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INTRODUCTION

The increasing size of modern electricity generating power plants has

brought about tremendous requirements for cooling water. Present once­

through cooling systems are proving to be inadequate for several reasons.

Growing public opposition to thermal pollution incurred by discharging

into natural bodies of water, increasingly stringent regulations applied

to waste water, and the decreasing availability of suitable sites are para­

mount concerns. The use of cooling towers resolves these difficulties.

Natural draught cooling towers are hyperbolic shells of revolution

in form, supported upon a system of closely-spaced, inclined columns.

These shells are usually made of reinforced concrete of variable thickness

and are stiffened at the top and base by geometric variations which may be

considered essentially as ring beams. Monumental structures, both in

size and cost, cooling towers perform a vital service in the operation of

a large power plant.

The dynamic behavior of cooling towers has received considerable

attention. The spectacular collapse of several towers at Ferrybridge,

England in 1965 demonstrated their vulnerability to severe wind loading

[Ref. lJ. Now cooling towers are being built in regions of high seismic

risk. Anticipating the varying design criteria of different geographic

locations has led to an investigation of the seismic response of cooling

towers.

Early dynamic analyses of cooling towers were conducted for the case

of a shell with fixed base. The methods of analysis include numerical
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integration [Ref. 2J, finite difference [Ref. 3], and the finite element

method with the use of rotational ring-type shell elements [Ref. 4]. In

reality, however, the cooling towers are supported by discrete columns.

These supports provide a condition of physical restraint that is signifi­

cantly different than the conventional fixed or simply-supported boundary

conditions. The effect of discrete column supports must be taken into

account if the behaviors of the cooling towers are to be correctly pre­

dicted. Efforts to include such effects were made for both static and

dynamic cases in, among other references, References 5 and 6, by the use

of curved rotational shell finite elements. The discrete columns in both

of these references were modeled by a rotational shell element for which

the stiffness and mass properties are equivalent to those of the discrete

columns.

If the finite element method is chosen to analyze the cooling towers,

the most exact way to model the supporting columns appears to be modeling

each column as a distinct element through the use of column finite elements

with an exact stiffness formulation. To accomplish this, however, one

cannot use the rotational shell finite elements since the nodal circles

cannot be connected to the column joints. Quadrilateral or triangular shell

finite elements must be used instead. In this study, quadrilateral elements

are used to model the cooling tower shell. Each quadrilateral element in

the bottom ring is subdivided into three triangular elements to provide an

extra nodal point along the base circumference at which another pair of

columns may be attached.

The capability of the quadrilateral shell finite elements in pre­

dicting natural frequencies of cooling towers is first evaluated through

an example of a fixed-base cooling tower. Results for frequencies com­

pared well with previously reported results [Refs. 2-4J. The capability
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of the column finite elements in modeling the discrete column supports

is then evaluated through free vibration analysis of an example of a

cooling tower with column supports. Results for frequencies also com­

pared well with a previous alternative solution [Ref. 6J.

The two types of finite elements are finally used to model a cooling

tower in Un i t Ii 3 of the Tennessee Vall ey Authori ty' s 1200 riM fossi 1

fuel steam generating power plant at Paradise, Kentucky, U.S.A. Natural

frequencies and mode shapes are determined. The modal superposition

method is used to find the tower's time-history response of displacements

when subjected to the North-South acceleration component of the 1940

El Centro earthquake record for a period of 30 seconds. It is found that

only those modes with one circumferential wave are responsive to the hori­

zontal earthquake disturbance. A response spectrum analysis is used to

find the maximum displacements and stresses in the structure with an

assumed damping coefficient of four percent. The effect of variations in

assumed damping coefficient is also considered.

The most critical region is found to be in the supporting columns.

These inclined supports provide resistance to the overturning moment and

base shear primarily by means of axial forces. This particular facet of

the total structure must be accurately included in the analytical model if

meaningful results are to be obtained. The forces and bending moments in

the base region of the shell, particularly at the joints to the columns,

are critical. However, with the increased thickness and reinforcement,

the resulting stresses can be kept within tolerable limits, as is the

case with the present tower.
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DESCRIPTION OF THE SYSTEM

There are three cooling towers in the Paradise steam generating plant.

The reinforced concrete cooling tower is in the form of a hyperbolic shell

of revolution as shown in Fig. 1. The shell thickness varies from 24

inches at the base to 7 inches at the throat and then to 9 inches at the

top. The cylinder strength f~ of the concrete is 4000 psi at 28 days.

The tower is supported by 40 pairs of reinforced concrete columns of

circular cross sections, with f~ of 5000 psi. Each pair has a concrete

footing buried in the excavated limestone rock. The top of the tower is

stiffened by a reinforced concrete ring of rectangular cross section.

The top of the ring provides a walk way.

steel, ASTM A432.

All reinforcement is new billet
\

Due to the axisymmetrical nature of the design, both the circumfer­

ential and meridional reinforcements vary only along the meridional dir-

ection and remain constant along the circumferential direction. The dis-

tribution of the equivalent modulus of elasticity for the circumferential

reinforcements along the meridional direction, presented in Fig. 2, is

calculated from the design drawings. The distribution of the equivalent

modulus of elasticity for the meridional reinforcements along the meridian

is presented in Fig. 3. Panels A, B, and C indicate three slightly dif­

ferent types of arrangements in reinforcements in the lower part of the

shell.

