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Abstract

A simple shear beam and a Timoshenko beam model have been developed for
dynamic analysis of compliex frame structures. Explicit formulas have been
derived for computing the equivalent shear and bending rigidities of the
structure. The simple models were evaluated by comparing the simple model
solutions with the solutions obtained from using full scale finite elements
in free vibrations of plane frames. It was found that the simple models
yielded very accurate frequencies as well as mode shapes for the lower modes.
When diagonal bracings are present, the Timoshenko beam model was more
supericr to the shear beam model. The shear beam model was employed to
compute the natural frequencies of the fossil fuel power plant of Unit #3
of TVA at Paradise, Kentucky. The first two frequencies were found to be
in good agreement with the finite element solutions. The simple models were
also used to compute transient dynamic responses of structures subjected to

earthquaks disturbances.
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1.  Introduction

Dynamic analyses of large frame structures such as the sfructures in
a fossil fuel power plant can be performed by using the finite element
method. However, such analyses are usually very laborious and require a
great amount of computer time. In many cases, this type of analysis can
prove to be prohibitive. Simple procedures of analysis are obviously de-
Sirable,

Several approximate analyses for vibration of plane frame structures
have been empioyed in recent years. The fundamental slope-deflection for-
mulas were used by Goldberg, Bogdanoff, and Moh [1] to set up two classes
of equilibrium equations, i.e., shear equations and joint equations, for
each story. The method they developed was a trial-and-error techhidue for
determining the natural frequencies, mode shapes, and the response to ground
motion. A modifed and extended iterative method was presented by Paramasivam,
Yeh, and Nassim [2] who took into account different individual joint rota-
tions. The successive approximation scheme used by [1] and [2] is a tedious
process. The other main drawback is that the effect of bracing cannot be
inciuded. Sandhu [3] has presented a simplified method based upon the con-
cept of an elastic shear wave equation in a uniform solid bar to model the
dynamic behavior of multi-story plane frame structures. The results based
upon the model given in [3] were not accurate even for a homogeneous four-
bay, six-story structure chosen for illustration. Heidebrecht and Smith [4]
have suggested a snhear-flexural beam model to perform dynamic analysis for
tall wail-frame structures. The concept for evaluating the shear rigidity
may be adopted for investigating simple shear beam model for vibration of

plane frames. An interesting method was presented by Blume [5,6] who developed



simple procedures with which the contribution of story shear, joint rotation,
overall flexural, and ground compliance in the three lowest modes of vi-
bration couid he estimated. A period synthesis concept and the pseudo-
stiffness procedures were presented to enable the approximate determination
of natural periods as well as mode shapes for rigid-floor shear buildings.
However, it is required to provide charts for certain case studies before
the method can be employed.

This research concerns developing simple models for computing dynamic
responses of complex frame structures. A shear beam model which is able to
account for the girder flexibility is first presented. As long as a struc-
ture deflects in shear-type, fairly accurate results can be expected. When

the gross fiexural deformation becomes significant, the Timoshenko beam

model is then used. Explicit formulas for shear and bending rigidities of
the models are derived in terms of the member dimensions and material pro-
perties of the original frame structure. Several plane frame structures

are first used as evaluative examples. Free vibrations of these structures
are investigated by finite element method as well as by using the simple
models. Both frequencies and mode shapes predicted by the simple models are
in cocd agreement with those obtained from finite element method. The

shear beam model is then used to model the boiler-frame structure of the
fossil fuel power plant of TVA Unit #3 at Paradise, Kentucky.

The mode-superposition method is then used for analysis of transient
dynamic responses of the simple models. A specific 4-bay and 7-story fkame
structure subjected to the N-S component of the E1 Centro 1940 earthquake
ground acceleration is studied by both the simple models and the finite
element method. The simple models are excellent in the comparison.

A procedure is also developed to recover the dynamic member forces

and moments in the actual structure from the representative simpte models.



Results obtained by using this procedure are found to be rather accurate.

2. The Simple Models

The use of simple models to represent a frame structure requires de-
termination of the effectiye shear rigidity GA and effective bending rigidity
EI of the frame. Once these properties are established, the vibration
analysis is performed in the usual manner. Evaluation of the overall shear
and bending rigidities of a frame structure by considering all the members
exactly can be done on the computer with the aid of the finite element
method. However, such approach apparently defeats the purpose of a simple
model. In view of this, the frame structure is first decomposed into sev-
eral typical substructures and then the contribution of each substructure

in the gross shear and bending rigidities is evaluated.

3. Evaluation of the Shear Rigidity

The typical substructures are indicated in Fig. 1. Since the base of
the structure is assumed fixed, the behavior of the structural members at
the ground Tevel is substantially different from the rést, and, henée, are
considered separately. Fora tall building where the boundary effect is
retativetly small, it might not be necessary to make such distinction.

Ir a Tower mode vibration, it is assumed that, away from the base, the
deformation is somewhat "smooth" in the longitudinal direction, and con-
sequently the middle point of a column between two adjacent floors could
be a point of inflection. Similar argument leads to the conclusion that the
midpoint of a girder is a point of inflection. For the present purpose,
these points are then replaced by equivalent hings and rollers as shown in
Fig. 1. The substructures at the ground Tevel for the shear rigidity analy-

sis are depicted also in Fig. 1.
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Figure 1 Four types of substructures



To illustrate the procedure for evaluating the effective shear rigi-
dity contributed by the substructures, substructure Type a is first con-
sidered. By applying a horizontal force P at the joint as shown in Fig.
2, the corresponding displacement & can easily be obtained. In this
analysis, the rigid frame assumption is taken. In other words, the axial
deformation is neglected. The resulting displacement is obtained as

3
24
(2 aB)LC

S 2, P )

where £ is the Young's modulus assumed to be identical for columns and

girders, IC is the moment of inertia of the column, LC is the column length

between two adjacent floors, and o and 8 are defined by

a = Ig/lC
(2)
B = LC/L9
in which a subscript g denotes girder.
The equivalent shear strain is
y o= =5 ’
Y L /2 (3)

The shear force associated with this amount of shear strain in an equiva-

lent snear beam is

28
GA) = £8
(6 = (6, {2 (4)

where (GA)a is the effective shear rigidity provided by the column under
consideration. Substitution of Eq. (1) into Eq. (4) yields
12aBEIC

(GA)a = Tg:agﬁzg . (5)

\
}
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Effective shear rigidity of substructure Type a

Figure 2



for substructure Type a.

Similar procedures lead to the following results for other types of

substructures:
12aBEIC
(6R), = — (6)
{(T+ap )l
c
for substructure Type b,
32(1+3aB)EIC
(GA)C = 5 (7)
(4+308)L"
c
for substructure Type ¢, and
6(1+6u8)EIC
{2+3uB)LC

for substructure Type d. The total effective shear rigidity of the frame
substructure between two floors is the sum of the shear rigidities of the

appropriate substructures.

4. Diagonal Bracings

Diagonal bracing is often used in flexible frames to provide additional
iate%al resistance against earthquake motion. Since a brace is usually de-
signed to take axial forces only, it can be considered as an éxia] member
without bending rigidity. The additional shear rigidity of the structure
due to a brace will be calculated based upon this assumpfion. It is thus
assumed that the braces and frames are pin-connected to each other, so that
the bracing stiffness can be added to the frame stiffness. This approach
was taken also by Clough and Jenschke in a study on the effect of diagonal
bracing oﬁ the eafthquake performance of a steel frame building [7].

