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Abstract

An analytical investigation of the response of chimney to earthgquake
and wind is presented in this report. The 823 foot tall chimney is
modeTed using Bernoulli-Euler beam finite elements. The modal superposi-
tion method 1is used for analyzing the elastic response while the numeri-
cal direct integration method is used to solve the equations for the in-
elastic response. A mathematical model that enables one to predict the
vortex-excited resonant responses of two cylinders in line in the wind
direction is developed.

For the elastic case, the cracks developed in the chimney and the
effect of the shear deformation are considered. Several assumed values
of the critical damping are included in the analysis. The stress distri-
butions around the flue openings are found by using quadrilateral plate
finite elements. The comparison of the results between time history
analysis and response spectrum analysis is made.

For the inelastic case, the material is assumed to have elastic-per-
fectly plastic behavior. Moment-curvature equations for a pipe-type section
are derived and combined with the Wilson-8 method to predict the inelastic
dynamic response of the chimney,

For the dynamic response of cylinder to wind, a modified ven der Pol
equation is empioyed as the governing equation for the fluctuating Tift
on the cylinder and is combined with the equation of motion for the cylin-

der. The results are compared with available experimental data.
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Dynamic Response of a Tall Chimney

to an Earthquake






I. INTRODUCTION

Due to the increasing demands for air poilution control, the height
of tall chimneys has been steadily increasing to satisfy these require-
ments. With the increase in the height of these chimneys, their resist-
ance to dynamic forces such as earthquakes and winds becomes increasingly
critical. A survay of Titerature shows that the studies of the dynamic
behavior, especially the inelastic dynamic behavior, of a tall slender
chimney subjected to a moderate earthquake has not received as much
attention as that of tall buildings or other tower structures (5, 8, 9,
12, 13, 14, 19). Although many design codes provide some quidelines for
estimating the dynamic forces and the corresponding displacements of the
chimney, a more detailed and reliable analysis method for both elastic
and inelastic dynamic responses of the chimney is still lacking.

Rumman (17), in 1967, presented a paper on the earthquake forces
on reinforced concrete chimneys. In his paper, the elastic response of
the chimney to earthquake forces was computed by the mode-superposition
method. He used the Stodola method to calculate the natural modes of
the chimney. Recently, a number of investigators (1, 4, 10, 11, 16, 20)
used either the mode-superposition method or a step-by-step direct inte-
gration method to analyze the dynamic behavior of a tall chimney. Their
studies were also concentrated on the elastic response of the chimney to
earthquake. During a major earthquake, the resulting deformations and
stresses developed in the chimney may exceed the elastic limit of the
structural materials. In that case, the structural response cannot be

assumed to be linearly elastic.



The determination of inelastic response for a chimney or other
structures having distributed mass and load is extremely difficult
because the direction of the dynamic force changes from time to time.
This will cause the material properties, moment curvature relationship
and initial strains to change with time as well. In order to simplify
such complexity, a number of investigators (9, 18, 19) assumed an
idealized elastic-plastic moment curvature relationship to study the
inelastic response of tall buildings or frames. The structure is
initially treated as an elastic system. When the bending moment at
certain section reaches its ultimate bending capacity, it is assumed
that an idealized plastic hinge has formed at this section and a new
elastic system is obtained. The analysis is continued until a second
hinge is formed or'the rotation of the first hinge reverses in direction,
thus indicating that this point returns to elastic range again. This
type of analysis is applied only to structures having many degrees of
structural redundancy. For a static determinate structure, such as a
free standing chimney, this kind of analysis is not applicable because
the structure will fail when the bending moment at any point reaches
the ultimate bending capacity. Therefore, a different approach must be
established for the study of inelastic response of the chimney.

The purpose of this research is to perform analytical studies of
the elastic and inelastic responses of a chimney to an earthquake. The
chimney studied is the one at the steam generating plant at Paradise,
Kentucky of Tennessee Valley Authority. Chapter II describes the geometry
and the material property of the chimney at a TVA Power Plant. The

823 foot tall chimney is modeled by eight pipe-type beam finite elements



and the base beam element is remodeled by 244 quadrilateral plate elements
for studying the stress concentrations around the flue openings. Chapter
I1T briefly describes the elements and the formulations used for the
analysis.

In Chapter IV, an existing computer program SAP IV is employed to
study the elastic response of the chimney. Several assumed values of
damping coefficients are included in the analysis. Both time history and
response spectrum analyses are employed to obtain the displacements and ‘
forces at various heights of the chimney. A simple method is developed
to generate the ground response spectrum as the input data for the re-
sponse spectrum analysis.

Chapter V describes the inelastic response of a chimney to an earth-
quake. The plastic bending analysis of a chimney is described first.

By using the initial strain concept to treat the effects of plastic
strains, a governing Tinear matrix equation is established to analyze
the problem. The incremental procedure is used in the solution of the
governing matrix equations. Based on the equations and the procedure
developed, the behavior of a chimney subjected to cyclic loading is then
analyzed. A general equation for the relationship between moment and
curvature is derived. The plastic strain distributions in the element
at any stage are found through this relationship. Finally, the inelastic
response of the chimney is solved by using a step-by-step integration
method coupled with the governing equations and the moment curvature re-
lationship. A cdmputer program is finally developed to predict the

inelastic dynamic behavior of the chimney.



II1. System Description and Modeling

The chimney studied here is the one at the Steam Generating Plant:
at Paradise, Kentucky of Tennessee Valley Authority. The chimney is
composed of two slender cylindrical reinforced concrete shells as
shown in Figure 2.1. - The inner shell serves as a liner and has two
inches fiber glass insulation on its outer surface. The inner shell also
has a stainless steel cap at the top covering the gap between the inner
and outer shells. There is no significant structural connection between
the two shells. There is a 4 feet 6 inches minimum air space between
the two shells,

The foundation of the chimney is imbedded in limestone rock. It is
assumed to be fixed against rotation and lateral displacement at an
elevation of 390 feet. The height of the chimney is 823 feet above the
foundation. Each of the two shells has a pair of side flue openings.
They are rectangular in shape with diménsions of 28 feet by 14 feet.

The base Tines of the openings are 73.5 feet above the chimney base. The
circumferential distance between the center lines of the two openings is
50 feet for the outer shell and 38 feet for the inner shell. Each
opening at the inner shell is connected to the opening at the outer shell
by steel framed flue duct. The concrete around the openings is heavily
reinforced.

The yielding strength of the A432 reinforcing steel is 60,000 psi
and the ultimate compressive strength of the concrete is 4,300 psi.
According to the recommendation of the TVA, the modulus of elasticity is
4.5 x 106 psi for the concrete and 29 x 106 psi for the reinforcing steel.

Figure 2.2 shows the assumed stress-strain relationships for the

concrete and steel. If the stress develaping in the concrete or steel
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is beyond the elastic 1imit as shown in the above figures, the material
is assumed to be in the plastic range and cannot take any additional

stress.

The Modeling

The 823 footltall chimney is modeled by 8 pipe—type'beam finite
elements as shown in Figure 2.3. Various geometric quantities for each
element of both shells are tabulated in Table I.

For the case with flue openings, the first element in Figure 2.3
is modified to an equivalent homogeneous beam finite element.. This is
done by first modeling the element by 70 quadrilateral plate finite
elements and then finding the static equivalent axial area and moments
of inertia for the equivalent beam element. The results for equivalent
thickness are also shown in Table I.

Figure 2.4 shows the model for local stress analysis around the
flue openings. The modeling is obtained by modifying the first beam
finite element into 244 quadrilateral plate finite elements.

For calculating the section area of beam elements or plate elements,
the reinforcing steel area of that section is transformed into equiva-

lent concrete area, thus making the section homogeneous.



Table I. Geometric Quantities for the Chimney

Element Outer Shell |
Number Ain)* D(in)* t(in)* m/unit g *
(ho ;o]es) 1440 783.0 23.81 13.104
(with1holes) 1440 783.0 20.50 11.280
2 1200 694.3 19.17 9.331
3 1200 624.9 17.88 7.842
4 1200 568.6 15.17 6.048
5 1200 525.7 10.92 3.999
6 1200 492.3 8.73 2.985
7 1200 468.8 8.36 2.721
8 1233 455.8 9.40 2.983
Element Inner Shell
Number £(in) - D{in) t(in) m/unit g
(no ﬁoles) 1440 637.2 13.93 6.053
(with hotes)| 1440 | 637.2 | 11.94 5.188
2 1200 529.9 10.30 3.725
3 1200 467.6 9.54 3.044
4 1200 423.1 9,04 2.608
5 1200 387.4 8.86 2,340
6 1200 360.6 8.67 | 2.133
7 1200 343.9 8.35 | 1.958
8 1104 334.6 9.39 2.144
¥ length of the element {inch)
D = diameter of the element (inch)
t = thickness of the element (inch)
m = mass of the element (slug)
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11
111, Finite Elements and Formulations

As mentioned in the preceding section, two types of finite elements
are used in the analysis. The major element used for both elastic and
inelastic analyses is the beam finite element. This element is discussed

in more detail in this section.

1. The Beam Finite Element
A typical beam finite element with two displacements and two rota-

tional degrees of freedom at each nodal point is shown in Figure 3.1.
i

wl H——

X ",

{

Figure 3.1 7Typical beam finite element.

The displacement function in the z-direction is assumed to be in the
form of a cubic polynomial function

w(x) = a; +ax + a3x2 + a4x3 (3.1)

where w is the displacement in the z-direction, x is the coordinate

axis defined in Figure 3.1 and the a's are the coefficients to be found.
This equation satisfies all the completeness and compatibility require-
ments because it includes all rigid body motion and constant strain state.
Substituting the nodal coordinates and displacements into Eduation (3.1),

it can be expressed in terms of the generalized nodal displacements as
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2 3 2 3
_ 3x 2X X X
wix) = (1 - =5+ 255w, + (x - 2=+ 55w,
) g Y i
3 2
3x 3X
+ (—;g" —zg')wj + (fg—- %* )stj (3.2)

where Wy and Wj are the displacements at nodal points i and j respectively
and w,xi s w,xj are the rotations at nodal points i and j as shown
in Figure 3.1.

From the beam theory, the total strain at any point within the beam
element is defined as

d2
e = -7 _“g (3.3)
dx

Substituting Equation (3.2) into (3.3), we have
{e} = [Bl{&} (3.4)

where {e} 1is the vector of total strain, {6} is the vector of generalized
nodal displacements and [B] is a functional matrix which depends on the
assumptions of the shape function of the element.

The strain energy of the element is obtained by integrating the internal

work done by the various stresses over the volumn of the element
U=1/2 { ogedv = 1/2 f e Ee dv . (3.5)
v v

where E is the elastic modulus and o is the stress of the element.
Expressing the above equation in terms of generalized nodal displace-

ments, we have

Uu=1/2 {s}T [J{[B]T[E][B]dv {8} (3.6)

v
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Application of Castigliano's theorem to Equation {3.6) yields

{F} = IJ[ [81T[E][BIdv (s} (3.7)
v
where {F} is the vector of generalized nodal forces. Thus the stiffness

matrix of the element is obtained as

[K] = JJ[[B]T[E][B]dv (3.8)
V'
Equations (3.1) to (3.7) are used for elastic analysis. The inelastic

formulation will be discussed in section V.

2. The Plate Finite Element

For the Tocal analysis of the chimney, a three dimensional quadrilateral
plate finite element is used. The element is composed of four triangular
elements with the four common vertices meeting near the centroid of the
quadrilateral. The degrees of freedom at this central nodal point are
eliminated at the element level prior to the assemblage.

