
T72-6 Structures Publication No. 352 

ACCURACY OF MODAL SUPERPOSITION FOR 

ONE-DIMENSIONAL SOIL AMPLIFICATION ANALYSIS 

by 

Robert V. Whitman 
Jose M. Roesset 

Ri cardo Dobry 
Luis Ayestaran 

October, 1972 

Presented at International Conference 
on Microzonation, October 30 - November 
3, 1972, Seattle, Washington. 

Any opinions, findings, conclusions 
or recommendations expressed in this 
publication are those of the author(s) 
and do not necessarily reflect the views 
of the National Science Foundation. 





50272 -101 

REPORT DOCUMENTATION 11,.-REPORT NO. 1 2. 3'i3rc~nt'S}AE~~ n 5-0 
PAGE NSF-RA-E-72-264 r~ ~nJ ct 11 (1 ~. 

1-,,-. -Ti-tle-an-d-S-ub-ti-tle----~j-~-=c.......--'-"--'--"=---=--=---'-'-'--'--------L.---------t-:
s
=-. -=-R-ep-::-D-;-~ -" -"""'--""-=~""",,-,-.' ~,---",' "",---I 

Accuracy of Modal Superposition for One-Dimensional Soil Ampli October 1972 
fication Analysis, Presented at International Conference on r6-.-~------~-------~ 
Microzonation October 30 - NovemberJ9~Seattl~_:- ___ ~ __ _ 

7. Author(s) 

R.V. Whitman, J.M. Roesset, R. Dobr~ et al -------------9. Performing Organization Name and Address 

Massachusetts Institute of Technology 
School of Engineering 
Department of Civil Engineering 
Cambridge, Massachusetts 02139 

Applications (ASRA) 

1----------------------_· ---------
-16. Abstract (Limit: 200 words) 

--- ------
8. Performing Organization Rept. No. 

Structures Pub. 352 
10. Project/Task/Work Unit No_ 

T72-6 
-------------~----

11. Contract(C) or Grant(G) No. 

(C) 

----
14. 

- -_ .. -----~ .. --------------

The nature and possible magnitude of the errors involved in the determination of soil 
amplification effects, using modal analysis of a discrete lumped mass system, are 
discussed. These errors are mainly due to the treatment of damping and arise from 
the nature of the damping (hysteretic rather than viscous), the possible lack of 
normal modes in the classical sense, and the radiation effect in the underlying rock. 
It is shown that in many cases these errors are either negligible or they can be 
accounted for by relatively simple procedures (use of weighted modal damping and an 
additional term corresponding to the radiation effect). There are cases, however, 
where these corrections do not yield satisfactory results (in particular when the 
stiffness and damping of two layers are very different). It is then advisable to use 
the continuous solution in the frequency domain instead of the lumped mass model. 

17. Document AnalysiS a. Descriptors 

Soil 
Soil dynamics 

b. Identifiers/Open·Ended Terms 

Soil amplification analysis 
Modal superposition 
Earthquake ground motions 

c. COSATI Field/Group 

18. Availability Statement 

NTIS 

(See ANSI-Z39.18) 

Soil ana lys is 
Rock mechanics 

Earthquakes 

19. Security Class (This Report) 

20. Security Class (This Page) 

See Instructions ,:)n Reverse , 
I 

21. No_ of Pages 

19 
~. Price "'/ It,--rr:::-1-

ft.'Ao;ll 0/ 
OPTIONAL FORM 272 (4-17) 
(Formerly NTlS-35) 
Department of Commerce 





ACCURACY OF MODAL SUPERPOSITION FOR 
ONE-DIMENSIONAL SOIL AMPLIFICATION ANALYSIS 

Robert V. Whitman, Massachusetts Institute of Technology 
Jose M. Roesset, Massachusetts Institute of Technology 
Ricardo Dobry, University of Chile 
Luis Ayestaran, Solum, Mexico City 

ABSTRACT 

The nature and possible magnitude of the errors involved in the deter
mination of soil amplification effects, using modal analysis of a discrete 
lumped mass system, are discussed. These errors are mainly due to the 
treatment IOf damping and arise from the nature of the damping (hysteretic 
rather than viscous), the possible lack of normal modes in the classical 
sense, and the radiation effect in the underlying rock. It is shown that 
in many cases these errors are either negligible or they can be accounted 
for by re"!atively simple procedures (use of weighted modal damping and an 
additional term corresponding to the radiation effect). There are cases, 
however, where these corrections do not yield satisfactory results (in 
particular when the stiffness and damping of tvlO layers are very different). 
It is then advisable to use the continuous solution in the frequency domain 
instead of the lumped mass model. 

