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1. INTRODUCTION

1.1 General

The dynamic response of a structure to a given motion
is dependent upon its strength, stiffness, and damping and
hysteretic energy absorption capacities. Each of these char-
acteristics of the structure canr change significantly when it
is subjected to concurrent earthquake motions in more than one
direction. This change is a result of interaction between the
resisting mechanisms in different directions.

The components of earthquake motion in different direc-
tions have been found to be nearly uncorrelated (14). It is,
therefore, unlikely that the components of the ground motion are
simultaneously large. As a consequence, the effect of con-
current earthquake motions in different directions on an elastic
structure will be small, because the elastic response in the
different directions will be uncorrelated.

For structural response in the inelastic range, however,
the response in any particular direction could significantly
change the characteristics of the structure in other directions
due to inelastic interaction, thereby changing the response of
the structure in that direction. This interaction, and thus the
change in the properties of a structure in a given direction,
increases with the increase in the level of inelasticity the

structure undergoes,



Inelastic response of structures to medium and strong
earthquakes is implicit in the aesigns.specified by modern
building codes (23, 36, 37). The effects of multidirectional
interaction on the response of earthquake resistant structures
should, therefore, be investigated to determine whether extra
provisiohs should be made in future building codes for the
simultaneous occurreénce of earthquake‘motions in different
directions.

In framed buildingé the effect of.the multidirectional
nature of the earthquake is most pronounded in the columns.
They are subjecﬁed to biaxial bending due to the two orthogonal
components of the horizontal earthquéke motion and the torsional
earthquake motion, and are subjected to time dependent axial
loads because of overturning moments and vertical earthquake
motion;

Recent investigations (18, 20, 21) have related the end
forces and end displacements of the column, referred to in this
study as the shear-deflection relationship, using theory of
plasticity formulations to show the importance of interaction
effects in the response of columns subjected to the two ortho-
gonal horizontal components of the ground motion.

For the uniaxial case these plasticity formulations
reduce td a bilinear idealization of the shear-deflection
relationship. Bilinear hYsteresis loops do not realistically
represent uniaxial c¢yclic behavior of reinforced concrete

columns {(29). Therefore, a different formulation is required



to model the uniaxial cyclic behavior of reinforced concrete
columns and to extend it to the biaxial case. A study of the
effects of two-dimensional earthquake motion on reinforced

concrete colunns can then be made.

1.2 Brief Review of Previous Investigations

A significant number of studies, both experimental and
analytical, have been made on the behavior of reinforced con-
crete columns and frames subjected to one-dimensional earthquake
motion (29). Studies on the two=dimensional behavior of such
columns and frames are, however, very few,

Takiguchi and Kokusho (31) tested several square
reinforced concrete sections under cyclic deformations in one
direction and constant bending moment in the orthogconal direc-
tion. It was reported that significant changes, depending on
the amplitude of the cyclic deformation, océurred in the bending
moment response in the direction cycled and in the displacément
response in the constant moment direction. Takizawa and Aoyama
(34) tested a set of square reinforced concrete columns under
complex uniaxial and biaxial displacement paths. Considerable
strength and energy absorption changes were observed in columns
subjected to biaxial loading when compared to those loaded with
uniaxial projections of the biaxial deformation paths.

Analytical studies on the two-dimensional behavior of

reinforced concrete columns have essentially utilized two types



of models, The first model used by most investigators (18, 20,
.21, 22, 26, 32, 34) considers the columns to be a class of
structural elements whose shear-deflection relationship can be
modeled by use of yield surfaces and rules of plasticity (6)

or their modifications (16, 39). Thé second model used in some
studies (1, 19, 31), develops the shear-deflection relationship
of the reinforced concrete column from stxess-stfain relation-
ships of steel and concrete by considering the column to be
'composed of discrete filaments and assuming a cﬁrvature dis~
tribution along the length of the column,

Nigam (18) using the first type of model, studied the
two dimensional behavior of single ﬁass systems supported on
fixed~fixed columns with elastic—perfectly-plastic properties
subjected to steady-state and earthquake excitations. Under
steady-state sinuscidal excitation peak responses for the
biaxial case with an input phase difference of 30° occurred
at lower exciting frequencies than for the uniaxial case and
were much amplified at these frequencies in comparison to the
uniaxial case. Under earthquake type excitations the biaxial
interaction effects were founa to be important for short period
systems only. Pecknold (21) using a similar formulation studied
the effect of system strength and fundamental period on the
biaxial-response of single mass systems. The biaxial effects
were found to increase, in most cases, with a decrease in the

system strength. The biaxial effects significantly increased



the system response whenever gravity (P-A) effects were included
in the formulation and the uniaxial ductility was large. Padilla
(20) included strain hardening in his formulation and found it
to be an important parameter., He also studied biaxial effects
on several five story framed structures under earthquake excita-
tion and found a major redistribution 0f energy dissipation, in
buildings of usual proportion, from the girders to the columns
if biaxial interaction was included. It was also suggested that
the biaxial effects in conjunction with P~-A would have been
c¢ritical for some designs if a sufficiently long duration of
the earthquake record was used.

In a recent publication Tékizawa and Aoyama (34) have
extended several one~dimensional shear-deflection hysteresis
rules for reinforced concrete columns to two-dimensions using
a plasticity formulation similar to Mroz's (16) method of  °
fields of work-hardening. This procedure was used to extend
the ‘degrading trilinear®' and the 'non-degrading bilinear and
trilinear' hysteresis rules of the uniaxial case to two~dimen=-
sions. The 'degrading trilinear® hysteresis rule models uniaxial
experimental data quite weli (30), and its extension to two
dinmensions was shown to model, to a fair degree, the gualitative
behavior observed in experiments (34). These biaxial models
for shear-deflection relationships were used to study two-
dimensional response of single mass systems under earthgquake

excitations., It was reported that biaxial effects could



substantially increase the displacement response of the system,
and that for any given system the biaxial effects were sensitive
to the hysteresis rules used (being largest for the ‘'degrading
trilinear' model), the degree of iné;asticity which the system
undergoes, the earthquake record used and the cross-correlation
between the two components of the earthquake record (33). In a
later study Takizawa (32) included the effects of gravity and
detericrating strength in the formulation. Although for the
systems studied, the effecis of P=-A and deteriorating strength.
were not significant under uniaxial excitation, they became
critical under biaxial excitation. .

Takiguchi and Xokusho (31), and Okada et al. (19) used
the second type of model, developing the shear-deflection
relationship from assumed stress-strain relations for steel
and concrete and making assumptions about the distribution of
strain over the section and curvature over the length of the
column., The analytical model was reported to match experi-
mental data fairly well showing the same basic characteristics
as observed in the tests. Akt;n (1) used a similar analytical
model to study the behavior of single mass systems under biaxial
earthquake excitation. It was concluded in the study that if
uniaxial displacement responses exceeded about twice the
crushing deflection the biaxial displacement responses may be
substantially higher.

In summary, the results obtained by previous investi-~

gators have one common conclusion, that the two-dimensional



effects can be significant for some systems, However; the
extensive results obtained by Takizawa (32, 33, 34) to deter-
mine the factors which influence the magnitude of this effect
are based on models developed from empirical extensions of
theory of plasticity which may no£ adequately represent rein~
forced concrete column behavior. Aktan's model (1) was
developed from the stress—-strain properties of-steel and
concrete, but only limited results were obtained because of
excessive computationa1>costs. This study was undertaken to
develop a computationally more efficiént model which can ade-
quately represent reinforced concrete column behavior so that
the applicability of Takizawa's fesults to reinforced concrete

columns can be verified.

1.3‘ Object and Scope

The study reported herein had two specific objectives,
which were:; |

1. To develop a computationally efficient procedure,
which would model the basic. characteristics of the shear-
deflection relationship, as observed experimentally, of rein-
forced concrete columns subjected to uniaxial shears and axial
load, and which can be extended, by a consistent formulation,
to model the same relationship for reinforced concrete columns

subjected to biaxial shears;



2. To study the effect of two~dimensional earthquake
‘motion on the response of reinforced concrete columns, as com-
pared to their response to one~dimensional earthguake motion,
and to ascertain the influence of va:ious factors, relating both
to earthquake characteristics and system characteristics, on
this comparison. |

The shear-deflection model for reinforced concrete
columns is developed from stress-strain ;elationships of con~
stituent materials by assﬁming the distribution of strain over
the section and the distribution of curvatufe along the length
of the column. Hysteresis and dete;ioration in concrete
strength due to cycling and strain-hardening and the Baushinger
effect in steel are accounted for. Effect of bar slip is not
explicitly taken into account. Creep and shrinkage effects are
negleéted. Shear and anchorage failures, and large reductions
in shear strength due to insufficient lateral reinforcement
are excluded from the formulation.

Chapter 2 degcribes the development of the shear-
deflection model. The calcul;ted stress~strain relationships
for steel and concrete, moment-curvature relationships of rein-
forced concrete sections, and shear-deflection relationships of
reinforced concrete elements are also compared with experimental
results of previous investigations.

Chapter 3 describes the results of the dynamic analyses.

The dynamic analyses were limited to single mass systems



supported on fixed-fixed columns. Responses of the columns
to both one- and two-~dimensional earthquake motions were cal-
culated. Scaled time~histories of the horizontal components
of the El Centro 1940 and Taft 1952 earthquakes were used. A
wide range of initial system periods and earthquake strength
were studied and the effect of these variables on the two-
dimensional response as compared to the one-dimensional response
observed. The effects of P-4, and different and varying axial
loads in influencing the two-~dimensional responses were studied.
The effect of material hysteresis rules was also briefly investi-
gated,

In the last chapter, genéral conclusions resulting from

the present study are presented.
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2. ANALYTICAL MODEL

2.1 Introductory Remarks

The object of this chapter is to develop a mathematical
model for the calculation of shear-deflection-axial load rela-
tionship of reinforced concrete columhs subjected.simultaneously
to biaxial shears and axial load. This model is used in Chapter
3 to predict the behavior of fixed-fixed reinforced concrete
columns subjected to two-dimensional earthquake motions.

Previous investigators have used two types of models
for calculating the shear-~deflection relationship of reinforced
concrete columns subjected to uniaxial shear apnd axial load.

The first type of models are characterized by a set of
rules to determine directly the shear~deflection relationship
for a column under a given axial load. These set of rules are
formulated to predict the basic characteristics of the experi-
mentally observed shear~deflection relationship. These type of
models include the bilinear, bilinear degrading (4 ), trilinear
degrading'(BO), Ramberg~08good‘(10) and so on,

The second type of models are developed from the basic
stress~strain relations for steel and concrete using principles
of mechanics with assumptions about strain and curvature dis-
tributions or displacement distributions. In the more general

form, this type includes finite element modeling of the column (40).
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In the simpler form,moment-curvature relationships are obtained
at a number of sections along the length of the column by
dividing the sections into layers of steel and concrete and
tracing stress-strain histories of these layers as the loading
progresses (13, 15). These type of models have two major
drawbacks., Firstly, only flexural and axial load behavior of
reinforced concrete columns is understood to a degree that it
may be analytically synthesized., Therefore, shear deformations
and deformations arising from bond and anchorage slips are either
neglected or gross assumptions about them are made. Secondly,
the amount of computation required and the data to be monitored
in using such models is very largé.

Both types of models have been extended to predict
behavior of reinforced concrete columns under biaxial shears
and'axial load., since very few experiments in this area have
been reported, the basic characteristics of two-dimensional
shear-deflection behavior of reinforced concrete columns have
not yet been determined. The first type of models have, there-
fore, been extended to two~dimensions using concepts of plas-
ticity, such as yield surfaces and flow rules (20, 34). a
theoretical or experimental basis for use of such flow rules
for reinforced concrete columns has yet to be established,

The sécond type of models can be extended to two-~dimensions
without inwvolving any new concepts. The column is now divided

into filaments instead of layers { 1) or into three-dimensional
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" finite elements instead of two-dimensional ones. However, the
drawbacks ©of such models, noted‘earlie: for uniaxial shear, are
even greater for the two-dimensional case. The amount of com-
putation and data monitored increases by an order of magnitude
or more. Also,the effects of shear deformation and bond and
anchoragé slips in two dimensions can only be guessed at, since
experimental déta on theée are unavailable.

A model of the second type was develaped,for this study.
Shear~deflection relationsﬁips for the coiumn under biaxial
shears and axial load were calculated frdm moment~-curvature
relationships at the end section of the column by making
assumptions on the distribution of curvatures along the length
of the column. The moment-curvature relationships were cal=-
culated from stress-strain relations for steel and concrete.
The concrete area at the end sections was lumped at a few
discrete points on the section to reduce the amount of computa-
tion.

The model was developed with the object of obtaining
the same characteristics with respect to strength and enerqy
absorption in the calculated relationship for shear-~deflection
as observed experimentally for uniaxial shears, and using the
same assumptions to obtain the relationship for biaxial shears.
No attempt was made to predict failure of the column. Experi-
mental data in this area, especially for the biaxial case, is

insufficient for failure of the column to be modeled.
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The analytical model developed here is restricted to
columns restrained against rotations at both ends. A more
general model can be developed based on the same concepts as
used in this study. However, a more complex numerical pro-
cedure would be required, because of the increase in the number
of variables. This will‘increase the amount of computations
considerably.

The stress-strain relations for steel and concrete used
in the study are given in Section 2.2.. The development of the
model is described in Section 2.3. In Section 2.4 the model
is compared with some available experimental data. The charac-
teristics of the model under axiai load and biaxial shears

are discussed in Section 2.5

2.2 'gtregg-Stragngelat;pns

a) steel

The calculated moment-curvature relationship of a
reinforced concrete section is dependent to a large degree on
the stress-strain relations used for steel {13, 15). The basic
characteristics to be modeled to accurately represent the stressg-
strain behavior of reinforcing steel for earthquake type loadings
are yielding and strain hardening for the first quarter cycle, and
the non-linear Bauschinger effect for subsequent cycles. The

Bauschinger effect reduces the apparent yield stress for cyclic
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loading after first yielding has occurred. For earthquake type
loading where only few large sﬁrain excursions occur, fatigue
effects may be neglected. Strain rate may increase the initial
yield stress slightly, but its effectlon cyclic behavior is little
known and it is neglected in this study.

A number of expressions are available for calculation
of stress-strain relationships for reinforcing steel ( 2, 13,
27). Modified forms of Ramberg-Osgood relations have been used
by Kent (13) and Aktan, et al. (2). These relations fit fairly
well the data from which they are derived, The basic problem in
using the Ramberg-0Osgood curve is tbat it gives the strain in
terms of the stress and to obtain stresses from strains an
iterative procedure has to be followed.

In this study after the initial elastic-perfectly-
plastic branch of the stress-=strain diagram, strain hardening
and the unloading and relcading curves are modeled by an
expression suggested recently by Richard and Abbott (24).

