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CHAPTER 1
INTRODUCTION
1.1 Introductory Remarks

When designing reinforeced concrete structures, one important
aspect to be decided is the insurancelof an adequate stiffness to resist
lateral forces caused by such events as earthquakes, winds, or blast
loadings. The forces associated with . these evgnts can produce high
stresses and induce vibration, ete. Reinforced concrete shear walls,
which have a high inplane stiffness, are often used to economically
provide the necessary resistance to such horizontal forces. Columns
also resist horizontal forces, but their contribution, depending on
their stiffrness, is normally much smaller than that which would be
provided by walls, Also nonlinear characteristics of column type
members relative to those of wall types tend to further degrade their
contribution,

Recent studies of damage caused by strong earthguakes indicate
that the significant 1inelastic deformation to reinforced concrete
structural components has to be taken into consideration when designing
a réinforced conerete structure. For a proper structure, it is
desirable that such inelastic action should take place first in the
beams in order to prevent c¢ollapse of the structure. The inelastic
behavior of reinforced concrete structures in an earthquake environment
has been the objective of extensive investigation over the past

decade[3,13,30], but there are aspects that are still not fully



understood. In analyzing reinforced concrete structures in the
inelastic range, many phenomena arise which have to be taken into
consideration, such as cracking, crushing of concrete, yielding, strain
hardening of reinforcing steel, and bond slip, to name a few. These
characteristics make the analysis complicated.

In this study, the analysis of idealized reinforced concrete
plane frame-wall.structures will be treated on the basis of certain
assumptions such as the substitute frame structure, fixed inflection
point locations in members, concentrated mass at each floor level, etc.
These assumptions are made to simplify the analysis whiie not markedly
affecting its accuracy. The study presented is 1limited to plane

structures of laboratory test specimens.

1.2 Review of Previous Research

When analyzing a reinforced concrete structural system deformed
beyond its elastic range, it is obviously very important to choose an
idealized element model suitable to represent the inelastic behavior of
the reinforced concrete member components. Many different approaches
which take into account material and geometric nonlinearities have been
reported. in the literature. Several of the more successful models are
discribed below.

Giberson[15] proposed a concentrated spring model for column and
beam elements. His model consists of a linearly elastic member with a
spring attached at each end. These springs take account of any
nonlinear characteristies that occur within the members. This model for

nonlinear analysis was applied to reinforced concrete multi-story



structures. This model is versatile since the spring at each end can
have different curvilinear or bilinear hysteretic characteristics,
Otani's[347 combined two cantilever beam model with nonlinear springs,
belongs to the class of concentrated spring models. Concentrated spring
models are effective for the antisymmetric moment distributions with
fixed inflection points. Otani's model also demonstrates good agreement
between analytical and test results.

Benuskal10] presented a two-component model with the members
divided into two imaginary parallel elements, There is an elastic
element to represent the linear phase and an elasto-plastic element to
represent a yielding characteristic. This model was applied to a
nonlinear analysis of a 20-story open frame structure.

Takizawall5] assumed the distribution of flexural rigidity along
a member element to be that of a parabolie function. This distribution
is used in the determination of the member flexibility matrix. The
inflection point is not fixed in this model. fhis model has been
applied to the nonlinear analysis of a 3-story reinforced conerete frame
structure.

Takayanagi[42] has presented a multiple spring beam model for
analyzing wall members. This model divides the member into several
subelements along its longitudinal axis., Each subelement has a uniform
flexural rigidity which changes based on the hysteresis loop appropriate
to each subelement. This model is effective for a distribution of
moment whose inflection point can lie outside of the element.

A somewhat different approach to analyzing inelastic behavior of

reinforced concrete members is the layering concept. This can be a very



effective tool., In this approach the cross section is divided into a
number of layers. Each layer has material behavior characteristics
which depend on the stress-strain curve of its material in its current
state of deformation. The stress resultants for a croass section are
then obtained by integrating or summing the layer contributions.

Park et all24,36,37] investigated the stress-strain behavior of
concrete under. cyclic loading by this method and showed that the layer
method can cope with the complex stress distributions due to cyelie
loading. Aktan[5] and Karlsson[23] have studied, with such a procedure,
the moment-curvature relationships of reinforced concrete columns
subjected to load reversals. They have obtained satisfactory agreement
between calculated and measured relationships. As an iteration scheme
is used in the above mentioned layering method when calculating
moment-curvature relationships of a member, this method has the
disadvantage of requiring a large amount of computation time,

Hand[ 171 also applied a layering method to reinforced concrete
plates and shells and suggested it would be a wvaluable tool for
determining structural behavior in the intermediate region between the
elastic and limit states.

The finite element method in the form of plane stress analysis
has been Aapplied to inelastic analyses of reinforced concrete
structures[4,38,41].  Such two-dimensional analyses have been a
satisfactory tool for inelastic analyses of some isolated wall
components, However, the computational effort involved can be
substantial so that the use of plane stress elements for wall panels of

multistory structures would be practical only in very unusual



circumstances.

Yuzugullu[51] investigated the behavior of a shear wall frame
system for wmonotonic, increasing load. Darwin(12] analyzed reinforced
¢oncrete shear panels under cyelie loading. They both obtained good
correlation with experimental results. However, such a finite element
analysis requires quite a large number of elements if the local stress
distribution is important. Therefore this approach is costly, maybe too
much so, for use on large scale reinforced concrete structural systems
such as those being investigated in this study. ~The finite element

analysis still has a very promising future but on more limited problems,

1.3 Object and Scope

The objective of this study is to investigate analytically the
nonlinear seismic behavior of reinforced concrete frame-wall siructures
and with that analysis to tirace the development of a failure mechanism
for these structures.

First of all, three types of mechanical models : a concentrated
apring beam model, a multiple spring beam model, and a layered beanm
model, which can take into account both the linear and the nenlinear
behavior of such reinforced concrete cantilever beams are presented. To
describe the nonlinear behavior of the reinforced concrete cantilever
beams, a numerical procedure is presented for computing moments,
curvatures and deflections. The selection of the analytical models,
which is to be used to analyze the structure, depends upon the physical
loading condition that exists.

In order to establish the force-deflection relatibns of the



structure, a beam-column component and a single shear wall of the
structure are investigated. In this respect, for each constituent
member: beams, cclumns, and the wail, a degrading trilinear hysteresis
loop is adopted. But this hysteresis loop does not include any pinching
effect which might occur in the structural components being tested,. A
second new hysteresis rule is therefore presented. This hysteresis rule
was developed primarily for application to the beam members in this
structure.

Finally, the frame-wall structure is modelled as a system which
has a concentrated spring model for the beam and column elements and a
multiple spring beam model for the wall elements. A layered model is
applied to the first story exterior columns of the structure only when
the effect of changing axial force is investigated. Furthermore in this
phase, a substitute-frame system has been chosen as the frame subsystenm
model because the structure being modelled has a geometrical symmetry
aspect while the frame is subjected to antisymmetrical loading. This
substitute frame system described in Chapter 2 reduces significantly the
computation time.

The instantaneous nonlinear characteristics of the structure
being investigated are estimated and the failure processes of each
constituent member under a strong earthquake motion are traced by
numerically integrating the equations of motion in a step by step
method.

A computer program is developed to carry out the numerical
calculations of the analysis. The computed results are discussed and

compared with the available test results.



This study is a continuation of the work which was initiated by
Otani[34] for the reinforced concrete frame structures, and followed by

Takayanagil[42] for the coupled shear wall structures.



CHAPTER 2

STRUCTURAL SYSTEM AND MECHANICAL MODELS

2.1 Structural System

The test structure(Fig.2.1) to be analyzed consists of two-ten
story, three bay frames surrounding a slender shear wall. The shear
wall is placed at the center of the structure in the plan. It was the
intention that the wall not be subjected to gravity loaq. Thus the wall
is joined to the frames with connections that transmit only horizontal
motion. It is assumed that each floor diaphragm is displaced in its
horizontal plane as a rigid body. All elements of each frame undergo
the same horizontal motion at each story level. A total floor weight
including story weight of the structure is considered I1lumped at each
floor 1level, The structure is considered to be fixed at the base. A
"weak beam-strong column® design was made for 1lateral 1load resistance
for the framed structure, The details of the structural components are
shown in Fig.2.2. The reinforcing schedule for the structures is

tabulated in Table 2.1.

2.2 An Analytical Model for Frame-Wall Structures

A simplified approximate procedure is adopted for the analysis of
this frame-wall structure. The frame structure is a symmetrical
rectangular frame which is being investigated for the case of
antisymmetrical loadings. Therefore the contraflexure point of the

beam, which 1s approximately at the center of the beam length, is



assumed to be a roller joint. The symmeirical placement of a shear wall
in the structure allows the structure to respond still in a planar
| manner., Therefore the entire system is idealized as a plane structure
composed of two systems as shown in Fig.2.3. One of these systems is an
isolated shear wall. The second system is a substitute frame structure
which models the two parallel-rigid frames as a frame substructure. The
substitute frame structure system consists of two exterior frames and
one interior frame. In defining the stiffness characteristics, each
exterior frame and the interior frame of the substitute frame structure
represent two exterior parts and four interior paris of the actual frame
structure, respectively.

The shear wall is treated as a vertical cantilever beam which 1is
subjected only to horizontal loading. With the diaphragms éssumed rigid
in their own planes, all the frames and the shear wall sway by the same
amount at each floor level. Each of the structural components: frames,
walls etc., is attached by links to the adjacent components at each

floor level.

2.3 Mechanical Models for Structural Components

When a reinforced concrete cantilever beam is loaded into the
inelastic range, its end rotation and tip deflection can be computed
from the distribution of curvatures along the beam by means of the
moment-area method. The cantilever beam containing flexural cracks has
its moment diagram and the distribution of curvatures along this member
as shown in Fig.2.4[24,467, For computational purposes, this actual

distribution of curvatures is simplified into three types of shapes of
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distribution of curvatures as shown in Fig.2.5. The corresponding
mechanical models are also shown in the figure. These three types of
mechanical models, therefore, can take into account nonlinear behavior
of a reinforced concrete cantilever beam.

The concentrated spring model is the one which Otanif[32]
developed based on inelastic action of a cantilever beam. This model
consists of a flexible elastic line element and a nonlinear rotational
spring at the end of the cantilever beam as shown in Fig.2.5(a). The
curvature distribution along the beam, such as that which might occur at
ultimate moment, as well as an idealized curvature distribution wused
Wwith this model are shown in Fig.2.5{(a). The nonlinear rotational
spring can take care of the hatched portion of the idealized curvature
assumed to exist along the beam. This model is quite suitable for the
beam members of this satructure being investigated since the moment
distribution of the fixed-hinged beam member is exactly the same as that
of the cantilever beam. This model is also applicabie to the column
members since the point of contraflexure can be assumed practically at
the center of the column lengih during 1its response even though the
contraflexure point of the upper columns shifts downwards while that of
the lower columns of the frame structure shifts upwards from the center
of the column story height.

The multiple spring model is the one studied by Takayanagifi#2].
This is a line element model and is composed of a number of segments,
each of which handles independently both the linear and the nonlinear
action as springs. This model as well as the assumed curvature

distribution along the beam are shown in Fig.2.5(b). This multiple
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spring model 1is applicable to wall members which are exposed to a more
general moment distribution than is the case for the beams and columns
of the frame. The centroid of each segment is used as the control point
for the determination of the nonlinear properties of that segment. AIl
interior or segment nodal points are‘ condensed out of the element
stiffness matrix before it is used in the analysis of the complete
structure., Therefore only story level displacements remain 1in the
structural stiffness matrix as used. The 1line element model is
considered to be more reasonable than a plane 8tress finite element
model especially for a slender shear wall.

The layered model shown in Fig.2.5(¢) is a modification or
alteration of the concentrated spring model, Instead of the nonlinear
rotational spring being in the form of a concentrated spring;,é layered
eross section of 1length, Lp, is assigned at the end of the cantilever
beam and connected to an elastic line element. Lp is =2an inelastic
length as shown in Fig.2.5(e). The inelastic flexural action of the
cantilever beam is calculated explicitly by the layered method which is
derived from an overall moment-curvature relation reflecting the various
stages of material behavior of concrete and steel in the layered section
{17,497, This model has the advantage that the layered concept can take
care of the change of flexural rigidity due to both a change in the
moment and a change in the axial force. This model is suitable to the
case where the exterior lower level columns are subjected to a
significant change in the axial force during cyclice loadings.

These mechanical models are applied to the reinforced concrete

frame-wall structures. It should be kept in mind that this analytical
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work on nonlinear response of reinforced concrete frame-wall structures
is based on the flexural yielding capacity of the reinforced concrete

cantilever beam members.



13

CHAPTER 3

FORCE-DEFORMATION RELATIONSHIPS FOR CANTILEVER BEAM MODELS

3.1 Introductory Remarks

The process of inelastiec structural analysis includes the choice
of mechanical models, the establishment of force-deformation
relationships of mechanical models, and then the application of the
mechanical models to the structure. This chapter describes the
force-deformation relationships of these mechanical models.

Idealized stress-strain relationships for concrete. and steel are
constructed in order that the three mechanical models can have a common
basie shape for each concrete and steel. Then these idealized
stress-strain relationships for concrete and steel are used in order to
construct inelastic force-deformation relationships for each mechanical
model, Smzall aggregate concrete and plain annealed wire steel are used
in this study. The mechanical properties for this concrete and steel
are described in detail in Ref.[2].

For the concentrated spring model, the force-deformation
relationship is obtained fron the idealized quarter-cyecle
moment~-curvature relationship of the type shown in Fig.3.3. Then this
force~-deformation relationship is used as the primary curve in the
development of the hysteresis rule., The inelastic deformation in later
stages can be obtained from direct application of the hysteresis rules.

For a multiple spring model, a modified EI (flexural rigidity)

approach is wused in each spring. An idealized quarter cycle
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moment~curvature relationship is used as the primary curve for the
hysteresis rule, The modified EI to be used at each subsequent load
increment is obtained in turn froﬁ the developed hysteresis rules.

For a layered model, the modified EI approach is again used at
the layered section. An overall moment-curvature relationship is
assumed. It inecludes the changing axial load effect as well az the
cyelic loading effect which reflect direectly the various stages of

material behavior.
3.2 Concentrated Soring Model and Multiple Spring Model

3.2.1 Stress-Strain Relationship for Concrete

The stress-strain relationship for concrete is constructed from a
parabola combined with a straight line as proposed by Hognestad[21].

The various branches of these defining relationships are:

fc =0 fc = &t
£ €12
fo= 2|8 - 1S e, <€ <E
c clilE, €0 t c 0
(34])
- 1 - -
fc = fc[] Z(sC EO)] €y < E¢
and
= i 1/2
ey = 5,1 - (1 - £,/F1)174]
where
fc = stress of concrete
fé = compressive uniaxial strength of concrete
ft = tensile strength of concrete 0.5 fé , (Mpa)
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EC = strain of concrete
60 = gtrain at which fk is attained
et = strain at which ft is attained
Z = constant which defines the desending slope of the

stress-strain curve, assumed to be 100-[34]

The proposed curve is shown in Fig.3.1(a),

3.2.2 Stress-Strain Relationship for Stee]

A piecewise linear stress-strain relationship is adopted for the

reinforcing steel,

fs = Es®s s S &y
fs = fy €y 2 g S gy
(3.2)
fg=fy * Ecnleg = €gp) Csh 28 = &y
fs = fu gy S s
where
fs = stress of steel
fy = yield stress of steel
fu = ultimate stress of steel
€S = strain of steel
gy = strain at which fy.is attained
Esh = strain at which strain hardening commences
Eu = 3strain at which fljis attained
ES = modulus of elasticity of steel
E = meodulus to define stiffness in satrain hardening range
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The yield stress,fy, and ultimate stress,fu, are obtained by
averaging the results from a number of coupon samples taken from the
wire[2]. The proposed stress-strain curve for the steel is that

described in Ref,[42] and shown in Fig.3.1(b).