The membrane stiffness of each sub-triangular element is based on
the constant strain assumption with Tinear inplane displacement functions
(6). The bending stiffness of each sub-triangular element is represented
by the fully compatible HCT element based on the Tateral deflection func-

tion that varies cubically with the inplane coordinates (7).
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IV. Elastic Response of a Chimney to Earthquake

4.1 Time History Analysis of a Chimney

A. Structural Equations of Motion

The equations of motion for a structure subjected to ground accelera-

tion can be written in the following form:

ml{y} + [cy} + [K1{y} = -[m]{i}g} (4.1)

where {y}, {y} and {;} are, respectively, the displacement, the velocity

and the acceleration vector of the body motion and {Jg} is the ground motion
acceleration vector. If the mass of the system is assumed tc be concentra-
ted at each nodal point, the mass matrix in Equation (4.1) can be easily
formed as a diagonal lumped mass matrix. The elastic stiffness matrix

[K] in Equation (4.1) is obtained from Equation (3.8) and the viscous damping
matrix [c] is usually expressed by a simplified approximation as the
following:

[c] = a[m] + g[K] (4.2)
where

o + ng = ngn (4'3)

£ is the ratio of actual damping to critical damping and W is the natural
frequency in the nth mode. By knowing & for the system, it is possible to
select the constants o and 8 to define the damping matrix [c]. The funda-
mental mode, being a predominant mode, is adopted along with the second
mode to evaluate the values of o and B.

Equation (4.1) could be solved by a numeriﬁal integration method
such as the step-by-step integration method. However, in analyzing the

earthquake response of a linear structure, it is more efficient to use
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the "mode superposition method" because the ground motion tends to excite

strongly the lowest modes of vibration only,

B. Mode Superposition Method

The displacement vector fy} of the cantilever beam such as the chimney
can be developed by superimposing suitable amplitudes of the natural modes

of the beam
{y} = [¢]1¥} (4.4)

where the column vector {¢i} is the mode shape of ith mode and Yi is the
generalized coordinate of ith mode, Substituting the above equation into
Equation (4.1) and premultiplying it by the transpbse of the nth mode shape

vector {¢}nT, it becomes
T " T : T T -
(o [mIL410¥Y + (03 LeIlolUY} + (93, [KIL4OYT = ~1o) [m]ly )

By using the orthogonality property of the mode shape vector, the above

equation is reduced to a single degree of freedom equation of motion for

mode n

Moly + SV +R Y = R (4.5)
aor

Vn + zgnmn?n + wﬁYn = -?n/Mn (4.6)
where

My = odpimlied, . F = (4}, n]

ey = tonlcltel, . Wl =R /M

K, = ol (Kl , g = C/2M o
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The solution of the equation {4.6) can be easily obtained by using
Duhamel's integral
t ,
Y (t) = M————F" v (1)e 5n9n{tT) gin o (t-t)de (4.7)
n w Y n .

nn 9
0

Therefore, the displacements expressed in geometric coordinates are

given by Equation (4.4) and the elastic forces are given by

{F} = [K]{y} at time t

C. Results and Discussion

(1) Undamped free vibration (without crack)
The equations of motion for the undamped free vibration of a structure
can be obtained by omitting the damping matrix and the applied force vector

from Equation (4.1) or

ml{y} + [K]iy} = {0}

The motion of a free vibration is assumed to be a homonic motion with natural
frequency w. Therefore, the above equation can be reduced to a determinant
as
|[K] - wPm]| = O

The solution of this equation yields the natural frequencies of the structure.

The first 12 natural frequencies and periods are tabulated in Table II
for the outer shell and in Table III for the inner shell. It is seen in both
tables that the flue openings have very little effect on the values of fre-
quencies. In reality, the chimney does have the flue openings, therefore,
in the following analyses, only the chimney with flue openings is considered.
The Sth, Bth, and 11th modes of the outer shell as shown in Table II with *
marks are longitudinal modes and the others are flexural modes., For the inner

th

shell, the longitudinal modes appear at Sth, 9", and 11th modes .



Table II. The Natural Frequencies and Periods for the Quter Shell
With or Without Flue Openings,

Mode Without Opening With Opening
Frequency Period Frequency Period

Number (rad./sec.) (Seconds) (rad./sec.) (Seconds)
1 2.003 3.1371 1.969 3.1911
V4 7.149 0.8789 7.009 0.8965
3 16.775 (.3746 16.573 0.3791
4 29.184 0.2153 29.015 0.2166
b* - 31.846 0.1973 31.387 0.2002
6 43.475. 0.1445 43.430 0.1447
7 58.063 0.1082 58.119 0.1081
8* 66.298 0.0948 65.275 0.0963
9 71.364 0.0881 71.436 0.0880
10 81.740 0.0769 81.811 0.0768
11* 109,990 0.0571 109.300 0.0575
12 145.550 0.0432 ' 145,750 0.0431

* Longitudinal modes
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Table III. The Natural Frequencies and Periods for the Inner Shell
With or Without Flue Openings.
Mode Without Opening With Opening
Frequency Period Frequency Period
Number (rad./sec.) (Seconds) (rad./sec.) (Seconds)
1 1.296 4.8491 1.277 4.9223
2 5.719 1.0987 5.615 1.1190
3 13.766 0.4564 13.572 0.4629
4 24,477 0.2567 24.319 0.2584
H* 28.407 0.2212 28.034 0.2241
6 36.987 0.1699 36.975 0.1699
7 '50.161 0.1253 50.252 0.1250
8 61.890 0.1015 61.980 0.1014
9% 71.445 0.0879 70.369 0.0893
10 72.901 0.0862 72.996 0.0861
11* 111.660 0.0563 110.860 0.0567
12 148.600 0.0423 148.850 0.0422

* Longitudinal modes
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The first six flexural mode shapes of the outer shell are plotted
in Figures 4.1 and 4.2.

(2) Response to the horizontal component of an garthquake (without crack)

The record of E1 Centro earthquake which occurred on May 18, 1940 is
selected to analyze the time history dynamic response of the chimney. -DBue
to the relatively long duration of intense motion of this earthquake, thé
first 30 seconds of the acceleration record as shown in Figure 4.3 is
used for response analysis. The record in Figure 4.3 shows that the accel-
eration oscillates at a frequency of approximately 3 to 7 cycles per second.
The results in Tables II and III for natural frequencies show that the
seventh frequency (sixth flexural frequency) is approximately 9.25 Hertz
for the outer shell and 8 Hertz for the inner shell, respectively. Only
the first six flexural modes are used in the mode superposition to simulate
the dynamic response of the chimney to the horizontal component of this
earthquake.

The time history responses for the deflections at the tip of the outer
shell and at the tip of the inner shell are shown in Figures 4.4 and 4.5,
respectively. The maximum tip deflection is 42.6 inches at 28.3 seconds
for the outer shell and 27.1 inches at 29.3 seconds for the inner shell.
The late arrival of the maximum tip deflections shows that 30 seconds of
ground motion is needed for the dynamic response analysis of the chimney
although the accelerations are large only in the first 12 seconds of the
ground motion. It also shows that the occurrence of an even larger tip
defleciton of the two shells at some time after 30 seconds is possible
although the magnitude of acceleration becomes considerably smaller after

that time.
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When both shells of the chimney are subjected to the earthquake
simultaneously, the air spacings between these two shells change with
time. Figure 4.6 shows the time history curve of the net spacing between
the tops of the outer and inner sheils. The horizontal dashed line in
this figure is the original designed air space between the tips of the
two shells. Figure 4.6 shows that the tip spacings are greater than zero
at any moment, that is, the two shells do not collide during the entire
30 seconds history of the earthquake.

The time history responses for the base bending moment and base
shearing force of the cuter shell are shown in Figures 4.7 and 4.8,
respectively. The maximum bending moment occurs at the time of 25.2
seconds with a magnitude of 32.05 x 106 in-kips and the maximum shearing
force occurs at the time of 22.5 seconds with a magnitude of 11.96 x 103
kips. Figures 4.9 and 4.10 show the time history responses for the base
bending moment and base shearing force of the inner shell, respectively.
The values shown in these two figures are quite small if compared to the
values of the outer shell. Figure 4.11 shows the maximum bending moments
and the maximum shearing forces distributed along the height of the outer
and inner shells. Although these values may not occur at the same time
they are the maximum absolute values occurring at each nodal point during
the entire course of the earthquake. The éorresponding maximum bending
stresses and shearing stresses in the steel and concrete for the two shells
are shown in Figures 4.12 and 4.13. 'Although the maximum bendfng moment
occurs at the base of the chimney, the maximum bending stress may not occur
at this point because the cross section of the chimney is not unifbrm along

its Tength. In fact, the most critical sections are at an elevation of

910 feet for the outer shell with a maximum bending stress of 4233 psi in
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the concrete and at an elevation of 1010 feet for the inner shell with a
maximum bending stress of 3502 psi in the concrete. In Figure 4.13, the
shearing stresses distributed in the concrete for both shells seem greater
than the maximum allowable shearing stress of the concrete, 132 psi.
However, besides the vertical reinforcements there is cértain amount of horf
izontal reinforcements in the chimney which can also take the shearing
force. It appears reasonable to assume that the shearing stresses are

within safe limits.

(3) Damping effect on responses (without crack)

The effect of viscous damping is considered in this study. It is
assumed that each of the six flexural modes has the same damping coefficient.
Six different values of viscous damping coefficient are assumed: 0.5%,
1%, 2%, 4%, 7%, and 10% of its critical value. The effect of damping on the
tip deflection, base bending moment, and base shearing force for both shells
is studied and summarized by the plots shown in Figures 4.14, 4.15, and 4.16,
respectively. It is seen that at 4 percent of critical damping, the tip
deflection, base bending moment, and base shearing force all decrease by
more than 50 percent of their original undamped values. The further increase
in damping coefficient does not seem to decrease the three physical quan-
tities as much.

In practical design, the viscous damping of such concrete structure is
assumed to be about 4% of its critical value. Hence, all the bending
stresses and shearing stresses developed in the chimney are expected to reduce
by about 50 percent as shown in Figures 4.12 and 4.13. In such a situation,
the material behavior of the chimney will not go into the plastic range during

the history of the earthquake.
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(4) Response to the vertical component of an earthquake (without crack)

The vertical component of the acceleration record of L1 Centro earth-
quake is shown in Figure 4.17. It is seen that the vertical component of
the acceleration oscillates at a frequency of around 8 to 9 Hertz. From
Tables II and III, it is learned that the second natural frequency of the
vertical modes is 10.5 Hertz for the outer shell and 11.3 Hertz for the inner
shell. Therefaore, the first two vertical modes are used to simulate the
response behaviors.

The maximum absolute values of the axial forces and the axial stresses
developed in the chimney due to this vertical component of the earthguake
are shown in Figure 4.18. From the relatively small quantities of the resulting
axial stresses in the concrete, it is learned that the effect of these axial
stresses to the vertical seismic components is negligible as compared to
that of the horizontal seismic components. Therefore, it is reasonable
to consider the chimney as a beam instead of a beam-column in the present

study.

