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INTRODUCTION 

The basic problem can be stated as follows: What is the probability of 

"failure" of a structure, given the probability that the "design" acceleration 

is exceeded? In order to answer this question, one needs two relationships, one 

of which I'elates probability of earthquake occurrence to acceleration, while the 

other relates probability of failure to the occurrence of a given acceleration. 

Combining these two relationships, we can predict damage probability over a given 

length of time. 

* Annual Damage Probability -(ADP) will be defined as follows : 

ADP= f P x SR da a a a 

where: 

(1) 

P Probability that the structure will have damage at an acceleration a. 
a 

SR = Annual probability of occurrence of an earthquake with acceleration 
a 

between a and a+da at a site. 

For the first relationship (probability of occurrence vs. acceleration) the 

assumed form will be as follows: 

where: 

-k 
P = ca 

p Probability that site acceleration a is exceeded. 

a acceleration 

c constant 

k slope of line on log-log plot of p vs. a 

(k and c vary with different geographical regions) 

If the mean rate of (significant) earthquakes is V per year, then the annual 

mean rate of events with site acceleration greater than a is 

where: 

Reference 1, page 57. 

A = vp a 

a = vc 

= aa -k 



,.,, 

, 

2. 

The plot of A vs. a is a straight line on a log-log graph (Fig. 1) with slope K. a 
For the other relationship mentioned, probability of failure (dependent on 

building resistance) vs. acceleration, we will assume curves of the general form 

as shown in Figure 2. The exact nature of these curves and the assumptions 

involved in constructing these curves will be discussed later. At this point, 

it is necessary, however, to define an acceleration aI' below which there is 

zero probability of failure, and an acceleration na1 , above which there is 

certainty of failure. "Failure" in this context does not necessarily mean actual 

collapse of a structure. Failure can be other values of damage, say 10% of the 

replacement value of a structure. Failure could relate the structureVs capacity 

to remain operable, that is, failure could be the damage at which the building 

could not remain open to the public. It can be said that a structure can exist 

in one of two states, that is, either fail or non-fail. This means if "failure" 

is established as 10% damage to the structure, a structure with 9% damage would 

n.ot be considered as a failure. 

In addition to this consideration of failure of one structure. this report 

also investigates the probability of n out of 100 structures failing. The only 

new aspect here is the construction of new resistance curves for n failures 

using the resistance curves developed for the failure of a single structure. 

Also, there will be an attempt to determine how well one can predict damage when 

instead of a known resistance function, just the mean and variance of resistance 

are given. That is, a specific distribution is not known for the resistance of a 

structure. These various formulations will all be discussed further on in this 

report. 

2. RESISTANCE FUNCTIONS 

The general form of the assumed resistance function is shown in Figure 2. 

This form was derived after looking at some historical data from past earthquakes. 

* In the appendix, there is a list of M.I.T. Damage Probability Matrices. These 

were derived from historical earthquake data. Plotting the damage probabilities 

against acceleration would give an approximate resistance function for different 

design requirements, represented here by the different zones of the Uniform 

Building Code (UBC). A problem exists in the fact that these matrices are in 

terms of damage vs. intensity, whereas we are concerned with damage vs. 

acceleration. This tends to "lump" damage into a few discrete intensity values 

instead of spreading them out along the acceleration axis as we would prefer. 

* Reference 1, Table 5.4. 



The conversion law, 

3. 

* log a = 1/3 I - 1/2 ' 

was used in this case. With all these approximations, the accuracy of the curve 

will be limited but we are only trying to obtain a generalization of the shape of 

these functions and with this in mind, our approximations seem to be within reason. 

Figure 3 shows a plot of some of these curves obtained in this manner. There 

are three different main shaues to these curves, and these shapes of the function 

seem to depend on the level of damage involved. The curves for light damage are of 

type A(i.e., of the general form of curves 1 and 2), whereas the curves for 

moderate damage are of type B, and for damage functions of heavy or worse damage, 

the general shape is that of type C. It is believed that the difference in shapes 

is due to assumptions about the end points. If instead of assuming that there are 

definite end points to the functions, it is assumed that there is never zero 

probability or, likewise, never certainty of failure. The functions would all 

tend to be of the same S-shape (i.e., type B). 