3.2.3 Moment-Curvature Relationship of a Section

Based on. the\idealized stress-strain properties of concrete and
reinforcing steel just described, a moment-curvature relationship can be
constructed. The relationship is based on the geometpy of the section
and on the assumption of linear variation of strain through the depth as
shown in Fig.3.2. The strains and curvature are related through the

well known equations as follows:

$ = e.fc
= e;/(c - d') (3.3)
=e/(d - ¢)
where
P = curvature
‘ EC = concrete strain at the extreme compressive fiber
gé, gs = strain in the compressive,tensile steel, respectively
d', d = distance from the extreme compressive fiber to the center

of compressive, tensile steel, respectively

¢ = depth of the neutral axis

From equilibrium conditions for the section, we have the

following expressions.

C

N = )( fobx + ALFL - A S, (3.4)
-c‘
[}

C, = )( f bxdx (3.5)
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M= CC(Cp - yC) + A;f;(Cp -d') + Asfs(d - Cp)
f;, fs = stress of the compressive,tensile steel, respectively
b = width of the cross section
A;, AS = area of the compressive,tensile steel, respectively
N = axial load acting on the section

{ = concrete compression force

(]
-
<

(4]

i

distance from the extreme compression fiber to centroid of

axial load, concrete compression force, respectively

¢' = distance from the neutral axis to the point of the maximum
tensile stress of the concrete

M = bending moment about centroid of axial load

x = distance from the neutral axis

Using Egs.(3.1) and (3.2), the stresses f., fg, and fé can be
Vdetermined for given strains EcrEgr and e;, respectively. The location
of the neutral axis dencted by, ¢, can be obtained with given €c and N
from Egs.(3.3) and (3.4) using an iteration method. The moment M and
curvature ¢ can be calculated from Egs.(3.3) and (3.5)

Flexural 9rackin5 at a cross section is assumed to occur when the
stress at the extreme tension fiber of the section reaches the tensile
strength of the concrete. The flexural cracking moment MC is computed

using simple bending theory as follows:

I N
M. = ;i.(ft + K) (3.6)

where

=
1]

axial force on a section , compression positive

area of a c¢ross section

>
"
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—
[

moment of inertia of a gross section

f

yt distance from neutral axis of the section tc extreme fiber

in tension

Flexural yielding is defined as the point at which the tensile
reinforcement reaches its yield strain. If the tensile reinforcement is
arranged in several layers,yielding will occur gradually starting at the
outer layer»of the tension reinforcement and proceeding to the layer
closest to the neutral axis of the section. Beoause the hysteresis
relationship requires a definite value for the yield moment, yield
moment M, is defined as the moment corresponding to the development of a

Y

yield strain at the centroid of the reinforcement working in tension.

3.2.4 Idealized Moment Curvature Relationships for a Concentrated

Spring Model

Using the three values of wmoment: cracking, yielding, and
ultimate, the moment-curvature relationship is idealized by three

straight lines as follows[343,(Fig.3.3):

=M
= M
o)
b = MZ.. M M, <M f-My
Yy
3.7)
1 M (
¢=¢E+——(——1)], Mo< M
y EIy My y
and
M - M
EI -‘.Hu&
oWty oy
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where
EIl = initial flexural rigidity
M = bending moment
MC’ My’ M = cracking, yielding, ultimate moment, respectively
o = curvature
¢C’ ¢y’ ¢u = curvature at cracking, yielding, ultimate, respectively

3.2.5 Rotation due +to Inelastic Flexural Actign Pased on
Idealized Moment-Curvature Relationships for a Concentrated Spring Model
Displacement 2zt the free end of a cantilever beam is calculated
from the curvature distributicn along member length. With the 1load
effectively concentrated at the free end, the bending moment can be
assumed to be distributed linearly. The free end displacement D(M) can

be expressed as follows[347]:

2
D(M) = 57 MM,
D(M) = LE—[] a3) $ Moy u2¢ ] M. <M<HM
© 3 B y M c c = v
o) = S [(1 - ) o, ¢ ol o] M= M
Y 3 y' Yy Ty ¢ y
(3.8)
L%, 1
D(M) ==-[(2+8)(1 - B){B + & (1 - B)}
y
£ B(1+ 8) - 2% 2 +‘--2-a2¢ M < M
) - % 3 ¢ y
L
D(M,) =5 [(2 + 8)(1 - 8,)(8, +.-E}—y (1-8)

2

3.0 LS 2 .
+Bu(1+8u)-zaujét+_3au¢c M Mu
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where
L = length of the cantilever beam

M

= £
% W
a = _M£
Y My
' (3.9)
u Mu
M
_—
B =
M
8, = 7t
u u
Average rotation of the cantilever beam is v
o = D(M) (3.10)

L

Slopes in the three stages of the idealized trilinear

moment~displacement relationship are expressed as follows:

M
= C
30, = DM} O<M<M
M, - M
02 = By = D(M) Mo sM <M (3.11)
b c
Mo~ M
= u__Yy
33 D(M,J - D(M,) M, <M

where
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instantanecus stiffness of the concentrated spring model

of unit length (Fig.3.4)

The incremental rotation of the cantilever beam can be expressed

by the instantaneous rotational stiffness

= _.L—- . (3-12)
A8 SDi AM
where

A8 = incremental rotation of a cantilever beam

AM = increment of external moment at the fixed end of a
cantilever beam

length of a cantilever beanm

—
]

The idealized moment-rotation relationships obtained are shown in

‘Fig.S.H and are used a3 the primary curve for the hysteresis rule.

3.2.6 Force-Displacement Relationship for a Multiple Spring Model

This model is composed of a sSeries of segments. Each segment can
be subjected to a different level of nonlinearity. The instantaneous
flexural stiffness of each segment is derived from the stress resultants
existing at the centroid of each segment. Forces vary but properties
are constant.

Fiexural rigidities (slope) can be defined for each segment[421,

=M
¢ El,

=

M- M | (3.13)
El, = L —2% M o<M<M |
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where
EI], EIZ,EI3 = flexural rigidity before cracking, from cracking to

yielding, and after yielding, respectively

The idealized moment-curvature relationship built from three

strajght lines is shown in Fig.3.5 for the multiple spring model.

3.3 Layered Model

The cross section in the inelastic zone (fixed enq portion) of a
cantilever beam is divided into layers of equal thickness. For each
layer, the concrete inside the stirrup is considered as confined while
that outside is taken as unconfined. The length, Lp, of the inelastic
zone is arbitrary, say Lp= o.5%(depth of beam). The depth to each layer

of steel and the area of steel at that level are also specified.

3.3.1 Stress-Strain Relationship for Concrete

The tensile stress of concrete is now neglected. This is because
this simplification is needed for the iteration procedure in this model
and this modification does not affect the overall stiffness
characteristics of this model. With a monbtonically increasing load
capacity, the stress-strain curve for the compressed concrete follows

the previously proposed shape in Eq.3.1(a) for both confined and

unconfined concrete. Thus the three analytical cantilever beam models
can have a common basic shape, The unconfined concrete, however,
provides no contribution at strains greater than ey © 0.004,

Because of the nature of the problem the analysis is required to
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predict unloading from an inelastic state and subsequent reloading back
into that inelastic range. The shape of the model curve for the above
case is assumed to be based on the values of €a 1 strain on the envelope

curve (Fig.3.6(a)) at which unloading starts, and €_, the plastic strain

n ]
remaining after all load has been released [12,39]. Values for these
straing are related by the following equation which was developed
experimentally by Karsan and Jirsa [22].

E € z g

n a e '
0 - 0.145|—2 +o0.13]=2 (3.14)
Eeu Seu ey

With ee established, a linear equation is used for unloading from

the ca point on the envelope curve passing toward the €n point.
Subsequent reloading to €o follows back on, the same "line., This
equation is
.f
en ’
- n
C ee en ¢

where

fen = ceonerete stress at which the conecrete strain is €e

This rule is shown in Fig.3.6(a).

3.3.2 Stress=-Strain Relationship for Steel

For simplicity a bilinear stress-strain relationship and
hardening rule have been assumed. The Bauschinger effect is not
consiered. Such bilinear behavior with strain hardening representation

for the general loading case is reasonable when detailed test data are
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not available. The strain hardening stiffness qy is the slope of the
line between the yield point and the point at which the ultimate
strength is attained on the primary stress-strain curve. This rule is

shown in Fig.3.6{b).

3.3.3 Moment Curvature Relationships for a Lavered Section

Assuming a 1linear strain distribution through the depth of the
layered cross section, values of curvature and the position of neutral
axis define the strains at the center lines of each concrete and steel
layer (Fig.3.7). These two quantities ;re determined by an iterative
process using the Newton-Raphson method to satisfy the equilibrium

conditions[16].

= +C!' -T
N =C. Cs
(3.16)
M= T(d - C,) + Cu(Cy - d) + CC, - D)
where
Cc = concrete compression foree
C; = steel compression force
T = steel tension force
Cp = distance from the extreme compression fiber to centroid of
axial load
vC = distance from the extreme compression fiber to centroid of

concrete compressive force

As the external axial force can be changing within each load

increment, the moment M; becomes a function of the axial force Ny as
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well as the curvature ¢1a3 follows:

The instantaneous flexural rigidity Eli of the layered section
can be expressed as (Fig.3.8)

—L (3.17}
i

AM.
= m

where

MMy = My - My = mlog o Ny) - mloy s Ny y)
(3.18)

]

By = 6y - 05,

The effect of changing axial force on the instantanecus flexural
rigidity EIi is included in t,heAl“"LI term. The secondary bending moment
created from both axial force and member deflection is not taken into

account. The nonlinearity of axial rigidity EAi is also neglected.

3.3.4 Moment-Rotation Relationship for a Layered Mode]

Displacement D{(M) at the free end of a cantilever beam is

calculated from the curvature distribution along its length,

L
D(M) = [ (6(x)) x dx (3.19)
where °
= M) -
o(x) = =3 osxsl-Ly
(3.20)
2 Mix) _
b(x) 3 L Lp<x<L
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Lp is the length of the inelastic zone at the fixed end of the
cantilever beam. ¢ (x) is the curvature as a function of the distance x
from the free end of the cantiiever beam. The moment M(x) along the
beam is linear because applied loads are assumed to be concentrated at
the free end of the cantilever beam. The end rotation is then computed

as,

8 = géMl (3.21)

The incremental rotation A8 of the layered model can be
expressed by the instantaneous rotational flexibility f| similar to

Eq.3.12.

86 = f - AM (3.22)

This is used to obtain the member stiffness later.

3.4 Additional Considerations for Each Model

3.4.1 Shear Deformation

Because of the uncertainty regarding inelastic shear deformations
of reinforced concrete members, such shear deformations are calculated
from an . elastic shear deformation multiplied by a reduction factor
o =0,5 . This factor takes account of the effect of nonlinear deformation
by simply reducing the uncracked shear stiffness{1]. The shear rigidity
is then assumed to remain constant throughout the whole process. Shear
modulus 1is computed from the equation, EC/(2(1+F)) witht4=1/6, where

is Poisson's ratio.



27

3.4,2 Rotation due to Bond Siippage of Embedded Steel

Rotation due to the slip of the tensile reinforcement along its
embedded length must be taken into account. In order to formulate a

flexibility due to bond slippage, the following assumptions are made
(Fig.3.9).
1. Bond stress is constant along the embedded 1length of the
reinforcement,

2. The reinforcement embedment length is sufficient to provide the
maximum tensile stress.

3. The steel stress decreases linearly with distance in from the
beam or column face,

Then the development length L and the elongations AL of the

reinforcement are obtained as [26,341,

L_Asfs
~  7bu
Lf
=S 1D g2 < 3.23
AL =5~ “FEu s fg<fy, (3.23)
S S
£oL FY(F, f.-f
R Al LR | s LS fy<¥s
$°s s)L'Ss Yy
f £ (f - f)?
=...D__.\Xf___y_+(_.5__.L)_—l
du | E S 2 2E
S / y
where
As = cross sectional area of the tensile reinforcement
f = stress of the reinforcement at the face of column or beam

p = diameter of a reinforcing bar

y = average bond stress, 0.5 Q& (fé :Mpa) for plain wire
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gages[14]
Es = Youngé modulus of the reinforcement
Ey = inelastic modulus of the reinforcement after yielding
fy = yield stress of the reinforcement

Because the stress in reinforcement after yielding does not
differ markedly from the value at yield, the equation for the elongation

can be written in a single simple form.
TR =%Ej~e§ (3.24)

The elongation due to bond slippage is a function of steel stress
or steel strain as seen in Eq.3.24, 1In Figure 3.10 Eq.3.24 is compared
with experimental results obtained by Wight[49] where average bond
stress, u, is assumed to be 1,17 ﬁé {Mpa) for No.b deformed bars,
E =200000 (Mpa), fé =34,5 (Mpa), and area of a bar As=28h (MME%2),

Assuming that the rotation axis due to slippage of the tensile
reinforcement is at the level of compressive reinforcement and that the
stress in the tensile reinforcement is proportional to the moment, the

moment-rotation relationship can be expressed as follows:

fof
o ﬁ'y“ {3.2%)
Y
Then
R(M) = g==gr
(3.26)
£12 2
=1 D iyl ,_M
BEu [M d-d

where



29

f , f = acting stress and yielding stress of the tensile

57
reinforcement at the section where bond slippage is
considered, respectively
M, My = acting moment and yielding moment at the section where
bond slippage is considered, respectively
R(M) = rotation due to the slip
d, d' = depth of the tensile reinforcement and the compressive

reinforcement, respectively

The rotation R(M) due to bar slip is ssen to be a quadratic
funection of the acting moment M.

The idealized moment-rotation relationship can be obtained from
Eg.3.26 in any form, the original curve itself, a bilinear ﬁodification
curve, or a trilinear modification curve.

For the ¢trilinear modification curve, the flexibilities in the
three stages of the idealized trilinear moment-rotation relationships

are defined as,

R(M )
= & M<M
fp(M) = M. - c
R(M.) - R{M)
- Y C M <M< M (3.27)
f (M) = <M<
b My - M. c Y

o
—
=
=
g
!
prw]
——
=
<
—

where
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R(Mc)
R(MC):R(MU) = rotation at which the cracking, the yielding and the
Y
ultimate moment is developed, respectively
fb(M) = flexibility due to the bond slippage of tensile

reinforcement

The flexibility ng) is then used as a part of the instantaneous

moment-rotation relationship of a rotational spring as

Ag = fb(M) « AM _ {3.28)

3.4.3 Assumptions for Ipelastic Analysis

Generally, when inelastic analysis is made, stiffness
characteristics of constituent members of a structure are examined,
Figures 3.11(a) and (b) show the typical load-displacement curves which
appear in inelastic analyses of members. In both cases, there is no
difficulty in proceeding with a load increment analysis technique for
inelastic analysis where the instantaneous stiffnesses of the members
are always positive regardless of 1loading or unloading conditions.
Figures 3.11(c) and {(d) also show types of load-displacement curves
which one could encounter in inelastic analysis; These are a decreasing
slope  phenomenon  and snap-through phenomenon in stiffness
characteristics.. The instantaneous stiffness becomes negative due to
severe loss in the load carrying capacity of constituent members and
would 1lead to erronecus results in the behavior of the structure.
Special consideration is given to modify these phenomenon. The negative
instantaneocus stiffness is replaced by a small positve one for that

purpose,
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CHAPTER 4

ANALYTICAL PROCEDURE

4.1 Introductory Remarks

This chapter describes a method of inelastic analysis for
reinforced concrete frame-wall structures subjected to static loads and
to dynamic base excitations.

Three mechanical methods are developed and introduced to study
the behavior of the constituent members of the structure. The members
are studied as a cantilever beam action. The three mechanical models ;
a concentrated spring model, a multiple spring model, and a layered
model, are each applied to the constituent members of the frame-wall
structure taking into account their specific stiffness characteristics
during inelastic behavior. The concentrated spring model is intended
for primary application to the frame elements : column members and beam
members. The wmultiple spring model is to be applied to the wall
elements. The layered model would be applied only to the exterior
column members of the first story of the structure to incorporate the
effect of variation of column axial force.

The structural stiffnesses are constructed from each constituent
member stiffness. These stiffnesses are then used to construct the
nonlinear response history and failure mechanisms of frame-wall systems
subjected to statiec and to dynamic loadings. Trilinear degrading
hysteresis rules such as a Takeda model or a modified Takeda model are

chosen to represent the behavior characteristics of each constituent
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The equations of motion analytically describing the system are

then solved by a step-by-step procedure of the Newmark B method [31].

4,2 Basic Assumptions

In this section the basic assumptions used in the analysis of the

frame-wall structures are presented. These basic assumptions are,

1-

Torsional effects are neglected. Thus the analysis is limited
to planar frame-wall systems.

