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INTRODUCTION

The increasing size of modern electricity generating power plants has
brought about tremenddus requirements for cooling water. Present once-
through cooling systems are proving to be inadequate for several reasons.
Growing public opposition to thermal pollution incurred by discharging
into natural bodies of water, increasingly stringent regulations applied
to waste water, and the decreasing availability of suitable sites are para-
mount concerns. The use of cooling towers resolves these difficulties.

Natural dfaught cooling towers are hyperbolic shells of revolution
in form, supported upon a system of closely-spaced, inclined columns.
These shells are usually made of reinforced concrete of variable thickness
and are stiffened at the top and base by geometric variations which may be
considered essentially as ring beams. Monumental structures, both in
size and cost, cooling towers perform a vital service in the operation of
a large power plant.

The dynamic behavior of cooling towers has received considerable
attention. The spectacular coliapse of several towers at Ferrybridge,
England in 1965 demonstrated their vuinerability to severe wind loading
[Ref. 1]. Now coo]ing towers are being built in regions of high seismic
risk. Anticipating the varying design criteria of different geographic
locations has led to an investigation of the seismic response of cooling
towers.

Early dynamic analyses of cooling towers were conducted.for the case

of a shell with fixed base. The methods of analysis include numerical
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integration [Ref. 2], finite difference [Ref. 3], and the finite element
method with the use of rotational ring-type shell elements [Ref. 4], In
reality, however, the cooling towers are supported by discrete columns.
These supports provide a condition of physical restraint that js signifi-
cantly different than the conventional fixed or simply-supported boundary
conditions. The effect of discrete column supports must be taken into
account if the behaviors of the cooling towers are to be correctly pre-
dicted. Efforts to include such effects were made for both static and
dynamic cases in, among other references, References 5 and 6, by the use
of curved rotational shell finite elements. The discrete columns in both
of these references were modeled by a rotational shell element for which
the stiffness and mass properties are equivalent to those of the discrete
columns.

If the finite element method is chosen to analyze the cooling towers,
the most exact way to model the supporting columns appears to be modeling
each column as a distinct element through the use of column finite elements
with an exact stiffness formulation. To accomplish this, however, one
cannot use the rotational shell finite elements since the nodal circles
cannot be connected to the column jeints. Quadrilateral or triangular shell
finite elements must be used instead. In this study, quadriiateral elements
are used to model the cooling tower shell. Each quadrilateral element in
the bottom ring is subdivided into three ftriangular elements to provide an
extra nedal point along the base circumference at which another pair of
columns may be attached.

The capability of the quadrilateral shell finite elements in pre-
dicting natural frequencies of cooling towers is first evaluated through
an example of a fixed-base cooling tower. Results for frequencies com-

pared well with previously reported results [Refs. 2-4], The capability



of the column finite elements in modeling the discrete column supports
is then evaluated through free vibration analysis of an example of a
cooling tower with column supports. Results for frequencies also com-
pared weil with a previous alternative solution [Ref, 6],

The two types of finite elements are finally used to model a cooling
tower in Unit #3 of the Tennessee Valley Authority's 1200 MW fossil
fuel steam generating power plant at Paradise, Kentucky, U.S.A. Natural
frequencies and mode shapes are determined. The modal superposition
method is used to find the tower's time-history response of disp]aceménts
when subjected to the North-South acceleration component of the 1940
E1 Centro earthquake record for a period of 30 seconds. It is found that
only those modes with one circumferential wave are responsive to the hori-
zontal earthquake disturbance. A response spectrum analysis fs used to
find the maximum displacements and stresses in the structure with an
assumed damping coefficient of four percent. The effect of variations in
assumed damping coefficient is also considered.

The most critical region is found to be in the supporting columns.
These inclined supports provide resistance to the overturning moment and
base shear primarily by means of axial forces. This particular facet of
the total structure must be accurately included in the analytical model if
meaningful results are to be obtained. The forces and bending moments in
the base region of the shell, particularly at the joints to the columns,
are critical. However, with the increased thickness and reinforcement,
the resulting stresses can be kept within tolerable limits, as is the

case with the present tower.



DESCRIPTION OF THE SYSTEM

There are three cocling towers in the Paradise steam generating plant.
The reinforced concrete cooling tower is in the form of a hyperbolic shell
of revolution as shown in Fig. 1. The shell thickness varies from 24
inches at the base to 7 inches at the throat and then to 9 inches at the
top. The cylinder strength fé of the concrete is 4000 psi at 28 days.

The tower is supported by 40 pairs of reinforced concrete columns of
circular cross sections, with fé of 5000 psi. Each pair has a concrete
footing buried in the excavated limestone rock. The top of the tower 1is
stiffened by‘a reinforced concrete ring of rectangular cross section.

The top of the ring provides a walk way. A1l reinforcement is new billet
steel, ASTM A432.

Due to the axisymmetrical nature of the design, both the circumfer-
ential and meridional reinforcements vary only along the meridional dir-
ection and remain constant atong the circumferential direction. The dis-
tribution of the equivalent modulus of elasticity for the circumferential
reinforcements along the meridional direction, presented in Fig. 2, is
calculated from the design drawings. The distribution of the equivalent
modulus of elasticity for the meridional reinforcements along the meridian
is presented in Fig. 3. Panels A, B, and C indicate three slightly dif-
ferent types of arrangements in reinforcements in the Tower part of the

shell.