Figure 4 replots the curves of Figure 3 with these new end point assumptions. 

It is seen that all the curves are of the same S-shape variety. However, for this 

report, finite end points for the resistance functions will be assumed, that is, 

there will be definite cut-off points of zero probability and certainty. The 

mathematical and physical consequences of this assumption will be discussed later. 

In this report, the concern will be with the resistance functions of the heavy 

damage states (type C curves, Fig. 3). The structural engineer is not as much 

concerned with the lighter damages,since they may be due entirely to nonstructural 

damage. To represent these type C curves, two different curves will be assumed: 

(1) a parabolic function and (2) a cubic function for use in this report. The 

parabolic function will be the primary basis for comparison between probabilistic 

and deterministic resistance functions. The cubic function will give an idea of 

the sensitivity of the final result to the details of these curves; that is, how 

the damage probabilities will be affected due to a relatively slight shift in the 

resistance curve. 

It is necessary here to define a new acceleration parameter, x, where 

* Reference 2. 
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x = (a/a1)' The use of this term will help to generalize the problem for 

different situations. There are also definite mathematical advantages in using 

(x) as the acceleration parameter when expressing resistance functions or 

calculating damage probabilities as will be seen later. 

Now, definite mathematical expressions for the resistance functions will be 

assumed. In particular. for the parabolic case the resistance will be assumed to 

be of the following form: 

F (x) = 0 x < 1 x 

2 
F (x) = (x-I) 

1 < x < n x 2 (n-l) 

F (x) 1 x > n x 

\ 

These three curves establish the resistance function for the parabolic law 

assumption. The cubic law could be similarly expressed. 

3. CALCULATION OF ADP 

3.1 One Structure: FA(a) Known 

With the resistance function known, the calculation of ADP is possible 

through direct integration. The probability of occurrence vs. acceleration curve 

will be generalized by using as the acceleration parameter log(a/al ) instead of 

log(a), similar to the change in acceleration parameters for the resistance 

functions. Therefore we now have the following expression for probability of 

occurrence: 

The value of A=l will be set a a=a1 , which makes the value of a=l. Obviously 9 

the probability of occurrence for any given value of acceleration, say cal' would 
-k -k 

be equal to Ac=(cal/al ) = c ,on the normalized scale. If the' true value of 

A is known when a=al (call this A 1)' then the actual probability of occurrence 

at any acceleration is given by 

Pc = A l1 



where~ 

P 
c 

A 
c 

= Probability of occurrence 

Al = 

normalized probability of 

probability of occurrence 

5. 

of ground acceleration cal. 

ground acceleration cal. 

of ground acceleration a l • 

It is obvious that using a normalized function will not alter our results in any 

way; as the multiplication by a known value of Al will produce the actual probability 

of occurrenC2, 

The actual calculation of the ADP by integration is sho~m in the appendix 

but an attempt will be made here to show the formulation of the problem. Figure 5 

shows the two graphs involved in the integrand. The top graph (log A vs. log a) 

is a complementary cumulative distribution function. The desired probability 

density function (probability of occurrence at acceleration a) is equal to the 

negative derivation of the complementary cumulative distribution function. Using 

the definition of ADP previously given 

ADP 
-dA 

da da 

where FACa) is our resistance function (bottom curve in Figure 5). The evaluation 

of this integral is shown in the appendix for a particular case, Note that in 

this calculation the acceleration parameter is shifted from (a) to (a/al ). Also 

note the different contributions to the final figure of 0.38 for ADP/AI ; of the 

0.38, 0.25 (i.e. 66%) comes from the part of the curve for (a/al ) > n. AS the 

slope of K increases and the value of n increases this contribution decreases. For 

example when K=lO and n=8, the value of ADP/Al = 0.00057 (see Table I for values 

of ADP/ 1 for various values of K and n). However, the contribution to ADP/Al 
for (a/al ) > n is 9.3 x 10-

10 
(i.e. 0.0001 % of the total ADP). The reason for 

this is mathematically obvious. The values of A rapidly decrease for high values 

of K as well as for values of acceleration greater than aID Therefore~ the 

contribution to ADP/Al , at accelerations much greater than al will be very small. 

