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Abstract

An analytical investigation of the response of chimney to earthquake

and wind is presented in this report. The 823 foot tall chimney is

modeled using Bernoulli-Euler beam finite elements. The modal superposi­

tion method is used for analyzing the elastic response while the numeri­

cal direct integration method is used to solve the equations for the in­

elastic response. A mathematical model that enables one to predict the

vortex-excited resonant responses of two cylinders in line in the wind

direction is developed.

For the elastic case, the cracks developed in the chimney and the

effect of the shear deformation are considered. Several assumed values

of the critical damping are included in the analysis. The stress distri­

butions around the flue openings are found by using quadrilateral plate

finite elements. The comparison of the results between time history

analysis and response spectrum analysis is made.

For the inelastic case, the material is assumed to have elastic-per­

fectly plastic behavior. Moment-curvature equations for a pipe-type section

are derived and combined with the Wilson-e method to predict the inelastic

dynamic response of the chimney.

For the dynamic response of cylinder to wind, a modified ven der Pol

equation is employed as the governing equation for the fluctuating lift

on the cylinder and is combined with the equation of motion for the cylin­

der. The results are compared with available experimental data.



Part I

Dynamic Response of a Tall Chimney

to an Earthquake





I. INTRODUCTION

Due to the increasing demands for air pollution control, the height

of tall chimneys has been steadily increasing to satisfy these require­

ments. With the increase in the height of these chimneys, their resist­

ance to dynamic forces such as earthquakes and winds becomes increasingly

critical. A survayof literature shows that the studies of the dynamic

behavior, especially the inelastic dynamic behavior, of a tall slender

chimney subjected to a moderate earthquake has not received as much

attention as that of tall buildings or other tower structures (5, 8, 9,

12, 13, 14, 19). Although many design codes provide some guidelines for

estimating the dynamic forces and the corresponding displacements of the

chimney, a more detailed and reliable analysis method for both elastic

and inelastic dynamic responses of the chimney is still lacking.

Rumman (17), in 1967, presented a paper on the earthquake forces

on reinforced concrete chimneys. In his paper, the elastic response of

the chimney to earthquake forces was computed by the mode-superposition

method. He used the Stodola method to calculate the natural modes of

the chimney. Recently, a number of investigators (1,4, 10, 11, 16, 20)

used either the mode-superposition method or a step-by-step direct inte­

gration method to analyze the dynamic behavior of a tall chimney. Their

studies were also concentrated on the elastic response of the chimney to

earthquake. During a major earthquake, the resulting deformations and

stresses developed in the chimney may exceed the elastic limit of the

structural materials. In that case, the structural response cannot be

assumed to be linearly elastic.



The determination of inelastic response for a chimney or other

structures having distributed mass and load is extremely difficult

because the direction of the dynamic force changes from time to time.

This will cause the material properties, moment curvature relationship

and initial strains to change with time as well. In order to simplify

such complexity, a number of investigators (9, 18, 19) assumed an

idealized elastic-plastic moment curvature relationship to study the

inelastic response of tall buildings or frames. The structure is

initially treated as an elastic system. When the bending moment at

certain section reaches its ultimate bending capacity, it is assumed

that an idealized plastic hinge has formed at this section and a new

elastic system is obtained. The analysis is continued until a second

hinge is formed or the rotation of the first hinge reverses in direction,

thus indicating that this point returns to elastic range again. This

type of analysis is applied only to structures having many degrees of

structural redundancy. For a static determinate structure, such as a

free standing chimney, this kind of analysis is not applicable because

the structure will fail when the bending moment at any point reaches

the ultimate bending capacity. Therefore, a different approach must be

established for the study of inelastic response of the chimney.

The purpose of this research is to perform analytical studies of

the elastic and inelastic responses of a chimney to an earthquake. The

chimney studied is the one at the steam generating plant at Paradise,

Kentucky of Tennessee Valley Authority. Chapter II describes the geometry

and the material property of the chimney at a TVA Power Plant. The

823 foot tall chimney is modeled by eight pipe-type beam finite elements

2



and the base beam element is remodeled by 244 quadrilateral plate elements

for studying the stress concentrations around the flue openings. Chapter

III briefly describes the elements and the formulations used for the

analysis.

In Chapter IV~ an existing computer program SAP IV is employed to

study the elastic response of the chimney. Several assumed values of

damping coefficients are included in the analysis. Both time history and

response spectrum analyses are employed to obtain the displacements and

forces at various heights of the chimney. A simple method is developed

to generate the ground response spectrum as the input data for the re­

sponse spectrum analysis.

Chapter V describes the inelastic response of a chimney to an earth­

quake. The plastic bending analysis of a chimney is described first.

By using the initial strain concept to treat the effects of plastic

strains~ a governing linear matrix equation is established to analyze

the problem. The incremental procedure is used in the solution of the

governing matrix equations. Based on the equations and the procedure

developed~ the behavior of a chimney subjected to cyclic loading is then

analyzed. A general equation for the relationship between moment and

curvature is derived. The plastic strain distributions in the element

at any stage are found through this relationship. Finally~ the inelastic

response of the chimney is solved by using a step-by-step integration

method coupled with the governing equations and the moment curvature re­

lationship. A computer program is finally developed to predict the

inelastic dynamic behavior of the chimney.

3



II. System Description and Modeling

The chimney studied here is the one at the Steam Generating Plant'

at Paradise, Kentucky of Tennessee Valley Authority. The chimney is

composed of two slender cylindrical reinforced concrete shells as

shown in Figure 2.l~ The inner shell serves as a liner and has two

inches fiber glass insulation on its outer surface. The inner shell also

has a stainless steel cap at the top covering the gap between the inner

and outer shells. There is no significant structural connection between

the two shells. There is a 4 feet 6 inches minimum air space between

the two shells.

The foundation of the chimney is imbedded in limestone rock. It is

assumed to be fixed against rotation and lateral displacement at an

elevation of 390 feet. The height of the chimney is 823 feet above the

foundation. Each of the two shells has a pair of side flue openings.

They are rectangular in shape with dimensions of 28 feet by 14 feet.

The base lines of the openings are 73.5 feet above the chimney base. The

circumferential distance between the center lines of the two openings is

50 feet for the outer shell and 38 feet for the inner shell. Each

opening at the inner shell is connected to the opening at the outer shell

by steel framed flue duct. The concrete around the openings is heavily

reinforced.

The yielding strength of the A432 reinforcing steel is 60,000 psi

and the ultimate compressive strength of the concrete is 4,300 psi.

According to the recommendation of the TVA, the modulus of elasticity is

4.5 x 106 psi for the concrete and 29 x 106 psi for the reinforcing steel.

Figure 2.2 shows the assumed stress-strain relationships for the

concrete and steel. If the stress developing in the concrete or steel

4
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Figure 2.1 Description of the chimney.



f c

.8
5f

~

f 5 fy
"

'-
--

r'
-
-
-
-
-
-
-

ST
EE

L
CO

NC
RE

TE

EC

F
ig

u
re

2
.2

Id
e
a
li

z
e
d

s
t
r
e
s
s
~
s
t
r
a
i
n

re
la

ti
o

n
s
h

ip
fo

r
c
o

n
c
re

te
a
n

d
s
te

e
l

E's

'"



is beyond the elastic limit as shown in the above figures, the material

is assumed to be in the plastic range and cannot take any additional

stress.

The Modeling

The 823 foot tall chimney is modeled by 8 pipe-type beam finite

elements as shown in Figure 2.3. Various geometric quantities for each

element of both shells are tabulated in Table I.

For the case with flue openings, the first element in Figure 2.3

is modified to an equivalent homogeneous beam finite element.- This is

done by first modeling the element by 70 quadrilateral plate finite

elements and then finding the static equivalent axial area and moments

of inertia for the equivalent beam element. The results for equivalent

thickness are also shown in Table I.

Figure 2.4 shows the model for local stress analysis around the

flue openings. The modeling is obtained by modifying the first beam

finite element into 244 quadrilateral plate finite elements.

For calculating the section area of beam elements or plate elements,

the reinforcing steel area of that section is transformed into equiva­

lent concrete area, thus making the section homogeneous.

7



Table I. Geometric Quantities for the Chimney

Element Outer Shell
Number ~(in)* D(in)* t(in)* m/unitl *

1 1440 783.0 23.81 13.104(no holes)
1 1440 783.0 20.50 11.280(with holes)
2 1200 694.3 19.17 9.331

3 1200 624.9 17.88 7.842

4 1200 568.6 15.17 6.048

5 1200 525.7 10.92 3.999

6 1200 492.3 8.73 2.985

7 1200 468.8 8.36 2.721

8 1233 455.8 9.40 2.983

Element Inner Shell
Number R( in) D( in) t(in) m/unitJ

1 1440 637.2 13.93 6.053(no holes)
1 1440 637.2 11.94 5.188(with holes)
2 1200 529.9 10.30 3.725

3 1200 467.6 9.54 3.044

4 1200 423.1 9.04 2.608

5 1200 387.4 8.86 2.340

6 1200 360.6 8.67 2.133

7 1200 343.9 8.35 1.958

8 1104 334.6 9.39 2.144

* = length of the element (inch)
D= diameter of the element (inch)
t = thickness of the element (inch)
m = mass of the element (slug)

8
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III. Finite Elements and Formulations

As mentioned in the preceding section, two types of finite elements

are used in the analysis. The major element used for both elastic and

inelastic analyses is the beam finite element. This element is discussed

in more detail in this section.

1. The Beam Finite Element

A typical beam finite element with two displacements and two rota-

tional degrees of freedom at each nodal point is shown in Figure 3.1.

i j

W'~:====================:")-\-W-'X-j---- X

z,w

Figure J.1 'I\y.pical beam fini te element.

The displacement function in the z-direction is assumed to be in the

form of a cubic polynomial function

11

(3.1)

where w is the displacement in the z-direction, x is the coordinate

axis defined in Figure 3.1 and the a's are the coefficients to be found.

This equation satisfies all the completeness and compatibility require­

ments because it includes all rigid body motion and constant strain state.

Substituting the nodal coordinates and displacements into Equation (3.1),

it can be expressed in terms of the generalized nodal displacements as



2 23
12

w(x) (1 3x2 2x3
+ (x= - ~ + -, )w. - 2- + ~ )w,

9. 9. 1 t i Xi

2 3 x3 i+ (3x _ 3x )w. )w 'x. (3.2)7 7 J
+ (~- -

t t J

where wi and w
j

are the displacements at nodal points i and j respectively

and w, ,w, are the rotations at nodal points i and j as shown
xi Xj

in Figure 3.1.

From the beam theory, the total strain at any point within the beam

element is defined as

Substituting Equation (3.2) into (3.3), we have

{d = [B]{o}

(3.3)

(3.4)

where {d is the vector of total strain, {oJ is the vector of generalized

nodal displacements and [B] is a functional matrix which depends on the

assumptions of the shape function of the element.

The strain energy of the element is obtained by integrating the internal

work done by the various stresses over the volumn of the element

U = 1/2 Joalv = 1/2 J EEEdv
v v

(3.5)

where E is the elastic modulus and cr is the stress of the element.

Expressing the above equation in terms of generalized nodal displace-

ments, we have

U =1/2 {~}T 111[BJT[El[BldV {~)
v

(3.6)
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Application of Castigliano's theorem to Equation (3.6) yields

{F) • JJJ [B1T[E][Bldv (o) (3.7)

v

where {F} is the vector of generalized nodal forces. Thus the stiffness

matrix of the element is obtained as

[Kl • JJJ[B1T[El[BldV

v

(3.8)

Equations (3.1) to (3.7) are used for elastic analysis. The inelastic

formulation will be discussed in section V.

