5 in.) from the

column face clearly indicates that this bar began to slip began at LP 14 (Fig. 39). The explana­

tion for the large change in strain between LP's 12 and 14 is similar to that of BC5 in Fig. 33

given earlier. The strain history of the cutoff bars at 330 mm (13 in.) from the column face

was similar (Fig. 38), indicating some slippage, but the tensile strains were larger due to the

larger moments at that region and also to more bond strength since it was farther away from

the cutoff point.

The continuous bars underwent somewhat larger strains at the critical regions than did the

continuous bars of BC5. The plastic hinge for BC6 was 610 mm (24 in.) away from the column

face while that of BC5 was only 406 mm (16 in.) . Therefore, for the same beam tip displace­

ment, the beam of BC6 had to rotate more in its plastic hinge than did BC5. This is reflected

in the larger strains in the critical regions. The strain gage placed at 737 mm (29 in.) from the

column face on bar T1 of the east beam showed that yielding began at LP 9 and became

significant at LP 15 (Figs. 41 and 42).

The variation of strain along the length of bar Tl, which was a continuous bar throughout

the beam, is shown in Fig. 43. Since readings were taken at only four locations, the actual

shape of the curve can differ from that drawn in the figure. The graphs drawn for LP's 9 and

21 show the large strain in the main bar in the plastic hinge region as was explained above.

4.6. Beam Crack Patterns

Cracking in the beams was determined from the photogrammetric results. The crack pat­

tern and deformations in the critical region are shown in an exaggerated scale in Figs. 44
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through 51. The photographs of the same load points are shown in Figs. 52 through 59. Figure

60 shows the state of the whole subassemblage BC6 after LP 25 of the experiment.

4.6.1. Specimen BC5

Figures 44 to 47 show that the dominant cracks in BC5 were the vertical flexural cracks.

Not until the last cycle at LP 25 (Fig. 47) were any signfificant diagonal shear cracks visible.

The figures show a significant amount of distortion at the plastic hinge region, which, however,

was localized. As can be seen from Fig. 47, even at the last cycle the last vertical line at the

ends of the grid remains nearly plane after a considerable beam tip displacement. Spalling

occurred in the concrete at the top of the beams in practically all the region located from the

plastic hinge to the column face, but not until near the end of the test at LP 25. Vertical cracks

stayed open after load reversal following LP 17.

4.6.2. Specimen BC6

Figures 48 through 51 show the cracking in the critical region of the west beam of speci­

men BC6. The major difference between the performance of specimens RC5 and BC6 was the

large diagonal shear cracks which were visible in BC6 at LP 9 and the larger shear distortion

that occurred at the plastic hinge region. The shear resistance and shear stiffness in BC6 was

much less than in BC5, which had 4 #6 bars diagonally crossing in the critical region. Shear

distortion at LP 24 was so large and the damage at the critical region so extensive that the test

was temporarily halted at LP 25 with a displacement of about 76 mm (3 in.) (Fig. 15).

Under repeate<;i cycling in the inelastic range, the vertical cracks at the top of the beam

interesected those at the bottom. At larger displacements the cracks stayed open the full depth

of the beam and only the top and bottom bars resisted the moment, causing a drop in the

member stiffness. Shear was resisted only by some aggregate interlocking and friction between

the two faces and by dowel action of the main bars. During shear reversal at small shear forces

there was a small amount of slippage between the two sides which caused a sharp drop in

overall stiffness, as shown in Fig. 15.
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The largest cracks occurred at a point just to the right of the cutoff point 610 mm (24 inJ

from the column face (Figs. 50 and 51).
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5. CONCLUSIONS AND RECOMMENDATIONS

There is documentation indicating that severe bond J;leterioration can occur in convention­

aI1y designed interior beam-column joints during large cyclic lateral displacements such as those

which occur during a major earthquake [1-3]. In extreme cases the continuous bars of the two

adjoining beam spans may begin to slide with very little frictional resistance through the

column, thereby providing negligible resistance to the lateral inertial forces. This study

addressed itself to the problem of avoiding or eliminating this serious condition.