The knowledge of where the contributions to ADP/Al are coming from is useful 

in deciding on a resistance curve. For low values of nand K, the actual curve 

is not that important. (Compare values for parabolic and cubic functions in Table 1.) 

However, for high values of K and n, the curve selection becomes critical ~ and 

the order of magnitude of your result can be changed by only a slight change in the 

resistance function. The tail of the resistance curve can now become extremely 

important and a little change in the tail of the resistance function will be 

magnified in the probability of failure. The choosing of endpoints, especially aI' 



could also become quite critical. 

This sensitivity also points out the disadvantages of a deterministic 

resistance function (see Fig. 6 ). The deterministic model has too sudden a shift 

in resistance. As an illustration. take a deterministic model with the shift from 

o to 1 of 

possible. 

the resistance function at the mean, which is about the best approximation 

The value of ADP 
\ 

00 

f 
m 

x-k- l dx = -k 
m 

where m::: mean. For the values of K=2 and n=2, the value of ADP/Al is 0.359 

which is a fair estimation of the previously calculated value of 0.38. However~ 

for the case of n=8 and k=lO, the resulting ADP/Al = 2.9 x 10-8 which is in very 

poor agreement with the calculated value of 5.7 x 10-4 (Table I). 

Before proceeding any further, it may be of value to illustrate the physical 

meaning of the values in Table 1, as these values of ADP/Al are used throughout 

the report. For example, if k=2 and n=2, what does ADP/Al = 0.38 imply? There 

are several ways to interpret this result. First, if the value of Al (probability 

of occurrence of an earthquake with acceleration a1 or greater) is known, then 

the annual probability of failure of a structure in this case is 0.38Al , Also, 

if a deterministic model with the damage threshold at a = a l had been assumed, the 

probability of failure would be Ai. So another interpretation of the probabilistic 

damage threshold is that the probability of failure is 38% of the probability of 

failure for a deterministic model with a damage threshold of a l • This reasoning 

can be extended to all values of k and n and a "feel" for the variation of annual 

damage probability with changes of k and n may be developed. 

It was mentioned previously that definite end points have been assumed for 

the resistance functions. Now, it would be beneficial to illustrate the mathematical 

and physical implications of these assumptions. Figure 7 shows an identical 

resistance function to the ones previously used, except that now no point of zero 

probability is assumed. A constant value of c for a/a1 values between 0 and 1 is 

assumed instead. This will establish a discontinuity at x = 1, but this will not 

affect the integration. The c value is assumed to be very small. As an example 

the particular case of n = 2 and k = 2 is used. The total value for ADP/Al is 

now equal to 0.38 plus any additional contribution for values between a/al = 0 

and alai = 1. The calculation of ADP/Al would be as follows: 



ADP/A1 = 0.38 + kJ: c(x)-k-l 

7. 

dx ~ CX-k]O = 0.38 + 00 - c = 
1 

00 

Obviously there is not an infinite probability and the reason is illustrated in 

Figure 8. The probability vs. acceleration graph is not always a line of constant 

slope. As the acceleration approaches zero, the slope of the line decreases. 

There is not an infinite probability of occurrence for low accelerations. However~ 

it is still possible that small probabilities of failureat low accelerations 

will make a notable contribution to the ADP/Al value, especially for high values 

of k and n. The following question arises: should failure probabilities for 

accelerations below al be included? 

To aid in the decision~ take the failure probabilities at accelerations below 

aI' and then consider the physical meaning of the contribution of these failure 

probabilities to ADP/Al • The value al was originally meant to be a design acceleration. 

