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Abstract 

A simple shear beam and a Timoshenko beam model have been developed for 

dynamic analysis of complex frame structures. Explicit formulas have been 

derived for computing the equivalent shear and bending rrigidities of the 

structure. The simple models were evaluated by comparing the simple model 

solutions with the solutions obtained from using full scale finite elements 

in free vibrations of plane frames. It was found that the simple models 

yielded very accurate frequencies as well as mode shapes for the lower modes. 

When diagonal bracings are present, the Timoshenko beam model was more 

superior to the shear beam model. The shear beam model was employed to 

compute the natural frequencies of the fossil fuel power plant of Unit #3 

of TVA at Paradise, Kentucky. The first two frequencies were found to be 

in good agreement with the finite element solutions. The simple models were 

also used to compute transient dynamic responses of structures subjected to 

earthquake disturbances. 
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1. Introduction 

Dynamic analyses of large frame structures such as the structures in 

a fossil fuel power plant can be performed by using the finite element 

methode However. such analyses are usually very laborious and require a 

great amount of computer time. In many cases, this type of analysis can 

prove to be prohibitive. Simple procedures of analysis are obviously de

sirable. 

Several approximate analyses for vibration of plane frame structures 

1 

have been employed in recent years. The fundamental slope-deflection for

mulas were used by Goldberg, Bogdanoff, and Moh [1] to set up two classes 

of equilibrium equations, i.e., shear equations and joint equations, for 

each story. The method they developed was a trial-and-error technique for 

determining the natural frequencies, mode shapes, and the response to ground 

motion. A modi fed and extended iterative method was presented by Paramasivam, 

Yeh. and Nassim [2] who took into account different individual joint rota

tions. The successive approximation scheme used by [1] and [2] is a tedious 

process. The other main drawback is that the effect of bracing cannot be 

included. Sandhu [3J has presented a simplified method based upon the con

cept of an elastic shear wave equation in a uniform solid bar to model the 

dynamic behavior of mu1ti-story plane frame structures. The results based 

upon the model given in [3J were not accurate even for a homogeneous four

bay, six-story structure chosen for illustration. Heidebrecht and Smith [4] 

have suggested a sheo.r-flexural beam model to perform dynamic analysis for 

tall wall-frame structures. The concept for evaluating the shear rigidity 

may be adopted for investigating simple shear beam model for vibration of 

plane frames. An interesting method was presented by Blume [5,6] who developed 
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simple procedures with which the contribution of story shea~joint rotation, 

overall flexural, and ground compliance in the three lowest modes of vi

bration couid be estimated. A period synthesis concept and the pseudo

stiffness procedures were presented to enable the approximate determination 

of natura1 periods as well as mode shapes for rigid-floor shear buildings. 

However, it is required to provide charts for certain case studies before 

the method can be employed. 

This research concerns developing simple models for computing dynamic 

responses of complex frame structures. A shear beam model which is able to 

account for the girder flexibility is first presented. As long as a struc

ture deflects in shear-type, fairly accurate results can be expected. When 

the gross flexural deformation becomes Significant, the Timoshenko beam 

model is then used. Explicit formulas for shear and bending rigidities of 

the models are derived in terms of the member dimensions and material pro

perties of the original frame structure. Several plane frame structures 

are first used as evaluative examples. Free vibrations of these structures 

are investigated by finite element method as well as by using the simple 

models. Both frequencies and mode shapes predicted by the simple models are 

in good agreement with those obtained from finite element method. The 

shear beam model is then used to model the boiler-frame structure of the 

fossil fuel power p1ant of TVA Unit #3 at Paradise, Kentucky. 

The mode-superposition method is then used for analysis of transient 

dynamic responses of the simple models. A specific 4-bay and 7-story frame 

structure subjected to the N-S component of the El Centro 1940 earthquake 

ground acceleration is studied by both the simple models and the finite 

e1ement method. The simple models are excellent in the comparison. 

A procedUre is a150 developed to recover the dynamic member forces 

and moments in the actual structure from the representative ~imple ~odels. 
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Results obtained by using this procedure are found to be rather accurate. 

2. The Simple Models 

The use of simple models to represent a frame structure requires de

termination of the effective shear rigidity GA and effective bending rigidity 

EI of the frame. Once these properties are established, the vibration 

analysis is performed in the usual manner. Evaluation of the overall shear 

and bending rigidities of a frame structure by considering all the members 

exactly can be done on the computer with the aid of the finite element 

method. However, such approach apparently defeats the purpose of a simple 

model. In view of this, the frame structure is first decomposed into sev

eral typical substructures and then the contribution of each substructure 

in the gross shear and bending rigidities is evaluated. 

3. Evaluation of the Shear Rigidity 

The typical substructures are indicated in Fig. 1. Since the base of 

the structure is assumed fixed. the behavior of the structural members at 

the ground level is substantially different from the rest, and, hence, are 

considered separately. Fora tall building where the boundary effect is 

relatively small, it might not be necessary to make such distinction. 

In a lower mode vibration, it is assumed that, away from the base, the 

deformation is somewhat "smooth" in the longitudinal direction, and con

sequently the middle point of a column between two adjacent floors could 

be a point of inflection. Similar argument leads to the conclusion that the 

midpoint of a girder is a point of inflection. For the present purpose, 

these points are then replaced by equivalent hings and rollers as shown in 

Fig. 1. The substructures at the ground level for the shear rigidity analy

sis are depicted also in Fig. 1. 
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Figure 1 Four types of substructures 



To illustrate the procedure for evaluating the effective shear rigi-

dity contributed by the substructures, substructure Type a is first con-

sidered. By applying a horizontal force P at the joint as shown in Fig. 

2, the corresponding displacement 0 can easily be obtained. In this 

analysis, the rigid frame assumption is taken. In other words. the axial 

deformation is neglected. The resulting displacement is obtained as 

(2+a.S)L3 

o = 24a.SEI c P (1) 
c 

where E is the Youngis modulus assumed to be identical for columns and 

girders, Ie is the moment of inertia of the column, Lc is the column length 

between two adjacent floors, and a and B are defined by 

in 

a. = I /1 
9 c 

B = I 'L -c' 9 

which a subscript 

The equivalent 

y = _0_ 
L /2 c 

(2 ) 

g denotes girder. 

shear strain is 

(3) 

The shear force associated with this amount of shear strain in an equiva-

lent shear beam is 

(GA)aY = (GA) £i 
a Lc 

(4) 

where (GA)a is the effective shear rigidity provided by the column under 

consideration. Substitution of Eq. (1) into Eq. (4) yields 

(GA)a = 
12a.BEI c (5) 
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for substructure Type a. 