FINITE ELEMENTS

Two types of finite elements are used in the modeling of the cooling

tower: a three dimensional beam finite element and an orthotropic quad­

rilateral flat plate finite element oriented arbitrarily in the three
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dimensional space. The former is used to model the discrete supporting

columns and the ring beam at the top of the shell. The latter is used

to model the hyperboloidal shell of revolution.

The three dimensional beam finite element has two nodal points, each

of which has six degrees of freedom: three displacement degrees of free­

dom in the three Cartesian coordinate directions and three rotational

degrees of freedom about the three Cartesian coordinate axes, respectively

[Ref. 7J. The stiffness matrix is derived on the basis that the axial

displacement varies linearly along the element and the transverse deflec­

tion varies cubically along the element. The mass matrix is formulated on

the basis of lumped masses.

The three dimensional orthotropic quadrilateral plate element is

shown in Fig. 4. This element has five degrees of freedom U, V, and w

in the Cartesian local coordinate directions X, y, and Z, respectively;

and two slope degrees of freedom about the x and y axes, respectively.

For reasons of computational efficiency, the quadrilateral element is

composed of four triangular elements. The four triangles share a common

central nodal point which is located at the average of the coordinates

of the four corner nodal points. The five degrees of freedom at this

central nodal point are eliminated at the elemental level prior to assem­

blage. Thus the quadrilateral element effectively has a total of 20

degrees of freedom, five per nodal point.

The membrane stiffness of each sub-triangular element is represented

by the constant strain based on linear displacement functions in both u
and v [Ref. 8J. The flexural stiffness of each sub-triangular element is

represented by the fully compatible HCT element based on the cubic dis­

placement functions in w[Ref. 9J. The orthotropic material property is
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in cl ud ed inthe formulations for both the membrane and flexural stiff-

ness matrices. The mass matrix of the quadrilateral element is formulated

on the basis of lumped masses. The formulation, with reference to the

local coordinates X, y, and i, is given in the following symbolic form

{F} = [k] {q}

20xl 20x20 20xl
+ em] {q}

20x20 20xl
(1)

where {F} and {q} are vectors of nodal forces and displacements, respectively;

[k] and em] are the element stiffness and mass matrices, respectively; the

"dot" represents time derivative, and the "bar" represents local coordin-

ates.

Through a congruent coordinate transformation technique, the element

formulation (1) in local coordinates is transformed into the formulation

in global coordinates,

[T]T [T]T "
{F} = [k] [T] { q} em] [T] { q} (2)

24xl 24x24 20x20 20x24 24xl 24x20 20x20 20x24 24xl

where the matrix [T] is the coordinate transformation matrix. This co-

ordinate transformation generates six degrees of freedom at each nodal

point: three displacement degrees of freedom u, v, and w in the global

coordinate directions, x, y, and z, respectively; and three rotational

degrees of freedom e , e , and e about the x, y, and z axes, respectively.x y z

Formulation (2) for each individual element can thus be used in the three

dimensional space to model shell structures.

METHOD OF ANALYSIS

The dynami~ earthquake response of the subject cooling tower is de­

termined by means of modal analysis. The equations of motion of the N
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degree-of-freedom discrete system are uncoupled by means of a linear coor­

dinate transformation. This transformation if obtained by assuming that

the response is a superposition of the N normal modes of the system mul­

tiplied by corresponding time-dependent generalized coordinates. Thus,

the dynamic analysis consists of the following steps: 1) determine the

natural vibration mode shapes and frequencies which depend on the inertia

and stiffness properties of the system; 2) calculate the dynamic response

of each mode and superimpose them to find the total response. The second

step is accomplished by two different techniques. The modal superposition

method is used to determine the time-history response and the response

spectrum method approximates the maximum response.

Free Vibration Analysis

The equations of motion for an elastic system with a finite number of

degrees of freedom undergoing free oscillations may be written in matrix

form as

[M] {ti(t)} + [K] {q(t)} = {O} (3)

where [M] and [K] are positive definite global inertia and stiffness matrices,

respectively. If damping forces are assumed to be proportional to the iner­

tia and/or the elastic forces, they will have no effect on the mode shapes.

Since free oscillations are harmonic in time,the N degrees of free-

dom {q} in any mode r may be expressed

{qr} = {~ } sin w tr r r= 1, 2, ••. , N (4)

in which {~} is the vector of amplitudes of {q} and w is the circular na­

tural frequency. Substituting Eqn. (4) into Eqn. (3) yields

[[K] - w~ [M]] {<P~ = {Q} (5)
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A non-trivial solution for {~} is possible only if the determinant

of Eqn. (5) vanishes,

I[K] - (l[M]1 = O. (6)

The above determinant is an Nth order equation in w
2

• The N roots

or eigenvalues w2 are the squares of the natural frequencies of vibration

of the structure. Corresponding to each w is an eigenvector {~ } which
r r

gives the associated free vibration mode shape.

Two methods are used to solve for the eigenvalues and eigenvectors of

the characteristic determinant. The first, the subspace iteration method

[Ref. 10J, is used to determine the lowest p roots. The inverse power

method with shifts [Ref. llJ is used to determine p eigenvalues, within a

specified frequency range.

Completion of the eigenvalue problem yields the desired transformation

or modal matrix [~] consisting of the N columns of orthogonal eigenvectors

{~} which will uncouple the system of equations. The modes {~} are cus-

tomarily normalized so that

The independent equations of motion resemble the equations of a single­

degree-of-freedom system. Each normal mode may now be treated as an in­

dependent one-degree-of-freedom system.