It may be reasoned that if we design all buildings so as to prevent failure 

for all accelerations less than aI' there is zero probability of failure. However, 

due to poor design, poor materials, etc., it is possible that some building or 

buildings will fail at an acceleration less than than for which they were designed. 

In fact, it may even be possible that there are buildings that will eventually 

collapse, without any ground acceleration. But if there was an earthquake, the 

building~s failure would probably be attributed to ground shaking. What to do in 

this situation is not obvious .Since the concern is with the straight line portion 

of the occurrence vs. acceleration plot, and since there is some question about 

accounting for "weak" buildings) t he assumption of a definite endpoint at accel

eration a l will be used in this report. Of course, al can be as Iowa value of 

acceleration as necessary, but it must be remembered to keep the tail of the 

resistance curve small at low values of acceleration. 

One final point with regard to the problem of one failure with FA(a) known 

is to notice a relationship between ADP/Al and the parameter K In n. This is 

illustrated in Figure 9. Although the relationship is not an exact one, by use 

of this graph a reasonably approximate value of ADP/AI for any combination of 

k and n can be obtained. The graph is only good for one resistance function and 
(x-l)2 

in Figure 9 the assumed resistance function is FX(x) = The graph is also 
(n_l)2 • 

a convenient way of seeing how rapidly the values of ADP/ Al falloff with 

increasing acceleration. 
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3.2 100 Structures: Resistance Function of Single Structures Known 

Let us ~ow assume the following problem. What is the probability of m or 

more of 100 structures failing~ given that the resistance function for the 

individual structures is known? (Assume that all structures are statistically 

independent, but have the same resistance function.) The calculation of ADP/Al 
is identical to the previous case, except that a new resistance function for n out 

of 100 buildings failing must be found, as that for single failures used in the 

previous section is not applicable here. It will not be assumed that the probability 

of m out of 100 structures failing follows a binomial distribution, that is, 

P [that n of m will fail] = ~~ )' pn (l_p)m-n 
n. m-n • 

where p = probability of one failure. Assuming different values of p one can 

get the probability of m or more of 100 buildings failing. The probability of n 

or more out of 100 buildings failing vs. probability of single failures may then 

be plotted (Fig. 10). 

The resistance curve for one building must now be combined With the probability 

of n out of 100 structures failing. One can do this as follows. The parabolic 

resistance function, 

p 
2 

(a/al - 1) 

2 
(n - 1) 

where p = probability of a single structure failing. For n=2 we get 

P (a/al - 1) 
2 

and 

Therefore, starting with a value for p the probability that n out of 100 structures 

will fail can be calculated as well as the acceleration at which this probability 

occurs. In this way, one can construct a resistance curve for m out of 100 

structures vs. acceleration. This was done for nf=l and nf =5 in Figure 11. 

(To avoid confusion with the n or the previous section, n f will be used& meaning 
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n~ 01 0) The integration procedure if identical to that in the previous section 
:tal ures 

except that now there is not an exact mathematical formula for the resistance 

function and numerical integration must be used to calculate ADP. The results for 

these calculations for various values of nand k are shown in Table 2. These 

results can be compared with their counterparts in Table 1 to relate the risk of 

multiple failures out of 100 structures to the risk of single structures failing. 

In Figure 12, ADP/AI for the parabolic resistance vs. k In n is shown j where 

n' is not the n-value 6f the resistance function for single structures failing, 

but rather the new n value for the particular case of multiple failures under 

consideration,that is, the value of (a/al ) at which the resistance reaches a 

probability of one. (See Figures 11 and 12). Again this graph (Fig. 12) is 

useful in obtaining an approximate value of ADP/Al for multiple failures at 

various values of k and n and it shows the drop-off in ADP/Al with increasing 

acceleration. 