Similar procedures lead to the following results for other types of 

substructures: 

(GA) = 
b 

'12aSEI c 

(l+aB)L~ 
for substructure Type b, 

O! 2(1+3aS)EI 
(GA) = c 

c (4+3aS)L2 
c 

for substructure Type c, and 

(6) 

(7) 

6 (l+6aS)EI 
(GA) = c (8) 

d 12'" Q)L 2 
\_T,)C1.f.' C 

for substtucture Type d. The total effective shear rigidity of the frame 

substructure between two floors is the sum of the shear rigidities of the 

appropriate substructures. 

4. Diagonal Bracings 

Diagonal bracing is often used in flexible frames to provide additional 

lateral resistance against earthquake motion. Since a brace is usually de-

signed to take axial forces only, it can be considered as an axial member 

without bending rigidity. The additional shear rigidity of the structure 

d~e to a brace will be calculated based upon this assumption. It is thus 

assumed that the braces and frames are pin-connected to each other, so that 

the bracing stiffness can be added to the frame stiffness. This approach 

was taken also by Clough and Jenschke in a study on the effect of diagonal 

bracing on the earthquake performance of a steel frame building [7]. 

With the foregoing assumptions, the shear rigidity of a brace can be 

obtained by analyzing the simple problem in Fig. 3a. The additional effec-

tive shear rigidity is obtained as 
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p 

p 

(a) (b) 

Fi gu('e 3 Effecti ve shear and bendi ng ri gi dities of a brace 
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2 = AbE cos e sin e (9) 

where Ab is the cross-sectional area of the brace and e is the inclined 

angle of the brace considered. The above expression can also be re-

written as 

A, E 
D 

in which S is defined by Eq. (2). 

5. Shear Beam Model 

(10) 

In practical applications, a great number of frame structures behave 

essentially as shear components for the lower mode vibrations. The 

shear beam model ;s then considered to be infinitely rigid in bending. 

Consider a shear beam finite element of length L, shear rigidity GA, 

and mass per unit length m. The strain energy and kinetic energy per unit 

length of beam are given by 

(11 ) 

and 

(12) 

respectively. In equations (11) and (12), v ;s the transverse displacement. 

In the absence of lateral loadings, the equation of motion can be ob-

tained by using the Hamilton's principle. The resulting equation of motion 

is expressed as 

3 
3X [ GA ~ ] ax = mv ( 13) 
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It is important to note that the present shear beam model is different 

from the conventional shear beam model for which the floors are assumed 

to be infinitely stiff as compared to the columns. Besides being able to 

account for the girder flexibility, the present shear beam model is also 

more elaborate in evaluating the effective shear rigidity as has been 

described previously. 

To retain the simplicity, the following displacement function is 

assumed for the shear beam finite element: 

(l4 ) 

where v1 and v2 are the nodal displacement and L is the element length. 

The stiffness matrix then reads 

[K] = GA 
L 

r 1 

L -1 

A lump-mass matrix of the form 

[!~J :: mL [1 OJ 
2 0 1 

(15 ) 

(16 ) 

will be used. The lump-mass method, in general, overestimates the iner-

tia effect, and is thus more suitable for the shear beam as the suppression 

of bending also has a stiffening effect on the structure. 

6. The Timoshenko Beam Theory 

Fot converrience of reference, the basic formulation of the Timoshenko 

beam theory is reviewed first. Consider a Timoshenko beam finite element 

of length L, bending rigidity EI, shear rigidity GA, mass per unit length 

rn, and rotatory inertia pI (p ;s the mass density and the moment of inertia 

I is obtained from the value of El). Referring to Fig. 4 which shows the 
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Figyre 4 Timoshenko beam element: (a) degrees of freedom; 

(b) deformation of differential element 



coordinate system and degrees of freedom chosen. the strain energy and 

kinetic energy per unit length of beam are given as follows: 

and 

2 
U = ~EI ('£2P-)2 + .!2KGA (~+ 1/J) ax ax 

• 2 (" 2 T = ~ m (v) + ~ pI 1/J) 

r~spectively [8J. In addition to the notations denoted previously, 1/J 

represents the bending slope of the cross section of the element. 

12 

( 17) 

(18) 

In the absence of lateral loadings, the equations of motion can also 

be easily obtained. These two resulting coupled partial differential equa-

tions are expressed as 

L (EI ~\ -I- KGA (~ + l/J) = pI,!. ax ax' ax r 0/ 

(19) 

The shear force Q and the bending moment M are rel~ted to the dtsplace-

ments as 

3V \ Q = KGA (~+ ~) 

and 

M :: EI ~ ax 

Oh 
(20) 

(21 ) 

respectively. The shear correction coefficient K assumes different values 

depending on the geometry of the cross-section. In this study, we set K = 
1. 

7. Evaluation of the Bending Rigidity 

The gross bending effect can be large for tall building structures. In 
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the present consideration, it is assumed that the joints of the same floor 

level displace linearly in the vertical direction with respect to the cen-

troidal axis of the cross~sectional areas of columns as shown in Fig. 5. 

This assumption -is obviously valid only in lower modes of vibration. In 

addition, it is also assumed that the restoring forces in the vertical di-

rection are provided by the axial forces in columns. Denoting the incre

mental rotation at a floor level relative to the lower one by E (see Fig. 

5), the relative displasement at joint i is given by 

(22) 

where d. is the horizontal distance from the joint to the centroidal axis. 
1 

Suppose furthermore that the strain is constant in the column, the corres-

ponding axial force becomes 

P. = E{A). LOi = E(A ). d. ~L 
1 Cl C Cll c 

(23) 

where (A ). is the cross-sectional area of the ith column. The moment about 
C 1 

the centroid due to Pi is 

2 M. = P.d. = E(A ). d. ElL 
l 11 Cl1 C 

The total bending moment of the whole structure is obtained as 

M = I M. = E LC I(A). d. 2 
i 1 c i Cl 1 

Equating Eq. (25) to Eq. (21), an equality equation ;5 then followed: 

E1 2J.t = 
3x 

2 
I(A ). d. 
• C 1 1 
1 

(24) 

(25) 

(26) 

where EI represents the effective bending rigidity of the equivalent Timo-

shenko beam model. Since the strain is assumed constant in columns, it 
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follows that 

between any two adjacent floors. As a result, the effective bending rigi-

dity can be expressed in the form 

2 
E1 = E l(A ). d. 

i ell 
(28) 

Referring to Fig. 3b, the additional effective gross bending rigidity 

due to a brace can easily be obtained as 

(29) 

or 

(30) 

in which d denotes the distance between the upper joint of the brace to 

the centroidal axis of the cross-sectional areas of columns. 

8. The Timhshenko Beam [\lodel 

S1 nee the resulti ng equi val ent Timoshenko beam for the frame structure 

is, in general, nonhomogeneous. it will be more convenient to employ the 

finite element method for sglution. Derivation of the stiffness and con-

sistent mass matrices is quite straightforward. Hence, only the results 

will be presented here. 