2. The Plate Finite Element

For the local analysis of the chimney~ a three dimensional quadrilateral

plate finite element is used. The element is composed of four triangular

elements with the four common vertices meeting near the centroid of the

quadrilateral. The degrees of freedom at this central nodal point are

eliminated at the element level prior to the assemblage.

The membrane stiffness of each sub-triangular element is based on

the constant strain assumption with linear inplane displacement functions

(6). The bending stiffness of each sub-triangular element is represented

by the fully compatible HCT element based on the lateral deflection func­

tion that varies cubically with the inplane coordinates (7).
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IV. El asti c Response of a Chimney to Earthquake

4.1 Time History Analysis of a Chimney

A. Structural Equations of Motion

The equations of motion for a structure subjected to ground accelera-

tion can be written in the follo\'Jing form:

(4.1)

where {y}, {y} and {y} are, respectively, the displacement, the velocity
..

and the acceleration vector of the body motion and {y } is the ground motion
g

acceleration vector. If the mass of the system is assumed to be concentra-

ted at each nodal point, the mass matrix in Equation (4.1) can be easily

formed as a diagonal lumped mass matrix. The elastic stiffness matrix

[K] in Equation (4.1) is obtained from Equation (3.8) and the viscous damping

matrix [c] is usually expressed by a simplified approximation as the

foll owi ng:

where

[c] = arm] + B[K]

2
a + Bw = 2t;w

n n

(4.2)

(4.3)

t; is the ratio of actual damping to critical damping and wn is the natural

frequency in the nth mode. By knowing t; for the system, it is possible to

select the constants a and B to define the damping matrix [c]. The funda-

mental mode, being a predominant mode, is adopted along with the second

mode to evaluate the values of a and B.

Equation (4.1) could be solved by a numerical integration method

such as the step-by-step integration method. However, in analyzing the

earthquake response of a linear structure, it is more efficient to use
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the "mode superposition method" because the ground motion tends to excite

strongly the lowest modes of vibration only.

B. Mode Superposition Method

The displacement vector {y} of the cantilever beam such as the chimney

can be developed by superimposing suitable amplitudes of the natural modes

of the beam

{y} = [<j>]{Y} (4.4)

where the column vector {<j>i} is the mode shape of ith mode and Vi is the

generalized coordinate of ith mode. Substituting the above equation into

Equation (4.1) and premultiplying it by the transpose of the nth mode shape

vector {<j>} T, it becomes
n

By using the orthogonality property of the mode shape vector, the above

equation is reduced to a single degree of freedom equation of motion for

mode n

..
+ RY

..
MY + C Y = -F {y }n n n n n n n g

or
..

+ 2s w Y + w2yy = -F 1Mn n n n n n n n

where

M = {<j>}~[mJ{<j>}n Fn = {<j>}~[mJn

- {<j>}~[cJ{<j>}n 2cn = w = Kn/Mnn

R = {<j>}~[KJ{<j>}n S = C 12Mwn n n n n

(4.5)

(4.6)
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The solution of the equation (4.6) can be easily obtained by using

Duhamel's integral
t

J Yg(T)e-<nWn(t-T)

o

sin w (t-T)dT
n

(4.7)

Therefore, the displacements expressed in geometric coordinates are

given by Equation (4.4) and the elastic forces are given by

{F} = [K]{y}

c. Results and Discussion

at time t

(1) yndamped free vibration (without crack)

The equations of motion for the undamped free vibration of a structure

can be obtained by omitting the damping matrix and the applied force vector

from Equation (4.1) or

[m]{y} + [K]{y} = {a}

The motion of a free vibration is assumed to be a homonic motion with natural

frequency w. Therefore, the above equation can be reduced to a determinant

as
2

I[K] - w [m]1 = 0

The solution of this equation yields the natural frequencies of the structure.

The first 12 natural frequencies and periods are tabulated in Table II

for the outer shell and in Table III for the inner shell. It is seen in both

tables that the flue openings have very little effect on the values of fre-

quenci es. In real ity, the chimney does have the f1 ue openings, therefore,

in the following analyses, only the chimney with flue openings is considered.

The 5th , 8th , and 11 th modes of the outer shell as shown in Table II with *

marks are longitudinal modes and the others are flexural modes. For the inner

shell, the longitudinal modes appear at 5th , 9th , and 11 th modes.



Table II. The Natural Frequencies and Periods for the Outer Shell
With or Without Flue Openings.
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Mode Without Opening With Opening

Frequency Period Frequency Period
Number (rad./sec. ) ,(Seconds) (rad.jsec.) (Seconds)

1 2.003 3. 1371 1.969 3. 1911

2 7.149 0.8789 7.009 0.8965

3 16.775 0.3746 16.573 1 0.3791

4 29.184 0.2153 29.015 0.2166.
5* 31.846 0.1973 31.387 0.2002

6 43.475, 0.1445 43.430 0.1447

7 58.063 0.1082 58.119 0.1081

8* 66.298 0.0948 65.275 0.0963

9 71.364 0.0881 71.436 0.0880
~

10 81.740 0.0769 81.811 0.0768

11* 109.990 0.0571 109.300 0·0575
,~,

"

12 145.550 0.0432 145.750 0.0431

* Longitudinal modes



Table III. The Natural Frequencies and Periods for the Inner Shell
With or Without Flue Openings.

18

Mode Without Opening With Opening

Frequency Period Frequency Period
Number (rad./sec. ) (Seconds) (rad./sec. ) (Seconds)

1 1.296 4.8491 1.277 4.9223

2 5.719 1.0987 5.615 1. 1190

3 13.766 0.4564 13.572 0.4629

4 24.477 0.2567 24.319 0.2584

5* 28.407 0.2212 28.034 0.2241

6 36.987 0.1699 36.975 0.1699

7 50.161 0.1253 50.252 0.1250

8 61.890 0.1015 61. 980 0.1014

9* 71.445 0.0879 70.369 0.0893

10 72.901 0.0862 72.996 0.0861

11* 111.660 0.0563 11 O. 860 0.0567

12 148.600 0.0423 148.850 0.0422

* Longitudinal modes
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The first six flexural mode shapes of the outer shell are plotted

in Figures 4.1 and 4.2.

(2) Response to the horizontal component of an earthquake (without crack)

The record of El Centro earthquake which occurred on May 18, 1940 is

selected to analyze the time history dynamic response of the chimney. Due

to the relatively long duration of intense motion of this earthquake, the

first 30 seconds of the acceleration record as shown in Figure 4.3 is

used for response analysis. The record in Figure 4.3 shows that the accel­

eration oscillates at a frequency of approximately 3 to 7 cycles per second.

The results in Tables II and III for natural frequencies show that the

seventh frequency (sixth flexural frequency) is approximately 9.25 Hertz

for the outer shell and 8 Hertz for the inner shell, respectively. Only

the first six flexural modes are used in the mode superposition to simulate

the dynamic response of the chimney to the horizontal component of this

earthquake.

The time history responses for the deflections at the tip of the outer

shell and at the tip of the inner shell are shown in Figures 4.4 and 4.5,

respectively. The maximum tip deflection is 42.6 inches at 28.3 seconds

for the outer shell and 27.1 inches at 29.3 seconds for the inner shell.

The late arrival of the maximum tip deflections shows that 30 seconds of

ground motion is needed for the dynamic response analysis of the chimney

although the accelerations are large only in the first 12 seconds of the

ground motion. It also shows that the occurrence of an even larger tip

defleciton of the two shells at some time after 30 seconds is possible

although the magnitude of acceleration becomes considerably smaller after

that time.
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When both shells of the chimney are subjected to the earthquake

simultaneously, the air spacings between these two shells change with

time. Figure 4.6 shows the time history curve of the net spacing between

the tops of the outer and inner shells. The horizontal dashed line in

this figure is the original designed air space between the tips of the

two shells. Figure 4.6 shows that the tip spacings are greater than zero

at any moment, that is, the two shells do not collide during the entire

30 seconds history of the earthquake.

The time history responses for the base bending moment and base

shearing force of the outer shell are shown in Figures 4.7 and 4.8,

respectively. The maximum bending moment occurs at the time of 25.2

seconds with a magnitude of 32.05 x 106 in-kips and the maximum shearing

force occurs at the time of 22.5 seconds with a magnitude of 11.96 x 103

kips. Figures 4.9 and 4.10 show the time history responses for the base

bending moment and base shearing force of the inner shell, respectively.

The values shown in these two figures are quite small if compared to the

values of the outer shell. Figure 4.11 shows the maximum bending moments

and the maximum shearing forces distributed along the height of the outer

and inner shells. Although these values may not occur at the same time

they are the maximum absolute values occurring at each nodal point during

the entire course of the earthquake. The corresponding maximum bending

stresses and shearing stresses in the steel and concrete for the two shells

are shown in Figures 4.12 and 4.13. Although the maximum bending moment

occurs at the base of the chimneY,the maximum bending stress may not occur

at this point because the cross section of the chimney is not uniform along

its length. In fact, the most critical sections are at an elevation of

910 feet for the outer shell with a maximum bending stress of 4233 psi in

25
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the concrete and at an elevation of 1010 feet for the inner shell with a

maximum bending stress of 3502 psi in the concrete. In Figure 4.13, the

shearing stresses distributed in the concrete for both shells seem greater

than the maximum allowable shearing stress of the concrete, 132 psi.

However, besides the vertical reinforcements there is certain amount of hor­

izontal reinforcements in the chimney which can also take the shearing

force. It appears reasonable to assume that the shearing stresses are

within safe limits.

(3) Damping effect on responses (without crack)

The effect of viscous damping is considered in this study. It is

assumed that each of the six flexural modes has the same damping coefficient.

Six different values of viscous damping coefficient are assumed: 0.5%,

1%, 2%, 4%, 7%, and 10% of its critical value. The effect of damping on the

tip deflection, base bending moment, and base shearing force for both shells

is studied and summarized by the plots shown in Figures 4.14,4.15, and 4.16,

respectively. It is seen that at 4 percent of critical damping, the tip

deflection, base bending moment, and base shearing force all decrease by

more than 50 percent of their original undamped values. The further increase

in damping coefficient does not seem to decrease the three physical quan­

tities as much.

In practical design, the viscous damping of such concrete structure is

assumed to be about 4% of its critical value. Hence, all the bending

stresses and shearing stresses developed in the chimney are expected to reduce

by about 50 percent as shown in Figures 4.12 and 4.13. In such a situation,

the material behavior of the chimney will not go into the plastic range during

the history of the earthquake.
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(4) Response to the vertical component of an earthquake (without crack)

The vertical component of the acceleration record of [1 Centro earth-

quake is shown in Figure 4.17. It is seen that the vertical component of

the acceleration oscillates at a frequency of around 8 to 9 Hertz. From

Tables II and III, it is learned that the second natural frequency of the

vertical modes is 10.5 Hertz for the outer shell and 11.3 Hertz for the inner

shell. Therefore, the first two vertical modes are used to simulate the

response behaviors.

The maximum absolute values of the axial forces and the axial stresses

developed in the chimney due to this vertical component of the earthquake

are shown in Figure 4.18. From the relatively small quantities of the resulting

axial stresses in the concrete, it is learned that the effect of these axial

stresses to the vertical seismic components is negligible as compared to

that of the horizontal seismic components. Therefore, it is reasonable

to consider the chimney as a beam instead of a beam-column in the present

study.