3.3 One Structure: Mean Resistance and Variance Known 

Now let us assume that the mean resistance and variance of a structure are 

known and that the annual damage probability is desired. But with only the mean 

and variance of the resistance known a distribution of the resistance function can 

not be constructed. Therefore~ only maximum and minimum limit curves of resistance 

can be drawn. This can be done using the Tchebycheff inequalities which will bound 

the resistance function. 

The Tchebycheff inequality used for finding the maximum resistance is as 

follows: 

where f3 

m = 

cr = 

k = 

p 

random 

mean 

p<IB-ml _> kcr) < 1 -kL 

variable 

standard deviation 

constant 

maximum probability. 

A value of k <1 leads to a probability greater than one, but j it will be assumed 
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that for these cases, P=l. If we further assume that one half of the resistance 

is on eitheI' side of the mean. then, 

p 1 =--
max 2k2 

for k > 1 

p = 1 
ma.x 2 

for k < 1 

Using these equations we can construct a maximum resistance curve (Figure 13). Starting 

at the mean. k=O, and progressing to the left, that is, towards-smaller accelerations, 

one can see that between k=O and k=l the maximum probability is one half. For 

values of k>l, the resistance follows the equation P=1/2k2 • On the right side of 

the mean (large accelerations) for all values of k, the maximum probability of 

failure is equal to one-half plus the value of P -at k _= O. which is 

also equal to one-half. Therefore, the maximum probability of failure for acceleration 

greater than the mean is unity. 

Similarly, the minimum resistance curve (Fig. 13) represents the minimum 

probability of failure that will insure the variance to remain at its known fixed 

value at any distance from the mean (i.e., at any acceleration). This curve could be 

constructed in a similar manner as the maximum resistance curve, but it may be 

easier to visualize that it would simply be the inverted mirror image (taken at the 

mean) of the maximum probability curve. Then, to the right of the mean (large 

accelerations), 

P = 1 - ( 1 , 
min 2k2 

k > 1 

P = 1 - 1/2 min k < 1 

For values of accelerations to the left of the mean the P . would equal 1-1/2-1/2=0. , ml.n 
Note, however, that these curves are continuous functions with no assumed end 

points. For our particular case the probability of failure below acceleration a l 
has been assumed equal to zero. Therefore, we have to cut our curves at ale The 

actual construction of these new curves (Figure 14) is not that important. The point 

to remembe~ is that theye is a slight change in the curves due to the assumption of 

a fixed end point, instead of extending the functions to infinity. 

It must be remembered, however, that these resistance curves are limits and 

not actual resistance functions. The nature of these curves again makes it very 

difficult to integrate directly and therefore they are integrated numerically. The 

results of these integrations are given in Table 3. It is apparent from this table 
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that the Tchebycheff limits are quite broad. The means and variances used in Table 3 

are the means and variances of the parabolic and cubic functions in Section 3.1. Thus, 

it can be seen how the calculated Tchebycheff limits surround the actual resistance 

function of one of the previously assumed shapes. This gives an indication of where 

the previously assumed function fits into the range of distributions. 
Figure 15 graphs the values of .Probability of Failure, Max vs. the parameter 

Probability of Failure, Min 
k In n, using the values in Table 3. The curve is quite steep and it can be seen 

that the quantities Pf max and Pf min diverge quite rapidly and that they are only of 

the same order of magnitude for values of k In n < 5. It is clear that without 

assuming a specific equation for the resistance distribution function, the only 

alternative is a broad range for the probability of failure. In the case of large 

values of k and n, this broad range becomes so wide, that its value is questionable. 

