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ABSTRACT

Base isolation has been proposed as an economical approach to aseismic
design for many types of buildings and structural systems. In general, the
base of a structure is isolated when a support system with extremely low

horizontal stiffness limits the transmittal of horizontal shear from the
ground to the structure. The displacement of such a structure under wind

loading will, however, be excessive since the horizontal stiffness of the
support system is so low. The horizontal deflection of a building with

an isolated natural frequency of 0.5 Hz would, for example, be four inches
for a wind load of one-tenth the weight of the building. While such a
horizontal deflection would not be acceptable, a base isolation system could

be equipped with a mechanical fuse which would be sufficiently strong to
resist wind loading, but which would fracture during an earthquake, leaving
the building free on the isolation system.

In this report we describe an extensive series of shaking table tests

of such a device. The wind restraint consisted of a notched shear pin.
Several shear pins were tested in conjunction with a natural rubber isola­
tion system placed beneath a three-story 40,000 lb. steel frame model
structure. Pins with breaking forces ranging from 3% to 20% of the weight
of the model were tested. The model structure was subjected to various
peak accelerations of three earthquake inputs.

The shear pins fractured rapidly and cleanly. The breaking force

for each pin was reasonably predictable. Although higher mode accelerations

were induced in the model structure when the pins broke, these disappeared
rapidly. The design of a shear pin mechanical fuse system for a full-scale

structure is discussed at the end of this report in view of the experimental

results described.





- iii -

ACKNOWLEDGMENT

The support of the research described herein by the National Science
Foundation, R.A.N.N. Division, under Grant No. ENV76-04262, and by the
Malaysian Rubber Producers' Research Association, which organization also
provided the natural rubber bearings used in the testing program, is
gratefully acknowledged.

Preceding· page blank





- v -

TABLE OF CONTENTS

ABSTRACT . . .

ACKNOWLEDGMENT . .

TABLE OF CONTENTS

1. INTRODUCTION.

2. TEST DESCRIPTION . . . . . . . . . . . . . .

2.1 Design and Development of the Shear Pin

2.2 Incorporation of Shear Pins in Isolation System.

2.3 Earthquake Input . . . . . . . . . . . . . . . .

3. TEST RESULTS .

4. INTERPRETATION OF RESULTS

5. CONCLUS IONS

REFERENCES

TABLES .

FIGURES

i

iii

v

1

3

3

4

5

6

8

10

11

13

15





- 1 -

1. INTRODUCTION

Results of tests of a simple mechanical fuse designed for use in

conjunction with an earthquake-resistant base isolation system that incor­

porates natural rubber bearings are reported. The base isolation system

was suggested by Derham, Wootton, and Learoyd [1]; a practical system has

been developed and tested [2, 3]. The lateral stiffness of the natural

rubber foundation bearings is very low; structures and their contents are
protected from the effects of earthquakes because buildings on these
bearings are effectively uncoupled from ground motion. The bearings are
able to undergo relatively large (on the order of several inches) horizontal
displacement. When a structure rests on such a system, the first mode period

of the building is increased to a range above that of most earthquake energy

and the lateral earthquake load on the structure is thereby reduced.

The acceleration of the base-isolated structural model during testing was

reduced by as much as 90% when compared to that induced in the model

structure on a conventional rigid foundation. Such reductions in response

were, however, accompanied by substantial lateral displacement. Further­
more, the extremely low transverse stiffness of the isolation system would,
in a full-scale structure, lead to a 1ow-frequency motion under wind loading

that would be uncomfortable for occupants and could induce fatigue in utility

connections. It was therefore necessary to develop a form of restraint

against loading less severe than damaging earthquake ground motion.

Base isolation systems that incorporate wind restraints have been

proposed before. Caspe [4J published a conceptual study of an earthquake

isolation system in which ball bearings were proposed as the basic mechanism

of isolation. Wind restraint in this system was to be provided by control
rods that were to remain elastic under wind loading, but would yield under
earthquake loading. An isolation system developed at the Centre National

de la Recherche Scientifique de France and described by Delfosse in [5]
incorporated wind restraints although the precise form was not specified.