A substitute frame system is adopted to simplify and economize
in modeling a frame substructure.

Every member in this substitute structure is represented as a
massless line member considered to act along its centroidal
axis.

Geometric nonlinearities are assumed insignificant and are thus
neglected in the analysis.

The structure is assumed to be fixed to a rigid foundation at
the base.

The mass of the structure is assumed to be concentrated at the
floor levels,.

Axial deformations of beam members, internal column members and
wall members are ignored.

The shear deformations that occur in a joint core are
neglected.

In the incremental force method the stiffness of each
constituent member of the structure is assumed constant within
the force interval. Residuals or overshoots are applied to the
next increment.

4,3 Analytical Models

4,3,1 The Concentrated Spring Model

The concentrated spring model is a cantilever beam with the
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addition of a rotational spring inserted at the fixed end as described
previously. Instead of analyzing this model, however, a simple beam
which is constructed with a fiexible portion over the interior of the
member and twe concentrated rotational springs placed at each end is
analyzed, This replacement is possible because a simple beam can be
formed from a combination of two concentrated spring cantilever models.
The resulting simple beam model can be used extensively. In order for
this simple beam to be applied to frame-wall struectures, rigid portions
have to be added at both ends aé well. The configurations of a simple
beam as well as a concentrated‘spring model are shown in Fig.%.1. The
rotational springs take account of the beam end rotations .due to bond
slippage of the embeded reinforcing steel at the point A' in the Fig.4.1
as well as the normal inelastic flexural action over the béam length.
The flexibility matrix for the simple beam which is combined with two
concentrated spring models, can be calculated by simply adding the
flexibilities of the rotational springs to those due to flexural and
shearing actions in the flexible element. The instantaneous flexibility
matrix relating the incremental external moments to the incremental

rotations are expressed as:

A0

o -
[
=

A
= [F] (4.1)
] 4 .
where
1 Ag! = incremental rotations at the ends A', B' of a flexural
A%y 49

line element, respectively

il

the instantaneocus flexibility matrix

IF]
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AM}, AMé = incremental moments applied at the ends A',B' of a
flexural line element, respectively
The instantaneous flexibility matrix appearing in Eq.(4.1) can be

expressed in the following form[18,42].

f

=] ). (4.2)
T .y + fMg)
where
SR T
: y,

fa = 6T * AT o
kAG = shear rigidity, k¥ is a shape factor for shear deformation

o - 0.5, reduction fator (Sec.3.4.1)

£ = length of the flexible element
El = eiastic flexural rigidity of the cross section of the

flexible element
f(MA),f(Mé) = the rotational flexibilities resulting from bond slip,
inelastic action over the beam length,?, at the ends A°
and B', respectively
An instantaneous stiffness matrix can be obtained by inverting

the instantaneous flexibility matrix of Eq.(4.2), Thus

K, K
[k] = [F]°' = K11 K]Z (4.0
21 K22 |

If axial deformation is alsc taken into account,

¢ 3 — r b
AMA K K 0 _T AGA

11 M2
AN 0 0 K33 Ag!

L) L Jt
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Incremental forcesAM ,AM AN and the incremental deformations

A B
AeA, AeB, Ag , at the ends of the rigid portions are related to the

1
A’
Aeé,Ag' at the ends of the flexible element +through a transformation

.
incremental forces A}dk ABdB,A NI and the inremental deformations 48

matrix T as,

‘r ]
AMB =T AMB
AN AN'

(4.6)

A@A AGA
Aeé =T ASB

As! Ae

where
T
T = the transpose of the matrix T

o b

T+ A 0
0 0 1 {

A is the ratio of the length of a rigid portion to that of a flexible
element. The instantanecus moment-rotation relationship of the simple
beam with rigid portions at both ends can be expressed by combining
Egqs.(4.4),(4.5) and (4.6),
AMA A8
T
AMB = TeKeT AGB (4.8)

AN Ae
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The forces and the displacements of the simple beam model in
local coordinates are related to the corresponding quantities in global

coordinates by the transformation matrix C,

(Local) (Global) (Global) {Local)

r 3\ ( 3
AuA APA
Av AY
26 A A AM
A A
AwA AMA T
AGB = L, 4 L= C AMB (4.9)
AuB APB
Ae AN
AVB AVB
\ B J I AMg )

where

setting L = (1 + 22) 2

IR VAR B RV N
¢ = 0 1/L ¢ : 6 -1/L 1 |, for horizontal members
i -1 0 0 : 1 0 0 )
(4.10)
-1/t 0 1 : /L 0 0
C=y-1/L O g : /L 0 1 , for vertical members
0 -1 0 : 0 1 0
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where

(AuNAvNAWNAugAngWQamthﬁavﬁAMﬁaPHA%,AMg are
the displacements and forces expressed in global coordinates as shown in
Fig.4.2. By combining Egs,(4.8),(4.9) and (4,10), the instantaneous
force-displacement relationship of a member is expressed in global

coordinates by:

APA W AuA
AVA AVA
AMA AwA .
. SRR { (4.11)
APB AuB
A
AVB VB
AMB AW
L J L B J
where
Km = CT . TT . K . T . C (u..‘z)
Km is a member stiffness matrix in global coordinates, The ﬁﬂ is
described in Appendix A, This member stiffness matrix is used to

construct the structural stiffness matrix of the structure in the usual

manner.

4,3.2 The Multiple Spring Model
The mulitiple spring model is considered to be built up from

several subelements along its length. The subelements need not
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necessarily be equal in length. The model locks like a single chain of
subelements joined together in series to form the member. Each
subelement may have different valués of inelastic properties depending
on the level or magnitude of forces to which it is subjected and on
properties of the member which the subelement models, These properties
however are assumed to be constant over the length of each subelement.
Any moment-curvature relation can be assigned to each short segment,
Figure 4.3(b) shows the assumed flexural rigidities as well as the
moment distribution along the length of a cantilever beam.

The method of analysis with this model uses the flexibility
matrix of each subelement in conjunction with transfer matrices. Figure
4,3(a) shows this model in which the joints are numbered sequentially
from left to right. Because, as used, the multiple spring model has
loads applied only at story levels, that model is discussed here as a
cantilever beam subjected to forces applied only at the tip and not
subjected to any external forces applied within the span length, L, of
the cantilever beam.

The flexibility matrix of the cantilever beam can be derived as

follows: According to Fig.bk.3(a),

Fy 0 0 |
- T [ . =
HO F3 F4_
where
[Fab] = flexibility matrix of the cantilever beam ab.
Fij = flexibility matrix of the element ij.
E = transformation matrix of element jb.

Jb
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and
Y |
j
—— 0 R 0
EAi
03 2, sz,g
Fig=1 0 EL; T okeA, T, (4. 1%)
E? [}
0 "251 » T,
j EI1
and
1 0 0
_ (4,15)
b
IS 1
b
L= 12X Rk (4.16)
k=1
where
L = length of the cantilever beam

Rk = length of the k~th subelement of the cantilever beam
EAi’kGAi’EIi = instantaneous equivalent axial, shear, and flexural

rigidity of the i-th subelement of the cantilever beam

As the external forces {Pbl are applied only at the tip of the

cantilever, the displacements are obtained by the following equation

{0, = [F 1+ P}

Up Pb
{Ub} = Vb 3 {Pb} = Vb (u-17)
8 M

b
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where

{Ub} displacement vector at the tip of the cantilever beanm

1

applied force vector at the tip of the cantilever beam
Pb ‘

In order to achieve an inelastic analysis of the cantilever beam,
inecremental member end forces are applied in order to be able to trace

the behavior of material nonlinearity. Thus Eq.(4.17) is written in

incrmental form

{AUb} = [Fab]. {APb} ‘ (4.18)
where
{AUb} = incremental displacement vector at the tip of the
cantilever beam
{APb} = incremental applied force vector at the tip of the
cantilever beam
[Fab] = incremental flexibility matrix of the cantilever beam

In the application of this model to general structures, a member
stiffness matrix has to be obtained. This stiffness matrix [Kbb] of the

cantilever beam is obtained by inverting the flexibility matrix[Fab].

Ky 0 07
[Kp = [Fpd™ = | 0 Ky Ky (4.19)
0 Ky Ky

The stiffness matrix of an individual member can be obtained as

follows: £ T
" abobFab * ~FapXbb
K = (4.20)
ab X ET

bbfab *  Kbb
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The member end forces are related to the member end displacements
through the member stiffness matrix [Kéb] in the incremental form as

follows:

r P w r A
AP, Au,
AVa Av,
AM A8
) @} - (Kl 1 ° (4.21)
APb Aub
AVb Avb
M \ A8, ‘

In the global coordinates, using transformation matrix o,

r w . )

APA AuA
AVA AvA
AM AD
. A*=Km J At (4.22)
APB AuB A
AVB AVB
AM AB
L BJ L B
= ¢! 4.23)
k. =C Ky C (
where
for vertical members - for horizontal members
-1 0 0 o O]Ol 0
o o 1 00 1 !
C = e = @ = = = Vo o . _ , C= oo o _._ oo
0 ‘10 0
0 =10 0 ., 01 0
L. ''0 0 '00]
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This member stiffness matrix Km is used to construct the
structural stiffness matrix of the structure again in the normal

fashion.

4.3.3 Layered Model

The layered model is a cantilever beam with a layered section of
length Lp of inelastic zone at the fixed end as described previously.
The layered model is used in the first story exterior columns of the
frame structure in combination with the concentrated spring model. It
is shown in Fig.4.4. The analytical procedure is similar to the case of
the concentrated spring model. The instantaneous flexibility matrix

corresponding to Eq.(¥.2} is,
f-l + f(MA) s fz

[F] = (4.24)
fa T
where
- 1 . .
fLM fL + SKGAL (fL. Eq. 3.22)

The counterflexure point is assumed to be at the center of the
column length, the effect of inelastic action of £] on the coupling term
of f, can be ignored. The member stiffness matrix obtained from

2
Eqs.(4.4)=-(4.12) is applied to the structural stiffness matrix.

.4 Structural Stiffness Matrix

The structural stiffness matrix of the frame-wall system is

developed by combining all member stiffness matrices into story
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stiffness matrices and then condensing out a number of the degrees of

freedom so that only horizontal story movements appear in the final form

of the equations.

4,4.,1 Story Stiffness Matrix

The i-th story stiffness matrix of the frame-wall structure is

developed as follows:

rKc] : v
Ke ! 0 ' 0
] Ke3
[K.] = Al Kp1 : . A  (4.25)
0 : Kp2 .0
______ : Kp3,
e T T T
where

K . . ,K h
5 J%J, W are the column, the beam and the wall member
stiffness matrices in global coordinates as shown in Fig.4.5. A is the

connectivity matrix and shown in appendix A.
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4. 4,2 Assembled Stiffness Matrix
The full-size structural stiffness matrix is accomplished by
summing the story stiffness matriées,[Ki], in proper order. The force-

displacement relation of a structure is then expressed in the form.

. -
Fw [ =10 Ay 0 Ry | 4Dy, | (4.26)
———| = = - - - R i
Py RT R) ' E Dy
b
where -
{FF}, {DF} = force, displacement vector of frame term
{Fw}, {Dw} = force, displacement vector of wall term
{FH}’ {DH} = holizontal forece, displacement vector

The details of Eq.(#.26) are described in Appendix A.
Only external lateral loads are considered in this study. Thus
external vertical forces and moments at Jjoints of a structure are

assumed to be zZero.

Fe 0
_fw_ = _9__ (%.27)
Fy Fy

Statie condensation of the vertical displacements and rotations

yields = -1 -
Ayl 0 R,
{Fyr = |E - [R 21 ]- -1~ - - 1Dy}
0 ' A Ry
= [E - (R A R] + RZA R )] {D, } (4.28)

[KH] *
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In incremental form this equation is rewrthis equationten as:
{aFy} = [k, - {ap,) (4.29)

where

v 1= Tate 4 RIg] |
[k, = [ ARy + Rk Rz] (4.30)

[K ] = the reduced structural stiffness matrix of size, number of
stories by number of stories
Eq.(4.29) is solved for lateral displacements from a given set of

lateral load and a known instantaneous structural stiffness.
_ -1
{ADH} = [KH] {AFH} (4.31)
4,5 Statie Analysis

The frame-wall structure is analyzed under several increments of
load which may be either a monctonically increasing lcad or a c¢yclic
load.

Load increments are applied to each story_level of the structure.
The load distribution shape over the height of the structure is
arbitrary. But it is assumed that the load distribution shape does not
change during the loading process, During each load increment, the
structure is assumed to behave linearly. The structure's stiffness
matrix is reconstructed or reevaluated following each load increment in
accordance with the hysteresis rules for the concentrated spring model
and the multiple spring model or in accordance with the nonlinear
behavior of the material model selected for the layered model. Any

unbalance or excess forece that developes within an increment is applied
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as a load to the next increment. This forece correction procedure is an
adaptation of the Initial Stress Method. As the iteration scheme is not
used, the load increment should be chosen to be small enough to avoid

significant residual forces.

4,6 Dynamic Analysis

A . step-by-step numerical integration (time-history) procedure
is used to solve the equations of motion for the dynamic analysis of the
frame-wall structure. The earthquake time history 1is -divided into a
number of small time incrments. The incremental response values are
obtained using the struectural properties at the beginning of the time
step. The solution advances in a step-by-step manner using a series of

linear systems with changing stiffness properties.

4.6.1 The Equations of Motion
The equations of motion in terms of the relative displacements of

the mass points can be written in an incremenital form as follows,

[MI{ax} + [cl{ax} + [K,J{Ax} = -[M] « (oY) (4.32)
where
[M] = diagonal story mass matrix
[c] = damping matrix
[KH] = structural stiffness matrix which is evaluated at the end

of the previous time step
{A%},{Ax},{Ax}=relative incremental story acceleration, story velocity,
and story displacement vector, respectively

{AY} = base acceleration vector
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4.6.2 Mass Matrix

The lumped mass concept is assumed in the analysis. All of the
mass of the structure is assﬁmed to be concentrated at the story levels
of the structure. Members or elements are considered as massless line

elements. Thus the mass matrix is expressed as,

[M] = o (4.33)

where

[M]

a diagonal mass matrix of order n by n

=
1

lumped mass at each story

number of story

=
i

The dynamic analysis of 2 consistent mass system generally
requires more computational effort than a lumped mass system does. This
is because the lumped mass matrix is diagonal, while the consistent mass
matrix has many off-diagonal terms (mass coupling). Another reason is
that the rotational degrees of freedom can be eliminated from a lumped
mass analysis by static condensation, whereas éll rotational and
translational degrees of freedom are included in a consistent mass

analysis[117.

4,6.3 Damping Matrix
The viscous type of damping is wused in this study for
mathematical simplicity. The damping matrix i1s expressed as a 1linear

combination of the stiffness and mass matrices.

[C] = ¢IM] + C,lK,] (4.34)
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where

[c]

C], C2 = the constant multipliers

viscous damping matrix

The constant multipliers C_,C_ are related to the damping ratio

1'72
for any mode k by,
| C C, oW
2 2 k
Ak = zwk + > (4.35)

where

the circular frequency of the k-th mode

=
K—.
il

b
1l

damping factor of the k-th mode

In a direct integration solution, C] and 02 may be chosen to
provide a specified damping ratio at two selected frequencies.
Alternately, it 1is often more convenient to specify Ak =X for a given
frequency Wy =y on the basis of test data or field observations.

Then i-th C, = 25w

and

C = = (Ll'e36)

[C] can be evaluated from Eq.(4,34), A damping matrix

proportional to just the stiffness matrix is used in this study.

[l = €y« [Ky] (4.37)

It is effective in reducing the amocunt of high frequency

components in the structure's response(i2].
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The initial stiffness matrix denoted by [KH] in Eq.(4.37) is used
in the analysis. This means that the damping matrix remains unchanged
during any inelastic structurél response, Overestimations due to usage
of the initial stiffness matrix is acceptable because the damping effect
should be expected to become larger when any inelastiec action 1is

occurring in the structure,

4,6.4 Numerical Solution of Eguations of Motion

Assuming that the ©properties of the structure do not change
within two time steps, the equations of motion(Eg.4.32) ecan be solved
numerically by an explicit or an implicit method. In this study an
implicit method is used since the bandwidth of the stiffness matrix is
small and an iteration procedure is not needed.