The expression in its general form is

{1 =g) ¢
(1 + (-E--G){n)l/'rl v -y
B

where © and € are some normalized stress and strain, respec-
tively, measured from the point of reversal and g, 8 and n are
constants which may depend on the previous strain history. The

specific forms of this equation used in this study are given in
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Appendix A where the rules used in obtaining the complete stress-
strain relationship for steel are described. A schematic diagram
of the proposed steel stress-strain relationship is shown in

Fig. 2.1.

For this study o was assumed to be a constant and g and
n were assumed to depend only on the maXimum range of stress
reached in previous loadings. The model as used here may,
therefore, be said to have only limited memory.

The numerical paiameters required in using the relation-
ship given in Appendix A were evaluated fof Grade 60 steel from
data given in Ref. ( 2 ) and for Grade 40 steel from data given
in Ref. (13). These values were used for all comparisons with
experimental tests at the moment~curvature and load-deflection
level. However, general applicability of these values is not
claimed., Figs. 2.2, 2.3 and 2.4 show comparisons of the pro-
posed analytical model with tests. The comparison is very good
for the purposes of this study. Also shown in Pig. 2.4 for

comparison is the analytical model of Kent (13).

b) Concrete
The effect of concrete hysteresis rules on the overall
calculated cyclic bebhavior of reinforced concrete sections and
elements is small (13, 15). The important characteristics to
be modeled are the maximum compressive stress and the strain at

which it occurs, the slope of the stress-strain curve after
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maximum stress is reached (which is dependent on the degree of
confinement), and cracking and crack closing,

A number of rules for calculating the stress-strain
relations of concrete subjected to cyclic loading have been
suggested ( 5, 12, 13, 28). The procedure used in this study
is a simplified version of the hysteresis rules propoged by
Daxrwin (5 ). The procedure as suggested is for biaxial cyclic
loading of concrete. However, only uniaxial cyclic loading of
concrete is considered in this‘study. The rules used in this
study for determining the concrete stress~strain relatibns are
described in Appendix A. A schematic diagram of the basic rules
is shown in Fig. 2.5. The notations used in that figure are
also defined in Appendix A.

The procedure is characterized by an envelope curve
also uéed for monotonic loading and a set of rules for deter-
mining the stress-strain relations for cyclic lcading. The rules
for cyclic loading were obtained by Darwin (5 ) to match the
energy absorbed and the number of cycles to failure observed
in experiments. The rules were suggésted only for unconfined
concrete, However, since data on cyclic behavior of confined
concrete is unavailable these ruleé are also used for confined
concrete in this study.

The envelope curve in compression consists of three
brancbes. The.first branch, for loading from zero to maximum

compressive stress, is the same for both confined and unconfined
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concrete and is given by Hognestad's parabola (7). The second
branch is a straight line with the slope dependent on the degree
of confinement. The slope is assumed to be zero for spirally
confined concrete. For concrete confined by rectilinear ties
the formula (Eq. A.8 in Appendix A) as used by wight (38) and
oriéinally suggested by Roy and Sozen (25) is used. For uncon-
fined concrete it is assumed that stress drops down to 20% of
maximam at a point where strain is four times the strain at
maximum stress. The third branch is a straight line at a
constant stress equal to maximum stress fdr spirally confined
concrete and to 20% of maximum for concrete confined by recti-
linear ties. The unconfined conciete is assumed to spall off
after the strain reaches four times the strair at maximum stress.

In tension the concrete is assumed to be elastic-~
brittle material. A reduced elastic stiffness in tension is
used if the concrete has previously been loaded in compressidn._

The effects of creep and shrinkage and any strain
rate effects are ignored in the formulation.

The above model was compared with two experimental
curves, and the comparisons‘are shown in Figs. 2.6 and 2.7.
For purposes of this study the anmalytical model compares
favorably with the experimental data.

It may be worth noting here that modeling concrete
unloading and reloading by a single straight line with the

same slope as the initial elastic slope did not change the
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results of the dynamic analyses to any significant degree,
However, a change in the slope 6f the softening branch of the
envelope curve produced significant changes in the results of

the dynamic analyses.

2.3 Dpevelopment of the Analytical Model

The shear—deflection-éxial loéd relationship of a rein-
forced concrete column is developed in this section. The model
is used to calculate the resisting sheérs‘in an axially loaded
coluwn as it is displaced incrementally through a given set of
two=-dimensional relative lateral displacements between its ends.
The axial load may be different in each step, and further, may be
a function of the calculated shears.

"The model as developed in this section is limited to
circular and rectangular sections which are symmetrically
reinforced. Also, it is limited to columns which are con-
strained against rotatians at both ends.

The model‘is synthesized from the stress-strain relations
of the constituent materials which were described in Sec. 2.2.
These stress~-strain relations are used to obtain the moment-
curvature-axial load relationships at the end-sections of the
column. The moment-curvature-axial load relationships of the
end~sections are in turn used to calculate the shear~deflection-

axial load relationship of the column.
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In the following, the development of the moment-
curvature-~axial load relatiobship is described first, then,
the development of the shear-deflection-axial load relationship

is described,

2.3.1 Moment-Curvature-Axial Load Relationship

2.3.1.1 Development

Given a set of biaxial curvatures and an axial load, the
resisting moments at a reinforced concrete seétion can be deterw
mined from a knowledge of the geometry of the section, the strain
distribution over the section, the stress=strain properties of
the materials constituting the seétion, and the strain history.

The usual procedure is to assume the shape of the strain
distribution over the section,and then to find the strain dis-
tribution and the corresponding stress distribution which satisfy
the given curvatures and the axial load. This last step may
require iterations if the stress-strain properties are nonlineait
The integration of the first moments of the stresses over the
area of the section gives the required resisting moments.

The nonlinear behavior of concrete in compression and
cracking in tension, and the yielding and strain hardening in
steel makes direct integration of the stresses over the section
to obtain axial load and moments difficult. The problem is
further compounded for cyclic loading when strain-history

parameters for all points on the section must be known.
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This problem has been attacked previously by dividing
the concrete in the section into 1ayers‘for uniaxial loading
(13, 15), and into a two~dimensional mesh for biaxial loading
({1). It is then assumed that the stress obtained at the cen-
troid of any layer or any element of the mesh is constant over
such layér or element. The strain-history parameters thus have
to be kept for a fixed number of points on the secﬁion and the
integrations for axial load and moments are obtained as summa-
tions. |

A similar procedure is used in this study to obtain the
moment-curvature;axial load relationship of a reinforced con-
crete section. The detailed calculation procedure is described
in Appendix B. A linear variation of strain over the section
is assumed. The same distribution of strain is used for both
steel énd concrete., Thie ignores bond slip between the two
materials and averages the concentrated strains at the cracks
in concrete., The stress-strain relationships for steel and con-
crete used are as detailed in Section 2.2. The actual strain
values for a given set of curvatures and axial load are obtained
by an iterative procedure whicﬁ solves for the concrete strain
at the centroid of the section to satisfy the given axial load.

The major difference from past procedures is in the
discretization of concrete area for integration and for recording
the strain history parameters. The previous procedures use the

type of discretization shown in Figure 2.8 and is referred to
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here as ‘'‘exact' integration. In the procedure propcesed here,
concrete area is lumped at nine prespecified locations on the
section as shown in Figure 2,9 and referred to here as 'proposed’
integration. fThis significantly reduces the amount of computa-
tion and space required to store strain history parameters. As
is shown later in this subsection the effect of this lumping of
the concrete area on the computed response of the section is
very small. 1In the following the criteria and the procedure
used in obtaining the 1oéations and the areas of the lumped
concrete on the section is described and then the behavior of
reinforced concrete sections as predicted by the !proposed’
integration procedure is compared with the behaviocr predicted

by the ‘exact' integration procedure.

2.3.1.2 Procedure for lLumping Concrete Axea

Different numbers and configurations of lumped concrete
areas were tried and the number of concrete areas in the con-
figuration shown in Fig. 2.9 were found to be the minimum
to give acceptable results. It was found that matching the
axial load-moment interaction diagram obtained from the 'proposed!
and 'exact' integrations procedures gave excellent agreement
between the cyclic moment curvature relationships obtained by
the two procedures.

The axial load-moment interaction diagrams were first
obtained using the ‘exact' integration procedure. The limiting

conditions were tension yielding in a steel bar or reaching of
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maximum compressive stress in any concrete fiber. The inter-
action diagrams normalized with'respect to the section size and
the concrete strength are dependent on the shape of the section,
the steel ratio and its arrangement, the concrete cover, the
ratio of the yield stress of steel to the concrete strength,
the ratib of steel yield strain to concrete strain at maximum
stress, the shape of the concrete stress-—-strain curve up to
maximum stress, and the moment direction.

Square and circulaf sections were used in this study.
The steel ratio was varied from 1 to &% usiné eight bars
placed symmetrically as shown in Fig. 2.15 for the test
columns. The concrete cover to the éenter of steel was varied
from 0.05 to 0.2 of the depth. The ratio of steel yield stress
to concrete strength was 60/5. The ratio of steel yield strain
to conérete strain at maximum stress was 0.00207/0.0025. The
concrete stress-strain curve up to maximum stress was assumed
to be a parabola. Two different axes for the direction of the
moment were considered for each of the sections. For the
square sections one direction was parallel to the edge and the
other along the diagonal. For-the circular section the axes
were 22 1/2° apart, since with eight bars the section is
symmetrical about axes 22 1/2° apart.

The lumped concrete areas and their locations were
determined to obtain the best f£fit for the points 1, 2, 3 and 4

on the axial load-moment interaction diagram shown in Fig. 2.10
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for moments around each of the two axes shown. Point 2 is the
balanced point when tension yielding in a steel bar occurs
simaltaneously with maximum compressive stress in any concrete
fiber. Points 1 and 4 are matched exactly in this study by
using the actual total concrete an& steel areas.

For the circular section three unknowns, areas By and Ag,

and radius r, as shown in FPig. 2.9, have to be determined for

any particular combination of geometric and material properties.
Area AS can be written in terms of A4 and the known total con-

crete area, Area A4 and radius r. are determined to obtain the

1
best £it for points 2 and 3 on the interaction diagram for each

of the two moment directions considered. A walue of r1 is

first chosen and using the same curvature as obtained in the
‘exact' integration procedure A4 is solved for to separately
matdh axial load and moment at points 2 and 3 in each of the
moment directions. This gives eight wvalues for A4. The process

is repeated for different values of r., and the value of r.

1 1
which gives the least dispersion for the value of A4 is selected.

The average value of A, corresponding to the selected value of

rl is used.

For the square section of five unknowns, areas Al, A2

and A3, and distances d1 and d2 as shown in Fig. 2.9, have

to be determined. Area A3 can be written in terms of By, A2

and the known total concrete area. To obtain areas Al’ A, and

2

distances dl, dz the procedure was to select sets of d, and d

1 2
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and using the same curvature as obtained by the 'exact' inte-
gration procedure solve for areas Al and A2 to match the axial
load and moment at points 2 and 3 in each of the moment direc~
tions. This gives four sets of areas'Al and Az. The process
is repeated for different set of values for dl and d2 and the
set of values which gives the least dispersions for the values
of A, and A, is selected. The average values obtained for Ay

1 2

and A, for the selected wvalues of 4. and d, are used.

1

2
It was found that the lumped concrete areas and their

locations were dependent on the steel ratio and the concrete
cover only to a very small degree. The average areas and
their locations for concrete covers ranging from 0.05 to 0.2
of depth and steel ratios ranging from 1% to 6% are shown in
Fig. 2.9.

| As a consequence of the small dependence of these lumped
concrete areas on the concrete cover and steel ratio, the values
obtained for the square section can be used directly for
rectangular sections. Also, these values can be used for
different steel bar numbers and_arrangements than the one
they were obtained for, if the bars are symmetrically placed.

No distinction is made between unconfined and confined

concrete for the lumped concrete areas. This does not affect
the calculations for obtaining axial load-moment interaction

diagrams, because the properties of the two kinds of concrete



25

up to maximum stress are assumed to be the same. However, it
does affect the moment-curvature relationships after maximum
compressive stress is reached in concrete. For this case the
properties used for lumped concrete are an area-weighted average
of the properties of confined and unconfined concretes. The two
parameters that are averaged are the slope of the softening
branch of the concrete curve and the ultimate sfress at very
large strains. The lumped concrete is then treated as confined

concrete with averaged properties.

2.3.1.3 Comparison of ‘Exact' and ‘Proposed' Integra-
tion Procedures

The accuracy of the proposed model for the column section
was checked by comparing the axial load-moment interaction dia=
grams and the moment-curvature relationships obtained by the
‘exact' and the 'proposed’ integration procedures.

For ‘'exact' integration procedure the square column
section was divided into 144 concrete elements and the circulax
column section into 121 concrete elements as shown in Fig. 2.8.
The outer two layers consisted of unconfined concrete. For
*proposed’ integration procedure the concrete area was lumped
at 9 locations on the section as shown in Fig. 2.9. The actual
areas and location of steel were used in both procedures. For
all comparisons 8 steel bars were arranged in the configuration

shown in Fig. 2.15 for the test columns.
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The stress-strain properties for steel and concrete
given in Section 2.2, and described in detail in Appendix A
were used for all comparisons.

A large number of comparisons were made between results
obtained by the two procedures, As the loading complexity
increased fewer sections were tested. The comparisons can
be divided into four sets as follows:

i) Axial load-moment interaction diagrams are compared
in Pig. 2.11 for circular séctions and Fié. 2,12 for square
sections. The concrete cover was varied from 0.05 to 0.2 of
the depth. Although results for only 0.1 and 0.154 are shown,
the results for other cover ratilos were similar. (Other
parameters used were the same for which the lumped concrete
areas were obtained.) The comparison between the two procedures
is excéllent.