Consider a Timoshenko beam finite element as described in Sec. 6. By 

assuming the shape functions for the displacement variables as 

2 3 
v =: a 0 + a 1 x + a 2x + a 3x 

(31 ) 
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together with the energy functions given by Eqs. (17) and (18), the total 

strain energy and kinetic energy in a Timoshenko beam finite element can 

be computed. The matrix equations of motion for the discrete system using 

Hamilton's principle become 

{F} = [K]U,} + [M]{l1} (32) 

where [K] and [M] are the element stiffness matrix and element mass matrix 

of order 8 x 8, respectively. In Eq. (32), the force vector {F} and the 

displacement vector {il} of order 8 x 1 are defined by 

{F} and {11} = (33) 

respectively. The subscripts 1 and 2 denote node 1 and node 2, respectively, 

and a prime indicates the slope. It should be noted that with this higher 

order element, only Q and M can be realized in the boundary conditions; the 

generalized forces Nand p are set equal to zero at both clamped end and 

free end. In view of the displacement fields, the boundary conditions are 

v = 0 and w = 0 at the clamped end and that the bending moment is zero, that 

is, w' = 0, and the shear force is zero, that is, 6 - W = 0, at the free 

end. 

The stiffness matrix ;s obtained as 
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[K] = [-~;T+-~!--J (34) 

where the superscript T denotes transpose of the matrix and the submatrices 

are g'j ven by 

I S04b -42Lb -210Lb -42L2b 

i 54L2b -42L2b 0 
[k,J = 

! 
(35) 

36a+156L2b 3La+22L3b 
I ~ ... ymo 

4L2a+4L4b L 

r- -504b -42Lb -210Lb 42L 2b 
I 

-14L2b 42L 2b -7L3b I 42lb 
[k2J :::: (36) 

I 42L2b 2 3 210Lb -36a+S4L b 3La-13L b 
I 

42L 2b 7L3
b 

3 2 4 L -3La+13L b -L a-3L b 

and 

r504b 42Lb 210Lb -42L2b 
1 

56L 2b -42L 2b I 0 
[k 4J :::: 

I 36a+156L2b 3 -3La-22L b 
! Sym. 

4L 2a+4L4b L 

(37) 

EI 
a = 30r ~ (38) 

The mass matrix is expressed in the form 

(39) 

where the submatrices are given by 



[m,] 

and 

= 
1156c 

I 
I LSyn1

0 

r 54c 
I 

I -13lc 

= 1 : 
1- 156c 

= I 
lsym. 

-22Lc 

4L 2 c 

13Lc 

-3L 2c 

o 

o 

0 

a 

156e 

o 

o 

54e 

13Le 

o 

o 

156e 

0 

0 

22Le 

4L2e 

o 

o 

-13Le 

-3L 2e 

o 

o 

The two parameters c and e in Eqs. (40-42) are 

_ pAL 
c - 420 

. _ p IL 
e - 420 
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(40) 

(41) 

(42) 

(43) 

In this study, the consistent mass system is adopted for the Timoshenko 

beam finite element. It is noted that lumped mass system can also yield 

acceptable results. The Timoshenko beam model presented herein can also be 

reduced to the shear beam model by suppressing the rotation ~ in the 

Timoshenko beam finite element. The same purpose can also be achieved by 

letting the bending rigidity EI approach infinity. 

9. Modifications of Shear Rigidity for Local Bending Effects 

The effective shear rigidities presented in Sec. 3 for frame structures 

and in Sec. 4 for bracings become invalid as the frame structure vibrates 



with significant local bending effects. In this case, the shear beam 

model and Timoshenko beam model developed previously can not yield good 

solutions. Modifications of the effective shear rigidities for both 

t~framework and brac;ngs at the locations where the local bending 

effects occur are required. It is noted that the local bending effects 

are mainly due to the existence of bracings. This fact will become 

apparent when the evaluative examples #5 and #6 in Sec. 11 are carried 

out and compared. 

To modify the effective shear rigidities, two cases that cause 

significant local bending are considered, namely, the rotation of the 

panel of a framework and the stretching of columns and bracings. In 

the fOllowing, these cases are considered separately and a modified 

gross shear rigidity is eva1uated. 

Fi g. 6a shows a typi ca 1 panel ABeD and its deformed shape A I B I C '0 ' . 

19 

The force p* associated with the shear strain y is equal to the shear 

rigidity (GA)* times y. The force p* is also the difference between the 

force P associated with the shear strain y and the force pi associated 

with the shear strain 1;. Therefore, the effective shear rigidity that 

accounts for the rotation of pannel can be expressed as 

( GA)* 
P-k p_pt 

---
v , 

(1 - f.) GA 
y 

= (GAh - (GA)C; 
y 

where GA is the shear rigidity evaluated according to the previously 

(44) 

unmodified procedure in Sections 3 and 4. Note that the modified shear 

rigidity (GA)* reduces to the unmodified shear rigidity GA if no panel 

rotation occurs and that no shear rigidity is provided by the panel as 

the two shear strains I; and y equal. Equation (44) should be used to modify 
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Figure 6 Modification of effective shear rigidity: (a) rotation of 

panel; (b,c, and d) stretching of panel 
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the shear rigidities of the substructures involved. 

In Sec. 4~ the bracing's contribution to the shear rigidity came 

from the side-sway of the column. When bendi~g is pronounced, columns 

are stretched so are the bracings. In the following, the additional 

shear rigidity due to the stretching of columns and bracings is estima-

ted, 

Referring to Fig. 6b, the force induced horizontally to raise one 

unit of vertical displacement is equal to 

(45 ) 

or 

{46} 

in which Ab and Lb are the cross-sectional area and length of the brace 

considered~ r'espectively. The horizontal force for a lI-displacement (see 

Fig. 6c) is expressed in terms of the angle n as 

(47) 

where (GA)Br is the effective shear rigidity of a brace given by Eq. (10). 

The force P1 is the additional horizontal restoring force due to the 

vertical deformation. In the shear beam model, the only deformation allowed 

is the shear strain y. Thus, an equivalent shear force P2 should be assigned 

to represent Pl' Hence, 

P2:::(GA)' y=P1 Br 
(48) 
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Substitution of Eq. (47) into Eq. (48) yields 

p 
(GA) I = _1 = :!l (GA) 

Br y y Br 
(49) 

Adding Eq. (49) to Eq. (44), we obtain the modified shear rigidity 

contributed for the bracing as 

(GA) = (1 - ~ + 21) (GA}Br Br y y 
(50) 

The above shear rigidity for the brace is needed in the case where 

local bending effect can not be neglected. 

10. Applications to the Three-Dimensional Frame Structures 

~1any three-dimensional frame structures, in practice, can be regarded 

as a collection of plane frames connected by girders. Consequently, vibra

tions in the principal planes can be analyzed by using the shear beam 

model or the Timoshenko beam model. To derive the representative beam 

models~ we first model the individual plane frames by the beam models and 

then combine the stiffnesses and masses of these beam· models into a single 

beam model. In such process, relative motions among the individual 

plane frames are lost, and the gross torsional mode of vibration can not 

be accounted for. The analysis procedure presented here, however, should 

be valid for designs where motions in the principal planes are the 

main concern. In particular, this simple model analysis should be useful 

in the preliminary design stage. 