(5) Stress concentration around the flue openings (without crack)

The stress distributions in the region around the two flue openings in
each shell are studied by performing tocal analysis of the lowest beam finite
element of each shell. This beam finite element is modeled by 244 quadrilateral
plate finite elements. Both ends are subjected to the simultaneous actions
of bending moment, shearing force and axial force caused by both the hori-
ionta] and vertical components of the earthquake. The most critical time
for the outer shell is at 25.2 seconds when the base bending moment equals
to 32.05 x 106 in-kips; the base shearing force equals to 11,810 kips;

and the base axial force equals to 217.7 kips. For the inner shell,



39

(338 )3WIL

rusuodwod TeoT3I2A ‘OH67T ‘8T Ley Jo

vmxmswsvado oaque) TH ‘UOTAIBISTSO0® pUNOID [LT'4 2JINTFTd

ku

f— Bﬂiu

- 8ﬁl

- 001

- 081

( 938/7338/NI ) NPIIBY3T3I0Y



40

oog

*STTOUS Yyzoq J0F 3YITay Snsasa
SS9J3S TEBTXEB WNUIXBW puB 80J0] TBIX® WNWIXeN gT°'4 °aIndtg

(1Sd) SSALS WIXY
08h 0%€ Chz 02t

T 70T R L

TI3HS ¥3INNT ---

\ T3HS ¥alnp —

oet

0ce

0ce

0ch

0cs

0c9

0cL

£28

(14) LHOI3H

( OT#SdIM) 32MDd WIXY

g 81 =2t 8 h 0
- -
TI3HS ¥INNI
- TIFHS ¥ALD ——
1 J 1 1

1734

0ce

Oce

0ch

0cs

0e9

0oL

£28

(13) 1HII3H



41

the most critical time is at 28.8 seconds when the base moment equals to
11.28 x ]06 in-kips; the base shearing force equals to 4,557 kips; and
the base axial force equals to 150.5 kips. Fiqures 4.19 and 4.20 show
the contour plots of the resulting bending stresses in the outer surfaces of
the outer shell and the inner shell, respectively. Because of symmetry,
only one half of the shell segment with one opening is shown. The highest
stresses due to the openings are about 2500 psi to 3000 psi for both
shells. It seems that these stresses around the openings are not very
high if compared to the maximum bending stresses at the base. This is

due to the heavily reinforced concrete around the flue openings.

(b) Response of the chimney to horizontal component of the earthquake

(with crack)

In the previous analyses, the concrete is assumed not to crack under
tensile stress. This may not be true because the tensile strength of the
concrete is very low (about 500 psi). Therefore, in this section, it is
assumed that the concrete has no tensile capacity and all the tensile
stresses are taken by the reinforced steel. Based on this assumption,
the problem is simplified. As shown in Figure 4.21, the transformed section
of the chimney consists of the concrete in compression on one side of the
neutral axis, and the steel area on the other. The distance to the neutral
axis is expressed as a fraction k of the diameter d. To determine the loca-
tion of the neutral axis, the resultant compressive force on the compression
side is set equal to the resultant tensile force on the tension side, that is,
the resultant force of the whole section is equal to zero. It is assumed
that there is no external axial force acting on this section. The total

compressive force Ce is
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Figure 4,19 Stress distribution around the
flue opening of outer shell.
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Figure 4.20 Stress distribution around the
flue opening of inner shell.
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Figure 4.21 Transformed cross section of the
outer shell (with cracks}.

A | B
Figure 4.22 Location of the neutral axis

of a cracked pipe-type section
during vibration.
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2 |
cp - rt]fc(r sing - r sino)dy/kd

0
rt]fC

Tm [COSS = (PZ_I' - G) Sin 0]

and the total tensile force Tf is

m
Tf‘ - J 2 rtzfc( rsin ¢ + r sin o)dy/kd

-0

rtzfc .
=trffzﬁﬁb[cos o+ (§-+ 0) sin a]

Since Ce = Tf, we obtain

(4.8)

In the above equation, the quantity kd which determines the location of the
heutral axis is a function of thicknesses t1 and t2 only. 1In other words,
the location of the neutral axis is not dependent on the magnitude of the
bending moment. If the bending moment changes its sign from positive to
negative or vice versa, the position of the neutral axis jumps from A to
B as shown in Figure 4.22 and there is no gradual shift of the position of
the neutral axis. Because the location of the neutral axis is not changed,
the moment of inertia of the section is also kept constant during the course
of vibration. In sucH situation, the problem is apparently simplified and
only the stiffness of the chimney is decreased due to the crack.

Table IV shows the geometric data for the 8 eiements of both shells when

the concrete is considered to have no tensile capacity. In order to use SAP IV

for the analysis, the unsymmetric cracked section as shown in Figure 4.21 will



Table IV. Geometric Quantities for the Chimney with Cracks
Element Outer Shell
Number | e{in)* | D(in)* ty(in)* [ t,(in)* | t'(in)* m/unit 1*
- ] - ; , ~ ]
1 1440 783.0 20.5 0.507 1.320 11.28
2 1200 694.3 19.17 0.765 1.897 9.331
3 1200 624.9 17.88 1.009 2.393 7.842
4 1200 568.6 15.17 1.068 2.452 b.043
5 1200 525.7 10.92 0.912 2.034 3.999
6 1200 492.3 8.733 0.695 1.564 2.985
7 1200 468.8 8.358 0.409 0.977 2.721
8 1233 455.8 9.401 0.173 0.461 2.983
Element Inner Shell
Number | ¢(in) o(in) |t (in) T t,0n) [ t7(in) [ m/unit o
1 1400 637.2 11.94 0.268 0.705 5.188
2 . 1200 529.9 10. 30 0.205 0.543 3.725
3 1200 467.6 9.54 0.188 0.499 3.044
1200 423.1 g.04 0.184 0.487 2.608
5 1200 387.4 8.86 0.263 0.673 2.340
6 1200 360.6 8.67 0.339 0.843 2.133
7 - 1200 343.9 8.35 0.252 0.644 1.958
8 1104 334.6 g.39 0.163 0.436 2.144
¥y = length of the element (inch)
D = diameter of the element (inch)
m = mass of the element (slug)
t1 = thickness on uncracked side of the section
tZ = thickness on cracked side of the:section
t" = the equivalent thickness (inch)
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be transformed to a symmetric section in which the moment of inertia is
unchanged. The thicknesses of the transformed sections are shown in Table
IVas t'.

Table V 'shows the first 12 natural frequencies and periods of the outer
and the inner shells with the crack. Due to the effect of the crack, the
periods shown in this table are longer than those shown in Tables II and III,
that is, the chimney becomes more flexible. Because the frequencies of the
cracked chimney are low, a total of nine flexural modes of each shell are
used for the seismic respdnse analysis. Figqure 4.23 shows 30 seconds time-
history response of the tip deflection for the outer shell due to the south-
north components of the E1 Centro earthquake. The maximum tip deflection
is found to be of 53.2 inches at 27.2 seconds. This value is greater than
the maximum tip deflection of the outer shell without crack. Intuitively,
this seems reasonab]é because the stiffness of the chimney is weakened by
the crack. However, the seismic response of the chimney depends not only
on the stiffness of the chimney but also mainly on the relationship between
natural frequencies of the chimney and the frequencies of the ground exci-
tation. Although the stiffness of the chimney is decreased by about 80 - 95%
due to the crack, the deflection of the cracked chimney may not necessarily
be greater than that.of the uncracked chimney. In order to prove this point,
a case was also studied in which the stiffnesses of the oufer shell were
unchanged but the mass of the outer shell is decreased by 10% at each nodal
point. The results show that the tip deflection of the outer shell is 53.2
inches for the case without crack and 39.5 inches for the case with crack.
The totally reversed results show that maximum deflection of the chimney

with crack may not be greater than that without crack.



Table V. The Natural Frequencies and Periods for the Chimney with

Crack,

Mode |  Outer Shell | Mode | Inner Shell
Number Frequency Period Number r-mFrequency Period
(rad/sec) (sec.) (rad/sec) (sec)
1 0,631 9.954 1 0.305 20.603
2 2.413 2.604 2 1.464 10.291
3 5.447 1.154 3 3.498 1.796
4 9.218 0.682 4 6.104 1.029
h* 10,141 0.620 h* 6.793 0.925
6 13.849 0.454 6 9.190 0.684
7 19.241 0.327 7 12.469 0.504
8* 21.942 0.286 8 15,808 0.397
9 25.326 0.248 9 18.205 0.345
10 31.535 0.199 10* 18.447 0.341
11* 35.138 0.179 11* 27.873 0.225
12% 45.499 0.138 12* 36.813 0.171

* Longitudinal modes

48
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Figure 4.24 shows the time history response for the tip deflection
of the inner shell with crack. The maximum tip deflection is 35.4 inches
at 14.3 seconds which is greater than the maximum tip deflection of
the inner shell without crack. Due to the rather large magnitude of tip
deflections of both the outer and the inner shells with crack, the two
shells collide with each other when the net tip spacings are negative.
By neglecting the hon]inearity due to collision, time history results
for net tip spacings between the two shells are given in Figure 4.25.
Figure 4.26 show the maximum bending moment and the maximum shearing
force distributed along the height of the outer and inner shells. Equation
(3.7) infficates that the nodal forces are directly proportional to the
stiffness of the chimney, therefore, the bending moments and the shearing
forces shown in Figure 4.26 for the less stiff chimney with cracks are
smaller than thbse shown in Figures 4.11. The corresponding bending
stresses in the steel and in the concrete for both shells are shown in
Figure 4.27. Because the tensile fdrce is entirely taken by the reinforced
steel, the tensile stresses developed in the steel due to the earthquake
are very high at some sections as shown in Figure 4.27. The compressive

stresses developed in the concrete are everywhere within safe 1imits.

(7) The effect of shear deformation on the deflection of chimney
Figure 4.28 shows cantilever having a thin pipe-type cross section
bent by a force P applied at the end. The tip deflection of this beam

including the effect of shear deformation is

3 -
_ P2 aP2
73T T w (4.9)

in which G is the modulus in shear, A is the cross sectional area, and a is

the shape factor with which the average shearing stress must be multiplied
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[

= ©

.Figure L,28 Cantilever pipe-type beam.

" Figure 4.29 Flexibility coefficients for
a cantilever beam,
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in order to obtéin the shearing stress at the centroid of the cross
section. For a pipe, with circular cross section, « - 2.0. The second
term on the right side of Equation (4.9) is the additional deflection
due to the shear deformation.
In the preéent case, the Poisson's ratio is assumed as 0.1667 and
the modulus in shear is defined as G = E/2(1 + u). Equation (4.9)

is reduced to

3
5= g [1+ 175 (97 (4.10)

(9% Ravl

For the chimney, the ratio of the diameter d to the length ¢ is approximate-
ly equal to 0.06 and the effect of the shear deformation on the defliection
is about 0.6% for the static case.

For dynamic case, the effect of the shear deformation on the deflection
can be included in the stiffness matrix [K]. One way of obtaining the
stiffness matrix is to first obtain the flexibility matrix and then in-
verting the flexibility matrix. The flexibility matrix, for a cantilever
subjected to a unit Toad at the free end (Figure 4.29) is given as matrix
[A] in Equation (4.11) and its corresponding stiffness matrix is given as

matrix [B] in Equation (4.11).

237361 -a?y2En o lreere® eEre?
[A] = [B]

]

2 2 (4.11)
-2 f2ET  &/EI 6EI/% 4EI/ %

J— —

In the effect of the shear deformation on the deflection (neglecting
this effect on the slope) is considered, the flexibility matrix [A] in

Equation (4.11) is modified as
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: 03361 + an/Gh -0%/2E]
[A = ) r
v 0226 0/E1

and the inverse of this matrix is

12E1 6E1 |
Q Q
: za 12
(8,1 =
%
A2
where ( = 5 . Following to preceding procedures, the stiff-
Ag +24a(1+p)IZ

ness matrix for a beam element which includes the effect of the shear defor-

mation on the deflection can be obtained as follows.