1i) Moment~curvature relationships for zero axial
load and monotonic loading are compared in Fig. 2.13 for ciyx~-
cular sections and Fig. 2.14 for square sections. Two dif-
ferent covers of 0.1 and 0.15 of depth were used, Both gave
similar results and only the results for 0.1d cover are shown.
All other parameters were the same as used for axial load-
moment interaction comparisons. The circular columns were
assumed to be spirally confined with a slope, & = 0 for the
descending brénch of the concrete curve, The square c¢olumns

were assumed to be so confined to give £ = 40 (strain at 20%
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of maximum stress € = 0.0225, compared to strain at maximum
stress €g = ~ 0.0025). The unconfined concrete for both sections
had @ = 107 (520 = - 0.01). The agreement of results for the
circular section shown in Fig. 2.13 is excellent except for
large steel ratios for one of the moment directions. For the
squaré section the agreement of results shown in Fig. 2.i4 is
also good except for the post-yielding slope for moments applied
about the diagonal.

iii) Uniaxial c¢cyclic moment-curvature relationships are
compared in Fig. 2.17 for a c¢ircular section and Fig. 2.18 for
a square section under different axial loads. The test sections
and the material properties used are shown in PFPig. 2.15. The
circular column has the same section as the interior columns in
the 0Olive View Medical center,.heavily damaged during the san
Ferbando Earthquake of 1971. The square section was chosen to
have the same area. The lateral confinement shown gives Q = 0O
for the confined concrete in the ¢ircular section and § = 17.2
(520 = =« 0.042) for the square section. The axial load-moment
interaction diagram for the two sections are given in Fig. 2.16.
The balanced load for the circular section is approximately
750 kxips. The axial loads for the different moment-curvature
curves varied from 375 kips in tension to 1500 kips in compres-
sion. The loading history consisted of two cycles each to
maximum curvatures of 3, 6 and 10 times the yield curvature for

zero axial load.
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As is seen from Fig. 2.17 for the circular section, the
‘proposed' model compare extremély well with the *exact' model.
All basic characteristics -~ strength, shape of hysteresis loops,
strain hardening slope are predicted quite well,

Not all computed curves for the square column are
shown in Fig. 2.18. The comparison between 'proposed*' and
'exact' is, however, similar to those shown. For a compressive
axial load of P = =~ 1125 kips the proposed model shows a break-
down in strength for the larger curvature cycle. For P = |
1500 kips both models showed similar breakdowns. This does
not affect the use of this model, because it is recommended
that columns designed with such confinement to resist lateral
loads should not carry axial loads of more than half the
balanced load.

iv) Biaxial c¢yclic moment-curvature relationship are
shown in Pigs. 2.20 and 2.21. Only results for the circular
section are shown since the results for the square section are
similar. The column section and material properties are the
same as shown in Fig. 2.15. An axial load of P = - 750 kips
was used. This is the estimated load on the interior column of
the Olive View Medical Center. Three different two-dimensional
curvature histories were used as shown schematically in Fig.
2.19 and given in Table 2.1. The projection of each of the
curvature histories in Direction 1 is the same. The sequence

of lcocading in Direction 1 is also shown in Fig. 2.19. It
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consisted of two cycles to a maximum ductility of 6 (six times
vield curvature at P = 0), then two cycles to a maximum duc»
tility of 10, followed by two cycles to a maximum ductility
of 6.

For Curvature History 1, Direction 2 was loaded only
after loading in Direction 1 was completed, The results for
both directions are shown in Fig. 2.20, The comparison between
‘exact' and ‘proposed' models is excellent. For Curvature
History 2, loading in boﬁh directions pfogresséd simultaneouSly
but 90° out of phase. For Curvature History 3 one curvature
was held constant at its maximum while the other was varied.
Results for Direction 1 for both of these curvature histories
are shown in Fig. 2.21. Results for Direction 2 were similar.
The comparison for these two cases is also seen to be excellent.

| These comparisons indicate that the computationally
more efficient 'proposed' model for the column section gives
results for the moment-curvature-axial load relationship which
are similar to and show the same characteristics as those

obtained from the ‘'exact' model.

2.3.2 Shear-peflection-Axial ILoad Relationship

2.3.2.1 Development

The relative lateral displacements between the ends of
a reinforced concrete column restrained against rotations at its
ends arise basically due to flexural deformations and shear

deformations. For most columns shear deformations are small
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relative to the flexural deformations. They are neglected in
this study. It is, however, impossible to completely restrain
the column ends from rotating due to deformations of the joints
and cumulative slips of the reinforcement at the face of the
joints (anchorage slips). The column displacements arising due
to joint.deformation are small for a well proportioned joint.
The displacement due to end rotations because of anchorage
slips can, however, exceed displacements due to flexural defor-
mations. It is difficult tb synthesize anchorage slip behavior
analytically especially for biaxial bending and it is assumed
in this study that the columns are fixed-ended. It may, however,
be noted here that comparisons made in Section 2.4 between
experimental hysteresis loops and those predicted by the pro-
posed model after assuming that displacements arising due to
anchoraée slips are proportional to those due to flexural
deformation, were good.

One p;ocedure for calculation of shear-deflection
relationships of reinforced concrete columns is to use finite
element type modeling of the column (40). A similar procedure
was used by Aktan (1) who divided the column into a number of
elements and assumed displacement distributions along the length
of the element., However, because of the large amount of compu-
tations involved, the study was made using only one element
which resulted in a linear curvature distribution along the
length of the column. This will grossly overestimate the column

deflection after yielding of the reinforcement.
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The more usual procedure for calculation of the shearw
deflection relationship of a column is to obtain the moment-
curvature relationships at a number of sections along the length
of the column, then from a knowledge of the bending moment dis~
tribution, the curvature distribution along the column length
can be obtained which can be integrated twice to yield the
displacements (13, 155. The disadvantage of this procedure is
the amount of computation required because moment-curvature
relations at a number of.sections are needed, .In addition, the
displacements rather than the bending moments are known requir-
ing prediction and iteration procedures to obtain the desired
results.

A procedure similar to the above was used in this
study. The amount of computation required was greatly reduced
by aésuming a curvature distribution along the length of the
column, thus requiring the calculation of the moment-curvature
relationships only at the end sections of the column.

Since lateral loads along the length of the column are
not considered, the bending moment diagrams are linear in each
of the two orthogonal directions considered. Also, since the
ends are restrained against rotations the moments at opposite
ends in each direction are equal and the points of contra-
flexure for both directions are at mid-length of the column.
Therefore only one-half of the column and only one end section

is considered in this study.
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The half column is divided into three segments, as shown
in Fig. 2.22, in oxder to idealize the curvature distribution.
The first segment is assumed to be uncracked and the curvature
distribution along it is assumed to be linear. The gecond
gsegment is assumed cracked but unylelded and the curvature
‘distributions along it are assumed linear. The third segment
is assumed to have yielded an& the curvature distributions along
it are assumed to be parabolic. |

The lengths of the segments are determined by finding
the sections where c¢racking or yielding have been initiated.

The initiation of cracking or yielding at a section is indicated
by the cracking and yield criteria shown in Fig. 2.24. For the
circular column the curves are circular in the moment space,
their size dependent on axial load. For the rectangular ¢olumn,
the cracking curve is diamond shaped in the moment space with
size dependent on axial load. The yield curve is given by the

equation

2] 1% = 1 (2.2)

where Ml and M2 are the two orthogonal moments at the section,
My, and My, are the respective yield moments for the given axial
load and ¢ is a parameter varying between 1 and 2 depending on

the axial load.
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when the cracking or yield criterion at a section is
found to be satisfied, the lengths of the segments are adjusted
accordingly. It is assumed that the length of the uncracked
segment can only decrease and that the length of the yielded
segment can only increase as the léading progresses.

The two orthogonal curvatures at the end section are
calculated from the end moments by using the moﬁent curvature-
axial load relationships developed in Section 2.3.1. Once the
end curvatures and the segment lengths are knoﬁn the lateral
deflections in the two orthogonal directioﬁs can be determined
independently of each other. As shown in Fig. 2.22 for each
direction the moments my and m, at.the ends of segments 1 and

2 are calculated from the linear bending moment diagram. The

curvature ¢1 corresponding to the moment m. is calculated using

1
the ﬁncracked slope, kcr of the moment-curvature relationship
in that direction. The curvature ¢, corresponding to moment m,
is calculated using ky the secant slope up to yield of the
moment-curvature relationship in that direction for that parti-
cular axial load. The parabola in Segment 3 is assumed to have
the same slope at the junctibn with Segment 2 as the curvature
diagram in Segment 2. After the curvature diagram in a particular
direction is known the deflection can be calculated analytically
by integrating it twice.

The above shear-deflection-axial load model is used in

the dynamic study of Chapter 3. Since displacements are
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specified in that amalysis and moments have to be éalculated,

an iterative procedure is devised which predicts the end
curvatures and thus the end moments, which in turn determine

the curvature distribution resulting in the calculation of a

set of displacements. If calculated displacements are different
from those required, new curvatures are predicted and the
process repeated, The complete procedure is detailed in

Appendix C.

2.3.2.2 Analvtical Check of Assumed Curvature
Distribution

The shapés taken by the assumed curvature along the
length of the half-column at different stages of loading are
shown in Fig. 2.23. The assumption of a linear distribution
of curvature in the uncracked segment is correct. The lcading
and unioading at each section along this segment is with the
uncracked slope, Kope The assumption of a linear distribution
of curvature in the segment which is cracked but unyielded will
be analytically correct only if it is assumed that the moment-
curvature relationship from cracking to yielding is a straight
line and that cracking along the-length of this segment is a
continuous and not a discrete phenomenon. The average curva-
ture in the actual case will not be very different from what
is assumed and the overall effect on displacements of these
assumptions may be neglected. The actual distribution of

curvatures in the yielded segment is not known and may be quite
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different from the parabolic distributicn assumed. Calculations
discussed below were made for several loading histories and the
assumptions of a parabolic distribution of curvature in the
yvielded segment was found to be good. An analytical check
showed that a linear distribution éf curvature in the yielded
segment was not a good assumption.

The analytical check consisted of comparing assumed
moment-curvature relationships with calculated moment-curvature
relationships at two secﬁions in the yielded segment of the
column, The loading consisted of prescribéd relative displace~
ment paths befween the ends of the column. The assumed moment-
curvature relationship at any section was obtained directly
from the moment-curvature relationship calculated at the end
section. The moments were calculated from the linear bending
momeht diagram and the curvatures from the assumed curvature
distributions. The calculated moment-curvature relationships
were calculated for the assumed curvatures using the moment-
curvature relationship developed in Section 2.3.1. The two
sections were the moment-curvature relationships are compared
are located at distances of 0.025L and 0.075L from the end
section. The columnh section and properties used were the same
as used for the two-~dimensional moment curvature study and are
given in Fig. 2.15. Three different sets of loadings were

used as follows:
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i) Three different two-dimensional displacement
histories shown in Fig. 2.25 were prescribed for both circular
and square columns. The projection of each of the displacement
histories in Direction 1 was the gsame. The axial load on the
circular column was - 750 kip and on the square column - 375
kips.

Displacement History 1 consisted of cyclic loading in
Direction 1 followed by cyclic leading in Direction 2. The
shear-deflection relationship obtained, the momenf—curvature
relationship at the end-section and the assumed and calculated
moment-curvature relationships at digtances of 0.025L and
0.075L are shown for the circular c¢olumn in Fig. 2.26 for
Direction 1 and Fig. 2.27 for Direction 2. The agreement
betweep assumed and calculated moment curvature relationships
is found to be good. The same results are shown for the
sguare <¢column in FPigs. 2.28 and 2.29 and the agreement for
this case is also good, -

Displacenment History 2 consisted of simultaneous cyclic
loading in the two directions with 90° phase difference. The
results for the two directions and for the circular and square
columns were similar and only the results for Direction 1 for
the circular column are shown in Fig. 2.30. The agreement
between calculated and assumed moment-curvature relationships

is good.



37

Displacement History 3 consisted of cycling in the two
directiong alternately while one direction is kept at constant
peak displacement. Results for Direction 1 for the circular
column are shown in Fig. 2.31. The results for pirection 2 and
for the square column were similar to the results shown. The
agreement between the assumed and calculated moment—curvaﬁure
relationships for the gection at 0.025L is seen-to be good,
however, the assumed moment for one of the cycles for the
section at 0.075L is soméwhat larger than the calculated moment.
This suggests that the actual curvature fot that cycle at that
section will be larger than predicted by the parabolic distri-
bution.

ii) Circular columns were checked for axial loads of 0
and - 1500 kips and square columns for axial loads of O and
- 756 kips. The displacement history used was the one-dimensional
first half of Displacement History 1. The agreement between
assumed and calculated moment-curvature relationships was
similar to that shown for Direction 1 of Displacement History 1
in Fig. 2.26 for the circular column with axial load of - 750
kips and in Fig. 2.28 for the squaxe column with axial load
of - 375 kips. Only the results for O kips axial load for
the circular column are shown in Fig. 2.32.

) iii) A check was made using variable axial loads.
P == 750 -~ 0,05 M was used for the circular column and
|

= = 375 - 0.05 M for the square column. P being the axial
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load in kips and M the moment at the end of the column in kip-
in. Displacement history consisted of that used for the con-
stant axial loads. The results for thé circular column only
are shown in Fig. 2.33. The results for the square column
being similar, The overall agreement'between the assumed and
calculated moment-curvature relationships is seen to be good.
From the above comparisons for the different types of
loadings it is seen that the assumption of a parabolic dis-
tribution of curvature in the yielded segment of‘the column is
acceptable. It may be noted hére, however, that the same
circular and sqﬁare columns were used for all of the different
loading histories and the results may be influenced by section
and material properties significantly different from those

assumed.

2.4 Comparisons with Experiments

The analytical model developed in this study was com~
pared with some experiments reported by previous investigators.
The subject was to compare the shape of the analytical hysteresis
curves with experimental curves. Curvature or displacement
histories obtained in the experiments were prescribed as loading
to obtain the analytical curves. Three different sets of experi-
ments are used for the comparisons. The column properties used
are given in Table 2.2. The sets of experiments and their com-

parisons with the analytical model are as follows:
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a) Aoyama's Specimens A-l apnd A-2 (Ref. 3)

These specimens conéisted of simply supported beams with

12' spans. They were loaded 1aterally at two points giving a

6' constant moment region in the middle. The curvatures were
obtained from the rotations in this region. Specimen A-1 had
no a#ial load. Specimen A-2 had an axial load of - 36 kips
which is less than half of the balanced load for the section.
Analytical and experimental moment—curvature,relationships for
the first 1 1/4 cycles for these two specimens are compared in
Fig. 2.34. The agreement between the two curves is seen to be

very good.

b) Karlsson et al. Specimen BKS (Ref. 11)

This specimen wag modeled to be a half scale repre-
sentation of the interior columns in the Olive View Medical
Center. The specimen consisted of two cantilevers connected by
a central stub. The lateral loading was applied simultanequsly-_
at the ends of the cantilevers, but in opposite directions.

The central stub was constrained against rotation. The axial
load was ~ 200 kips, approxiﬁately the balanced load of the
section. The column section was 13" square, but the longi-
tudinal steel was placed along a circular perimeter and the
column was spirally confined. The proposed model for the
section assumed the column to be circular, 13* in diameter,

but with the area of concrete in the actual section.
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The experimental moment-curvature relationship is com-
pared in Fig. 2.35 with £he proposed analytical and Aktan's
analytical (1) models. The experimental curvatures are
average rotations in a 13" reference length near the fixed end
of the column. The proposed model is seen to be good and
gives a much better agreement with the experimental curve
than Aktan's model. The difference between the two analytical
curves can largely be attributed to the Bauschinger effect in
steel which is neglected inlAktan's model, The drop in
strength after yielding in the first quarter éycle of the
experimental cur§e was noticed only at one end of the specimen.