Time-Hi story Response·· by f~odalSuperposition

The equations of motion of an elastic viscously damped structure with

support motion and no external forces can be written as

(7)
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where {q{t)} = the vector of displacements of the mass with respect to

the support

[C] =damping matrix

{x(t)} =the vector of support accelerations.

Assuming damping is a linear combination of inertia and stiffness,

the modal matrix can be used as a linear transformation to uncouple these

equations, that is

{q(t)} = [~]{n(t)}

with

and

(8)

where [I] is the identity matrix and [n2
] is a diagonal matrix of eigen­

values w2
• Introducing the notation

substituting Eqn. (8) into Eqn. (7),and premultiplying by [~]T yields equa­

tions of the form

r=1,2, ... ,n (9)

where {N} = _[~]T[MJ{i} are generalized forces and ~r is the critical damp­

ing coefficient of the rth mode.
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The solution of Eqn. (9) can be readily obtained by means of the

Laplace transfonnation. If there is no initial displacement or velocity.

nr(t) =l, It N (or) eXP[-l,;rW (t-T)] sinew' (t-T)]dT (10)
Wr 0 r r r

where Wi = W~ is the damped natural frequency.r r r
If the modes were not initially normalized with respect to mass,

Eqn. (10) may be written as

"r(t) = - r:~ J: x(,) exp[-l,; w (t-T)] sinew' (t-L)]dLr r r
(11 )

M.~ .
1 lr

2
~1 .'P .

1 lr

where

n
z:

i=lr =----r n
z:

i=l

is the modal participation factor.

If there is no damping, the modal response becomes

ll r (t) = - :r It 'x(L) sin wr(t-T)dT.
r 0

(12)

The total response of the structure at any time t may be obtained

by adding together the individual modal responses at that time. This

superposition is given by Eqn. (8}.

Response Spectrum Ana1ysi~

Inspection of Eqn. (11) clearly shows the response to be dependent

upon the magnitude of the Duhamel's integral. Yet when damping is in­

cluded, exact evaluation of this integral at every time is extremely

tedious. It is therefore of interest to construct curves that represent

maximum numerical values of the responses as functions of the critical

damping ratio and the structure~ natural frequency or natural period for
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a given excitation. Housner, et. al. [Ref. 12] have evaluated such

maxima for all earthquakes from which reliable records have been ob­

tained. The maximum modal responses are presented in the form of spec­

tral acceleration, Sa twr , ~r t) vs. period, where
r

This pseudoacceleration is of great importance because the maximum

individual modal responses can be computed directly from it [Ref. 13].

From Eqns. (11) and (13) it is clear that

= (14)

It should be noted that statistically the pseudoacceleration is

always smaller than or equal to max Ixl because it neglects the part of

x whose product by Mwould produce a force in the damper, but its use

is justified by considerations of simplicity.

Root Mean Square (Rr1S) Technique

Individual maximum modal responses are computed from the response

spectrum analysis. Maximum displacements of the rth mode are

(15 )

However the maximum displacement of every mode does not occur simultane­

ously, therefore the total maximum response cannot be obtained by merely

superimposing the individual modal maxima. It has been shown that the

most probably value of any earthquake response quantity is given by the



-12-

square root of the sum of the squares of the corresponding modal maxima

[Ref. l4J. Thus, the estimated total maximum response of the nth degree

of freedom, ql , isnmax

N J~
= [E qnr .

r=l

ASSUMPTIONS

(16)

The following assumptions underlie this study:

(1) Since the column footings are imbedded in limestone rock, the

bases of the supporting columns are assumed to be fixed.

(2) The reinforced concrete cooling tower behaves elastically.

(3) The shell material is orthotropic. Moduli of elasticity are dif-

ferent in the circumferential and longitudinal directions.

EVALUATIVE ANALYSIS

In order to substantiate the reliability of the results obtained

through the use of the present beam and quadrilateral plate elements, it

is necessary to compare their performance with that of alternative methods.

This is accomplished by means of two examples for which frequencies have

been preViously determined using various techniques. The first example

is one in which the base of the hyperboloidal shell is fixed; the second

has "discrete" supporting columns.

Free Vibration Analysis of an Example of a Cooling Tower with Fixed Base

The first example is described in Fig. 5. The isotropic modulus of

elasticity of the reinforced concrete cooling tower is 3xl06 psi, the

Poisson1s ratio is 0.15, and the mass density is 0.225xlO-3 lbs-sec2/in4.

The base of the tower is assumed to be rigidly fixed. This example was
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analyzed previously be Carter, et. al. [Ref. 2J using numerical inte­

gration technique; by Hashish and Abu-Sitta [Ref. 3] using finite differ­

ence technique, and by Sen and Gould [Ref. 4] using curved rotational

shell finite elements. Their results for the natural frequencies are shown

in Table I.

In· this study, three different finite element meshes are used: 4xl6

(number of meridional shell elements x number of circumferential shell

elements), 6x20, and 8x20, the three meshes correspond to

384, 720, and 960 degrees of freedom, respectively. The present results

are shown in Table I for comparison. It is seen that for the 4x16 mesh,

the frequencies are, in general, higher than those from the alternative

solutions [Refs. 2-4]. These discrepancies are, however, within tolerable

range from a practical engineering point of view. For the 6x20 mesh, the

frequencies, in general, reduce slightly. For the 8x20 mesh, the fre­

quencies reduce further and are in close agreement with those from the

previous solutions. The mode shapes are also in good agreement with the

alternative predictions. It may reasonably be concluded from this example

that the quadrilateral elements are adequate for the dynamic analysis of

cooling towers with fixed base.