Two alternative schemes for resolving the problem were proposed, and two specimens

were fabricated and tested. Both specimens were successful in showing how to obviate the

problem of bond loss in the main beam bars within the column. This was achieved by design­

ing the plastic hinges to occur away from the column faces. Equal amounts of top and bottom

steel were used in the beams at the column faces, and special web reinforcement was provided

in the regions of anticipated hinges.

In one specimen, BCS, the two top interior main bars were bent downward, and the two

corresponding bottom bars were bent upward, intersecting 406 mm 06 in.) away from the face

of the column. These bars were inclined 60 degrees from the horizontal. After reverse bend­

ing of the bent bars at the bottom and top of the beam, the bars extended horizontaI1y to the

end of the beam. All four corner bars were straight and continuous. In the second specimen,

BC6, two of the four main bars on the top and bottom of the beam were cut off 610 mm (24

in.) away from the face of the column.

Both designs performed weI1, but BC6 was certainly the simpler of the two to fabricate.

However, several important advantages of BCS should be noted. At large lateral displacements,

the cracking pattern in BCS was weI1 distributed throughout the beams. Because only vertical

stirrups were used in BC6, they were ineffective in preventing significant localized shear distor­

tion in the hinge regions. In contrast, the crossing steel of BCS offered excellent resistance to

shear. The diagonal cracks due to shear stresses did not open up in this specimen until the
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very end of a test and no sliding shear through vertical cracks was observed. In BC6, immedi­

ately after yielding of the main bars at the hinge, the hinge was weakened by the shear-flexure

cracking. Moreover, the cracking pattern was more random and concentrated in the proximity

of the hinge, resulting in large local shear distortions. At a ductility of 4.8 considerable sliding

shear was observed. This shear distortion contributed to nearly one-half of the total displace­

ment of the beam. Specimen BCS, with the crossing steel, was especially ductile, with the

cracked region spreading virtually over the entire beam; shear distortion in the critical regions

and therefore in the whole beam was negligible.

Both specimens generated excellent hysteretic loops that became pinched only at the very

end of an experiment, indicating good energy dissipation capabilities. The maximum nominal

shear stress l'u developed in specimens BCS and BC6 did not exceed I.S MPa (21S psi). Since

the j/ of concrete in the beams of these two specimens were 14.S MPa (2100 psi) and 27.6

MPa (4000 psi), respectively, the resulting Vu for BC5 was about 0.39.JJ:' MPa (4.7.JJ:' psi),

while the value for BC6 was only about 0.28.JJ:' MPa (3.4.JJ; psi). Thus, either design

scheme appears acceptable for avoiding bond failure of beam bars in the columns when the

shear acting in the critical regions is small [say, v
Umax

< O.29.JJ; MPa (J.s.J77 psi)]. Note,

however, that when the value of shear is high [say, v
Umax

> 0.29.JJ; MPa (3.S.JJ:' psi), only

the scheme used in BCS is recommended.

The ACI Code does not require calculations of anchorage for top and bottom reinforce­

ment that is continuous through a beam-column connection; Section A.S.4 of the code specifies

only that anchorage be computed within each flexural member. Because tests have shown that

there is considerable bond degradation of the beam main bars in which inelastic deformation

takes place, the soundness of the code provision should be investigated.