Applying the implicit form of the Newmark Beta method{31]1, +the
incremental acceleration '{Ai} and the incremental velocity {Ai} can be
expressed in terms of the ineremental displacement {AX]} and quantities,

{i}, and {?} at the end of the previous time step.

(AX) = —Z—BIE (Ax) - 2% 3} - (4‘+B - 1) at {3} (4.38)
() = —l— () - 2k 0 - ) (4.39)
B(At)

where
t = time interval
B = a constant which indicates the variation of acceleration
in a time interval (g =1/4 is chosen).
{i} = relative story velocity vector at the end of the previous

time step
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{%} = relative story acceleration vector at the end of the

previous time step

Substituting Eqs.(4,38) and (4.39) into Eq.(4.32), the

incremental story displacement vector can be obtained as

[A] + {ax} = {B} | (4.40)

{ax} = [A]™" (B} (4.47)

where

{Ax} = the incremental story displacement vector

[A] = [K,] + —— [M] + 5= [C] (4. 42)
K] a2 JBAT
{B} = { EJA_t [M] + ZLB [c]} {(x}

+ {2]_8 [M] + At(z}g - 1) [c]b {xy - [MI{AY} (4.43)

[A],{B} are defined as the dynamic stiffness matrix and the
dynamic load matrix of the atructure, respectively. The -equations can
be solved by Gaussian elimination or other decomposition procedure such
as the Choleski method. Once the incremental relative displacement
vector has Dbeen obtained,the ineremental relative velocities are
calculated from Eg.(4.38). The incremental relative accelerations are
calculated from Eq.(4.32) based on the current structural properties,

[C] and [KH].

(i = - (077 [[ehiado + klax) + [MICAV)] (4.40)
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The acceleration response is very sensitive to changes in the
stiffness properties of the structure, Therefore Equation (U4.44)
instead of Eq.(4.39) is used to calculate the incremental relative
accelerations., More accurate results can be obtained by computing the
incremental accelerations based on the updated structural properties
rather than the previous ones[4#1]. The structural story displacements,
joint rotations and so forth at the end of the time increment are equal
to the response quantities at the beginning of the time increment plus
the calculated changes in the response quantities,

In the numerical solution of the equapions of motion, the cost of
an analysis relates direectly to the size of the time step which has to
be used for stability and accuracy[50].

Bathe[8] investigated stability 1imits, amplitude' decay and
period elongation in the dynamic response based on simple linear
systems.

Weeks[ 48] concluded that the characteristics of operators such as
Newmark's R method or Wilson's g method [31,501, carry over
essentially unchanged from the linear to the nonlinear case if time
increments small enough to adequately trace the response are used and if
equilibrium is satisfied at each step,.

McNamara[28] recommended that even though the nature of nonlinear
analysis does not 1lend itself easily to rigid conclusions, the time
inerement of the solution must be relatively small and certainly less
than 1/100 to 1/200 of the solution period.

Furthermore, from another aspect it should be noted that the

higher frequencies of a lumped parameter system are always in error when
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compared to the continuous problem. It should also be noted that as the
earthquake excitation components with periods smallier than about 0.05
sec. generally are not accurately recorded, there is very little
justification to include the response in these higher frequencies in the
analysis. Therefore in the nonlinear analysis of complex structures,
many high frequency modes do not contribute appreciably to the response.

With these sugestions described above, the Newmark's method with
R =1/ is chosen in this study. This method is known to be
unconditionably stable in 1linear applications. Az a time increment
At=0.0004 seec. is chosen for the analysis of the equations of motion
with constant instantaneous structural stiffness [KH]. This time step

corresponds to At/T, =1/500, At/T.=1/140, At/T,=1/7T0 where T is the

1 2 3 1
fundamental period of +the structure and so on. In svery ten time
increments, which corresponds to At:0.00H, the constant instantaneous
structural stiffness 1is replaced by an updated one calculated from the

updated member stiffnesses, This numerical technique allows an

acceptable and econonical solution.

4.6.5 Residual Forces

During the response calculation of the equations of motion an
overshoot may result because of the assumed moment-curvature
relationships used for the structural elements. The excess moments are
detected at each element level by comparing the calculated moment from
the equations of motion with the moment obtained from the hysteresis
loop. A numerical iteration procedure for the overshooting forces, when

yielding occurs within the time interval, is not applied in this study
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since it needs more computation time and a numerical iteration within
the time interval does not always yield a true solution for the case of
dynamic problems anyway, fherefore a correction is made only in the
moment at the joint at element level. The residual moment at each joint

is applied to the subsequent time step.
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CHAPTER 5

HYSTERESIS RULES AND NUMERICAL EXAMPLES

5.1 Introductory Remarks

When using either the concentrated spring modél or the multiple
spring model, hysteresis rules have to be created in order to trace the
inelastic behavior of these models. Two hysteresis rules are adopted in
this study. The first hysteresis model used is _that proposed by
Takedal#4]. The second hysteresis model used is a modified Takeda model
which takes account of the pinching action and bond deterioration in
beam~column joints. The second hysteresis model is applied to the beam
members of this structure. This is only necessary in the case of very
large excitation from the earthquake motions. This is observed from the
results of experimental Studies of reinforced concrete beam-column

joints under large load reversals[25].

5.2 Degrading Trilinear Hysteresis Rule

5.2.1 Hysteresis Model 1

The degrading trilinear hysteresis rule of the Takeda model is in
common usage to represent the inelastic behavior of reinforced concrete
members. With this model the moment-rotation relationship of a
cantilever flexural element is defined as shown in Fig.5.1.

A trilinear primary curve is defined by three points: a concrete
cracking point, a steel yielding point, and a concrete ultimate point.
This primary curve is assumed to be symmetric about its origin. This

rule changes its unloading stiffness according to the following
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mathematical expression.

D.? |
K = Ko[ﬁ“,ﬂ (5.1)
where
Ku = new unloading stiffness
K0 = primary stiffness of hysteresis rule
Dy = yield deflection
Dm = maximum deflection attained in the direction of the

loading

a = constant (0.5 is used in this study)

The reloading curve basically aims at the previous maximum point
on the primary curve in that direction. In this study the hysteresis
model 1 is used to define 4the moment - rotation relationship of the
rotation spring of the concentrated spring model and the
moment-curvature relationship of each spring of the multiple spring
model . The hysteresis model 1 is applicable to those cases where the
member fails in a dominantly flexure mode. Shear failure, pinching.
action or bond deterioration are not considered in this hysteresis rule.

5.2.2 Hysteresis model 2

Hysteresis model 1 had to be modified in order to deal with the
effect of pinching action and bond deterioration that appears in the
behavior of beam-column joints under large load reversals,

| Through analytical models, Lybas{27] investigated the mechanism
of 8lip of +the reinforcement 1in the beam-pier joint for the coupled
shear wall structure. But here the mathematical hysteresis rule is

created just from the results of experimental ohservation[25].
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Hysteresis model 2 is defined as follows(Fig.5.2), If the
maximum rotation{(displacement) never exceeds the yielding points, the
hysteresis rule is exactly the same as hysteresis model 1. Once the
maximum rotation (displacement) goes beyond the yield point, then for
the next one-half cycle during unloading and reloading, moment-rotation

relations behave according to an assumed cubic function (Fig.5.2).

M = a(D® - Dg) (5.2)

where
M = moment variable

D = displacement variable

Do = displacement value on the X coordinate which 1is obtained
by using the slope of Ku in BEq.(5.1)
a = coefficient

The coefficient "a" of the cubic function Eq.(5.2) can be determined by
requiring that this function passes through the known points A(DI’MT)’

B(Dp,0), and the assumed point E(-D],-M}). The position of the point E
is assumed symmetric about the origin with respect to the point A, as
indicated in Fig.5.2. In lieu of this function a simplification made up
of three straight lines : AB, BD and DE, is used as the hysteresis loop
of model 2. Key points of this model are C(O,-aDg ) and D(-Do,-2aDg )
in addition to the points A, B and E. If unloading and the subsequent
reloading occur at some point , say a point F, whose position is still
of the same sign in displacement as the previous maximum unloading point
A, then the hysteresis behavior is assumed to follow along a line FG

whose slope is Ku and then a line GA which aims at the maximum point A
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directly. If unloading and the subsequent reloading occur from a point
F' whose position is now pf opposite sign in displacement from the
previous maximum unloading point A&, then the hysteresis rules follow
along a line F'G' whose slope is Ku and follows the cubic function rule
from the point G' to the point A. In this case the coefficient "a" is
obtained from the assumption that Eq.(5.2) passes through the assumed
negative maximum point E, G' and A. The points A(D1,M]) and E(—D1,—M])
are the current maximum positive and negative displacement points
experienced by the member during all previous cycles respectively.

Using the hysteresis model 2 in the concentrated spring model,
numerical computations are performed to obtain the moment-rotation
relationship of a cantilever beam. The assumed specimen has a length of
152.4 MM, and a rectangular cross section of (38 MM. x 38 MM.)  with
2-3No.13G wire as reinforcing. The assumed material and cross sectional
properties are similar %o those of the middle level exterior beams of
the structure FW-2 (Table 6.2). The stiffness characteristics are
listed in Table 5.2. At first, regularly inecreasing five cycle loading
is applied to the free end of the cantilever beam. Second, irregular '
eight cyecle loading is applied to the free end of the beam, Computed
moment-rotation relationships for both cases are shown in Fig.5.3. The
hysteresis model 2 can numerically produce the pinching action
(including the effect of bar pull-out due to bond deterioration)} in both

cases.
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5 5.3 Comparison of Computed Hysteresis Loops with Experimental Results s

5.3.1 Force-Displacement Relationship of a Deep Beam

The three mechanical models described in the previous chapters
are applied to a cantilever deep beam (wall) to trace the
force-displacement curves for the wall. The assumed specimen has a
length of 686 MM. and a rectangular cross section of (38 MM, x 203
MM.) with 2-2No.2G wire as reinforcing. The assumed material and crosa
sectional properties are listed in Table 5.3. The computed stiffness
characteristics are also listed in Table 5.3. The hysteresis model 1 is
used in the concentrated spring model and the multiple spring model.
The computed Tforce~displacement curves for the free end of the
cantilever beam are compared with experimental values{2] as shown in
Figs.5.4(a),{(b), and (¢). The primary intent of this comparison is to
obtain a basic feeling for the applicability of the three mechanical
models to the reinforced concrete cantilever beam in ao far as
representing the force-displacement relations of that bean. The
agreement between the computed values from each mechanical model and the

experimentally obtained results is seen,

5.3.2 Force-Displacement Relationship of a Beam-Column Joint

The two hysteresis models just discussed are compared to the
experimental results obtained for a beam-column joint. These tests were
performed for multi-cycles of loading. The assumed data on the material
characteristics used in the analysis of the beam~column joint is taken
from the FW-2 structure, For convenience this data is retabulated in

Table 5.2, The comparison is illustrated in Fig.5.4, showing variations
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of top 1lateral 1loading force versus top 1level deflection. The
experimental results are represented by the broken line. Figure 5.5
shows that hysteresis model 2 fits quite effectively with the
experimental resultis. But it should be noted that the test was
conducted in the range of very large deformations. Although it is not
illustrated, hysteresis model 1 also is effective as long as the range

of response is 1limited to that of small deformations of beam~-column

joints.
5.4 Effect of Axial Load

A reinforced concrete section typically is weakened in its
flexural strength when it is also under the influence of axial tension.
-Yielding of the tensile reinforcement limits its flexural strength. On
the other hand moderate axial compression has a positive effect on
moment capacity(7,20,401].

For beam members it can be assumed that the axial forece is zero.
For the wall members it is reasonable to assume that the axial force is
also =zero even though the wall members are subjected to their own dead
load. This is normally a very small value. For the column members each
column is subjected to an axial load which changes during the earthquake
motion. The curves of the moment-curvature relations for each story
column vary depending upon its axial force. However, for the sake of
simplicity it is assumed that the axial force remains constant during
the earthquake motion. Furthermore the structure is divided intoc three
zones of constant values for the axial force. This subdivision is

accomplished based on judgement assigning each story column to the group
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with axial force near its dead 1load. This assignment is shown in
Fig.5.6.

The effect of axial load on inelastic behavior of the structure
was also investigated by using the layered model to model the firsf
story exterior columns. The computed results achieved are presented in

Chapter 6.
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CHAPTER 6
COMPUTED RESULTS
6.1 Introductory Remarks

To demonstrate the applicability and flexibility of the proposed
models, a series of numerical examples are presented. The examples
presented in this study aré of two types, the structure with a strong
wall referred to as FW-1 and the structure with a weak wall referred to
as FW-2. The main difference between the strong wall and the weak wall
is the amount of steel reinforcement used in the wall. The vertical
reinforcemeﬁt is concentrated in two small bundles located in the outer
two edges of the wall as shown in Fig.2.2. In order to study the
behavioral characteristics of the frame-wall structures FW-1 and FW-2,
static analyses are first made. Following these preliminary studies,
dynamic analyses are made for these structures subjecting them to the
first three seccnds of the base accelerations cobtained from experimental
tests[2]. A third investigation into the effect of changing the axial
load on the first story exterior columns is also made, The numerical
examples thus computed are listed in Table 6.1. The computed results
are compared with experimental results obtained by Abrams[2].

Material properties assumed for the models are listed in Table
6.2, The cross-sectional properties of the constituent members of the
models are shown in Figs.2,1 and 2,2. The configurations of the models
are listed in Table 6.3. The stiffness properties of these constituent

members are calculated by the procedures described in Chapter 3. These
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calculated stiffness properties are listed in Table 6.4, The structure

type FW-2 is the main specimen to be investigated in this study.

6.2 Static Analysis

It is assumed that both structures are subjected to a first-mode
(triangular) loading because the first mode is consideréd to be the
major contributor to the response that would occur under dynamic loads.
The static load is applied to the structures: FW-1 and FW-2, in small
increments with the same distribution pattern of triangular load shape,
The load increment used in this investigation is selected as 1/50 of the
maximum anticipated statie 1load(max. base shear of 24,5 KN.. This

corresponds to top lateral load of 4.45 KN,.)

6.2.1 Base Shear-Top Story Displacement Relationship

Curves depicting base shear versus tenth-level displacement
calculated for FW-1 and FW-2 are shown in Fig.6.1. A curve for FW-1
neglecting the steel bar slip effect in the beam-column joints is also
shown in that figure. The overall behavior of these structures can be
seen from this figure. Cracking starts at about the same loading levels
for all three cases. For the FW-1 strucrure, the first yielding of the
beams is initiated at a base shear of 14,5 KN, followed by yielding of
the wall at the base. After yielding at the base of the wall, (at a
base shear of 18.1 KN.), a marked change in the structural stiffness
occurs. The structure, however, maintains its resisting system against
further load increase due to the strain hardening assumption in the

hysteresis. Neglecting steel bar slip in the beam-column Jjoints
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produces a stiffer curve as expected. For the FW-2 structure, the wall
yields first (at a base shear of 10.3 KN.) followed by the beam members
{at a base shear of 12.3 KN.). An elastic curve is also shown in

Fig.6.1 for comparison purposes with the three other curves,

6.2,.2 Moment Distribution Patterns

Moment distribution patterns in all members of FW-2 are shown in
Fig.6.2 for the load level initiating yielding at_the column base(at a
base shear of 14.7 KN.). The two patterns shown are for first the case
where the structure remained elasticland then for the inelastic case.
Comparison of the two patterns shows that the change due to reduced
flexural rigidity of the wall member allows the upper pertion of the
wall to keep more flexural moment whereas the lower portion.of the wall
retains a lesser flexural moment as compared with that from an elastic
analysis. The point of contraflexure of the wall shifts downward in the
inelastic moment distribution pattern. Except for the first and the
second level columns, the point of contraflexure is seen to remain near

the center of the member.

6.2.3 Redistribution of Base Shear between a Wall and Columns,

A redistribution of base shear occurs between the wall and the
various columns as the load increases on structures FW-1 and FW-2, The
results of the investigation are shown in Figs.6.3 and 6.4, The
distribution of base shear varies depending upon the nonlinear
characteristics of the constituent members during the loading process.