INTRODUCTION 

In studying the effect of local soil conditions upon earthquake ground 
motions, a soil profile often is represented as a linear shear beam. 
Several types of error are thereby introduced: 

1. Replacing a 3-dimensional non-linear problem by a linear one
dimensional problem. 

2. Poor choice of inputs: soil properties and input earthquake 
motion. 

3. Use of approximate mathematical solutions. 

This paper is concerned with the last of these errors; specifically, the 
errors resulting from use of modal superposition. In most cases, these 
"mathemati ca 1 errors II are the least i mportan t of the three categories. 
However, when they are important, it is because of the way in which damping 

.is treated in the modal superposition method. Thus, when such errors occur, 
they are very fundamental in nature, and must be understood by any engineer 
wishing to take advantage of the convenience of the modal superposition 
method. 

To study these errors, a number of comparisons have been made between 
results obtained by that method and by an "exact" method. (Of course, the 
"exact ll method is only as good as the assumption of a linear shear beam 
and the choice of soil properties and input earthquake.) The methods of 
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SOlution iid!(~ been compared using the same son prQpert-les, Thus~ no usc 
has tlt;(;,J iidde of the iterative procedure (Seec\ and Idriss, 1968) in \JJhich 
soil rrJ~~rti~s 1re adjusted to be consistent with the level of strain. 
USE. ~)~c :;\;';;, C-;.n lterative procedure tends to Y'educe the erroY's discUS3ed 
in thi~~ f),ilk\', since any er'ror in calculated response is compensated fot' 
by a ~nanJ~ i~ the assumed damping. 

The ~ls~ussion in this paper parallels a similar treatment concerning 
use of fTi()tial superposition for analysis of soil-structure interaction 
(R()es~e:, et e,; > '1972). 

THE EXACT SOLUTION 

,f\n;~Xi;\ctH solution ,for the response of a linear shear beam may be 
obtained using Fourier analysis and transfer functions (Roesset and Whitman, 
1969; ~0e~5etl 1970). The method which had been used earlier in Japan~ 
i1exico dllCi Chile is illustrated in Fig. 1. The diagrams on the figure sho':1 
the time history of the input motion and corresponding Fourier spectra, and 
the corilp'H,:?d trans fer functi on. Multi ply; ng the trans fer functi on ti mes 
the Fourier spectrum for the input motion gives the Fourier spectrum for 
motion at ~he top of the profile. This spectrum can then be converted into 
the time h'istory for motion at the surface. Actually, both the amplitude 
and phasE: ;mgle of the Fourier spectra and transfer function must be used 
for the co'qliJtati on, although for conveni ence on 1y the amp 1 itudes are shown 
in the -;"1 q~lre. 

'), n)rdP~,Lev' pyogram embodying Fourier analysis and transfer functions 
is very s"i'11pl\? a.nd uses very little computer time, especially if the compute:'" 
will accept complex arithmetic. Such a program can readily handle profiles 
with many;,'); 1 strata havi ng different properties, and any 1 i near dampi ng 
may be uU i~,~ed. This method also makes it possible to account for the 
effect of the non-rigidity of the earth below the bottom of the soi! pro--
f; le. 

Sam.;; E(t'OY may be i ntraduced into thi s method by the nurneri ca.l i nte
grat':on ~~J,:?mes used to convert from time history of motion to Fourier 
spectra, and vice versa. In work at MIT, the Cooley-Tukey Fast Fourier 
Tl~ansforlT 3.1C;Gt'it.hm has been used. This algorithm has been tested ~,y 
starting with an input time history, computing surface motion for a sed': pn.l'~ 
file, and ti1en reversing the process to compute base mction from the sUI~face 
motion. -(l'1t': -t~nal computed motion was virtually indist'ingu;shable from the 
input moti 0'1. 

MODAL SUPERPOSITION 

I~oda"l ~;uperposition is one of several methods that may be used to solve 
the equations governing the linear response of a shear beam to input motion 
at its base. This method separates the two variables in the basic equations: 

. time, and the depth within the profile. The mode shapes express variation 
of motion with depth, while the time responses of each mode to the input 
motion are calculated and then added. 