It is recommended that the design schemes considered in this study be the subject of a

more comprehensive experimental and analytical investigation. Parameters to be studied

include: (1) effect of high shear stresses; (2) use of higher strength concrete; (3) use of light­

weight concrete; and (4) effect of the interaction between slab of floor system and beam.
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Studies should be carried out that will permit practical guidelines to be formulated for establish­

ing the proper location of the plastic hinges. Other schemes, such as the use of haunched

beams to force the formation of platic hinges away from the face of the column, should also be

investigated. Methods of improving bond and anchorage of the beam main reinforcing bars or

delaying and minimizing their bond deterioration at the joint if plastic hinges form at the face

of the column should be explored. For example, the possibility of bending the beam bars at

the joint, or using plates welded to the bars could be studied to assess their effects on

anchorage.
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SPECIMEN PROPERTIES

SPECIMEN SPECIMEN
PARAMETER BC5 BC6

Beam length (in.) 72 72

Column height (in.) 72 72

Column:

Area (in2) 289 289

As (in2) 5.28 5.28

f (%) 1.83 1.83

f y (ksi) 64 64

i' (ksi) 4.0 4.0c

Beam:

b (in. ) 9.0 9.0

h (in. ) 16.0 16.0

d (in. ) 14.5 14.5

d' (in. ) 1.5 1.5

As (in2) 1. 76 1. 76

A' (in2) 1. 76 1. 76s
p 0.0135 0.0135

p' 0.0135 0.0135

f (ksi) 64 64y

f 106 106s.max

f'
(ksi) 2.1 4.0c

1 in. = 25.4 llIin

1 ksi = 6.895 MFa
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TABLE 2 ENERGY DISSIPATION OF SPECIMEN BC5

HT°j!HBottom TOP BOTTOM TOTAL
CYCLE eq eq 11 AREA AREA AREA

kips/kips (K-IN. ) (K-IN. ) (K-IN. )

9-10 40.0/40.6 1.0 -- -- 8.6
11-12 39.3/39.7 1.0 -- -- 8.7
13-14 47.3/45.1 2.0 22.5 32.3 54.8
15-16 44.4/44.4 2.0 25.2 24.1 49.3
17-18 50.7/52.2 3.4 59.4 76.0 135.4
19-20 47.9/50.2 3.4 64.3 65.5 129.8
21-22 52.5/53.4 5.0 103.7 132.6 236.2
23-24 49.0/48.2 5.0 112.0 102.6 214.5
25-26 48.8/44.2 7.1 154.8 160.0 314.7
27-28 37.2/36.7 7.1 108.1 102.0* 210.1

*estimated.

TABLE 3 ENERGY DISSIPATION OF SPECIMEN BC6

HT°j!HBottom TOP BOTTOM TOTAL
CYCLE eq eq II AREA AREA AREA

kips/kips (K-IN.) (K-IN. ) (K-IN. )

9-10 42.8/42.3 1.0 -- -- 8.6
11-12 41. 7/41.4 1.0 -- -- 8.7
13-14 46.1/45.5 2.0 25.4 35.5 60.9
15-16 46.2/45.6 2.0 28.6 26.1 54.7
17-18 50.5/49.0 3.25 57.1 76.4 133.5
19-20 49.5/48.5 3.25 65.7 59.1 124.8
21-22 52.4/52.4 4.8 100.6 129.7 230.3
23-24 50.5/48.9 4.8 102.0 96.5 198.5
25-26 47.1/43.9 4.8 99.0 81. 7 180.7
27-28 37.1/31.1 6.6 93.0 103.3 196.3

1 in = 25.4 rom

1 kip = 4.448 kN



- 37 -

1-16"@ --

9~ C3 ~ ~
...--- ~ -... ..... -;L...- --... "",--.-

1
18.25" (j) I

'--- 1

lJ~~3663"• 43.88"
51.13"

57.6ir
62.00'

63.50"

1 in. 25.4 mm

TABLE 4a TIP DISPLACEMENTS FOR SPECIMEN BC5 - EAST BEAM

DISPLACEMENT COMPONENTS TOTAL
LOAD IN IN. DUE TO FLEXURAL ACTUAL

% DIFF.POINT
C1 C2 C3 C4 C5 DISP. (IN. )

(IN.)