With the foregoing assumptions, the shear rigidity of a brace can be
obtained by analyzing the simple problem in Fig. 3a. The additional effec-

tive shear rigidity is obtained as



(b)

Figure 3 Effective shear and bending rigidities of a brace



(GA)Br = AE cos2 6 sin o (9)

where Ab is the crgss-sectional area of the brace and 6 is the inclined

angle of the brace considered. The above expression can also be re-

written as
- _ B
(GA)Br = (1:;§;§72f- AbE (10)

in which g is defined by Eq. (2).

5.  Shear Beam Model
In practical appiications, a great number of frame structures behave
essentially as shear components for the lower mode vibrations. The
shear beam model is then considered to be infinitely rigid in bending.
Consider a shear beam finite element of length L, shear rigidity GA,

and mass per unit length m. The strain energy and kinetic energy per unit

iength of beam are given by

U, =% GA (%)2 (11)

and

T, =% m{v)®

(12)

respectively. In equations (11) and (12), v is the transverse displacement.
In the absence of lateral loadings, the equation of motion can be ob-

tained by using the Hami]ton's principle. The resulting equation of motion

is expressed as

a a ..
Fel! GAE;% = my (13)
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It is important to note that the present shear beam model is different
from the conventional shear beam model for which the floors are assumed
to be infinitely stiff as compared to the columns. Besides being able to
account for the girder flexibility, the present shear beam model is also
more elaborate in evaluating the effective shear rigidity as has been
described previously.

To retain the simplicity, the following displacement function is

assumed for the shear beam finite element:

v=(7-r)v1+‘)—f~v2 (14)

where vy and v, are the nodal displacement and L is the element length.

The stiffness matrix then reads

r1
(k] = 2 L-? J (15)

A lump-mass matrix of the form

] = Ok [1 Oj (16)
2 0 1

will be used. The lump-mass method, in general, overestimates the iner-
tia effect, and is thus more suitable for the shear beam as the suppression

of bending alsec has a stiffening effect on the structure.

5. The Timoshenkc Beam Theory

For convenience of reference, the basic formulation of the Timoshenko
beam theory is reviewed first. Consider a Timoshenko beam finite element
of length L, bending rigidity EI, shear rigidity GA, mass per unit length
m, and rotatory inertia pl (p is the mass density and the moment of inertia

I is obtained from the value of EI). Referring to Fig. 4 which shows the
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Figure 4 Timoshenko beam element: (a) degrees of freedom;

(b) deformation of differential element
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coordinate system and degrees of freedom chosen, the strain energy.and
kinetic energy per unit length of beam are given as follows:

2

U=l (2 e seen BLay) (17)
and
T=um M2 +5o0 (1)° (18)

respectively [8]. In addition to the notations denoted previously, v
represents the bending slope of the cross section of the element.

In the absence of lateral loadings, the equations of motion can also
be easily obtained. These two resulting coupled partial differential equa-

tions are expressed as

3P, ) "
(e 2 s ceh (3L + ) = ol

X
(19)

_r v = my
L L6 (25 + )] = mi

Qs ja

The shear force Q and the bending moment M are related to the displace-

ments as

o)
1]

<GA (—g-i + ) (20)
and

- pp |
M= Ei ™ (21)

respectively. The shear correction coefficient « assumes different values

depending on the geometry of the cross-section. In this study, we set ¢ =

1.

7. Evaluation of the Bending Rigidity

The gross bending effect can be large for tall building structures. In
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the present consideration, it is assumed that the joints of the same floor
level displace linearly in the vertical direction with respect to the cen-
troidal axis of the cross-sectional areas of columns as shown in Fig. 5.
This assumption is obviously valid only in lower modes of vibration. In
addition, it is also assumed that the restoring forces in the vertical di-
rection are provided by the axial forces in columns. Denoting the incre-
mental rotation at a floor level relative to the lower one by e (see Fig.

5), the relative displasement at joint i is given by
51 = Cl,i-E (22)

where d, is the horizontal distance from the joint to the centroidal axis.

Suppose furthermore that the strain is constant in the column, the corres-
ponding axial force becomes

P.=EA), S -E@m), d & (23)
i Ve L. ¢ TiL,

where (Ac)i is the cross-sectional area of the ith column. The moment about

the centroid due to Pi is

) } 2 |
My = Pid, = E(Ac)i d;" e/l (24)

The total bending moment of the whole structure is obtained as

J(A); d.° | (25)
c 1

!m

M=]M =E
i

—

Equating Eq. {25) to Eq. (21), an equality equation is then followed:

W _ e 2
EI o E Lc ;(Ac)i di (26)

where EI represents the effective bending rigidity of the equivalent Timo-

shenko beam model. Since the strain is assumad constant in columns, it
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Figure 5 Gross bending deformation
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follows that

D oa o (27)

R LC

between any two adjacent floors. As a result, the effective bending rigi-

dity can be expressed in the form

2

El = E E(Ac)i d, (28)
1

Referring to Fig. 3b, the additional effective gross bending rigidity

due to a brace can easily be obtained as

2 3

(EI)Br = EAbd sin” 6 (29)
or _
g 2
(El)BY‘ = W AbEd (30)

in which d denotes the distance between the upper joint of the brace to

the centroidal axis of the cross-sectional areas of columns.

8. The Timoshenko Beam Model

Since the resulting equivalent Timoshenko beam for the frame structure
is, in general, nonhomogeneous, it will be more convenient to employ the
finite element method for selution. Derivation of the stiffness and con-
sistent mass matrices is quite straightforward. Hence, only the results
will be presented here.

Consider a Timoshenko beam finite element as described in Sec. 6. By

assuming the shape functions for the displacement variables as

= 2 3
VoEag tagx tagx +oax

(31)

2 3
bO + b]x + bzx + b3x

-
I
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together with the energy functions given by Eqs. (17) and (18), the total
strain energy and kinetic energy in a Timoshenko beam finite element can
be computed. The matrix equations of motion for the discrete system using

Hamilton's principle become
(F} = [KJ{a} + [M]{a} (32)

where [K] and [M] are the element stiffness matrix and element mass matrix
of order 8 x &, respectively. In Eq. (32), the force vector {F} and the
" displacemant vector {A} of order 8 x 1 are defined by

r 3 r 3\

4 vy
Ny 0,
" ¥
Fr=dw and {8} = { o'} (33)
Q )
H, 0,
Mo 7
My | V2

respectively. The subscripts 1 and 2 denote node 1 and node 2, respectively,
and a prime indicates the slope. It should be noted that with this higher
order element, oniy Q@ and M can be realized in the boundary conditions§ the
generalized forces ¥ and yu are set equal to zero at both clamped end and

free end. In view of the displacement fields, the boundary conditions are

v =0 and y = 0 at the clamped end and that the bending moment is zero, that
is, v' = 0, and the shear force is zero, that is, 8 - ¢y = 0, at the free

end, |

The stiffness matrix is obtained as



k] :
[K] = | -=2s- t
k T i
2 |
where the
are given by
[ 504b
[¥,] =
Sym.
[ -504b
420
[ky] =
210Lb
_42L2b
and
[ 504b
[k,d =
Sym.
In Egs. (35-37),
El _
N