(5) Stress concentration around the flue openings (without crack)

The stress distributions in the region around the two flue openings in

each shell are studied by performing local analysis of the lowest beam finite

element of each shell. This beam finite element is modeled by 244 quadrilateral

plate finite elements. Both ends are subjected to the simultaneous actions

of bending moment, shearing force and axial force caused by both the hori­

zontal and vertical components of the earthquake. The most critical time

for the outer shell is at 25.2 seconds when the base bending moment equals

to 32.05 x 106 in-kips; the base shearing force equals to 11,810 kips;

and the base axial force equals to 217.7 kips. For the inner shell,
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the most critical time is at 28.8 seconds when the base moment equals to

11.28 x 106 in-kips; the base shearing force equals to 4,557 kips; and

the base axial force equals to 150.5 kips. Figures 4.19 and 4.20 show

the contour plots of the resulting bending stresses in the outer surfaces of

the outer shell and the inner shell, respectively. Because of symmetry,

only one half of the shell segment with one opening is shown. The highest

stresses due to the openings are about 2500 psi to 3000 psi for both

shells. It seems that these stresses around the openings are not very

high if compared to the maximum bending stresses at the base. This is

due to the heavily reinforced concrete around the flue openings.

(b) Response of the chimney to horizontal component of the earthquake
(with crack)

In the previous analyses, the concrete is assumed not to crack under

tensile stress. This may not be true because the tensile strength of the

concrete is very low (about 500 psi). Therefore, in this section, it is

assumed that the concrete has no tensile capacity and all the tensile

stresses are taken by the reinforced steel. Based on this assumption,

the problem is simplified. As shown in Figure 4.21, the transformed section

of the chimney consists of the concrete in compression on one side of the

neutral axis, and the steel area on the other. The distance to the neutral

axis is expressed as a fraction k of the diameter d. To determine the loca-

tion of the neutral axis, the resultant compressive force on the compression

side is set equal to the resultant tensile force on the tension side, that is,

the resultant force of the whole section is equal to zero. It is assumed

that there is no external axial force acting on this section. The total

compressive force cf is
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Figure 4.21

A

Figure 4.22

Transformed cross section of the
outer shell (with cracks).

--N.A.

N.A.--

B

Location of the neutral axis
of a cracked pipe-type section
during vibration.



rt1f c
= 1 _ sin 0 [coso - (~ - 0) sin oJ

and the total tensile force Tf is

T = f t rt f ( rsin ~ + r sin o)d~/kdf 2 c

-0

rt2f c= ---.-- [cos 0+ (-211
- + 0) sin oJ

1 - s lnO

Since cf = Tf , we obtain

IT (t l + t 2 )
cot 0 + 0 = 2 (t

1
- t

2
)

(4.8)
and kd = ~ (1 - sin 0)
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In the above equation, the quantity kd which determines the location of the

neutral axis is a function of thicknesses t 1 and t 2 only. In other words,

the location of the neutral axis is not dependent on the magnitude of the

bending moment. If the bending moment changes its sign from positive to

negative or vice versa, the position of the neutral axis jumps from A to

B as shown in Figure 4.22 and there is no gradual shift of the position of

the neutral axis. Because the location of the neutral axis is not changed,

the moment of inertia of the section is also kept constant during the course

of vibration. In such situation, the problem is apparently simplified and

only the stiffness of the chimney is decreased due to the crack.

Table IV shows the geometric data for the 8 elements of both shells when

the concrete is considered to have no tensile capacity. In order to use SAP IV

for the analysis, the unsymmetric cracked section as shown in Figure 4.21 will



Table IV. Geometric Quantities for the Chimney with Cracks

-------------------

Element Outer Shell
----_.__ . ---

Number Q,(in)* D(in)* t 1(in)* t 2(in)* t'(in)* mjunit Y,*

-'------1-------- ------- ------ -------_._._- ~----------- - -

1 1440 783.0 20.5 0.507 1.320 11.28

2 1200 694.3 19.17 0.765 1.897 9.331

3 1200 624.9 17.88 1.009 2.393 7.842

4 1200 568.6 15. 17 1.068 2.452 6.043

5 1200 525.7 10.92 0.912 2.034 3.999

6 1200 492.3 8.733 0.695 1.564 2.985

7 1200 468.8 8.358 0.409 0.977 2.721

8 1233 455.8 9.401 0.173 0.461 2.983
--

Element Inner Shell
f--- -_...- -- ._.__. -" ---

Number Q,{in) D(in) t 1(in) t 2(in) t'(in) mjunit y,

1-------- -- ------_.- -_._-_._------ -----_.----- .-

1 1400 637.2 11.94 0.268 0.705 5.188

2 1200 529.9 10.30 0.205 0.543 3.725

3 1200 467.6 9.54 0.188 0.499 3.044

4 1200 423.1 9.04 0.184 0.487 2.608

5 1200 387.4 8.86 0.263 0.673 2.340

6 1200 360.6 8.67 0.339 0.843 2.133

7 1200 343.9 8.35 0.252 0.644 1.958

8 1104 334.6 9.39 0.163 0.436 2.144

* Q, = length of the element (inch)
D = diameter of the element (inch)
m = mass of the element (slug)
tl = thickness on uncracked side of the section
t? = thickness on cracked side of the ;section
t = the equivalent thickness (inch)

46
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be transformed to a symmetric section in which the moment of inertia is

unchanged. The thicknesses of the transformed sections are shown in Table

IV as t I.

Table Vishows the first 12 natural frequencies and periods of the outer

and the inner shells with the crack. Due to the effect of the crack, the

periods shown in this table are longer than those shown in Tables II and III,

that is, the chimney becomes more flexible. Because the frequencies of the

cracked chimney are low, a total of nine flexural modes of each shell are

used for the seismic response analysis. Figure 4.23 shows 30 seconds time­

history response of the tip deflection for the outer shell due to the south­

north components of the El Centro earthquake. The maximum tip deflection

is found to be of 53.2 inches at 27.2 seconds. This value is greater than

the maximum tip deflection of the outer shell without crack. Intuitively,

this seems reasonable because the stiffness of the chimney is weakened by

the crack. However, the seismic response of the chimney depends not only

on the stiffness of the chimney but also mainly on the relationship between

natural frequencies of the chimney and the frequencies of the ground exci­

tation. Although the stiffness of the chimney is decreased by about 80 - 95%

due to the crack, the deflection of the cracked chimney may not necessarily

be greater than that of the uncracked chimney. In order to prove this point,

a case was also studied in which the stiffnesses of the outer shell were

unchanged but the mass of the outer shell is decreased by 10% at each nodal

point. The results show that the tip deflection of the outer shell is 53.2

inches for the case without crack and 39.5 inches for the case with crack.

The totally reversed results show that maximum deflection of the chimney

with crack may not be greater than that without crack.



Table V. The Natural Frequencies ilnd Periods for the Chimney with
Crack .

•____ o. ____ - "'T' -. ---.---. -.. -...- -- ..-.. -....---- _.·___·.·_·___._0 ••••• 0.-_ ..... o •••• - •••••• --- ••••• - -' _. -".-

r·1ode Outer Shell r10de Inner Shell
.. --r----··----

Number Frequency Period Number Frequency Period
(rad/sec) (sec. ) (rad/sec) (sec)

1 0.631 9.954 1 0.305 20.603

2 2.413 2.604 2 1.464 10.291

3 5.447 1.154 3 3.498 1.796

4 9.218 0.682 4 6.104 1.029

5* 10.141 0.620 5* 6.793 0.925

6 13.B49 0.454 6 9.190 0.684

7 19.241 0.327 7 12.469 0.504

8* 21. 942 0.286 8 15.808 0.397

9 25.326 0.248 9 18.205 0.345

10 31.535 0.199 10* 18.447 0.341

11* 35.138 0.179 11* 27.873 0.225

12* 45.499 0.138 12* 36.813 0.171

* Longitudinal modes

48
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Figure 4.24 shows the time history response for the tip deflection

of the inner shell with crack. The maximum tip deflection is 35.4 inches

at 14.3 seconds which is greater than the maximum tip deflection of

the inner shell without crack. Due to the rather large magnitude of tip

deflections of both the outer and the inner shells with crack, the two

shells collide with each other when the net tip spacings are negative.

By neglecting the nonlinearity due to collision, time history results

for net tip spacings between the two shells are given in Figure 4.25.

Figure 4.26 show the maximum bending moment and the maximum shearing

force distributed along the height of the outer and inner shells. Equation

(3.7) in~cates that the nodal forces are directly proportional to the

stiffness of the chimney, therefore, the bending moments and the shearing

forces shown in Figure 4.26 for the less stiff chimney with cracks are

smaller than those shown in Figures 4.11. The corresponding bending

stresses in the steel and in the concrete for both shells are shown in

Figure 4.27. Because the tensile force is entirely taken by the reinforced

steel, the tensile stresses developed in the steel due to the earthquake

are very high at some sections as shown in Figure 4.27. The compressive

stresses developed in the concrete are everywhere within safe limits.

(7) The effect of shear deformation on the deflection of chimney

Figure 4.28 shows cantilever having a thin pipe-type cross section

bent by a force P"applied at the end. The tip deflection of this beam

including the effect of shear deformation is

3 -
o =~ + ~P~

3E1 ~
(4.9)

in which G is the modulus in shear, A is the cross sectional area, and u is

the shape factor with which the average shearing stress must be multiplied
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Figure 4.28 Cantilever pipe-type beam.

AliI

. Figure 4.29 Flexibility coefficients for
a cantilever beam.



56

in order to obtain the shearing stress at the centroid of the cross

section. For a pipe, with circular cross section, ~ 2.0. The second

term on the right side of Equation (4.9) is the additional deflection

due to the shear deformation.

In the present case, the Poisson's ratio is assumed as 0.1667 and

the modulus in shear is defined asG = E/2(1 + w). Equation (4.9)

is reduced to

po 3 d 2
6 = 3£1 [1 + 1.75 (I) J (4.10)

For the chimney, the ratio of the diameter d to the length Q, is approximate-

ly equal to 0.06 and the effect of the shear deformation on the deflection

is about 0.6% for the static case.

For dynamic case, the effect of the shear deformation on the deflection

can be included in the stiffness matrix [KJ. One way of obtaining the

stiffness matrix is to first obtain the flexibility matrix and then in­

verting the flexibility matrix. The flexibility matrix, for a cantilever

subjected to a unit load at the free end (Figure 4.29) is given as matrix

[AJ in Equation (4.11) and its corresponding stiffness matrix is given as

matrix [~J in Equation (4.11).

[AJ = [8] =
6EI/Q,

2l
4EI/Q, J

(4.11)

In the effect of the shear deformation on the deflection (neglecting

this effect on the slope) is considered, the flexibility matrix [AJ in

Equation (4.11) is modified as



[A ] =
y

-;,3/ 3EI + 11'J,jGA -'J.2/2EI··

2
-~ /2EI ~/EI

57

and the inverse of this matrix is

12EI Q 6£1 Q

[By] =
g,3 7
6EI Q 3EI Q + Ii
7 ~ .Q,

A.Q,2
where Q = 2 _ . Following to preceding procedures, the stiff-

AQ +24a(l+~)IZ

ness matrix for a beam element which includes the effect of the shear defor-

mation on the deflection can be obtained as follows.