Free Vibration Analysis of an Example of a Cool ing Tower with Discrete
Supporting Columns

An example of a concrete cooling tower with discrete supporting

columns has been treated by Gould et. al. [Ref. 6J with the use of

curved rotational shell finite elements. The supporting columns were

modeled by a special rotational elastic element whose stiffness and mass

properties are equivalent to those of the discrete columns. This element

has the same degrees of freedom at the nodal circles as those assumed in
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the shell element. The free stress states between column joints were

modified by applying a system of self-equilibriated edge loadings to

the base of the shell.

The example is described in Fig. 6. The cooling tower has 88 sup­

porting columns with cross sectional area of 52 by 24 square inches. For

the concrete in both the shell and the columns, the modulus of elasticity,

the Poisson's ratio, and the mass density were assumed to be 4xl06 psi,

1/6, and O.225xlO-3 lbs-sec2/in4, respectively.

In Ref. 6, the cooling tower was first analyzed with the base fixed

and then with the base supported by the Ilequivalent ll columns. Part of

the res~lts for natural frequencies are shown in Table II.

For the case of fixed base, the present results obtained by the use

of 8x20 mesh (960 degrees of freedom) agree reasonably well with those

obtained by Gould et. al. using 14 rotational shell finite elements.

For the case with discrete supporting col umns, the present

results obtained by the use of 8x22 mesh (1320 degrees of freedom) are,

in general, lower than those obtained by Gould et. al. (See Table II).

This may imply that the present realistic column modeling provides a less

stiff representation than the equivalent rotational shell element.

For the modeling with 8x22 mesh, the lowest row is modeled by 66

triangular elements instead of 22 quadrilateral elements. Each initially

quadrilateral element is divided into three triangular elements with two

nodes on the top and three nodes at the bottom. By doing so, 44 nodes

are created which can be connected to the top joints of the 44 pairs of

column finite elements.

The successful completion of the first two examples provides assur­

ance that the combined usage of sufficient numbers of quadrilateral shell
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elements and beam elements will quite accurately predict the dynamic

behavior of column supported cooling towers. The cooling tower in the

Paradise Steam Generating Plant is then analyzed in this manner.

FREE VIBRATION ANALYSIS OF THE PARADISE COOLING TOWER

Lowest Freguency Vibration Modes

In the preliminary free vibration analysis of the Paradise cooling

tower, three different quadrilateral shell element modelings are used:

4x16 mesh, 6x20 mesh, and 8x20 mesh, respectively. The first modeling

has 16 beam finite elements at the top of the shell to represent the

stiffened ring beam. The other two modelings use 20 stiffened beam

elements for this purpose. In the three modelings, each quadrilateral

element in the base row is diyided into three triangular elements so that

it has three nodal points at the base line. Thus for the 6x20 and 8x20

meshes, the base circle of the tower has 40 nodes that can be connected to

the 40 pairs of discrete column elements. For the 4x16 mesh, the 40

pairs of columns are replaced by 32 pairs of equivalent columns. The

three modelings thus have 576, 960, and 1200 degrees of freedom, re­

spectively.

Since the arrangement of the reinforcements in the circumferential

direction is different than that in the meridional direction, each quadri­

lateral shell finite element must be orthotropic. The distributions of

the equivalent moduli of elasticity in the circumferential and meridional

directions are shown in Figs. 2 and 3, respectively. The moduli of

elasticity used for the orthotropic quadrilateral shell elements are based

on these distributions.
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The present results for the natural frequencies of several modes

using different meshes are given in Table III. The first two meridional

mode shapes for the third through seventh circumferential modes are

shown in Fig. 7. It is seen that the base of the shell moves considerably

due to the flexible nature of the column supports. This phenomenon cannot

be predicted if the base of the shell is assumed as fixed. Figure 7 also

shows the meridional mode shapes for the hypothetical case in which the

base of the shell is fixed. It is interesting to see the manner in which

the flexible column supports affect the meridional mode shapes.

It is important to point out that when the circumferential mode num­

ber is equal to one, the shell vibrates in a side-swaying type of motion.

When the circumferential mode number is not equal to one, the shell vi­

brates in a breathing type of motion. Previous studies [Refs. 6 and 15J

have pointed out that only the modes with one circumferential wave are

excitable by the horizontal earthquake motion. Thus~ the side-swaying

or eccentric modes are of primary importance in the study of earthquake

response. And the column supports drastically influence the frequencies

of these modes, reducing the fundamental eccentric frequency by as much

as 50% [Ref. 16J.

Eccentric Modes with Refined'Modeling

The preliminary stages of this investigation require comparative

testing of the present modeling against several alternative solution

methods. This involves finding the lowest natural frequency vibration

modes which are breathing modes. It is found that modeling only a

portion of the axisymmetric structure will not adequately reproduce

these mode shapes~ most probably due to the difficulties encountered in
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prescribing boundary conditions for a doubly-curved surface. The full­

shell model avoids such difficulties and produces accurate results for

all the vibration modes computed.

In the analysis of the cooling tower's response to horizontal earth­

quake excitation, only those modes with one circumferential wave are of

interest. These eccentric modes can be accurately predicted by using

a finite element model of only half of the actual shell surface. With

such an idealization the element mesh may be refined, which is greatly

beneficial in determining the stress field. And the number of degrees

of freedom associated with the problem is reduced from a comparable full

shell model.