FINITE ELEMENTS
Two types of finite elements are used in the modeling of the cocoling
tower: a three dimensional beam finite element and an orthotropic quad-

rilateral flat plate finite element oriented arbitrarily in the three



dimensional space. The former is used to model the discrete supporting
columns and the ring beam at the top of the shell. The latter is used
to model the hyperboloidal shell of revolution.

The three dimensional beam finite element has two nodal points, each
of which has six degrees of freedom: three displacement degrees of free-
dom in the three Cartesian coordinate directions and three rotaticnal
degrees of freedom about the three Cartesian coordinate axes, respectively
[Ref. 7]. The stiffness matrix is derived on the basis that the axial
displacement varies linearly along the element and the transverse deflec-
tion varies cubically along the element. The mass matrix is formulated on
the basis of lumped masses.

The three dimensional orthotropic gquadrilateral plate element is
shown in Fig. 4. This element has five degrees of freedom 4, v, and w
in the Cartesian local coordinate directions x, y, and z, respectively;
and two slope degrees of freedom about the x and y axes, respectively.
For reasons of computational efficiency, the quadrilateral element is
composed of four triangular elements. The four triangles share a common
central nodal point which is located at the average of the coordinates
of the four corner nodal points. The five degrees of freedom at this
central nodal point are eliminated at the elemental level prior to assem-
blage. Thus the quadrilateral element effectively has a total of 20
degrees of freedom, five per nodal point.

The membrane stiffness of each sub-triangulér element is represented
by the constant strain based on Tinear displacement functions in both u
and v [Ref. 8]. The flexural stiffness of each sub-triangular element is
represented by the fully compatible HCT element based on the cubic dis-

placement functions in w [Ref. 9]. The orthotropic material property is



included inthe formulations for both the membrane and flexural stiff-
ness matrices. The mass matrix of the quédr11atera] element is formulated
on the basis of lumped masses. The formuiation, with reference to the

local coordinates X, y, and z, is given in the following symbolic form

() = [K] {q} £ [m] (g (1)
20x1  20x20  20x] 20x20 20x1

where {F} and {q} are vectors of nodal forces and displacements, respectively;
[k] and [m] are the element stiffness and mass matrices, respectively; the
"dot" represents time derivative, and the "bar" represents local coordin-
ates.

Through a congruent coordinate transformation technique, the element
formulation (1) in local coordinates is transformed into the formulation

in global coordinates,

Fro= [T [k IT] @ - TN [l IT] @ (2)
24x1 24x24 20x20 20x24 24x1 24%x20 2020 20x24 24x1

where the matrix [T] is the coordinate transformation matrix. This co-
ordinate transformation generates six degrees of freedom at each nodal
point: three displacement degrees of freedom u, v, and w in the global
coordinate directions, x, y, and z, respectiveiy; and three rotational

degrees of freedom 0.5 s and 8, about the x, y, and z axes, respectively.

Y
Formulation (2) for each individual element can thus be used in the three

dimensional space to model shell structures.

METHOD OF ANALYSIS
The dynamic earthquake response of the subject cooling tower is de-

termined by means of modal analysis. The equations of motion of the N



degree-of-freedom discrete system are uncoupled by means of a linear coor-
dinate transformation. This transformation if obtained by assuming that
the response is a superposition of the N normal modes of the system mul-
tiplied by corresponding time-dependent generalized coordinates. Thus,
the dynamic analysis consists of the following steps: 1) determine the
natural vibration mode shapes and frequencies which depend on the inertia
and stiffness properties of the system; 2) calculate the dynamic response
of each mode and superimpose them to find the total response., The second
step is accomplished by two different techniques. The modal superposition
method is used to determine the time-history response and the response

spectrum method approximates the maximum response.

Free Vibration Analysis

The equations of motion for an elastic system with a finite number of
degrees of freedom undergoing free oscillations may be written in matrix

form as

M} {a(t)} + [K] fq(t)} = {0} (3)

where [M] and [K] are positive definite global inertia and stiffness matrices,

respectivety, If damping forces are assumed to be proportiona1 to the iner-

tia and/or the elastic forces, they will have no effect on the mode shapes.
Since free oscillations are harmonic in time,the N degrees of free-

dom {g} in any mode r may be expressed

{qr} = {¢r}sin wrt s r=1,2,..., N (4)

in which {¢} is the vector of amplitudes of {q} and w is the circular na-

tural frequency. Substituting Eqn. (4) into Egn. (3) yields

(K] - w2 [MID o3 = (O . (5)



A non-trivial solution for {¢} is possibie only if the determinant

of Eqn. (5) vanishes,
{[K] - «®[M]] = 0. (6)

The above determinant is an Nth order equation in «>. The N roots
or eigenvalues w® are the squares of the natural frequencies of vibration
of the structure. Corresponding to each @, is an eigenvector {¢r} which
gives the associated free vibration mode shape.

Two methods are used to solve for the eigenvalues and eigenvectors of
the characteristic determinant. The first, the subspace iteration method
[Ref. 10], is used to determine the lowest p roots. The inverse power
method with shifts [Ref. 11] is used to determine p eigenvalues within a
specified frequency range.

Completion of the eigenvalue problem yields the desired transformation
or modal matrix [¢] consisting of the N columns of orthogonal eigenvectors
{¢} which will uncouple the system of equations. The modes {¢} are cus-

tomarily normalized so that
(oY [MI8Y = 1.

The independent equations of motion resemble the equations of a single-
degree-of-freedom system. Each normal mode may now be treated as an in-

dependent one-degree-of-freedom system.