17

(34)

superscript T denotes transpose of the matrix and the submatrices

-42Lb

541.%p

~42Lb
-14L"b
42L"b
7L™b

42Lb

56L%b

- xGA
4201

-210Lb

4212

36a+156L%h

~210Lb
2212y
~36a+54L%p

~3La+13L %%

210Lb
4212
36a+156L%b

~421.%b

0

3La+22L b

s %a+aLty |

421%,

-7L3b

3La-13L3b

L%t

-42L"b

0

-3La-22L3b

2 4

8%+ |

The mass matrix is expressed in the form

where the submatrices are given by

(35)

(36)

(38)

(39)
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T 156¢ -22Lc 0 0
4ch 0 0
[m'!] = (40)
156e 221e
Sym. 2
B 4L7e _
" 54c 13Lc 0 0
Stale -3l 0 0
[n,] = (41)
0 0 b4e -13Le
.0 0 13Le -3L26J
'and
" 156¢ 22L¢ 0 0 ]
Rt wi o 0
n,] = (42)
156e -22Le
Sym. . 2
| 4'. e ]
The two parameters ¢ and e in Egs. (40-42) are
- QAJ:_ S o= .p_I.L
c=@5 - €770 (43)

In this study. the consistent mass system is adopted for the Timoshenké
beam finite element. It is noted that lumped mass system can also yield
acceptabie results. The Timoshenko beam model presented herein can also be
reduced to the shear beam model by suppressing the rotation y in the
Timoshenko beam finite element. The same purpose can also be achieved by

letting the bending rigidity EI approach infinity.

9. Modifications of Shear Rigidity for Local Bending Effects
The effective shear rigidities presented in Sec. 3 for frame structures

and in Sec. 4 for bracings become invalid as the frame structure vibrates
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with significant Tocal bending effects. In this case, the shear beam
model and Timoshenko beam model developed previously can not yield good
solutions. Modifications of the effective shear rigidities for botH
the framework and bracings at the locations where the local bending
effects occur are required. It is noted that the Tocal bending effects
are mainly due to the existence of bracings. This facf will become
apparent when the evaluative examples #5 and #6 in Sec. 11 are carried
out and compared.

To modify the effective shear rigidities, two cases that cause
significant Tocal bending are considered, namely, the rotation of the
panel of a framework and the stretching of columns and bracings. In
the foilowing, these cases are considered separately and a modified
gross shear rigidity is.evaluated. |

Fig. 6a shows a typical panel ABCD and its deformed shape A'B'C'D'.
The force P* associated with the shear strain y 1is equal to the shear
rigidity (GA}* times y. The force P* is also the difference between the
force P associated with the shear strain y and the force P' associated
with the shear strain ¢. Therefore, the effective shear rigidity that

accounts for the rotation of pannel can be expressed as

* _pt -
(ea)r = B = B (GA)YY (6A)e

“n

(-5 6 o (aa)

where GA is the shear rigidity evaluated according to the previously
unmodified procedure in Sections 3 and 4. Note that the modified shear
rigidity (GA)* reduces to the unmodified shear rigidity GA if no panel
rotation occurs and that no shear rigidity is provided by the panel as

the two shear strains £ and y equal. Equation (44) should be used to modify
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Figure 6 Modification of effective shear rigidity: (a) retation of

panel; (b,c, and d) stretching of panel
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the shear rigidities of the substructures involved.

In Sec. 4, the bracing's contribution to the shear rigidity came
from the side~sway of the column. When bending is pronounced, columns
are stretched so are the bracings. In the following, the additional
shear rigidity due to the stretching of columns and bracings is estima-
ted.

Referring to Fig. 6b, the force induced horizontally to raise one

unit of vertical dfspTacement is equal to

'AbE
F = E»—-sin 8 cos 6 : (45)
b
or
A E
Pt b (46)
b 1+8

in which Ab and Lb are the cross-sectional area and length of the brace
considered, respectively. The horizontal force for a A-displacement (see

Fig. 6¢) is expressed in terms of the angle n as

I T S
Pr=1 2 B T S L
b 1+8" b 1+8
B
= —2s—m AEn = (GA), n (47)
(1+82)3/2 b Br
where (GA>Br is the effective shear rigidity of a brace given by Eq. (10).
The force P, is the additional horizontal restoring force due to the

vertical deformation. In the shear beam model, the only deformation allowed

is the shear strain y. Thus, an equivalent shear force P2 should be assigned

to represent P!. Hence,

P, = (GA)' y =P (48)
2 By 1
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Substitution of Eq. (47) into Eq. (48) yields

P
(6A)g, = — = D (eA)g, (49)

Adding Eq. (49) to Eq. (44), we obtain the modified shear rigidity

contributed for the bracing as
(GR),. = (1 - £+ 1) (ga) (50)
Br Yy Y Br _

The above shear rigidity for the brace is needed in the case where

lccal bending effect can not be neglected.

10. Appiications to the Three-Dimensional Frame Structures

Many three-dimensional frame structures, in practice, can be regarded
as a collection of plane frames connected by girders. Consequently, vibra- |
tions in the principal planes can be analyzed by using the shear beam
model or the Timoshenko beam model. To derive the representative beam
models, we first model the individual plane frames by the beam models qnd
then combine the stiffnesses and masses of these beam models into a single
beam model. In such process, relative motions among the individual
plane frames are lost, and the gross torsional mode of vibration can not
be accounted for. The analysis procedure presented here, however, should
be valid for designs where motions in the principal planes are the
main concern. In particular, this simple model analysis should be useful

in the preliminary design stage.
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11 Evaluative Examples

Free vibrations of several plane frame structures of different char-
acteristics are now investigated by the simple models. The complex three-
dimensional frame structure of the fossil fuel steam generating plant ofv
Unit #3 of TVA at Paradise, Kentucky is also studied. The simple model
solutions are then compared with the conventional finite element solu-
tions using the existing well-developed SAP IV program [9]._ The létter

solutions are regarded as the exact solutions for comparison purposes.

Example 1: 10 Bay - 9 Story Plane Frame

This first example is purposely taken from one of the sample problems
in SAP IV [9] for comparison. The geometry and material constants of the
plane frame are given in Fig. 7. The corresponding shear beam mode} or
Timoshenko beam model is also shown. Nine shear beam or Timoshenko beam
finite eiements are used with the floor mass lumped at the nodes. The

mass per unit length, m, of both models is calculated according to
m = ZpAc (51)

The effective shear rigidities of the four types of substructures are

obtained from Eqs. (5-8) as

I
<GA)B = 2.4 :‘2—
EICC

{GA)b = 4 -7

Le (52)

El

=50 ¢
(GA), = 3 2

[

E]

48
@)y =7 2



= 90'

9@ 10'

TITTIP777 7777777777777 7777777777777
10 @ 20' = 200
E = 432000 , p=1.0

AC = A = 3.0 . I =1 =1,0 for all members

c 9
(units: ft, kip)

Figure 7 Example 1

24
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The effective shear rigidity for both the models at the ground Tevel

is obtained as

El
GA = (9x§—8 +2x 8 5 = 3137 « 10° kips (53)

Lc
The rest have the effective shear rigidity given by
El

6A=(9x4+2x2.8)—5 = 1.762 x 10° kips (54)
L
c

Similarly, the effective bending rigidity for the Timoshenko beam

model is obtained as

10 2

EI = 5.7024 x 10~ kips - ft (55)

The angular frequencies for the first five modes of vibration obtained
by using nine shear beam elements as well as nine Timoshenko beam elements
are shown in Table 1. Although the Timoshenko beam model yields a better
agreement with the "exact" solution, it should be noted that the shear
beam modei also proves adequate. In fact the difference between the two -
approximate solutions is negligible from the practical standpoint. The
small discrepancies between the Timoshenko beam model and the shear beam
model in this case should be expected as the structure is reiative]y short
as compared to its lateral dimension, and, as a consequence, the gross
bending effect is not pronounced.