An isolation system suggested by Ikonomu [6] included wind restraint in the

form of steel bars in tension which were intended to break at a specified

force. The use of an energy-absorbing device as a mechanical fuse has been

studied experimentally [3, 7] for the present natural rubber base isolation
system. The elastic stiffness of the energy-absorbing device was very high

relative to that of the bearings. The device was effectively rigid under
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small loads, but yielded under more intense seismic loading, providing a

much reduced stiffness and damping in the isolation system. A detailed
description of the response of the energy-absorbing devices when subjected
to dynamic loading on a shaking table is given in [3J.

An alternative method of restraining structures from movement under
wind and other nondamaging loading is proposed here. A type of wind

restraint has been developed and tested on the shaking table at the
Earthquake Simulator Laboratory at the Earthquake Engineering Research

Center, University of California, Berkeley. The wind restraint is a simple

mechanical fuse system which prevents lateral movement under small hori­
zontal loads, but which breaks at a specified force, allowing the structure

to move freely on the rubber bearings. The mechanical fuse comprises a
small steel pin with a notch machined around its circumference. The pin

is loaded in single shear at the notch and when subjected to a dynamic

load breaks suddenly at a reasonably well-defined shear load.

In this test series, pins with breaking forces ranging from 2-1/2%
to 20% of the weight of the model structure in which they were incorporated
were tested. Each of three simulated earthquakes -- the El Centro NS 1940,

Pacoima Dam S16E 1971, and Parkfield N65E 1966 records -- were scaled to
several peak accelerations and used as input to the shaking table. The
results of these tests indicate that the shear pin mechanical fuse is a

simple, effective, and practicable wind restraint. The influence of the
sudden breaking of the pin on the response of the isolated structure was
predictable within the limits possible for brittle fracture, which data is

always subject to some scatter. A design technique for a full-scale system

can be developed from the results of the tests reported herein.

The most interesting physical result of the tests was that the sudden
breaking of the pin induced an acceleration that was predominately in the

second mode of the isolated structure. The pin can be so designed that

this acceleration will be no greater than the peak acceleration induced

predominately in the first mode by earthquake ground motion, which acceler­

ation typically occurs very late during an earthquake. A parallel analytical
study of this phenomenon was carried out and the implications of this study

on design are described in a later section of this report.
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2. TEST DESCRIPTION

The tests were conducted at the Earthquake Simulator Laboratory of
the Earthquake Engineering Research Center of the University of California,
Berkeley. The experimental model was a three-story steel frame with natural
rubber bearings under each of four columns. The frame was loaded by concrete
weights. The total weight of the model was 39,500 lbs. and its height was
twenty feet.

Several tests on pins with breaking forces in the range 4.5 to 8.2
kips were performed in May 1977. A further series was carried out in April
1978 on pins with lower breaking forces, in the range 1.0 to 4.5 kips. In
the second series of tests, diagonal bracing was added to the frame in the
first floor as shown in Fig. 1. The long arm connecting the pin mounting
to the frame would not be present in a similar full-scale structure, but
was used here to facilitate mounting of the shear pin on a load cell as
shown in Fig. 2.

The test structure was extensively instrumented to measure displace­
ment, acceleration, and shear force under each rubber bearing and in the

shear pin. Data were taken from each measuring device at a rate of approx­
imately 50 samples per second. The experimental model and isolation system
were as described in [3J with the exception that shear pins rather than
energy-absorbing devices were used.

2.1 Design and Development of the Shear Pin

A base isolation system must include a mechanism that will restrain
a structure from swaying or undergoing large deflection under wind loading.
This mechanism by which the base is kept rigid must act as a mechanical
fuse that quickly deactivates when lateral shear force reaches a certain
level, e.g. during a strong motion earthquake, thus allowing the base
isolation system to protect the building from structural damage. A notched
shear pin is ideal as mechanical fuse since it is rigid, yet rapidly deacti­
vates, and is easily fabricated and adapted to a structure. In this section
the design and development of the shear pin are described and results of
static tests on the device are reported.

The base shear force that will develop from wind loading depends on
building type and geometry, but is unlikely to exceed 5% of structural weight.
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A base shear force induced by a strong motion earthquake of 10% or more

of structural weight would result in severe structural damage unless the
building were extremely ductile. Shear pins with breaking forces between
10% and 20% of structural weight were tested in order to study the effect
of pin rupture on the response of the model structure. The shear pins
were fabricated from cold-finished C10l8 carbon steel rod since this
material was not only suitable, but could be obtained readily and in
several sizes.