Time-History Response’by Modal Superposition

The equations of motion of an elastic viscously damped structure with

support motion and no external forces can be written as

[MIcq} + [Cl{ay + [Kliqt = -[MUx} (7)



I

where {q(t)} = the vector of displacements of the mass with respect to

the support

i

o
{x(t)}

damping matrix

the vector of support accelerations.

Assuming damping is a Tinear combination of inertia and stiffness,
the modal matrix can be used as a lTinear transformation to uncouplie these

equations, that is

(q(t)1 = [elin(t)} (8)
with

[e17[MI[e] = [1]

and

(o1 [K1[e] = [2%]

where [I] is the identity matrix and [92] is a diagonal matrix of eigen-

values u”. Introducing the notation
[01'[CI0e] = [2cul,

substituting Egn. (8) into Egn. (7),and premultiplying by [@]T yields equa-

tions of the form

n(t) + 2t w Alt) +a 'n(t) = N (t), r=1,2, ...,n (9

where {N} = -[@]T[M]{i} are generalized forces and Ly is the critical damp-

ing coefficient of the rth mode.
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The solution of Egn. (9) can be readily obtained by means of the

Laplace transformation. If there is no initial displacement or velocity.
t
=] o
nr(t) = — J N () eXp[-CY’mr(t-T)] S'ln[mr (t-t)]dr (10)
where m; = wr¢]_c is the damped natural frequency.
r

If the modes were not initially normalized with respect to mass,

Egn. (10) may be written as

t
r .
nr(t) = - X J x{t) exp[—crmr(t-«r)] Sin[w; (t-t)]dt (11)

is the modal participation factor.

i
1 r

-—u

If there is no damping, the modal response becomas
t
_nr(t) = - — x(t) sin wr(t—r)d'c. (12)
0

The total response of the structure at any time t may be obtained
by adding together the individual modal responses at that time. This

superposition is given by Egn. (8).

Response Spectrum Analysis

Inspection of Eqn. (11) clearly shows the response to be dependent
upon the magnitude of the Duhamel's integral. Yet when damping is in-
cluded, exact evaluation of this integral at every time is extremely
tedious. It is therefore of interest to construct curves that represent
maximum numerical values of the responses as functions of the critical

damping ratio and the structure’s natural frequency or natural period for
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a given excitation. Housner, et. al. [Ref. 12] have evaluated such
maxima for all earthquakes from which reliable records have been ob-
tained. The maximum modal responses are presented in the form of spec-
tral acceleration, Sa fmr, T t) vs. period, where

r

t -
S, = | w, [ ;(r) exp[-arwr(t-r)] sin[m; (t-t)]dr (13)

a
r C max

This pseudcacceleration is of great importance because the maximum
individual modal responses can be computed directly from it [Ref. 13].

From Eqns. (11) and (13) it is clear that
- r _
n = - =5 S_. (14)
It should be noted that statistically the pseudoacceleration is
always smaller than or equal to max |Xx| because it neglects the part of

% whose product by M would produce a force in the damper, but its use

is justified by considerations of simplicity.

Root Mean Square (RMS) Technique

Individual maximum modal responses are computed from the response

spectrum analysis. Maximum displacements of the rth mode are

{0 pax = {¢r}”rmax . (15)

However the maximum displacement of every mode does not occur simultane-
ously, therefore the total maximum response cannot be obtained by merely
superimposing the individual modal maxima. It has been shown that the

most probably value of any earthquake response quantity is given by the
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square root of the sum of the squares of the corresponding modal maxima
[Ref. 14]. Thus, the estimated total maximum response of the nth degree

of freedom, 9, is
max

4 = [ZI Qpd - (186)

ASSUMPTICNS
The following assumptions underlie this study:
(1) Since the column footings are imbedded in limestone rock, the
bases of the supporting columns are assumed to be fixed.
(2) The reinforced concrete cooling tower behaves elastically.
(3) The shell material is orthotropic. Moduli of elasticity are dif-

ferent in the circumferential and longitudinal directions.

EVALUATIVE ANALYSIS
In order to substantiate the reliability of the results obtained

through the use of the present beam and gquadrilateral plate elements, it

is necessary to compare their performance with that of alternative methods.
This is accomplished by means of two examples for which frequencies have
been previously determined using various technigues. The first example

is one in which the base of the hyperboloidal shell is fixed; the second
has "“discrete” supporting columns.

Free Vibration Analysis of an Example of a Cooling Tower with Fixed Base

The first example is described in Fig. 5. The isotropic modulus of

elasticity of the reinforced concrete cooling tower is 3x106 psi, the

3

Poisson's ratic is 0.15, and the mass density is 0.225x10° 1bs—sec2/in4.

The base of the tower is assumed to be rigidly fixed. This example was
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analyzed previously be Carter, et. al. [Ref. 2] using numerical inte-
gration technique; by Hashish and Abu-Sitta [Ref. 3] using finite differ-
ence technique, and by Sen and Gould [Ref. 4] using curved rotational

shell finite elements. Their results for the natural frequencies are shown
in Table T.

In- this study, three different finite element meshes are used: 4x16
(number of meridional shell elements x number of circumferential shell
elements), 6x20, and 8x20, the three meshes correspond to
384, 720, and 960 degrees of freedom, respectively, The present results
are shown in Table I for comparison. It is seen that for the 4x16 mesh,
the frequencies are, in general, higher than those from the alternative
solutions [Refs. 274]. These discrepancies are, however, within tolerable
range from a practical engineering point of view. For the 6x20 mesh, the
frequencies, in general, reduce slightly. For the 8x20 mesh, the fre-
quencies reduce further and are in close agreement with those from the
previous solutions. The mode shapes are also in good agreement with the
alternative predictions. It may reasonably be concluded from this example
that the quadrilateral elements are adequate for the dynamic analysis of
cooling towers with fixed base.