12/85 6/0 -12/1°  6/%

6/¢ 3+1/9  -6/¢ 3-1/Q
(k1 = 2 (4.12)

12768 -6/ 12708 -6/4

6/« 3-1/Q0 -6/¢ 3+1/Q

If the effect of the shear defofmation is very small and negligible (i.e.
Q © 1.0), the stiffness matrix [KV] reduces to the normal stiffness
matrix [K].

Because [KV] is smaller than [K], due to the effect of the shear
deformation, the natural frequencies shown in Tables Il énd II1 are only
slightly Tess thén those obtained by using [K] as shown in Table VI.
Although the shear deformation appears to have small effect on the natural
frequencies and their corresponding normal mode shapes of the chimney,
its effect on the seismic response of the chimney is, however, not so
small. Figure 4.30 shows the comparison between two cases, one including

and one excluding the effect of shear deformation for the maximum



Table VI. The Natural Frequencies and Periods for the Chimney
(excluding the effect of shear deformation).
Mode Outer Shell Mode Inner Shell

Number Frequency Period Number Frequency Period
(rad/sec) (sec) (rad/sec) (sec)

1 1.986 3.164 1 1.282 4.901
2 7.241 0.868 2 5.733 | 1.096
3 17.877 0.351 3 14.225 0.442
4* 31.387 0.200 4 26.450 0.238
5 33.166 0.189 5* 28.034 0.224
6 53.373 0.118 6 42.159 0.149
7* 65.275 0.096 7 60.482 0.104
8 77.489 0.081 8* 70.369 0.089
9 103.53 0.061 9 78.812 0.080
10* 109.30 0.057 i0 102.63 0.061
11 132.20 0.048 11* 110.86 0.057
12* 145.75 0.043 12* 148.85 0.042

* Longitudinal modes
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60
deflections and bending wmoments of the outer shell. As mentioned earlier,
the response of the chimney to the earthquake is mainly dependent on
the relationship between the natural frequencies of the chimney and the
earthquake. It is possible that the maximum tip deflection of the outer
shell including the effect of the shear deformation is sha]]er than that
excluding the effect of the shear deformation although the shear deforma-

tion tends to increase the deflection of the chimney in a static case.

4.2 Spectrum Analysis of a Chinney

The time history analysis method is a time-consuming method. This
method is particularly expensive for structures with high number of
degrees of freedom. For analyzing complex structures, it may be beyond
the cababi]ities of some design offices. Therefore, it would be desirable
to have a simpler analytical method for practical purpose which can give
reliable results. The response spectrum analysis method to be described
in this section is provided for this purpose.

th

In Equation (4.7), the response of the n~" vibration mode, Yn(t), depends

directly upon the magnitude of the integral

-5 w {t-1)
n sin mn(t-T)dT (4.13)

This integral is a function of the ground acceleration, damping ratio, natural

frequency of the structure, and the time at which the integral is evaluated.
Several methods have been used for calculating the integration; one of

these js a direct numerical integration method. However, the measured ground

accelerations obtained from a strong-motion earthquake record are usually

a zigzag curve as shown in Figure 4.3. The acceleration function between

two consecutive record time points is assumed to be linear, i.e.,
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§9(1) | + b]T for . o o g

Equation {4.13) can be expressed as a summation of a number of subintegrals

as the following:

t - w {(t-1)
Xy = | yglrle MM sinw (tec)de
0
1. 2.
= yg(T)f(T)d + yg(T)f(T)dr R
0 T1
. t
“i4]
+ J yg(T)f(r)dt o, + yg(l)f(T)dT | (4.14)
Yy i
-5 mn(t-r)

where 99(1) is linear in each subintegral and f(<) = e sin mn(t—r)

These subintegrals can be directly integrated as the following:

Ti+1 -Enmn(t—T)
yg(r)e sin wn(t—r)dr

T

i

Ti41 -t w (t-1)
= (a1 + b]T)e nn sin mn(t-r)dT

T.
1

: -t w (t-T)
(a-i + b]r)e nn

{t_ sinw (t-t) + cos w {t-t)}
(aﬁ + Vo, 3 " f
- @, {t-1)

blg e
g o {2 cos w (t-t) + g sinw (t-1)}
(an + 1) wg

-€nwn(t-r)

b e

1 .
V. 77 $1n mn(t-T)]
(En + 1) “n 3

T,
i+1
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g ()] M (4.15)
1

Substituting Equation (4.15) into Fquation (4.14), it becomes

(4.76)

The computing time required to obtain the solution of Xn by Equation (4.16)

for a given earthquake acceleration history } (), a known damping value

g
£, and a definite integral time t is approximately 5 percent of the computer
time required by a direct numerical integration method whereas the result
is apparently more accurate.

Xn has the dimension of velocity; its maximum value is called the spectral

velocity of the earthquake ground acceleration and is designated as Sv’ i.e.,

t . ~€nmn(t—T
S ) = [ yg(T)e sin mn(t-T)dT]max
0

It is seen from this equation that for a given earthquake acceleration

history, }g(r),-the spectral velocity depends only upon the frequency of

vibration, w s and the damping ratio, En' Thus a family of spectral velocity

curves can be constructed for any given earthquake, each curve representing

the maximum velocity as a function of frequency for a éivén damping ratio.
Two other frequently used spectral response quantities which are

closely related to the spectral velocity are the spectra] acceleration,

Sa,_and the spectral displacement, Sd. These represent the maximum modal

acceleration and dispiacement, respectively, and are defined as follows:

S, =uw S (4.17)
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S =S5 Jw (4.18)
dn vn n

Thus, the maximum modal response quantities can be computed directly from

the following equation

F
Y = N (4.19)
f, 7d

nmax n

For structures having only a single degree of freedom, Equation (4.19)
gives the maximum displacement of the structure. However, in multi-degree-
of-freedom structures the maximum response cannot be obtained directly from
the modal maxima because the maxima of the various modes do not occur simul-
taneously. Two- approximate methods are customarily used to obtain the
total response; the square root of the sum of the squares of all maximum
values and the sum of the absolutes of all maximum values. They are usually
named as the probable maximum response and the absolute maximum response,

respectively, with the former being used most frequently.

Results and Discussion

Figure 4.3] shows the response acceleration spectra for the El Centro
earthquake with various degrees of damping. It is seen that damping has
a significant effect on the magnitude and shape of the spectra, especially
for the small damping value. Naturally, the zero-damping spectra are not
as significant as the spectra with some damping because all structufes have
damping.

Because of the retationship among spectral velocity, spectral accelera-
tion, and spectral displacement in Equations (4.17) and (4.18), it is

possible to draw a figure to include all these quantities. So one can read
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these three quantities from the same plot. Such p1ots'f0r the outer shell
hased on uncracked section is shown in Figure 4.32. The polygon shown in
this figure is the three bounds of ground motion: the line on the left
is the maximum ground acceleration of 0.33 g, the Tine on the top is the
maximum ground velocity of 13.7 in/sec, and the line on the right is the
maximum ground displacement of 8.3 in. These lines are used for comparison
of the spectrum values in Figure 4.32. For very short periods, the spectral
acceleration values approach the maximum ground acceleration. For very
long periods, the maximum spectral displacements approach the maximum
ground displacement.

The maximum displacement, shearing force,and bending moment at each
nodal point obtained by probable maximum method are shown in Figures 4.33,
4734, and 4.35, respectively, for the outer and inner shells. The maximum
deflection shape obtained from the time-history analysis and the spectral
analysis (with both maximum probable values and maximum absolute values)
are plotted and compared in Figure 4.36 for both outer and inner shells,
respectively. It can be seen that the values obtained'by the probable
maximum method are slightly lower than the exact values and the absolute
maximum method are slightly higher than the exact values. If the probable
maximum method is used to analyze a structure, it may underestimate the
response. The absolute maximum method is used to analyze a special structure,
such as the containment vessel in nuclear power plant, thch needs

higher safety factor to resist a strong earthquake.
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4.3. Summary and Conclusions

The south-north and vertical components of the &1 Centro earthquake

are used to perform the time history response analyses of the present

chimney.

A thorough investigation of many aspects of the elastic dynamic

responses of the chimney is carried out. Besides providing the compre-

hensive information about the elastic response of the chimney, the follow-

ing conclusions are drawn:

(1)

(3)

(4)

The maximum bending stress in the present chimney may not

occur at the section where the maximum bending moment occurred.
The most critical sections are at 520 feet above the base for
the outer shell and at 620 feet above the base for the inner
sheil.

With 4 percent of the critical damping, the maximum deflection,
shearing force and bending moment are reduced by approximately
50 percent of the corresponding values of the undamped case,
respectively. The effect due to the increase in damping beyond
this value is, however, no Tonger pronounced.

The stress distribution in the chimney is dominated by the bending
action due to horizontal component of the eartﬁquake. The
effect due to vertical component of the earthquake is small.
The cracks developed in the chimney decrease the.bending
stiffness of the chimney and increase the tehsi]e stresses in
the steel. The effect of cracks on the deflection of the chim-
ney is dependent on the relationship between the natural fre-
quencies of the chimney and the frequencies of the ground
excitation. Hence, the deflection of the chimney with crack

may not necessarily be greater than that of the chimney without
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crack.
If the effect of the shear deformation is neglected, the de-
flection and bending moment of the chimney increase by about
15 percént.
The deflections of the chimney obtained by the‘probable ma X imum
method are slightly lower than the exact values. The deflections
obtained by the absolute maximum method are slightly higher

than the exact values.
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V. Inelastic Response of a Chimney to Earthquake
5.1 Plastic Bending Analysis of a Beam

In the present study, only the material nonilinearity is considered,
i.e., the geometrical properties of the chimney still remain linear.

As stated in the second chapter, the material ié assumed to be bilinearly
elasto-plastic for both tension and compression with the same yield
strength as shown in Fiqure 2.2.

Before performing the plastic bending analysis of the chimney, the
formulation and procedure will be evaluated by the example of a simple beam
with rectangular cross section. In 1968, Armen et. al (2) presented a
finite element formulation and hethod for the plastic bending analysis
of structures. This development is described here and is used in the
inelastic analysis of the chimney.

The same beam finite element as shown in Figure 3.1 is redrawn in
Figure 5.1. DBased on the assumed stress-strain relationship and the
Kirchoff's hypothesis (plane sections remain plane after bending), the
plastic strain varies linearly through the depth of the cross section.

In ¢crder to simplify the complexity of the plastic bending analysis of
a beam, the distribution of the plastic strain in a beam finite element
is assumed to vary linearly along the edges of the e]ement between two

adjacent nodes. This assumed distribution can be written as

N1

= 2=
€y = (5

|

Mepi(1 =)+ eps(3)] (5.1)

Nt

pJ
where ©pi is the plastic strain at the upper (or 1Qwer) surface at node
i and €pj is the same quantity at node j as shown in Figure 5.1. The

quantity z in Equation (5.1) represents the depth of the elastic-plastic

boundary and is also assumed to be a linear function of the coordinate x
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z= (7, - 20 + z, - (5.2)

where Zi and Ej represent the depth of the elastic-plastic boundary at

nodes i and j, respectively.

Equation (5.1) can be rewritten as

H

- E
Z-7 X X pr |
{fp} (h-i)[] ¢ ? 2] { $

Epj i

i

[Bp]{epo} S (5.3)

Since the plastic strain does not have any contribution to the
stiffness of the beam, the stiffness matrix can be obtained by substitu-
ting Equations (3.4) and (5.3) into the expression for elastic strain
enerqgy and applying the Castigliano's theorem.