The experimental shear-deflection relationship for the
other end of the specimen is compared with the proposed model
in Fig. 2.36. Because of neglect of anchorage slip at the
joint, ﬁnd, to a much lesser degree, neglect of joint deforma=-
tions and shear deformation of the column itself, the analy-
tically predicted yield displacement was only 40% of the
experimentally obtained displacement at yielding of steel.
Flexural deformation to total deformation ratios of this magni-
tude are expected (29). To determine whether the analytical
model can successfully predict the shape of the experimental
shear-deflection curves, and whether the deflections due to
anchoragerslips can be assumed to be proportional to the deflec-
tions due to flexural deformations, deflections for the

analytical model shown in Fig. 2.36 are multiplied by a factor
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of 2.5. As is seen from the figure the proposed model predicts

quite well the shape of the éxperimental hysteresis curve.

c) Takizawa and Aovama's Specimen 3 and 4 (Ref. 34)

These specimens are part of the only available set of
experiments in which biaxial lateral loadings introducing large
inelastic deformations are used. The specimens were single
cantilevers anchored into a reinfofced concrete stub. An axial
load of - 16.0 tons was applied. This is approximately 70%
of the balanced load.

The nominal biaxial loading paths are shown in Fig. 2.37.
The exact sequence is given in Table 2.3.

The experimental shear-deflection relationship for
Direction 1 is compared in Fig. 2.38 with relationship obtained
from the proposed model and Takizawa's model. For Specimen 3
shear-deflection curves for loading sequence 6 to 13 given in
Table 2.3 are not shown in Fig. 2.38 for purposes of clarity.
For these specimens fhe proposed model predicted only 50% of
the displacements at yielding of steel, therefore, the dis-
placements obtained from the proposed mcdel are multiplied by
a factor of 2.0. Takizawa's model is based on fields of work
hardening, utilizing a pnumber of yield surfaces, and uses the
yield displacement as input to the model.

As is seen from the comparison the proposed model pre-
dicts very well the shape of the experimental curves and gives

a much better fit than Takizawa's model.
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2.5 Characteristics of the Proposed Analvtical Model

The basic characteristics of the proposed model are
discussed here. Emphasis is placed on those characteristics
which are e#pected to influence the response of the column under
moderate to strong uniaxial or biaxial ea:thquake motion. These
characteristics include the strength, the post-yield slope
of the shear-deflection or mdment-curvature relationships, the
overall shape of these relationships which affects their energy
absorption capacity, and some index for the cummulative damage
to the column.

It should be noted here that actual loading histories
during an earthquake may be very different from the simplified
histories used in this study. Nevertheless, it is expected
that major characteristics of the model affecting response
under actual loading conditions can still be observed.

Another limitation of the observed behavior in this
study is due to the use‘of a single circular column and a
single square column. The geometry and the material properties
used for these columns, however, are expected to represent a
large class of actually constructed columns. The properties
of the test columns are shown in Figure 2.15.

The characteristics of the proposed model are discussed
in two parts. First, the effect of different axial loads on
uniaxial cyclic behavior is examined, then the behavior under

biaxial cyclic loading is discussed.
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a) Effect of Axial Loads

The effect of axial load was studied by comparison of
results obtained for different and varying axial loads during
anal&tic verification of the proposed model for moment-curvature
relationship and shear-deflection relationship. The momént—
curvature relationships are shown in Fig. 2.17 for the circular
section and Fig. 2.18 for the square section. For the circular
section the results shown are for axial loads from 375 kips in
tension to 1500 kips in éompression, and for the square section
from 0 to 1125 kips in compression. The balanced load is approxi=-
mately 750 kips. The shear-defleqtion results to be compared
are shown in Pigs. 2,26, 2.32 and 2.33 for axial loads of
- 750 kips, O kips and -~ 750 ~ 0.05 M kips, respectively, where
M is the end moment in kip-in.

| The following observations can be made:

i) The strength at yielding of steel increases rapidly
with increase in compressive axial lcoad up to the balanced axial
load beyond which it decreases gradually as shown in Fig. 2.17.

ii) The post-yield slope of the moment-curvature or the
shear-deflection curve decreases continuously with increase in
compressive axial load. This is more evident in the case of the
shear~deflection curve because of the P-A effect. This decrease
in slope directly influences stability under strong earthquake
loading. Also the distribution of damage along the column is

influenced. This is quite evident from a comparison of the
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moment-curvature relations obtained at different sections along
the length of the columns for different_axial loads. Such a
comparison between results for axial loads of - 750 k and 0 k
can be made, for the circular column, through Figs. 2.26 and
2.32. It is seen that the deformations for the higher com=
pressive axial load are concentrated at the end, whereas, the
deformations are more widely distributed for the smaller axial
load. A displacement of approximately 4 times the yield dis-~
placement required curvaturé ductilities of 12, 14 and 18 for
axial loads of 0, -~ 750 and ~ 1500 kips respectively for the
circular column, and of 11, 14 and 22 for axial loads of O,

- 375 and - 750 kips respectively, for the square column. It
may be noted here that the decrease in the computed post-
yvield slope due to axial loads is much faster for the square
column Ehan for the circular column, because of differences in
the assumed effects of concrete confinement.

iii) The shape of the hysteresis curve changes con-
siderably as compressive axial loads are increased, as seen
from Fig. 2.17. The curves are_much different from the elastic-
plastic or elastic-~strain hardening curves assumed in many
previous investigations. The hysteresis curves for column with
axial tension can be fitted with a Ramberg-Osgood type rela-
tionship, but as axial compressive forces are added the curves
deviate from this type of relationship due to crack closing in

concrete. The hysteresis loops become thinner as compressive
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axial loads are increased up to the balanced axial load after
which they again start becoming wider.

For square columns, under axial loads larger than
balanced load, and subjected to large amplitude cycles, a
sudden change in the shape of the hysteresis curves is noticed,
because of breakdown in the strength of the column. This
breakdown is a result of the poorer confinement of concrete
assumed for the square cglumn with ties.

For columns with varying axial load which are a 1ineér
function of the moments aésymmetric curves like the one shown
in Fig. 2.31 is obtained. It resembles a curve with a much
larger axial load on one side of the zero moment line, and a
curve with a much smaller axial load on the other side. This
type of varying axial load can result from overturning moments
in a framed building. The variation being significant for
edge columns.

iv) An accumulation of strain was observed due to
cyclic loading of columns with axial loads. Although predic-
tion of collapse of the column was not the objective in this
study, this accumulation of strain may become an important
index for studying collapse of cclumhs. The accumulated
strains at the end of loadings shown in Fig. 2.17, for the
circular column, were 0.025, 0.007, 0.0, - 0.002, - 0.013 and
- 0.029 for axial loads of 375, 0, - 375, - 750, - 1125 and

- 1500 kips respectively. For the square column they were
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0.014, ©0.009, 0.0, - 0.002, - 0.047 and ~ 0.132 for the sanme
axial loads. The rapid increaée in the accumulated compressive
strain in the square column, for axial loads above balanced, is
again a conseqﬁence of poorer confinement of concrete, and is
the reason for decay in the strength of these columns under
large amplitude c¢ycling. The curvature amplitude in the above
calculations was the same for all columns and its maximum value
was approximately ten times the yield curvature for no axial

load.

b) Effect of Biaxial Lateral Loads

For analytical verification of the proposed model for
biaxial lateral loadings, three different correlations between
the two orthogonal loading directions were used. The three
loading histories are shown in Fig. 2.19 and Fig. 2.25 for
curvatures and displacements respectively. The basic charac-
teristics of the biaxigl behavior are observed from the results
obtained for these loading histories,

The moment—-curvature relationships are shown in
Fig. 2.20 and 2.21, and the shear-deflection as well as the
moment-~curvature relationships at different sections are shown
in Figs. 2.,26-2.31. The results for Direction 1 for Loading
history 1, shown in Fig. 2.20, 2.26 and 2.28 act as index for
comparing uniaxial and biaxial results. The following obser-
vations can be made from the results computed for the three

loading histories.
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i) PFor Loading History 1, where Direction 2 is loaded
after loading in Direction 1 is completed, the strength is
reduced significantly only in the first cycle. As the ampli-
tude of the cycles increases the same strength in Direction 2
is obtained as in Direction 1. This is seen by comparing the
moment~curvature curves of the two directions in Fig. 2.20,

For Loading History 2, where loadings in the two directions are
simaltaneous but 90° out of phase a drqp in strength of about
20% is noted after the uhiaxial first éuarter cycle., This ié
seen from a comparison of top curves shown.in Figs. 2.20 and
2.21. For Loading History 3, where the deformation in one
direction is maintained at its peak while the other direction
is being loaded or unloaded, the initial strength reached in
the active direction is only slightly smaller than the uniaxial
casé, but it drops rapidly when the orthogonal direction becomes
active, Drop in strength in the inactive direction of up to
70% are noted while the active direction goes through one cycle
of loading. This is seen from a comparison of top curves of
Fig. 2.20 with the bottom curves in Fig. 2.21., This drop in
strength may significantly increase the displacement response
under dynamic loading conditions.

ii) The post«yield slope of the hysteresis curves is
decreaged by the presence of loads in the orthogonal direction.
This is reflected in the increase in curvature ductility

requirements for a given displacement, for Displacement
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Histories 2 and 3. This is seen from a comparison of Fig. 2.26
with Figs. 2.30 and 2.31. The curvature.ductility required for
the circular column, for a displacement of approximately 4 times
the yield displacement, increased from 14 for the uniaxial case
to 16 for Displacement History 2, and to 18 for Displacement
History 3;

iii) The shape of the curves and their enexrqgy absorp=-
tion capacity for the different type of biaxial lqadings,
except for Loading History 1; are quite different from the
uniaxial case as can be seen from a comparison of the moment-
curvature curves ﬁhown in Figs. 2.20 and 2.21. For Curvature
History 2 it results in a thinning of the hysteresis loops,
whereas for Curvature History 3 it has the opposite effect.
This is a direct result of the correlation of the loadings in
the two orthogonal direction.

iv) 1In all cases of biaxial loading significantly more
damage of the column is indicated. This can be deduced from
the significantly larger accumilation of axial strain under
biaxial loading. PFor the results shown in Figs. 2.20 and 2.21,
for the circular column with - 750 kips axial load, accumulated
axial strain after uniaxial loading was =~ 0.002, but after
biaxial loadings it was - 0,01, - 0,015 and - 0,023 for
Curvature Histories 1, 2 and 3 respectively. For the square
column under -~ 375 kips axial load the accumulated axial strains
were - 0.0 for uniaxial loading and -~ 0.008, - 0.05 and -~ 0.10

for Curvature Histories 1, 2 and 3 respectively.
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It is seen, therefore, that the effect of biaxial cyclic
loading, on the strength of'energy absorption capacity and the
accumulated damage of a reinforced concrete column can be
significant. The magnitude of this effect depends on the

correlation between the loadings in the two directions.

2.6 concluding Remarks

An analytical model for calculating the shear-deflection-
axial load relationship of a reinforced concrete column, sub-
jected to cyclic biaxial lateral loading, has been developed.
The model is synthesized from the stress-strain relations of
steel and concrete, Important characteristics of the cyclic
stress-strain relations of these materials are accounted for.
The model is used for calculating shears in the column as it is
loaded incrementally through a set of biaxial lateral displace-~
ments and axial load. However, the results are independent of
the size of the incfements.

The moment-curvature relationships predicted by the
model agree well with experimental data. However, displacements
obtained in experiments are underestimated by the model. This
is expected, because of anchorage slip of the reinforcement.
Nevertheless, the shape of the experimental shear-deflection
curves for both uniaxial and biaxial loadings are quite well

predicted.
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The model predicts significant changes in the strength,
energy absorption capacity and accumulated damage of the rein-
forced concrete column when subjected tb biaxial loadings as
compared to uniaxial loadings. The magnitude of these changes
depends on the correlation between‘thé two directions of loading.
Further éxperimental work is needed to confirm the above

findings.
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3. DYNAMIC RESPONSE UNDER EARTHQUAKE MOTION

3.1 Introductory Remarks

The response to earthquake motion of the analytical
model, developed in the previous chapter for reinforced concrete
columns, is studied in this chapter. The basic object of this
study is to determine thebeffect bn reinforced concrete columns
of simultaneous two-dimensional earthquake motion in the hori-
zontal plane,

Earthquake motion is multi-dimensional and in the
inelastic range the responses of 'a structure in different
directions are coupled. For the columns this coupling is
especially significant. This necessitates an understanding of
the response of columns to multi-dimenéional earthquake motion
and a study of the factors which influence such response.

As described in Section 1.2 previous investigators have
studied two-dimensional behavior of columns subjected to earth~
quake motion using a variety of models and system parameters.
One conclusion is common, that the effect of including two-
dimensional interaction could be significant for some cases.
However, further study is needed for a better understanding of
the factors which determine the magnitude of this effect for a
given system,

The effects of two-dimensional earthqguake motion on

reinforced concrete columns is studied herein by comparison of
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biaxial responses with corresponding uniaxial responses. The
influence of system strength and period, of different and varying
axial loads, and of material hysteresis rules on the two=~
dimensional behavior are discussed,

The system studied here consiéts of a single mass
supported on a reinforced concrete column represented by the
analytical model proposed in the previous chapter. The column
is assumed to be restrained against rotations at‘both ends.
Only two translational degfees of freedom in the horizontal
plane are considered for the mass. The effect of vertical
earthguake motion is not considered in this study. Also the
effect of any vertical motion of the“mass due to axial short-
ening or lengthening is neglected. A constant axial load orx
one dependent on the resisting shears is assumed to act on the
column;

The equations of motion for the system are given in
Appendix D, where the detailed procedure used for the solution
of these equations is also given. A step by step procedure
assuming a linear variation of the response acceleration, is
used for the integration of these equations in the time domain.
The procedure requires iterations to satisfy the equations of
motion. An average of 1.8 iterations were required to satisfy
these equations with a tolerance of + 0.0075 of the yield

strength of the column. A constant time step of 0.02 seconds
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and viscous damping equal to 2 % of critical was used for all
calculations. |

The study is limited by the use of only two earthquake
records, El Centro 1940 and Taft 1952, and the use of a single
get of column geometry and properties., Nevertheless, it is
expected that the conclusions drawn herein are more widely
applicable. The column dimensions and properties used are
those shown in Fig. 2.15 for the circular section. This is
similar to the interior column of the 0Olive View Medical
Center which was heavily damaged in the Sén Fernando Earthquake
of 1971 (8). |

Section 3.2 discusses the characteristics of the earth-
quakes used in this study. Section 3.3 describes the systems
studied. The results of the dynamic analyses are presented in
section 3.4, where the effect of two-dimensional earthquake
motion is discussed and the influence of system period and
earthquake strength are evaluated. Sections 3.5 and 3.6
discuss the effect of axial load and of material modelling on

calculated dynamic response.