The method of modal superposition has been used extensively to solve 
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the shear beam problem. It has some important advantages: 
1. It is familiar to many engineers involved in earthquake engineering. 
2. It is economical in terms of computer running time. 

No doubt extensive utilization of this method will continue into the future. 

However, mathematically speaking modal superposition is not valid for 
many soil amplification problems--even when linear equations are used. That 
is, the governing differential equations usually do not satisfy the require
ments which permit separation of the time and depth variables. There are 
several reasons for this difficulty: 

1. Differences in damping among various parts of the soil profile. 
2. The effect of the properties of the earth lying below the bottom 

of the profile selected for analysis. This effect is equivalent 
to introducing additional damping. 

'3. To determine modal response by time-step integration, it is 
necessary to assume that damping in soil is viscous, whereas 
actually the damping is much more nearly hysteretic in character. 

These three difficulties mean that lIerrorsli are introduced vJhenever modal 
'superposition is used. All of these difficulties are, in one way or another, 
associated with the treatment of damping. 

LUinping 
In most practical solutions using modal superposition, it is necessary 

to replace the continuous soil profile by a system of lumped masses and 
springs. Many of the comparisons presented in this paper are betvJeen exact 
results for a continuous shear beam and results obtained by applying modal 
superposition to a lumped shear beam. Hence, it is necessary to be sure 
that purely numerical errors introduced by lumping do not obscure the funda
mental errors described above. The errors described in the Introduction 
can occur even if modal superposition is applied to a contiruous shear beam. 

When a continuous shear beam is replaced by a discrete system of lumped 
masses and springs, the governing partial differential equation is converted 
into a system of ordinary differential equations which may readily be solved 
by numerical techniques. The lumped system provides an accurate representa
tion of frequency components whose wave lengths are long compared to the 
spac; ng of the masses. Hi gh frequency components of the ground moti on wi 11 
be distorted. Hence, the first step in satisfactory lumping is to choose 
the highest frequency which is to be represented; then enough masses are 
taken to provide a satisfactory representation of this frequency. 

Idriss and Seed (1968) have compared solutions obtained by lumped 
systems with those obtained for continuous systems for the two special cases 
of a uniform stratum and a stratum in which the wave velocity increases as 
the one-third power of depth. Damping was assumed to be constant with 
depth and to be viscous in both lumped and continuous systems. For these 
conditions, modal superposition is rigorously correct for the continuous 

, shear beam. Based upon this study, rules for choosing the number of masses 
in practical problems were suggested. Alternate versions for these rules 
have been suggested by Hagmann and Whitman (1969). These several rules pro
vide an accul"acy which is adequate for engineering purposes, and the number 
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of masses they requi re can reasonably be handl ed by computer programs. 

HYSTERETIC VS. VISCOUS DAMPING 

Damping in soil is caused primarily by relative slipping and sliding 
among soil particles. This non-linear behavior is shm'Jn by the hysteresis 
loop which develops during a cycle of loJri i ng (Fig. 2). Hysteretic damping 
is conveniently expressed in terms of speciJic .Q~mpin£ capacity, 1jJ , defined 
as: 

(1) 

where ~w = energy lost during cycle of loading 
W = maximum strain energy stored during cycle. 

For many soils tested in the laboratory, it has been found that 1jJ is sub
stantlally independent of frequency, for the range of frequencies important 
in earthquake ground motions (Hardin and Drnevich, 1970). That is to say, 
for earth materials the size of the hysteresis loop is independent of fre
quency, 

Thus, it is desirable to utilize a linear stress-strain (0 vs. c) re
lation which will simulate this observed damping behavior. A convenient 
form of relation from visco-elastic theory is: 

dE: 
(J = G E: + 11 dt ( 2 ) 

where G is a shear modulus and 11 is a viscosity coefficient. When T varies 
sinusoidally with time, Eq. 2 predicts that the stress-strain relation during 
one cycle wi'l be a loop very similar to the observed hysteresis loops. The 
value of 1jJ for such a material is: 

W = 2rrnw/G (3) 
where w = circular frequency of applied load. To simulate the observed 
behavior, n must thus be made inversely proportional to frequ:..:ncy. It is 
convenient to introduce a new variable 0, called hysteretic damping ratio, 
defi ne·d as: 

D = ¢/4n = nw/2G (4) 

For strains typical during important earthquakes, D for soil typically is 
between 0.02 and 0.15, while D for rocks varies from 0.05 to 0.03. 

