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ACCURACY OF MODAL SUPERPOSITiON FOR
ONE-DIMENSIONAL SOIL AMPLIFICATION ANALYSIS

Robert V. Whitman, Massachusetts Institute of Technology
Jose M. Roesset, Massachusetts Institute of Technology
Ricardo Dobry, University of Chile

Luis Ayestaran, Solum, Mexico City

ABSTRACT

The nature and possible magnitude of the errors involved in the deter-
mination of soil amplification effects, using modal analysis of a discrete
lumped mass system, are discussed. These errors are mainly due to the
treatment of damping and arise from the nature of the damping (hysteretic
rather than viscous), the possible lack of normal modes in the classical
sense, and the radiation effect in the underlying rock. It is shown that
in many cases these errors are either negligible or they can be accounted
for by relatively simple procedures (use of weighted modal damping and an
additional term corresponding to the radiation effect). There are cases,
however, where these corrections do not yield satisfactory results (in
particular when the stiffness and damping of two layers are very different).
It is then advisable to use the continuous solution in the frequency domain
instead ¢f the lumped mass model.

INTRODUCTION

In studying the effect of local soil conditions upon earthquake ground
motions, a soil profile often is represented as a linear shear beam.
Several types of error are thereby introduced:

1. Replacing a 3-dimensional non-linear problem by a linear one-
dimensional problem.

2. Poor choice of inputs: soil properties and input earthquake
motion.

3. Use of approximate mathematical solutions.

This paper is concerned with the last of these errors; specifically, the
errors resulting from use of modal superposition. In most cases, these
"mathematical errors” are the least important of the three categories.
However, when they are important, it is because of the way in which damping
.is treated in the modal superposition method. Thus, when such errors occur,
they are very fundamental in nature, and must be understood by any engineer
wisgizg to take advantage of the convenience of the modal superposition
method. .

To study these errors, a number of comparisons have been made between
resuits obtained by that method and by an "exact" method. (0Of course, the
"exact" method is only as good as the assumption of a linear shear beam
and the choice of soil properties and input earthquake.) The methods of
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soiuiion liave been compared using the same soil properties. Thus, no use
has haon made of the iterative procedure {Seed and ldriss, 1968) in which
s0il nroperties are adjusted to be consistent with the level of strain.
Use a7 such an 1terative procedure tends to reduce the errors discussed
in this pavey, since any error in calculated response is compensated Tor
by a <pange is the assumed damping.

The discussion in this paper parallels a similar treatment concerning
use ¢f modal superposition for analysis of soil-structure interaction
(Roesse: et 21,°1972).

THE EXACT SOLUTION

An Tzxact® solution for the response of a 1inear shear beam may be
obtaineqa using Fourier analysis and transfer functions (Roesset and Whitman,
196%; inesset, 1970). The method which had been used earlier in Japan,
Mexico and Chite is illustrated in Fig. 1. The diagrams on the figure show
the time history of the input motion and corresponding Fourjer spectra, and
the couputed transfer function. Multiplying the transfer function times
the Fourier spectrum for the input motion gives the Fourier spectrum for
motion at the top of the profile. This spectrum can then be converted intc
the time history for motion at the surface. Actually, both the amplitude
and phase angle of the Fourier spectra and transfer function must be used
for the computation, although for convenience only the amplitudes are shown
in the vioure.

A comptter program embodying Fourier analysis and transfer funciions
is very simple and uses very little computer time, especially if the computer
will accept compiex arithmetic. Such a program can readily handle prof £iles
with many 211 strata having different properties, and any linear damping
may be utiiized., This method also makes it possible to account for the
effect of the non-rigidity of the earth below the bottom of the soil pro-
file.

Some erroy may be introduced into this method by the numerical inte-

gration & used to convert from time history of motion to Fourier
spectra, anc¢ vice versa. In work at MIT, the Cooley-Tukey Fast Fourier
Transformr axguf;fnm has been used. This algorithm has been tested by
starting with ar input time history, computing surface motion for a soii pro-

file, and then reversing the process to compute base mction from the surface
motion. The tinal computed motion was virtually indistinguishable from the
input motion.