23 

11 Evaluative Examples 

Free vibrations of several plane frame structures of different char-

acteristics are now investigated by the simple models. The complex three

dimensional frame structure of the fossil fuel steam generating plant of 

Unit #3 of TVA at Paradise, Kentucky is also studied. The simple model 

solutions are then compared with the conventional finite element solu-

tions using the existing well-developed SAP IV program [9]. The latter 

solutions are regarded as the exact solutions for comparison purposes. 

Example 1: 10 Bay - 9 Story Plane Frame 

This first example is purposely taken from one of the sample problems 

in SAP IV [9] for comparison. The geometry and material constants of the 

plane frame are given in Fig. 7. The corresponding shear beam model or 

Timoshenko beam model is also shown. Nine shear beam or Timoshenko beam 

finite elements are used with the floor mass lumped at the nodes. The 

mass per unit length, m, of both models is calculated according to 

(51) 

The effective shear rigidities of the four types of substructures are 

obtained from Eqs. (5-8) as 

E1 
(GA)a = 2.4 c 

~ 
E1 C 

(GA)b = 4 c 

~ c (52) 

60 E1 
(GA)c c =TI ~ c 

(GA)d =48 EIe 
7 ~ c 
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The effective shear rigidity for both the models at the ground level 

is obtained as 

48 60 EI 
GA = (9 x -7 + 2 x -) _c = 

11 L 2 
c 

3.137 x 105 kips 

The rest have the effective shear rigidity given by 

EIc 5 
GA = (9 x 4 + 2 x 2.4) - = 1.762 x 10 kips 

L 2 
c 

Similarly, the effective bending rigidity for the Timoshenko beam 

model is obtained as 

E1 = 5.7024 x 1010 kips - ft2 

(53) 

(54) 

(55) 

The angular frequencies for the first five modes of vibration obtained 

by using nine shear beam elements as well as nine Timoshenko beam elements 

are shown in Table 1. Although the Timoshenko beam model yields a better 

agreement with the "exact" solution t it should be noted that the shear 

beam model also proves adequate. In fact the difference between the two 

approximate solutions is negligible from the practical standpoint. The 

small discrepancies between the Timoshenko beam model and the shear beam 

model in this case should be expected as the structure is relatively short 

as compared to its lateral dimension, and, as a consequence, the gross 

bending effect is not pronounced. 

Fig. 8 shows the first three mode shapes of the Timoshenko beam model, 

the shear beam model, and the mode shapes of the middle column based on 

the exact finite element solution. Excellent agreement is noted. 

Example 2: 4 Bay - 15 Story Plane Frame 

Fig. 9 shows the dimensions and material constants of the structure. 
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Exact Shear Beam Timoshenko Beam 
Mode 

Frequency Frequency Error % Frequency Error % 

1 0.7678 0.7687 0.12 0.7685 0.09 

2 2.3509 2.2807 .'2.98 2.29!i6 -2.18 

3 4.0728 3.7178 -8.71 3.8135 -6.37 

4 595]0 5LQ337 -15.41 5.2795 -11.28 

5 6.4080 6.1869 -3.45 6.6696 4.08 

Table 1 Angular frequencies for the first five modes in Example 1 

(rad/sec) 
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The floor masses are again lumped at the respective levels as shown in 

the figure. Fifteen elements are used for both shear beam model and 

Timoshenko beam model. The angular frequencies for the first five modes 

are presented in Table 2. The Timoshenko beam solutions are again in 

close agreement with the exact solutions. It is also expected that the 

Timoshenko beam model yields more accurate results as the gross bending 

effect is significant. The shear beam solutions are still quite accepta

ble as the maximum error stays within 10% from the exact solutions. 

One would naturally expect that the frequencies obtained based upon 

the shear beam model should be higher than those according to the Timo

shenko beam model. This, however, is not reflected from the present re

sults in the higher modes. The reason is that the lumped mass system 

which overestimates the inertia effect especially in the higher modes is 

employed in the shear beam finite element solution. 

In Fig. 10 the mode shapes for the first three modes are shown. Ex

cellent agreement is evident. 

Example 3: 4 Bay - 7 Story Plane Frame with Bracings 

When bracing is present, the additional stiffnesses due to the braces 

are calculated according to Eqs. (10) and (30). For the braced frame struc

ture shown in Fig. 11 the floor masses are lumped at each level; and the 

brace masses are divided equally between two adjacent floors. The simpli

fied structure that is modeled by either shear beam or Timoshenko beam 

finite elements is also shown. The first five angular frequencies are pre

sented in Table 3, and the first three mode shapes are shown in Fig. 12. It 

should be pointed out that the third mode is a longitudinal mode and cannot 

be accounted for by either the shear beam model or the Timoshenko beam model. 
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Exact Shear Beam Timoshenko Beam 
Mode Frequency Frequency Error % Frequency Error % 

1 4.26 4.68 9.86 4.31 1.2 

2 13 08 14 00 7.01 13.16 0.6 

3 23.18 23.15 -0.10 23.02 -0.7 

4 33 03 32.04 -3.00 32.34 -2.1 

5 43.32 40.55 -6.40 41.70 -3.7 

Table 2 Angular frequencies for the first five modes in Example 2 

(rad/sec) 
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Exact Shear Beam Timoshenko Beam 
Mode Frequency Frequency Error % Frequency Error % 

1 22.18 24.82 11.9 21.95 -0.8 

2 62.73 73.06 16.5 66.56 6.2 

3 105.13 105.32 0.2 

4 11 0.62 117.40 6.1 119.02 7.6 

5 131 .56 155.91 18.5 163.31 21f.2 

Table 3 Agnular frequencies for the first five modes in Example 3 

(rad/sec). The third mode frequency in Timoshenko beam is 

obtained by considering the structure as an axial member 

with efficient axial rigidity given in Eq. (56). 
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The result for mode 3 presented in Table 3 is obtained by considering the 

structure as an axial member with the effective axial rigidity 

(56) 

rhe stiffness matrix of the axial member is the same in form as that for 

the shear beam except that GA should now be replaced by EA as given by 

Eq. (56). 

As revealed in this example, the longitudinal mode might appear as 

one of the lower modes in vibration if the structure ;s heavily braced. 

In this case, the axial (longitudinal ) motion must be also investigated 

and compared with the results obtained from the Timoshenko beam model. 