Free Vibration Analysis of an Example of a Cooling Tower with Discrete
Supporting Columns

An example of a concrete cooling tower with discrete supporting
columns has been treated by Gould et. al. [Ref. 6] with the use of
curved rotational shell finite elements. The supporting columns were
modeled by a special rotational elastic element whose stiffness and mass
properties are equivalent to those of the discrete columns. This element

has the same degrees of freedom at the nodal circles as those assumed in
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the shell element. The free stress states between column joints were
modified by applying a system of self-eguilibriated edge loadings to
the base of the sheil.

The example is described in Fig. 6. The cooling tower has 88 sup-
porting columns with cross sectional area of 52 by 24 sguare inches. For
the concrete in both the shell and the columns, the modulus of elasticity, .
the Poisson's ratio, and the mass density were assumed to be 4x105 psi,
1/6, and 0.225x1073 Ibs-secz/in4, respectively.

In Ref. 6, the cooling tower was first analyzed with the base fixed
and then with the base supported by the "equivalent” columns. Part of
the resylts for natural freguencies are shown in Table II.

For the case of fixed base, the‘present results obtained by the use
of 8x20 mesh (960 degrees of freedom) agree reasonably well with those
obtained by Gould et. al. using 14 rotational shell finite elements.

For the case with discrete supporting columns, the present

results obtained by the use of 8x22 mesh (1320 degrees of freedom) are,
in general, lower than those obtained by Gould et. al. (See Table II).
This may imply that the present realistic column modeling provides a less
stiff representation than the equivalent rotational shell element.

For the modeling with 8x22 mesh, the Towest row is modeled by 66
triangular elements instead of 22 quadrilateral elements. Each initially
quadrilateral element is divided into three triangular elements with two
nodes on the top and three nodes at the bottom. By doing so, 44 nodes
are created which can be connected to the top joints of the 44 pairs of
column finite elements.

The stccessful completion of the first two examples provides assur-

ance that the combined usage of sufficient numbers of quadrilateral shell
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elements and beam elements will quite accurately predict the dynamic
behavior of column supported cooling towers. The cooling tower in the

Paradise Steam Generating Plant is then analyzed in this manner.

FREE VIBRATION ANALYSIS OF THE PARADISE COOLING TOWER

Lowest Frecuency Vibration Modes

In the preliminary free vibration analysis of the Paradise cooling
tower, three different quadrilateral shell element modelings are used:
4x16 mesh, 6x20 mesh, and 8x20 mesh, respectively. The first modeling
has 16 beam finite eiements at the top of the sheli to represent the
stiffened ring beam. The other two modelings use 20 stiffened beam
elements for this purpose. In the three modelings, each quadrilateral
element in the base row is divided into three trianguiar elements so that
it has three nodal points at the base line. Thus for the 6x20 and 8x20
meshes, the base circle of the tower has 40 nodes that can be connected to
the 40 pairs of discrete column elements. For the 4x16 mesh, the 40
pairs of columns are replaced by 32 pairs of equivalent columns. The
three modelings thus have 576, 960, and 1200 degrees of freedom, re-
spectively.

Since the arrangement of the reinforcements in the circumferential
direction is different than that in the meridional direction, each quadri-
Tateral shell finite element must be orthotropic. The distributions of
the equivalent moduli of elasticity in the circumferential and meridional
directions are shown in Figs. 2 and 3, respectively. The moduli of
elasticity used for the orthotropic quadrilateral shell elements are based

on these distributions.
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The present results for the natural frequencies of several modes
using different meshes are given in Table [II. The first two meridional
mode shapes for the third through seventh circumferential modes are
shown in Fig. 7. It is seen that the base of the shell moves considerably
due toc the flexible nature of the column supports. This phenomenon cannot
be predicted if the base of the shell is assumed as fixed. Fiqure 7 also
shows the meridional mode shapes for the hypbthetical case in which the
base of the shell is fixed. It is interesting to see the manner in which
the flexible column supports affect the meridional mode shapes.

It is important to point out that when the circumferential mode num-
ber is equal to one, the shell vibrates in a side-swaying type of motion.
When the circumferantial mode number is not equal to one, the shell vi-
brates in a breathing type of motion. Previous studies [Refs. 6 and 15]
have pointed out that only the modes with one circumferential wave are
excitable by the horizontal earthquake motion. Thus, the side-swaying
or eccentric modes are of primary importance in the study of earthquake
response. And the column supports drastically influence the frequencies
of these modes, reducing the fundamental eccentric frequency by as much

as 50% [Ref. 16].

Eccentric Modes with Refined Modeling

The preliminary stages of this investigation require comparative
testing of the present modeling against several alternative solution
methods. This involves finding the lowest natural frequency vibration
modes which are breathing modes. It is found that modeling only a
portion of the axisymmetric structure wili not adequately reproduce

these mode shapes, most probably due to the difficuities encountered in



-17-

prescribing boundary conditions for a doubly-curved surface., The full-
shell model avoids such difficulties and produces accurate results for
all the vibration modes computed.