MODAL SUPERPOSITION

Modal superposition is one of several methods that may be used to soive
the equations governing the linear response of a shear beam to input motion
at its base. This method separates the two variables in the basic eguations:

~time, and the depth within the profile. The mode shapes express variation
of motion with depth, while the time responses of each mode to the input
motion are calculated and then added.

The method of modal superposition has been used extensively to solve
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the shear beam problem. It has some important advantages:

1. It is familiar to many engineers involved in earthquake engineering.
2. It is economical in terms of computer running time.

No doubt extensive utilization of this method will continue into the future.

. However, mathematically speaking modal superposition is not valid for
many soil amplification problems--even when Tinear equations are used. That
is, the governing differential equations usually do not satisfy the require-
ments which permit separation of the time and depth variables. There are
several reasons for this difficulty:

1. Differences in damping among various parts of the soil profile.

2. The effect of the properties of the earth lying below the bottom
of the profile selected for analysis. This effect is equivalent
to introducing additional damping.

3. To determine modal response by time-step integration, it is
necessary to assume that damping in soil is viscous, whereas
actually the damping is much more nearly hysteretic in character.

These three difficulties mean that "errors" are introduced whenever modal
‘superposition is used. A1l of these difficulties are, in one way or another,
associated with the treatment of damping.

Lumping

In most practical solutions using modal superposition, it is necessary
to replace the continuous soil profile by a system of lumped masses and
springs. Many of the comparisons presented in this paper are between exact
results for a continuous shear beam and results obtained by applying modal
superposition to a lumped shear beam. Hence, it is necessary to be sure
that purely numerical errors introduced by lumping do not obscure the funda-
mental errors described above. The errors described in the Introduction
can occur even if modal superposition is applied to a contiruous shear beam.

When a continuous shear beam is replaced by a discrete system of lumped
masses and springs, the governing partial differential equation is converted
into a system of ordinary differential equations which may readily be solved
by numerical techniques. The lumped system provides an accurate representa-
tion of frequency components whose wave lengths are long compared to the
spacing of the masses. High frequency components of the ground motion will
be distorted. Hence, the first step in satisfactory lumping is to choose
the highest frequency which is to be represented; then encugh masses are
taken to provide a satisfactory representation of this frequency.

Idriss and Seed (1968) have compared solutions obtained by lumped .
systems with those obtained for continuous systems for the iwo special cases
of a uniform stratum and a stratum in which the wave velocity increases as
the one-third power of depth. Damping was assumed to be constant with
depth and to be viscous in both lumped and continuous systems. For these
conditions, modal superposition is rigorously correct for the continuous
- shear beam. Based upon this study, rules for choosing the number of masses
in practical problems were suggested. Alternate versions for ihese rules
have been suggested by Hagmann and Whitman (1969). These several rules pro-
vide an accuracy which is adequate for engineering purposes, and the number
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of masses they require can reasonably be handled by computer programs.
HYSTERETIC VS. VISCOUS DAMPING

Damping in soil is caused primarily by relative slipping and sliding
among soil particles. This non-linear behavicr is shown by the hysteresis
loop which develops during a cycle of Toading (Fig. 2). Hysteretic damping
is conveniently expressed in terms of specific damping capacity, ¢ , defined
as:

b= AWM - (1)

where AW = energy lost during cycle of loading

W = maximum strain energy stored during cycle.
For many soils tested in the laboratory, it has been found that ¢ is sub-
stantially independent of frequency, for the range of frequencies important
in earthquake ground motions (Hardin and Drnevich, 1970). That is to say,
for earth materials the size of the hysteresis loop is independent of fre-
quency.