3.2 Earthguake Characteristics

The earthquake motions used in this study are the
horizontal components of the El Centrc 1940 and Taft 1952
earthquakes. Only the first 20 seconds of the recorded motions

are used. The acceleration-time histories for E1 Centro N-S
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(Direction 1) and E~W (Direction 2), and Taft S69E (Direction 1)
and N21E (Direction 2) are shown in Fig. 3.1. The peak accele~-
rations recorded during the earthquakes were scaled to 1.0 g.
This results in peak accelerations of 1.0 g for El Centro N-S
and Taft $69E, and of 0,61 g and 0.87 g for El Centro E-W and
Taft N21E respectively. The elastic response spectra for the
records such séaled are shown in Figs., 3.2 and 3.3. The spectral
intensities computed from these spectra for periods from 0.1

to 2.5 seconds and a viscoﬁs damping of 20 % of critical are

91, 78, 83 and 79 inches for the scaled El1 céntro N-§ and E-W,
and Taft S69E and N21E records respegtively.

The response of a structure to two-dimensional motion
is also influenced by the correlation between the motion in the
two directions. To study this correlation for the earthguake
records used variances and covariances of the input records

were computed as proposed by Kubo and Penzien (14) using the

relation
At
| | Yt *t 2
covij(tO,At) = < [ai(t) - al] [aj(t) - aj] > (3.1)
At
to -5

where ai(t) and aj(t) are the two input motions, ;i and 5} are
their mean values over the duration of the records and

covij(to,At) is the covariance of the input motion at time 1:°
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averaged over a time interval At. For the present calculations
At was taken as 5 seconds and covariances and variances were
evaluated for discrete values of to spaced half a second apart.
also, Eq. 3.1 was slightly modified when computing covariances
and variances for the first and lést 2 seconds of the records
by using time averaging intervals of less than 5 seconds which
were not centered over t,. |

The computed variances and covariancgs for the records
were used to obtain the.pr;ncipal directions and variances of
the input motions in these directions; Figure 3.4 shows the
principal directions and the variances of the scaled input
records. “

The following observations can be made from Fig. 3.4:

i) The strength of the two scaled earthquakes as
meésured by their maximum variances are about the same.
However, the duration of strong motion is longer for the
Taft earthquake.

ii) For the El Centro earthquake definite principal
directions exist during the strong motion part of the records.
Also, the recorded N-S diréétion is very near to the major
principal direction., For the Taft earthquake, however, the

motion is almost isotropic.
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3.3 System Characteristics

The systems étudied in this investigation consisted of
single masses supported by fixed~-fixed reinforced concrete
columns. The properties of the systems studied to investigate
the influence on dynamic response of system period and strength
relative to the earthquake are given in Table 3.1. The circular
section shown in FPig. 2.15 with a sihgle set of material proper~
ties and a constant axial load of =750 kips was used for all
systems given in Table 3.1. The axial load and material
properties were varied only to study their influence on dynamic
response as discussed later in Sections 3.5 and 3.6.

The system masses were varied to obtain different
elastic periods, ranging from 0.2 to 1.6 seconds. The elastic
periods were calculated using the secant stiffness of the
column up to yield.

The earthquake strengths used were such as to give a
wide range of maximum displacement responses ranging from less
than 2 to over 10 times the yield displacement for one~dimen=
sional motions. For studying the influence of system period,
strength dependent on system period is used as indicated in

Table 3.1. A yield shear ratio of ¢ = 0.24 A /(T)2/3, where

max

A ax is the peak acceleration of the earthquake and T the
system period, is used to obtain the design strength. The
yield shear ratio ¢ is defined as the ratio of the yield shear

to the weight of the system. This value is similar to that
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recommended by the Applied Technology Council (35), for ductile
reinforced concrete frames on stiff soils. It is expected

that this value of the yield shear ratio will result in maximum
response displacements of about four times the yield displace-
ment under design strength earthquakes. A comparison is made
in Fig. 3.5 between the assumed design strengths and the range
of required strengths for elastoplastic systeﬁs calculated to
give displacements of four times the yield displacement when
subjected to the earthduake records used in this study. it is
seen that the design strength is towards fhe lower end of this
range except for 0.4 second period for which it is significantly

weaker.

3.4 Results and Discussion of Dynamic Response

To study the effect of two-dimensional earthquake
motion on reinforced concrete columns the single mass systems
given in Table 3.1 ﬁere subjected to the El1 Centro and Taft
earthquakes and their responses studied. 1In the following,
first the response to design strength earthquakes of systems
with elastic period of 0.4 sec is studied in detail, then the
effect of system period and strength relative to earthquake
intensity, on the conclusions drawn from that study, are

examined.
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3.4.1 T = 0.4 Svstems under Desigh Strength Earthquakes

The complete results of the response of T = 0.4 second
systems subjected to design strength El1 Centro earthquake are
presented in Figs. 3.6 to 3.12, and to the Taft earthquake in
Figs. 3.13 to 3.19. 1In each figure‘the two~dimensional response
and the two corresponding one-dimensionai responses are shown
and compared., One-dimensional response refers to response of
the column subjected to only one of the components of the earthé
quake. Two-dimensional response without interaction refers tol
the resultant of the two 1D responses of the column computed
separately. This will give the effect ¢f any correlation between
the two components of the earthquake motion. Two-dimensional
response with interaction refers to the response of the column
subjected simultaneously to the two components of the earthquake.

For the El1l Centro earthquake as seen from Table 3,2
the maximum displacement responses were 8.7 aﬁd 7.54 inches
in N~$ and E-W directions respectively under one~dimensional
excitation (yield displacement = 0.93 inches). The two 1D
responses gave a resultant maximum in any direction of 8.7 in.
The maximum response, however, increased to 19.95 in. when the
column was subjected simultaneously to the two components of
the earthquake. For the Taft earthquake the 1D maximums were
5.9 and 8.00 inches in S69E and N21E directions respectively.
The two 1D responses gave a resultant maximum of 8.03 inches.

However, the column became unstable when subjected to the two
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components of the earthquake simultaneously. The results for
this case are shown only for the first 9.98 seconds at which
time the displacement had reached 25 times the yield displace-
ment.

The following observations can be made from the results
giveh above and those shown in Figs. 3.6 to 3.19 for the T =
0.4 second systems subjected to the two earthéuakes:

i) The effect of two-dimensional motion on the
maxirum displacement résponse of the systems is significant}
It results in an increase of 129 % over the 1D maximum dis-
placement for the El Centro earthquake and leads to instability
in the case of Taft earthgquake. |

ii) For these particular systems this increase is due
primarily to the inelastic interaction in the two directions
and not due to the correlation between the responses for the
1D cases. This is evident from the fact that the 2D maximum
displacements without interaction for the iwo earthguakes are
very nearly equal to the 1D maximum displacements for the
corresponding earthquakes.

iii) A study of Figé. 3.6 and 3.13 showing the dis-
placement~time responses reveals that the effective period of
the system is increased considerably for the one-dimensional
case.whenever large amplitude cycles occur. Any further
increase in the effective period due to two-dimensional

motion is slight,
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iv) The wave forms of the displacement responses for
the 2D and the 1D cases are vefy similar for small and moderate
amplitude cycles and most of the additional displacements for
the 2D cases come from drifts accumulated over short intervals
of time. It is suspecte& from studying the 1D force responses
at these times that most of the additional drifts for the 2D
cases occur when the 1D force responses in the two directions
are simultaneously large. However, this observation needs
‘further study.

v) The 2D displacement traces for the column top with
and without interaction presented in Figs. 3.9 and 3.16 clearly
show the random path taken by the column and, therefore, the
difficulty of predicting 2D dynanic responses from a study of
the responses of the column to a few prescribed displacenent
paths;

vi) Figures 3.7, 3.8, 3.14 and 3.15 which compare 1D
and 2D shear-displacement responses show the difference in the
resistances for the two cases. The significance of P-4 effect
is quite noticeable from the 2D_shear-displacement responses.

vii) From the 2D shear response presented in FPigs. 3.10
and 3.17 it is seen that when interaction is not considered
the shea:s can be large in both directions simultaneously.

The probability of this happening a given number of times
during an earthquake for a particular system could very well

be an index of the susceptibility of the system to increased
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displacement response to two-dimensional earthquakes. Suffi-
ciently large number of earthquakes or systems were not
analyzed in this study for this to be definitely stated.

- viii) The accumulation of axial strain under cyclic
loading as noted in the static study is clearly seen from
Figs. 3.11 and 3.18. Although the reliability of the numerical
values for the strains is much less than those for the dis-
placements, the trends are very well established., The effects
of the very large accuﬁulation of axiél strains for the 2D‘
cases as compared to the 1D cases should be experimentally
investigated so that safe limits for 2D displacement response
can be prescribed.

ix) Pigures 3.12 and 3.19 present the input and hystere-
sis energy plots with respect to time for the systems under
stﬁdy. These plots were used as a check for the dynamic analyses
procedure. The input energy should be the sum of the hysteresis
energy, the damping loss and the kinetic energy in the system.
The above plots were obtained from values at one second inter-
vals and the energy check was found to be good.

It is seen from the figures that for the 2D cases the
input and hysteresis energies are slightly less than the corre-
sponding 1D cases, except for the Taft N21E direction. It should
also be noted that the hysteresis energy for the 2D case for the
Taft N21E direction, 4 seconds after the beginning of the

earthquake, is larger than the input energy, although the
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overall balance of energy for the two directions combined is
correct.  This is an indication of the redistribution of energy‘
in the two directions under 2D excitation.

The above observations are made only from a study of
systems of elastic period equal to 0;4 seconds and under design
strength earthquakes. The effects of changing the period or
the strength of the system, on these observations, are discussed

in the following subsections.

3.4.2 Effect of System Period

The displacement response of systems with 0.2, 0.8 and
1.6 seconds period under design strength El Centro and Taft
earthquakes are presented in Figs., 3.20 to 3.25. The maXimum
displacements and the time at which the maxima occurred are
given in Table 3.2 and the maximum displacements are plotted
in Pigs. 3.26 and 3.27.

The 1D maximum»displacements in each direction are
given in Table 3.2 but only the greater of the two maxima is
plotted as the 1D maximum in Figs, 3.26 and 3.27. The 2D
without interaction refers to the resultant of the 1D responses.
The maximum of this resultant response is obtained and plotted.
The 2D with interaction under reduced strength earthquake refers
to results obtained by multiplyipg the earthquake records by
0.77. This is equivalent to increasing the strength of the

columns by 30 %.
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The vertical arrow in Fig. 3.27 over the 0.8 second
period for the 2D with interaction curve means that systems
with periods shorter than 0.8 seconds, studied here, collapsed
under 2D excitation.

The following observations can be made from these
resuits. |

i) The 2D with interaction displacement responses
are larger than the maximum 1D displacement responses by 39 %
to 160 % and for two sfstems {0.2 and 0.4 second systems under
Taft earthquake) the 2D interaction leads to instability.

ii) The 2D without intergction response is larger
than the maximum 1D response by zero to 31 %. It can be con-
cluded, that for the systems studied, most of the 2D increased
displacements resulted from inelastic interaction effect.

| iii) wWhether the magnitude of the increase is dependent
on the period or on the maximum 1D ductility reached is not
immediately evident from Figs. 3.26 and 3.27, since the larger
increases occur for systems with large 1D ductility require-
ments. This is further investigated in the next subsection.

iv) Wwhen the earthquake strength is reduced to 0.77 of

its value (or when the system strength is increased by 30 %)
for 2D response calculations, then the 2D with interaction dis-
placement response is less than the corresponding maximum 1D
displacement response without the feduction in earthquake

strength. This is true for all systems except for the T = 0.4
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system under Taft earthquake for which the 2D response is still
larger than the maximum 1D by 10 %. It can thus be concluded
that 30 % increase in the strength of the system will bring
the 2D response down to the level of the 1D response of the
unstrengthened system. However, whether safe limits on dis-
placemenfs determined from ﬁniaxial tests, and the basis for
uniaxial design, are safe for biaxial loading has yet t¢ be
experimentally determined.

v) The above discﬁssion has been:for results of
systems for which the effect of P-A was inclﬁded. Table 3.2
also presents results for systems for which P-A was neglected.
The results show the marked effect of p-A on 2D response,
Without the P-4 effect the increase of 2D response over 1D
response was only 12 % to 67 %. The effect of P-A is evident
from Figs. 3.28 and 3.29 where displacement response of 1D and
2D analyses with and without P-A are compared for the T = 0.4
system under the Taft earthquake. Although the effect of P-A
on 1D response is negligible for this system its effect on 2D

response is critical,

3.4.3 Effect of Earthquake Strength

Table 3.3 presents results for T = 0.4 and 1.6 second
systems under different earthquake strengths. These results
are also plotted in Figs., 3.30 and 3.31. The vertical arrows

in the figures indicating that the system collapsed under the
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next higher strength of the earthquake, The figures d¢ompare
only the 2D results with and without interaction.

The following observations can be made from the figures:

i) fThe increase in 1D ductility demand generally
results in an increase in the effect of 2D interaction on dis~
placément response. This is quite well demonstrated by the
results for the T = 0.4 systems. For the T = i.6 systems this
is not evident for the Taft earthquake. This may be a result
of neglecting P-A for these systems. | | |

ii) For stronger systems for which the 1D ductility
requirements are about 2 times the yield displacement or less
the 2D with interaction response is less than the 2D without
interaction response. This may be a result of a redistribution
of input energy, so that energy input in one particular direc-

tion is also dissipated in the orthogonal direction.

3.5 Effect of Axial Load

To determine the effect of axial load on dynamic
response€ both constant and‘varying axial loads are studied.
Firstly, the effect of constant axial loads on two dimensional
response as conpared to its effect on one~dimensional response
is studied. After that the effect on the shear displacement
behavior of the column with a varying axial load, dependent

on the resisting shears, is studied.



66

a) The systems investigated for the constant axial
load study are given in Table 3.4. Three different axial
loads of =375, =562 and -750 kips were used. Only T = 0.4
systems under the Taft earthquake were investigated. The
maximam displaceménts obtained.are given in Table 3.5 and
plotted in FPig. 3.36.

~Changing the axial load on the column changes the
post yield slope of the shear-deflection'curve. For the cases
under study the average post~yield slopes for uniaxial loads,
up to a displacement of 8 times the yield displacement, were
7, 8.5 and 9 % of the secant slope up to yield, for the -750;
~-562 and <375 kips axial loads respeétively, if p~A was
neglected. With P-A, the same numbers were 3, 6 and 7 %.

The effect of this change in slope alone on 2D response
as c0m§ared to 1D response can be studied by looking at the
results for 2D with and without interaction with P-A neglected
in Fig. 3.36. The 2D response with interaction is 46 % higher
than the one without the interaction for the -750 kips axial
load, whereas it is only 13 % higher for the -375 kips axial
load. |

when P-) is included in the analyses, the 2D response
increases so rapidly with increases in compressive axial loads
that thersystem with -750 kips axial load became unstable.