Several different half-shell mesh configurations are used to model

the Paradise cooling tower. These element mesh sizes include: 4xlO (345

D.D.F.), axlO (573 D.D.F.), 9xlG (654 D.G.F.) and 9xlO (918 D.G.F.). The

918 D.D.F. model differs from the others in that it uses two beam finite

elements to represent each individual supporting column except for the

column at one edge of the half-shell (6 = 0°). This particular column

is formed by six beam elements in order to find detailed stress infor­

mation along the column length. Again, all the above models feature beam

elements to form the top ring-beam of the shell, orthortopic quadrilateral

plate elements with the triangular variation at the base to form the shell

and the beam elements to form the discrete column supports. The 9xlD half­

shell model is shown in Fig. 8.

The first three eccentric frequencies are calculated using the half­

shell modeling as shown in Fig. 8. Results are presented in Table IV.

Comparison with the eccentric frequencies presented in Table III for the

4xl6 full shell (which in half shell form would have 288 D.G.F.) indicates
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good corroboration. The slight discrepancy,particularly in the first

mode stems from the inadequacy of the 32 "equivalent" pairs of columns

in simulating the action of the 40 actual pairs. Any aberrations within

the convergence pattern of the frequencies of the half-shell models are

likely to be caused by the extreme sensitivity of frequencies to changes

in meridional curvature as reported by several authors (e.g. Ref. 3) and

confirmed in the present study.

Mode shapes are found using the most sophisticated 9xlO model with

918 degrees of freedom. The meridional shapes of the first three eccentric

modes are shown in Figs. 9, 10,and 11. The circumferential shape of all

three modes remains circular throughout the body of the shell. However,

the discrete supporting columns affect this shape at the shell base. A

number of waves equal to one-half the number of column pairs are found

to exist in both the transverse and in-plane directions. The deviation

this phenomena produces is slight in the first eccentric mode, practically

non-existant in the second mode and pronounced in the third. The circum­

ferential mode shapes at the base of the shell are shown in Figs. 12, 13,

and 14 for the first, second,and third eccentric modes, respectively.

Although the third eccentric mode shows the wavy distributions of both

meridional and radial displacements at the base of the shell, they are not

of primary concern simply because the earthquake response of the cooling

tower is dominated by the first mode with a slight contribution from

the second mode.
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EARTHQUAKE RESPONSE OF THE PARADISE COOLING TOWER

Earthquake Disturbance

Previous studies have indicated that only one horizontal component

of an earthquake is sufficient for design of a hyperbolic cooling tower

[Ref. 16J. In this study, the North-South acceleration component of the

1940 El Centro earthquake is used to model the ground motion. This is

one of the most severe earthquakes of record with a maximum peak horizontal

ground acceleration of 0.33g where 9 is the acceleration due to gravity.

A record of this acceleration component is shown in Fig. 15 for a period

of 30 seconds. The record was obtained from known values of acceleration

at 1500 equally spaced points. Interpolation is accomplished by assuming

the curve to be linear in the intervals. Values of spectral acceleration

computed from this data show good agreement with those obtained by

Housner eto al. [Ref. 12J.

Time History Response

A preliminary investigation of the seismic response of the Paradise

cooling tower is carried out using the 4x16 mesh full-shell model with 576 de­

grees of freedom. The time-history response for deflections obtained in an

analysis which includes the first eccentric mode and all lower breathing

modes is compared to a similar analysis in which only the first eccentric

mode is included. The two responses are practically identical, confirming

the findings of previous authors [Refs. 6 and 10J that only those modes with

one circumferential wave are excitable by horizontal earthquake motion.

In these analyses, the Duhamel's integral is evaluated first at

1500 equally spaced time steps over the 30 second period and then at 15000

steps. Results are in excellent agreement. The integration time step ~t

must be chosen so that
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CItT < 0.1

where T is the period of the highest frequency mode retained in the

analysis. Failure to satisfy this condition will effectively filter

out the participation of the higher modes [Ref. 10J.

The 9xlO half-shell model with 918 degrees of freedom is now used

to determine the time history of deflections. The North-South accelera­

tion component of the 1940 El Centro earthquake is applied parallel to

the plane of symmetry. The first three eccentric modes of vibration are

included, each with damping assumed to be zero.

The response at the tip of the shell at e = 0°, where e is defined

as the circumferential angle measured from the diameter that coincides

with the direction of the earthquake, is shown in Fig. 16. The maximum

deflection is found to be 8.43 inches, arriving at 11.48 seconds. The

maximum peak to peak deflection is 16.67 inches from 11.48 to 11.68

seconds. The response for the deflections at the top of the column at

e = 0° is shown in Fig. 17. The maximum deflection is 3.78 inches at

10.56 seconds, with the maximum peak to peak displacement being 6.65

inches from 10.36 to 10.56 seconds. Although these deflections are smal­

ler than those at the shell tip, they are still considerable and should

not be neglected as in the case of assuming the shell base to be fixed.

The radial deflection shapes along a meridian at e = 0° are

shown in Fig. 18 for the two critical instances. The corresponding cir­

cumferential shapes remain circular throughout the shell. It is only at

the shell base that the effect of the discrete column supports produces

a slight wavy distribution of displacements during the response.
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Response Spectrum Analysis

The maximum individual modal responses of the first three eccentric

modes are computed by the response spectrum method. The longitudinal

deflection shapes at 6 = 0° are presented in Fig. 19 for the undamped case

and again in Fig. 20 for the case in which a critical damping coefficient

of 4% has been assumed for each mode. The response of the third mode has

been magnified ten times to distinguish its shape.