[

Thus, it is desirable to utilize a linear stress-strain (o vs. g) re-
Tation which will simulate this observed damping behavior. A convenient
form of relation from visco-elastic theory is:

G:Ge-{-ng% (2)

where G is a shear modulus and n is a viscosity ccefficient. When t varies
sinusoidally with time, Eq. 2 predicts that the stress-strain relation during
one cycle will be a loop very similar to the observed hysteresis loops. The
value of y for such a material is:

Y = 2mw/G (3)

where w = circular frequency of applied load. To simulate the observed

behavior, n must thus be made inversely proportional to frequuncy. It is
convenient to introduce a new variable D, called hysteretic damping ratio,
defined as: '

i

D = y/4r = nw/2G (4)

For strains typical during important earthquakes, D for soil typically is
between 0.02 and 0.15, while D for rocks varies from 0.05 to 0.03.

This stress-strain model for soil is called the linear-hysteretic
model. It is a visco-elastic model, but with viscosity chosen in such a
way as to simulate non-linear hysteretic behavior. It is the simplest
linear model which adequately simulates actual behavior, and indeed the
simulation often js quite good (Dobry et al, 1971). In the remainder of
this section, it will be presumed that the linear-hysteretic model is the
"correct" form of damping, and errors introduced by substituting a mathe-
matically more convenient form of damping (n = constant) will be examined.

Response of 1-DOF System
) Consider two single-degree-of-freedom systems with the same mass M and
spring constant k, one having hysteretic damping (D = constant) and the
other having viscous damping (n = constant). Fig. 3 shows amplification
and phase angle curves for sinusoidal excitation of these two systems. The
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values of D and n have been chosen such that the peak amplification is the
same for both systems. This condition is met when:

D=n/2V kM =8 (5)

where § is the critical damping ratio for the viscously damped system.
That is, if 8 is set numerically equal to D, then a viscously damped 1-DOF
system will have the same peak amplification as a hysteretically damped
system. As may be seen from Fig. 3, the two systems will also respond
very similarly over a wide range of excitation frequencies; significant
differences appear only at frequencies much greater than the resonant
frequency.

If a 1-DOF system with Tinear hysteretic damping is subjected to earth-
quake base motion, the response of the system may be computed by Fourier
analysis. However, because n varies with frequency, the governing dif-
ferential equation cannot be obtained by the usual method of numerical
integration with respect to time. On the other hand, response of a viscously
damped 1-DOF system may be evaluated by the usual time-step integration
methods (as well as by Fourier analysis). Hence, the “"correct" hysteretically
damped system often is replaced by an "equivalent" viscously damped system.
This substitution may be done without introducing much error, provided that
the predominant frequency in the input motion is not very large compared
to the resonant frequency of the system. Comparisons have been made of
response time history inputs and the results for a viscous system are
indeed virtually indistinguishable from the results for a hysteretic system.

Response of Soil Profile with Uniform Damping :
If the damping is the same at all points of a soil profile, then the
rules for the existence of classical modes are satisfied (Dobry et al, 1971).
This is true if the damping is linear hysteretic as well as when the damping
is viscous. If the hysteretic damping ratio is D at all poirts of the pro-

file, then the damping ratio is D for each mode. However, if damping is

hysteretic, it is necessary to use Fourier analysis to find the response

of each mode. Hence, as a practical matter, an exact solution using modal
superposition is not useful if damping is hysteretic.

The usual method is to approximate the exact behavior by calculating
the response of each mode using time-step integration, as though each mode
were viscous:y damped. Two questions then occur: how should the viscous
damping for each mode be chosen, and what error arises from this procedure?

The answer to the first question is: use the same critical damping
ratio B = D for each mode. This conclusion follows from the preceeding
discussion for a 1-DOF system. In effect, the amplification curve for the
viscously damped mode is made equal to that of the hysteretic mode at the
resonant frequency for the mode. This conclusion is different than that
which would be reached if damping in soil really were viscous; then the
critical damping ratio would increase in proportion to the natural frequency

-of the mode. Use of the same damping in each mode is a "frick" whereby
Zysteretic damping may be approximated by mathematically convenient viscous
. damping.

The general effect of making this approximation . may be inferred from the
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discussisn fur a 1-DOF system. The response of each mods ig very neariy
correct except at frequencies much greater than the natural irequency of
the mode .  Taus there should be very 1ittle ervor for {requencies neay the
fundamental froguency, but some error may appeoar at higrer {roquencies.
This conclusion is borne out by the amplivication curves in Fig. 4.