In the analysis of the cooling tower's response to horizdnta] earth-
guake excitation, only those modes with one circumferential wave are of
interest. These eccentric modes can be accurately predicted by using
a finite element model of only half of the actual shell surface. With
such an idealization the element mesh may be refined, which is greatly
beneficial in determining the stress field. And the number of degrees
of freedom associated with the problem is reduced from a comparable full
shell model.

Several different half-shell mesh configurations are used to model
the Paradise c?oling tower. These element mesh sizes include: 4x10 (345
D.0.F.), 8x10 (573 D.0.F.), 9x10 (654 D.C.F.) and 9x10 (918 D.0.F.). The
918 D.O.F. model differs from the others in that it uses two beam finite
efements to represent each individual supporting column except for the
column at one edge of the half-shell (e = 0°). This particular column
is formed by six beam elements in order to find detailed stress infor-
mation along the column iength. Again, all the above models feature beam
‘elements to form the top ring-beam of the shell, orthortopic quadrilateral
plate elements with the triangular variation at the base to form the shell
and the beam elements to form the discrete column supports. The 9x10 half-
shell model is shown in Fig. 8.

The first three eccentric frequencies are calcuiated using the half-
shell modeling as shown in Fig. 8. Results are presented in Table IV.
Comparison with the eccentric frequencies presented in Table III for the

4x16 full shell (which in half shell form would have 288 D.0.F.) indicates



-18-

good corroboration. The slight discrepancy,particularly in the first
mode stems from the inadequacy of the 32 "equivalent" pafrs of columns
in simulating the action of the 40 actual pairs. Any aberrations within
the convergence pattern of the frequencies of the half-shell models are
iikely to be caused by the extreme sensitivity of frequencies to changes
in meridional curvature as reported by several authors (e.g. Ref. 3) and
confirmed in the present study.

Mode shapes are found using the most sophisticated 9x10 model with
918 degrees of freedom. The meridional shapes of the first three eccentric
modes are shown in Figs. 9, 10,and 11. The circumferential shape of all
three modes remains circular throughout the body of the shell. However,
the discrete supporting columns affect this shape at the shell base. A
number of waves equal to one-half the number of column pairs are found
to exist in both the transverse and in-plane directions. The deviation
this phenomena produces is slight in the first eccentric mode, practically
non-existant in the second mode and pronounced in the third. The circum-
ferential mode shapes at the base of the shell are shown in Figs. 12, 13,
and 14 for the first, second,and third eccentric modes, respectively.
Although the third eccentric mode shows the wavy distributions of both
meridional and radial displacements at the base of the shell, they are not
of primary concern simply because the earthquake response of the cooiing
tower is dominated by the first mode with a sTight contribution from

the second mode.
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EARTHQUAKE RESPONSE OF THE PARADISE COOLING TOWER

Earthquake Disturbance

Previous studies have indicated that only one horizontal component
of an earthquake is sufficient for design of a hyperbolic cooling tower
[Ref. 16]. In this study, the North-South acceleration component of the
1940 E1 Centro earthquake is used to model the ground motion. This is
one of the most severe earthquakes of record with a maximum peak horizontal
ground acceleration of 0.33g where g is the acceleration due to gravity.
A record of this acceleration component is shown in Fig. 15 for a periecd
of 30 seconds. The record was obtained from known values of acceleration
at 1500 equally spaced points. Interpolation is accomplished by assuming
the curve to be Tinear in the intervals. Values of spectral acceleration
computed from this data show good' agreement with those obtained by

Housner et. al. [Ref. 12].

Time History Response

A preliminary investigation of the seismic response of the Paradise
cooling tower is carried out using the 4x16 mesh full-shell model with 576 de-
grees of freedom. The time-history response for deflections obtained in an
analysis which includes the first eccentric mode and all Tower breathing
modes is compared to a similar analysis in which only the first eccentric
mode is included. The two responses are practically identical, confirming
the findings of previous authors [Refs, 6 and 10] that only those modes with
one circumferential wave are excitable by horizontal earthquake motion.

In these analyses, the Duhamel's integral is evaluated first at
1500 equally spaced time steps over the 30 second period and then at 15000
steps. Results are in excallent agreement. The integration time step 4t

must be chosen so that
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where T is the period of the highest frequency mode retained in the
analysis. Failure to satisfy this condition will effectively filter
out the participation of the higher modes [Ref. 10].

The 9x10 half-shell model with 918 degrees of freedom is now used
to determine the time history of deflections. The North-South accelera-
tion component of the 1940 E1 Centro earthquake is applied parallel to
the plane of symmetry. The first three eccentric modes of vibration are
inciuded, each with damping assumed to be zero.

The response at the tip of the shell at & = 0°, where ¢ is defined
as the circumferential angle measured frcm the diameter that coincides
with the direction of the earthquake, is shown in Fig. 16. The maximum
deflection is found to be 8.43 inches, arriving at 11.48 seconds. The
maximum peak to peak deflection is 16.67 inches from 11.48 to 11.68
seconds. The response for the deflections at the top of the column at
8 = 0° is shown in Fig. 17. The maximum deflection is 3.78 inches at
10.56 seconds, with the maximum peak to peak displacement being 6.65
inches from 10.36 to 10.56 seconds. Although these deflections are smal-
ler than those at the shell tip, they are still considerable and should
not be neglected as in the case of assuming the shell base to be fixed.