The elastic sfrain can be written in terms of the total and plastic

strains as

£ =6 -6 {(5.4)

Substituting Equation (5.4) into {3.5) and exciuding terms that are independent

of displacements yields

U= %-Jf[y e [E]{e}dv - JJJ {E}T[E]{ep}dv (5.5)

v Vb

where vp is the volume of the plastic portion of the element.

Substitution of Equations (3.4) and (5.3) into (5.5) gives

U = %~{5}T JJJ[B]T[E}[B]dv{é} Yy j[[ [BICEILB, Jdvie )
\ | va



or

= ] N T N N T .
U = 5 f8) T [KEsE - {6 LK[J]{'[)OE (5.6)

The matrix [Kp] is the initial strain stiffhess matrix and is a function
of the depth of the elastic-plastic boundary at each nodal section and
must be continuously computer during the course of loading. The initial
strain stiffness matrix is given in Appendix,

Deriving Equation (5.6) with respect to nodal displacement {s}
yields

al B 1 =
s = LKItst - [Kp]ffpo} {R} (5.7)

where {R} 1is the vector of generalized nodai forces.
Since an incremental solution procedure will be employed, Equation

(5.7) is written in incremental form as

{(aR} = [K](as} - [Kp]{Aepo} | (5.8)

where [Ep] is the initial strain stiffness matrix for the increment of
plastic strain and is different from the initial strain stiffness matrix

[Kp} for the total plastic strain {cpo}. In the present analysis, "po

76

is assumed to vary linearly through the thickness from the upper (or lower)

surface to the elastic-plastic boundary. This implies a bilinear distri-

po
from this bilinear distribution may be different from [Kp]. In order to

bution of Ae__, hence, the initial strain stiffness matrix [Eb] obtained

avoid having to determine the bilinear distribution Aepo, an incremental

form may be used as follows:

Ry = [KIeH - fag] (5.9)

where
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i | i i-1 i-1
I A =[K 1 fe b - [K l 5.10
ab = LK [k, ] . (5.10)
and superscripts i and i-1 refer to the current and preceding load
steps, respectively. The vector {Aq} is considered as an increment of
fictitious load resulting from the initial strain in the element. It
is seen from Equation (5.10) that the vector {aq} is determined directly
from the total plastic strain and is not dependent on the increment of

plastic strain.

Equation (5.9) can be written in the following form

[K]{Aé}i = {AR}1 + {Aq}i-l (5.11)

The reason to change the superscript of {Aq} from i to i-1 is that the
depth of the e]astic—p]astic boundary (and the current value of plastic
strain) at nodal section can be determined, in general, only from the
stress (or strain) distribution computed at the end of the previous load
step and is assumed to reamin fixed in the current load step. The value
of {Aq} can only be determined from the results at the end of previous
load step and remains constant during the current Toad step.

Equation {5.11) is formulated for each element used in the modeling
of the structure. The resulting equations are then appropriately assembled

to form the overall governing matrix equations.

Solution Procedure

The incremental procedures for the plastic bending analysis of a
beam of any Toad step are as follows:
(1) Calculate the increments of generalized displacement by Equation
(5.11); The increments of fictitious load in this equation are

zero as yielding has not occurred.
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(2) Use Equation (3.4) to calculate the increments of total strain
at each nodel section.
(3) Obtain the total strain at each nodal section by adding the
increments of total strain to that of the previous step.
(4) Determine the plastic strain at each nodal section.
(5) Determine the depths of the elastic-plastic Soundaries at each
nodal section from the relation of total strain and plastic
strain at that nodal section.
(6) Form the initial strain stiffness matrix by Equation (5.6).
(7) Calculate the increments of fictitious load for each element
by Equétion (5.10).
(8) Repeat (1) to (7) until the end of the loading process is reached.
The above procedure can be expressed simply by the formulations summarized

as follows:

~.[K]{A6}j = am o+ {Aq}i“]
{An}i = [B]{Aﬁ}i

it s (T e ?
{ap}i = (e} - (e )
P d i1 il
L = _ K
{AqQ} [Kp] {Ep} L p] {Ep]

Results and Disqussion

The preceding formulations and procedures are used to analyze a canti-
lever beam for which the exact solution is avaiiable for comparison. Because
of the assumptions that the material has an elastic-ideally plastic behavior
and the structure ié statically determinate, the depth of the e]éstic-p]astic

boundary can be directly related to the applied load.
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Figure 5.2a represents a nondimensionalized load versus tip deflection
curve for a uniformly loaded cantilever beam with rectangular cross section.
Twelve elements are used to model the beam. In this figure, GT is the tip
deflection, ¢* is the tip deflection at the elastic limit and py represents
the nondimensional load parameter defined as,

P

- a,2

e (@)
P0 h

where P = applied load intensity

PO = 4bcy

7]
(1

length of the beam element

=
fi

half depth of the beam

o
1

half width of the beam

The results obtained from the finite element analysis compare quite well
with the corresponding results from the exact solution {15), as shown in
Figure 5.2a. The collapse load, as determined from the near vertical
slope of the load-deflection curve, is approximately 2 percent higher than
the exact collapse load which occurs at a value of p = 1.

Figure 5.3 shows the nondimensionalized Toad versus tip deflection
curve for the present chimney (both.outer and inner shells) under uniformly
distributed load. Eight elements are used in the chimney. For the pipe-
type beam, p = % and P_ is the maximum ultimate load (or collapse Toad)
at which a fu]]ycplastic cross section is developed in the chimney.

Because the cross section of the chimney is not uniformly distributed along
its height, the value of the nondimensional tip deflection for the outer
sehll is higher than that for the inner shell. If the two shells have
uniform cross sections, the two curves shown in Figure 5.3 for both shells

should coincide. It can be seen from Figures 5.2a and 5.3 that for the

present two beam examples the tip deflection near the collapse load is
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about twice the tip deflection at elastic limit.

The progression of the elastic-plastic boundary through the thickness
for a rectangular beam is shown in Fiqure 5.2b. Because of the assump-
tion associated with the plastic strain distribution in the beam element,
the neighboring elastic-plastic boundaries at the common nodal section
are not continuous. These discontinuities can be reduced by increasing
the number of elements used in the beam.

As shown in Figure 5.2b, yielding originates at a Toad of p = 0.667
at the fixed end of the beam. Plasticity first develops in the outer
surface of the beam and propagates towards the neutral axis of the beam.
As p increases from 0.667 to 1.0, the plastic region gradually spreads
from the fixed end to the free end. When p equals to 1.0, the fixed end
section of the beam becomes fully plastic and the beam can no longer carry

any additional load.

5.2 Cyclic Loading Analysis of a Cantilever Beam

The simplest case, a beam with rectangular cross section subjected
to cyctic Toading, is studied first in detail. The same method is then
applied to analyze the chimney,
(i) Moment-Curvature Relationship .of a Beam with Rectangular Cross Section

Figure 5.4 indicates a beam with rectangular cross section subjected
to a pure bending moment M. It is assumed that the moment is first increased
from zero to a value of M' and then decreased. If M' is less than the
maximum elastic momént Me’ the stresses will be everywhere elastic during
loading and unloading. The moment curvature relationship for both Toading
and unloading processes can be easily expressed as

4 3

M=§EbHR



84

1

*Furpusq eand aspun ueesg 4H'G 8anIty




85

or in the following dimensionless form

R 2
=50
where m = %- y P = %— and b = half width of the beam, H = half depth of the
p e
beam, R = curvature of the middle surface, Re = curvature of the middle

surface at elastic limit, and Mp = fully plastic moment.

When M is eqﬁa] to Me’ i.e., the stresses at the extreme outer fibers
of the beam just reach the elastic 1imit, the moment and curvature are
given by

mo= % =1
e 3 Pe ~

(1) If M is further increased to a value M] which is greater than Me’ the
stress distribution is shown in Figure 5.5a. In the elastic zone (0 £ z < El)
1
the dimensionless bending stress varies linearly with z,
S = 02 |
In the plastic zone (—lvf z £ 1), the dimensionless bending stress is constant

1
along z with magnitude equal to unity.

51
where z = Z/H. Integrating the stress over the cross section, the moment

curvature relationship is obtained as follows:
1

_ ‘ ey 5
m=2 J szdz = 2 J P12 dz + 2 J zdz
A Q ]/p]
=1 - J?
3p]

The height of elastic-plastic boundary is then given by
- 1 '
4

.E ‘p1
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(2) A negative moment is then superimposed on the distribution of stress

given in Figure 5.5(a). A1l the quantities related to this negative moment
are designated by a prime. The resulting net moment is defined as MZ'
Based on the magnitude of My, the stress distribution can be divided into
two cases, |

{a) If the net value of the bending moment M2 is less than M] but
sufficiently large such that the beam is still in elasto-plastic behavior,
the resultant stress distribution is shown in Figure 5.5b. The resulting
dimensionless stresses are defined as,

1

= - I = - ! < <
S, Sy - S (p] p')z g 2z:= =
1 2
s, =1 -p'z — 5z =
2 p D] p
2
s, = -1 2z
2 p

The moment curvature relationship corresponding to the above equation is

_ ]/p-l 2 2/p' 1
m, = 2[ [ (p1 - p')zdz + J (1 - p'z)zdz+ J -zdz]
0 /04 2/0!
_ 8 1
= -] + I2__—2-
3p 3p.|
] ] 8
syl g ]

p‘l (p'l - 102)

The location of the elastic-plastic boundary is given by
5

3 =2

2 o'
which is greater than E].
(b) If the net value of the bending moment M2 is.greater than or equal
to My, the stress distribution and the moment curvature relationship will

return to case (1), except the signs of all quantities are changed,
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Figure 5.5 Stress and plastic strain distribu-
tions in a rectangular beam.
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(3) A positive moment is subsequently superimposed on case (2)a. All the

quantities related to this positive moment are designated by double primes.
The resulting net moment is defined as M3. Based on the magnitude of M3,
the stress distribution can be described inthe following two cases.

(a) If the net value of the bending moment M3 is less than M], either
greater or not greafer than MZ’ the stress distribution shbwn in Figure 5.5c

is

t " ] n -l
53 = S-I -5’ + g" = (p] - o'+ p")z 0<zzs= ;?
s, =1-p'z+ p"z lw-f z s ET
3 O'I p
2 2
s, = -1 + p'z Sz %5
3 P o' p
5. = ] gﬁ~f z 51

|8}
©

— > ;
— 3
iy CURRENT PLASTIC CUMULRTIVE
STRAIN PLASTIC STRAIN
(c)

Figure 5.5 (continue)
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The moment curvature relationship coerresponding to the above stress distri-

bution is

- 8 8 1

+ e e e
_30"2 30'2 302

and the Tocation of the elastic-plastic boundary is given by

7. =&
3 pII

which is always greater than 22.

(b) If the bending moment M3 is greater than M, the stress distri-
bution and the moment curvature relationship will again be the same as in
case (1).

From above.analyses the following conclusion can be made. The beam is
subjected to a sequence of cyclic moments with the following conditions,

1. M] > 0, is first applied to the beam

2. |M2| < [M.||

3. M, >M, > -+ > M

1 3 i
IMZI > IMql > > M

£

i+1!