Example 4: Central Portion of NZ plane Frame of a Power Plant Structure 

The central portion of the NZ plane frame of the fossil fuel steam 

generating plant of Unit #3 of TVA at Paradise, Kentucky is first chosen 

to examine the applicability of the simple models applying to the practical 

engineering frame structures. The geometry and the simplified model are 

shown in Fig. 13. To retain clearness in the figure, a number is assigned 

to each member for identification. The number above each horizontal member 

denotes either the beam number in Table 4(a) or the girder number in Table 

4(c); the number to the right of each column represents the column number 

in Table 4(b). The first five frequencies are presented in Table 5 and the 

first three mode shapes are shown in Fig. 14. 

Example 5: NZ Plane Frame of a Power Plant Structure neglecting Bracings 

The whole NZ plane frame without bracings of the above-mentioned power 

plant structure is now taken for vibration analysis. Fig. 15 shows the 

geometry and the member code numbers in accordance with those numbers in 
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Beam Moment of Inertia Area 
Designation (FT4) (FT2 ) No. 

W 21 x 55 

2 W 21 x 127 a 145 4 

3 W 24 x 68 

4 

5 W 24 x 100 a 144 8 

W 27 

7 W 30 

12 

W 36 x 150 0.43547 o 306 

(a) 

Table 4 Member properties for the frame structures in Example 

4. 5, 6: (a) beam 
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Column Moment of Inertia Area 

No. 
Designation ( FT4) ( FT2) 

1 W 14 x 87 0.01688 0.17778 

2 W 14 x 95 0.01852 0.19375 

3 W14xl11 0.02194 0.22708 

4 W 14 x 237 0.05642 0.48403 

5 vJ 14 x 287 0.07089 0.58611 

6 W 14 x 314 0.07861 0.64097 

7 W 14 x 342 0.08729 0.70139 

8 W 14 x 370 0.09597 0.75694 

9 W 14 x 426 0.11381 0.86806 

10 W 14 x 455 0.12346 0.93056 

11 W 14 x 550 0.15721 1 .12500 

12 W 14 x 605 0.17747 1.23611 

13 W 14 x 730 0.22762 1. 4931 a 

14 ~l 21 x 55 0.00233 0.11250 

15 W 21 x 62 0.00277 0.12708 

Hi W 21 x 112 0.01529 0.22917 

(b) 

Tab 1 e 4 cont. (b) column 
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" 

Girder Moment of Inertia Area 
No. Designation 

( FT4) (FT2 ) 

G1 A o 72156 0.83333 

G2 B o 78042 n !;1h4h 

G3 C o 45598 0,31250 

G4 D 25.31100 1.79170 

(c) . 

Bracing Area 

No. 
Designation ( FT2) 

1 W 10 x 77 0.15764 

2 W 12 x 40 o 08194 

3 W 12 x 65 0.13264 

4 W l? x 72 n.147?? 

5 W l? x 7q n.l!;7h4 

(d) 

, 
Table 4 cont. (c) girder; (d) bracing 



Mode Exact Shear Beam Timoshenko Beam 
Frequency Freauency Error % Freauency Error % 

1 1.829 1 882 2.68 1.906 4.29 

2 5 2q6 5 356 1 12 5.605 5.83 

:1 lQ,430 .9 JL3 -J2Q5 10,318 -1 ,Q1 

4 17.046 13.418 -21.28 15.506 -9.04 

~ 19.783 17.684 - 10.61 19.511 -1.37 

Table 5 Angular frequencies for the first five modes in Example 4 

(rad/sec) 
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Table 4. The IIsimplified li model is also shown in the same figure. Solu

tions for the first five angular frequencies are given in Table 6. Ex

cell ent results for the shear beam model can be expected as the structure 

behaves as shear-type motion. The Timoshenko beam solutions are also 

quite acceptable as the maximum error stays within 4% from the exact solu

tions. Fig. 16 shows the excellent agreement for the first three mode 

shapes. Thus, the simple models could be fairly accurate even for non

homogeneous frame structures. 

Example 6: NZ Plane Frame of Power Plant Structure with Bracings 

The same plane frame structure in Example 5 is again considered in 

this example but with bracings in some selected panels. Fig. 17 shows the 

same configuration of framework as Fig. 15 plus the location and member 

code number of each brace. The material constant for each brace is given 

in Table 4(d). The corresponding IIsimplified li model is also shown. Due 

to the uneven distributed bracings at the two outside bays, local bending 

effects are appreciable in these two bays. The modification process for 

evaluating the modified shear rigidity GA described in Sec. 9 should be 

employed. The numerical values of the shear strains ~, n, and y must be 

known so that Eq. (50) can be applied. However. it is unlikely to know 

these values before the vibration analysis is performed. The static analy

sis for the substructures of these two outside bays with linearly distri

buted loading are first carried out separately, and the numerical values 

for the shear strains ~, n, and yare then established. The modified effec

tive shear rigidities for those panels where the local bending effects are 

significant are then evaluated according to Eq. (50). The simple model 

analysis procedure is subsequently followed to accomplish the analysis. 



Mode 
Exact Shear Beam Timoshenko Beam 

Frequency Frequency Error % Frequency Error % 

1 3 3715 3 4157 1 31 3 4332 1 ,83 

? R 7446 8 Q710 ? S;Q 9 nl\?7 ~,64 

1 14 Fiq~ 14 474 -0 85 14 q2~ 2 23 

4 21 754 21 .154 -2.76 22.213 2.11 

5 26851 25 254 -5 95 27.455 2.50 

Table 6 Angular frequencies for the first five modes in Example 5 

(rad/sec) 
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The first five angular frequencies are shown in Table 7 with 5% of 

error for the first mode. Fig. 18 shows the first mode shapes of the 

shear beam model, Timoshenko beam model, and the middle column based upon 

the finite element solutions. Excellent agreement is noted. 

Example 7: The total system of the Power Plant 

The simple models are now ready to apply to the total system of the 

power plant for solutions. The total system contains the steam generator 

and the supporting frame structure in three-dimensional sense. The sup

porting frame structure consists of 1412 beam and column elements, 370 

diagonal bracing members, two concrete floors, and 611 joints. The two 

concrete slabs with 8 inches thickness are distributed over some portions 

of the floors at the elevations of 42 feet and 109 feet above ground, 

respectively. All the cross braCing members are placed in some selected 

vertical panels to provide additional lateral resistance against earthquake 

motion. A three-dimensional outside view of the steel frame structure is 

depicted in Fig. 19. The detailed geometry and material constants for the 

members are obtained from the blue prints provided by TVA. The lumped mass 

model for the steam generator is presented in Table 8. In this analysis, 

the relative motion of the steam generator against the steel frames ;s 

neglected. 