The radial deflection shapes along a meridian at & = 0° are
shown in Fig. 18 for the two critical instances. The corresponding cir-
cumferential shapes remain circular throughout the shell. It is only at
the shell base that the effect of the discrete column supports produces

a slight wavy distribution of displacements during the response.
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Response Spectrum Analysis

The maximum individual modal responses of the first three eccentric
modes are computed by the response spectrum method. The Tongitudinal
deflection shapes at § = Q° are presented in Fig. 19 for the undamped case
and again in Fig. 20 for the case in which a critical damping coefficient
of 4% has been assumed for each mode. The response of the third mode has
been magnified ten times to distinguish its shape.

Figures 19 and 20 illustrate the rapidly diminishing effect of the
higher modes upon the total response. In the undamped case, the first
mode contributes approximately 90% of the total, while the second and
third modes contribute 9% and 1%, respectively. When 4% damping is in-
cluded, the first mode accounts for over 96% of the total response, the
second mode adds approximately 4%,and the third mode's contribution is
negligible. Also of particular interest is the inclusion of 4% viscous
damping decreases the maximum deflections by approximately 60%.

The three modal responses with 4% damping are combined by the RMS
technique to determine the total maximum response of the Paradise cooling
tower subjected to the El1 Centro earthquake. This state of deflection
is enforced in a static analysis to find the maximum forces and stresses
produced in the shell and columns. The contribution of gravity loading

is included.

Forces and Stresses in the Shell and Columns

The longitudinal distribution of meridional and circumferential
bending moment 1in the shell at 9 = 0° are shown in Figs. 21 and 22,
respectively. It is interesting to see that approximately 35 feet above
the base of the shell, the moments become nearly zero which indicates

predominantly membrane behavior. The maximum meridional bending moment
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is 10,500 ft-1bs/ft which produces a maximum compressive bending stress
of 100 psi in the concrete and a maximum tensile bending stress of 540
psi in the reinforcing bar. These stresses are computed at the shell
base, mid-way between column tops where reinforcement is a minimum. The
maximum circumferential bending moment is 1,330 ft-1bs/ft which produces
no significant stresses in this heavily-reinforced, thick section.

The distribution of meridional membrane force at & = 180° is shown
in Fig. 23. The maximum stress resultant of 90 kips/ft at a height of
90 feet above the shell base produces a stress of 840 psi in the concrete.
On the tension side {¢ = 0°), the maximum meridional membrane force is
40 kips/ft which produces a 5 ksi stress in the reinforcing bar. The
difference between the mémbrane forces at 6 = 0° and 8 = 180° at the same
height are primarily due to the dead weight of the tower.

The longitudinal distribution of circumferential membrane force at
6 = 0° is shown in Fig. 24. The maximum force is 27 kips/ft at the
shell base. This produces a maximum compressive stress of 80 psi in
the concrete. At o = 180°, the circumferential membrane force is 6 kips/ft,
producing a stress of 125 psi in the reinforcing bar.

Although the shell portion of the cooling tower could experience
severe cracking and still function adequately, it appears that under the
present conditions the shell will persevere with no damage.

Previous studies have concluded that the axial forces in the columns
play a crucial role in determining the cooling towers response [Refs. 17 and 18].
The axial forces developed in this study are presented in Fig. 25 for each
column around half of the base circumference. The maximum compressive
axial force along with the associated bending moment produce a maximum

stress of 5250 psi in the concrete at the middle of the column length.
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The maximum stresses in the concrete at the column top and hase are

4500 psi and 5145 psi, respectively. The contributions of shear and
torgue in the column are negligible. The maximum tensile axial force and
corresponding bending moment produce a maximum stress in the high-strength
reinforcement of 77.1 ksi, occurring in a cracked section at the column
base. At the top and middle of the cracked column, the maximum steel
stresses are 52.7 ksi and 67.6 ksi, respectively.

With the columns dri?en beyond the yield point, it appears evident that
inelastic behavior will result. Such behavior will increase both the flexi-
bility and the damping of the structure to a degree dependent upon the
columns ductility. Thege alterations can be accounted for by a reduction

of the design Toad as suggested in Ref. 19.

Effect of Viscous Damping

Since the viscous damping coefficients for the Paradise cooling
tower are not known, only assumed values are used in this study. The
tower is modeled by the 4x16 full-shell mesh with 576 degrees of freedom.
The first eccentric mode and all Tower breathing modes are included in a
time-history analysis. It is assumed that all the modes have the same vis-
cous damping coefficient. Three different values of damping coefficient
are assumed for this cooling tower: 4, 7, and 10 percent of the critical
value,

The ratio between the maximum shell tip deflection with damping and
the maximum undamped tip deflection is plotted versus assumed critical
damping coefficient in Fig. 26. Included in this figure is the maximum
column top deflection ratio versus damping coefficient. The two curves
are almost identical. The variations of both the maximum axial force

ratio in the column at-8 = 0° and the maximum bending moment ratio at
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the column top versus damping coefficient are found to follow curves

nearly identical to those of Fig. 26.

CONCLUSIONS

In this study, quadrilateral plate finite elements and beam finite
elements, both oriented arbitrarily in three-dimensional space, are used
in the analysis of the dynamic behavior of cooling towers. It is found
that such a model will accurately predict natural frequencies and mode
shapes. It also provides a realistic modeling of the base support system
which is of utmost importance in the prediction of disp]acement§ and
stresses in the base region.