In the elastic stage of the FW-1 structure, the wall is subjected to 84
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per cent of the base shear. When cracking in the wall is initiated and
is followed in the beams and columns, the wall's share declines from 84
per cent to 79 per cent of the ‘base shear. Initially the wall's
contribution to the base shear is almost constant and more than 80 per
cent, of all the shear until the wall yields at the base, Following
yielding at the base in the wall, a rapid shift of the base shear in the
wall to that in the column members occurs until those column members
reach yield at the bhase.

In the FW-2 structure, the wall is subjected to 78 per cent of
the base shear in the elastic stage. Then part of that shear from the
wall is transferred to the column members when cracking is initiated in
wall. Distribution of base shear in the wall changes from the 78 per
cent of the elastic stage to 68 per cent when the wall yields at the
base. There is then an accelerated decline down to 32 per cent at which
time the base of columns yield. The wall of the FW-2 structure
transfers its shear gradually to the column members during the loading

process.

6.2.4 Collapse Mechanism

The sequence of formation of the collapse mechanisms for FW-1 and
FW-2 is presented in Figs.6.5 and 6.6 for the monotonically increasing
load. A triangular 1lateral 1load distribution is assumed. When a
bending moment exceeds the yield moment capacity at the end of any
constituent member, a yield hinge is assigned to that end. This is
shown as darkened zones in Figs.6.5 and 6.6.

In the FW-1 structure with its strong wall, the first yield
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hinges appear at the end of the 4-th level beams. This occurs at 30/50
(60 per cent) of the assumed maximum lateral load(max. base shear 24.5
KN.). Then yield hinges form sequentially in the beams toward the upper
levels of the structure. After the formation of the 6-th set of yield
hinges in the beam members, the segment nearest the base of the wall
starts yielding from the base portion. However, the yield zone of the
wall does not propagate significantly. At the same time the remaining
beam members also yield. The final failure of the structure occurs when
the first story columns yielded at the base at a load of 41/50 (82 per
cent) of the assumed maximum load(assumed maximum base shear = 24,5
KN.). |

In the FW-2 structure with its weak wall, the segment of the wall
nearest the base starts yielding first at a load of 21/50 (Hé per cent)
of the assumed maximum 1load. Then various beam members form hinges.
Yielding of the beams begins at the intermediate levels and proceeds
further 1into the lower and upper levels. Finally when the first story
column members yield at the base at 30/50 (60 per cent) of the assumed
maximum load{(24.5 KN.), the structure forms a mechanism. The yield zone
in the wall has propagated to a higher portion of the wall than was the

case for FW-1.

6.2.5 Comparison of the Structure FW-1 and FW-2

The structure FW-1 with its strong wall, yvielded at a higher load
and has the higher ultimate strength, as to be expected, compared to the
FW-2 structure{(Fig.6.1). Base shear-top story displacement of FW-1

approaches more nearly an elastic-plastic diagram whereas that of FW-2
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draws a more curved shape. In FW-1, the behavior of the wall dominates
markedly the overall behavior of the structure. In FW-2, this is not so
true. After the collapse mechanism has been formed, however, the
structure does not 1lose its resisting capability against further load
increases because of the assumption of strain hardening in the
hysteresis rule. As seen in Fig.6.5 and 6.6, the yield zone in the weak

wall is more fully developed than that of a strong wall,.

6.3 Dynamic Analysis

Next nonlinear dynamic response analyses for the FW-1 structure
and for the FW-Z structure were made. A total of five different cases
of response-history analyses were carried out. These cases are for two
different 1levels of accelerations for FW-1 and two different levels of
accelerations and one variation on the hysteresis model for FW-2. The
analytical method is described in Chapter 4. A summary of numerical
examples including the assumed analytical conditions is listed in Table
6.1. The purpose herein is to investigate analytically the general

response phenomenon of a reinforced concrete frame-wall structure,.

6.3.1 Base Motion

The base acceleration records used for the analysis in this study
are those base motions measured in the structures tested on the
earthquake simulator. The original waveforms of input base motions for
the experimental tests are the acceleration signals of the El Centro
(1940) NS component, The original time axis is compressed by a factor

of 2.5 and the amplitudes of acceleration are modified depending upon
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the purpose of the model tests[2]. The duration of the earthquake is an
important factor. However only the first 3.0 seconds of recorded base
motions are used in this stﬁdy. This is justified because the maximum
responses and most of the damage to the structures are expected to take
place within those 3.0 seconds. The waveforms of these observed base
motions as well as those of the digitalized input base motion for
response calculation are shown in Fig.6.7. The maximum accelerations of

the base motions used for each analysis are listed in Table 6.1,

6.3.2 Modal Properties of the Structures

Modal properties associated with the first three vibration modes
of FW-1 and FW~2 are computed before and after the runs. These
properties are listed in Table 6.5 and are also shown in Figs.6.8 and
6.9. The mode shapes of both the FW-1 and FW-2 structures are quite
similar. The mode shapes are not gsignificantly changed during the
dynamic tests. Because of the structural damage occurring during the
earthquake motions, the fundamental frequency is reduced after
run-3{max. acc.= 2.41G) for FW-1 to 50 per cent of its initial
fundamental value and reduced to less than 40 per cent of the initial

fundamental frequency after run-2(max. acc.=0.92G) for FW-2.

6.3.3 Calculated Response

The numerical integration of the equations of motion is carried
out with the time increment of 0.0004 seconds (Newmark =1/4). Response
values are recorded at every 10 numerical time integration points(at

avery 0,004 seconds). The calculated response waveforms are compared
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with the observed response waveforms for each structure for each run.
Selected results for run-1 on FW-1 with a maximum input base
acceleration of 0.49G are shown in Fig.6.10. Maximum output response
values for these cases are listed in Table 6.6. The results for run-3
on FW-1 with a maximum input base acceleration of 2.41G are shown in
Fig.6.11.

.For FW-1 run-1, the agreement obtained between computed waveforms
and the observed experimental 6nes is seen to be quite close on each of
the response waveforms of story shears, base overturning moment,
accelerations, displacements and shear forces on walls. But a slight
elongation of the fundamental period is observed in this comparison.

For FW-1 run-3, similar reasonable agreement between the
analytical and the.experimental results can be seen in Fig.6.11, These
agreements exist even though a rather strong earthquake with a maximum
base acceleration of 2.41G has been used. The elongation of the
fundamental period is not observed in this comparison.

The results for FW-2 run-1 with maximum input base acceleration
of 0.49G and for FW-2 run-2 with maximum input base acceleration of
0.92G are shown in Figs.6.12 and 6.13. In both cases the agreement
existing Dbetween the computed and experimental waveforms is excellent.
No period elongation can be seen in these cases either. The analytical
scheme does trend to produce smaller response values than observed in
the experimental tests, The response waveforms of displacements, shears
and base overturning moment are relatively smooth and governed by the
first mode component. The response waveforms of acceleration show the

effect of sowme higher mode components. The agreement between the
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experimental and the calculated curves is satisfactory. The analytical
method can estimate the acceleration, the displacement, the shear and
the overturning moment in ‘each story of the structure at each time
increment regardless of both the base input values and wall

characteristics in the structure.

6.3.4 Effects of the Pinching Action of the Beam-Column Joints

The pinching action, ineluding the slipping effect of the steel
bars due toc bond deterioration described in Chapter 5, experimentally
appears in the characteristics of beam-column joints under large load
reversals or after a number of lower amplitude load cycles, These
effects of the pinching action on the maximum responses and response
waveforms of the structure are investigated. The hysteresis model 2
described in Chapter 5 is assigned to the beam member springs in the
beam-column joints of FW-2 for run-2, There appears to be little
sensitivity due to pinching action in the response analysis. This is
because the behavior of the wall dominates the behavior of the structure
and the wall behaves without pinching action. Pinching action of
beam-column joints produces slightly larger displacements and slightly
smaller accelerations, shear forces and overturning moments in the
response of FW-2 run-2. A detailed comparison of maximum response data
with and without pinching action in the beam-column joints of the
structure can be seen in Table 6.6. The response waveforms compared

with those without pinching action are also shown in Fig.6.14,
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6.3.5 Moment-Rotation Relationship for the Flexural Spring of a
Beam

The response-history of the moment-rotation relationship for the
flexural spring of a beam is studied. The flexural spring selected for
study is the one at the left end of the exterior beam at the fifth
level, The elastic deformation occurring along the beam length is
included in the value of rotation. Results for four test runs(FW-1
run-1 and run-3, FW-2 run-1 and run-2) are shown in Fig.6.15. The
flexural spring of the beam. experiences two yield excursions on the
negative side for FW-1 run-1(max. input acec.=0.55G) and FW-2 run-1
(max. input acec.=0,49G) whereas the Tflexural spring of the beam
experiences yielding in both directions for FW-1 run-3 and FW-2 run-2.
Once beyond yielding, the spring stiffness is reduced in proportion to
the yielding value for all cases. Note the area enclosed by the curve
represents the energy dissipation.

The large difference in the appearance of the hysteresis curves
for springs with and without pinching action can be seen in Fig.6.16
(FW=2 run-2). Large rotation of the spring is seen when consideration
of pinching action is included. Although this difference in the
characteristics of the hysteresis curves exists, its effect on the

overall behavior is minimal as noted in section 6.3.4.

6.3.6 Moment.-Rotation Relationship of a Flexural Spring of a
Column

The response-history of the moment-rotation relationship of a
flexural spring at the base of the left exterior column is shown in

Fig.6.17. Only the spring for FW-1 run-3 experiences yielding and that
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only on the negative side, The remaining three cases experience

cracking but no yielding on either side.

6.3.7 Moment-Curvature Relationship of a Wall Segment

The response-history of the moment-curvature relationship for the
base of the wall segment is shown in Fig.6.18, Only a limited number of
vield excursions are seen with these occurring both sides. The reduced
stiffness of the wall of FW-1 remains stiffer than that of the wall of

FW-2 throughout the test.

6.3.8 Base Moment-Top Story Displacement Relationship

The base moment-top story displacement relationships of both
. structures are shown in Fig.b6.19. The overall- structural response
history during the dynamic motion is seen in these figures. Softening
of the stiffness of each structure is seen in all cases because of the
effect of inelastic action in the constituent members. The relatively
narrower width of loop in the FW-1 run-1 can be seen compared with FW-2

runs 1 and 2,

6.3.9 Response Waveforms of the Axial Force of the Column at the
Base

Resaponse waveforms of the axial force at the base of the left
column are recorded during the earthquake motions and are shown in
Fig.6.20. These response waveforms are cbtained with the use of the
concentrated spring model for that column member. The first mode

component dominates these response waveforms. The load axis is seen to



72

be shifted by the dead load of 5.5 KN. At the base the column's axial
force varies within an envelope bounded by a maximum compression force
of about 15 KN, This is the value‘at which the beams from every 1level
have formed yield hinges. The lower bound is a minimum force(tension)

of about -2.0 KN,

6.3.10 Structural Yield Patterns

Inelastic hinge locations calculated during the earthquake base
motions are illustrated in Fig.6.21 for four cases( FW-1 runs 1 and 3,
FW-2 runs 1 and 2). The sequences of yielding and the time when
yielding occurs in the constituent members of the structure are also
shown in these figures,

The columns of these structures do not yield throughout the
runs{FW-1 run-1, FW-2 runs 1 and 2). However for FW-1 run-3{max. input
base ace.=2.U41G), yield action was initiated at the base of the columns.
By contrast yielding hinges are distributed fairly uniformly at the ends
of the beams throughout almost all of the levels. This is because the
structure is designed with weak beams and strong columns.

For FW-2 run-2(max. input base acc.=0.49G), all the yielding of
the various members is initiated within the first 0.9 seconds. For the
rest of the cases(FW-1 runs 1 and 3, FW-2 run-1), all yielding occurs
during the first 2.0 seconds. Inelastic action of the wall can be seen
to propagate some from the base toward the upper segments.

For the FW-1 run-3(max. input base acec.=2.41G), the structure
forms a collapse mechanism when the first story columns yield at the

time t=1,421 seconds. Also the wall at the base is severly damaged by
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this time. The whole portion of the first story wall can be seen to be
yielding. A11 ecolumns but the ones belonging to the first story prove
to be strong enough to avoid any significant yielding. The structure is
still capable of sustaining the additional forces applied +to the
structural system because of the assumption of the strain hardening
hysteresis rule in each model as seen in the static case. Finally the
experimentally observed c¢racking patterns of FW-2 run-2 is presented

from reference,[2] in Fig.6.22.

6.4 Effect of Changing Axial Load at the Base of the Exterior Columns

It 1is important to check axial 1loads of the column members
induced by the earthquake motion, These loads might be critical in the
exterior columns of slender structures. The exterior columns can play
an important role in the behavior of a system when the variation of
axial forces and axial deformations are included. The layered model is
used herein to study in a quantitative sense the change in the éxial
force on the bending moment resisting mechanism of the column members.
This is done for both monotonically increasing loading and for the
single c¢yele loading. The layered model is applied to both first story
exterior column members of the structure. The concentrated spring model
is used for the remaining frame members and the multiple spring model is
used for wall members. The general trends of the axial force~bending
moment resisting mechanism at the base of the exterior columns are
simulated. The change in the axial rigidity is neglected. A triangular
shaped static lateral load is applied to the structure. The loading

process applied is the same as was the case for the astatie analysis
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described earlier. The secondary P- Aeffect of the axial load is not
incorporated in the analysis. It is not the intent of this study to
throughly investigate the influenée of changing axial ioad on the
dynamic response of the system but merely its significance in the

present case.

6.4.1 Effect of Changing Axial Force under Monotonically

Increasing Lateral Load.

The effect of changing the axial force in: the first story
exterior columns is studied first for the increasing lateral load.

The base shear-top story displacement relationship of the
structure FW-2 is shown in Fig.6.23. The curves of displacement are
obtained by using the layered model (solid line) as well as by using the
concentrated spring model (dotted line). The two curves are almost
identical primarily because the layered model is applied only to the
exterior firat story columns. The curve using the layered model shows
that the 1left column yields at the base at an early stage while the
center and right columns do not yield at all during the loading process.
On the other hand the columns using the concentrated spring model all
yield at the same point and at a later stage than the layered model.

The moment-curvature hysteresis loops of the layered section in
thé layered model are shown in Fig.6.24. Varicus applied constan£ axial
load curves form the backbone hysteresis loops. They are made up of
actual smooth curves rather than idealized piecewise straight 1lines.
The hysteresis 1loops determined with layered sections at the base of

both exterior columns are plotted in the figure. The hysteresis loops
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of the layered section shift from one moment-curvature curve with a
constant axial force to another moment-curvature curve with a different
constant axial force in order'to reflect change in axial force. On the
hysteresis 1loop with increasing axial force in the column, a stiffer
slope than that used in the concentrated spring model results, The
concentrated spring model's primary curve is based on a constant axial
force of 4.45 KN, On a hysteresis loop with decreasing axial force in
the column, the slope of the hysteresis loop is sofper than that of the
primary curve and furthermore the slope of the curve becomes negative
after yielding occurs. The concentrated spring model's primary curve
then positions itself approximately as the mean curve between the
stiffer and softer curves. When the layered section takes on a negative
stiffness, this is replaced by a slight positive stiffness for
computational ease during the analysis of the structure. Therefore a
numerical error is introduced in the analysis of the behavior of the
structure with the layered model columns.

The loading path is traced on the interaction diagram for the
layered section of the exterior column. The loading paths at the base
of the two exterior columns are plotted for monotonically increasing
lateral load on the structure. These two loading paths take the form
shown in Fig.6.25. One is subjected to monotonically increasing axial
force superimposed on the dead 1load, the other is subjected to a
monotonically decreasing axial force down from the dead 1load. In the
figure, loading path No.2 for the column section with increasing axial
force starts from the Nd=5.5 KN.( dead 1load). It rises gradually

becoming flat when yielding occurs at the ends of the beams. Once the
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loading path reaches the yielding line on its moment-axial force
interaction diagram, the slope becomes stiffer again until that loading
path reaches the ultimate branch‘of the moment-axial force interaction
diagram. At this point the edge of the column section crushes. After
this c¢rushing occurs and if still increasing axial load is induced to
the section, the column cross section changes into another cross section
with the crush portion deleted from the original section. In such a
case the loading path turns inside taking on arbitrary slope depending
upon the section properties and lcading combination. Loading path No.1
for a column section with decreasing axial force also starts from the
level Nd=5.5 KN.( dead load). It decreases along a path symmetric about
the axis of Nd=5.5 KN,, with loading path No.2., Distortion of the curve
shown as loading No.1 is probably the result of a small numerical error.
Once loading path No.1 reaches the yielding line and the axial force
continues to decrease, (this may entail an increase in tension if the
axial force has reached into the tensile range.) the 1loading path
begins heading toward the point of the pure tension failure for the
cross section.