9 .057 .069 .132 .092 .031 .380 .586 -35

10 .069 .078 .116 .125 .032 .420 .671 -37

11 .065 .072 .141 .092 .033 .403 .609 -34
12 .069 .076 .117 .129 .031 .422 .681 -38

13 .084 .095 .441 .258 .041 .919 1.162 -21

14 .088 .077 .390 .260 .032 .845 1.210 -30

15 .084 .096 .466 .261 .040 .947 1.150 -18

16 .092 .072 .400 .260 .030 .854 1.160 -26

17 .111 .213 .867 .470 .047 1. 710 2.010 -15

18 .121 .137 .704 .545 .041 1.580 1. 930 -18

19 .U8 .197 .864 .520 .044 1. 740 2.010 -13

20 .129 .131 .686 .551 .039 1.540 1.930 -20

21 .260 .250 1.146 .752 .047 2.455 2.910 -16

22 .268 .151 .962 .846 .060 2.290 2.910 -21
23 .306 .139 1.150 .806 .029 2.430 2.910 -16

24 .260 .189 .907 .832 .048 2.236 2.910 -23

25 .536 .340 1.650 .889 .017 3.430 4.110 -17

26 .230 .387 1.530 1.230 .033 3.410 3.910 -13
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TABLE 4b TIP DISPLACEMENTS FOR SPECIMEN BC5 - WEST BEAM

DISPLACEMENT COMPONENTS TOTAL
LOAD IN IN. DUE TO FLEXURAL ACTUAL % DIFF.
POINT C1 C2 C3 C4 C5 DISP. (IN.)

(IN.)

9 .0612 .05596 .1202 .0952 .0291 .363 .586 -38

10 .0689 .08470 .1258 .1009 .0317 .412 .671 -39

11 .0612 .05330 .1222 .1093 .0266 .373 .609 -39

12 .0689 .08010 .1370 .1058 .0285 .420 .681 -38

13 .0804 .07610 .4188 .2576 .0377 .871 1.162 -25

14 .0850 .08880 .3881 .2699 .0355 .867 1.210 -28

15 .0804 .07320 .4443 .2633 .0342 .895 1.150 -22

16 .0854 .08356 .3993 .2751 .0344 .878 1.160 . -24

17 . 1684 .14700 .7767 .4419 .0484 1.580 2.010 -21

18 .0987 .14350 .7690 .5476 .0410 1.600 1.930 -17

19 .1607 .15390 .8093 .4748 .0451 1.640 2.010 -15

20 .0957 .14750 .7429 .5792 .0330 1.600 1.930 -17

21 .3138 .26570 1.0737 .6582 .0550 2.370 2.910 -19

22 .2832 .21150 .9674 .8680 .0297 2.360 2.910 -19

23 .2756 .23050 1.1356 .7319 .0531 2.430 2.910 -16

24 .3314 .11410 .9756 .7955 .0181 2.230 2.910 -16

25 .3092 .2080 1.9164 1.0900 .0575 3.670 4.110 -11

26 .4593 .2432 2.2480 .4150 .0020 3.370 3.910 -14
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TABLE 5a TIP DISPLACEMENTS FOR SPECIMEN BC6 - EAST BEAM

DISPLACEMENT COMPONENTS TOTAL
SHEAR

TOTAL
LOAD IN IN. DUE TO FLEXURAL

DISP. MEASURED ACTUAL % DIFF.POINT
C1 C2 C3 C4 C5 DISP.

(IN. ) DISP. (IN. )
(IN. ) (IN. )

9 .057 .073 .037 .058 .114 .345 .043 .388 .59 -34
10 .061 .043 .065 .038 .124 .330 .051 .381 .63 -40