To indicate the actual magnitude of the possibie arvor, calculations
were first made for two uniform soil profiles (Hagmann and UWnitman, 1969).
The damping was 15% and the input earthquake was the NG6IW component of the
1952 record from Taft. Table 1 gives other properties of the strata and
compares peak computed surface accelerations. Response spectra from the
surface motions for one of these profiles are compared in Fig. 5.

An additicnal set of computations were made for the layered profiles
in Fig. 6. The wave velocity for the Tower layer was aiways 800 fps while
the velocity of the upper layer was varied. The inputs were a family of
four artificial motions whose spectra filted a smoothed response spectra.
Fig. 7 compares peak accelerations. For all cases, the agreement of res-
ponse spectra was as good as in Fig. 5.

In all of these examples, the agreenent between the exact and approxi-
mate methods is quite good~-certainly good enough to permit practical use
of the modal superposition method. Some of the errcr results from lumping,
but most of {t is caused by use of viscous damping to compute modal res-

- ponse. In &1l cases there were only minor differences between the time
histories computed by the two methods. As the fundamental frequency
decreases, -so that the predominant frequencies in the input are larger

than the fundamental frequency, there is a tendency for modal superposition
to underestimate response.

Summar

T%e main conciusion from this section is that very littie error is
introduced as the result of assuming that each mode is viscously damped so
as to permit use of time-step integration for computing modal response.
Of course, it is necessary to assign the proper amount of viscous damping
to each mode., When damping is constant throughout the soil profile, the
viscous damping ratio should be the same for each mode, and equal to the
hysteretic damping ratio.

If damping in soil really were viscous, then the ervrors discussed in
this section would not exist. However, the critical damping ratio for
each mode would then vary from mode to mode.

NON-UNIFORM DAMPING
If the damping is different in various parts of the soil profile, then

two difficulties arise:

1. From the practical standpoint, how should the modal dampings be
chosen, v

2. From the theoretical standpoint, the criteria for the applicability
of modal damping in general are not satisfied.

These difficulties apply whether the damping is thought to be hysteretic or
6



viscous.,

Choosing Modal Damping

The problem may be illustrated by reference to profile I in Fig. 6.
Suppose that the wave velocity Cg is uniform throughout, but that D = 30%
for the upper stratum and only 5% for the Tower stratum. In many analyses,
an equivalent uniform damping is obtained by averaging the damping ratios,
weighting each ratio by the thickness of the corresponding stratum. Thus,
for this case (30 x 1/4) + (5 x 3/4) = 11.2%. Now we can compare the
results for an exact analysis using the actual dampings with a modal super-
position solution using 11.2% damping in each mode. The ratio of peak
accelerations in this example proves to be about 0.7. This is a rather
unsatisfactory result,

A much better procedure is to use weighted modal damping (nggs and
Whitman, 1970; Roesset et al, 1972). In this procedurc the damping ratio
for the nth mode is computed as:

b - ZDi Ein

(6)
" sE

m

where Dy = damping ratio of ith stratum and Ein = energy stored in the

ith stratum for the nth mode. The summation is over all strata. Eq. 6
thus weights the damping ratios for the various strata by the fraction of
total energy that is stored in the strata. The relative energy stored in
each stratum depends upon the mode shape, and is different for each mode.
Thus D, varies from mode to mode. For the example used above, the computed
modal dampings for the first three modes are: D7y = 5.6%, Dy = 9.2%; D3 =
12.0%. Thus the large damping in the upper stratum has little effect upon
the damping of the first mode, but does contribute to the damping of the
higher modes. The ratio of peak accelerations, as computed by the exact
method and by modal superposition with weighted modal damping, now proves

to be 0.98, The response spectra for the two calculated motions are in
excellent agreement.

A series of calculations has been made, using the profiles in Fig. 6,
to test the validity of weighted modal damping. In each case, the shear
wave velocity CS. in the Tower layer was 800 fps, and the damping ratio
Dy in this layer was 5%. The shear wave velocity Csy and damping Dy of
the upper layer were varied. Calculations were made for the combination
of variables shown by the dots in Fig. 8. Also shown on this figure are:

1. The ratio of peak surface accelerations computed by modal super-
position with weighted modal damping and by the exact method.