This stress-strain model for soil is called the linear-hysteretic 
model. It is a visco-elastic model, but with viscosity chosen in such a 
way as to simulate non-linear hysteretic behavior. It is the simplest 
linear model which adequately simulates actual behavior, and indeed the 
simulation often is quite good (Dobry et al, 1971). In the remainder of 
this section, it will be presumed that the linear-hysteretic model is the 
"correct" form of damping, and errors introduced by substituting a mathe
matically more convenient form of damping (n = constant) will be examined. 

Response of l-DOF System 
, Consider two single-degree-of-freedom systems with the same mass M and 

spring constant k, one having hysteretic damping (D = constant) and the 
other having viscous damping (n = constant), Fig. 3 shows amplification 
and phase angle curves for sinusoidal excitation of these two systems. The 
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values of D and n have been chosen such that the peak amplification is the 
Same for both sys terns. Thi s cond; tion is met when: 

o = n/2fkM = (3 (5) 

\'ii1cre S is the critical damping ratio for the viscously damped system. 
That is~ if S is set numerically equal to 0, then a viscously damped l-DOF 
system will have the same peak amplification as a hysteretically damped 
system. As may be seen from Fig. 3, the two systems will also respond 
very similarly over a wide range of excitation frequencies; significant 
differences appear only at frequencies much greater than the resonant 
frequency. 

If a l-DOF system with linear hysteretic damping is subjected to earth
quake base moti on, the response of the sys tern may be computed by Fouri er 
analysis. However, because n varies with frequency) the governing dif
ferential eauation cannot be obtained by the usual method of numerical 
integration 'with respect to time. On the other hand, response of a viscously 
damped l-DOF system may be evaluated by the usual time-step integration 
methods (as well as by Fourier analysis). Hence, the "correct" hysteretically 
damped system often is replaced by an "equivalent" viscously damped system. 
This substitution may be done without introducing much error, provided that 
the predominant frequency in the input motion is not very large compared 
to the resonant frequency of the sys tern. Compari sons have been made of 
response time history inputs and the results for a viscous system are 
indeed virtually indistinguishable from the results for a hysteretic system. 

Response of Soil Profile with Uniform Damping 
If the damping is the same at all points of a soil profile, then the 

rules for the existence of classical modes are satisfied (Dobry et al, 1971). 
This is true if the damping is linear hysteretic as well as when the damping 
is viscous. If the hysteretic damping ratio is 0 at all poir.ts of the pro
file, then the damping ratio is 0 for each mode. However, if damping is 
hysteretic, it is necessary to use Fourier analysis to find the response 
of each mode. Hence, as a practical matter, an exact solution using modal 
superposition is not useful if damping is hysteretic. 

The usual method is to approximate the exact behavior by calculating 
the response of each mode using time-step integration, as though each mode 
were viscous"/'y damped, Two questions then occur: how should the viscous 
damping for each mode be chosen, and what error arises from this procedure? 

The answer to the first question is: use the same critical damping 
ratio a = 0 for each mode. This conclusion follows from the preceeding 
discussion for a l-DOF system. In effect, the amplification curve for the 
viscously damped mode is made equal to that of the hysteretic mode at the 
resonant frequency for the mode. This conclusion is different than that 
which would be reached if damping in soil really were viscous; then the 
critical damping ratio would increase in proportion to the na.tural frequency 

-of the mode. Use of the same damping in each mode ;s a IItrick" whereby 
hysteretic damping may be approximated by mathematically convenient viscous 
damping. 

The general effect of making this approximation may be inferred from the 
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discusshn fo!" i:l 1-DOF system, The \'espoi\:)~~ of t!i:ich ;w)\;', is vt::.ry !It.::ctl'iy 
correct e;l(cept at frequencies much greater 'lInn the natu:ill fr,:>quency of 
the' mode Tnus there should be vu'y littlc: errol' for irequenci(~s neRj' tr:c' 
fundamental frc:quency, but some error ma) ~f.ipr;{J.r at rri'Jncr fi~~:·qL!CnC1e~. 
This conclJsion is borne out by the ampliric}tia~ curves in F~g. 4. 