The procedures stated in Sec. 10 are now used to model the total sys

tem of the power plant in simple beam models for motions in the two prin

cipal planes, i.e. x-z and y-z planes. The "simplified" structure is 

shown in Fig. 20. The number at each node denotes the nodal point number 

while the number in the parentheses designates the member. The gross 

effective shear rigidity and gross cross-sectional area for each shear beam 
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Exact Shear 
Mode 

Beam Timoshenko:.; Beam 
Frequency Frequency Error % Frequency Error % 

1 8.647 8.184 -5.35 8.228 -4.84 

2 29.508 22.882 -22.5 23.454 -20.5 

1 43.564 39.203 -10.0 41.045 -5.78 

Ll. 69 ,933 54.297 -22.4 59.136 -15.4 

5 72 .200 67.885 -5.98 71 .826 -0.52 

Table 7 Angular frequencies for the first five modes in Example 6 

(rad/sec) 
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Z - Ordinate Mass 
Measured from (kips-sec2/ft4) 

EL. 0.0 

202.0' 187.721 

191. O· 70.050 

173.0' 42.146 

155.0' 121.118 

132.0' 16.646 

127.0· 129.455 

117.0 I 13.168 

101 .6 • 5.764 

81.5 1 65.714 

42.0' 100.124 

Table 8 Lumped mass distributions for the system generator 

in Example 7 
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Figure 20 Shear beam model for the total system of 

the power plant 
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finite element together with the gross lumped mass at each nodal point 

are tabulated in Table 9. The natural frequencies for the two flexural 

modes in x-z and y-z planes, respectively, and the corresponding "exact" 

solutionsare presented in Table 10. The exact solutions in Table 10 are 

given by [10] which were obtained by using finite elements with nearly 

three thousand degrees of freedom. Both frequencies according to the 

simple shear beam model are in good agreement with the exact so1utions. 

It should be pointed out that in the calculation, only 10 degrees of 

freedom are used. The mode shapes for the second mode are shown in Ffg. 

21. The exact mode shape depicts the deformed shape of a typical column 

in the structure. No exact mode shape for the first mode is available. 

The present simple model can only account for the in-plane flexural 

motion but not the gross torsional vibration. It is known that in highly 

unsymmetric space frame or truss structures, these two motions are coupled. 

A more sophisticated simple model that includes both flexural and torsional 

modes is thus needed. 

12. Seismic History Responses Using Simple Models 

In this section, time history responses of structures subjected to 

dynamic loadings are analyzed by using the simple models. In such dynamic 

analysis, the use of simple models proves to be even more economical in 

computing time as compared with the use of full scale finite element analy

sis. In the following, the formulation of the earthquake-response analysis 

is first derived using the Timoshenko beam model. The shear beam model 

formulation can be easily derived by suppressing the undesired degrees of 

freedom, i.e., those variables except the transverse displacement. 
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,Shear ri gi di t 
, 

(~ass 2 Shear r; gi dit,) Area lps-sec / Node Member in x-z (kips) in y-z (kips) ( FT2) FT4) 

1 4003971 4 4576087 9 39 818 11 7nO ? 

2 3477758.3 4129643,0 37 704 213,769 3 

3 2857812 0 3936786 1 28 740 o 380 4 

4 2857812,0 394Sa15 1 2£ 508 .6 :112 I; 

5 31 O?RR7 .R 4R?ROf\ 7? ?R SOR ~R ~71 h 

6 ?R??~40 4 I;O? 1;1;14 7 ?R SOR In 4~ 7 

7 3007530,1 3653410.7 24_40~ 5~6.4 A 

8 3007530,1 ~fi"14111 7 ?4 4111 1 A A.d11 a 

9 2907Z20.cr 3500489.5 24.212 131.601 10 

10 2907220.0 3371731.6 24.212 166.460 11 

11 2907220.0 3371731.6 24.212 188.422 12 

12 2376509.5 2274084.9 18.530 121.118 13 

13 2376509.5 2274084.9 18.530 11 0 816 14 

14 1120388.6 2269361.9 15.447 7Q cU511 15 

15 1120388.6 2269361.9 15.447 45,Bta lli 

16 1080205.2 2701431 9 14 046 1881538 11 

17 1132278.8 2738776.4 14.046 3 019 18 

18 1275077.2 26218956 .1AcO~ 3 466 19 

19 1719483.5 2449510 4 14.046 _5_~Jl~ 20 

Table 9 Material properties for Example 8 



.. 

Exact Shear Beam 
Mode Frequency Frequency Error % 

J'l~.ltural( x~z) 0.7136 o 7352 3.03 

Flexural (y-z) 0.8246 0.8392 1.77 

Table 10 Natural frequencies for the two flexural modes in 

Example 7 (Hertz) 
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Consider a multistory frame structure with n stories in height. 

The structure is first simplified to the simple structure using Timoshenko 

beam model with the variables v, VI, ~, and ~I as degrees of freedom at 

each nodal point. During an earthquake, the simplified structure is 
.. .. 

excited with a total acceleration v. + v 
1 g 

to the reference axis as shown in Fig. 22. 

of the simpl ified structure can be written 

v" 
0 v" 0 

· V 0 V 0 
0 

vl+Vg vl .. 
v, v" 1 

(M] + [C] 
0 

[K] ~l ~l + 

· V 1 V 1 

· vn+Vg vn 
0 

v" v" n n 
· ~n ~n 

" 0 

V n V n 
J l 

at the 

Thus 

as 

v" 
0 

~O 

v, 

vi 

~l 

V 1 

v" n 

~n 

ljJ" 
n 

i-th story with respect 

the equations of motion 

= { O} (57) 

In Eq. (57), [M], [C], and [K] are the overall mass, damping, and stiffness 

matrices of order N by N, respectively, in which N equals to 4xn+2 by in

serting the boundary conditions Vo = 0 and ~O = a at the point of support. 

The effective earthquake force which produces the dynamic response 

of this system results from the fact that the inertia-force term in Eq. 

(57) depends on the total tranverse motion, while the damping and elastic 
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Figure 22 Simplified structure with rigid-base translation 



forces depend only on 

can be rewritten as 

v" 
.. 0 

~6 
.~l 
v" .. 1 

~1 
1/Ji 

[M] 

V .. n 
v" .. n 
1/J .. n 

llJi~ 

or in matrix form: 

relative motion. With the foregoing, Eq. 

+ [CJ 

· v" 
0 · 1J!6 · vl · V" 1 · lJil 

~i 

+ 

· ~n 
v" n 
~n · V n 

-v [MJn} g 

v" 0 

1J!6 
vl 
V" 1 
lJil 
1/Ji 

[KJ = -v g [MJ 

vn 
v" n 
1/J n 
1./1" n 
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(57) 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

(59) 

in which {l} represents a column of ones occurring at the 3 + 4(i-l) th 

rows where i ~ 1, 2, ... n. This vector expresses the fact that a unit static 

translation of the base of this structure produces directly a unit dis

placement in the transverse degrees of freedom. 

Numerical schemes to obtain the solution to Eq. (59) are numerous. 