-12/9,2 6/9, _12/9,2 6/9,

EIQ 6/.Q, 3+1/Q -6/JI, 3-1/Q
[Ky] =

_12/9,2 12/ ,Q,2
(4.12)9,

-6/fl -6/ ,Q,

6/9v 3-1/Q -6/9v 3+1/0

If the effect of the shear deformation is very small and negligible (i.e.

Q ~ 1.0), the stiffness matrix [Ky] reduces to the normal stiffness

matrix [K].

Because [Ky] is smaller than [K], due to the effect of the shear

deformation, the natural frequencies shown in Tables II and III are only

slightly less than those obtained by using [K] as shown in Table VI.

Although the shear deformation appears to have small effect on the natural

frequencies and their corresponding normal mode shapes of the chimney,

its effect on the seismic response of the chimney is, however, not so

small. Figure 4.30 shows the comparison between two cases, one including

and one excluding the effect of shear deformation for the maximum



Table VI. The Natural Frequencies and Periods for the Chimney
(excluding the effect of shear deformation).

Mode Outer Shell Mode Inner Shell

Number Frequency Period Number Frequency Period
(rad/sec) (sec) (rad/sec) (sec)

-

1 1.986 3.164 1 1.282 4.901

2 7.241 0.868 2 5.733 1.096

3 17.877 0.351 3 14.225 0.442

4* 31.387 0.200 4 26.450 0.238

5 33.166 0.189 5* 28.034 0.224

6 53.373 0.118 6 42".159 0.149

7* 65.275 0.096 7 60.482 0.104

8 77.489 0.081 8* 70.369 0.089

9 103.53 0.061 9 78.812 0.080

10* 109.30 0.057 10 102.63 0.061

11 132.20 0.048 11* 110.86 0.057

12* 145.75 0.043 12* 148.85 0.042

* Longitudinal modes
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deflections and bending moments of the outer shell. As mentioned earlip.r.

the response of the chimney to the earthquake is mainly dependent on

the relationship between the natural frequencies of the chimney and the

earthquake. It is possible that the maximum tip deflection of the outer

shell including the effect of the shear deformation is smaller than that

excluding the effect of the shear deformation although the shear deforma­

tion tends to increase the deflection of the chimney in a static case.

4.2 Spectrum Analysis of a Chimney

The time history analysis method is a time-consuming method. This

method is particularly expensive for structures with high number of

degrees of freedom. For analyzing complex structures, it may be beyond

the capabilities of some design offices. Therefore, it would be desirable

to have a simpler analytical method for practical purpose which can give

reliable results. The response spectrum analysis method to be described

in this section is provided for this purpose.

In Equation (4.7), the response of the nth vibration mode, Yn(t), depends

directly upon the magnitude of the integral

(4.13)

This integral is a function of the ground acceleration, damping ratio, natural

frequency of the structure, and the time at which the integral is evaluated.

Several methods have been used for calculating the integration; one of

these isa direct numerical integration method. However, the measured ground

accelerations obtained from a strong-motion earthquake record are usually

a zigzag curve as shown in Figure 4.3. The acceleration function between

two consecutive record time points is assumed to be linear, i.e.,
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for '[ i -[ ': 'f i +1

Equation (4J3) can be expressed as a summation of a number of subinteqrals

+ .

(4.14)

u) (t-T)
n

I
t

T i+1
+ J. y Cr) f (-r )d'[ +.......... + y Cr) f Cr) d'[

9 9
T. '[

1 . n
-r, (I) (t-T)

f(T) = e n n sinwhere ~ (T) is linear in each subintegral and
9

These subintegrals can be directly integrated as the following:

J
Ti+l .. -t;. W (t-T)

Y(T)e n n sin w (t-T)dT
9 n

T.

1

J
T i+1

= (a
1

T·
1

-t;. w (t-T)
+ blT)e n n sin wn(t-T)dT

T.+1
sin w (t-T)] 1

n
T.

1

-t;. w (t-T)
(a + b T)e II n

= [1 1 {t;.

(t;.~ + l)wn n

-t;. w (t-T)
b t;. e n n
1 n

sin w (t-T) + cos w (t-T)}n n



[g (I)]Ti+1
'I •

1

Substituting Equation (4.15) into Equation (4.14)) it becomes

(4.1 5)

62

T lx
n

= [g(T)]O +

t
+ [g(T)]T

n

T

[g(T)] 2 +
T l

. . . . . " + + .

(4.16)

The computing time required to obtain the solution of Xn by Equation (4.16)

for a given earthquake acceleration history yg(T)) a known damping value

en' and a definite integral time t is approximately 5 percent of the computer

time required by a direct numerical integration method whereas the result

is apparently more accurate.

X has the dimension of velocity; its maximum value is called the spectral
n

velocity of the earthquake ground acceleration and is designated as Sv' i.e.,

J

t
_c W (t-T)

" e, n n
S = [ y (y)e sin w (t-T)dY]v g n max

n 0

It is seen from this equation that for a given earthquake acceleration

history, y (T), the spectral velocity depends only upon the frequency of
g

vibration, wn' and the damping ratio, E;n' Thus a family of spectral velocity

curves can be constructed for any given earthquake, each curve representing

the maximum velocity as a function of frequency for a given damping ratio.

Two other frequently used spectral response quantities which are

closely related to the spectral velocity are the spectral acceleration,

Sa,and the spectral displacement, Sd' These represent the maximum modal

acceleration and displacement, respectively) and are defined as follows:

(4.17)



= S /lJlv n
n

(4.18)

63

Thus, the maximum modal response quantities can be computed directly from

the following equation

(4.19)

For structures having only a single degree of freedom, Equation (4.19)

gives the maximum displacement of the structure. However, in multi-degree-

of-freedom structures the maximum response cannot be obtained directly from

the modal maxima because the maxima of the various modes do not occur simu1-

taneous1y. Two approximate methods are customarily used to obtain the

total response; the square root of the sum of the squares of all maximum

values and the sum of the absolutes of all maximum values. They are usually

named as the probable maximum response and the absolute maximum response,

respectively, with the former being used most frequently.

Results and Discussion

Figure 4.31 shows the response acceleration spectra for the E1 Centro

earthquake with various degrees of damping. It is seen that damping has

a significant effect on the magnitude and shape of the spectra, especially

for the small damping value. Naturally, the zero-damping spectra are not

as significant as the spectra with some damping because all structures have

damping.

Because of the relationship among spectral velocity, spectral accelera-

tion, and spectral displacement in Equations (4.17) and (4.18), it is

possible to draw a figure to include all these quantities. So one can read
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these three quantities from the same plot. Such plots for the outer shell

based on uncracked section is shown in Figure 4.32. The polyqon shown in

this figure is the three bounds of ground motion: the line on the left

is the maximum ground acceleration of 0.33 g, the line on the top is the

maximum ground velocity of 13.7 in/sec, and the line on the right is the

maximum ground displacement of 8.3 in. These lines are used for comparison

of the spectrum values in Figure 4.32. For very short periods, the spectral

acceleration values approach the maximum ground acceleration. For very

long periods, the maximum spectral displacements approach the maximum

ground displacement.

The maximum displacement, shearing force, and bending moment at each

nodal point obtained by probable maximum method are shown in Figures 4.33,

4.34, and 4.35, respectively, for the outer and inner shells. The maximum

deflection shape obtained from the time-history analysis and the spectral

analysis (with both maximum probable values and maximum absolute values)

are plotted and compared in Figure 4.36 for both outer and inner shells,

respectively. It can be seen that the values obtained by the probable

maximum method are slightly lower than the exact values and the absolute

maximum method are slightly higher than the exact values. If the probable

maximum method is used to analyze a structure, it may underestimate the

response. The absolute maximum method is used to analyze a special structure,

such as the containment vessel in nuclear power plant, which needs

higher safety factor to resist a strong earthquake.
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Figure 4. .32 Response spectra for elastic systems,
1940 El Centro earthquake (N-S component)
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4.3. Summary and Conclusions

The south-north and vertical components of the E1 Centro earthquake

are used to perform the time history response analyses of the present

chimney. A thorough investigation of many aspects of the elastic dynamic

responses of the chimney is carried out. Besides providing the compre­

hensive information about the elastic response of the chimney, the follow­

ing conclusions are drawn:

(1) The maximum bending stress in the present chimney may not

occur at the section where the maximum bending moment occurred.

The most critical sections are at 520 feet above the base for

the outer shell and at 620 feet above the base for the inner

shell.

(2) With 4 percent of the critical damping, the maximum deflection,

shearing force and bending moment are reduced by approximately

50 percent of the corresponding values of the undamped case,

respectively. The effect due to the increase in damping beyond

this value is, however, no longer pronounced.

(3) The stress distribution in the chimney is dominated by the bending

action due to horizontal component of the earthquake. The

effect due to vertical component of the earthquake is small.

(4) The cracks developed in the chimney decrease the bending

stiffness of the chimney and increase the tensile stresses in

the steel. The effect of cracks on the deflection of the chim­

ney is dependent on the relationship between the natural fre­

quencies of the chimney and the frequencies of the ground

excitation. Hence, the deflection of the chimney with crack

may not necessarily be greater than that of the chimney without
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crack.

(5) If the effect of the shear deformation is negl ected, the de­

flection and bending moment of the chimney increase by about

15 percent.

(6) The deflections of the chimney obtained by the probable maximum

method are slightly lower than the exact values. The deflections

obtained by the absolute maximum method are slightly higher

than the exact values.
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v. Inelastic Response of a Chimney to Earthquake

5.1 Plastic Bending Analysis of a Beam

In the present study, only the material nonlinearity is considered,

i.e., the geometrical properties of the chimney still remain linear.

As stated in the second chapter, the material is assumed to be bilinearly

elasto-plastic for both tension and compression with the same yield

strength as shown in Figure 2.2.

Before performing the plastic bending analysis of the chimney, the

formulation and procedure will be evaluated by the example of a simple beam

with rectangular cross section. In 1968, Armen et. al (2) presented a

finite element formulation and method for the plastic bending analysis

of structures. This development is described here and is used in the

inelastic analysis of the chimney.

The same beam finite element as shown in Figure 3.1 is redrawn in

Figure 5.1. Based on the assumed stress-strain relationship and the

Kirchoff's hypothesis (plane sections remain plane after bending), the

plastic strain varies linearly through the depth of the cross section.

In crder to simplify the complexity of the plastic bending analysis of

a beam, the distribution of the plastic strain in a beam finite element

is assumed to vary linearly along the edges of the element between two

adjacent nodes. This assumed distribution can be written as

-
E: = (Zh-~)[E: .(1 - f) + E: ·(f)]

P -z Pl N PJ N
(5.l)

•

where E: • is the plastic strain at the upper (or lower) surface at nodePl
i and E: • is the same quantity at node j as shown in Figure 5.1. The

PJ
quantity z in Equation (5.1) represents the depth of the elastic-plastic

boundary and is also assumed to be a linear function of the coordinate x
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where z. and z. represent the depth of the elastic-plastic boundary at
1 J

nodes i and j, respectively.

Equation (5.1) can be rewritten as

(5.3)

Since the plastic strain does not have any contribution to the

stiffness of the beam, the stiffness matrix can be obtained by substitu­

ting Equations (3.4) and (5.3) into the expression for elastic strain

energy and applying the Castigliano's theorem.