3.4 100 Structures, Mean and Variance Known 

For Single Structures 

As a final problem, consider the probability of failure of n out of 100 structures, 

with the mean and variance of the resistance of single structures known (again~ it is 

assumed that the structures are independent but with the same mean and variance of 

resistance). The procedure for the calculation of a new minimum and maximum resistance 

function is identical to that in the previous sections. Using the maximum and 

minimum curves from Section 3.3, one can proceed exactly as in Section 3.2 to derive 

the minimum and maximum probability of failure curves for n f out of 100 buildings 

failing. That is, the binomial distribution may be used to relate the maximum and 

minimum probability of n of 100 buildings failing to the maximum and minimum probability 

of single failures. Next, Figure 11 is used to find at what acceleration the 

particular probability of failure for a single structure occurs. Then the maximum 

and minimum probability of failure for a given acceleration is found. Finally, the 

construction of a graph of minimum and maximum probabilities of failure for nf out 

of 100 structures failing vs. acceleration (Fig. 16) is possible. Calculations for 

ADP/Al using these curves are in Table 4. 
Pf max Figure 17 then graphs vs. acceleration for these values (Table 4) 

similar to what was done in the previous section. Again, the range of 

the probability of failure is great and except for low values of k and n, not much 

can be said about the probability of failure without assuming a distribution. 
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4. CONCLUSIONS 

When drawing conclusions, all assumptions made must be remembered. This report 

deals with only a two damage state situation, that is, either failure or non-failure. 

Therefore, the results are only useful in predicting whether one of these two damage 

states will occur, not the probabilities of different levels of damage occurring. 

The main purpose of this report was to investigate the effects of a probabilistic 

resistance function, as opposed to a deterministic resistance, in predicting damage. 

The conclusion is that the probabilistic analysis lowers the overall risk in a manner 

that has been shown previously in this report. Recall for comparison that for a 

deterministic model at a=al , the ADP/Al is always equal to one. When the resistance 

function is known, the results are quite useful and by inspection of the graphs 

and tables in this report the magnitude of the effect of the probabilistic approach 

can be seen. 

The conclusion drawn from the calculations when only the mean and variance of 

the resistance are known is that without any assumption about the resistance distri

bution, one can do no better than to establish a broad range for the probability of 

failure. This range would be of use only in a very approximate calculation. It would 

be better to assume a distribution similar to the previously assumed'distribution 

shapes for resistance, rather than to establish the mathematically broadest possible 

ranges for resistance. One should be able to narrow down the limits of the resistance 

function by having a general idea of the shape of actual resistance functions. The 

Tchebycheff limits approach covers the entire spectrum of distributions and one should 

be able to narrow the range of distributions covered. One approach would be to simply 

assume a distribution with a known mean and variance (as in Sections 3.1 and 3.2) and 

then one could calculate maximum and minimum probability of failure curves using more 

practical limits than Tchebycheff. The calculation of these minimum and maximum 

curves would have to be from experience. These would then be practical rather than 

mathematical limits. This would establish a range for ADP that would presumably 

cover all practical distributions. 

In summary, it appears that the two-state damage approach works quite well 

and produces worthwhile results for the cases when the resistance function is known. 

However, when only the mean and variance of the resistance is known and no distribution 

is assumed, the results are not satisfactory and it seems it would be much better to 

assume a distribution based on previous knowledge about the shape of the resistance 

function distribution. 
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TABLE 1. Values of ADP/A1 fOT Different n, k, and FA(a) Values 

I j" 

~ 
2 3 I 4 5 7 10 

! 
! 
I I ! 1 

2 0.386 0.250 i 0.167 0.115 0.059 ! 0.027 
I 

, , 
I I I I 

3 0.216 0.111 ! 0.062 0.037 I 0.016 I 0.0070 
i ~ 

I ! I . 
~ 1 ., 

4 0.141 0.063 I 0.031 ~ 0.018 I 0.0074 I 0.0031 
j ! 
I ! 

I 
, 

I 6 0.077 0.028 0.012 i 0.0066 0.0027 0.0011 

I 
j 
1 l 
I ! 

8 0.049 0.015 0.0065 
j 

0.0034 ! 0.0014 0.00057 1 I ! 

x < 1 

1 < x < n 

x > n 

I ! I 
~ I 

4 
I 

2 3 5 ! 7 10 
I 

I I 

2 0.341 0.204 0.125 0.078 0.033 0.0099 
I 

i 

3 0.176 0.078 0.037 0.019 0.0056 0.0015 

4 0.108 0.039 0.016 0.0068 0.0016 0.00044 

6 0.054 0.0147 0.0046 0.0017 0.00040 I 0.000095 

8 0.0325 0.0072 0.0020 I 0.00067 0.000151 0.000035 

I I j 

! 