The effect of axial load on the shear-displacement

response of the system can be seen by comparing Figs. 3.14 and
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3.15 for the -750 kips axial load with Figs. 3.32 and 3.33
for =562 kips axial 1oad; The beneficial effects of the lower
compressive axial load are clearly seen.

‘Also, a comparison of the displacement~time response
for axial loads of ~562 and =375 kips made in Figs. 3.34 and
3.35 shows clearly that although the effect of axial load on
1D response is negligibleﬁits effect on 2D resbonse is signi-
ficant.

As would be exﬁected the accumulated axial strain is
significantly larger for the larger cﬁmpressive axial loads.
The larger of the two accumulated strains for 1D excitation
were 0.0, -0,0016 and ~0.0089 for axial loads of =375, =562
and -750 kips respectively. For 2D excitation they were
-0.0016 and ~-0.015 for =375 and =562 kips axial load respec-
tiQely, the ~750 kips system becoming unstable.

b) For studying the effect of varying axial lcad in
edge colunmnhs on the dynamic response of buildings, the shear-
displacement response of edge columns is compared with that
of the interior columns. The results obtained for T = 0.8 .
and T = 1.6 second systems with P = -~750 kips under El Centro
N~S records were used.

Assuming three bay frames, a height to width ratio of
1.3 énd 3 for the T = 0.8 and T = 1.6 second buildings respec-
tively, and a triangular distribution of lateral load over the

height of the buildings, axial loads of P = =750 + 2.5V and
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P = =750 + 5.7V were calculated for the edge columns of T = 0.8
T = 1.6 second buildings respectively. P = =750 kips was
assumed as the gravity load.

Shear-displacement responses for these edge columns
subjected to the computed displacemeﬁt responses of the T = 0.8
and 1.6 systems to the El Centro N-S record are shown in Figs.
3.37 and 3.38. The shear-displacement responses of the
interior column are also shown in these figures.’ The average
éhear for the two edge colﬁmns and the two interior columns
was also computed and is shown in the fiéureé.

It can be observed from the figures that although the
shear-~displacement response of the eége columns is significantly
different from that of the interior column the average shear in
the story is not greatly affected and, therefore, the effect on
dynamie response of the building will not be significant. How-
ever, it is possible that the edge columns may suffer signifi-
cantly more damage, because of the large variation of axial

load supported by them.

3.6 Effect of Material Hysteresis Rules

For steel the effect of assumed material hysteresis
rules was studied by using a bilinear model for the steel with
3 % and 1.5 % hardening. For concrete the effect of assumed
material hysteresis rules was studied by modeling loading and

unloading of concrete by a single straight line relationship
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and in another case by assuming that the concrete was confined
by ties such that the softehing slope of the envelope curve,
0 = 40,

For this study P = -562 kips was assumed and the Taft
earthquake was used.

For purposes of comparison the shear-displacement
response of this system using the proposed steel and concrete
models are given in Figs. 3.32 and 3.33 and the displacement-
time response by the sdlid‘lines in Figs. 3.34 and 3.35.

a) A comparison of Figs. 3.32, 3.39 and 3.41 computed
for the proposed, the bilinear with 3 % hardening slope and
the bilinear with 1.5 % hardening slope steel models respec-—
tively will show that the basic effect of the different
modeling of steel on the shear-displacement response is in
thé post yield slope and in the case of the proposed model for
steel in the smoother curve because of the Bauschinger effect.
A similar comparison for the other direction of loading can be
made by comparing Figs. 3.33, 3.40 and 3.42.

A comparison of the solid curves in Figs. 3.34 and
3.35 with the curves in Figs. 3.43 and 3.44 will show that the
results of the proposed steel model are very similar to the
results of the bilinear steel model with the 1.5 % hardening
slopé, so even though the shear-displacement response for the
two cases look different the predicted maximum displacements

are the same. It may, however, be noted that the average
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hardening slope ©of the proposed steel model is 3 % but the
bilinear steel model with 3 % hérdening slope predicts only

60 % of the displacements for the 2D case. It can, therefore,
be concluded that bilinear modeling for steel can be used, but
that the equivalent hardening slope should be chosen to be
smaller than for the real steel. The effect of the hardening
slope on response is very small for the 1D case but significant
for the 2D case, as shown in Figs. 3.43 and 3.44.

b) The effect of modeling concrete loading and
unloading by a single line with a slope equal to the initial
elastic slope was found to be slight. It increased the maximum
1D response by 5 % and the 2D response by 15 %.

The effect of assuming { = 40 for the confined concrete
instead of & = 0 as was assumed for the spiral reinforcement
was foﬁnd to be significant., A comparison of Figs. 3.45 and
3.46 for = 40, with Figs. 3.32 and 3.33 for { = 0 will reveal
the beneficial effects of better confinement. A study of Figs.
3.47 and 3.48 shows that the effects of poorer confinement of
concrete were large even for the 1D case and, therefore, proved
to be critical for the 2D case causing the computed response to
become unstable even with the smaller axial lcad of P = =562
kips.

As would be expected the poorer confinement of concrete
led to a significant increase from -0.0016 to =0.079 in the
accumulated axial strain for the 1D case. The 2D case with

the poorer confinement became unstable.
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3.7 concluding Remarks

The responses to two~dimensional earthquake motion of
systems consisting of a fixed-fixed reinforced concrete column
supporting a single mass were calculated in this Chapter. The
horizontal components of the El Centro 1940 and Taft 1952 earth-
guakes were used. The two=-dimensional responses were compared
with the corresponding oﬁe-dimeneional responses.

Under design strength earthquakes resulting in one-
dimensional displacements of the order of four or more times
the yield displacement the two-~dimensional displacements were
significantly larger than the one-~dimensional displacements
and led to instability in some systems. The above results were
found to be true for all system periods studied, which ranged
from 0.2 to 1.6 seconds.

The magnitude of the two-dimensional interaction effect
was found to be dependent on the strength of the earthquake.
For strengths of the earthquake resulting in one-~dimensional
displacement responses of three or more times the yield dis-
placement, the general trend was for the two-dimensional
effect to be larger the stronger the earthquake, For earth-
guake strengths resulting in one-~dimensional displacements of
two or less times the yield displacement the trend was for the
two-dimensional displacements to be less than the corresponding

one-dimensional displacements.
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It was found that a 30 % increase in the strength of the
column for two-dimensional response resulted in displabements
which were generally less than the corresponding one-dimensional
response, However, whether a 30 % increase in strength of the
columh will result in a satisfactory design has yet to be
studied experimentally, because significantly more damage in
the biaxially loaded columns is predicted as compared to columns
loaded unjiaxially for the same level of displacement.

The effect of axiai loads was found to be critical for
most two-dimensional responses mainly becausé of the P-A effect
even though their effect on most onefdimensional responses was
insignificant.

The computed two-dimensional responses were found to be
sensitive to changes in the post-yield slope of the shear-
deflecﬁion relations, although one-dimensional responses were
not greatly affected. Changes in the assumed material hysteresis
rules which resulted in significant changes in the post-yield
slope of the shear-deflection relations, also resulted in
significant changes in the computed two-dimensional response.
Thus a change in the hardening slope of steel or a change in

the confinement of concrete had significant effect.
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4, CONCLUSIONS

The conclusions drawn in this study are summarized
herein under two general categories. The first category
relates to conclusions‘about the modeling assumptions used
in the development of the analytical model for reinforced
concrete cblumns and its static behavior. The second cate-
gory relates to conclusions about effects of two-dimensional
earthquake motion on reinforced concrete column response.

a) .The conclusions about the modeling assumptions

and static response of the analytical model are:

1) The stress-strain model for reinforcing steel
developed in this study gives an excellent match with experi-
mental data. The reinforcing steel model which accounts for
yielding, strain-hardening and the Bauschinger effect is
important in reprodpcing realistic moment-curvature and shear—'
deflection relationships. However, the use of a bilinear steel
model for dYnamic analyses gave displacement responses similar
to thé proposed steel modeivif the hardening slope of the
bilinear steel was assumed to be about half the average actual

hardening slope.

2} For dynamic analyses only the strength and the
softening slope of the concrete stress-strain curve was found

to be important. The details of the hysteresis curve were
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found to be unimportant. The softening slope ¢of the concrete
stregss=strain curve is dependent on the degree of confinement
of the concrete. Further experimental work is indicated to
obtain this slope from the specified confinement especially
for different amounts of spifal reinforcements under eccentric

loading conditions.

3) The lumped coﬁcréte modei.developed in this study
to represent the concrete in the section of a column reduces
the computational cost for calculating moment-curvature rela-
tionships of the section from given material stress-strain
curves by an order of magnitude. The lumped concrete model
gives excellent comparisong for noment-curvature-axial load
relationships of the section with those obtained by dividing
the concrete into a two-dimensional mesh for two-dimensional

loadings.

4) The assumed curvature distribution along the
length of the column which allows the calculation of shear-
deflection-axial load relationships from the moment-curvature
relationships at the end sections of the column underestimates
the experimental displacements. This is mainly due to the
neglect of anchorage slip in the present study. However, the
shape of the experimental shear-deflection relationship for

both unlaxial apd biaxial loadings is quite well predicted.
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5) The analytical model predicts an accumulation of
axial strain under cyclic 1éading of the column. This accumu-
lated axial strain increases with increase in compressive
axial loads and with poorer confinement of concrete. This
predicted accumulated axial straiﬁ could be used as an

indication of the amount of damage to the column.

6) The analytical modellpredicts significant changes
in strength and energy absorption capacity when the column is
loaded biaxially as compared to uniaxial loading. The magni-
tude of this change is dependent on the correlation between
the loadings in the two directions. Biaxial loading also
significantly increased the accumulation of axial strain under

cyclic loading.

b) The conclusions about the effect of two-dimensional

earthquake motion on reinforced concrete cdOlumns are:

1) Under désign strength earthquakes resulting iﬁ
one~dimensional displacement responses of four times the yield
displacement or more, the two-dimensional responses of rein-
forced concrete columns were significantly higher. Increases
in dispiacements from 39 to 160 % were noted, and some systems
became unstable under two~dimensional excitation. The increases

were mainly due to inelastic interaction in the columns,.

2) The strength of the earthquake significantly

influences the effect of two-dimensional motion. If the
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one~-dimensional response is greater than three times the yield
displacement, an increase in displacement response under two-

dimensional motion is expected; the increase being larger the

stronger the earthquake. If the one-dimensional responses are
less than two times the yield displaéement, the corresponding

two-diménsional responses ﬁre expected to be less than the

one-dimensional responses.

3) A thirty percent increase in column strength for
two-dimensional response reduced the displacements to one-
dimensional response level. However, experimental work is
indicated to define limits of safe behavior for two-dimensional
loading of the column. The analytical model predicts signi-
ficantly more damage to the column under biaxial loading com-
pared to uniaxial loading for the same level of cyclic

deformation.

4) A comparative study of the displacement-time
response under one~ and two-dimensional earthquakes reveals
that the waveforms for the two cases are very similar, and
that most of the additional displacements for the two-
dimensional cases come from additional drifts accumulated
over short intervals of time. It is suspected that these
additional drifts occur when the shear response for the two
one-dimensional cases are simultaneously large. 'The number of
systems and earthquakes studied herein were not sufficient

in number for a definitive statement to be made in this
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regard. This conjecture would explain the greater suscepti=-
bility of shortex period syétems to two-dimensional motion.
Due to the larger number of cycles for the shorter period
systems for a given duration of an earthquake, the probability
of shear responses in the two directions being simultaneously
large are greater, thus leading to additional drifts. This
conjecture would also expiain the greater effe¢t of two~
dimensional motions if‘the one-dimensional displacement
responses are large. The larger the displacement response,‘
the greater is the length of time for which shears are large.
This increases the probability that the shear response in the
two directions will be simultaneously large, thus leading to

additional drifts.

5) 'The effect of axial load as manifested by the p=A
effect is critical for two-dimensional response, even though

it may appear to be_unimportant for one~dimensional response.

6) Time-varying axial loads dependent on the resisting
shears as would be obtained in edge columns due to overturning
moments, result in significantly different shear-deflection
relationships for the individual columns, and their safety
should be further investigated. However, the average shear
in the story is not much affected, therefore, a significant

change in the dynamic response of the building is not indicated.
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7) Changes in material hysteresis rules which signi=-
ficantly change the post-yield slope of the shear-deflection
curve do also significantly change the two-dimensional response,
even though the one-dimensional response may not be much

affected,

In summary, the most important conclusions of this
study are, that if a builaing is so éroportioned that one-
dimensional maximum displacement response of columns to
earthquakes are larger than about three times the yield dis-
placement, then a 30 % increase in the strength of the columns
will result in two-dimensional maximum displacement responses
about equal to the maximum one-dimensional displacements
responses, If the one-dimensional maximum displacement
responses are less than about two times the yield displace=~
ment then the two-dimensional effects may be neglected. If
two systems with different periods are so designed to give
similar one-dimensionai displacement responses, then the two=-
dimensional effects will be similar irrespective of the system
periods. The inclusion of gravity for calculating two-

dimensional responses was found to be critical.
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Table 2.1 Two=-Dimensional Curvature Histories

(Fig. 2,19)

Sequence Curvature Curvature Curvature
of ‘ History 1 History 2 History 3
Loading (/in. 107°) (/in. 1072) (/in. 107°)

Direc~ Direc- Direc- Direc~ Direc-  Direc-

tion 1 tion 2 tion 1 tion 2 tion 1 tion 2

0 0 0 0 0 0 0
1 96 0 96 0 96 0
2 - 96 0 0 96 96 96
3 96 0 - 96 0 - 96 96
4 - 96 0 0 - 96 - 96 - 96
5 160 o 96 0 96 - 96
6 - 160 0 0 96 96 96
7 160 0 - 96 0 - 96 96
8 - 160 0 0 - 96 - 96 - 96
9 160 0 96 0 96 - 96
10 - 96 0 160 0 96 0
11 96 0 0 160 160 0
12 - 96 0 - 160 0 160 160
13 96 0 0 -160 - 160 160
14 0 0 160 0 - 160 = 160
15 0 96 0 160 160 - 160
16 0 -96 - 160 0 160 160
17 0 96 0 -160 - 160 160
18 0 - 96 160 0 =160 = 160
19 0 160 96 0 160 - 160
20 0 -160 0 96 160 0
21 0 160 - 96 0 96 0
22 0 - 160 0 ~ 96 96 96
23 0 160 96 0 - 96 96
24 0 - 96 0 96 - 96 - 96
25 0 96 - 96 0 96 - 96
26 0 - 96 0 - 96 96 96
27 0 96 96 0 - 96 96
28 0 0 0 0 ~ 96 - 96
29 96 - 96
30 96 0

31 0 0
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Table 2.3 Two-Dimensional Displacement Histories
For Takizawa's Tests (Fig. 2.37)

sequence : Specimen 3 Specimen 4
of ‘ Displacements (mm) Displacements {(mm)
Loading - —