The elastic strain can be written in terms of the total and plastic

stra ins as

c = c - ce p (5.4)

Substituting Equation (5.4) into (3.5) and excluding terms that are independent

of displacements yields

u = ~ Iff €T[E]{€}dv - IfI {€}T[E]{€p}dV

v Vp

where vp is the volume of the plastic portion of the element.

Substitution of Equations (3.4) and (5.3) into (5.5) gives

(5.5)

u =} {o}T JII[B]T[E][B]dV{o} - {o}T fff [B][E][Bp]dV{€po}
v
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or

u (5.6)

The matrix [K ] is the initial strain stiffness matrix and is a function
p

of the depth of the elastic-plastic boundary at each nodal section and

must be continuously computer during the course of loading. The initial

strain stiffness matrix is given in Appendix.

Deriving Equation (5.6) with respect to nodal displacement {oJ

yields

(5.7)

(5.8)

where {R} is the vector of generalized nodal forces.

Since an incremental solution procedure will be employed, Equation

(5.7) is written in incremental form as

{~R} = [K]{~o} - [Kp]{~£po}

where [R ] is the initial strain stiffness matrix for the increment ofp

plastic strain and is different from the initial strain stiffness matrix

[KpJ for the total plastic strain {E }. In the present analysis, c 0po P
is assumed to vary linearly through the thickness from the upper (or lower)

surface to the elastic-plastic boundary. This implies a bilinear distri­

bution of ~£po' hence, the initial strain stiffness matrix [KpJ obtained

from this bilinear distribution may be different from [KpJ. In order to

avoid having to determine the bilinear distribution ~£po' an incremental

form may be used as follows:

(5.9)

where



i
I AqJ (5.10)
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and superscripts i and i-l refer to the current and preceding load

steps, respectively. The vector {~q} is considered as an increment of

fictitious load resulting from the initial strain in the element. It

is seen from Equation (5.10) that the vector {~q} is determined directly

from the total plastic strain and is not dependent on the increment of

plastic stra;ln.

Equation (5.9) can be written in the following form

(5.11)

The reason to change the superscript of {~q} from i to i-l is that the

depth of the elastic-plastic boundary (and the current value of plastic

strain) at nodal section can be determined, in general, only from the

stress (or strain) distribution computed at the end of the previous load

step and is assumed to reamin fixed in the current load step. The value

of {~q} can only be determined from the results at the end of previous

load step and remains constant during the current load step.

Equation (5.11) is formulated for each element used in the modeling

of the structure. The resulting equations are then appropriately assembled

to form the overall governing matrix equations.

Solution Procedure

The incremental procedures for the plastic bending analysis of a

beam of any load step are as follows:

(1) Calculate the increments of generalized displacement by Equation

(5.11). The increments of fictitious load in this equation are

zero as yielding has not occurred.
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(2) Use Equation (3.4) to calculate the increments of total strain

at each node1 section.

(3) Obtain the total strain at each nodal section by adding the

increments of total strain to that of the previous step.

(4) Determine the plastic strain at each nodal section.

(5) Determine the depths of the elastic-plastic boundaries at each

nodal section from the relation of total strain and plastic

strain at that nodal section.

(6) Form the initial strain stiffness matrix by Equation (5.6).

(7) Calculate the increments of fictitious load for each element

by Equation (5.10).

(8) Repeat (1) to (7) until the end of the loading process is reached.

The above procedure can be expressed simply by the formulations summarized

as follows:

[K]{Ao}i = {AR}i + {Aq}i-l

i [] ifALl =: B {M}

{d i= {cJ i -1 + {Ad i

i
{c }'p

{liq} i

Results and Discussion

The preceding formulations and procedures are used to analyze a canti-

lever beam for which the exact solutio~ is available for comparison. Because

of the assumptions that the material has an elastic-ideally plastic behavior

and the structure is statically determinate, the depth of the elastic-plastic

boundary can be directly related to the applied load.
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Figure 5.2a represents a nondimensionalized load versus tip deflection

curve for a uniformly loaded cantilever beam with rectangular cross section.

Twelve elements are used to model the beam. In this figure, 0T is the tip

deflection, 0* is the tip deflection at the elastic limit and p represents

the nondimensional load parameter defined as,

where P = applied load intensity

P = 4boo y

a = length of the beam element

h = half depth of the beam

b = half width of the beam

The results obtained from the finite element analysis compare quite well

with the corresponding results from the exact solution (15), as shown in

Figure 5.2a. The collapse load, as determined from the near vertical

slope of the load-deflection curve, is approximately 2 percent higher than

the exact collapse load which occurs at a value of p = 1.

Figure 5.3 shows the nondimensionalized load versus tip deflection

curve for the present chimney (both outer and inner shells) under uniformly

distributed load. Eight elements are used in the chimney. For the pipe­

type beam, p =~c and Pc is the maximum ultimate load (or collapse load)

at which a fully plastic cross section is developed in the chimney.

Because the cross section of the chimney is not uniformly distributed along

its height, the value of the nondimensional tip deflection for the outer

sehll is higher than that for the inner shell. If the two shells have

uniform cross sections, the two curves shown in Figure 5.3 for both shells

should coincide. It can be seen from Figures 5.2a and 5.3 that for the

present two beam examples the tip deflection near the collapse load is
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about twice the tip deflection at elastic limit.

The progression of the elastic-plastic boundary through the thickness

for a rectangular beam is shown in Figure 5.2b. Because of the assump-

tion associated with the plastic strain distribution in the beam element,

the neighboring elastic-plastic boundaries at the common nodal section

are not continuous. These discontinuities can be reduced by increasing

the number of elements used in the beam.

As shown in Figure 5.2b, yielding originates at a load of p ~ 0.667

at the fixed end of the beam. Plasticity first develops in the outer

surface of the beam and propagates towards the neutral axis of the beam.

As p increases from 0.667 to 1.0, the plastic region gradually spreads

from the fixed end to the free end. When p equals to 1.0, the fixed end

section of the beam becomes fully plastic and the beam can no longer carry

any additional load.

5.2 ~clic Loading Analysis of a C~~JjJLeve~~e~~

The simplest case, a beam with rectangular cross section subjected

to cyclic loading, is studied first in detail. The same method is then

applied to analyze the chimney.

(i) Moment-Curvature Relationship of a Beam with Rectangular Cross Section

Figure 5.4 indicates a beam with rectangular cross section subjected

to a pure bending moment M. It is assumed that the moment is first increased

from zero to a value of M' and then decreased. If M' is less than the

maximum elastic moment Me' the stresses will be everywhere elastic during

loading and unloading. The moment curvature relationship for both loading

and unloading processes can be easily expressed as

M= i EbH3R
3
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or in the following dimensionless form

2
m = "3 P

M Rwhere m =-- , P = -- and b = half width of the beam,'H = half depth of theMp Re
beam, R = curvature of the middle surface, Re = curvature of the middle

surface at elastic limit, and Mp = fully plastic moment.

When Mis equal to M , i.e., the stresses at the extreme outer fiberse

of the beam just reach the elastic limit, the moment and curvature are

given by

P = 1e

(1) If Mis further increased to a value M1 which is greater than Me'

stress distribution is shown in Figure 5.5a. In the elastic zone (0 ~

the dimensionless bending stress varies linearly with z,

s = pZ1

In the plastic zone (__1 ~ z ~ 1), the dimensionless bending stress is constant
P1

along z with magnitude equal to unity.

s =1

where z = Z/H. Integrating the stress over the cross section, the moment

curvature relationship is obtained as follows:

m= 2 J szdz = 2 Jl
/

P
1 Pl z2dZ + 2 J1 zdz

AO 1/P1

1
= 1 --2

3P1

The height of elastic-plastic boundary is then given by

- 1z =--
1 P,
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(2) A negative moment is then superimposed on the distribution of stress

given in Figure 5.5(a). All the quantities related to this negative moment

are designated by a prime. The resulting net moment is defined as M2.

Based on the magnitude of M2' the stress distribution can be divided into

two cases.

(a) If the net value of the bending moment M2 is less than Ml but

sufficiently large such that the beam is still in elasto-plastic behavior,

the resultant stress distribution is shown in Figure 5.5b. The resulting

dimensionless stresses are defined as,

s = s' = (Pl pi )z 0 < z < 1
sl - - - -2 Pl

s2 = 1 - plZ _1_ < z $L
Pl pi

s2 = -1 L< z <
I -P

The moment curvature relationship aorresponding

f
llPl 2 J2/p

l

m2 =2[ (p,-p')zdz+ (1
o llPl

to the above equation is

1
- plz)zdz+ J -zdz]

2/p'

=_1+-8- __1_
3 1

2 3 2
P Pl

1 1
= "3 [-3 - 2" +

P1 (p 1

The location of the elastic-plastic boundary is given by
- 2z =­2 pi

-which is greater than zl'

(b) If the net value of the bending moment M2 is greater than or equal

to Ml , the stress distribution and the moment curvature relationship will

return to case (1), except the signs of all quantities are ~hanged.
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Figure 5.5 Stress and plastic strain distribu­
tions in a rectangular beam.
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(3) A positive moment is subsequently superimposed on case (2)a. All the

quantities related to this positive moment are designated by douhle primes.

The resulting net moment is defined as M3. Based on the magnitude of M3,

the stress distribution can be described inthe following two cases.

(a) If the net value of the bending moment M3 is less than M1, either

greater or not greater than M2, the stress distribution shown in Figure 5.5c

is

s3 = sl - s' + Sll = (P1 - I + pll}Z 0 Z ~ _1_p :$
P1

s3 = 1 - p1z + pllZ _1 < z < 2- -r
P1 p

s3 = -1 + pllZ L< z <L, - - /I
P P

= 2 < < 1s3 -II - z
P

Z3-[
CURRENT PLASTIC

STRAIN

(c)

Figure 5.5 (continue)



89

The moment curvature relationship corresponding to the above stress distri-

bution is

and the location of the elastic-plastic boundary is given by

-which is always greater than z2.

(b) If the bending moment M3 is greater than M1, the stress distri­

bution and the moment curvature relationship will again be the same as in

case (1).

From above analyses the following conclusion can be made. The beam is

subjected to a sequence of cyclic moments with the following conditions,

1. M1 > 0, is first applied to the beam

2. IM21 < IMl I
> M.,

4. IM2 / >. IM4 1 > ••• > IMi +1 1

5. the sign of the ith moment is (_1)i-1, i.e., this sequence of

moments are alternatively in sign.

The stress distribution at the instant of ith bending moment can be ob-

tained as follows

5 i = (p 1 - pi + pll P I I I + ... + (_1)i-1 p(i-1))z o :: z < _1
- P1

5. = 1 - p'z + pllZ P I II Z + ... + (_l)i-l p(i-l}z
-' < z <f-- I,
Pl p

5· = (-1) i + (_l)i-lp(i-l)z 2 < z :::: 2, (i-2) - (i -1)
p p

s. = (_1)i-l 2 < z < 1, (i -1) - -
p



m. =
1
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where the quantity p(i-l) denotes the superimposed curvature at current

case. The moment curvature relationship corresponding to the above stress

distribution is given by

fA Si
zdz

(_l)i 8 i-l~
= 1 + 2 + 3 L ~

3p, n=l (p n )

and the location of the elastic-plastic boundary at ith bending moment is

2
Zi = (i-1)

p

(ii) Plastic Strain Distribution

The current plastic and cumulative plastic strains corresponding to the

stress distribution at each stage are shown in the same figures of the stress

distribution, Figure 5.5 a-c. In Figure 5.5a, for the first half-cycle,

both current plastic and cumulative plastic strains are linear and have the

same distribution across the thickness. For the following cycles, as shown

in Figures 5.5b - 5.5c, the cumulative plastic strain at each stage is ob-

tained by superimposing the current plastic strain to the preceding cumula-

tive plastic strain. Therefore, the cumulative plastic strains at these

stages are no longer linearly distributed and the plastic strains at the

elastic-plastic boundary are no longer zero. In the plastic bending ana'ly-

sis it has been assumed that the plastic strain distribution varies linearly

through the thickness from some value at the extreme outer fibers to zero

at the elastic-plastic boundary. This assumption is used in the formation

of the initial strain stiffness matrix. The same method used in the plastic

bending analysis is also employed for the present cyclic loading analysis.
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Therefore, the same assumption for plastic strain distribution must hold

for the cyclic loading case. Fortunately, for cyclic loading analysis,

the plastic strain which is always linear at each stage. The reasons for

using the current plastic strain instead of using the cumulative plastic

strain are described as follows.