To in;JlcatE:: the actual magnitude of Ule po~.;sible 8n'or': ca-Iculutions 
\l!f~re fi fS t i1lade for two un; form soil profil es (Hagmann and \'Jhitman, 1969). 
The damping was 15% and the input earthquake was the N69W component of the 
1952 record from Taft. Table 1 gives other properties of the strata and 
compares peak computed surface accelerations. Response spectra from the 
surface motions for one of these profiles are compared in Fig. 5. 

An additional set of computations were made for tile layered profiles 
in Fig. 6. The wave velocity for the lower layer was atv/ays 800 fps vJhile 
the velocity of the upper layer VJaS varied. The inputs were a family of 
four artificial motions whose spectra fitted a smoothed response spectra. 
Fig. 7 compares peak accelerations. For all cases, the agreement of res
ponse spectra was as good as in Fig. 5. 

In all of these examples, the agreen~nt between the exact and approxi
mate method~, is quite good--certainly good enough to permit practical use 
of the moda1 superposition method. Some of the error results from lumping, 
but most of it is caused by use of viscous damping to computt modal res
ponse. In 2.11 cases there were only m"jnor di fferences between the time 
histories computed by the two methods. As the fundamental frequency 
decreases, ·50 that the predominant frequencies in the input are larger 
than the fundamental frequency, there is a tendency for modal superposition 
to underestimate response. 

summar~ 
T e main conclusion from this section is that very littCie error is 

introduced as the result of assuming that each mode is vi:>cously damped so 
as to p'ermit use of time-step integration for computing moda"' response. 
Of course, it is necessary to assign the proper amount of viscous damping 
to each mode> l,ihen damping is constant throughout the soil profile, the 
viscous damping ratio should be the same for each mode, and equal to the 
hysteretic damping ratio. 

If damping in soil really were viscous, then th~ errors discussed in 
this section would not exist. However, the critical damping ratio for 
each mode woul d then vary from mode to mode. 

NON-UNIFORM DAMPING 

If the damping is different in various parts of the soil profile, then 
two difficulties arise: 

1. From the practical standpoint, how should the modal dampings be 
chosen. 

2. From the theoretical standpoint, the criteria for the applicability 
of modal damping in general are not satisfied. 

These difficulties apply whether the damping is thought to be hysteretic or 
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viscous. 

Choosing r'1odal Dal~ing 
The problem li1aybe illustrated by reference to profile I in Fig. 6. 

Suppose that the wa ve velocity Cs is un; form throughout, but that 0 :: 30% 
for the upper stratuill and only 5% for the lOvJer stratum. In many analyses, 
an equiva1ent uniform damping is obtained by averaging the damping ratios, 
weighting each ratio by the thickness of the corresponding stratum. Thus, 
for this case (30 x 1/4) + (5 x 3/4) = 11.2%. Now \ve can compare the 
results for an exact analysis using the actual dampings with a modal super
position solution using 11.2% damping in each mode. The ratio of peak 
accelerations in this example proves to be about 0.7. This is a rather 
unsatisfactory result. 

A much better procedure is to use weighted modal damping (Biggs and 
Whitman, "1970; Roesset et a1, 1972). In this procedure the damping ratio 
for the nth mode is computed as: 

l:D. E. 
1 1n (6) 

l:E in 

where 0; :: damping ratio of ith stratum and Ein :: energy stored in the 
ith stratum for the nth mode. The summation is over all strata, Eq. 6 
thus weights the damping ratios for the various strata by the fraction of 
total energy that is stored in the strata. The relative energy stored in 
each stratum depends upon the mode shape, and is different for each mode. 
Thus Dn varies from mode to mode. For the example used above, the computed 
modal dampings for the first three modes are: Dl = 5.6%, D2 = 9.2%; D3 = 
12.0%. Thus the large damping in the upper stratum has little effect upon 
the damping of the first mode, but does contribute to the damping of the 
hi gher modl=s. The rati 0 of peak acce 1 era ti ons, as computed by the exact 
method and by modal superposition with weighted modal damping, now proves 
to be 0.98. The response spectra for the two calculated motions are in 
exce llen t agreemen t. 