5. the sign of the ith moment is (-1)i‘1, i.e., this sequence of
moments are alternatively in sign,

The stress distribution at fhe instant of ith bending momeht can be ob-

tained as follows

sg = (o =" v " - otttk et PP PR %_

1

i-1 (i-1) 1 2
., = 'I - 1 + n - t1 + e ¢ __'I 1 "‘“‘S < =

5 p'z + p"z - p'''z (-1) " 'p z 0 z "
L. i i-1 (i-1) 2 2

p
= (- i-1 2 < <
oy (-1) =y Sz S 1
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where the quantity p denotes the superimposed curvature at current
case. The moment curvature relationship corresponding to the above stress

distribution is given by

m, = J s.zdz
i g ]
i i-1 n
-1)' 8"t (1
L 2
3p, 3ne1 (o))

(ii) Plastic Strain Distribution

The current plastic and cumulative plastic strains corresponding to the
stress distribution at each stage are shown in the same figures of the stress
distribution, Figure 5.5 a - c. In Figure 5.5a, for the first half-cycle,‘
both current plastic and cumulative plastic strains are linear and have the
same distribution across the thickness. For the fo]low%ng cycles, as shown
in Figures 5.5b - 5.5c, the cumulative plastic strain at each stage is ob-
tained by superimposing the current plastic strain to the preceding cumula-
tive plastic strain. Therefore, the cumulative plastic strains at these
stages are no longer linearly distributed and the plastic stfains at the
elastic-plastic boundary are no longer zero. In the plastic bending analy-
sis it has been assumed that the plastic strain distribution varies linearly
through the thickness from some value at the extreme outer fibers to zero
at the e]astic-pfastic boundary. This assumption is used in the formation
of the initial strain stiffness matrix. The same method used in the plastic

bending analysis is also employed for the present cyclic loading ana1ysis.
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Therefore, the same assumption for plastic strain distribution must hold
for the cyclic loading case. Fortunately, for cyclic loading analysis,
the plastic strain which is always linear at each stage. The reasons for
using the current blastic strain instead of using the cumulative plastic
strain are described as follows.

tet the unloading and reloading process from case (1) to case (2) be
reconsidered. From the process of Figures 5.6a to 5.6b, the beam is
assumed to unioad elastically and the total decreased strain is considered
as elastic strain. That is, the current plastic strain is not produced or
it equals to zero. fn this case, the second term in Eduation (5.8) vanishes
although the cumulative plastic strain still exists at this stage. In
Figure 5.6c, the area above the elastic-plastic boundary is in the plastic
range and can not take any additional stress. However, the area below the
elastic-plastic boundary is still in the elastic range and any additional
load increment is taken by this portion. From the stage of Figure 5.5b to
Figure 5.5c, the current strain and stress increments for the entire cross
section are shown in Figure 5.6d. The shaded area for the strain in Figure
5.6d represents the,current plastic strain which is the same as that shown
in Figure 5.6c. The remaining area for the strain in Figure 5.6d represents
the elastic strain increment which is proportional to the elastic stress
increment as shown in the same figure. Hence, in Equation (5.10), the plastic
strain for the (i-1)th step is zero (as shown in Figure 5.6b) and for the

ith step is the current plastic strain (as shown in Figure 5.6¢).

(iii) Moment Curvature Relationship of a Pipe-type Beam

The stress distribution over the cross section at any stage for a pipe-
type beam is the same as that for a rectangular beam. The current plastic

and the cumulative plastic strain distributions for a pipe-type beam are
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Figure 5.6 Stress and plastic strain distributions
in a rectangular beam.
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also the same as that for a rectangular beam. The only difference between
the two kinds of cross section lies in the formula for the moment and
curvature relationship.

Figure 5.7 shows a pipe-type beam cross section with outer and inner
radius o and res respectively. In the present study, the ratio of the
thickness t to the mean radius r is very small (about 0.02), hence, it is
reasonable to assume that the plastic zone (shaded area in Figure 5.7) is
bounded by the radius and not by a 1ine parallel to the neutral axis, i.e.,
the plastic zone is increased circumferentially.

For the stress distribution shown in Figure 5.7. the corresponding

moment can be obtained as

¢ i .
1 . 2 2
_ 7.2 sin" @ 7.2 :
M, =4 [ Er o, E?E~E——de +4 [ tr o, sin o de
0 1 by
a2 508 "
= 4tp Uy [——7?"—— E—E;ﬁ-g; ]

The location of the elastic-plastic boundary is given by

Zy = rosin ¢,

For the pipe-type beam subjected to a sequence of moments with the same
conditions as described in the previous section for the kectangu]ar beam, the
relationship between the moment and the angle , which defines the elastic-
plastic boundary, can be expressed in general form as

d)-l cos Cb]

_ a3 2 i n
M, = 4tr 5, [ 54 " —— - é (-1)" (

+ cos ¢n)] (5.12)

where the integer i denotes the cyclic loading step number. The location of

the elastic-plastic boundary is given by
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z, =rsin ¢, (5.13)

The corresponding curvature is given by

€ i n .
e 1 _ (-1) .
cry = Lo " ° nzz sin ¢ ] (5.14)

Figure 5.8 shows a moment curvature diagram for a pipé-typé Cross
section. The circled numbers 1, 2, 3, 4, 5, and 6 in this figure correspond
to the loading step number i as defined in equations (5.12) and (5.14). The
sequence of moments applied to this heam matches the conditions mentioned
eartier. When M6 reaches point A as shown in the figure, it is equal to
M4. If the moment further decreases, the stress distributions and the
curvatures are then obtained by using equations corresponding to M4.

For a pipe-type section, the maximum elastic moment is equal to n/4
of the fully p1a§tic moment, so that the elastic range for unloading is
equal to /2 of the fully plastic moment. The moment curvature curve for
the rectangular secfion or other symmetric section will be 51mi1ar to

Figure 5.8 and the elastic range for unloading is always equal to twice the

maximum elastic moment.

5.3 Inelastic Response of the Chimney to Earthquake by Direct Integration
Method
In the elastic-plastic dyhamic response analysis of a beam structure,
the sectional properties change with time. The matrix equations of motion
can be solved by a step-by-step numerical integration procedure. Since the
stiffness matrix has to be reformed and computed at every time step, such
procedure is extremely time-consuming.

In this study, the procedure is simplified such that the stiffness
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matrix is composed of two parts at every time step. One part is the hasic
stiffness matrix which accounts for the elastic portien of the structure
whereas the other part is formulated as a vector of fictitious loads which

accounts for the plastic portion of the structure.

Incremental Form of Equations of Motion

The equilibrium equation for the dynamic forces at the nodal sections of

a finite element system at a time t can be written as

(F3; + {F}‘ti + {F); = {R), {5.15)
where
{F}l = inertia force vector
d .
{F}t = damping force vector
{F}¥ = internal resisting force vector
t
{R}t = vector of externally applied forces

At time t+at, Equation (5.15) can be written in incremental form as

(FYL + FY]) + ((FY] + (oF) + ((F32 + 0aF)S) = (R) (5.16)

t+at

The force changes over the time interval At are assumed to be given by

i o d _ :

(aF); = [K 1, {ay} (5.17)

where [M]t,«[c]t, and [Kt]t are the mass, damping and tangent stiffness
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matrices at time t; {Ay]t, {AS/}t and {Ay}t are the vectors of changes in
the accelerations, velocities and displacements during the time increment.
In the present case, the mass and damping are constant. Only the stiff-

ness is nonlinear. Equation (5.13) can thus be written as
MI{ayy, + [Cl{ay}, + [K 1 {ay}, =
RYygpae = My}, - [CHyY, - KD )y (5.18)

where the force vectors [M]{y}t, [C]{ﬁ}t, and [Kt]t{y}t are evaluated at

time t and become the known values for the time step to t+At. Therefore,

Equation (5.18) can be solved for {Ay}t which in turn gives {A&}t and {Ay}t.
The difference between the elastic stiffness matrix and the tangent

stiffness matrix is denoted as [AK] and can be expressed as
(K] - (K1 = [aK]

Hence, the internal resisting force at time t can be divided into the terms

as

[kl = ([K D - [aKIPtydy = K Jyd, - [ak]dyd, | (5.19)
or in incremental form

[Kt]{Ay}t = [Ke]{Ay}t - [AK]t{Ay}t (5.20)

The terms [AK]t{y}t and [AK]{Ay}t in the above equations are referred to
as fictitious loads and denoted by {ql} and {Aq}, respectively.
Substituting Equations (5.19) and (5.20) into Equation (5.18), it be-

comes
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(MIayy, + [CHayy, + TR MHayd, = Ry, o

M)y}, - [Clyd, - DK JMyd, + {ad, + {aqh 5 (5.21)

It should be noted that the relations in Equation (5.17) are only

r

tAAL given by

approximations, But the residual force {R}

r _ .. .
Rigear = Wiy - Ml - [0 - IR

is a measure of how well equilibrium is satisfied at time t+st. In order
to satisfy equilibrium to a certain 1imit at the end of each time step, it

may be necessary to use iteration.

Solution Procedures of Equations

In this section the Wilson e-method (3,21,22) is employed for solving
the equations of motion. Let {y}t, {i}t and {y}t be known vectors. To ob-
tain the solution at time t+at, it is assumed that the acceleration is
Tinear over the time interval < = gAt, where ¢ > 1.0. Hence, the quantities
at time t+t will be

Whye = Wl + 5 (W, + 1)
2

i . . . .
{yhe, = Wb + oyl + ;;~({y}t+T + Z{y}t)

which gives

A {O

{y}t_‘_r = ({,V}t_,_r - {y}t) - % {y}t = 2{:y.}t

and : , (5.22)
3
T

- T *
Wl =5 Uy, - ) - 20vk, - 5 ),

The equations of motion, Equation {5.21), shall be satisfied at time t+t;

therefore
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[MI{ayd, + [ClHayy, + [K Moyl =
Ry, - MY, - [CMyy - DK b + {a}, + {aqd,,

where {R}t+T is a projected load equal to {R}t + e({R}t+At - {R}t) and

e

{ayh, = b, - vk
(ay}, = W, - Wl
Ay, = Wiy, - )y

With {y}t+T known the accelerations and velocities at time t+t are obtained
using Equation (5.22).
At time t+at, the desired accelerations, velocities and displacements

are given by the linear acceleration assumption:

'E .
51 ¢4y

. . "l .-
Whaae = (- yH +

.

. ﬂt .
tear - Whot E*({y}t + {y}t+At)

{y}
2

- At .- .
Whegae = W+ atlydy + = (vl o+ 20y))

The solution procedures are summarized in Table VII.

Resuylts and Discussion

In this chapter, the effect of the shear deformation is not considered.
The results of elasto-plastic case are compared to the results of elastic
case without the effect of the shear deformation. A computer program is
developed for the elasto-plastic dynamic analysis. As mgntioned before, for
inelastic analysis, the direct integration method is usually employed.

When using this method, the selection of time step is crucial. Wilson {(22)



Table VII. Summary of step-by-step algorithm for nonlinear structural
systems.

Initial calculations

1. Form stiffness matrix [K] and mass matrix [M].

2. Calculate the following constants (assume [C] = a[M] + 8[K]):

t=0t , 0> 1.37 be = 2 + 5 by
_ 3 6
bo—]+j[-8 b7- ;)?b———
6 .3 3.9 ¢
by = tro bg = T 8by - =%
T 81
b
] 6
‘b, = — b. = 28b, - >
2 ", 9 77 5.2
= _. = i 1
by = o - gb, big=1-5*%8b
6 .3 At
by j*?b3 byy = "%
2
_6 at”
by = =+ 2bg by, = 75

3. Form effective stiffness matrix [K]* = [K] + bz[M]

4. Triangularize [K]*

For each time increment

1. Form effective load vector [R]*

[RJ = [R] + o([RIpy, - [RD) + DMI(byEydy + bstdd, + beivdy)

+ (b, +olagl,,,,

2. Solve for effective displacement vector {y}g

(k1% iyt = [RD;

3. Calculate new acceleration, velocity and displacement vectors,

]

.. * . .
Wy = BytYhg + bglydy * Bglydy + byglyty

Whinat = Why + by (Whigg + 93y

102
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Table VII. (Cont.)