Fig. 8 shows the first three mode shapes of the Timoshenko beam model,
the shear beam model, and the mode shapes of the middle column based on

the exact finite element solution. Excellent agreement is noted.

Example 2: 4 Bay - 15 Story Plane Frame

Fig. 9 shows the dimensions and material constants of the structure.
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Shear Beam

Exact Timoshenko Beam
Frequency Error % liFrequency Error %
0.7678 0.12 | 0.7685 0.09
2.3509 +2.,98 2.2996 -2.18
4.0728 -8.71 3.8135 -6.37
5.9510 -15.41 5.2795 -11.28
6.4080 -3.45 6.6696 4.08

Table 1

(rad/sec)

Angular frequencies for the first five modes in Example 1
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The floor masses are again lumped at the respective levels as shown in
the figure. Fifteen elements are used for both shear beam model and
Timoshenko beam model. The angular frequencies for the first five modes
are presented in Table 2. The Timoshenko beam solutions are again in
close agreement with the exact solutions. It is also expectéd that the
Timoshenko beam model yields more accurate results as the gross bending
effect is significant. The shear beam solutions are still quite accepta—‘
ble as the maximum error stays within 10% from the exact solutions,

One would naturally expect that the frequencies obtained based upon
the shear beam model should be higher than those according to the Timo-
shenko beam model. This, however, is not reflected fromrthelpresent re-
sults in the higher modes. The reason is that the Tumped mass system
which overestimates the inertia effect especially in the higher modes is
employed in the shear beam finite element solution.

In Fig. 10 the mode shapes for the first three modes are shown. Ex-

cellent agreement is evident.

Example 3: 4 Bay - 7 Story Plane Frame with Bracings

When bracing is present, the additional stiffnesses due to the braces
are calculated according to Eqs. (10) and (30). For the braced frame struc-
ture shown in Fig. 11 the floor masses are Tumped at each level; and the
brace masses are divided equally between two adjacent floors. The simpli-
ffed structure that is modeled by either shear beam or Timoshenko beam
finite elements is also shown. The first five angular frequencies are pre-
sented in Table 3, and the first three mode shapes are shown in Fig. 12. It
should be pointed out that the third mode is a longitudinal mode and cannot

be accounted for by either the shear beam model or the Timoshenko beam model.
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vode | Exact Shear Beam Timoshenko Beam
i Frequency Frequency Error % Frequency Error %
1 4.26 4.68 9.86 4.31 1.2
2 13,08 14.00 7.01 13.16 0.6
3 23.18 23.15 -0.10 23.02 -0.7
4 33.03 32.04 -3.00 32.34 -2.1
5 43,32 40,55 -6.40 41.70 -3.7
Table 2 Angular frequencies for the first five modes in Example 2

(rad/sec)
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Exact Shear Beam Timoshenko Beam

Mode Frequency Frequency Error % J| Frequency Error %

1 22.18 24,82 11.9 21.95 -0.8

Z 62.73 73.06 16.5 66.56 6.2

3 105.13 105,32 0.2

4 110.62 117.40 6.1 119.02 7.6

5 131.56 155.91 18.5 163.31 2%.2
Table 3  Agnular frequencies for the first five modes in Example 3

(rad/sec).

The third mode frequency in Timoshenko beam is

obtained by considering the structure as an axial member

with efficient axial rigidity given in Eq. (56).
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The result for mode 3 presented in Table 3 is obtained by considering the

structure as an axial member with the effective axial rigidity

3
EA = EJA_ + E] T—BZ—FD- Ay (56)

The stiffness matrix of the axial member is the same in form as that for
the shear beam except that GA should now be replaced by EA as given by
£q. (56).

As revealed in this example, the longitudinal mode might appear as
one of the lower modes in vibration if the structure is heavily braced.
In this case, the axial (longitudinal ) motion must be also investigated

and compared with the results obtained from the Timoshenko beam model.

Example 4: Central Portion of NZ plane Frame of a Power Plant Structure
The central portion of the NZ plane frame of the fossil fuel steam
generating plant of Unit #3 of TVA at Paradise, Kentucky is first chosen
to examine the applicability of the simple models applying to the practical
engineering frame structures. The geometry and the simplified model are
shown in Fig. 13. To retain clearness in the figure, a number is assigned
to each member for identification. The number above each horizontal member
denotes either the beam number in Table 4(a) or the girder number in Tab]é
4{c); the number to the right of each column represents the column number
in Table 4(b). The first five frequencies are presented in Table 5 and the

first three mode shapes are shown in Fig. 14.

Example 5: NZ Plane Frame of a Power Plant Structure neglecting Bracings
The whole NZ plane frame without bracings of the above-mentioned power
plant structure is now taken for vibration analysis. Fig. 15 shows the

geometry and the member code numbers in accordance with those numbers in
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Beam Designation Moment(i;4§nertia ?;:g)
No.

] W 21 _x 55 0.05498 0,11250

2 W21 x 127 0.14564 0,25972

3 W_24 x 68 0.08777 0,13889

4 W24 X 76 0.10127 0.15556

5 W_24 x_100 0.14468 0,20486

6 W 27 x 94 0.15770 0.19234

71 W30 x 108 0.21557 0,22083

8 W_30 x 116 0.23775 0.23750Q

9 W 30 x 124 0.25849 0.25347
10 W33 x 118 0.28453 0.24167
1] W 33 x_240 0.65586 0.49028
12 W 36 % 135 0,37712 0,27640
13 W 36 x 150 0.43547 0,30694 |
14 W_36 x 160 0.47068 0.32708
15 W 36 x 170 0.50637 0.34722
16 1 W 36.x 230 0.72338 0.47014 |

Table 4 Member properties for the frame structures in Example

4, 5,

(a)

6: (a) beam
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Column Moment of Inertia Area
No. Designation (FT4) (FT2)
1 W 14 x 87 0.01688 0.17?78
2 W 14 x 95 0.01852 0.19375
3 W14 x 111 0.02194 0.22708
4 W 14 x 237 0.05642 0.48403
5 W 14 x 287 0.07089 0.58611
6 W 14 x 314 0.07861 0.64097
7 W 14 x 342 0.08729 0.70139
8 W 14 x 370 0.09597 0.75694
9 W 14 x 426 0.11381 0.86806
10 W 14 x 455 0.12346 0.93056
i1 W 14 x 550 0.15721 1.12500
12 W 14 x 605 0.17747 1.23611
13 W 14 x 730 0.22762 1.49310
14 W 21 x 55 0.00233 0.11250
15 W 21 x 62 0.00277 0.12708
16 W21 x 112 0.01529 0.22917
(b)

Table 4 cont.