The shear pins were tested in single shear in a standard shear box
tester and a Baldwin compression testing machine. From a preliminary anal­
ysis, four sizes of steel rod were selected from which shear pins were
fabricated: 1/4 11 ,5/16 11 ,3/8/1, and 1/2/1 in diameter. Notches of various
depths were machined around the circumference of the shear pins where
shearing action would occur. Load versus ram displacement was plotted for
each test. The peak load in each case was read from the load dial of
the Baldwin testing machine and designated the breaking force of the shear
pin. The static breaking forces are tabulated in Table 1.

In each instance, the pins sheared cleanly, indicating that the
design was adequate. Although some plastic flow occurred in the shear
area prior to failure, this was not considered a problem and was not
observed during dynamic testing on the shaking table. The breaking force
of the shear pins under static loading was consistent and predictable given
pin diameter and notch depth. Breaking forces of the shear pins under
dynamic loading were more widely scattered and consistently higher.
Breaking forces of the pins under both static and dynamic loading are
given in Table 1. The numbering system used in this table to distinguish
pin type is as follows: the first number indicates pin diameter in 1/16/1
units and the second notch depth in thousandths of an inch, e.g., 4/07
designates a shear pin with a diameter of 1/4 11 and a notch of .070-inch
depth.

2.2 Incorporation of Shear Pins in Isolation System

A 211 x 211 X 1/4" tubular steel member was joined by a 3/411 pin to
the base floor transverse girder of the steel frame for the shear pin tests
on the shaking table. The other end of this steel member was fastened by
a notched shear pin to the top of a load cell, which was in turn fixed to
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the shaking table. This connection is illustrated in Fig. 2. The con­

nection was designed and the pin so positioned that all force was trans­
ferred at the notched cross section of the shear pin. Nearly all the

shear force at the base level of the frame was transferred to the weakened
section of the shear pin since the horizontal stiffness of the pin assembly
was approximately twenty-five times greater than that of the four rubber
bearings combined. The base of the frame remained fixed to the shaking
table until the base shear was sufficiently great to cause the pin to
break. The frame was then attached to the shaking table only by the
rubber bearings which functioned as an isolation system.

2.3 Earthquake Input

The earthquake signals used in this series of tests were the
El Centro N-S (1940), the Parkfield N65E (1966), and the Pacoima Dam

S16E (1971). The span number associated with a given earthquake signal
is a scaling factor. Shaking table displacement is linearly proportional

to span number. A span of 1000 corresponds to a maximum table displacement

of ~5 inches. Time histories of shaking table displacement and acceleration
for the three earthquake signals are shown in Fig. 3; the peak acceleration
and displacement for the span levels used in the tests are given in Table 2.
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3. TEST RESULTS

More than fifty tests were performed on the notched shear pins
(Table 1) at various intensities of the three earthquake signals (Table 2).
Additional tests were conducted on pins with small diameter holes rather

than notches, but since the results were virtually identical to those for
notched pins they are not described here. Results of tests on pins with
very shallow notches, e.g. less than .040 inch deep, or no notch are also

not reported here since the pins did not break cleanly in these tests, but

bent and pulled out of the connectors. This last result indicates that
the notch on a shear pin must be of at least a minimum depth.

Typical time histories of shear pin force to the breaking point are
shown in Fig. 4a for the shear pin with the lowest value of breaking force
and in Fig. 4b for a shear pin with an intermediate value of breaking force;
both pins were subjected to the El Centro 300 input. Displacement and

acceleration for all four floors of the model structure are shown in

Figs. 5 through 8 for a single earthquake input, El Centro 300, with a
peak table acceleration of 0.200g. A peak third floor acceleration of

.093g was induced in the isolated system when no shear pin was used.

The displacement patterns for pins with small, intermediate, and large
breaking forces were nearly identical. After the pins broke, the response
pattern was a rigid body motion with a frequency of approximately 0.55 Hz.

A higher mode acceleration at 4.85 Hz was induced in the frame when pins

with a higher breaking force were tested. While the third and second
floors moved in one direction, the first and base floors moved in the

opposite direction, a pattern of motion and frequency characteristic of

second mode response on the rubber bearings alone. The rigid body motion
clearly visible in the displacement traces is the first mode response of
the isolated system. Second mode response was negligible in tests where
shear pins were not incorporated into the system, but significantly

affected acceleration of the frame when shear pins were used.