Only those modes with one circumferential wave are excitable by
horizontal earthquake motion. These eccentric modes can be determined with
the use of a half-shell model. In this study, the contributions of the
higher eccentric modes to the total deflection rapidly diminish. 1In
the undamped case, the first mode contributes approkimate!y 90% of the
total deflection while the second and third modes contribute 9% and 1%,
respectively. When damping of 4% of the critical value is inciuded, the
first mode accounts for over 96% of the total response, with the second
mode adding approximately 4%,and the third mode's contribution is negligi-

ble.

Consideration must be given to the effect of the discrete supporting
columns in order to accurately analyze the seismic response of cooling
towers. The column supports considerably reduce the natural frequencies

of a cooling tower originally assumed to have a fixed base. The tops of
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the columns deflect substantially during earthquake excitation. The
columns are found to be the vulnerabie region in the system. In parti-
cular, the axial force in the columns appears to be the most critical.

The response of the cooling tower she]] is characterized by pre-
dominantly membrane behavior. Bending is restricted to a narrow band
at the base of the shell. The height of this band is less than approx-
imately 9% of the overall height of the shell for the case studied.

For the present cooling tower, the inclusion of viscous damping
with four percent of its critical value reduces the maximum displace-
ments and stresses by about 60 percent. An increase in damping beyond
this further reduces the response but to a lesser extent.

The 3x10 element mesh with 918 degrees of freedom is praética11y
sufficient for the purpose of predicting the dynamic behavior of the
cooling tower. For more detailed stress predictions, however, a finer
mesh size or more sophisticated shell finite elements would be needed.
Also, inelastic deformations, which may affect the dynamic behavior,

have not been considered.
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Table I. The Natural Frequencies (in Hz.) for a Cooling Tower with Base Fixed.
= Quadrilateral finite
= " elements
o = Carter Hashish and |[Sen and Gould
ke -§ = et al. Abu-Sitta (curved rota-
EZ | 23 (numerical (finita tional shell
o D= integration)| difference) |elements) I ax16 6x20 2%20
5 = Mesh Mash Mesh
1 1 3.2884 3.3345 3.2910 3.3119
2 6.7405 6.8816 6.817@ 7.1638
3 10.5207 10.5316 10.6666 11.3170
2 1 1.7654 1.7848 1.7662 1.8681 1.8153
2 3.6931 3.7234 3.6960
3 6.9562 6.9553 7.0058
3 1 1.3749 1.3929 1.5356 1.4528 | 1.3627
2 1.9904 2.0150 2.0969
. 3 4,3254 4.3353
4 1 1.1808 1.2003 1.1820 1.3830 1.3248 | 1.2099
2 1.4475 1.4587 1.4491 1.6136 1.5648 | 1.4468
3 2.7777 2.7762 2.7866 2.8882 q
5 1 1.0348 1.0441 1.0354 1.2447 1.1808 | 1.0556
2 1.4293 1.4417 1.4345 1.5855 1.5806
3 2.0559 2.0555 2.0640 2.3176
6 1 1.1467 1.1544 1.3120 1.2672 ¢+ 1.1382
2 1.3231 1.3335 1.5492 1.5461
3 2.0141 2.0152 2.1702
7 1 1.3074 1.3055 1.4460 1.4556 1 1.3230
2 1.5733 1.5189 1.6040 1.6220
3 1.9217 1.9200 2.1470 2.0705
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Table II. The Natural Frequencies (in Hz) for a Cooling Tower
with Discrete Column Supports.

Fixed Base Column Base
Circumferential {Longitudinal Gould (This study |Gould This Study
Mode Mode et al. | 8x20 Mesh let al. 8x22 Mesh
3 1 1.194 | 1.185 1.086 | 1.092
2 1.672 1.314
4 1 1.104 | 1.125 0.945 0.951
2 1,302 | 1.304 1.204 1.168
5 1 7.131 | 1.146 1.032 1.024
2 1.453 1.463 1.256 1.219
6 1 1.400 | 1.405 2.235 1.189
2 1.568 1.455
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Table III.  The Natural Frequencies in Hz. for the Subject

Cooling Tower

Circumferential | Longitudinal %16 6x20 8x20
Mode Mode Mesh Mesh Mesh
1 1 2.1758
2 3.9758
3 7.7884
2 1 1.2538 1.2391 1.2148
2 1.9882
3 1 0.8875 0.8777 0.8857
2 1.6263 1.5321 1.4504
4 1 0.9851 0.9306 0.9057
2 1.3965 1.3592 1.3353
5 i 0.8446 0.8255 0.8491
2 2.0430
6 1 1.0235 1.0763 1.0351
2 1.9760 1.669]
7 1 1.2708 1.4156 1.2997
2 1,9363 1.7525
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Table IV. Natural Frequencies (Hz) of Modes with One Circumferential Wave
for the Paradise Cooling Tower.

Longitudinal Element Mesh (D.0.F.)
Mode 4x10 (345) 8x10 (573) 9x10 (654) 9x10 (918)
1 2.1952 2.1924 2.1962 2.1850
2 3.8723 3.6612 3.6438 3.6377
3 7.8041 7.6335 7.7131 7.6755
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rIGURE CAPTIONS

Fig. 1.  The Hyperbolic Cooling Tower in the TVA Steam
Generating Power Plant, Unit #3, Paradise, Kentucky.

Fig. 2. The Distribution of Equivalent Modulus of Elasticity for the

’ Circumferential Reinforcements Along the Meridional Direction.

Fig. 3. The Distribution of Equivalent Modulus of Elasticity for the
Meridional Reinforcements Along thé Meridional Direction.