6.4.2 Effect of Changing Axial Force under One Cycle Loading

The Dbase shear-top story displacement relationship of the
structure(Fw-2) under one c¢ycle loading is shown in Fig.6.26, This
entire load-~displacement relationship is identical for both cases{ by
the layered model and by the concentrated spring model).

The moment-curvature hysteresis loops of layered sections are

shown in Fig.6.27. For the first one quarter cycle of loading, the
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curves of No.1 and No.2 are the same as the ones just described for the
case of monotonically increasing load. For the next half cycle of
loading and unlcading, the column layered section of No.1 experiences a
snap-through phenomenon. For the structural analysis this phenomenon is
modified as shown in Fig.3.11{(d}. The stiffness of this portion is
replaced by a small positive one. After this snap~through phenomenon
has occurred, the column section again demonstrates stiffer flexural
rigidity. How much depends upon the level of axial force. The column
of No.2 on the other side of the structure then experiences similar
relationships of a form which appears antisymmetrical about the origin.
In order to verify this hysteresis loop, check points are created along
its path. The results are illustrated in Fig.5.28. The behavior of the
¢ross section illustrated in the figure shows how the steel énd concrete

strains in its cross section shift during one cycle loading.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary

The nonlinear analyses of multistory reinforced concrete
frame-wall structures subjected to strong motion earthquakes are carried
out; The structures used in the investigation are those tested by
D.P.Abrams wusing the University of Illinois Earthquake Simulator[2].
Three mathematical models : the concentrated spring model, the multiple
spring model, and the Ilayered model, are presented to represent the
inelastic behavior of a reinforced concrete cantilever beam. The
nonlinear behavior of these mechanical models is introduced through
their material properties. Geometrical nonlinearities are not
considered. Hysteresis loops for each model are established. These
mechanical models are applied to the 10~story reinforced concrete
frame-wall structures of Abrams. The concentrated spring model is used
for the frame members whereas the multiple spring model is applied to
wall members. The layered model is applied to the first story exterior
column members only when the effect of c¢hanging axial force is
investigated. The structures are first analyzed for static loads. Then
the dynamic tests are computed. For dynamic loads, the time-history
acceleration input records obtained from the test are used. The
computed results are compared with the experimental results. The
mechanical models are shown o be useful tools for investigating the
behavior of reinforced concrete frame-wall structures under both static

and seismic loadings.
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7.2 Consclusions

The modeling of reinforced concrete structures to include their
inelastic response is a very difficult, complicated problem. But by
adopting the simple assumptions and analytical procedures described in
this study, a close or reasonably faithful reproduction of the
experimental results is obtained. Using more sophisticated material and
mechanical models, which necessitates the introduction of additional
parameters to define, leads to extra computational effort with but a
small improvement in results. It should be kept in mind that the
results obtained in this study are for the laboratory test specimens.

The following statements are also added to the conclusions.

1. Inelastic actions of the wall play the major role in
contrelling the structural response. The multiple spring model
shows the detailed inelastic behavior of the wall.

2. Frequencies of the structure decrease considerably during the
earthquake motion reflecting a significant reduction of
structural component stiffnesses.

3. The mechanical models used in the study : the concentrated:
spring model for frame members and the multiple spring model
for wall members, satisfactorily reproduce the response values
and the response waveforms of the specimens.

4, Pinching action of column~beam joints produces only slightly
larger displacements and slightly smaller accelerations, and
shear forces in the structure since the wall members dominate
the behavior of the structure.

5. Reduction of flexural rigidity of the first story exterior
columns due to the effect of changing axial load does not
significantly alter the overall behavior of this structure,
This is again a consequence of the structure being dominated
mainly by its wall, The layered model shows the detailed
behavior of the inelastic zone of these column members.

6. Even though response-history calculations are very expensive,
consuming both time and money, an inelastic response~history
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analysis using the concentrated spring model and the multiple
spring model produces very detailed information about the
response of structures to a particular earthquake. Therefore
the responase-history approach though expensive 1ia a very
effective tool to study the influence of certain quantities on
the response,

7. By proper design of the beam members in a frame, yielding in
the column members can be minimized. Computed dynamic results
demonstrate the adequacy of this design philosophy.

T.3 Recommendations for Further Studies

1.

Some areas of further studies are,

Using the mathematical model developed in this study,
investigate the influence of variations in the significant
parameters.

Extend the analysis procedure to include nonlinear geometiric
effects.

Extend the mechanical model to predict both bending failures
and shear failures in wall members so that individual and
combined effects of inelastie interaction can be assessed.

The models presented in this study are limited to plane
structures with the makeup of the laboratory test specimen.
The mathematical models should be extended to the general case
taking account : {a) the effect of slabs, {b) non-uniformly
reinforced beama, (¢) the effect of torsion, stec.

Before additional analytical progress is made,however, some experimental

research is necessary on,

1,

Shear deformation characteristies of shear walls.
Shear deformation characteristies of beam-column joint panels.

Moment-curvature relations and failure criterior for reinforced
conerete columns under changing axial load.

Load~deflection curves of various types of shear walls: I-beam
type, channel type, box type, and circular type, etec.
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The further studies described herein will be the next advanced
steps to understand the inelastic behavior of reinforced concrete

structures.
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TABLE.2.1 REINFORCING SCHEDULES FOR THE STRUCTURES OF FW-1

AND FW-2
FW-1 FW-2

STORY WALLS BEAMS COLUMNS COLUMNS WALLS BEAMS COLUMNS COLUMNS

OR (EXT.) (INT.) (EXT.) (INT,)
LEVEL

10 2 2 2 3 2 2 2 2

g 2 3 2 3 2 2 2 2

8 2 3 2 2 2 2 2 2

7 2 3 2 2 2 3 2 2

6 2 3 2 2 2 3 2 2

5 4y 3 2 2 2 3 2 2

it 4 2 2 2 2 3 2 2

3 it 2 2 2 2 3 3 2

2 8 -2 2 2 2 2 3 2

1 8 2 2 2 2 2 3 2

FOR WALLS NUMBER OF NO.2G WIRES PER ONE SIDE OF CROSS
SECTION, 1-NO,2G WIRE DIAMETER 6.65 MM,
AREA 34,8 MM¥R2
FOR BEAMS, COLUMNS NUMBER OF NO.13G WIRES PER FACE
. 1-NO.13G WIRE DIAMETER 2.34 MM,
AREA 4,29 MMee2
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TABLE 5.1 ASSUMED CHARACTERISTICS OF A CANTILEVER BEAM
SPECIMEN FOR HYSTERESIS LOOP STUDY (FIG.5.3)
LENGTH (MM,) 152.4
RIGID ZONE (MM,) 25.4
FLEXURAL RIGIDITIES (KN-M,%¥2) (SHOWN IN FIG.3.4)

SHEAR DEFORMATION INCLUDED.
STEEL BAR SLIP INCLUDED

3D1 = 9.57

Sp2 = 2,14

SD3 = 0.08
CRACKING MOMENT (KN-M.) 0.03
YIELDING MOMENT (KN-M.) 0.125

LOADING PROCESS (KN.)

CASE 1 CASE 2
CYCLE LOAD CYCLE LOAD CYCLE LOAD

1 1.07 1 0.445 11 1.38
2 -1.16 2 -0, U45 12 0.89

3 1.25 3 1.1 13 1.42
h -1.34 b -0.89 14 -1.11

5 1,42 5 1.16 15 -0.445
6 -1.51 6 -1.16 16 -1.43
7 1.60 7 1.25 17 1,47
8 -1.69 8 -0.223 18 -1.56
9 1.74 9 1.34 19 1.56

10 0.0 10 -1.38 20 0.0
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TABLE 5.2 ASSUMED CHARACTERISTICS OF A BEAM-COLUMN JOINT
SPECIMEN FOR LOAD-DISPLACEMENT RELATIONSHIP
STUDY (FIG.5.5)

MATERIAL PROPERTIES

CONCRETE
COMPRESSIVE STRENGTH f¢ (MPA) 42,4
TENSILE STRENGTH ft (MPA) 3.25
YOUNG MODULUS Ee (MPA) - 30800
%(22000)
SHEAR MODULUS G (MPA) 13200
STRAIN AT f¢ €0 0,003
AT ULTIMATE Ecu 0.004
AT f €4 0.000105
STEEL REINFORCEMENT
YIELD STRESS fsy  (MPR) 356
ULTIMATE STRESS fsu  (MPA) 382
YOUNG MODULUS Eg (MPA) 203000
STRAIN AT YIELD ey 0.00175
AT ULTIMATE €5y 0.07
AT STRAIN HARDENING 0,01

®* THE VALUE IN THE ( ) IS PREFERABLE
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TABLE 5.2 (CONTINUED)

2. SECTION PROPERTIES

DIMENSION STEEL LENGTH RIGID LENGTH
(MM.) (WIRE) (MM.) (MM.)

BEAM 38.0 X 38,0 2 X 2-N0.13G 152.4 25.4

COLUMN 38,0 X 51.0 2 X 2-NO.13G 114,3 19.1

3. STIFFNESS PROPERTIES

SD = FLECTURAL RIGIDITY (KN-M¥%2)
SHEAR DEFORMATION INCLUDED
STEEL BAR SLIP INCLUDED
MC = CRACKING MOMENT (KN-M.)
MY = YIELDING MOMENT (KN-M.)
SD1 Sh2 SD3 MC MY
BEAM 5.68 1.38 0,043  0.031 0,086
COLUMN 9.7 2,25 0,083 0.055 0.122

4, LOADING PROCESS (LOAD INCREMENT ¥1/50)

CYCLE LOAD (KN.)
1 1.0
2 0.0
3 -1,0
y 0.0
5 1.0
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TABLE 5.3 ASSUMED CHARACTERISTICS OF A CANTILEVER WALL
SPECIMEN FOR LOAD-DISPLACEMENT RELATIONSHIP
STUDY

MATERTAL PRCPERTIES

CONCRETE
COMPRESSIVE STRENGTH f¢  (MPA) 33.1
TENSILE STRENGTH fr  (MPA) 2,86
YOUNG MODULUS Ec (MPA) 27200
%(22000)
SHEAR MODULUS G (MPA) 11600
STRAIN AT f. €9 0,003
AT ULTIMATE Ecy 0,004
AT f, €t 0,000105
STEEL REINFORCEMENT
YIELD STRESS fsy (MPA) 338
ULTIMATE STRESS fsu (MPA) 386
YOUNG MODULUS Es (MPA) 200000
STRAIN AT YIELD Ey 0,00169
AT ULTIMATE Egy  0.08
AT STRAIN HARDENING 0.01

* THE VALUE IN THE ( ) IS PREFERABLE
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TABLE 5.3 (CONTINUED)

2. SECTION PROPERTIES

DIMENSTON STEEL LENGTH
{(MM,) (WIRE) (MM,)

WALL 38,0 X 203.0 2 X 2-N0.2G  686.0

3. STIFFNESS PROPERTIES

SD = FLECTURAL RIGIDITY (KN-M¥%*2,)
SHEAR DEFORMATION INCLUDED
STEEL BAR SLIP INCLUDED

EI = FLEXURAL RIGIDITY (KN-M.**2)
MC = CRACKING MOMENT (KN-M,)
MY = YIELDING MOMENT (XN-M.)

{A)Y CONCENTRATED SPRING MODEL

SD1 sSD2 SD3 MC MY
WALL 2097 525 22.2 0.98 4,42
(B} MULTIPLE SPRING MODEL

NUMBER OF ELEMENTS T

LEGTH OF EACH ELEMENT MM, (FIXED END TO FREE END)
12.7 25.3 63,5 101.8 127.0 177.8 177.8

EA GA EI1 EI2 EI3 MC MY
EACH
WALL 193000 35000 661 204 1.8 0.98 4.42
ELEMENT



92

TABLE 5.3 (CONTINUED)

(C) LAYERED MODEL

LENGTH (MM.) 686.0

LENGTH OF INELASTIC ZONE (MM.) T1.
CROSS-3SECTION (MM.) 38.0 X 203.0
NUMBER OF CONCRETE LAYERS 4o

" UNCONFINED LAYERS
(EACH,TOP AND BOTTOM) i

WIDTH OF UNCONFINED CONCRETE

ON EACH SIDE OF CROSS-SECTION (MM) 5.1

STEEL REINFORCEMENT (TOP AND BOTTOM) 2X2 NO.2G WIRES

STEEL AREA AND DISTANCE FROM THE
TOP OF THE CROSS SECTION ‘

AREA (MM¥#%2) DISTANCE (MM. )
(1) 70 10.2
(2) 70 193.0

4, LOADING PROCESS (LOAD INCREMENT %*1/50)

CYCLE LOAD (KN.)
1 6.85
2 0.0
3 ~6.50
i 0.0
5 7.4%0 .
6 0.0
7 -6.50
8 0.0
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TABLE 6.1 SUMMARY OF ASSUMED ANALYTICAL CONDITIONS
FOR NUMERICAL EXAMPLES

(A) STATIC LOADING

GENERAL CONDITIONS

LOADING SHAPE TRIANGULAR SHA?E OVER HIGHT
MAXIMUM LOAD AT TOP 4,45 KN,
LOADING INCREMENT MAXIMUM LOAD #*1/50
CASE TYPE LOADING TYPE OF HYSTERESIS
CONDITION CANTILEVER MODEL
BEAM MODEL
1 Fi-1 MONOTONIC c, M 1
2 FW-2 MONQTONIC c, M 1
3 FW-2 MONOTONIC C, M, L 1
! FW-2 CYCLIC C, M, L 1
WHERE
C = CONCENTRATED SPRING MODEL
M = MULTIPLE SPRING MODEL
L = LAYERED MODEL
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TABLE 6.1 - (CONTINUED)

(B) DYNAMIC LOADING

GENERAL CONDITIONS

DAMPING FACTOR 0.02
TIME INTERVAL, SEC. 0.0004
DURATION TIME, SEC. 3.0
NUMBER OF STEPS 7500
CASE TYPE  EXPERIMENTAL  MAXIMUM
RUN BASE
ACC.
1 FW-1 RUN-1 0.55G
2 FW-1 RUN-3 2. 41G
3 FW-2  RUN-1 0.49G
4 FW-2  RUN-2 0,92G
5 FW-2  RUN-2 0.92G
WHERE
C = CONCENTRATED SPRING MODEL

MULTIPLE SPRING MODEL

TYPE OF
CANTILEVER
BEAM MODEL

leXeNeoReRe
IRIEX

HYSTERESIS
MODEL

N — = =
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TABLE 6.2 ASSUMED MATERIAL PROPERTIES FOR
FRAME-WALL STRUCTURES

PROPERTIES
CONCRETE
FW-1 FuW-2
COMPRESSIVE STRENGTH fé {MPA) 33.1 42,1
TENSILE STRENGTH fi (MPA) 2.86 3.24
YOUNG MODULUS E_ (MPR) 27200 30700
¢ *(19300)  *(23000)
SHEAR MODULUS G (MPA) 11600 13100
STRAIN AT f¢ € 0.003 0.003
AT ULTIMATE €cu 0.004 0.004
AT f1 et 0.000105  0,000105
STEEL REINFORCEMENT
FW-1 AND FW-2
BEAMS WALLS
COLUMNS
YIELD STRESS ;y (MPA) 352 338
ULTIMATE STRESS su (MPA) 382 %00
YOUNG MODULUS Eg (MPA) 200000 200000
STRAIN AT YIELD Ey 0.00178 0.00170
STRAIN AT ULTIMATE €5y 0.07 0.07
STRAIN AT STRAIN HARDENING 0.01 0.002

% THE VALUE IN THE ( ) IS PREFERABLE
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TABLE 6.3 CONFIGURATIONS OF THE STRUCTURES FW-1 AND FW-2