(Whpgae = Wi+ atyd + by {iyde,, o * 209,

4, Calculaté the fictitious load increment {Aq}t+At

e L tant

5. Repeat steps 1 to 4 until {Aq} {Aq}

t+at” t+at =

6. Calculate {q}t+At'

7. Repeat for next time increment.
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suggested that the time increment At should he about 1/10 of thé smallest
natural period of the structure which is to be included in the response
calculation. In the present study, the time step is chosen as 0.02 second
whereas the fourth mode period is 0.217 seconds.

In the previqué elastic dynamic seismic response analysis, the bend-
ing stress excéeds the elastic Timits of the concrete (0.85 fo') in the
case of outer shell. 1In the case where damping coefficient was assumed as
zero, the bending stress also exceeds the elastic limit of the concrete
in the outer shell. These are, however, not the case for the inner shell.
Therefore, only the outer shell is considered in the preéent elasto-plastic
seismic response analysis. Again, the south-north components of accelera-
tion of the 1945 E1 Centro earthquake are considered.

The time histdry response for the deflections at the tip of the outer
shell are compared in Figure 5.9 with the response obtained assuming elastic
behavior. Yielding starts at 11.94 seconds at the sixth node of the outer
shell., Before this time, the response of the outer shell is in the elastic
limit and the curve for the elasto-plastic response coincides with that for
the elastic response. Beyond this time, the characteristic of the elasto-
plastic response is quite similar to that of the elastic response. At the
beginning period of the yielding (from 11.34 to 12.82 seconds), the stiffness
of the outer shell is decreased due to the plastic strain. The tip deflec-
tions in this period for the elasto-plastic case are slightly greater than
those for the elastic case. After this period, the outerlshe11 is subjected
to unloading and returns to the elastic range. Because the permanent strain
produced in the preceding yielding period tends to prevent the reverse mo-

tion, the deflections of the outer shell for the elasto-plastic case are
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smaller than those for the elastic case. When the reverse motion is fur-
ther increased, the outer shell goes into another yielding period (from 13.2
to 14.2 seconds). The new plastic strain is produced and the deflection is
also increased.  However, the magnitudes of the deflection can never be
greater than thosé for the elastic case except when the new plastic strain
overcomes the preceding permanent (residual) strain. At the end of the
response, the magnitude of the tip deflection for the elasto-plastic case

is about 3/4 of the value for the elastic case. The maximum tip deflec-
tion is 40.99 inches at 12.8 seconds for the elasto-plastic case versus
39.78 inches at 12.8 seconds for the elastic case.

Figures 5.10 and 5.11 show the comparisons of the time history re-
sponses for the base bending moment and base shearing force of the outer
shell for the elastic and the elasto-plastic cases. Because of the yield-
ing and the existing residual strains, the magnitudes of the base bending
moment and the base shearing force for the elasto-plastic case are smaller
than those for the elastic case except in the first yielding period
(11.94 to 12.82 seconds). |

During the entire course of the response, only the sixth and the
seventh nodal section of the outer shell have been deVeloped into plastic
ranges. The sixth nodal section has more unloading and reloading cycles
than the seventh nodal section. Figure 5.12 shows the moment‘curvature rela

relation curve for the sixth nodal section.
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5.4 Summary and Conclusions

The finite-element formulations and protedures presented in this
chapter have been shown to be applicable for the computation of the
inelastic dynamic response of tall slender beam structures. The use
of initial strain concept for interpreting the effect of plastic strain
enables one to use linear matrix equations of motion to analyze the
inelastic dynamic behavior of structures,

The results obtained in this chapter show that the plastic strains
produced in the chimney tend to prevent the motion of tﬁe outer shell.
Hence, the resultant nodal displacements and nodal forces for the inelastic
case are smaller than those for the elastic case.

In the present study, the material is assumed to have elastic-
perfectly plastic behavior. If the strain hardening of the material
is to be considered, only the initial strain stiffness matrix and the
moment-curvature equations need to be derived. The procedures for

the analysis still remain the same.
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Appendix

The initial strain stiffness matrix for a becam clenent in pure
bending is given in integral form in Equation (5.6). The matrix equation
defining the fictitious nodal restoring forces in terms of the initial

strain stiffness matrix is shown below for the pure bending of a beam

with a rectangular cross section.

C1/£ Cz/z
C C e .
. EI 3 4 pi | -
{ h3 { [Kp]{cpo}
‘“C'I/Q‘ —CZ/Q I
ts G
. i
where 2
(z:-z.) Z.(h+z.)
Sk R
20 +h 7
i 9(zijz1) . (z.-2 )(221+h) 2, Zi(h+zi)
20 2 2
- (z.-zi) ] (Zj'zi)(22i+h) ) Zi(h+zi)
60 12 2
- -2 . . -
=2, =7, .+
_ (zJ z,) X (zJ zJ)(Zz1 h)
10 12
- -2 R -
i (Zj'zi) . (Zj'zi)(22i+h)
15 12
- _ 2 - - - - _
_ 7(zj-zi) . S(ZJ_Zi)(Zzi+h) 2, Zi(h+zi)
20 12 2
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Vibrations of Two Cyclinders in Tandem

in Line of Wind

(13



114
Introduction

Recently, because the size of tall siender structures used in
power plants dr other installations has been greatly increased, their
resistance to dynamic forces such as earthquakes and winds becomes
extremely important. Such structures, if flexible and ]igﬁtly damped , '
may exhibit Targe deflections or unstable oscillations due to wind
loadings. The resulting osciliating phenomenon induced by vortices in
the wake is an important engineering problem.

Early studies were concentrated on the determination of the fluc-
tuating 1ift force on a single circular cylinder, either stationary or
vibratory. However, when two cylinders are put in tandem in the flow
direction, the rear one may vibrate with either larger or smaller
def]ectionbthan a single cylinder. The question can be asked how
important a factor is the position of a cylinder in the wake of another
cylinder on the vibrating behavior of the rear cylinder.

The purpose of this research is to perform analytical studies
of the vortex-induced vibration of two tall slender structures in
tandem in a flowing fluid. A mathematical model is proposed to
study the interaction of 1ift forces and the vibrating behavior of

the rear cylinder.
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II. Literature Survey

(a)

A Single Stationary Cy]inder

Attempts to measure the 1ift force acting on a stationary
cylinder, due to vortices in its wake, and to correlate the
results of measurements were made by a great number of authors.
Sallet (1) employed the fluid momentum equation, integrated over
an appropriate control volume, to determine the fluctuating Tift
force on a bluff body. It is the same method that was introduced
by von Karman for the calculation of the steady draqg force. The

equation for the maximum 1ift coefficient obtained by Sallet is

_ Ly S ys S |
CL = (2 5 (1 B )(3 5 2) | (1)
in which CL = 1ift coefficient
2. = longitudinal vortex spacing
D = cylinder diameter
S = Strouhal number

In his previous paper (2), Sallet derived an equation relating S,

% .
CD and b 2s following
2/ 3 2,2 2 -
S (ﬁ') + 0.5295(BJ - ]'5295"+ 1.593 CD =0 (2)

where CD is the drag coefficient. If the Strouhal number and the
drag coefficient of the cylinder at the Reynolds number of interest
are known, the 1ift coefficient of any stationary cylinder can be
determined from Equations (1) and (2).
A Single Vibrating Cy]fnder

In 1969, Mei and Currie (3) found, in their experiment on a
vibrating cylinder excited by its own vortices in the wake, the

position of the separation point of the boundary layer on the
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cylinder surface varies during the vibration of the cylinder., The
phase angle 4 of the 1ift force F and the phase angle y of the
movement of the separation point during the cylinder vibration,
both measured with respect to the cylinder motion Xr are plotted
in Figure 1. Those data will be used in the present investigation
to calculate the distance between a cy]inder and the nearest shed-
ding vortex from it when this cylinder is in its equilibrium
position.

The cylinder motion of a vibrating cylinder can strongly affect
the 1ift force. Bishop/Hassen (4) found from their tests that the
1ift force is increased with the amplitude of cylinder motion. They
also concluded from such tests that the fluctuating 1ift force
acting on the cylinder is indicative of a self-excited oscillatory
mechanism in the flow field. Recently, several mathematical
models which attempt to duplicate the experimental observations
have been postulated. The most successful of these models is that
of Hartlen and Currie (5) who assume that the oscillating lift
force on the cyiinder can be represented by aﬁ equation in the form
of the van der Pol equation. The osciliator equation in dimen-

sionless form is as following:

in which‘u and b are independent constants while yand o are related

by the equation v = 4a2 where CL is the amplitude of 1ift
3C 0
‘ s} .
coefficient of a stationary cylinder and can be determined from

Equation (1). When this equation is coupled to the equation of
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motion for a cylinder and the parameters appearing in the model
are appropriately chosen, the observed behavior is qualitatively
reprodﬁced. This model will be used by this author in his
study of the dynamic behavior of two cylinders in tandem in the
wind direction.
Two Cylinders in Tandem

When two cylinders are put in line in the flow direction, the
rear one was subjected to two kinds of forces, one is due to its
own vortex street and another is the buffeting force from the wake
of the upstream cylinder. The phase angle between those two forces
is dependent on the position of the rear cy]indef're]ated to the
front cylinder. Therefore, the amplitude of the rear cylinder
motion is also largely dependent on the distance bétween those
two cylinders.

The water-tunnel studies of Vickery (6) have shown that the
amplitude of vibration of the rear cylinder increases with the
spacing between two cylinders. But his resuits only appear for
spacing ratio from 2.8D to 4.3D as shown in Figure 2. Below the
spacing ratio of 2.8D or above 4.3D, the rear cylinder may be
excited to higher or lower amplitudes.

As mentioned in Mair and Maull's paper (7), the experimental
results of Whitbread and Wootton on oscillation of two aeroelastic
models of octagonal section, placed in Tine with the wind direction,
are shown in Figure 3. The position of minimum amplitude of vi-
bration of the rear cylinder seems to be around the spacing ratio
of 3.5D. Above a spacing ratio of 4D the rear cylinder is excited

to very high amplitudes.
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The predictions of the mathematical model as proposed by
the author in this investigation will be compared later with

results of these experimental studies.
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I11. Formulation of a Two-dimensional Mathematical Model
(a) The Model
" The physical systems shown in Figures 4 and 5 are considercd.
In Figure 4, a rigid cylinder of mass M, diameter D and lenqth
L is exposed to a flow of uniform velocity V. Thelcylinder is
mounted elastically on springs of total stiffness K and on viscous
dampers of total damping coefficient R. The origin of coordinates
is at the stationary cylinder center with displacements perpen-
dicular to the free stream denoted by Xr' The external 1ift
force acting on the cylinder is F.
In Figure 5 two cylinders, both having the same physical
propertiés as described in Figure 4, are put in tandem in the
wind direction. The distance from center to center of two
cylinders is d. Where d' is the distance between cylinder 1 and
the nearest shedding vortex from it when cylinder 1 is in its
equilibrium position.
(b) Mathematical Formulation for a Single Cylinder
(1) The Structural Equation
The equation of motion of a rigid cylinder mounted on

springs and dampers, such as shown in Figure 4, is.given by
MX +RX +KX =F
r r r

where the Tift force F can be expreséed by the term

1,2
F = EpV DLCL
in which CL = 1ift coefficient
g = density of the fluid
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The above equation becomes

- . —l 2
MXr + er + KXr =5 oV DLCL (3)

Introducing dimensionless variables X and © defined by

X " |
X =, t= t/g;: ot (4)

?
n 8n S™M

f

S Sy
W oF = = = (5)

0 fn an
where S = Strouhal number

fs = vortex shedding frequency
w, = 2ufn = natural frequency of the cylinder

one has the following nondimensional equation of motion of

the cylinder
X+ 20k + X = awlc (6)
oL

(2) The Aerodynamic Equation
In 1970, Hartlen and Currie (5) introduced a nonlinear
oscillator model which contains a nonlinear negative damping
term. This model makes it possible for the system to be
self-excited and self-1imiting in amplitude.  This oscillator
is coupled with the vibrating cylinder by a force proportional
to the vibrating velocity of the cylinder. The oscillator

equation in dimensionless form is as following:



P Xt 3 V4 _ h
¢, -an b o+ - (€ )7 +wc = bX (7)
in which o and b are independent constants while y and «

are related by the equation v = da where CLOIis the ampli-

2
3CL0

tude of Tift coefficient of a stationary cylinder and can
be determined from Equation (1).
For a single cylinder, one has to solve Equations (6) and (7)
together for the two unknown X and CL, for pkescribed values of
s @5 wes @y Yy and b. O0f these six parameters, the choice of
@ and b are most difficult because of the lack of experimental

data.