11 .057 .080 .036 .054 .115 .343 .056 .399 .59 -32

12 .061 .042 .065 .035 .130 .333 .056 .389 .64 -39

13 .064 .067 .077 .222 .362 .792 .243 1.035 1.17 -12

14 .073 .045 .083 .026 .501 .728 .219 .947 1.17 -19

15 .064 .088 .079 .332 .260 .823 .398 1.221 1.19 + 3

16 .077 .044 .086 .277 .491 .975 .289 1.264 1.19 + 6

17 .077 .099 .117 .696 .538 1.527 .702 2.229 1.95 +14

18 .080 .048 .115 .036 .815 1.092 .670 1.763 1. 94 - 9

19 .080 .098 .145 .803 .315 1.441 .983 2.424 1.95 +24

20 .080 .047 .112 .332 .507 1.071 .836 1.913 1.95 - 2

21 .087 .110 .286 1.376 .332 2.191 1.301 3.492 2.90 +20

22 .084 .057 .151 .774 .705 1.771 1.479 3.250 3.03 + 7

23 .092 .130 .388 1.377 .019 2.006 1.902 3.908 3.03 +29

24 .084 .059 .440 1.370 .197 2.150 1.928 4.078 3.03 +35
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TABLE 5b TIP DISPLACEMENTS FOR SPECIMEN BC6 - WEST BEAM

DISPLACEMENT COMPONENTS TOTAL SHEAR TOTAL
LOAD IN IN. DUE TO FLEXURAL DISP. MEASURED ACTUAL % DIFF.
POINT

Cl C2 C3 C4 C5 DISP. (IN.) DISP. (IN.)
(IN.) (IN.)

9 .048 .060 .072 .039 .105 .324 .040 .364 .59 -38

10 .061 .077 .041 .054 .117 .350 .036 .386 .63 -39

11 .048 .057 .065 .043 .107 .320 .044 .364 .59 -38

12 .063 .077 .045 .051 .117 .352 .046 .398 .64 -38

13 .057 .065 .101 .039 .522 .784 .195 .979 1.17 -16

14 .073 .086 .063 .094 .447 .763 .254 1.017 1.17 -13

15 .057 .064 .095 .034 .591 .841 .238 1.079 1.19 - 9

16 .073 .085 .064 .211 .343 .775 .336 1.111 1.19 - 7

17 .084 .070 .133 .260 .838 1.385 .444 1.829 1.95 - 6

18 .084 .099 .101 .735 .278 1.297 .286 1.583 1.94 -18

19 .061 .066 .128 .628 .458 1.342 .725 2.067 1. 95 + 6

20 .087 .100 .116 .691 .188 1.182 .284 1.466 1.95 -25

21 .087 .071 .158 1.177 .607 2.100 .930 3.030 2.90 + 4

22 .100 .121 .168 1.093 .322 1.803 .293 2.096 3.03 -31

23 .068 .068 .126 1.302 .369 1.933 .495 3.428 3.03 +13

24 .100 .130 .206 1.082 .094 1.611 .923 2.534 3.03 -16
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FIG. 23 LOCALIZED PLASTIC HINGE MECHANISM
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FIG. 44 CRACKING AT LP 17 - BC5

FIG. 45 CRACKING AT LP 18 - BC5



- 79 -

1"+----- 16 11
--- -1

FIG. 46 CRACKING AT LP 21 - BC5

FIG. 47 CRACKING AT LP 25 - BC5



- 80 -

.,--- .....:
:

,,,

,,,
.,.,,,

I,

-~
\

\

!foII..f--------- 2411
--------Y7-

,,,

(
\

\' ... _-

FIG. 48 CRACKING AT LP 9 - BC6

~--------2411

FIG. 49 CRACKING AT LP 13 - BC6



- 81 -

1.4-------24"----...,.----...Y.:0/'h

"-J,,.