(b) column

38
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Girder .
\ Designation Moment OZ Inertia Arga
0. (FT™) (FT¢)
Gl A 0.72156 0,83333
G2 B 0,78042 0.53646
G3 C 0,45598 0.31250
G4 D 25.31100 1.79170
(c) -
Bracing Desianati Areg
No. esignation (FT%)
] W10 x 77 0.15764
2 W12 x 40 0,08194
3 W12 x 65 0.13264
4 W12 x 72 0.14722
Y 12 x 79 0,15764
(d)

Table 4 cont:

(c) girder;

(d) bracing
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Mode Exact Shear Beam Timoshenko Beam
Frequency Frequency Error % H Frequency Error %
1 1.829 1.882 2.68 1.906 4.29 |
2 5.236 5,356 1.12 5,605 5.83
3 10.430 9,173 -12.05 10,318 -1.07
4 17,046 13.418 -21.28 15.506 -9.04
5 19.783 17.684 -10.61 19.511 -1.37
Table 5 Angular frequencies for the first five modes in Example 4

{rad/sec)
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Table 4. The "simplified" model is also shown in the same figure. Solu-
tions for the first five angular frequencies are given in Table 6. Ex-
cellent results for the shear beam model can be expected as the structure
behaves as shear-type motion. The Timoshenko beam solutions are also
quite acceptable as the maximum error stays within 4% from the exact solu-
tions., Fig. 16 shows the excellent agreement for the first three mode
éhapes. Thus, the simple models could be fairly accurate even for non-

homogeneous frame structures.

Example 6: NZ Plane Frame of Power Plant Structure with Bracingé

The same plane frame structure in Example 5 is again considered in
this example but with bracings in some selected panels. Fig. 17 shows the
same configuration of framework as Fig. 15 plus the Tocation and member
code number of each brace. The material constant for each brace is given
in Table 4(d). The corresponding "simplified" mode]_is also shown. Due
to the uneven distributed bracings at the two outside bays, local bending
effects are appreciable in these two bays. The modification process for
evaluating the modified shear rigidity GA described in Sec. 9 should be
employed. The numerical values of the shear strains £, n, and y must be
known so that Eq. (50) can be applied. However, it is unlikely to know
these values before the vibration analysis 1s‘performed, The static analy-
sis for the substructures of these two outside bays with linearly distri-
buted Toading are first carried out separately, and the numerical values
for the shear strains &, n, and vy are then established. The modified effec-
tive shear rigidities for those panels where the local bending effects are
significant are then evaluated according to Eq. (50). The simple model

analysis procedure is subsequently followed to accomplish the analysis.
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Mode Exact Shear Beam ; Timoshenko Beam
Frequency Frequency Error % % Frequency Error %
] 3.3715 3.4157 1.31 3.4332 1.83
2. B840 8.9710 2.59 _9.0627 3.64
2 14,598 14.474 -0.85 2.23
4_ 21,754 21.154 -2.76 2,11
2. l1426k857 25,254 -5.95 2.50

Table 6 Angular frequencies for the first five modes in Example 5

(rad/sec)
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The first five angular frequencies are shown in Table 7 with 5% of
error for the first mode. Fig. 18 shows the first mode shapes of the
shear beam model, Timoshenko beam model, and the middle column based upon

the finite element solutions. Excellent agreement is noted.

Example 7: The total system of the Power Plant

The simple models are now ready to apply to the total system of the
power plant for solutions. The total system contains the steam generator
and the supporting frame structure in three-dimensional sense. The sup-
porting frame structure consists of 1412 beam and column elements, 370
diagonal bracing members, two concrete floors, and 611 joints. The two
concrete slabs with 8 inches thickness are distributed over some portions
of the floors at the elevations of 42 feet and 109 feet above ground,
respectively. Al1l the cross bracing members are placed in some selected
vertical panels to provide additional Tateral resistance against earthquake
motion. A three-dimensional outside view of the steel frame structure is
depicted in Fig. 19. The detailed geometry and material constants forvthe
members are obtained from the blue prints provided by TVA. The lumped mass
model for the steam generator is presented in Table 8. In this analysis,
the relative motion of the steam generator against the steel frames is
neglected.

The procedures stated in Sec. 10 are now used to model the tota] Sys-
tem of the power plant in simple beam models for motions in the two prin-'
cipal planes, i.e. x~z and y-z planes. The ”simp]ffied" structure is
shown in Fig. 20. The number at each node denotes the nodal point number
while the number in the parentheses designates the member. The gross

effective shear rigidity and gross cross-sectional area for each shear beam
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Mode FriZZZEcy Shear _ Beam Timoshenko:: Beam
Frequency Error % Frequency Error %
] 8.647 8.184 -5.35 8.228 -4.84
2 29,508 22.882 -22.5 23.454 -20.5
3 43,564 39.203 -10.0 41,045 -5.78
69,933 54,297 -22.4 59.136 -15.4
5 72,200 67.885 -5.98 71.826 -0.52

Table 7 Angular frequencies for the first five

(rad/sec)

modes in Example 6
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Z - Ordinate Mass
Measured from (kips-secz/ft4)

EL. 0.0
202.0' 187.72]
191.0° 70.050
173.0' 42.146
155.0' 121.118
132.0' » 16.646
127.0' 129.455
117.0° 13.168
101.6' 5.764
81.5' 65.714
42.0' 100.124

Table 8 Lumped mass distributions for the system generator

in Example 7
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finite element together with the Qross Tumped mass at each nodal point
are tabulated in Table 9. The natural frequencies for the two flexura]
modes in x-z and y-z planes, respectively, and the corresponding "exact"
solutionsare presented in Table 10. The exact solutions in Table 10 are
given by [10] which were obtained by using finite elements with nearly
three thousand degrees of freedom. Both frequencies according to the
simple shear beam model are in good agreement with the exact solutions,
It should be pointed out that in the calculation, only 10 degrees of
freedom are used. The mode shapes for the second mode are shown in Fig.
21. The exact mode shape depicts the deformed shape of a typical co]dmni
in the structure. No exact mode shape for the first mode is available.
The present simple model can only account for the in-plane flexural
motion but not the gross torsional vibration. It is known that in highly
unsymmetric space frame or truss structures, these two motions are coupled.
A more sophisticated simple model that includes both flexural and torsional

modes is thus needed.

12. Seismic History Responses Using Simple Models

In this section, time history responses of structures subjected to
dynamic loadings are analyzed by using the simple models. In such dynamic
analysis, the use of simple models proves to be even more economical in
computing time as compared with the use of full scale finite element analy-
sis. In the following, the formulation of the earthquake-response analysis
is first derived using the Timoshenko beam model. The shear beam model
formulation can be easily derived by suppressing the undesired degrees of

freedom, i.e., those variables except the transverse displacement.



e | ] oo e 50| g
] 4003971.4 4576087.9 39.818 11.760 12
2 3477758.3 4129643.0 37.704 31 213,769 | 3
3 2857812,0 | 39367861 28,740 0,380 | 4
4 2857812.0 3945815.1 28,508 717 5
5 3102887 .8 482806 72 28 508 68673 | &
6 2822340.4 5025534 7 28 508 10 445 | 7
7 3007530.1 3653410.7 24,403 5.764 ]
8 3007530.1 36583410 .7 24 403 18 _R4Q o
9 2907220.0 3500489,5 24.212 131.601 | 10

10 2907220.0 3371731.6 24.212 166.460 | 11

11 2907220.0 3371731.6 24,212 188.422 | 12

12 2376509.5 - | 2274084.9 18.530 121.118 113

13 2376509.5 2274084.9 18.530 110.816 | 14
14 1120388.6 2269361.9 15.447 70,050 315
15 1120388.6 2269361.9 15.447 45,818 | 16
16 1080205.2 | 27014319 14,046 il 188,538 | 17
17 1132278.8 2738776.4 14.046 3.019 {18
18 1275077.2 2621895.6 14,046 _3.466 19
19 1719483.5 2449510.4 14,046 59,005 120