A ser'ies of calculations has been made, lIsing the profiles in Fig. 6, 
to tes t the val i di ty of wei ghted modal dampi ng. In each case, the shear 
wave velocity CSL in the lower layer was 800 fps, and the damping ratio 
0L in this layer was 5%. The shear wave velocity CSV and damping DU of 
the upper layer were varied. Calculations were made for the combination 
of variables shovm by the dots in Fig. 8. Also shovm on this figure are: 

1. The ratio of peak surface accelerations computed by modal super
position with weighted modal damping and by the exact method. 

2. A subject; ve rating of the agreement of the response spectra 
derived from the surface motions computed by the two methods. 
Examples of response spectra appear in Fig. 9; the rating for 
each spectra appears in the lower right hand corner of each 
diagram. Usually the agreement is quite good for periods 
greater than 0.8 sec. 

Based upon these results, curves have been drawn on Fig. 8 separating 
zones of good, fai r and poor agreement between the two methods. The agree-
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ment becomes poor when both the damping and stiffness of the two layers are 
very different. Agreement is sufficient for practical purposes in both 
the good and fair zones. 

Theoretical Considerations 
The errors appearing in Figs. 8 and 9 oc~ur primarily because the 

criteria necessary to permit modal superposition are not met when there are 
arbitrarily different dampings in different parts of the soil profile. This 
point is discussed in more detail by Roesset et al (1972) in connection with 
the problem of soil-structure interaction. Put in simple mathematical terms, 
the governing differential equations cannot be decoupled. The coupling 
appears in the damping matrix, and use of modal superposition with weighted 
modal damping is equivalent to neglecting the off-diagonal terms in the 
damping matrix. In some cases, where both damping and wave velocity differ 
markedly within the profile, these off-diagonal terms are simply too impor
tant·to neglect. 

Summary 
It is clear that use of modal superposition can lead to significant 

errors when damping varies considerably within the profile, especially 
'when there is also considerable variation of wave velocity. These errors 
can be reduced, but not always eliminated, by use of weighted modal damping. 

While it is tempting to seek some better rule for selecting modal 
damping, it would seem better to recognize that normal modes simply do not 
exist in salTl:: situations. In such situations, modal superposition should 
be abandoned and a more exact method used. One possible approach is 
numerica'\ integration of the system of coupled equations (Idriss and Seed, 
1970); however, this method works only for a mathematically convenient 
(but physically unrealistic) way of representing damping. The Fourier 
analysis approach should be used. 

EFFECT OF EARTH BENEATH SOIL PROFILE 

Use of Fourier analysis to solve the one-dimensional amplification 
problem has led to one important overall conclusion: the ground motion at 
any depth in a soil profile is affected by the nature of the soil above 
this point. Thus, it is not really correct to assume that the input motion 
is known at the base of a soil profile. For convenience, this earth material 
below the bottom of the soil profile will be referred to as rock. Starting 
with the motion that would exist at an outcropping of this underlying rock 
and using Fourier analysis and transfer functions, it is possible to cal
culate the motion that would exist at an interface between this rock and 
some soil profil e ~ and then the correspondi ng moti on at the top of the soil 
profile. Results from this procedure are illustrated in Fig. 10. Here 
the soil prof'i1e is 100 ft. thick, having C~ ::: 800 fps and 0 = 5%. The 
shear wave veilocity in the underlying rock 1S assumed to be 2000 fps. The 
differences beb/een the input motion and the motion at the interface are 
small and rather subtle. Yet there are large differences between the sur
face motions computed including the interface effect (part b of the figure) 
and the surface motions computed assuming that the input motion occurs at 
the interface (part a). 
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The example in Fig. 10 indicates that consideration of the rock belo\'1 
the soil profile introduces an additional damping effect. This additional 
damping ari ses because some of the energy of vi bration with i 11 the soil 
"l eaks" into the underlying rock. This situation is perhaps best under
stood by imagining waves bouncing back and forth between the houndary and 
the surface; each time a wave comes to the bOllndary, only pan of the wave 
energy is reflected back into the soil while a part passes illto the under
lying rock. Based upon the theory for reflecting waves, the amount of 
additional damping should be related to the ratio of shear wave velocities 
above and below the boundary (actually, to the rati 0 of the product pCS 
above and below, where p is mass density). This is illustrated by the 
results in Table 2, which gives the peak computed surface accelerations 
when the wave velocity in the rock is varied. 

There have been several studies of the potential importance of this 
so-called radiation or impedance damping (Roesset and Whitman, 1969; Lysmer, 
Seed and Schnabel, 1971). Certainly this effect is important in some 
practical problems, although it is unimportant in many others. 