Figures 19 and 20 illustrate the rapidly diminishing effect of the

higher modes upon the total response. In the undamped case, the first

mode contributes approximately 90% of the total, while the second and

third modes contribute 9% and 1%, respectively. When 4% damping is in­

cluded, the first mode accounts for over 96% of the total response, the

second mode adds approximately 4%,and the third mode's contribution is

negligible. Also of particular interest is the inclusion of 4% viscous

damping decreases the maximum deflections by approximately 60%.

The three modal responses with 4% damping are combined by the RMS

technique to determine the total maximum response of the Paradise cooling

tower subjected to the El Centro earthquake. This state of deflection

is enforced in a static analysis to find the maximum forces and stresses

produced in the shell and columns. The contribution of gravity loading

is included.

Forces and Stresses in the Shell and Columns

The longitudinal distribution of meridional and circumferential

bending moment in the shell at e = 0° are shown in Figs. 21 and 22,

respectively. It is interesting to see that approximately 35 feet above

the base of the shell, the moments become nearly zero which indicates

predominantly membrane behavior. The maximum meridional bending moment
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is 10,500 ft-lbs/ft which produces a maximum compressive bending stress

of 100 psi in the concrete and a maximum tensile bending stress of 540

psi in the reinforcing bar. These stresses are computed at the shell

base, mid-way between column tops where reinforcement is a minimum. The

maximum circumferential bending moment is 1,330 ft-lbs/ft which produces

no significant stresses in this heavily-reinforced, thick section.

The distribution of meridional membrane force at 8 = 180° is shown

in Fig. 23. The maximum stress resultant of 90 kips/ft at a height of

90 feet above the shell base produces a stress of 840 psi in the concrete.

On the tension side (8 = 0°), the maximum meridional membrane force is

40 kips/ft which produces a 5 ksi stress in the reinforcing bar. The

difference between the membrane forces at 8 = 0° and 8 = 180° at the same

height are primarily due to the dead weight of the tower.

The longitudinal distribution of circumferential membrane force at

8 = 0° is shown in Fig. 24. The maximum force is 27 kips/ft at the'

shell base. This produces a maximum compressive stress of 80 psi in

the concrete. At 8 = 180°, the circumferential membrane force is 6 kips/ft,

producing a stress of 125 psi in the reinforcing bar.

Although the shell portion of the cooling tower could experience

severe cracking and still function adequately, it appears that under the

present conditions the shell will persevere with no damage.

Previous studies have concluded that the axial forces in the columns

playa crucial role in determining the cooling towers response [Refs. 17 and 18J.

The axial forces developed in this study are presented in Fig. 25 for each

column around half of the base circumference. The maximum compressive

axial force along with the associated bending moment produce a maximum

stress of 5250 psi in the concrete at the middle of the column length.
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The maximum stresses in the concrete at the column top and base are

4500 psi and 5145 psi, respectively. The contributions of shear and

torque in the column are negligible. The maximum tensile axial force and

corresponding bending moment produce a maximum stress in the high-strength

reinforcement of 77.1 ksi, occurring in a cracked section at the column

base. At the top and middle of the cracked column, the maximum steel

stresses are 52.7 ksi and 67.6 ksi, respectively.

With the columns driven beyond the yield point, it appears evident that

inelastic behavior will result. Such behavior will increase both the flexi­

bility and the damping of the structure to a degree dependent upon the

columns ductility. These alterations can be accounted for by a reduction

of the design load as suggested in Ref. 19.

Effect of Viscous Damping

Since the viscous damping coefficients for the Paradise cooling

tower are not known, only assumed values are used in this study. The

tower is modeled by the 4x16 full-shell mesh with 576 degrees of freedom.

The first eccentric mode and all lower breathing modes are included in a

time-history analysis. It is assumed that all the modes have the same vis­

cous damping coefficient. Three different values of damping coefficient

are assumed for this cooling tower: 4, 7, and 10 percent of the critical

value.

The ratio between the maximum shell tip deflection with damping and

the maximum undamped tip deflection is plotted versus assumed critical

damping coefficient in Fig. 26. Included in this figure is the maximum

column top deflection ratio versus damping coefficient. The two curves

are almost identical. The variations of both the maximum axial force

ratio in the column at e = 0° and the maximum bending moment ratio at
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the column top versus damping coefficient are found to follow curves

nearly identical to those of Fig. 26.

CONCLUSIONS

In this study, quadrilateral plate finite elements and beam finite

elements, both oriented arbitrarily in three-dimensional space, are used

in the analysis of the dynamic behavior of cooling towers. It is found

that such a model will accurately predict natural frequencies and mode

shapes. It also provides a realistic modeling of the base support system

which is of utmost importance in the prediction of displacements and

stresses in the base region.

Only those modes with one circumferential wave are excitable by

horizontal earthquake motion. These eccentric modes can be determined with

the use of a half-shell model. In this study, the contributions of the

higher eccentric modes to the total deflection rapidly diminish. In

the undamped case, the first mode contributes approximately 90% of the

total deflection while the second and third modes contribute 9% and 1%,

respectively. When damping of 4% of the critical value is included, the

first mode accounts for over 96% of the total response, with the second

mode adding approximately 4%,and the third mode's contribution is negligi­

ble.