The procedures are, however, mainly divided into two general categories, 

namely, direct integration and mode superposition [llJ. In the direct 

integration procedure, the step-by-step integration is performed directly 

on Eq. (59) in its coupled form. As a result, considerably computational 

work is expected as the scheme is carried out successively at each discrete 

(58) 
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time interval 6t. In the modal superposition method, the natural modes of 

vibration are used to decouple the cequations of motion [12]. Since only 

a few modes are usually sufficient to ensure an accurate account of the 

dynamic response, the mode superposition is computation-wise efficient and 

thus is employed in the present work. 

In the mode superposition analysis, it is assumed that the structural 

response can be described adequately by the p lowest vibration modes, where 

p « N [13J. In fact, it has been observed that, for most types of loadings, 

the lower modes dominate the transient dynamic response of the structure 

[14J. Furthermore, the mathematical idealization of any complex structural 

system by the simple models also tends to be less accurate in predicting 

the higher modes of vibration. Therefore the number of modes considered 

in a dynamic response analysis can be reasonably limited to the first p 

modes. 

It is well known that damping plays an important role in the dynamic 

response of structures subjected to earthquakes. Generally, in the mode 

superposition method, damping is assumed to be uncoupled and is given 

to each mode as a percentage of the critical damping. Therefore a damping 

ratio can be assigned for each mode based upon experimental data [15]. 

The procedures of the mode-superposition method are described as 

follows. 

The first P modes are taken to construct the Nxp modal matrix, 

[ ~] :: [{ ~} l' {~} 2' ... {¢} p] ( 60 ) 

where {¢}i (i :: l-p) are the p lowest shape vectors. Introducing the 

normal co-ordinates defined by the relation 

{X} :: [<I>]{Y} (61 ) 



and substituting Eq. (61) into Eq. (59), the uncoupled equations of 

motion, after multiplying with the transposed matrix of [~], have the 

form 
*.. *. . * * 

[M ]{Y} + [C ]{Y} + [K ]{Y} = {F } (62) 

* * * where [t~ ], [C ], and [K ] are the pxp normal (or diagonalized) mass, 

* damping, and stiffness matrices, respectively, and {V} and{F} are the 

corresponding pxl normal co-ordinate and force vectors. The individual 

terms in these matrices are given by 

m; = {¢} ~[t~]{¢} r 

c; = {¢}~ [C]{¢}r = 2 m; wr~r 

k*r = {¢}T [KJ{¢} = m* w2
r r r r 

f; = -~g{¢r}T [M]{l} 

r = 1, 2, ... P (63) 

61 

where lUr and ~r are the natural frequency and damping ratio of the rth 

mode of vibration. It should be noted that the damping matrix [C] also 

possesses the same orthogonal property as the mass and stiffness matrices, 

i . e. , 

(64) 

In Eq. (64), {¢}r and {¢}s are the shape vectors of modes rand s, respec

tively. 

The p equations of motion in Eq. (62) are now uncoupled and can be 

treated individually. Each equation in Eq. (62) has the typical form of 

second order differential equation with constant coefficient 

*.. *. * * m y(t) + c y(t) + k Y(t) = f (t) (65) 

or 
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(66) 

r1any numerical integration methods are currently used for solutions 

to Eq. (66). Among them are the central difference method, the Houbolt 

method, the Newmark method, and the ~lilson e method, etc. [11]. In this 

work, the Wilson e method is adopted because it is optimized with respect 

to stability and accuracy [16]. 

The assumption made in the Wilson e method is that the acceleration 

varies linearly during the time interval e~t, where e is a numerical 

quantity which is greater than 1.0 to ensure accuracy and stability in 

the integration. It is recommended that e = 1.4 be used. 

Initial conditions are needed in the finite difference solution. 

By multiplying Eq. (61) by [M] and [~JT successively, Eq. (61) becomes 

(67) 

The normal co-ordinate {V} can be expressed as 

if the normalization process is applied to the modal matrix [~J. At 

t = 0, X(O) = X(O) = X(O) = 0, and consequently, 

Y(O) = Y(O) = Y(O) = 0 (69) 

The p solutions of Eq. (66) can be obtained for any given random earth

quake records in the transverse direction up to ~ny desired time t. It 

should be noted that the random earthquake records are linearly interpo

lated before the numerical integration scheme is employed. 

The displacement vector {X} of the "simplified ll structure can be 

obtained easily using Eq. (61). Since only the transverse displacement 

at each story level is of interest, the multiplication process corresponding 



to such element in the displacement vector {X} is sufficient to provide 

the necessary outcome for the transverse displacement. 

Dynamic time history responses for the shear beam model can also 

be easily followed. Instead of four degrees of freedom at each nodal 

point for the Timoshenko beam model, only one degree of freedom, i.e., 

tranverse displacement, is retained in the shear beam model. 

Solutions for the time history responses of some frame structures 

are studied in the following by using either the Timoshenko beam model 

or the shear beam model with or without damping. 

A homogeneous 4-Bay, 7-story plane frame structure shown in 

Fig. 23 in first selected for illustration. The shear beam model is 

also shown in the same figure. The "complexll frame structure and its 

"simpl ified" shear beam structure are then excited, respectively, by 

the 1940 El Centro N-S earthquake ground acceleration component of 

30-second duration as depicted in Fig. 24. The "exact" time history 

response for the central column of the frame structure together with 

that of the approximate solution of the simplified shear structure at 

each story level is then plotted in Fig. 25. Fifteen modes are taken 

for mode superposition in the exact solutions While four"modes are 

63 

used in simple model solutions. The close agreement shows that the 

simple shear beam model,in this particular example, yields fairly 

remarkable results. It is found that the first mode dominates th~ 

response. In this case, it is sufficient to take the first few modes 

for the mode superposition method without appreciable loss of accuracy. 

Fig. 26 shows some of the lIexact" time history responses together 

with the simple shear beam model solutions for the NZ plane frame struc

ture shown in Fig. 15 to the 1940 E1 Centro N-S component with duration 
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of 30 seconds shown in Fig. 24. The maximum displacement is observed 

at t = 3.80 seconds with magnitude of 1.7126 'feet in the last story 

at elevation of 238.0 feet. It is interesting to note that the higher 

modes of vibration of a set-back building can make a very substantial 

contribution to its total seismic response. This fact has been demon~ 

strated in a recent work by Humar and Wright [17J. In this example, 

ten modes are taken for mode superposition in exact response solutions 

while five modes are used in simple model solutions. Close agreement 

is also noted. 
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The time history responses for structures that have significant 

gross bending deformations should be computed by using the Timoshenko 

beam model. Examples with this characteristic are the 4-Bay, l5-Story 

plane frame structure and the 4-Bay, 7-Story plane frame structure with 

bracings in Examples 2 and 3, respectively. Figure 27 shows typical 

time history responses of the shear beam model, the Timoshenko beam model, 

and the responses of the middle column based upon the exact finite solution 

for the 4-Bay, 15-Story plane frame structure in Example 2. The 1940 

E1 Centro N-S acceleration component is used as the input of ground 

motion. Ten modes are used for the exact response solutions and five 

modes are taken in simple model solutions for mode superposition. Solu

tions for the 4-Bay, 7-Story plane frame structure with bracings to the 

same excitation but with 1.5% critical damping are plotted in Fig. 28. 