Table 3 Material properties for Example 8
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Exact Shear Beam
Frequency Frequency Error %
0.7136 0,7352 3,03
Flexural {y-z) 0.8246 0.8392 1.77

Table 10 Natural frequencies for the two flexural modes in

Example 7 (Hertz)
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Consider a multistory frame structure with n stories in height.
The structure is first simplified to the simple structure using Timoshenko
beam model with the variables v, v', ¢, and ' as degrees of freedom at
each nodal point. During an earthquake, the simplified structure is |
excited with a total acceleration ;i + Qg at the i-th story with respect
to the reference axis as shown in Fig. 22. Thus the equations of motion

of the simplified structure can be written as

r . \ (oL oo
v‘ V) ”~
0

0 Yo

% % ¥
V~I'*‘Vg V] V-I

vi vi - vi

I I S (0 IO R B (s I A (U (57)

¥ b ¥
VntVg Vn v,

v ;’F\ v

wn J)n 1Pn

b | | br L vy

In Eq. (57), [M], [C], and [K] are the overall mass, damping, and stiffness

matrices of order N by N, respectively, in which N equals to 4xn+2 by in-

.-serting the boundary conditions vy = 0 and wo =A0 at the point of support,
The effective earthquake force which produces the dynamic response

of this system results from the fact that the inertia-force term in Eq.

(57) depends on the total tranverse motion, while the damping and elastic
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Figure 22 Simplified structure with rigid-base translation
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forces depend only on relative motion. With the foregoing, Eq. (57)

can be rewritten as

(e ) (.o o ()

Qé vh Vo 0
vh 05 v 0
vy V] vy 1
M i i 0
Y1 ¥y ¥y 0
Vi V3 vi 0
M Y- [+ [c1 - b k] - |- -Qg DERE
In Yn Yi 1
n Yn Yn 0
fl.)n wn lpt’l 0
v; v; vy 0
N / L / L ) L ’
or in matrix form:
MK + [CICky + [KHX = -Qg[M]{l} (59)

in which {1} represents a cd]umn of ones occurring at the 3 + 4(i-1) th
rows where 1 = 1, 2,...n. This vector expresses the fact that a unit static
trahs]ation of the base of this structure produces directly a unit dis-
placement in the transverse degrees of freedom.

Numerical schemes to obtain the solution to Eq. (59) are numerous.
The procedures are, however, mainly divided into two general categories,
nameiy, direct integration and mode superposition [11]. 'In the direct
integration procedure, the step-by-step integration is performed directly
on Eq. (59) in its coupled form. As a resu]t; considerably computational

work is expected as the scheme is carried out successively at each discrete

(58)



60

time interval at. In the modal superposition method, the natural modes of‘
. vibration are used to decouple the cequations of motion [12]. Since only
a few modes are usually sufficient to ensure an accurate account of the
dynamic response, the mode superposition is computation-wise efficient and
thus is employed in the present work.

In the mode superposition analysis, it is assumed that the structural
response can be described adequately by the p Towest vibration modes, where
p << N [13]. In fact, it has been observed that, for most types of loadings,
the lower modes dominate the transient dynamic response of the structure |

[14]. Furthermore, the mathematical idealization of any complex structural

system by the simple models also tends to be less accurate in predicting
the higher modes of vibration. Therefore the number of modes considered
in a dynamic response analysis can be reasonably limited to the first p
modes.

It is wé]] known that damping plays an important role in the dynamic
response of structures subjected to earthquakes. Generally, in the mode
superposition method, damping is assumed to be uncoupled and is given
to each mode as a percentage of the critical damping. Therefore a damping
ratio can be assigned for each mode based upon experimental data [15].

The procedures of the mode-superposition method are described as
follows.

The first P modes are taken to construct the Nxp modal matrix,

[2] = [{edys Lody, 777 Lo}) (60)

where {¢}1 (1 = 1-p) are the p Towest shape vectors. Introducing the

normal co-ordinates defined by the relation

{Xr = [o{Y} (61)
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and substituting Eq. (61) into Eq. (59), the uncoupled equations of
motion, after multiplying with the transposed matrix of [¢], have the
form

Y + U+ K = () - (62)

* * .
where [M*], [C ], and [K ] are the pxp normal (or diagonalized) mass,
damping, and stiffness matrices, respectively, and {Y} and{F*} are the
corresponding px1 normal co-ordinate and force vectors. The individual

terms in these matrices are given by

*

a T
mr = {(b} Y‘[M]{q)}\f‘
* T b= 2 *
C‘(‘ - {(,b}r [C]{¢ r - my‘ wrgr r r = '[, 2, s e p (63)
* T _ o * 2
ko = (o3, [KIo}, = m  wl
+ _ oo T
fo = ~vglo,) (MI{1}

where w, and £, are the natural frequency and damping ratio of the rth
mode of vibration. It should be noted that the damping matrix [C] also
possesses the same orthogonal property as the mass and stiffness matrices,

i.e.,

t}] [Cle}, =0 , r#s (64)

In Eq. (64), {9}, and {9} are the shape vectors of modes r and s, respec-
tively.

The p equations of motion in Eq. (62) are now uncoupled and can be
treated individually. Each equation in Eq. (62) has the typical form of

second order differential equation with constant coefficient

*e

mY(t) + ¢ V() + KY(t) = f(t) (65)

or
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V(t) + 2eul(t) + 0 Y(t) =y T (1) (66)

Many numerical integration methods are currently used for solutions
to Eq. (66). Among them are the central difference method, the Houbolt
method, the Newmark method, and the Wilson 6 method, etc. [11]. In this
work, the Wilson & method is adopted because it is optimized with respect
to stability and accuracy [16].

The assumption made in the Wilson 6 method is that the acceleration
varies linearly during the time interval 6At, where 6 is a numerical
quantity which is greater than 1.0 to ensure accuracy and stability in
the integration. It is recommended that ¢ = 1.4 be used.

Initial conditions are needed in the finite difference solution.

By multiplying Eq. (61) by [M] and [@]T successively, Eq. (61) becomes
[e1T[MI0 = [o1' ML de1y (67)
The normal co-ordinate {Y} can be expressed as
vy = el [MI0 | (68)

if the normalization process is applied to the modal matrix [¢]. At

t = 0, X(0) = X(0) = X(0) = 0, and consequently,

e

Y(0) = ¥(0) = Y(0) = 0 (69)

The p solutions of Eq. (66) can be obtained for any given random earth-
quéke records in the transverse direction up to :any desired time t. It
should be noted that the random earthquake records.are ]inéar]y interpo-
lated before the numerical integration scheme is employed.

The displacement vector {X} of the "simplified" structure can be
obtained easily using Eq. (61). Since only the transverse displacement

at each story level is of interest, the multiplication process corresponding
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to such element in the displacement vector {X} is sufficient to provide
the necessary outcome for the transverse displacement.

Dynamic time history responses for the shear beam model can also
be easily followed. Instead of four degrees of freedom at each nodal
point for the Timoshenko beam model, only one degree of freedom, i.e.,
tranverse displacement, is retained in the shear beam model.

Solutions for the time history responses of some frame structures
are studied in the following by using either the Timoshenko beam model
or the shear beam model with or without damping.