Consideration must be given to the effect of the discrete supporting

columns in order to accurately analyze the seismic response of cooling

towers. The column supports considerably reduce the natural frequencies

of a cooling tower originally assumed to have a fixed base. The tops of
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the columns deflect substantially during earthquake excitation. The

columns are found to be the vulnerable region in the system. In parti­

cular, the axial force in the columns appears to be the most critical.

The response of the cooling tower shell is characterized by pre­

dominantly membrane behavior. Bending is restricted to a narrow band

at the base of the shell. The height of this band is less than approx­

imately 9% of the overall height of the shell for the case studied.

For the present cooling tower, the inclusion of viscous damping

with four percent of its critical value reduces the maximum displace­

ments and stresses by about 60 percent. An increase in damping beyond

this further reduces the response but to a lesser extent.

The 9xlO element mesh with 918 degrees of freedom is practically

sufficient for the purpose of predicting the dynamic behavior of the

cooling tower. For more detailed stress predictions, however, a finer

mesh size or more sophisticated shell finite elements would be needed.

Also, inelastic deformations, which may affect the dynamic behavior,

have not been considered.
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Table I. The Natural Frequencies (in Hz.) for a Cooling Tower with Base Fixed .

..... Quadrilateral finitett:l......... ..... elements
s:::: tt:l Carter Hashi sh and Sen and GouldOJ s::::
~ Q) .....

et a1. Abu-Sitta (curved rota-OJ "0 "0
4-0 ::::SQ)

(numeri cal (finite tiona1 shellE:E: ..... ~
::::s ..... 0

integration) difference) elements) 4x16 6x20 8x20u c:n:E:
~ s::::..... 0 Mesh Mesh Mesh

u ...J

1 1 3.2884 3.3345 3.2910 3.3119
2 6.7405 6.8816 6.8176 7.1638
3 10.5207 10.5316 10.6666 11. 3170

2 1 1.7654 1.7848 1.7662 1.8681 1.8153
2 3.6931 3.7234 3.6960
3 6.9562 6.9553 7.0058

3 1 1.3749 1.3929 1.5356 1.4528 1. 3627
2 1.9904 2.0150 2.0969
3 4.3254 4.3353

4 1 1. 1808 1.2003 1. 1820 1.3830 1.3248 1.2099
2 1.4475 1. 4597 1.4491 1.6136 1.5648 1.4468
3 2.7777 2.7762 2.7866 2.8882

5 1 1.0348 1.0441 1.0354 1.2447 1.1808 1.0556
2 1.4293 1.4417 1.4345 1.5855 1.5806
3 2.0559 2.0555 2.0640 2.3176

6 1 1.1467 1. 1544 1.3120 1.2672 1.1382
2 1.3231 1.3335 1.5492 1.5461
3 2.0141 2.0152 2.1702

7 1 1.3014 1.3055 1.4460 1.4556 1.3230
2 1.5133 1.5189 1.6040 1.6220
3 1. 9217 1.9200 2.1470 2.0705
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Table II. The Natural Frequencies (in Hz) for a Cooling Tower
with Discrete Column Supports.

Fixed Base Column Base

Ci rcumferenti a1 Longitudinal Gould This study Gould This Study
Mode Mode et al. 8x20 Mesh et al. 8x22 Mesh

3 1 1.194 1.185 1.086 1.092

2 1.672 1.314

4 1 1.104 1.125 0.945 0.951

2 1.302 1.304 1.204 1.168

5 1 1.131 1.146 1.032 1.024

2 1.453 1.463 1.256 1.219

6 1 1.400 1.405 2.235 1-.189

2 1.568 1.455
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Table III. The Natural Frequencies in Hz. for the Subject Cooling Tower

Circumferential Longitudinal 4x16 6x20 8x20
Mode Mode Mesh Mesh Mesh

1 1 2.1758
2 3.9758
3 7.7884

2 1 1.2538 1.2391 1.2148
2 1.9882

3 1 0.8875 0.8777 0.8857
2 1.6263 1.5321 1 4504

4 1 0.9851 0.9306 0.9057
2 1.3965 1.3592 1 3353

5 1 0.8446 0.8255 0.8491
2 2.0430

6 1 1.0235 1.0763 1.0351
, 2 1.9160 1.6691

7 1 1.2708 1.4156 1.2997
2 1.9363 1.7525
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Table IV. Natural Frequencies (Hz) of Modes with One Circumferential Wave
for the Paradise Cooling Tower.

Longitudinal Element Mesh (D.O.F.)

Mode 4xlO (345) 8xlO (573) 9xlO (654) 9xlO (918)

1 2.1952 2.1924 2.1962 2.1850

2 3.8723 3.6612 3.6438 3.6377

3 7.8041 7.6335 7.7131 7.6755
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FIGURE CAPTIONS

Fig. 1. The Hyperbolic Coolinq Tower in the TVA Steam

Generating Power Plant, Unit #3, Paradise, Kentucky.

Fig. 2. The Distribution of Equivalent Modulus of Elasticity for the

Circumferential Reinforcements Along the Meridional Direction.

Fig. 3. The Distribution of Equivalent Modulus of Elasticity for the

Meridional Reinforcements Along the Meridional Direction.

Fig. 4. A Quadrilateral Plate Finite Element in the Three-Dimensional

Space.

Fig. 5. An Example of a Reinforced Concrete Cooling Tower with Base

Fixed.

Fig. 6. An Example of a Reinforced Concrete Cooling Tower with Discrete

Column Supports.