In this example, ten modes are also used for the "exact" solutions while 

only the first two modes are taken for mode superposition in the simple 

model solutions. Both simple models yield very good solutions. 

As a final example in this section, the seismic responses for the 

total system of the power plant structure shown in Fig. 19 subjected to 
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the 1940 E1 Centro N-S and E-W acceleration components shown in Fig. 24 

and Fig. 29 are performed. The N-S and E-W history responses at some 

story levels with zero damping are plotted as solid lines while those 

with 1.5% critical damping are traced with dash-dot lines as shown in 

Fig. 30 and Fig. 31, respectively. The maximum N-S displacement with 

zero damping is observed at t = 17.7 second with magnitude of 12.552 in. 

while an amplitude of 10.007 in. at t = 5.3 second is noted for the 

displacement with 1.5% critical damping. Those maximum displacements 

in E-W direction are 18.737 in. at t = 27.9 second with zero damping 

and 11.431 in. at t = 19.5 second with 1.5% critical damping as shown 

in Fig. 31. No exact history responses are available for comparison 

at this moment. 

13. Dynamic Internal Force and Moment Computations using Simple Models 

In design for earthquake resistance, the maximum stresses in the 

structure during the entire period of earthquake motion have to be computed. 

Since the simple models represent the gross behavior of a structure, 

the member stresses in the actual structure can not be obtained directly 

from the result of the simple model analysis. In this section, procedures 

are developed for recovering the member stresses from the simple models. 

We assume that the displacement of the actual structure at each 

floor level is the same as that obtained from the simple models at any 

time of interest. Since during an earthquake, columns are subjected to 

the most severe loads and failures of columns have been observed in 

damaged buildings, we will focus our attention on the evaluation of the 

dynamic internal forces, moments, and stresses in columns in this study. 
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At any time t, the displacements of the actual structure at the 

floor levels are taken to be the same values as given by the simple 

models. With this, the deformations in the substructures which were 

used to develop the simple models can be determined, and the forces and 

moments in the substructures can be easily computed. In the following, 

the procedures will be demonstrated for each substructure. 

Consider first substructure Type a as shown in Fig. 2. The shear 

force V and bending moment M at the fixed end of the column can easily 

be obtained using the equilibrium condition of the member. We obtain 

and 

V = p 

LC 
M = - p 2 

From Eqs. (1), (5) and (70) we have 

v = 2(GA) [-
a c 

(70) 
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and (7l) 

M = - (GA) IS a 

Since 8 is half of the true relative transverse displacement x between 

two adjacent floors, the shear force V and bending moment M at the fixed 

end of the solumn should be 

V = (GA) ~ 
a Lc 

and (72) 
1 M = - - (GA) x 2 a 

In the same manner, the shear forces and bending moments of the 

columns other than Type a are 

V = (GA) b ~ 
c 
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and (73 ) 

for substructure Type bs 

v = (GA) ~ 
c Lc 

t1 == _ 2+3a6 

I 2(1+3a6) 
(GA) x 

c (74) 

and 

til ::: - 3aS (GA) x 
J 2(1+3a6) c 

for substructure Type c, and 

M ::: _ 1+3a6 

I 1+6a6 
(75) 

and 

for substructure Type d. In Eqs. (72-75), x is the relative transverse 

displacement between the two adjacent floors and the subscripts I and J 

in Eqs. (74-75) are referred to the bottom and upper ends of the column. 

The parameters a and 6 in the last two equations are defined in Eq. (2). 

With these formulas in hands the dynamic internal forces, moments. 

and stresses in each column can be obtained. Since only the maximum 

values during the whole period of excitation are of interest, an attempt 

is made to seek these values without combing through the whole response 

history for each member. 

To illustrate this procedure, the 4-Bays 7-Story frame structure 

considered in Sec. 12 is chosen. The deformed shapes of the Timoshenko 
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beam at t = 4.8 second and t = 9.9 second are noted to bear close resemblance 

to the first natural mode shape. These deformed shapes as well as the 

first natural mode shape are normalized and presented in Table 11. In 

view of the foregoing, it is reasonable to assume that each column has its 

maximum internal shear forces and bending moments at a particularly 

certain time t when the maximum displacement occurs. Following this 

procedure, the internal shear forces and bending moments for each column 

are obtained by using the Timoshenko beam model. The results together 

with those using the lIexactli finite element method at t = 4.8 sec. and 

at t = 9.9 sec. are given in Table 12 and Table 13 9 respectively. 

At these two instants, the displacements appear to assume maximum values. 

It is noted that, in this history response analysis, ten modes are taken 

for mode superposition in the exact response solutions while only two 

modes are used in the Timoshenko model solutions. Due to the existence 

of symmetry, only half of the results are shown in the table. It is 

found that the columns located between the base and the first story have 

the maximum shear forces as well as bending moments for both cases. 

Among these columns, the one bet\rJeen the fi rst bay and the second bay is 

found to be most critical. 

14. Conclusions 

A simple shear beam model and a Timoshenko beam model for vibration 

analysis of frame structures are presented. Explicit formulas for evalu

ating the effective stiffnesses are derived. Modified effective shear 

rigidity for the situation that local bending effect occurs is also 

presented. Finite elements based upon these simple models are also 

formulated. The simple models are applied to predict the first two 
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Story Transverse Displace- Transverse Displace-
First Mode ment 

No. ment 
at T = 9.9 sec. Shape 

at T = 4.8 sec. 

1 0.1523 o 1475 o J4R1 

2 0.3644 o 3543 o 3561 

3 0.5618 o S4Q7 o 5517 

4 0.7311 0.7205 o .72'12 

5 0.8636 o 8569 0.85RO 

6 0.9540 0.9516 Q 9519 

7 1.0 10 1 .0 

Table 11 Normalized transverse displacement vs. Normalized first 

mode shape 
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flexural modes in the principal planes of the fossil fuel power plant 

of Unit #3 of TVA at Paradise, Kentucky. Comparisons of the simple model 

solutions with the exact finite element solutions show that the present 

simple models are quite adequate in predicting the natural frequencies 

and the corresponding mode shapes for the lower modes. \~hen the frame 

structures are heavily braced, it is found that longitudinal motion 

might appear in the lower modes of vibration. A model of axial member 

for the longitudinal motion is also derived. 

The simple models proposed in this report could be very useful 

in seismic dynamic analysis of engineering frame structures where lower 

modes usually ddminate the response. The models are extended to predict 

'tIIHh great accuracy the time history responses of the dynamic internal 

column shear forces and bending moments caused by earthquakes. 
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