1. COMMON PARAMETERS

NO. OF STORIES 10
HEIGHT OF EACH STORY (MM.) 229.
WEIGHT OF EACH STORY (Kqﬂ) 454
BEAM LENGTH (MM.) 305,
" RIGID ZONE LENGTH 25.4
COLUMN LENGTH (MM.) 229,
" RIGID ZONE LENGTH 19.
UNLOADING COEFFICIENT FOR
HYSTERESIS RULES 0.5

2. WALL MEMBERS
NC. OF ELEMENTS FOR WALL MEMBERS AND LENGTH OF EACH ELEMENT

(FROM TOP TO BOTTOM)
LEVEL NO. 1 2 3 4 5 6 7
2  114,3 114.3

2  114.3 114.,3

2 114.3 114.3

3 76.2 76,2 76,2

3 76.2 T76.2 T76.2

3 76.2 76,2 76,2

3 76.2 T76.2 T76.2

4 57.2 57.2 57.2 57.0

4 57.2 57.2 57.2 57.0

7

38.1 38,1  38.1 38.1  38.1 25,4 12,7

—
—_ N W EUTOYT 00D O
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TABLE 6.4 STIFFNESS PROPERTIES OF CONSTITUENT MEMBERS
OF THE STRUCTURES FW-1 AND FW-2

EA = AXIAL RIGIDITY (XN.)
GA = SHEAR RIGIDITY (XN.)
EI = FLEXURAL RIGIDITY (KN-M*¥2,)

SHOWN IN FIG.3.5 :
3D = " SHOWM IN FIG.3.4
SHEAR DEFORMATION INCLUDED
STEEL BAR SLIP INCLUDED
CRACKING MOMENT (KN-M,)
YIELDING MOMENT (KN-M,)

MC
MY

WALL MEMBERS (FW-1)

LEVEL EA GA EI1 EI2 EI3 MC MY
10 211000,  37600. 726, 242, 2.6 0.76 4,23
9 211000. 37600. 726. 242, 2.6 0.76 4,23
8 211000. 37600. 726. 2h2, 2.6 0.76 4,23
7  211000.  37600. 726. 242, 2.6 0.76 4,23
6 211000, 37600, 726. 515. 8.6 0.76 7.54
5 211000, 37600, 726, 515. 8.6 0.76 7.54
4 211000. 37600. 726. TV7. 12,6 0,76 14,12
3 211000, 37600, 726. 717,  12.6 0.76 14,12
2 211000, 37600, 726, 7T17. 12.6 0.76 14.12
1 211000.  37600. 726. T17. 12.6 0,76 14,12

BEAM MEMBERS (FW-1)

LEVEL SD1 3D2 SD3 MC MY

10 6.51 1,20 0.049 0.026 0.086
9 8.80 1.83 0.098 0.026 0.126
8 8.80 1.83 0.098 0.026 0.126
7 8.80 1.83 0.098 0.026 0.126
) 8.80 1.83 0.098 0.026 0.126
5 8.80 1.83 0.098 0.026 0.126
4 6.51 1.20 0.049 0.026 0.086
3 6.51 1.20 0.049 0.026 0.086
2 6.51 1.20 0.049 0.026 0.086
1 6.51 1,20 0.049 0.025 0.086
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(CONTINUED)

EA
GA
SD

MC
MY

EXTERIOR COLUMN MEMBERS

LEVEL

1

=N W o~ 0w O

EA

52700.
52700,
52700,
52700.
52700.
52700.
52700.
52700,
52700.
52700.

SD1

8.38
8.38
9.34
9.34
9.3k
9.3l
10.50
10,50
10.50
10.50

INTERIOR COLUMN MEMBERS

LEVEL

1

—_MPDW PO OO

EA

52700,
52700.
52700,
52700.
52700.
52700,
52700,
52700,
52700.
52700,

3D1

12.64
12.64
9.34
9.34
g.34
9.34
10,50
10.50
10.50
10.50

98

AXTIAL RIGIDITY (KN.)
SHEAR RIGIDITY (KN.)
FLEXURAL RIGIDITY (KN-M¥¥2, )
SHEAR DEFORMATION INCLUDED

STEEL BAR SLIP INCLUDED

CRACKING MOMENT (KN-M.)
YIELDING MOMENT (KN-M,)

(FW-1)

(FW-1)
SD2

2.83
2.83

2,23

2.23
2.23
2.23
2.72
2.72
2.72
2.72

0.060
0.060
0.066
0.066
0.066
0.066
0.080
0.080
0.080
0.080

SD3

0.066
0.066
0.066
0.066
0.066
0,066
0,080
0.080
0.080
0.080

MC

0.047
0.0L7
0.067
0.067
0.067
0.067
0.085
0.085
0.085
0,085

MC

0.047
0.047
0.067
0.067
0.067
0.067
0.085
0.085
0.085
0.085

MY

0.124
0.124
0.158
0.158
0.158
0,158
0.194
0.194
0.194
0,194

MY

0.170
0.170
0,158
¢.158
0.158
0,158
0,194
0.194
0.194
0.194
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TABLE 6.4 (CONTINUED)

EA = AXIAL RIGIDITY (KN.)

GA = SHEAR RIGIDITY (KN.)

EI = FLEXURAL RIGIDITY (KN-M¥#2)
SHOWN IN FIG.3.5

SD = " SHOWM IN FIG.3.4
SHEAR DEFORMATION INCLUDED
STEEL BAR SLIP INCLUDED

MC = CRACKING MOMENT (KN-M.)

MY =

YIELDING MOMENT (KN-M.)

WALL MEMBERS (Fw-2)

LEVEL EA GA EI1 EI2 EI3 MC MY
10 237600.  u2270, 818, 263, 2.6 0.85 4,23
9 237600, 42270, 818. 263, 2.6 0,85 4,23
8 237600, 42270, 818, 263. 2.6 0.85 y,23
7  237600. 42270, 818, 263, 2.6 0.85 4,23
3] 237600, 42270, 818. 263. 2.6 0.85 .23
5  237600. 42270, 818, 263. 2.6 0.85 4,23
b 237600,  42270. 818, 263, 2.6 0.85 4,623
3 237600, 42270, 818, 263. 2.6 0.85 4,23
2 237600. 42270. 818, 263, 2.6 0.85 4,23
1 237600.  42270. 818, 263, 2.6 0.85 4,23
BEAM MEMBERS (FW-2)
LEVEL SD1 sSh2 SD3 MC MY
10 7.18 1,32 0.049 0.029 0.088
g 7.18 1.32 0.049 0.029 0,088
8 7.18 1.32 0.049 0.029 0,088
7 9.57 2,14 0.080 0.029 0.125
6 9.56 2.14 0.080 0.029 0,125
5 9.55 2.14 0.080 0,029 0.125
il 9.54 2,14 0,080 0.029 0.125
3 9.53 2.14 0.080 0,029 0.125
2 7.18 1.32 0.049 0.029 0.088
] 7.18 1.32 0.04g 0.029 0.088
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(CONTINUED)

EA
GA
3D

nn n

MC
MY

EXTERIOR COLUMN MEMBERS

LEVEL

1

— W EJI N DO O

EA

59400,
53400.
59400,
59400,
59400,
53400,
53400,
53400,
59400,
59400,

SD1

8.93

8.93
11.22
11.22
11.22
11.22
12.83
16.54
16.54
16.54

INTERIOR COLUMN MEMBERS

LEVEL

1

A NWERN O DO O

EA

59400.
59400,
59400,
59400.
59400,
59400.
59400.
59400,
59400,
59400.

SD1

8.93

8.93
11.22
11.22
11.22
11.22
12.83
12.83
12.83
12.83
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AXIAL RIGIDITY (KN.)
SHEAR RIGIDITY (KN.)
FLEXURAL RIGIDITY (KN-M*#2)

SHOWN IN FIG,3.h

SHEAR DEFORMATION INCLUDED
STEEL BAR SLIP INCLUDED
CRACKING MOMENT (KN-M,)
YIELDING MOMENT (KN-M,)

(FW-2)
SD2

1.81
1.81
2,42
2.42
2.42
2.42
2.92
4,23
4,23
4,23

(FW-2)
SD2

1.81
1.81
2.42
2.42
2.42
2.42
2.92
2.92
2.92
2.92

SD3

0,060
0.060
0.103
0.103
0.103
0.103
0.149
0.180
0.180
0.180

SD3

0.060
0.060
0.103
0.103
0.103
0.103
0.149
0.149

001’49'

0.149

MC

0.053
0.053
0.072
0.072
0.072
0.072
0.090
0,090
0.090
0.090

MC

0.053
0.053
0.072
0,072
0.072
0.072
0,090
0.090
0.090
0.090

MY

0.125
0.125
0.170
0.170
0.170
0.170
0.211
0.211
0.211
0.21

MY

0.125
0,125
0.170
0.170
0.170
0.170
0.211
0.211
0.21
0.211
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TABLE 6.5 MODE SHAPES AND FREQUENCIES OF THE
STRUCTURES FwW-1 AND FW-2

1. FW-1

(A) MODE SHAPE

BEFORE RUN AFTER 0.55G AFTER 2.41G
- RUN=-1 RUN=-3
LEVEL MODE MODE MODE
1 2 3 1 2 3 1 2 3
10 1.36 -0.56 0.32 1.43 -0.64 0.33 1.43 -0.65 0.33
g 1.26 -0.33 0,04 1.27 -0.31 -0,01 1.27 -0.31 -0,02
8 1.1% -0.07 -0.20 1.11 - 0.01 =-0.27 1.117 0.02 ~0.29
1 1.02 0.17 -0.31 0.94 0.28 -0.34 0.9% 0.30 -0.35
6 0.87 0.36 -0.24 0.76 0.46 -0.20 0.77 0.46 -0.18
5 0.70 0.47 -0,03 0.59 0.54 0,05 0.60 0.51 0,08
y 0.52 0.49 0.21 0.4 0.51 0,28 0.4% 0.48 0,29
3 0.35 0.40 0.34 0.27 0.40 0.37 0.29 0.38 0.37
2 0.19 0.25 0.30 0.14 0.24 0.31 0.16 0.24% 0,31
1 0.06 0,10 0,14 0.04 0.09 0,15 0.06 0.09 0.15

(B) FREQUENCY, HZ
5,0 17.8 37.0 2.8 11,5 271.8 2,5 10,4 25.3

* MODAL PARTICIPATION FACTORS ARE INCLUDED IN MODE SHAPES
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TABLE 6.5 (CONTINUED)

2. FW-2

(A) MODE SHAPE

BEFORE RUN AFTER 0..49G
- RUN-1
LEVEL MODE MODE
1 2 3 1 2 3
10 1.39 -0.59 0.31 1.41 -0.60 0.29
9 1.27 -0.32 0.02 1.27 -0.33 0.03
8 1.13 -0.04 -0.22 1.13 -0.05 -0.18
7 0.99 0.20 -0.31 0.98 0.19 -0.28
6 0.83 0.38 -0,22 0.82 0,33 -0.,24
5 0.66 0.49 0.00 0.66 0.50 -0.06
y 0,49 0.49 0.22 0.50 0.52 0.15
3 0.33 0.40 0.34 0.35 0.4 0.31
2 0.18 0.25 0.29 0.20 0,32 0.32
1 0,05 0.09 0.14 0.07 0,14 0,18

(B) FREQUENCY, HZ
5.3 18.3 38.8 2.4

% MODAL PARTICIPATION FACTORS

10.4

26.4

AFTER 0.92G

RUN-2

MODE

1

1.39
1.27
1.15
1.02
0.88
0.74
0.59
0.43
0.27
0.1

2.0

ARE INCLUDED IN MODE

2
-0.57
-0.32
-0.08
0.14
0.32
0.43
0.47
0.42
0,30
0,14

8.8

SHAPES

3
0.28

0.03
=0.17
~0.27
-0.23
-0.07

0.14

0.29

0.30

0.17

23.4
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TABLE 6.6 MAXIMUM RESPONSES OF FRAME-WALL
STRUCTURES

(1) ACCELERATION (G.)

STRUCTURE Fu-1 Fiw-1 FW-2 FW-2 Fw=2
RUN R1 R3 R1 R2 R2,SL
MAX. BASE
ACC. 0.55G 2.41G 0.49G = 0.92G 0.92G
LEVEL
10 1.06 T.U8 0.68 0.84 0.84
-1.23 -1.99 -0.68 -1.01 -0.97
9 0.68 0.95 0.55 0.60 0.60
-0.90 -1.18 -0.52 -0.70 -0.63
8 0.61 0.8%4 0.49 0.51  0.51
-0.71 -0.95 -0.42 -0.48 -0.45
T 0.63 0.92 0.48 0.47 0.46
~-0.64 -1.33 -0.42 -0.55 -0.55
b 0.67 1.1 0.46 0.44 0.4%0
-0.62 -1.36  =0.40 -0.66 -0.68
5 0.63 1.10 0.42 0.56 0.51
-0.58 -1.42 -0.,44 -0.78 -0.78
b 0.62 1.26 0.37 0.54 0.54
-0.51 -1,65 . =0.45 -0.84 -0.83
3 0.61 1.32 0.31 0.62 0.65
-0.47 -1.86 -0, 44 -0.85 -0.82
2 0.59 1.28 0.33 0.68 0.7
-0.42 -2.05 -0.42 -0.79 -0.76
1 0.57 1.31 0.36 0.66 0.67
-0.37 -2.18 -0.44 -0.82 -0,82
SL = HYSTERESIS MODEL 2 USED FOR BEAM-COLUMN

JOINTS
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TABLE 6.6 {(continued)

{2) DISPLACEMENT (MM.)

STRUCTURE FW-1 FiW-1 FW-2 FW-2
RUN . R1 R3 R1 R2 R2,SL
MAX, BASE
ACC, 0.55G 2. 416G 0.49G 0.92G
LEVEL C E o E c E C C E
10 28.9 28.2 45.7 58.5 23.1 28.4% 41,2 43,3 42,8
-24,3 -42.4 -23.6 -26,1 -33,2
9 25.6 26.5 41,4 49,9 21,1 25.6 37.1 39.2 39.2
-21.3 -37.1 -21.1 -23.7 -29.8
8 22.4 23.8 36.8 41.0 18.8 23.6 32.8 34.9 32.7
-18.3 -32.0 -18.6 -21.2 =26.3
7 18.8 20.5 32.0 35.9 16.7 20,6 28.5 30.5 32.0
-15.2 -26.7 -16.0 -18.6 -22.8
6 15.3 17.0 26.9 29.4% 14.3 17.3 24.0 25.9 27.5
-12.1 =21.7 -13.3 -15.9 -19.2
5 11,7 13.5 21.3 22,2 11,7 14,2 19.4 21.1 23.4
-8.9 ~16.8 -10.6 -13.0 -15.6
Y 8,5 9.5 16,2 17.0 9.1 10.7 14.9 16.3 16.2
-6,4 -12.2 -8.0 -10.0 -12.0
3 5.3 7.1 11.% 11,9 6,4 8.3 10.4% 11.5 14,6
~4,1 -8.0 -5.5 -7.1 =8.5
2 2.8 u1 6.4 T.1 3.9 5.1 6.3 7.0 8.9
-2.1 4,4 -3.1 4,2 5.1
1 0.9 2,0 2,4 3,5 1,6 2,3 2,5 2,9 4.7
-0.,6 -1.7 -1.,2 -1.6 =2.,0

COMPUTED RESPONSE RESULTS

EXPERIMENTAL RESPONSE RESULTS[2]

SL = HYSTERESIS MODEL 2 USED FOR BEAM-COLUMN
JOINTS

[ o}
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0.49G
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FW-1
R3
2.41G6

Fw-1
0.55G

TABLE 6.6 (continued)
R1

STRUCTURE
RUN

BASE
ACC,
LEVEL

(3) RELATIVE DISPLACEMENT (MM.)
MAX,

TNMOT N OWOWOW0WEDIN ST~ 0 C

....................
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4
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1



106

TABLE 6.6 (continued)

(%) STORY SHEAR  (KN.)