Fig. 7. The Radial Deflection of a Meridional Line for Several Modes of

the Paradise Cooling Tower (j = Circumferential Mode Number, m =

meridional mode number).

Fig. 8. The Finite Element Modeli ng of the Paradise Cooling Tower (9 x

10 Half-Shell Model with Two Beam Elements Per Column).

Fig. 9. The Radial Deflection of a Meridional Line in the First Eccentric

Mode of the Paradise Cooling Tower.

Fig. 10. The Radial Deflection of a Meridional Line in the Second Eccentric

r1ode.

Fig. 11. The Radial Deflection of a Meridional Line in the Third Eccentric

Mode.

Fig. 12. The Circumferential Deflection at the Shell Base of the First

Eccentric r1ode.
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Fig. 13. The Circumferential Deflection at the Shell Base of the Second

Eccentri c Mode.

Fig. 14. The Circumferential Deflection at the Shell Base of the Third

Eccentric Mode.

Fig. 15. The North-South Acceleration Component of the 1940 El Centro

Earthquake.

Fig. 16. The Time-History Response of Shell Tip Deflection at e = 0° for

the Undamped Case.

Fig. 17. The Time-History Response of Column Top Deflection at e = 0° for

the Undamped Case.

Fig. 18. The Radial Deflection of the Meridional Line at e = 0° at the

Time of Maximum Shell Tip Deflection (t = 11.48 seconds) and the

Time of Maximum Column Top Deflection (t = 10.56 seconds).

Fig. 19. Maximum Individual Undamped Radial Deflections of the First Three

Eccentric Modes from the Spectral Analysis (with the Third Mode

Magnified Ten Times).

Fig. 20. Maximum Individual Radial Deflections of the First Three Eccentric

Modes with Four Percent Damping from the Spectral Analysis (with

the Third Mode Magnified Ten Times).

Fig. 21. Longitudinal Distribution of Meridional Bending Moment at e = 00
•

Fig. 22. Longitudinal Distribution of Circumferential Bending Moment at

e = 0°.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Longitudinal Distribution of Meridional Membrane Force at e = 180°.

Longitudinal Distribution of Circumferential Membrane Force at

e = 0°.

Average Axial Force in the Supporting Columns.

Variations of Maximum Tip Deflection Ratio and Maximum Column Top De­

flection Ratio versus Damping Coefficient.
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Fig. 1. The Hyperbolic Cooling Tower in the TVA Steam Generating
Power Plant, Unit #3, Paradise, Kentucky.

401.0'

40.0'
---L

80 COLUMNS
25" DIAM.



-35-

400 ------------------~----------------------

300

-...
LL-.... 200
:z:
C)-W
J:

100

5.5 5.6 f5.7 5.8

CIRCUMFERENTIAL MODULUS OF ELASTICITY (10· LBS/FT 2 )

Fig. 2. The Distribution of Equivalent Modulus of Elasticity for the
Circumferential Reinforcements Along the Meridional Direction.
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Fig. 3. The Distribution of Equivalent Modulus of Elasticity for the
Meridional Reinforcements Along the Meridional Direction.
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Fig. 4. A Quadrilateral Plate Finite Element in the Three-Dimensional
Space.
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Fig. 5. An Example of a Reinforced Concrete Cooling Tower with Base Fixed.
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Fig. 6. An Example of a Reinforced Concrete Cooling Tower with
Discrete Column Supports.
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j=4, m=1

j=4, m=2

j=5,m=1

I
I

/
/

/
/
I

j=5, m=2

Flexible Base with Ring Beam
Fixed Base

Fig. 7. The Radial Deflection of a Meridional Line for Several Modes of
the Paradise Cooling Tower (j = Circumferential Mode Number, m =
meridional mode number).
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j=6, m=J

/
/

/
/

/

J=6,m=2

j=7, m=J

j=7, m;:2

Fig. 7. (cant.) The Radial Deflection of a Meridional Line for Several Modes
of the Paradise Cooling Tower (j = Circumferential Mode Number, m =
meridional mode number).
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Fig. 8. The Finite Element Modeling of the Paradise Cooling Tower (9 x 10
Half-Shell Model with Two Beam Elements Per Column).
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Fig. 9. The Radial Deflection of a Meridional Line in the First Eccentric
Mode of the Paradise Cooling Tower.
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Fig. 10. The Radial Deflection of a Meridional Line in the Second Eccentric
Mode.
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Fig. 11. The Radial Deflection of a Meridional Line in the Third Eccentric
Mode.
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Fig. 12. The Circumferential Deflection at the Shell Base of the First
Eccentri c rvlode.
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Fig. 13. The Circumferential Deflection at the Shell Base of the Second
Eccentric Mode.
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Fig. 14. The Circumferential Deflection'at the Shell Base of the Third
Eccentric Mode.
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Fig. 18. The Radial Deflection of the Meridional Line at e = 0° at the
time of Maximum Shell Tip Deflection (t = 11.48 seconds) and the
Time of Maximum Column Top Deflection (t = 10.56 seconds).
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Fig. 19. Maximum Individual Undamped Radial Deflections of the First
Three Eccentric Modes from the Spectral Analysis (with the Third
Mode Magnified Ten Times).
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Fig. 20. Maximum Individual Radial Deflections of the First Three Eccentric
Modes with Four Percent Damping from the Spectral Analysis (with
the Third Mode Magnified Ten Times).
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Fig. 21. Longitudinal Distribution of Meridional Bending Moment at e = 0°.
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e = 0°.
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