2. A subjective rating of the agreement of the response spectra
derived from the surface motions computed by the two methods.
Examples of response spectra appear in Fig. 9; the rating for
each spectra appears in the lower right hand corner of each
diagram. Usually the agreement is quite good for periods
greater than 0.8 sec.

Based upon these results, curves have been drawn on Fig. 8 separating
zones of good,fair and poor agreement between the two methods. The agree-
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ment becomes poor when both the damping and stiffness of the two layers are
very different. Agreement is sufficient for practical purposes in both
the good and fair zones.

Theoretical Considerations

The errors appearing in Figs. 8 and 9 occur primarily because the
Ccriteria necessary to permit modal superposition are not met when there are
arbitrarily different dampings in different parts of the soil profile. This
point is discussed in more detail by Roesset et al (1972) in connection with
the problem of soil-structure interaction. Put in simple mathematical terms,
the governing differential equations cannot be decoupled. The coupling
appears in the damping matrix, and use of modal superposition with weighted
modal damping is equivalent to neglecting the off-diagonal terms in the
damping matrix. In some cases, where both damping and wave velocity differ
markedly within the profile, these off-diagonal terms are simply too impor-
tant .to neglect.

Summary :
It is clear that use of modal superposition can lead to significant
errors when damping varies considerably within the profile, especially

when there is also considerable variation of wave velocity. These errors
can be reduced, but not always eliminated, by use of weighted modal damping.

While it is tempting to seek some better rule for selecting modal
damping, it would seem better to recognize that normal modes simply do not
exist in soma situations. In such situations, modal superposition should
be abandoned and a more exact method used. One possible approach is 4
numerical integration of the system of coupled equations (Idriss and Seed,
1970); however, this method works only for a mathematically convenient
(but physically unrealistic) way of representing damping. The Fourier
analysis approach should be used.

EFFECT OF EARTH BENEATH SOIL PROFILE

Use of Fourier analysis to solve the one-dimensional amplification
problem has led to one important overall conclusion: the ground motion at
any depth in a soiil profile is affected by the nature of the soil above
this point. Thus, it is not really correct to assume that the input motion
is known at the base of a soil profile. For convenience, this earth material
below the bottom of the soil profile will be referred to as rock. Starting
with the motion that would exist at an outcropping of this underlying rock
and using Fourier analysis and transfer functions, it is possible to cal-
culate the motion that would exist at an interface between this rock and
some soil profile, and then the corresponding motion at the top of the soil .
profile. Results from this procedure are illustrated in Fig. 10. Here
the soil profile is 100 ft. thick, having CS = 800 fps and D = 5%. The
shear wave velocity in the underlying rock is assumed to be 2000 fps. The
differences between the input motion and the motion at the interface are
_ small and rather subtle. Yet there are large differences between the sur-
face motions computed including the interface effect (part b of the figure)
and the surface motions computed assuming that the input motion occurs at
the interface (part a).



The example in Fig. 10 indicates that consideration of the rock below
the soil profile introduces an additional damping effect. This additional
damping arises because some of the energy of vibration within the soil
“leaks" into the underlying rock. This situation is perhaps best under-
stood by imagining waves bouncing back and forth between the houndary and
the surface; each time a wave comes to the boundary, only pavt of the wave
energy is reflected back into the soil while a part passes into the under-
lying rock. Based upon the theory for reflecting waves, the amount of
additional damping should be related to the ratio of shear wave velocities
above and below the boundary (actually, to the ratio of the product oCs
above and below, where p is mass density). This is illustrated by the
results in Table 2, which gives the peak computed surface accelerations
when the wave velocity in the rock is varied.