Peak third floor acceleration increased linearly with breaking force

as shown in Fig. 9 where peak table acceleration and acceleration induced

when no shear pin was used are also plotted. When the results are extra­

polated to zero pin force, the resulting value of peak acceleration does
not correlate with that observed during tests of the system with no shear
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pin. While peak acceleration induced in the system with the shear pin

incorporated occurs when the pin breaks, i.e. early in the input motion,

it occurs late during the ground motion when no pin is present. The two
peaks are thus well separated in time. Time history plots for the Pacoima
Dam 220 and Parkfield 300 earthquake signals (Figs. 10 through 15) indicate
that the response described above for the El Centro 300 signal is charac­
teristic.
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4. INTERPRETATION OF RESULTS

An analytical model of the system was developed to facilitate inter­

pretation of the experimental results described above in a form useful for
design purposes. The structure was treated as two linear elastic systems,
one that characterized the response of the system before and the other

after the shear pin broke. The system could be so characterized because
stresses in frame members, except in the shear pin, never approach the

yield level. The frame model was idealized as a plane frame. A stiffness

matrix was formed for the system idealized by twenty-three degrees of
freedom. Since the mass of the structure was concentrated at the floor

levels, the horizontal displacement at each of the four floors was desig­
nated a dynamic degree of freedom and all others were eliminated by static
condensation.

The coupling of the shear pin to the model structure was much more

flexible than it would be in a similar full-scale structure since the pin

was coupled to the frame by a number of flexible elements, such as the
connecting arm, necessary to incorporate the load cell into the system.

The stiffness between the base floor and the table was estimated from a
number of curves that related load cell output to base floor displacement
for several of the pins tested. A nominal value of 30 kips per inch was
used in these calculations. A first mode natural frequency of 2.31 Hz
and a mode shape of (1.0, 0.79, 0.58, 0.48) from the top of the structure
down were predicted. After the shear pin broke, the horizontal stiffness
between the base floor and the table was that of the bearings alone,
1.2 kips per inch. First and second mode frequencies of .55 Hz and
4.85 Hz, respectively, were predicted for this modified configuration,
corresponding to mode shapes of (1.0, .99, .98, .97) and
(1.0, .20, -.51, -.62), respectively.

In order to illustrate the effect of the pin breaking on accelera­

tion in the second mode, the time history of acceleration of each of the
four floors was reduced to modal coordinates based on the modes of the

isolated, pin-free system and the maximum modal acceleration was determined.
The contribution from each modal maximum to third floor acceleration for

various pins and earthquake intensities is plotted in Fig. 16 for the first

mode and in Fig. 17 for the second mode. Third and fourth mode contributions



- 9 -

were negligible. The second mode contribution was linear with breaking

force to a level of pin force that initially depended on earthquake inten­
sity and then increased slowly with pin-breaking force. The pin-independent
maxima occurred late during the earthquake ground motion inputs and the

pin-dependent maxima close to the time when the pins broke. These two
peaks were well separated in time and should not be considered additive
since they represent different maxima.

A design technique for a wind restraint system based on the shear

pin described herein can be developed from the above experimental and
analytical results. Peak acceleration due to pin breakage can be estimated
if the force at which a pin will break is specified and the shape of the

structure is evaluated, where the shape is assumed to be the first mode

of the pin-restrained system with an amplitude sufficiently large to
induce a base shear equal to the pin-breaking force. This displacement

would then be used to establish an initial condition for the second mode

of a pin-free system, from which peak modal acceleration could be easily
calculated if the system were assumed to be in free vibration. This latter
assumption is justified since the contribution of earthquake ground motion

to second mode response of an isolated structure is negligible. For the
model structure studied here, results calculated as described above were
plotted as lines and correlated with experimental results in Figs. l7a

through l7c. A pin-breaking force that will produce accelerations in the
second mode not greater than the acceleration produced by an earthquake in
the first mode can thus be specified. In most cases this pin force will
be greater than that necessary to restrain structures from the undesirable
effects of wind loading.
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5. CONCLUSIONS

The notched shear pin functioned effectively as a mechanical fuse

during tests of the rubber bearings base isolation system. When subjected
to dynamic loading, the pins broke completely and rapidly, and underwent
little plastic deformation. The dynamic breaking force of the shear pins
can be predicted reliably from the results of static tests. The mode shapes
of the model with and without the shear pin in place differed greatly. When
the shear pins broke, frame displacement was approximately in the first mode.