Direction 1 Direction 2 Direction 1 Direction 2

(0] 0 0 0 0

1 9 ¢ 9 0

2 0 9 9.5 9

3 -9 0 - 9.5 11.5
4 0 -9 - 12 - 9.5
5 9 0 9 - 11.5
6 0 9 10.5 10

7 -9 - 0.5 - 9 12.5
8 0 -9 - 10.5 - 9.5
9 8.5 0 2 - 17
10 11.5 0 12 0.5
11 o 11.5 20 2
12 - 12 0 21.5 20
13 0 - 12.5 - 21 24.5
14 11.5 0 - 27.5 - 20
15 0 12 20 - 25.5
16 - 12 0
17 0 - 11.5
18 0 - 4.5
19 0 - 20
20 20 0
21 -1 20.5

22 - 20.5 0
23 0 - 20
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Table 3.1 System Properties

Period Yield Yield Mass Yield Peak c/A ‘
T Shear Displacement m "  Shear Acg. max
u ti A
VY Y 2 e :av 3mg “max
(sec) (kips) (in.) {kip-sec®/in.) 4 (9)  (/9)
0.2 131 0.93 0.143 2.37 3.37 0.70»
0.4 131 0.93 0.573 0.59 1.67 0.35
0.4 131 0.93 0.573 0.59 1,34 0.44%
0.4 131 8.93 0.573 0.59 1.00 0.59
0.4 131 0.93 0,573 0.59 0.67 0.88
0.4 131 .93 0.573 0.59 0.50 1.18
0.4 131 0.93 0.573 0.59 0.34 1,75
0.8 131 0.93 2.29 ) 0,148 0.53 0.28%
1.6 131 0.93 9.16 0.037 0.32 0.12
1.6 131 0.93 9.16 0.037 0,26 0.14
1.6 131 0.93 9.16 0.037 0.21 0.18x»
1.6 131 0.93 9.16 0.037 0.16 0.23
1.6 131 0,93 9.16 0.037 0.11 0.34

* Referred to as systems with design strength,
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Table 3.3 Effect of Strength on Maximum
Displacement Response

Earthquake Period C/Amax P-4 Maximum Displacement (in.)
T
1D Response 2D Response
Direction 1 Direction 2 Without With
(sec) (/9) . Interaction Interaction
0.4 0.3% Yes 14.66 16.39 14;‘69 Unstable
0.4 0.44 Yes 8.70 7.54 g8.70 19.95
0.4 0.59 Yes © 5.54 4.25 5.84 6.74
0.4 0.88 Yes 2.48 i.58 2.51 - 4.00
: 0.4 1.18 Yes 1.91 1.82 1.95 1.71
El Centro 0.4 1.75 Yes 1.38 0.72 1.44 1.18
1.6 0.12 No 4.98 . 7.5 8.08 10.54
1.6 0.14 No 4.22 : 4,92 4.82 7.53
1.6 0.18 No 3.54 3.68 4,22 4.27
0.4 0.35 Yes 10.34 13.45 15.10 Unstable
.4 0.44 Yes 5.90 8.00 8.03 Unstable
0.4 0.59 Yes 4.87 4.%0 5.10 8.86
0.4 0.88 Yes 3.22 2.34 3.30 3.21
0.4 1.18 Yes 2.64 2.20 2.76 2.46
0.4 1.75 Yes 1.87 1.66 1.87 1.77
0.4 0.35 Mo 7.74 9.4%9 9.56 17.42
0.4 0.44 No . 6.47 6.72 ©7.01 10.23
Taft .4 G.59 No 4.62 4,76 4.93 5.47
0.4 0.88 No 3.26 2.14 3.32 2.96
1.6 0.12 No 5.43 9.87 10.9¢ 11.19
1.6 0.14 No 4.07 7.%0 8.71 8.12
1.6 0.1i8 No 2.72 4.84 5.20 6.67
1.6 0.23 No 2.74 3.32 3.74 4.40
1.6 0.34 No 2.11 2.04 2,29 2.44
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Fig. 2.26 Comparison of Assumed and Calculated Moment-

Curvature Relationships Along Column Used in
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Fig. 3.26 Maximum Displacement Response of Systems
with Design Strength, El Centro Record
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APPENDIX A

MATERIAL HYSTERESIS RULES

A.1 Steel

The general relationship récommended by Richards and
Abbott (24) was used to ﬁodel stress-strain behavior of steel.

The rules used to determine the model aie shown schemati-
cally in Pigure 2.1, and are as follows:

For monotonic loading,

1. o=E ¢ le] < Sy (A.1)
2. o= Iy A ty <le|< €sh (A.2)
(1-a) %"
o 7 €
3. - = +0"‘€—" Sh< IEI (A‘3)

y 1+ . Y

y mon

1

but 19| not greater than ©

ult’ and for all subsequent
half-cycles, |
€-¢€
i
C=0 | (1=-0) — £-€
Y |eme, | - 7 Y
1 +
ey Boye

but |0| not greater than O 1t

5. Whenever an inner curve intersects an outer curve the

outer curve is followed.



184

In the above equations,

o = stress (positive in tension)

2 = strain

Oy = yield stress

a = maximum stress attainable

ult

EY = yield strain (corresponding to ¢ = Gy in Eq. A.1)

Esh = gtrain at beginning of strain hardening

(corresponding to 0 = Uy in Eq. A.3)

Oi = stress at start of half-cycle

€ = strain at start of half-cycle

cyc =a+h (Gmax - Omin)/ay

n =c + 4 (Gmax - o‘min)/oy

Omax = maximum stress reached in any previous cycle,
but not less than Gy

omin = minimum stress reached in any previous cycle,

but not more than -Oy

and a, b, ¢, 4, E, o and &mon are constants.

The constants a, b, ¢, 4, E, &, B c and O have

mon’ 'y ult
to be specified for each type of steel.

Also four strains, the strain in the previous step

the maximum strain reached previously ¢ the minimum

max?’
and the strain at the beginning

€ 4
prev

gstrain reached previously Smin

of the present half~-cycle €i, and their corresponding stresses

c
Oprev’ max’ ‘min and % have to be retained as strain history

parameters for each bar of steel.



185

The following values were used in this study whenever
Grade 60 steel was assumed, These values were obtained from
experiments reported by Aktan et al, (2 ). 7

E . = 29000 ksi

a = (.02

8 1.3

mon

chc = 0.9 + 0‘6 (pm

ax " ohin)/cy but not greater
than 2.75

n = 0.9 + 0.3 (o -5

I max min)/oy but not greater

than 1.8

Gult = 1.7 Uy

For Grade 40 steel some values had to be modified and
are given below. These were obtained from experiments reported

by Kent (13).

o

Bmon = 1.15

chc = 2.15

A.2 concrete

The model used for the stress-strain relationship of
concrete is a simplified version of the one used by Darwin (5).
The basic rules of the model are shown in Figure 2.5. The
model is characterized by an envelope curve (which also models

monotonic loadings), and rules for loading reversals.
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The slope of the envelope curve after maximum stress

distinguishes between unconfined concrete, concrete confined by

‘rectilinear ties and concrete confined by spiral reinforcement.

1.

2.‘

where,

The following rules construct the envelope curve:

0= 0 €2 g (A.5) .
2
g £ €
=—=25- () 02¢2 el (A.7)
o o o
g
3;'— 1 - f(e~e)) : C Eg 2 E 2 By (ALB)

Q2 = 0.0 for concrete confined by spiral reinforcement

1 = E—%gi- for concrete confined by rectilinear ties
o 50

and for unconfined concrete { is obtained from Eq. A.8

- by using € = 820 = 4 € for o = 0.2 S

g = 0,2 Oo for confined concrete

0 = 0.0 for unconfined concrete 620'1 € (A.9)

¢ = gtress (positive in tension)
€ = gtrain -

tensile gtrain in concrete corresponding to

™
i

tensile gtrength Oy = Eo €

o = compressive strength of concrete

€ = strain corresponding to % in Eq. A.7

t
il

2 oo/eo
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= i O = i . .
820 strain at 0.2 Oy in Eq. A.8
€gg = strain at o0 = 0.5 9% in Eq. A.8. PFor concrete

confined by rectilinear ties 050 = 0,9 AV/S2
A = cross-sectional area of stirrup legs

s = gspacing of stirrups

The rules for cyclic loading are described with reference
to Figure 2.5. These rulés are chéracterized by four points,
which are the point of reversal from the envelope curve, given
by the strain Een’ the turning point, where slope of the
unloading curve changes; the common point, where the unloading
curve intersects the reloading curve; and the point on the
strain axis where reloading begins, given by the plastic
strain, eb.

Unloading from the envelope curve up to the turning
point has slope Eo after which the unloading and reloading
curves become parallel. The reloading line is defined by
joining the plastic étrain, Ep with the common point and
extending it to the envelope curve. Unloading and reloading
between these two parallel lines is with the slope Eo‘ Unless
the concrete has cracked previously loading in tension up to
the tensile strength, 0. can take place with a slope equal to
the slope of the reloading line.

The plastic strain, ep is giwven by the following

equation proposed by Karsan (12)
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€ £ 2 £
£ = 0,145 (=28) 4 90.13 (=) (A.10)
8O E:O .EO

The common and turning points curves, joining all common and
turning points respectively are assumed to be proportional to the
envelope curve,

The constants 0 _, Gt"a

o o! ! and the ratios of the common

and turning points curves to the envelope curve have to be
gpecified for each type of concrete. The softening slope,
may be specified directly or the lateral confinement of concrete

from which it may be calculated can be specified.

; €
Also the envelope strain een and the stress prev and
strain eprev in the previous step have to be retained as strain

history parameters for each point concrete stresses are being
calculated for.

For the examples in this study the common points curve
and the turning points curve were assumed to be 80 ¥ and 50 %

of the envelope curve, respectively.
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APPENDIX B

CALCULATION OF MOMENT-CURVATURE-AXIAL LOAD RELATIONS

This'appendix degcribes the procedure used in this study
to calculate the resisting moments at a reinforced concrete sec~
tion ﬁnder a given set of biaxial curvatures and axial load.

The axial load may be specified as a function cof the resisting
moments.

This procedure ié used in the stepvby step calculation
of the moment-curvature relationship at a section of a reinforced
concrete column and it is assumed that the strain history para-
meters from the previous step, required in the stress-strain
relations for steel and concrete are known (See Appendix A for
details).

| Referring to the axes shown in Fig. 2.8, the axial load
P and the resisting moments M, and Mz around’the X and y axis

respectively are given by

P = JU da (B.1)
a
(
Ml = oy da {B.2)
A’
f
M, = -0 x dA (B.3)
AJ

where ¢ is the stress and the integrals are evaluated over the

area A of the reinforced concrete section.
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The stress ¢ is obtained from hysteresis rules given in

Appendix A, and may be written as

o = o (strain ¢, strain history parameters,

material properties) {B.4)

The strain ¢ is given as

e = e, * o ¥ - ¢2 X (B.5)

where €o is the strain at the origin (the origin being located
at the centroid of the concrete section) and ¢1 and ¢2 are the
curvatures around x and y axis respectively. The assumption of
linear strain distribution over the section and no bond-slip
between steel and concrete is made in deriving Eq. B.S.

Since direct integration of Egs. B.1-B.3 is complicated
because of discontinuities in material properties and strain
history parameters over the section they are evaluated as
summations,

Equations B.1-B.3 can then be rewritten as

N
i=1
N
M, = ¥ o; ¥y Ay (B.7)
i=1
N
My = ) oy x; Ay (B.8)
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where the area A of the reinforced concrete section is divided
into N discrete areas A; at iocations_(xi,yi). The evaluation
of these areas and their locations is discussed in Section 2.3.1
of Chapter 2.

An inspection of Egs. B.4~B.8 will reveal that given a
set of curvatures, an axial load and strain history parameters
from the previous step the evaluation of momenté Ml and M2 from
Egs, B.7 and B.8 requires evaluation of the new centroidal strain
Eo from Eq. B.6. | |

Equation B.6 cannot be rewritten in a form from which
Eo can be difectly calculated. Equation B.6 is, therefore,
written in incremental form and an iterative procedure devised
to calculate € .

If the curvatures are held constant during a step, then

N

AP = A (B.9)

L By deg By
i=1

where AP is the change in axial load for a change Aso in the

centroidal strain and Eti is the tangent modulus for the dis-

crete area A;. This equation can be rewritten as

P

Ae R (B.10)
0 KtP
: N
where K,. = ) E_, A, is the tangent stiffness of the column
tP {=1 ti "1

section to axial loads. The maximuam value of Ktp occurs when

the whole section is elastic. The minimire value for
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computational purposes has been taken as 5% of the maximum
value,

The procedure used to obtain €0 and thus moments M,
and Mz from Egs. B.7 and B.8, given the axial load, a set of
curvatures and the strain history parameters is as follows:

i) Use €6 from previous step and calculate P from
Eg. B.6 using the new curvatures., The difference between the
calculated P and the axial load required is AP.

2) calculate Aeg from{Eq. B.10 using K% calculated

P

from E obtained in the previous call to the stress-strain

ti
routines.

3) Calculate new P from Eq. B.6 using Ae, and obtain
a new 4P,

4) If AP in step 3 is of the same sign as in step 1
repeat steps 2-4 until the absolute value of AP ig less than
allowable tolerance in axial load. If AP in step 3 has changed
sign interpolate for new Eo using Eq. B.6 until the calculated
P is within tolerance limits of the required axial load.

After the new g is kngwn the moments Ml and Mz are
evaluated from Eqs. B.7 and B.8. If the required axial load
is specified as a function of the moments, then Ml and M, will

2
have to be evaluated in steps 1, 3 and 4 also.
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APPENDIX C

CALCULATION OF SHEAR-DEFLECTION-AXIAL LOAD RELATIONS

This appendix describes the procedure used in this study
to calculate the shears in a reinfdrced concrete column, with
both ends restrained against rotations, given a set of two-
dimensional relative displacements between the énds.

This procedure is used for the step by step calculation
of the shear-deflection felationship of a reinforced concrete
column. A constant or a variable axial load dependent on the
shears may be specified in each step.

It is assumed that the shéars can be applied only at
the ends of the column. Therefore, the bending moments vary
linearly along the column in each of the two shear directions,
andﬁthe shears can be obtained directly from the end moments.
The moments about the same axis at either ends are also equal,
because of rotational constraints at the ends. The point of
contraflexure for both directions is, therefore, at the mid-
length of the column. All deformations in the column are
antisymmetrical about the pdint of contraflexure, thus, only
one half of the column need be considered. This is the same
as analyzing a cantilever column with half the length of the
origiﬁal column and half the relative displacement between

the ends,
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The moments at the fixed end of the column can be cal-
culated from the curvatures at that section. However, the
curvatures at the end section are now known in advance, Only
the displacements (which are the moments of the curvature
diagrams in each direction about the tip of the cantilever)
are known. To be able to calculate the end curvatures from
the displacements the distributions of the curvatures along
the length of the column have to be assumed. These distribu-
tions of curvatures should.be congistent with the assumption of
linear bending moment diagrams along the length of the column.