There have been several studies of the potential importance of this
so-called radiation or impedance damping (Roesset and Whitman, 1969; Lysmer,
Seed and Schnabel, 1971). Certainly this effect is important in some
practical problems, although it is unimportant in many others,

Approximate Solution Using Modal Superposition

' The effect of radiation damping cannot be accounted for exactly in a
modal superposition solution. However, it is possible to approximate its
. effect by introducing an additional damping into each mode (Roesset and
Whitman, 1969). For a uniform soil profile:

o o2 1 (PCe)seiy )

n T 2n-1 (pcs)rock ,
The damping is added to the internal damping ratio. Various comparisons
have been made of the motions computed by the exact method and by modal
superposition using Eq. 7 (Hagmann and Whitman, 1969), and for uniform
strata the agreement is excellent.

When Cg varies within the soil profile, it is necessary to use some
average value. In most studies, this average has been obtaincd by weighting
the values of pCg for each layer according to the thickness of the layer.
Using this rule, exact and approximate results have been compared for the
profiles in Fig. 6. In this study, the internal damping was 5% in both
layers, while Cgy = 250 fps and Cgp = 800 fps. Three shear wave velocities
were used in the rock: 2000, 4000 and 6000 fps. Typical response spectra
for surface motions appear in Fig. 11. For profiles I and IIl, the results
by the exact and approximate methods were in fair to good agrecement. How-
ever, with profile II the agreement was fair to poor. Usually, the approxi-
mate method underestimates the response of the first mode of the soil. In
these cases, there would be better agreement if more weight were given to
the shear wave velocity of the upper layer. However, in profile III the
reverse situation is true: where the first mode is controlled by the pro-
perties of a very thick lower layer, the surface layer has little influence
upon radiation damping. A better method of weighting wave velocities is
‘ needed. Perhaps an equation of the form of Eq. 6 might be uscd to calculate
(pCs)aye where Di is replaced by (pC);j. However, this idea has not been

+ tested as yet.
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Summar.

Tﬁe effect of impedance or radiation damping can be important in some
problems, especially where the wave velocities of the soil profile and under-
lying rock are not too dissimilar. This additional damping effect can be
incorporated into the modal superposition solution in an approximate way.

The approximation is very good for a uniform soil profile, but may not be
entirely satisfactory for a profile in which the wave velocity varies greatly.
The exact method easily accounts for this effect.

CONCLUSIONS

The method of modal superposition is a powerful method for analyzing
the one~dimensional soil amplification problem, and because of its advantages
it Tikely will continue to receive extensive use in the future. However,
the method may be inaccurate for several reasons having to do with the treat-
ment of damping. (There may also be errors associated with the number of
modes to be retained and with conversion of a continuous soil profile into
an equivalent lumped system.) This paper has illustrated and analyzed
these errors: '

1. Error caused by inability to do time-step integration when a
realistic representation of damping (linear hysteretic) is used.
This error is insignificant in nearly all cases of interest.

2. Error caused by averaging damping when damping differs within
the soil profile. This error can be quite significant. It may
be reduced by use of weighted modal damping, but even so the
errors still may be significant when both damping and wave velo-
city vary considerably within the profile. :

3. Additional damping effect associated with non-rigidity of under-
lying rock. This error also can be quite significant in some
cases. The error may be greatly reduced, and even effectively
eliminated, by use of an additional damping term.

In all cases where there is concern about the errors involved in modal
superposition, an easily usable exact method (Fourier analysis) is avail-
able.
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Table 1

COMPARISON OF RESULTS BY EXACT AND MODAL
SUPERPOSITION METHODS - UNIFORM STRATUM WITH

CONSTANT DAMPING

Ratio peak accel.

Thickness Shear wave Fund. freq. - by exact and modal
ft. vel. - fps cps__ methods
100 750 .88 | 1.04
1000 1250 0.31 1.00
Table 2
PEAK SURFACE ACCELERATIONS FOR STRATUM 100 FEET
THICK WITH Cg = 800 CPS AND D = 5%
Cs of.rock - fps For input 1 For input 2
Infinite 0.28g 0.37g
8000 0.23g 0.25¢
5000 0.20g 0.21g
3000 0.17g 0.17g
2000 0.15¢ 0.15¢

Peak acceleration of both inputs was 0.1g.
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