FIG. 50 CRACKING AT LP 18 - BC6

FIG. 51 CRACKING AT LP 21 - BC6



- 82 -

FIG. 52 BC5 AT LP 17

FIG. 53 BC5 AT LP 18
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FIG. 54 BC5 AT LP 21

FIG. 55 BC5 UPON COMPLETION OF TEST
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FIG. 56 BC6 AT LP 9

FIG. 57 BC6 AT LP 13
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FIG. 58 BC6 AT LP 18

FIG. 59 BC6 AT LP 21
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APPENDIX A -- LOCATION OF PLASTIC HINGE

The plastic hinges in the two specimens were located__with the aid of a computer program

that could determine the complete moment-curvature relationship of a particular cross section

of a concrete beam. Both the nonlinear stress-strain characteristics of the concrete and the

strain hardening properties of the steel were accounted for. Separate runs were made to deter­

mine the moment-curvature relationship of three different cross sections of the beam. These

have been plotted in Figs. A.l, A.2, and A.3.

Figure A.l gives the moment-curvature relationship of the beam for both specimens BC5

and BC6 with 4 #6 bars on the top and bottom. This figure describes the moment-curvature

relationship of the beam at the column face. The onset of strain hardening of the reinforcing

steel was at 189 kN-m (1670 k-in.).

Figure A.2 gives the moment-curvature relationship of the plastic hinge for member BC5.

The cross section consisted of 2 #6 bars on the top and bottom, and 2 #6 bars crossing diago­

nally in the middle. Two cases were tried: (1) a 45-degree diagonal crossing and (2) a 60­

degree diagonal crossing. The maximum moment for the 45-degree case was 3% larger than

that for the 60-degree cases--156 kN-m (1380 k-inJ vs. 151 kN-m (1340 k-inJ. The latter

case was chosen because it required less total length to form the plastic hinge.

Figure A.3 gives the moment-curvature relationship of the plastic hinge for member BC6,

which consisted of 2 #6 bars on the top and bottom. The maximum moment was 132 kN-m

(1170 k-inJ.

The ends of the beams were pinned so that the moment diagram is linear as shown in Fig.

A.4. The equation for the moment M x at a section x is

Mx = V(63.5 - x)k-in.

where V is the constant shear in the beam, 1.61 m (63.5 in.) is the length from the column

face to the pin, and x is the distance from the column face to the beam cross section at which

Mx is desired.
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The center of plastic hinge region was located in such a way that the moment at the

column face (4 #6 bars) would start strain hardening when the moment in the plastic hinge (2

#6 bars with diagonal crossing for BC5 or 2 #6 bars for BC6) reached maximum capacity. As

already indicated the moment at the onset of strain hardening was 189 kN-m (1670 k-in.) (see

Fig. A.I). The equation for Mx can be solved to determine the shear that causes the 189 kN-m

(1670 k-in.) moment at the column face

v 1670
63.5

26.3kips (I 16kN)

The maximum moments at the plastic hinge are known from Fig. A.2 for BC5 and Fig. A.3 for

BC6. From the shear and moment, the location, x, of the latter can be calculated.

For BC5:

yields

1340k-in. 26.3 kips (63.5 - x) in.

For BC6:

x = 12.6 in. (320 mm)

yields

1170 k-in. 26.3 kips (63.5 - x) in.

x = 19 in. (483 mm)

The actual location of the inclined bar intersection (or the center of plastic hinge region)

for BC5 was 406 mm (16 in.) This larger distance was used because it was felt that the

effectiveness of the diagonal bars after continuous yielding of the reinforcing bars at the plastic

hinges would be less than that predicted, due in part to the deterioration of the concrete in the

plastic hinge region. The experimental results show that such deterioration did not occur and

that a location of 381 mm (IS in.) would have been preferable because the steel strain at the

face of the column somewhat exceeded the strain-hardening value.

For BC6 the actual location of the cutoff of the bars was 610 mm (24 in.) from the
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column face. This was done because it was felt that after a few cycles of large rotations in the

plastic hinge, the bond in the cutoff bars would be destroyed and the plastic hinge would tend

to move toward the column face due to the moment gradient. The experiments proved that

610 mm (24 in.) was a good selection.

It is recommended that further studies be carrfed out on this topic in order to develop

practical methods for establishing the correct locations of the plastic hinges.
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