In this study the cantilever ¢column is assumed to con-
sist of three segments in each of which a particular curvature
distribution is assumed. The three segments are shown in
Fig. 2.22 and are classified as uncracked, cracked but unyielded
and yiélded. The assumed distribution of curvatures in these
segments is discussed in Section 2.3.2 of Chapter 2.

Although the shapes of the curvature diagrams along
the length of the column have been assumed the end curvatures
cannot be directly calculated from the given deflections. The
reason is that the length of the segments and the values of the
curvatures at the junctions of the segments are dependent on
the end moments, the end moments being determined only after
the end curvatures are known. An iterative procedure for
obtaining the curvatures and thus the moments from the deflec-~

tions is, therefore, used. The ratio between the change in
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curvature in a particular direction and the change in the
corresponding deflection in the immediately preceding step are
used to predict the change in that curvature in the next step.
This ig if the change in deflection in that direction in the
present step is of the same sign as in the preceding step. If
the change ils opposite in sign to the preceding step for any
particular direction then the ratio for the eléstic case which
would be 12/L2 is used for prediction purposes in that direction.
L/2 being the length oflthe‘cantilever colunn,

The complete procedure for calculating the moments from
the given deflections in a particular step are:

1) 1In each direction compare the sign of the change
in deflection in the present step with the previous step. If
they are of the same sign use the ratio between the change in
end curvature and the change in deflection from the previous
step to predict new end curvature for that direction. If of
opposite sign use ratio for elastic case.

2) Use procedure described in Appendix B to obtain end
moments from the predicted end curvatures.

3) Obtain cracking and yielding moments and value of
0 required in Eq. 2.2 for rectangular sections, for the given
axial load (1f dependent on shears, axial load is calculated
from the shears obtained from step 2} from a table of these

values calculated in the beginning of the program. Also obtain
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uncracked slope and the secant slope up to yield for the moment-
curvature diagram for this axial load.

4) Identify sections where cracking or Yielding has
been initiated using cracking and yield c¢urves shown in
Figure 2.24 and change lengths of segments if required (the
uncracked segment can only be shortened and the vielded segment
can only be lengthened).

5) Calculate the curvatures at the junction of the
segments from moments calculated in step 2 and slopes obtained
in step 3.

6) Calculate the end deflections from the curvature
diagrams calculated.

7) If the calculated deflections are within the allow-
able tqlerance of the given deflections the moments calculated
in step 2 aré the required moments. If the calculated deflec=
tions are not within the allowable tolerance of the given values
then new ratios between the change in curvature and the change
in deflections are calculated and new curvatures predicted.
Steps 2 to 7 are then repeated.

For computational purposes the minimum value of the
ratio between change in curvature and change in deflection was
assumed to be that for the elastic case (12/L2). The maximum
ratioco was limited to ten times the minimum value.

The column is assumed to consist of only one segment

if it is uncracked and of two segments if it has cracked but
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not yielded. Also, if the column has yielded then for compu-
tational purposes the length of the yielded’segment is taken as
at least d/4, where d is the depth of the section.

It may be noted here that the numerical procedure out-
lined above gives results which are independent of the size of
the step. However, the number of iterations required to'predict
the correct curvatures to gatisfy the given deflections and to
predict the centroidal strain to satisfy the given axial load

will increase with increase in the size of the step.
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APPENDIX D

PROCEDURE FOR DYNAMIC ANALYSIS

D.1 Introductory Comments

The procedure used in this study to obtain the response
of a reinforced concrete column subjected to two-dimensional
earthquake motion is given in this appendix. The reinforced
concrete column is modeled with a single mass at the top with
two translational degrees of freedom and fixed at the base,
where the motion is applied. The determination of the mass
for modeling different system periods is discussed in Section
3.3 of Chapter 3.

The equations of motion are given in the next section.
Since the forcing function as well as the resisting forces
cannot be described as a continuous function, a step by step
procedure (17) is used to integrate the equations of motion in
the time domain. Sectién D.3 describes the procedure for the
solution of the equations. The shear-deflection relations for
reinforced concrete columns developed in Chapter 2 are used to

obtain the resisting forces.

D.2 Equations of Motion

For a single mags system with two translational

degrees of freedom, subjected to base excitation, the
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equation of motion in incremental form 1is

[M] {aX} + [€] {a%} + {4F} = - [M] {a¥} + (R}  (D.1)

where
[M]
[C]
{aX)

{Ax}

{ay}

{AP}

{R}

is the diagonal, mass matrix,

is the diagonal, viscous damping matrix,

contains the
between mass
contains the
between mass
contains the

contains the

incremental relative accelerations
and base,

incremental relatiﬁe velocities
and base,

incremental base accelerations,

changes in the resisting forces of

the system, and

contains any unbalanced force left in previous

time step.

Assuming a linear variation in the response acceleration

between time t and t + At (B = 1/6 in Ref. 17) the response

velocity {X} and displacement (X} at time t + At can be

written as:

- - . ..AJ:_ e .
{X} = {X} + At {X}, + QEE {x}
t+At £ t 3 t

(D.2)
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The incremental velocities and accelerations can be

obtained from Eqgs. D.2 in terms‘of the incremental displace-

ments and responses at time t as

o 3 Al o arer o At
X}y = £ {AX} 3{1;}t 3 {x}t
.. 6 6 -
{AxX} = {AX} = == (X}, = 3{X}
(At)2 , A .t t

Substitution of Eqs. D.3 into Eq. D.1 gives

6_ __
(Atz [M] + [cl) {ax}

= - [M] {AY} + (Z% [M] + 3[c]) (%},
At .
+ (3 [M] + > [c] {x}t - {AP} + {R}

which can be rewritten as
[k*] {ax} = {Q} - {AF}
where
[k*] = 2[MJ+ 2 [c]
t

A

and {a} = -[Ml (a9} + (3¢ € (Ml + 3[c]) {X}¢

At . ..
+ (3[M] + = [c]) X}, + {R}

(D.3)

(D.4)
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[k*] may be called the dynamic stiffness matrix and
"{Q} the dynamic load vector. It may be noted that for the

problem under consideration [K*] is diagonal and constant.

D.3 Procedure for Solution of Equations of Motion

The equations of motion in incremental form given by
Eq. D.4 cannot be golved directly'for the incremental displace-
ment vector {aX}, since the changes in the resisting forces
{AF} are not known in advance. An iterative procedure is,
therefore used to solve Eq. D.4. For the first iteration [AF}
is assumed to be zero and {AX} evaluated from Egq. D.4. {AF}
is then evaluated from the shear~deflection relations described
in Appendix C using this value of {AX}. Equation D.4 and the
shear-deflection relations are solved successively until values
of {AF} in consecutive iterations are within the allowable
tolerance. The solution then proceeds to the next time step.

The complete procedure used in this study to obtain the
response of a reinforced concrete column subjected to two-
dimensional earthquake motion is as follows:

1) 1Initialize strain history parameters for the steel
and the lumped concrete for the end section of the column.
Initialize €t the centroidal strain to the value for axial
load only. Initialize lengths of yielded, unyielded and

uncracked segments for shear-deflection calculations.
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Initialize relative velocities and displacements for the system.
Calculate mass and damping matrices for the system for the
given period. Calculate dynamic stiffness [K*].

2) <Calculate dynamic load vector {Q}.

3) cCalculate {AX} from Eq. D.4 using value of {AF}
evaluated in the previous iteration. If first iteration use
{Ap} equals zero.

4) From the value of {AX} obtained in step 3, predict
changes in end curvatures uéing curvature/deflection ratios
as explained in Appendix C. Calculate total énd curvatures.

5) From predicted end curvatures, predict end moments
iterating on €o 28 described in Appendix B, to obtain the
required axial load within the allowable tolerance in axial
load.

6) Using the end moments 6btain lengths of uncracked,
unyielded and yielded segments. Calculate curvatures at the
junction of these segments and evaluate the deflections as
described in Appendix C.

7) If {AX} obtained from Step 6 is within the allowable
tolerance of deflection {AX} in step 3, proceed to step 8. 1If
tolerance in deflection is exceeded calculate new curvature/
deflection ratios, predict further changes in curvatures and
repeat steps 5 to 7.

8) From the end moments calculated in step 5, calculate

changes in the resisting forces {AF}. If {AF} is within
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allowable tolerance of {AF} used in step 3 then proceed to
step 9. If tolerance 1eve1‘is exceeded repeat steps 3 to 8
using new value of {AF}.

9) Repeat steps 2 to 9 for each step.

A flow-chart of the above procedure for a single time

step is shown in Figqure D,1,.

D.4 Concluding Remarks:

It may be noted that the procedure detailed in Section
D.3 requires iterative solutions at three levels. The lowest
level of iteration is for obtaining the centroidal strain £o
for the end section of the column. A tolerance level for the
error in the axial load is specified for these iterations.
The next level of iteration is for calculating the end curva-
tures given a deflection increment. A tolerance level for the .
difference between the given and calculated deflection is
specified. The highest level of iteration is for obtaining
the change in relative displacements from the equatidns of
motion (Eq. D.4). A tolerance level for the satisfaction of
that equation is specified. A necessary condition for the
iterations at a highexr level to converge is that the maximuam
erroxy introduced by the allowable tolerance at a lower level be

less than the allowable tolerance at the higher level. This

conditions should be considered when specifying tolerances.
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The tolerances allowed in this study were 5 kips for
axial load, 0.005 inches for deflection and 1 kip for the
unbalance in the equation of motion. These can be compared
with 3600 kips axial load capacity, 0.93 inches yield displace-
ment and 131 kips yield shear.

The average number of iterations required for each
time step were 1.8 to obtainl{Ax} from the equations of motion.
This in turn required a total of 3.0 iterations per time step
to obtain curvatures from &eflections. This further required
a total of 6.5 iterations per time step to obtain €0 to satisfy

the axial load.
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Kew
time
step

Compute {Q} from definition in Eq. D.4

" Compute {aX} from Eq. D.4
If first iteration use {AF} = 0

Predict {a¢} to satisfy {ax}
Use procedure in Appendix C

Compute {M} and P
Use new {¢} and current &,

Change ¢, as
per Appendix B

P within
tolerance of that
required 17

Determine curvature distrﬁbutiog_ysing
{¢} and {M}, thus compute {AX}

Change Ad/AX
ratios

No A - {ax)
within tolerance ?

Yes

Compute {&F} from {M}, X} and P

“{aF} = {EF}

{&F} - {aF}
within tolerance ?

Modify strain history parameters

Fig. D.1 Flow-Chart of Calculation Procedure

for

Single Time Step

Next
time
step
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APPENDIX E

NOTATIONS

The following symbols are used in the study:

= ith discrete area in section

= peak acceleration recorded during an earthquake
= area of longitudinal steel in the section

= cross-sectional area of stirrup legs

= 2 x 2 viscous damping matrix of the system

= displacement in Direction 1

= displacement in Direction 2

= modulus of elasticity of steel

= 1initial modulus of concrete

= tangent modulus of ith discrete area in the section

= 2 x 1 vector of shear resistance of column

= uniaxial secant stiffness up to yield for the
column :

= tangent stiffness of column section to axial loads

= 2 x 2 dynamic stiffness matrix of the system

length of fixed-fixed column

= moment at a section

= 2 x 2 mass matrix of the system

= moment around Direction 1 at a section
= moment around Direction 2 at a section

= 1initial cracking moment for a section
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uniaxial cracking moment for a section in
Direction 1

uniaxial cracking moment for a section in
Direction 2

uniaxial yield moment for a section

uniaxial yield moment for a section in Direction 1
uniaxial yield moment for a section»in Direction 2
axial lcoad on ﬁhe column (positive in tension)

2 x1 dynamip load vector

2 x 1 vector containing imbalance in equation of
motion in the previous time step

period of the system

shear resistance of the column

shear resistance of the column in Direction 1
shear resistance of the column in Direction 2
shear resistance cof the column at yield

2 x 1 vector of relative displacements between
mass and base

2 x 1 vector of relative velocities between mass
and base

2 x 1 vector of relative accelerations between
mass and base

2 % 1 vector of ground accelerations
ground acceleration in direction i
ground acceleration in direction j

average of ground acceleration in direction i
over the duration of the record

average of ground acceleration in direction j
over the duration of the record
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c = vyield shear ratio = Vy/mg

cov, 4 = covariance of accelerations in directions i and j

d = depth of column section

fé = cylinder strength of concrete

g = acceleration due to gravity

kcr = uniaxial stiffness up to cracking for a section

ky = uniaxial secant stiffness up to yield for a section
m = mass on column top

my = moment in a parﬁicular directibn at junction of

segments 1 and 2

= moment in a particular direction at junctioh of

T2
segments 2 and 3

m = moment in a particular difection at column end

n = shape parameter for steel stress-strain curve

r = radius of circular sections

s = stirrup spacing

t = time

to = time were variances Or covariances are being
computed

uy = uniaxial yield displacement of the column

X = x=-coordinate measured from centroid of concrete
section

X, = x=cgoordinate of ith discrete area in the section

Y = y=coordinate measured from centroid of concrete
section

Y; = y=-coordinate of ith discrete area in the section

Zz = z=~coordinate measured along column axis from

column end
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A = column displacement used for gravity effects

A = increment in a quantity_

2 = softening slope of the concrete envelope curve

o = ‘shape parameter for yield determination at a
section ‘

o : = paraneter representing strain-hardening slope for

steel stress-strain curve

B = coefficient in Newmark's g-method

chc = gtrength parameter for steel cyclic stress-strain
curve :

Bmon = strepgth parameter for steel monstonic stress-
strain curve

€ = strain (positive in tension)

80 = centroidal strain of the section

Eo = strain at maximum stress in concrete

820 = strain in concrete when stress reaches 20 % of

' maximum on the descending branch of the envelope

curve

850 = strain in concrete when stress reaches 50 % of
maximum on the descending branch of the envelope
curve ‘

Een = strain on envelope curve of concrete from where
reversal took place

e, = steel strain at last reversal

Emax = maximum steel strain reached previously

Emin = minimum steel strain reached previocusly

Sp = plastic strain of concrete

Eprev = sgtrain at previous time step

> = strain at beginning of strain-hardening in steel

sh
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’

strain corresponding to tensile strength of
concrete

yield strain of steel

displacement ductility

étress (positive in tension)
compressive strength of concrete

steel stress at last reversal

naximum steel stréss reached preVious1y
minimum steel stress reached previously
tensile strength of concrete

maxXximum possible stress in steel

yield stress of steel

2 x 1 vector of curvatures at end sections of
columns

curvature in a particular direction at junction
of segments 1 and 2

curvature in a particular direction at junction
of segments 2 and 3