Let the unloading and reloading process from case (1) to case (2) be

reconsidered. From the process of Figures 5.6a to 5.6b, the beam is

assumed to unload elastically and the total decreased strain is considered

as elastic strain. That is, the current plastic strain is not produced or

it equals to zero. In this case, the second term in Equation (5.8) vanishes

although the cumulative plastic strain still exists at this stage. In

Figure 5.6c, the area above the elastic-plastic boundary is in the plastic

range and can not take any additional stress. However, the area below the

elastic-plastic boundary is still in the elastic range and any additional

load increment is taken by this portion. From the stage of Figure 5.5b to

Figure 5.5c, the current strain and stress increments for the entire cross

section are shown in Figure 5.6d. The shaded area for the strain in Figure

5.6d represents the. current plastic strain which is the same as that shown

in Figure 5.6c. The remaining area for the strain in Figure 5.6d represents

the elastic strain increment which is proportional to the elastic stress

increment as shown in the same figure. Hence, in Equation (5.10), the plastic

strain for the (i-l}th step is zero (as shown in Figure 5.6b) and for the

ith step is the current plastic strain (as shown in Figure 5.6c).

(iii) Moment Curvature Relationship of a Pipe-type Beam

The stress distribution over the cross section at any stage for a pipe-

type beam is the same as that for a rectangular beam. The current plastic

and the cumulative plastic strain distributions for a pipe-type beam are
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Figure 5.6 Stress and plastic strain distributions
in a rectangular beam.



i

===_:\J~lE=
CURRENT PLASTIC CUMULATIVE

STRAIN PLASTIC STRAIN

( c)

•

93

STRAIN INCREMENT

STRESS INCREMENT
(d)

Figure 5.6 (continue)



94

also the same as that for a rectangular beam. The only difference between

the two kinds of cross section lies in the formula for the moment and

curvature relationship.

Figure 5.7 shows a pipe-type beam cross section with outer and inner

radius ro and r i , respectively. In the present study, the ratio of the

thickness t to the mean radius r is very small (about 0.02), hence, it is

reasonable to assume that the plastic zone (shaded area in Figure 5.7) is

bounded by the radius and not by a line parallel to the neutral axis, i.e.,

the plastic zone is increased circumferentially.

For the stress distribution shown in Figure 5.7. the corresponding

moment can be obtained as

~l
IT

- 2
. 2 2 - 2Ml 4 J

Sln e de + 4 J sin e de= tr ° tr 0y
0 y sin ~l

~l

_ 2 cos ~l

4tr Gy [ 2 +

The location of the elastic-plastic boundary is given by

For the pipe-type beam subjected to a sequence of moments with the same

conditions as described in the previous section for the rectangular beam, the

relationship between the moment and the angle ,which defines the elastic­

plastic boundary, can be expressed in general form as

- 2 ~l cos ~l
Mi = 4tr 0y [ 2 sin ~l + 2

i n ~n
\ (-1) ( + cos ~ )]
L sin ~ o/n

n=2 n
(5.12)

where the integer i denotes the cyclic loading step number. The location of

the elastic-plastic boundary is given by
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-z. = r sin ~.
1 1

The corresponding curvature is given by

Ee 1 i (_l)n
cur. = r- [ sin - z L ]

1 ~l n=2 sin ~n
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(5.13)

(5.14)

Figure 5.8 shows a moment curvature diagram for a pipe-type cross

section. The circled numbers 1, 2, 3, 4, 5, and 6 in this figure correspond

to the loading step number i as defined in equations (5.12) and (5.14). The

sequence of moments applied to this beam matches the conditions mentioned

earlier. When M6 reaches point A as shown in the figure, it is equal to

M4. If the moment further decreases, the stress distributions and the

curvatures are then obtained by using equations corresponding to M4.

For a pipe-type section, the maximum elastic moment is equal to TI/4

of the fully plastic moment, so that the elastic range for unloading is

equal to TI/2 of the fully plastic moment. The moment curvature curve for

the rectangular section or other symmetric section will be similar to

Figure 5.8 and the elastic range for unloading is always equal to twice the

maximum elastic moment.

5.3 Inelastic Response of the Chimney to Earthquake by Direct Integration

Method

In the elastic-plastic dynamic response analysis of a beam structure,

the sectional properties change with time. The matrix equations of motion

can be solved by a step-by-step numerical integration procedure. Since the

stiffness matrix has to be reformed and computed at every time step, such

procedure is extremely time-consuming.

In this study, the procedure is simplified such that the stiffness
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matrix is composed of two parts at every time step. One part is the basic

stiffness matrix which accounts for the elastic portion of the structure

whereas the other part is formulated as a vector of fictitious loads which

accounts for the plastic portion of the structure.

Incremental Form of Equations of Motion

The equllibrium equation for the dynamic forces at the nodal sections of

a finite element system at a time t can be written as

{F}i + {F}d + {F}e = {R}
t t t t

where

{F}~ inertia force vector

{F}d = damping force vector
t

{F}e = internal resisting force vector
t

{R}t = vector of externally applied forces

At time t+bt, Equation (5.15) can be written in incremental form as

(5.15)

(5.16)

The force changes over the time interval bt are assumed to be given by

(5.17)

where [M]t' [C]t' and [Kt]t are the mass, damping and tangent stiffness



matrices at time t; {~Y}t' {~Y}t and {AY}t are the vectors of changes in

the accelerations, velocities and displacements during the time increment.

In the present case, the mass and damping are constant. Only the stiff­

ness is nonlinear. Equation (5.13) can thus be written as

99

[MJ{~Y}t + [CJ{~Y}t + [Kt]t{~Y}t =

{R}t+~t - [M]{Y}t - [C]{Y}t - [Kt]t{Y}t (5.18)

where the force vectors [M]{Y}t' [C]{Y}t' and [Kt]t{Y}t are evaluated at

time t and become the known values for the time step to t+~t. Therefore,

Equation (5.18) can be solved for {~Y}t which in turn gives {~Y}t and {~Y}t'

The difference between the elastic stiffness matrix and the tangent

stiffness matrix is denoted as [~KJ and can be expressed as

Hence, the internal resisting force at time t can be divided into the terms

as

(5.1 9)

or in incremental form

(5.20)

The terms [~KJt{Y}t and [~K]{~Y}t in the above equations are referred to

as fictitious loads and denoted by {q} and {~q}, respectively.

Substituting Equations (5.19) and (5.20) into Equation (5.18), it be-

comes
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(5.21)

It should be noted that the relations in Equation (5.17) are only
rapproximations. But the residual force {R}t+Lit' given by

is a measure of how well equilibrium is satisfied at time t+At. In order

to satisfy equilibrium to a certain limit at the end of each time step, it

may be necessary to use iteration.

Solution Procedures of Equations

In this section the Wilson e-method (3,21,22) is employed for solving

the equations of motion. Let {Y}t' {Y}t and {Y}t be known vectors. To ob­

tain the solution at time t+Lit, it is assumed that the acceleration is

linear over the time interval t = eLit, where e > 1.0. Hence, the quantities

at time t+t will be

tY}t+t = {Y}t + t ({Y}t+t + {Y}t)

2
• L ..

+ 2{y}t){y}t+t = {y}t + t{Y}t + tI ({Y}t+t

which gives

6 6 - 2{f}t{Y}t+t = ~ ({Y}t+t - {Y}t) - - {Y}t t
and (5.22)

{Y}t+t
3 - {Y} ) -

t ..
= - ({y} 2{Y}t - "2 {Y}tt t+t t

The equations of motion, Equation (5.21), shall be satisfied at time t+t;

therefore



101

~

where {R}t+T is a projected load equal to {R}t + e({R}t+bt - {R}t) and

.. .. ..
{~Y}t = {Y}t+T {Y}t

With {Y}t+T known the accelerations and velocities at time t+T are obtained

using Equation (5.22).

At time t+~t, the desired accelerations, velocities and displacements

are given by the linear acceleration assumption:

..
{Y}t+~t

{Y}t+bt

• t\t.. ..
= {Y}t + ~({Y}t + {Y}t+~t)

= {Y}t + bt{Y}t + ~~2 ({Y}t+bt + 2{Y}t)

The solution procedures are summarized in Table VII.

Results and Discussion

In this chapter, the effect of the shear deformation is not considered.

The results of e1asto-p1astic case are compared to the results of elastic

case without the effect of the shear deformation. A computer program is

developed for the elasto-plastic dynamic analysis. As mentioned before, for

inelastic analysis, the direct integration method is usually employed.

When using this method, the selection of time step is crucial. Wilson (22)



Table VII. Summary of step-by-step algorithm for nonlinear structural
systems.

Initial calculations

1. Form stiffness matrix [K] and mass matrix [M].

2. Calculate the following constants (assume [C] = a[M] + s[K]):

102

T = 8t , 8 ~ 1.37

b = 1 + 1. Bo T

6 3
bl = 2 + ~ a

T

b
'b =_1

2 bo

b3 = a - Bb
2

6 3
b4 = 2 + ~ b3

T

6b = - + 2b
5 T 3

3. Form effective stiffness matrix [K]* = [K] + b2[M]

4. Triangularize [K]*

For each time increment

1. Form effective load vector [R]*

[R]; = [R]t + 8([R]t+~t - [R]t) + [M](b4{y}t + b5{Y}t + b6{Y}t)

+ {q}t + 8{~q}t+~t

2. Solve for effective displacement vector {y}t

* * *[K] {y} t = [R]t

3. Calculate new acceleration, velocity and displacement vectors,

.. * ...
{Y}t+~t = b7{y}t + b8{y}t + bg{Y}t + b10{Y}t

{Y}t+~t = {Y}t + b1l ({Y}t+~t + {Y}t)



Table VII. (Cont.)

4. Calculate the fictitious load increment {~q}t+~t

103

5.

{~q}t+~t = [Kp]t+~t{€po}
t+~t

i i
Repeat steps 1 to 4 until {~q}t+~t- {~q}t+~t ~ €.

6. Calculate {q}t+~t.

7. Repeat for next time increment.
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suggested that the time increment ~t should be about 1/10 of the smallest

natural period of the structure which is to be included in the response

calculation. In the present study, the time step is chosen as 0.02 second

whereas the fourth mode period is 0.217 seconds.

In the previous elastic dynamic seismic response,analysis, the bend­

ing stress exceeds the elastic limits of the concrete (0.85 fc l
) in the

case of outer shell. In the case where damping coefficient was assumed as

zero, the bending stress also exceeds the elastic limit of the concrete

in the outer shell. These are, however, not the case for the inner shell.