Fig. 4. A Quadrilateral Plate Finite Element in the Three-Dimensional
Space.

Fig. 5. An Example of a Reinforced Concrete Cooling Tower with Base
Fixed,

Fig. 6. An Example of a Reinforced Concrete Cooling Tower with Discrete
Column Supports.

Fig. 7. The Radial Deflection of a Meridional Line for Several Modes of
the Paradise Cooling Tower {j = Circumferential Mode Number, m =
meridional mode number).

Fig. 8. The Finite Element Modeling of the Paradise Cooling Tower (9 x
10 Half-Shell Model with Two Beam Elements Per Column).

Fig. 9. The Radial Deflection of a Meridional Line in the First Eccentric
Mode of the Paradise Cooling Tower.

Fig. 10. The Radial Deflection of a Meridional Line in the Second Eccentric
Mode.

Fig. 11. The Radial Deflection of a Meridional Line in the Third Eccentric
Mode.

Fig. 12. The Circumferential Deflection at the Shell Base of the First

Eccentric Mode.
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The Circumferential Deflection at the Shell Base of the Second
Eccentric Mode. |

The Circumferential Deflection at the Shell Base of the Third
Eccentric Mode.

The North-South Acceleration Component of the 1940 E1 Centro
Earthquake.

The Time-History Response of Shell Tip Deflection até = 0° for
the Undamped Case.

The Time-History Response of Column Top Deflection at 8 = 0° for
the Undamped Case.

The Radial Deflection of the Meridional Line at 8 = 0° at the

Time of Maximum Shell Tip Deflection (t = 11.48 seconds) and the
Time of Maximum Column Top Deflection (t = 10.56 seconds).

Maximum Individual Undamped Radial Deflections of the First Three
Eccentric Modes from the Spectral Analysis (with the Third Mode
Magnified Ten Times).

Maximum Individual Radial Deflections of the First Three Eccentric
Modes with Four Percent Damping from the Spectral Analysis (with
the Third Mode Magnified Ten Times).

Longitudinal Distribution of Meridicnal Bending Moment at & = 0°.
Longitudinal Distribution of Circumferential Bending Moment at

8 = 0°.

Longitudinal Distribution of Meridional Membrane Force at & = 180°.
Longitudinal Distribution of Circumferential Membrane Force at

g = 0°.

Average Axial Force in the Supporting Columns.

Variations of Maximum Tip Deflection Ratio and Maximum Column Top De-

flection Ratio versus Damping Coefficient.
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Fig. 1. The Hyperbolic Cooling Tower in the TVA Steam Generating
Power Plant, Unit #3, Paradise, Kentucky.
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Fig. 2. The Distribution of Equivalent Modulus of Elasticity for the
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Fig. 4. A Quadrilateral Plate Finite Element in the Three-Dimensional
Space.
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Fig. 5. An Example of a Reinforced Concrete Cooling Tower with Base Fixed.
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Fig. 6. An Example of a Reinforced Concrete Cooling Tower with
Discrete Column Supports.
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Fig. 7. The Radial Deflection of a Meridional Line for Several Modes of
the Paradise Cooling Tower (j = Circumferential Mode Number, m =
meridional mode number).
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Fig. 7. (cont.) The Radial Deflection of a Meridional Line for Several Modes
of the Paradise Cooling Tower {j = Circumferential Mode Number, m =
meridional mode number).



47~

Fig. 8. The Finite Element Modeling of the Paradise Cooling Tower {9 x 10
Half-Sheil Model with Two Beam Elements Per Column).
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Fig. 9. The Radial Deflection of a Meridional Line in the First Eccentric
Mode of the Paradise Cooling Tower.
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Fig. 10. The Radial Deflection of a Meridional Line in the Second Eccentric
Mode.
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Fig. 11. The Radial Deflection of a Meridional Line in the Third Eccentric
Mode.
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Fig. 12. The Circumferential Deflection at the Shell Base of the First
Eccentric Mode.



47«

AN

AN
~

\-_-

Fig. 13. The Circumferential Deflection at the Shell Base of the Second
Eccentric Mode.
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Fig. 14. The Circumferential Deflection'at the Shell Base of the Third
Eccentric Mode.
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Fig. 18. The Radial Deflection of the Meridional Line at 8 = 0° at the
time of Maximum Shell Tip Deflection (t = 11.48 seconds) and the
Time of Maximum Column Top Deflection (t = 10.56 seconds).
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Fig. 19. Maximum Individual Undamped Radial Deflections of the First

Three Eccentric Modes from the Spectral Analysis {(with the Third

Mode Magnified

Ten Times).
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Fig. 20. Maximum Individual Radial Deflections of the First Three Eccentric
Modes with Four Percent Damping from the Spectral Analysis (with
the Third Mode Magnified Ten Times).
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Fig. 21. Ldngitudina] Distribution of Meridional Bending Moment at 8 = 0°.
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Fig, 22. Longitudinal Distribution of Circumferential Bending Moment
at o = 0°.



HEIGHT ABOVE SHELL BASE (feet)

-56a-

4007

300+

T

200

100+

0 30 60 80
MERIDIONAL MEMBRANE FORCE (lbs/ft x10%)

Fig. 23. Longitudinal Distribution of Meridional Membrane Force

at e = 180°.
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Fig. 24. Longitudinal Distribution of Circumferential Membrane Force at
8 = 0°.
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variations of Maximum Tip Deflection Ratio and Maximum Column
Top Deflection Ratio versus Damping Coefficient.