A homogeneocus 4-Bay, 7-story plane frame structure shown in
Fig. 23-in first selected for illustration. The shear beam model is
also shown in the same figure. The "complex" frame structure and its
"simplified" shear beam structure are then excited, respectively, by
the 1940 E1 Centro N-S earthquake ground acceleration component of
30-second duration as depicted in Fig. 24. The "exact" time history
response for the central column of the frame structure together with
that of the approximate solution of the simplified shear structure at
each story level is then plotted in Fig. 25. Fifteen modes are taken
for mode superposition in the exact solutions while four modes are
used in simple model solutions. The close agreement shows that the
simple shear beam model,in this particular example, yields fairly
remarkable results. It is found that the first mode dominates the
response. In this case, it is sufficient to take the first few modes
for the mode superposition method without appreciable loss of accuracy.

Fig. 26 shows some of the "exact" time hfstory responses together
with the simple shear beam model solutions for the NZ plane frame struc-

ture shown in Fig. 15 to the 1940 E1 Centro N-S component with duration
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of 30 seconds shown in Fig. 24. The maximum displacement is observed
at t = 3.80 seconds with magnitude of 1.7126 feet in the last story

at elevation of 238.0 feet. It is interesting to note that the higher
modes of vibration of a set-back building can make a very substantial
contribution to its total seismic response. This fact has been demon-
strated in a recent work by Humar and Wright [17]. In this exémp1e,
ten modes are taken for mode superposition in exact response solutions
while five modes are used in simple model solutions. Close agreement
is also noted.

The time history responses for structures that have significant
gross bending deformations should be computed by using the Timoshenko
beam model. Examples with this characteristic are the 4-Bay, 15~Story
plane frame structure and the 4-Bay, 7-Story plane frame structure with
bracings in Examples 2 and 3, respectively. Figure 27 shows typical
time history responses of the shear beam model, the Timoshenko beam model,
and the responses of the middle column based upon the exact finite solution
for the 4-Bay, 15-Story plane frame structure in Example 2._ The 1940
El Centro N-S acceleration component is used as the input of grouﬁdv
motion. Ten modes are used for the exact response solutions and five
modes are taken in simple model solutions for mode superposition. Solu-
tions for the 4-Bay, 7-Story plane frame structure with bracings to the
same excitation but with 1.5% critical damping are plotted in Fig. 28.
In this example, ten modes are also used for the "exact" solutions while
only the first two modes are taken for mode superposition in the simple
model solutions. Both simple models yield very good solutions.

As a final example in this section, the seismic responses for the

total system of the power plant structure shown in Fig. 19 subjected to
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Ithe 1940 Ef Centro N-S and E-W acceleration components shown in Fig. 24
and Fig. 29 are performed. The N-S and E-W history responses at some
story levels with zero damping are plotted as soTid Tines whiTe those
with 1.5% critical damping are traced with dash-dot 1ines as shown in
Fig. 30 and Fig. 31, respectively. The maximum N-S displacement with
zero damping is observed at t = 17.7 second with magnitude of 12.552 in.
while an amplitude of 10.007 in. at t = 5.3 second is noted for the
displacement with 1.5% critical damping. Those maximum displacements
in E-W direction are 18.737 in. at t = 27.9 second wifh zero damping
and 11.431 in. at t = 19.5 second with 1.5% critical damping as shown
in Fig. 31. No exact history responses are avai}able for comparison

at this moment.

13. Dynamic Internal Force and Moment Computations using Simple Models
In design for earthquake resistance, the maximum stresses in the
structure during the entire period of earthquake motion have to be computed.
Since the simple models represent the gross behavior of a structure,
the member stresses in the actual structure can not be obtained directly
from the result of the simp]é model analysis. 1In this section, procedures
are deveioped for recovering the member stresses from the simple models.
We assume that the displacement of the actual structure at each
f1oor.1eve1 is the same as that obtained from the simple models at ahy
time of interest. Since during an earthquake, columns are subjected to
the most severe loads and failures of columns have been observed in
damaged buildings, we will focus our attention on the evaluation of the

dynamic internal forces, moments, and stresses in columns in this study.
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At any time t, the displacements of the actual structure at the
floor levels are taken to be the same values as given by the simple
models. With this, the deformations in the substructures which were
used to develop the simple models can be determined, and the forces and
moments in the substructures can be easily computed. In the following,
the procedures will be demonstrated for each substructure.

Consider first substructure Type a as shown in Fig. 2. The shear
force V and bending moment M at the fixed end of the column can easily

be obtained using the equilibrium condition of the member. We obtain

and '
L
~ Cc
M= - P-i— (70)
From Egs. (1), (5) and (70) we have

$

Le

and (71)
- (GA)a $

V= Z(GA)a

=
i}

Since § is half of the true relative transverse disb]acement X between
two adjacent floors, the shear force V and bending moment M at the fixed

end of the solumn should be

V= (GA), &
a LC
_ 1
M= - 5 (GA)aX

In the same manner, the shear forces and bending moments of the

columns other than Type a are

V= (GA), X
b L
c
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and ' (73)

1
M=~§(GA)

bX

for substructure Type b,

V= (GA) X
c LC
M, = - 2¥308 (GA)_ (74)
2(1+3uB)
and
M= - B (G x
2(1+3u8)

for substructure Type ¢, and

- X
y = (GA)d )
C -
MI = - ligg&——-(GA)dX (75)
1+60B
and
308
M, = - {GA) X
J 1+6aB d

for substructure Type d. In Egs. (72-75), x is the relative transverse
displacement between the two adjacent floors and the subscripts I and J
in Egs. (74-75) are referred to the bottom and upper ends ofvthe column.
The parameters o and 8 in the last two equations are defined in Eq. (2).

With these formulas in hand, the dynamic internal forces, moments,
and stresses in each column can be obtained. Since only the maximum
values during the whole period of excitation are of interest, an attempt
is made to seek these values without combing through the whole response
history for.each member.

To illustrate this procedure, the 4-Bay, 7-Story frame structure

considered in Sec. 12 1is chosen. The deformed shapes of the Timoshenko
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' béam at t = 4.8 second and t = 9.9 second are noted to bear close resemblance
to the first natural mode shape. These deformed shapes as well as the
first natural mede shape are.normalized‘and presented in Table 11. In
view of the foregoing, it is reasonable to assume that each column has its
maximum internal shear forces and bending moments at a particularly
cértain time t when the maximum displacement occurs. Following this
procedure, the internal shear forces and bending moments for each column
are obtained by using the Timoshenko beam model. The results togethef
with those using the "exact" finite element method at t = 4.8 sec. and

at t = 9.9 sec. are given in Table 12 and Table 13, respectively.

At these two instants, the displacements appear to assume maximum values.
It is noted that, in this history response analysis, ten modes are taken
for mode superposition in the exact response so]utions while only two
~modes are used in the Timoshenko model solutions. Due to the existence
of symmetry, only half of the results are shown in the table. It is

found that the columns located between the base and the first story have
the maximum shear forces as well as bending moments for both cases.

Among these columns, the one between the first bay and the second bay is

found to be most critical.