Therefore, only the outer shell is considered in the present elasto-plastic

seismic response analysis. Again, the south-north components of accelera­

tion of the 1940 El Centro earthquake are considered.

The time history response for the deflections at the tip of the outer

shell are compared in Figure 5.9 with the response obtained assuming elastic

behavior. Yielding starts at 11.94 seconds at the sixth node of the outer

shell. Before this time, the response of the outer shell is in the elastic

limit and the curve for the elasto-plastic response coincides with that for

the elastic response. Beyond this time, the characteristic of the elasto­

plastic response is quite similar to that of the elastic response. At the

beginning period of the yielding (from 11.94 to 12.82 seconds), the stiffness

of the outer shell is decreased due to the plastic strain. The tip deflec­

tions in this period for the elasto-plastic case are slightly greater than

those for the elastic case. After this period, the outer shell is subjected

to unloading and returns to the elastic range. Because the permanent strain

produced in the preceding yielding period tends to prevent the reverse mo­

tion, the deflections of the outer shell for the elasto-plastic case are
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smaller than those for the elastic case. When the reverse motion is fur­

ther increased, the outer shell goes into another yielding period (from 13.2

to 14.2 seconds). The new plastic strain is produced and the deflection is

also increased. However, the magnitudes of the deflection can never be

greater than those for the elastic case except when the new plastic strain

overcomes the preceding permanent (residual) strain. At the end of the

response, the magnitude of the tip deflection for the elasto-plastic case

is about 3/4 of the value for the elastic case. The maximum tip deflec­

tion is 40.99 inches at 12.8 seconds for the elasto-plastic case versus

39.78 inches at 12.8 seconds for the elastic case.

Figures 5.10 and 5.11 show the comparisons of the time history re­

sponses for the base bending moment and base shearing force of the outer

shell for the elastic and the elasto-plastic cases. Because of the yield­

ing and the existing residual strains, the magnitudes of the base bending

moment and the base shearing force for the elasto-plastic case are smaller

than those for the elastic case except in the first yielding period

(11.94 to 12.82 seconds).

During the entire course of the response, only the sixth and the

seventh nodal section of the outer shell have been developed into plastic

ranges. The sixth nodal section has more unloading and reloading cycles

than the seventh nodal section. Figure 5.12 shows the moment curvature re1a

relation curve for the sixth nodal section.
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5.4 Summary and Conclusions

The finite-element formulations and procedures presented in this

chapter have been shown to be appl icable for the computation of the

inelastic dynamic response of tall slender beam structures. The use

of initial strain concept for interpreting the effect of plastic strain

enables one to use linear matrix equations of motion to analyze the

inelastic dynamic behavior of structures.

The results obtained in this chapter show that the plastic strains

produced in the chimney tend to prevent the motion of the outer shell.

Hence, the resultant nodal displacements and nodal forces for the inelastic

case are smaller than those for the elastic case.

In the present study, the material is assumed to have elastic­

perfectly plastic behavior. If the strain hardening of the material

is to be considered, only the initial strain stiffness matrix and the

moment-curvature equations need to be derived. The procedures for

the analysis still remain the same.
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Appendix

Initial Strain Stiffness Miltrix for Beam FinHe Elelllents

The initial strain stiffness matrix for il heilm element in pure

bending is given in integral form in Equation (5.6). The matrix equation

defining the fictitious nodal restoring forces in terms of the initial

strain stiffness matrix is shown below for the pure bending of a beam

with a rectangular cross section.
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1

M.
1 El=

h3

where
(- -) 2z.-z.

+ h2 _
Z. (h+z. )

Cl
J 1 1 1

20 2

9(- -)2 (z .-z. )(2z .+h) 2 z. (h+z.)z.-z.
C2 = J 1 + J 1 . 1 h + 1 1

20 2 2

- - 2 (z.-z.)(2z.+h) z. (h+z.)(z.-z.)
+ h2 _C3 = - J 1 J 1 1 1 1

60 12 2

(- - 2 (z.-z.)(2z.+h)z .-z.)
C4 = J 1 + J J 1

10 12

(- -)2 (z .-z. )(2z .+h)z .-z.
C5 = J 1 + J 1 1

15 12

(- -)2 5(z .-z. )(2z .+h) 2 z. (h+Z.)7 z .-z.
C6 = J 1 + J 1 1 h + 1 1
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Part II

Vibrations of Two Cyclinders in Tandem

in Line of Hind
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I. Introduction

Recently, because the size of tall slender structures used in

power plants or other installations has been greatly increased, their

resistance to dynamic forces such as earthquakes and Winds becomes

extremely important. Such structures, if flexible and lightly damped,

may exhibit large deflections or unstable oscillations due to wind

loadings. The resulting oscillating phenomenon induced by vortices in

the wake is an important engineering problem.

Early studies were concentrated on the determination of the fluc­

tuating lift force on a single circular cylinder, either stationary or

vibratory. However, when two cylinders are put in tandem in the flow

direction, the rear one may vibrate with either larger or smaller

deflection than a single cylinder. The question can be asked how

important a factor is the position of a cylinder in the wake of another

cylinder on the vibrating behavior of the rear cylinder.

The purpose of this research is to perform analytical studies

of the vortex-induced vibration of two tall slender structures in

tandem in a flowing fluid. A mathematical model is proposed to

study the interaction of lift forces and the vibrating behavior of

the rear cylinder.
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II. Literature Survey

(a) A Single Stationary Cylinder

Attempts to measure the lift force acting on a stationary

cylinder, due to vortices in its wake, and to correlate the

results of measurements were made by a great number of authors.

Sallet (1) employed the fluid momentum equation, integrated over

an appropriate control volume, to determine the fluctuating lift

force on a bluff body. It is the same method that was introduced

by von Karman for the calculation of the steady drag force. The

equation for the maximum lift coefficient obtained by Sal let is

(,) ~ S~ S~
CL = J2 0 (1 - 0 ) (3 0 - 2)

in which CL lift coefficient

t = longitudinal vortex spacing

D = cylinder diameter

s = Strouhal number

(1)

In his previous paper (2), Sal let derived an equation relating S,

CD and IT as following

~1.5290 + 1.593 CD = 0 (2)

where CD is the drag coefficient. If the Strouhal number and the

drag coefficient of the cylinder at the Reynolds number of interest

are known, the lift coefficient of any stationary cylinder can be

determined from Equations (1) and (2).

(b) A Single Vibrating Cylinder

In 1969, Mei and Currie (3) found, in their experiment on a

vibrating cylinder excited by its own vortices in the wake, the

position of the separation point of the boundary layer on the



116

cylinder surface varies during the vibration of the cylinder. The

phase angl e rp of the 1i ft force F and the phase angl e II! of the

movement of the separation point during the cylinder vibration,

both measured with respect to the cylinder motion Xr are plotted

in Figure 1. Those data will be used in the present investigation

to calculate the distance between a cylinder and the nearest shed-

ding vortex from it when this cylinder is in its equilibrium

posit ion.

The cylinder motion of a vibrating cylinder can strongly affect

the lift force. Bishop/Hassen (4) found from their tests that the

lift force is increased with the amplitude of cylinder motion. They

also concluded from such tests that the fluctuating lift force

acting on the cylinder is indicative of a self-excited oscillatory

mechanism in the flow field. Recently, several mathematical

models which attempt to duplicate the experimental observations

have been postulated. The most successful of these models is that

of Hartlen and Currie (5) who assume that the oscillating lift

force on the cylinder can be represented by an equation in the form

of the van der Pol equation. The oscillator equation in dimen-

sionless form is as following:

('e
l

)3 2 =+ Wo C
l

in which a and b are independent constants while yand a are related

by the equation y = 4a 2 where Cl is the amplitude of lift
3Clo 0

coefficient of a stationary cylinder and can be determined from

Equation (1). When this equation is coupled to the equation of
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motion for a cylinder and the parameters appearing in the model

are appropriately chosen, the observed behavior is qualitatively

reproduced. This model will be used by this author in his

study of the dynamic behavior of two cylinders in tandem in the

wind direction.

(c) Two Cylinders in Tandem

When two cylinders are put in line in the flow direction, the

rear one was subjected to two kinds of forces, one is due to its

own vortex street and another is the buffeting force from the wake

of the upstream cylinder. The phase angle between those two forces

is dependent on the position of the rear cylinder related to the

front cylinder. Therefore, the amplitude of the rear cylinder

motion is also largely dependent on the distance between those

two cylinders.

The water-tunnel studies of Vickery (6) have shown that the

amplitude of vibration of the rear cylinder increases with the

spacing between two cylinders. But his results only appear for

spacing ratio from 2.80 to 4.30 as shown in Figure 2. Below the

spacing ratio of 2.80 or above 4.30, the rear cylinder may be

excited to higher or lower amplitudes.

As mentioned in Mair and Maull's paper (7), the experimental

results of Whitbread and Wootton on oscillation of two aeroelastic

models of octagonal section, placed in line with the wind direction,

are shown in Figure 3. The position of minimum amplitude of vi­

bration of the rear cylinder seems to be around the spacing ratio

of 3.50. Above a spacing ratio of 40 the rear cylinder is excited

to very high amplitudes.



.6

.4

o

Figure 2.

. 06

o

o

o

Max. amplitude of vibration of the down­
stream member of a pair of cylinder .

o

119

.04
0

X 0
0

.02
0

o o

o

Figure 3. The maximum amplitude of oscillation
of one body behind another.



The predictions of the mathematical model as proposed by

the author in this investigation will be compared later with

results of these experimental studies.

120
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III. Formulation of a Two-dimensional Mathematical Model

(a) The Model

The physical systems shown in Figures 4 and 5 are considered.

In Figure 4, a rigid cylinder of mass M, diameter D and length

L is exposed to a flow of uniform velocity V. The cylinder is

mounted elastically on springs of total stiffness K and on viscous

dampers of total damping coefficient R. The origin of coordinates

is at the stationary cylinder center with displacements perpen­

dicular to the free stream denoted by Xr . The external lift

force acting on the cylinder is F.

In Figure 5 two cylinders, both having the same physical

properties as described in Figure 4, are put in tandem in the

wind direction. The distance from center to center of two

cylinders is d. Where d ' is the distance between cylinder 1 and

the nearest shedding vortex from it when cylinder 1 is in its

equilibrium position.

(b) Mathematical Formulation for a Single Cylinder

(1) The Structural Equation

The equation of motion of a rigid cylinder mounted on

springs and dampers, such as shown in Figure 4, is given by

..
MX + RX + KX = F

r r r

where the lift force F can be expressed by the term

in which CL = lift coefficient

p = density of the fluid
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The above equation becomes

(3)

Introducing dimensionless variables X and T defined by

T == t !K == lJ.) t1M n
(4 )

and dimensionless parameters defined by

R
S == 21'1.u

n

SV
f 0
n

a ==

(5)

where S == Strouhal number

fs vortex shedding frequency

wn == 2'/Ifn == natural frequency of the cylinder

one has the following nondimensional equation of motion of

the cylinder

(6)

(2) The Aerodynamic Equation

In 1970, Hartlen and Currie (5) introduced a nonlinear

oscillator model which contains a nonlinear negative damping

term. This model makes it possible for the system to be

self-excited and self-limiting in amplitude. This oscillator

is coupled with the vibrating cylinder by a force proportional

to the vibrating velocity of the cylinder. The oscillator

equation in dimensionless form is as following:
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in which ex and b are independent constants while y and a.