Mathematical Formulation for Two-Cylinder in Tandem

125

For two cylinders in tandem in line with the wind direction,

the following simplifying assumptions are made in the present

investigation:

(1) The investigation is Timited to cases where the two cylinders

are at a fair distance apart, say d > 2D.

(2) For d > 2D, it is reasonable to neglect the effect of rear
cylinder motion on the front cylinder. The motion of the
front cylinder and the corresponding vortices created by
it will definitely affect the rear cylinder as a buffeting
force.

(3) The vortices created by the motion of the front cylinder,
after it reaches the second cylindér and acts on the rear
cylinder as a buffeting force, loses its effect as far

as the wake behind the rear cylinder is concerned.
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(4) The rear cylinder is therefore considered to be acted upon by
two forces: the buffeting force from the front cylinder, F],
and the lifting force F, due to the wake of the rear cylinder
alone.
Based on the above assumptions, the system in Figuré 5 can be
treated as following: |
(i} The cylinder motion equation and the aerodynamic equation for
cylinder 1 are given by Equations (6) and (7) or
X] + 20k + X = amg C, | (8)
1

2

. * 3 ‘
- X
c aw G+ 5 (CLl) *ug

C, = bk (9)
Ly 1 % Ly
(11) The second cylinder, in the absence of cylinder 1, will have
a motion Xy of its own, and corresponding 1ift coefficient
C, . The two variables x, and C, are governed by the same
Lo 2 Lo
Equations (6) and (7) or

- . - 2

Xy ¥ 2cx2 tox, = an CL2 (8)a
. A s \3 . 2 .

C, -aw C +-L(& )Y +uS¢C =bX (8)b

(iii) With the presence of cylinder 1, cylinder 2 is subject to two
forées, one from its own vortex street as if cylinder 1 is not
there, and another from the wake of cylinder 1. The first is
represented by CLZ(T) which can be obtained by solving Equations

(8)a and (9)a. The second is represented by C (r+r]), where

Ly

CL](T) can be solved from Equations (8) and (9) and T is a time

delay depending on the time required for the vortices created

by the motion of cylinder 1 to reach cylinder 2.
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The motion of cylinder 2, to be represented by X2, under both

forces, is governed by the following

*

e s 2 _
X2 + 2CX2 + X2 = awo [CLZ(T) + CL]("_{+T-[)] (10)
The mathematical model is then represented by 5 equations, (8),

(9), (8)a, (9)a and (10). These equations are nonlinear in nature

with a time-delay term in it.

127



IV. Solutions
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(a) Dynamic Response by Direct Integration

The 5 equations (8) through (10} can be integrated directly

with the aid of a computer. The integration can be divided into

3 steps:

(1) Equations (8) and (9) are integrated first to obtain CL (1).
1

This can be accomplished by standard numerical integration
process such as Runge-Kutta's method with built-in error
correction procedure. The initial conditions must be pre-
scribed.

To make use of existing program in numerical integration,
Equations (8) and (9) are rewritten into the following

simul taneous equations of first order:
S’]z.yz

= awlv. - 2 -
Yp T awg¥3 T ¥ T N

Y37 ¥,
- vy 32
Yy = byy oo ¥y uy Y4 VY3
where y, = x, Yp = R] = 9]
Y3t b Yo T b T Y3

Equations (8)a and (9)a can be integrated in exactly the same

manner to obtain CL (t).
2

One now proceeds to integrate Equation (10) to obtain the motion
. S
xz(r} of the rear cylinder under both forces represented by

CL'[ ('['!"rAi ) and CLZ(T).
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Note that CLZ(r) as obtained from step (2) can be fed into
the right side of Equation (10) directly. But CLI(T) obtaijned
from step (1) must be corrected for the time delay before it
can be used in Equation (10).
The direct integration was carried out for several examples. One
example is shown in Figure 6. It shows that the dynamic résponses
of both cylinders (and 1ifting force on them) approach steady
state oscillations after a certain time interva1; In this case,
it takes about 40000 integration steps in =. |
It is observed experimentally that when fs is near fn (Tocked-in
region or synchronization), both cylinder motions and 1ift forces are
approximately sinusoidal at a frequency very close to fn’ the natural
frequency of the cylinder. Therefore, it is of interest to investigate
the steady state solution.
(b) Steady State Solution
Because the direct integration method needs a lot of computer
time to arrive at the steady state solution, it is desirable to
seek the solutions of Equations (8) to (10) in the form of sinu-
soidal function.
(1) Cylinder 1
Assume the solutions of equations (8) and (9) in the follow-

ing form:

(12)
CL] = CL] sin (m]T + ¢])
Substituting Equation (12) into Equations (8) and (9)
and equating coefficients of sin wr and cos tw separately

gives
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] (1 mf)il 09
C, €OS ¢y = — 5 -—— 13)a
L] ] atuz
~ 2(,(1E]X]
C, sin ¢, = --— " {13)b
L] 1 . am?
[2gw](wg - w%) - umouﬁ(1-m§) - abmlmi]
352
3ywiX
+ e [(1-09)° + 4%l (1-0D)] = 0 (13)c
4a"w
0
[(1—w%)(w§ - w?) + 2u€wow%]
Bk gy 2,2
- _ﬁ— [81: U.).I + 2?;&)](]-(1).') ] =0 (13)(:'
4a w
0

Eliminating 21 from Equations (13)c and {13)d gives, after

some rearranging, the following frequency equation

w: = 0 (14)

(wg _ m?)[(]—w?) " 4E2m]] - 2abgw§ f

After solve Equation (14) to obtain wy and substitute back

into Equations (13)d, (13)b and (13)a, the unknowns X], CL
1
and ¢] can be found.

Cylinder 2 (with cylinder 1 absent)

Assume the solutions of Equations (8)a and (9)a as

X, = X, sin w,t
2 2 2 (15)

C, =20 sin (w,t + ¢,)
L2 L2 2 ?

Substituting Equation (15) into Equations (8)a and (9)a and
using the same methods in the previous paraqraph, the solu-

tions of X,, C, , ¢, and w, can be solved. Those solutions
2 L2 2 2
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are for the second cylinder when cylinder 1 is absent.
Cylinder 2 (when cylinder 1 is present) |

When cylinder 1 is present, the motion of cylinder 2 fs
governed by Equation (10). Assume the solution of this

equation as

* .k

X2 = X2 sin (sz +8)

CL = CL Sin(wZT + ¢2) (16)
2 2

CL] = CL] sin (w]r + w1T])

where 0 is the phase angle between two cylinders.

Substituting Equation (16) into Equation (10} gives

=% - .
[(]-wg)x2 cosd - ZCmZXE sin 0] Sinm21 +

[(1-w2)X v o=

* x*
)X, sin 0 Zsz 5 €OS 0] cos w

2

2= . .
awO[C CoS ¢, Sin wyt + CL 5in ¢, COS wyt +

Lo 2

El

CL1 €OS wyTy sin wgt + CL] sin wyr, €OS m]T] (17)

If two cylinders are identical, then Wy = e, = o, By
equating coefficients of sin wrand cos wr, Equation (17)

can be divided into two equations as follows

2. _x * 2
(1-w )X2 c0so - 2;wX2 sine = amo(cL2 cos ¢, +
CL] COSwT])
2T o praXt 2. P
(T-w )X2 sin 6+ 2cwX, cose = awO(CL2 sin ¢, CLT s1nm1])
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%
Because w, CL]’ CLZ, ¢2 and 11 are known, X2

be determined from these two equations.

and § can
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Results and Discussions

* - .
The variations of 22 and CL with spacing d/D are shown in Figure 7.
2
The curves in this figure are periodic and the distance between two
ok -
peaks of X2 or CL is equal to longitudinal vortex space & of the vortex
2

street. The maximum value of X, is about three times of X] and the

> N %

minimum value is about half of 1"

The periodical nature of these curves will be destroyed if the
energy dissipation of vortices is considered. The maximum and minimum
values which appear periodically along spacing ratic will be decayed.
Therefore, the first two peaks, minimum X; at 3.1D and maximum X; at
5.7D, become very important.

The curves shown in Figure 8 represent the ranges of locked-in
or synchronization that an oscillation can be generated. The maximum
amplitude of X] occurs at w, = 1.14 and the maximum or monimum value
of R; occurs at wy = 1.15. For various a, ¢, a or b the maximum value
of X will be occurred at different Wy

In Figure 9, the value of 50 at which the amplitude of cylinder
motion is maximum is plotted vs. the ratio of damping coefficient ¢ to

2t

mass parameter a. For == < 1.0, &

3 o is far away from 1.0 and the maxi-

mum amplitude of X is too large (see Figure 10), it means that the
structural damping is not large enough and the structure will fail.
Comparing Figures 7 and 9 with the experimental data shown in
Figures 2 and 3, one finds that the proposed mathematical model gives
results in good agreement with experimental data, i.e., the location
of rear cylinder at which the amplitude of vibration is minimum is

at approximately 3.1D away from the front cylinder.
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The curves shown in Figures 10, 11 and 12 give ranges of ¢, a and b
that the amplitude of cylinder vibration will not excéed‘a definite
value assigned. For instance, if one wants the amplitude of a cylinder
motion restricted in a range not larger than the cylinder diameter,
the ratio of damping coefficient ¢ to mass parameter a should be greater

than 1.6, o greater than 0.03 and b. Tess than 0.35.
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VI. Summary and Conclusions

A mathematical model that enables one to predict fhe vortex-excited
resonant response of two cylinders in Tine in the wind direction has
been introduced and developed in the present investigation. The model
is semiempirical, fhus relying on the experimental results for the deter-
mination of the introduced constants. In the model a modified van
der Pol equation is employed to govern the fluctuating 1ift force on
the cylinder and is coupled to the equation for the oscillatory motion
of the cylinder.

The model hés been succeésfu]]y used to predict the motion of an
elastically mounted cylinder in the wake of another cylinder. The cri-
tical distance between the two cylinders for which the amplitude of
vibration of the rear cylinder is minimum or maximum can also be deter-
mined by the model and the presents results are in agreement with the

experimental data.
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