14. Conclusions

A simple shear beam model and a Timoshenko beam model for vibratioh
analysis of frame structures are presented. Explicit formulas for evalu-
ating the effective stiffnesses are derived. Modified effective shear
rigidity for the situation that local bending effect occurs is also
presented. Finite elements based upon these simple models are also

formulated. The simple models are applied to predict the first two
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Story| Transverse Displace- Tr;gizerse Displace- First Mode
z 0.1523 0.1475 0.1483
2 0.3644 0.3543 0,3561
3 0.5618 0.5497 05517
4 0.7311 0,7205 0.7222
5 0.8636 0.8569 0.8580
6 0.9540 0,9516 0.9%19
7 1.0 1.0 1.0
Table 11 Normalized transverse displacement vs. Normalized first

mode shape



83

puodas gy = | e sjuswouw Bulpusq pue SIDu04 JUBBYS |PUJDIUL JLWRUAQ.  Z| @|qel
(8%°¢ L8y ¢ : Vel €8¢€°0 Lvs 91~ 6Ly 9- -1
VL8 ¥ vi8 v 906"V £68°¢ yov 2e- 299" ye- 9-1
9L L 9pL L 0€c’9 €90°§ LE9 LY~ €L6° L€~ G-1
[el’6 26 1947 ¢ 2e8’9 ¥¥8°09- Gv9gy- 7=l
m#m;or S¥9°0L (8878 862 © 896°0L- €90° LS~ €-1
eV 1L €Y LL v16°6 €€6°6 €€’ 9L~ 728" ¥9- 2-1
8495701 9667 L1 €L2°0L LG¢ 8l Gy8° €6~ 08056~ L-1
(C)W (I)W (0 )W (I)W )
Weag ONuoySOWL | 158X Hesd  oRusUsoutL Foexd »;M”m
(NI-dT) m:o_ X SJUglioll butpuoag (97) N-o_ X S82404 J4e3yS§ 1 -uwn | 09




84

‘Juod ¢i °olqel

ccl' e el e 88L°¢ 96/.7°¢ 18" ve- 28 1¢- L2
Lie £ ez £€89°L 126 9 YL 8Y- L0 Ly~ 9-¢
8LL°01L 8LL 01 [88°0L 900°01L 9" LL- ¥9°69- G-¢
069°¢€1L 069 €l o6e €l 6GL7 2L L2° 16" 91" /8~ -2
890 4l 896 Gl lL‘ Gl Sl T6 71 Gy 90L- ¥2°001- €-¢
¢Sl L1 sl Ll 1 €80°LL L6L7LL GE'VLL- Levil- ¢-¢
8L ¥l LOL761L 88L°G1 0e0" Le 96" PLL- el et L-¢
(C)W (I (] (IIW o
W85G ONUSYSOWL L R E| weag ojusaysout) 10BX7 fio3s
-uwn 109

(NT-91

01 X Sjuswout buipusg

m...

(

mJMt,N-o_ X $92404 J4BAYS




85

"3u0D z| 9Lqel

2el € 2el e || vibv €eL’e 187ve- €0°62- L-€
Lie" L LLe™ L [2¢°8 vee L vl 8Y- ¥8° 16= 9-¢
8LL 0L gLL ol 06v° LL 66601 9% LL- ey eL- G-¢
069°¢l 069°¢l elgel LIt et L2 16~ G/ 68~ v-€
896Gl 896761 26Y Gl 6¥6° V1 G%°901- Ly 0L~ £-¢
¢Sl Ll esL Lt LE6°91L £18°91 Se"vll- AN ¢-€
18L° vl L0761 90t° Gl 9¥8°0¢ 96 v LL- ¥8°021L- :‘ L-€
(0)W (1)W (C)W (I)W “on
weag ojuoaysowy| m 10eX3 wesd  ofusysoutl 1oex3 A40318
(NI-97) m;oF X Ssjuswou Buipusg (g7) _0L X s@dd04 Jesys -uun1og

I




86

puodds 6°6 = 1 2e sjudwow Bulpusq pue S3D40) JBBYS |BUJIUL JLWeuAg ¢§| dlqel

TAN AN el el 0L0" L1 9¢4°LL v16°08- 0¢L 6L~

9¢L il eps 8l 6LL"b )AL 863786~ G09°88-

‘0N

Wweaq OoyUauSOouL | 13ex3 L4018

(CIW (I)W ()W (T)W
wesg  oyudysowL ] zs 17eX3
(NI-91) g.0L X S3usuou bulpusag (g1) 0L X $92d04 Jeays -uun1oj

ty8 ¢ ev8¢ j‘ 68671 91€°0 096°81L- 8EE 9~ - L-1
[5G 196°§ Le6™ ¥ 00" ¢ 900" Le- 045°9¢- 9-1
900°8 900°8 ¥8¢°L ¢€9°§ GLE7 €S- —mofm¢| G-1
¢20°0L 220 01 8€E6 990°8 018799~ €10 84~ -1
q9% L1 9% L1 96,701 2Ll 01 mmq.om| 291,769~ €-1

¢ _n




87

"3u0d g1 ®(qel

Y9 b vo¢ v ; EV0TY 0l6"¢ €V 8¢- gL €e- L-¢
92¢'8 9c¢e°8 0€e’8 607, LG5~ 9¢€° LS~ 9-¢
600°¢L 600° ¢l 29 ¢l 6LE"LL 90°08- Le6L- 52
2¢e0’§l 2€0°Gl 8¥6°Gl 160°G1 ¢¢’001~ 9p"€0lL- v-¢
61711 L6117 LL 0/e°81 6567 L1 S9'ylLl- oL Let- £ |
902781 90¢°81 €60°61 €LL761 LeLel- Ga'62i- Z-¢
949761l 89,702 6L vl €2€°0¢ sl lel- 90°LLL- L-¢
B W | (DW .
weag OYU3YSOWLL PRI weag OjuUsSYsoul| 12e%3 »LMMm
(NI-97) ¢-01 X squauou buipuag (a71) 0L X $22404 Jeays H -uwnio)

I

Nl




88

"3u0d ¢| 3|qe]

2 YA 7 v9¢ v v 9 LE0" ¥ Ev°8¢- vy LE- L-€
9ct"8 9ct'8 (8176 068 £ 16°6G- €694~ 9-¢
600 ¢ 1 600 ¢l ySL7 €L ve L1 90°08- G9°¢£8- G-¢
0741 ¢e07 61 Ly 91 697 Gl ¢¢ 001~ 82 901~ v-€
6T 1 Lol /1 8l4 gl G808l S9°vlLL- te'eel- €-¢
90281 90¢° 81 6¢6° 8L oLv'6l Le"1el- 6L Ll ¢-¢
94G7G1 89.°0¢ vy vl €G1°0¢ gL lelL- 2e°SLl- L-€
QL (T Br (TH e
o5y 0quUsySOuLL weag ojuaysowl] 10ex%3 £4028
_ il ~uwn) o9
(NI-97) 0L ¥ Ssausuwouw buLpusg (a1) 0L X S30404 u4e3YS

¢

I




89

flexural modes in the principal planes of the fossil fuel power plant
of Unit #3 of TVA at Paradise, Kentucky. Comparisons of the simple model
sofutions with the exact finite element solutions show that the present
simple modeis are quite adequate in predicting the natural frequencies
and the corresponding mode shapes for the lower modes. When the frame
structures are heavily braced, it is found that longitudinal motion
might appear in the lower modes of vibration. A model of axial member
for the longitudinal motion is also derived.

The simple models proposed in this report could be very useful
in seismic dynamic analysis of engineering frame structures where lower
nodes usually dominate the response. The models are extended to predict
with great accuracy the time history responses of the dynamic 1nterna1

column shear forces and bending moments caused by earthquakes.
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