STRUCTURE FwW-1 FW-1 FW-2 FW;Z FW-2

RUN R1 R3 R1 R2 R2,SL
MAX. BASE
ACC. 0.55¢ 2.M11G 0.49G 0.92G 0.92G
LEVEL
10 4,8 6.6 3.0 3.7 3.7
~5.14 -8.9 -3.0 -4.5 -4.3
9 T.7 10.5 5.5 6.4 6.4
-9.4 -13.2 -5.3 -7.6 ~T.1
8 9.2 12.7 7.3 8.0 8.0
-12.0 -15.0 -7.0 -9. 4 -8.5
7 10.5 13.9 8.6 9.1 9.1
-13.1 -16.9 -8.1 -9.8 -8.6
6 12.2 16,4 9.6 10.6 10.5
-14.8 ~15.9 -8.9 -10.3 -9.7
5 14,3 17.5 10.3 1.7 11.6
-16.2 -18.2 -10.1 -11.5 =10.7
4 16.3 17.8 11.0 12,4 12.3
-17.2 -20.2 -11.2 -12.3 -11.4
3 17.8 18.8 11.6 13.0 i2.9
-18.0 -21.5 -12.1 -13.1 -12.8
2 18.9 18.7 1.7 13.3 13.2
-18.7 -22.9 -12.8 -16.0 -15.3
1 19.9 20,4 11.6 13.3 13.2

-1900 -2707 -13o3 -18.7 "17.8
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TABLE 6.6 {continued)

(KN.)

(5) WALL SHEAR

FW=2 FW=-2 FiW-2
R2

R1

FW-1
R3

STRUCTURE

RUN

FW-1
R1

R2,SL

MAX. BASE

AcCcC,

0.49G - 0,926 0.92G

2.41G

0.55G

LEVEL

- ™ O M~MNOO I INM— e M
....................

O MO0 OO — MMWIWAHAO T O
oooooooooooooooooooo
I N N OO NS 0SS O -0

1 ! ! ! 1 | f 1 4 I

AW T NN O MNOVE- v =M o0
oooooooooooooooooooo

MO MO NO OO ORNRO~O — O

oooooooooooooooooooo
656556608992233558&.2
t | | t — o e e o O

OO N OMNN~— N0 P~ «— O M
oooooooooooooooooooo
551342.55668803232_.&;65

1 1 ! ! l = — ™ — — —
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TABLE 6.6 {(continued)

(6) OVERTURNING MOMENT (KN-M.)

FW-2 FW-2

R2

FW-2
R1

FW-1

R3

Fi-1
R1

STRUCTURE

RUN

R2,38L

MAX. BASE

ACC,

0.49G 0.92G 0.92G

2. MG

0.55G

LEVEL

O MW NN N~ M

oooooooooooooooooooo

0122”“668800325587
1

1
0
6
8

oooooooooooooooooooo
01224u\67890133558811
$ ¥ ) mrr— 0

7799656 M= MO MO I~ O — O a0

000000000000000000

123568912”57903”6813
A A e e ek

CFONOST OV T M e AN N OVIN WO O DN
....................
— MO NNIDNOOo N N ~-0O

1 1 ] 1 .|_|11m;11_|4l?__2n/m_25ﬂ

10
9
8
7
6
5
y
3
2
1
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TABLE 6.7 PROPERTIES QOF LAYERED MODEL USED FOR THE
STRUCTURE FW-2

1. MATERIAL PROPERTIES ASSUMED (COLUMN IN FW-Z) ARE
TABULATED IN TABLE 6.2

2, SECTION PROPERTIES

LENGTH (MM.) 114.5

LENGTH OF INELASTIC ZONE (MM.) 25,4
CROSS-SECTION (MM.) 38,0 X 51.0
NUMBER OF CONCRETE LAYERS 20

" UNCONFINED LAYERS
(EACH, TOP AND BOTTOM) y

WIDTH OF UNCONFINED CONCRETE -

ON EACH SIDE OF CROSS-SECTION (MM) 7.6

STEEL REINFORCEMENT (TOP AND BOTTOM) 3-NO,13G WIRES

STEEL AREA AND DISTANCE FROM THE
TOP OF THE CROSS SECTION

AREA(MM¥¥2) DISTANCE(MM.)

(1) 12.8 7.6
(2) 12.8 43,2

3, LOADING PROCESS (KN.) (VALUES OF TOP LATERAL FORCE IN
TRIANGULAR LOAD SHAPE)

CYICLE 1 2 3 y 5

CASE A 3.56 :
CASE B, 2,67 0.0 -2,67 0.0 2.67
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2 [ } (a)
9 .
— Yielding Moment
Cracking Moment |
Mo | (b)
\
{ ] Inelastic Curvature
" $u=dy Cracked
J_ Uncracked (c)
3
#y
72+, Plastic Hinge Rotation

Inglastic Zone

(a) Cantilever Beam
(b) Bending Moment Diagram
(c) Curvature Diagram

¢y = Curvature Due To Elastic Deformation

¢u = Curvature Due To Plastic Deformation

F1G. 2.4 CURVATURE DISTRIBUTION ALONG A CANTILEVER BEAM [36]
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FIG. 2.5 MECHANICAL MODELS USED IN INVESTIGATION
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FIG. 3.6  IDEALIZED STRESS-STRAIN RELATIONSHIPS
USED WITH THE LAYERED MODEL
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FIG. 4.1
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DEFORMED SHAPES OF A CONCENTRATED SPRING MOOEL
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APPENDIX A

DETAILS OF STIFFNESS MATRICES

A.17 Frame Member Stijffnesses

A.1.1 Local Coordinates

o - 3

Ma Kit %12 0 || %
Y = oL
Mg Koy Koy 0 116
{ ]

l N L O 0 K33 | e J

A.1.2 Global Coordinates

[Py | up |
Va Va
Ma Wa

1 Pg b= K up L
Vg Vg

\ "s ) L "8 )

A.1.3 Column Members

&0 =5, E.jc] 0
€ 0 0 -
iC3 : € 0
LR :—j61— o
: i
.
i :




where

where

J

i1

il
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tK 21 * Ko

+ K

Kin * %92

K33

1
—5 2K
22

A
7 (K ¥ Kyq) + 72K

el

2

K4 + 2)\(1(n + K]z) + ATZK

11
1 A
7 (Ko + Kop) + 7 2K
Keo + AZK + AZTK
12

2
Koo + 2>\(I<]2 + K22) + A°ZK

Beam Members (Fixed-Hinged Members)

v v
A =KmJA
My ¥
SR
K = Kb, - b b
J j’2 i3
(
3P7
K =K =2+
m b
3 - isbs
2
Ky172
K
CIEY
2
K11(1 + )

for j

for j
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A.2 Wall Member Stiffness

A.2.1 Local Coordinates

Ky, 0 0
_e -1,
Kop = Fap 0 K K
0 Ky K,
A.2.2 Global Coordinates
W, 0 W, W 0 -W,
Wy 0 0 Wy O
¢ -k - Wy W, 0 W
W 0 W,
Sym. WO 0
| ¥ |

(w0 is neglected in this study)

where

Wy = K

Wy = K,

Wy = LKy - Ky

Wy = KoLZ - 2Kl + K,
Wy = K

W = LKy - K,

Ng = K,



A.3 Connectivity Matrix, [A]
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Frame
Vertical Displacement and Rotation

Wall
Rotation

Story
Horiz.
Displ.

ith story
Ve 1% 2Ya 2% 3%

i-1th story
Vs 1% 2V 2% 3%

i -l

wa W
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2°A
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2B
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A.4 Story Stiffness Matrix, Ki

1A
1%
2YA

25

3%

VB

2Vg

2%8

3%

weA

weB

Up
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(i=10~1)
(Fig. 4.5)
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Sym.

t 00+ o0+ w1)

1 192
1°3%1P3
Sym,
0 0 o0
s 0 0 0
25 O
3%s ]
( 0 )
164
v iRp = 1 0 ¢
2Cq
\3C4J
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Sym.




A.5 Structural Stiffness Matrix

A.5.1 General Expression

Fr Ay
Fof=10
.
iy R’
where

r
1Y
™
. _ _ v'
(Fe = () = | 2
oM;
L 3M'i
(F} = {Fi} = (M)
O = ()} = 1,6}
(F 3= G = )
Dy} = {0} = {,u.}
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APPENDIX B
COMPUTER PROGRAM FOR NONLINEAR RESPONSE ANALYSIS OF
REINFORCED CONCRETE FRAME-WALL STRUCTURES

The computer program is developed for nonlinear analysis of reinforced
concrete frame-wall structures subjected to static and dynamic loadings.

The program can be used to obtain frequencies and mode shapes of the
structure, Both elastic analysis and inelastic analysis of either static
or dynamic loadings can be performed, The method of analysis is described
in Chapter 4. The program is written in the FORTRAN IV computer language
on the CYBER 175 computer furnished by the Digital Computer Laboratory of
the University of I1linois. The size of the structure that can be analyzed
can be increased by appropriate changes in the dimensioning statements.
But at this stage, the program is applicable to structures in the form of
10-story regular rectangular plane frame-wall systems with an isolated
shear wall. The total core space required for the program is approximately
1115008 CM STORAGE in addition to temporary disk space in which calculated
response values are stored. It took approximately 100 CP SECOND EXECUTION
TIME on the CYBER 175 computer for the program to complete a response
analysis of this 10-story structure subjected to 3.0 seconds of base
motion at a 0.0004 second integration time interval (with calculating new
stiffness of the structure at every ten times, 0.004 second).

The flow diagram of the computer program for nonlinear response

analysis of reinforced concrete frame-wall systems is shown in Fig. B.1.
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Compute

Compute

©

FIG. B.1
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Material Properties

Structural Geometries

Stiffness Properties of Members
Coefficients of Hysteresis Rules

A11 Variables

Initial Member Stiffness Matrices, Kbd’ ch, Kw
Initial Story Stiffness Matrices, Ki
Initial Structural Stiffness Matrix

Reduce Initial Structural Stiffness Matrix, Ky

FLOW DIJAGRAM OF COMPUTER PROGRAM FOR NONLINEAR
RESPONSE ANALYSIS OF REINFORCED CONCRETE
FRAME-WALL SYSTEMS
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Compute & Print

Modal Characteristics of the Structure
Frequencies, Mode Shapes

Read

Static Loading Data
Dynamic Loading Data (Base Input Acceleration Records)

Step Routine Start

Compute

Incremental External Forces, {AFH} or {A‘?"

Solve

Incremental Structural Responses from
Structural Stiffness Matrix

ONO.

FIG. B.1 (continued)
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Static Case

{ADH]’ = IKH r] {AFH]’

Dynamic case (equations of motion)

axy = [A]7Y (8}

Incremental and Total Member Forces
Incremental and Total Member Displacements

New Stiffnesses for Beam, Column and Wall Members
Based on Hysteresis Rules
New Reduced Structural Stiffness Matrix

In Disk

Structural Response Values
Member Forces and Member Displacements

Maximum and Minimum Structural
Response Values

FIG. B.1 (continued)
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APPENDIX C
NOTAT ION

symbols used in the text are defined when they are first

For convenience, they have been listed below.

coefficient in the hysteresis model 2, or constant (=0.5) in
the hysteresis rule

area of a cross section

dyrnamic stiffness matrix, or connectivity matrix

area of tensile reinforcement

area of compressive reinforcement

width of the cross section

dynamic load matrix

depth of the neutral axis

distance from the neutral axis to the point of the maximum
tensile stress of concrete

coefficients for damping matrix

transformation matrix from 1local to global coordinates, or
damping matrix, or instantaneous damping matrix which is
evaluated at the end of previous step

concrete compression force

steel compression force



(D¢}, (D)

(o}

D(M)

iJ

EA
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distance from extreme compression fiber to the centroid of
axial load

distance from extreme compressive fiber to the center of
tensile reinforcement

distance from extreme compressive fiber to the center of
compressive reinforcement

total ‘depth of a section, or diameter of a reinforcing bar,
or displacement variable in the hysteresis moel 2

cracking displacemenf of the unit length of a cantilever beam
maximam deflection attained in the direction of 1loading in
the hysteresis rule

displacement value on the x coordinate which is obtained by
using the slope Ky in the hysteresis model 2

vielding deflection in the hysteresié rule

displacement vector (except of holizontal displacement ) of
frame term, wall term in the structural stiffness matrix
.respectively

horizontal displacement vector

free end displacement of a cantilever beam

transformation matrix of an element ij of the multiple spring
model

modulus of elasticity of steel

modulus to define stiffness in strain hardening range of
steel

inelastic modulus of reinforcement after yielding

axial rigidity of a section



El

Ely,EIL,,E]

2°773

£, (W)

[f]
I:Fab:I
[Fy5]

[Fy)
[Fed, [F,]
[F]
GA
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initial flexural rigidity

flexural rigidity of before cracking, from cracking to
yielding, and aftef yielding ,respectively

instantaneous flexural rigidity of a layered section

ratio of flexural rigidity after yielding to before yielding
stress of conecrete

compressive uniaxial strength of conecrete

instantaneous rotational flexibility

concrete stress at which concrete strain is ¢

tensile strength of concrete

stress of steel, or stress of tensile reinforcement

stress of compressive reinforcement

yield stress of steel

ultimate stress of steel

rotaticonal flexibility resulting from bond slip, inelastic
action over the beam length £

flexibility due to bond slippage

flexibility matrix of a cantilever beam

flexibility matrix of a cantilever beam ab

flexibility matrix of an element ij of the multiple spring
model

horizontal force vector of a structure

force vector of frame term, wall term, respectively
instantaneous flexibility matrix

elastic shear rigidity of a section

shear rigidity of i element



»K 55K

bi’w
[K,]

AMA

AMA, AMé

AMA, AMB

M1
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moment of inertia of a gross section
primary slope of system in the hysteresis rule
new unloading slope in the hysteresis rule

member stiffness matrix in global coordinates

"column, beam, and wall member stiffness matrices, respectively

reduced structural stiffness matrix of size, number of
stories by number of stories

story stiffness matrix

length of a flexible‘element in a simple beanm

length of subelement k of the multiple spring model

length of a beam, or development length of bond stress, or
length of a cantilever beam

elongation of reinforcing steel

length of the inelastic zone of the layered model

lumped mass at the story i

bending moment function in the layered model

bending moment, or moment variable in the hysteresis model 2
cracking, yielding, and ultimate moment( moment at concrete
strain equal to 0.004), respectively

incremental moment at the fixed end of a cantilever beam
incremental moments at the ends of a flexible line element of
a simple beam

incremental end moments of a member, or

incremental joint moments in global coordinates

diagonal mass matrix

number of story



AN
{ap Y, {p}

AP, , AP

t

A B
R(M)
SDi
T
T;
At
u
AuA, AuB =

(A}, (u) =

AVA, AVB

AvA, AVB

AwA, /_\.wB, AB A,Ae

{x}, {%}

(Ax},{AXY, {AX}

{AY}

Y

B
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axial load acting on a section

ineremental axial force

ineremental applied force vector, applied force vector at the
tip of a cantilever beam, respectively

incremental horizontal forces in global coordinates

rotation due to reinforcements slip at the fixed end of a
cantilever beam at which moment of M is developed
instantaneous stiffness of the concentrated spring model of
unit length

steel tension force, or transformation matrix

i~-th period of a structure

time interval

average bond stress

incremental lateral displacement in global coordinates
incremental displacement vector, displacement vector at the
tip of a cantilever beam, respectively

incremental vertical forces in global coordinates

incremental vertical displacement in global coordinates
incremental joint rotation in global coordinates

relative story velocity and acceleration vector at the end of
previous step, respectively

relative incremental story displacement, volocity, and
acceleration vector, respectively

incremental base acceleration vector

distance from neutral axis of a section to extreme fiber in

tension



AC

] I .
AGA,ABB,ASA,AQB
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constant which defines the descending slope of the
stress-strain curve of concrete

reduction facter for shear rigidity (=0.5)

constant of the Newmark B method

distance from extreme compression fiber to centroid of
concrete compression force

axial‘strainlof a section

incremental axial strain

strain of concrete

conerete strain of 0,004

concrete strain on the envelope curve

concrete plastic strain

f

concrete £

strain at which fE ’ fy’ and fh are attained,

respectively

steel strain at which strain hardening of steel commences
steel strain or tensile steel strain

compressive steel strain

rotation, incremental rotation of a cantilever beam,
respectively |

inecremental rotations at the ends of a flexible line element,

at the supported joints of a simple beam, respectively

fao} =incremental joint rotation vector

A =ratio of the length of a rigid portion to that of a flexible

A

element for a simple beanm

damping factor of the k-th mode

) = curvature
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curvature at cracking, yielding, and ultimate, respectively

incremental curvature

circular frequency of the k-th mode