4<1are related by the equation y = --2 where CL is the ampli-
3C 0

Lo
tude of lift coefficient of a stationary cylinder and can

be determined from Equation (1).

For a single cylinder, one has to solve Equations (6) and (7)

together for the two unknown X and CL, for prescribed values of

(, a, wo' ex, y, and b. Of these six parameters, the choice of

ex and b are most difficult because of the lack of experimental

data.

(c) Mathematical Formulation for Two-Cylinder in Tandem

For two cylinders in tandem in line with the wind direction,

the following simplifying assumptions are made in the present

investigation:

(1) The investigation is limited to cases where the two cylinders

are at a fair distance apart, say d > 2D.

(2) For d > 2D, it is reasonable to neglect the effect of rear

cylinder motion on therront cylinder. The motion of the

front cylinder and the corresponding vortices created by

it will definitely affect the rear cylinder as a buffeting

force.

(3) The vortices created by the motion of the front cylinder,

after it reaches the second cylinder and acts on the rear

cylinder as a buffeting force, loses its effect as far

as the wake behind the rear cylinder is concerned.
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(4) The rear cylinder is therefore considered to be acted upon by

two forces: the buffeting force from the front cylinder, Fl ,

and the lifting force F2 due to the wake of the rear cylinder

alone.

Based on the above assumptions, the system in Figure 5 can be

treated as following:

(i) The cylinder motion equation and the aerodynamic equation for

cylinder 1 are given by Equations (6) and (7) or

Xl + 2d<1 + X = 2awo CL1 1

..
+ -Y (t )3 + w2 C bXCL - aw C =

1 o Ll Wo LloLl 1

(8)

(9)

(ii) The second cylinder, in the absence of cylinder 1, will have

a motion x2 of its own, and corresponding lift coefficient

C
L2

· The two variables x2 and C
L2

are governed by the same

Equations (6) and (7) or

+ 2r,x
2

+
2 (8)ax2 x2 = all.) CLo 2

..
- aw C + -l U: )3 2 bX2 (8)bCL + w CL =

2 o L2 Wo L2 o 2

(iii) With the presence of cylinder 1, cylinder 2 is subject to two

forces, one from its own vortex street as if cylinder 1 is not

there, and another from the wake of cylinder 1. The first is

represented by C
L2

(T) which can be obtained by solving Equations

(8)a and (9)a. The second is represented by CL (T+T 1), where
1

CL1(T) can be solved from Equations (8) and (9) and Tl is a time

delay depending on the time required for the vortices created

by the motion of cylinder 1 to reach cylinder 2.



*The motion of cylinder 2, to be represented by X2' under both

forces, is governed by the following

127

(10)

The mathematical model is then represented by 5 equations, (8),

(9), (8)a, (9)a and (10). These equations are nonlinear in nature

with a time-delay term in it.
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IV. So 1uti on s

(a) Dynamic Response by Direct Inte~ration

The 5 equations (8) through (10) can be integrated directly

with the aid of a computer. The integration can be divided into

3 steps:

(1) Equations (8) and (9) are integrated first to obtain CL (T).
1

This can be accomplished by standard numerical integration

process such as Runge-Kutta's method with built-in error

correction procedure. The initial conditions must be pre-

scribed.

To make use of existing program in numerical integration,

Equations (8) and (9) are rewritten into the following

simultaneous equations of first order:

·Y1 = Y2

• 2Y2 = aW oY3 - 2sY2 - Yl

·Y3 = Y4
• y 3 2Y4 = bY2 + aWoY4 - W

o
Y4 - woY3

(11 )

where Yl = xl
. .

Y2 xl = Yl

Y4 = CL = Y3
1

(2) Equations (8)a and (9)a can be integrated in exactly the same

manner to obtain CL (T).
2

(3) One now proceeds to integrate Equation (10) to obtain the motion

*X2(T) of the rear cylinder under both forces represented by

CL,(T+T 1) and CL2 (T).
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Note that CL (T) as obtained from step (2) can be fed into
2

the right side of Equation (10) directly. But CL (T) obtained
1

from step (1) must be corrected for the time delay before it

can be used in Equation (10).

The direct integration was carried out for several examples. One

example is shown in Figure 6. It shows that the dynamic responses

of both cylinders (and lifting force on them) approach steady

state oscillations after a certain time interval. In this case,

it takes about 40000 integration steps in T.

It is observed experimentally that when f s is near fn (locked-in

region or synchronization), both cylinder motions and lift forces are

approximately sinusoidal at a frequency very close to fn, the natural

frequency of the cylinder. Therefore, it is of interest to investigate

the steady state solution.

(b) Steady State Solution

Because the direct integration method needs a lot of computer

time to arrive at the steady state solution, it is desirable to

seek the solutions of Equations (8) to (10) in the form of sinu-

soidal function.

(1) Cylinder 1

Assume the solutions of equations (8) and (9) in the fo110w-

ing form:

(12)

CL = CL sin (wlT + ~l)
1 1

Substituting Equation (12) into Equations (8) and (9)

and equating coefficients of sin WT and cos TW separately

gives
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Eliminating Xl from Equations (13)c and (13)d gives, after

some rearranging, the following frequency equation

After solve Equation (14) to obtain w
1

and substitute back

into Equations (13)d, (13)b and (13)a, the unknowns Xl' CL1
and ~1 can be found.

(2) Cylinder 2 (with cylinder 1 absent)

Assume the solutions of Equations (8)a and (9)a as

(15 )

Substituting Equation (15) into Equations (8)a and (9)a and

using the same methods in the previous paragraph, the solu­

tions of x2' CL ' ~2 and w2 can be solved. Those solutions
2



are for the second cylinder when cylinder is absent.

(3) Cylinder 2 (when cylinder 1 is present)

When cylinder 1 is present, the motion of cylinder 2 is

governed by Equation (10). Assume the solution of this

equation as

132

(16 )

where e is the phase angle between two cylinders.

Substituting Equation (16) into Equation (10) gives

2 -* -* oJ[( 1-bl2)X2 coso - 2r.: 1ll2X2 sin si n1ll 2'1 +

- 2 * *[( 1-w2)X2 sin o + 2r.: 1ll2X2 cos oJ cos til T =2

2 - sin W2T + C
l sin </>2aw [C l cos </>2 cos 1112T +

o 2 2

If two cylinders are identical, then w1 = w2 = w. By

equating coefficients of sin wTand cos WT, Equation (17)

can be divided into two equations as follows

2 * * sin e =
2(l-w )X2 cose - 2swX2 awo(C l

cos <P 2 +
2

Cl coswT l )
1

2 -* -* 2(- Cl
sinwT 1)(l-w )X2 sin e+ 2swX2 cose = awo Cl sin <P 2 +

2 1



Because w, CL ' CL ' ~2 and T1 are known, X; and 0 can
1 2

be determined from these two equations.

133
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V. Results and Discussions

*The variations of X2 and CL with spacing diD are shown in Figure 7.
2

The curves in this figure are periodic and the distance between two

-* -peaks of X2 or CL is equal to longitudinal vortex space t of the vortex
2 *

street. The maximum value of X2 is about three times of Xl and the

minimum value is about half of Xl'

The periodical nature of these curves will be destroyed if the

energy dissipation of vortices is considered. The maximum and minimum

values which appear periodically along spacing ratio will be decayed.

-* -*Therefore, the first two peaks, minimum X2 at 3.10 and maximum X2 at

5.70, become very important.

The curves shown in Figure 8 represent the ranges of locked-in

or synchronization that an oscillation can be generated. The maximum

amplitude of Xl occurs at wo = 1.14 and the maximum or monimum value

-*of X2 occurs at wo = 1.15. For various a, s, a or b the maximum value

of Xwill be occurred at different woo

In Figure 9, the value of Wo at which the amplitude of cylinder

motion is maximum is plotted vs. the ratio of damping coefficient ( to
2s -mass parameter a. For ii < 1.0, wo is far away from 1.0 and the maxi-

mum amplitude of X is too large (see Figure 10), it means that the

structural damping is not large enough and the structure will fail.

Comparing Figures 7 and 9 with the experimental data shown in

Figures 2 and 3, one finds that the proposed mathematical model gives

results in good agreement with experimental data, i.e., the location

of rear cylinder at which the amplitude of vibration is minimum is

at approximately 3.10 away from the front cylinder.
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The curves shown in Figures 10, 11 and 12 give ranges of S, a and b

that the amplitude of cylinder vibration will not exceed a definite

value assigned. For instance, if one wants the amplitude of a cylinder

motion restricted in a range not larger than the cylinder diameter,

the ratio of damping coefficient s to mass parameter a should be greater

than 1.6, a greater than 0.03 and b less than 0.35.

138



139

..J
U

,
II

I
• •I

II
I

II'
II'• •
~

I E........
0)

I::•
a..I

I EI
~
-0I
II'•
;:,I II'
s..
C1I
>
C1I
-0

~
;:,
+)

4.Jt r-
N a..

E
~

s..
C1I
-0 .
1::0

.,... -r-
r- +)
>,~
us..

.
0
r-

C1Is..
;:,
0).....

u..

..

: :/, 'll
"

! 1
III II

J; Ii
u" 1& ,

\" / :
II • ,

y ,
! .4 el:

Y / \'
I /111

"I I
/'

/
K

-.----

IX



140

..J
0

00 .0 .
0

0 ..
C\J(¥')

I
I

I
I

..I co
0

III.
;:,

)( ,
0

III

)l ,
~

,
Q.lI >

I ,
Q.l

I ,
"0
;:,

I ,
....,
.,...I ,

do ,....
0-

X ,
I

E
ItS.

)t ,
I

Y! I
I

5: 'ct ~

,
Q.l
"01,
c:

...J I
I

.,...
UI ..J,

,....
I U,

>,
\1

u
I ~o,)(" I I

5 ,....- ,
,....

I ...JI , 1
Q.l

U,
~

I , X
;:,

/
~

0)
I

.,...

/
I

I.L..

/

I Jo•

//
,.

/

~ ,-./" ,
/,.

/
,.

00 .. ,....
0

C\J
.

(¥')

IX



141

..J
o

'r-
+->
U
I'CI
s..
(l)

+->
C

.r-

III
~

III
s..
(l)

>
(l)
"0
~

+->

.r-

.
N,...

,...
a.
E
I'CI

s..
(l)
"0
C

,...
~

U

.0

(I).
o

t"I
O.

<D.
o

,
\

\
\
\

\

Q-
\
\
\
\ :s
\ 1
\ -J

• 0 U

~.•\ ,,
\

\
\

O.
N

Q
If'),,,

\

- \
\ ~
\u
';

\,

N
---*"--~s-----o:----oo .

Itt

Ix



VI. Summary and Conclusions

A mathematical model that enables one to predict the vortex-excited

resonant response of two cylinders in line in the wind direction has

been introduced and developed in the present investigation. The model

is semiempirical, thus relying on the experimental results for the deter­

mination of the introduced constants. In the model a modified van

der Pol equation is employed to govern the fluctuating lift force on

the cylinder and is coupled to the equation for the oscillatory motion

of the cylinder.

The model ha~ been successfully used to predict the motion of an

elastically mounted cylinder in the wake of another cylinder. The cri­

tical distance between the two cylinders for which the amplitude of

vibration of the rear cylinder is minimum or maximum can also be deter­

mined by the model and the presents results are in agreement with the

experimental data.
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