Approximate Solution Using Modal Superposition 
. The effect of radiation damping cannot be accounted for exactly in a 
modal superposition solution. However, it is possible to approximate its 
effect by introducing an additional damping into each mode (Roesset and 
Whitman, 1969). For a uniform soil profile: 

2 1 (PCS)soil 
On = T 2"-1 {pCS}rock (7) 

The damping is added to the internal damping ratio. Various comparisons 
have been made of the motions computed by the exact method and by modal 
superposition using Eq. 7 (Hagmann and Whitman, 1969), and for uniform 
strata the agreement is excellent. 

When Cs varies within the soil profile. it is necessary to use some 
average value, In most studies, this average has been obtain(~d by weighting 
the values of pCS for each layer according to the thickness of the layer. 
Using this rule, exact and approximate results have been compilred for the 
profiles in Fig. 6. In this study, the internal damping was ~% in both 
layers, while CSU = 250 fps and CSL = 800 fps. Three shear W,\ve velocities 
were used in the rock: 2000, 4000 and 6000 fps. Typi ca 1 response spectra 
for surface motions appear in Fig. 11. For profiles I and III, the results 
by the exact and approximate methods were in fai r to good agreement. How
ever, with profile II the agreement was fair to poor. Usually, the approxi
mate method underestimates the response of the fi rst mode of the soi 1. In 
these cases, there would be better agreement if more weight Wt~re given to 
the shear wave velocity of the upper layer. However, in profile III the 
reverse situation is true: where the first mode is controlled by the pro
perties of a very thick lower layer, the surface layer has little influence 
upon radiation damping. A better method of weighting wave velocities is 

. needed. Perhaps an equation of the form of Eq. 6 mi ght be us(~d to cal cul ate 
{pCS)ave where Di is replaced by (pC)i. However, this idea htls not been 
tested as yet. 
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summar* 
Ie effect of impedance or radiation damping can be important in some 

problems, especially where the wave velocities of the soil profile and under
lying rock are not too dissimilar. This additional damping effect can be 
incorporated into the modal superposition solution in an approximate way. 
The approximation is very good for a uniform soil profile, but may not be 
entirely satisfactory for a profile in which the wave velocity varies greatly. 
The exact method easily accounts for this effect. 

CONCLUSIONS 

The method of modal superposition ;s a powerful method for analyzing 
the one-dimensional soil amplification problem, and because of its advantages 
it likely will continue to receive extensive use in the future. However, 
the method may be inaccurate for several reasons having to do with the treat
ment of damping. (There may also be errors associated with the number of 
modes to be retained and with conversion of a continuous soil profile into 
an equivalent lumped system.) This paper has illustrated and analyzed 
these errors: 

1. Error caused by inability to do time-step integration when a 
realistic representation of damping (linear hysteretic) is used. 
This error is insignificant in nearly all cases of interest. 

2. Error caused by averaging damping when damping differs within 
the soil profile. This error can be quite significant. It may 
be reduced by use of weighted modal damping~ but even so the 
errors s ti 11 may be s i gni fi cant when both damp; ng and wave vel 0-

city vary considerably within the profile. 
3. Additional damping effect associated with non-rigidity of under

lying rock. This error also can be quite significant in some 
cases. The error may be greatly reduced, and even effectively 
eliminated, by use of an additional damping term. 

In all cases where there is concern about the errors involved in modal 
superposition, an easily usable exact method (Fourier analysis) is avail
able. 
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Table i 

COMPARISON OF RESULTS BY EXACT AND MODAL 
SUPERPOSITION METHODS ... UNIFORM STRATUM WITH CONSTANT DAMPING 

Ratio peak aceel. 
Thickness Shear wave Fund. freq. by exact and modal 

ft. 

100 

1000 

vel. - fps cps 

750 1.88 

1250 0.31 

Table 2 

PEAK SURFACE ACCELERATIONS FOR STRATUM 100 FEET 
THICK WITH Cs = 800 CPS AND D = 5% 

methods 

1.04 

1.00 

Cs of rock - fps For input 1 For input 2 

Infini te 0.28g 0. 379 
8000 0.239 0. 259 
5000 0.20g 0. 21 9 

3000 0.17g 0. 179 
2000 0. 159 0. 159 

Peak acceleration of both inputs was 0.19. 
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