The isolated system then responded in both the first and second modes. The
magnitude of second mode response was approximately proportional to shear
pin breaking force. In tests of shear pins with the highest breaking force,
second mode acceleration in excess of 0.5g was recorded. At the 4.85 Hz
second mode frequency, this acceleration induced a story drift on the order
of .1 inch, negligible in comparison with earthquake-induced displacements
which may be on the order of several inches.

Although accelerations measured during tests of the isolation system
with shear pins with large breaking forces in place exceeded values accept­
able in an earthquake-isolated structure, these tests were performed only
to clarify the structural behavior of the model at the instant that the pin
breaks, the breaking forces of these pins being much in excess of that
necessary to restrain a structure under wind loading. The experimental
results confirm that the acceleration induced when the shear pin breaks
does not increase with an increase in earthquake intensity. Second mode
acceleration will therefore be less significant for more intense earth­
quakes and smaller pin loads. The shear pins can be used to limit deflec­

tion due to wind loads and can be designed so as not to induce excessive
acceleration when they break.



- 11 -

REFERENCES

1. C. J. Derham, L. R. Wootton, and Learoyd, S. B. B., "Vibration Isolation
and Earthquake Protection of Buildings by Natural Rubber Springs,"
Natural Rubber Technology, Vol. 6, Part 2 (1975).

2. C. J. Derham, J. M. Eidinger, J. M. Kelly, and A. G. Thomas, "Natural
Rubber Foundation Bearings for Earthquake Protection - Experimental
Results," Natural Rubber Technology, Vol. 8, Part 3 (1977).

3. J. M. Kelly, J. M. Eidinger, and C. J. Derham, "A Practical Soft Story
Earthquake Isolation System," Report No. UCB/EERC-77/27, Earthquake
Engineering Research Center, University of California, Berkeley (1977).

4. M. S. Caspe, "Earthquake Isolation of Multistory Concrete Structures,"
ACT Journal, Vol. 67, No. 11, pp. 923-933 (1970).

5. G. C. Delfosse, liThe GAPEC System: A New Highly Effective Aseismic
Design," Centre National de la Recherche Scientifique, France.

6. A. S. Ikonomu, "The Earthquake Guardi ng System, II Techni ca Chroni ca,
Vol. 41 (1972).

7. J. M. Kelly and D. F. Tsztoo, liThe Development of Energy-Absorbing
Devices for Aseismic Base Isolation Systems," Report No. UCB/EERC-78/01,
Earthquake Engineering Research Center, University of California,
Berkeley (1978).





- 13 -

TABLE 1 SHEAR PIN DIMENSIONS AND BREAKING FORCES

SHEAR PIN DIAMETER NOTCH DEPTH NOMINAL STATIC AVERAGE DYNAMIC
DESIGNATION (D) (INCHES) (d)(INCHES) BREAKING BREA.KING

FORCE (KIPS) FORCE (KIPS)

4/07 1/4 .070 .93 1.48

5/10 5/16 .100 1.58 2.25

5/055 5/16 .055 2.70 3.40

6/09 3/8 .090 3.16 4.09

6/06 3/8 .060 4.30 5.35

8/12 1/2 .120 5.76 6.77

8/08 1/2 .080 7.22 8.22

o

2" NOMINAL

SHEAR PIN DIMENSIONS

Preceding page blank
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TABLE 2 MAXIMUM VALUES OF EARTHQUAKE INPUT SIGNALS

TABLE TABLE
EARTHQUAKE DISPLACEMENT ACCELERATION

SIGNAL
MAXIMUM MINIMUM MAXIMUM MINIMUM
(INCHES) (INCHES) (G) (G)

EL CENTRO 200 1.059 .828 .114 .129

EL CENTRO 300 1.587 1. 241 .176 .200

EL CENTRO 400 2.118 1.663 .240 .280

PACOIMA DAM 100 .534 .454 .115 .127

PACOIMA DAM 150 .803 .684 . 181 .192

PACOIMA DAM 220 1.180 1.000 .269 .272

PARKFIELD 300 1.476 .826 .149 .133

PARKFIELD 400 1.971 1.102 . 191 .184
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