! n , 
i 
~ 

" 

I 
2 

3 I 

TABLE 2. Values of ADP/Al for nf or More out of 100 Buildings for Different 

n, k, and FA(a) Values 

K 
, 

FA(a) nf .> 2 5 10 
, 

(x-I) 2 1 0.8439 0.6696 0.4725 

5 0.6811 0.3867 0.1551 
3 I i (x-I) 1 0.7262 0.4747 0.2169 

Z - . ...i 0.5446 I 0.2209 I 0.0502 , 
~x-12 1 0.7569 0.4990 0.2258 

4 I 
5 0.4910 

! 
0.1761 0.0350 I 

TABLE 3. Values of Pf max' Pf min for n=2 and Various Values of k. FA(a). 

Mean and Variance 

K 

FA(a) , mean, variance 2 I 5 
! 

7 I 10 • . 
, i 

j 

0=0.25 Pf min=0.3176 0.0480 0.0150 i 0.0063 
I' 

FA(a)=<x-1)2, i=1.67 Pf max=O.5463 ! 
0.2119 0.1510 I 0.1420 

3 Pf min=O.2868 
! 0.0019 (x-I) =F A (a) i 
I 

x=1. 75 Pf max=0.4375 
i 0.0599 ! 
I 

0' =0.19 I , 



TABLE 4. Values of Pmax j Pmin for n
f 

or more for 100 

Structures Failing 

2 FA(a) = (x-I) n=2 

-x = 1. 67 <J=O.25 

) 

I k 2 I 5 10 

I i 
n f ~ i I I 

1 P i =0.4818 I 0.1533 0.0267 I mn I j 

I I 
Pmax =1.0 ! 1.0 1.0 I 

I ; ! 
l € 

I l 
5 P i =0.4117 0.0204 ~ mn ~ 

~ 

1 
I 
~ , 

Pmax =0.9795 ! 0.9235 I l 



ADP := [ FA (a) 

-k 
where A. =aa 

_dA. da 
da 

Let x = a/al 

ADP= kA.l I F (x) x -k-I dx 
I x 

Example: 

then 

APPENDIX 

FX(x)=O 

FX(x)=l 

00 

I 
2 (n-I) l~ " 2 -k-l ~ [x -2X-'il] x dxJ. + 

1 
f -k-l 

x dx 
n 

K In {-k-l -k· -k-I -k (x - 2x + x , dx - x 
= (n-l)2 1 I 

1 =--
(n_I)2 

r 
-k+l l-2k -k+l 

x dx + -k+l x -k -x 

-k+l 
x 2k (1 -k+l) + ("' -k)' + . -k -;-- -n .!.-n ~ .n 

k-i I 
~~ 

) 



if k=2, 

{

I, 1 
~P = _1_ 2 2 In n - 4 (I-lin) + (1 - ~2") ) + n2 

1 (n-l) 

if n=2, 

ADP = 2 In 2 - 1 ~ 0.38 T 



c 
-=:.- J --J 

" ~ A,-PP€ i-J"D 1)( 
1 

DMiAGE PROBABILITIES (%) FOR PILOT APPLICATION 

f 
OF SEISMIC DESIGN DECISION ANALYSIS 

1 DESIGN DAMAGE MODIFIED MERCALLI INTENSITY t STRATEGY STATE V VI VII VII.S VIII :i 

0 100 27 15 0 0 
" ~ L 0 73 48 21 0 t 

UBC 0.1 M 0 0 33 45 20 
;:' 
if H 0 {) 4 29 41 
T 

~ T 0 0 0 5 34 
~ 

C 0 0 0 0 5 ~ 
:< 
f, 
i 

0 100 47 20 0 0 t ;. 

~ L 0 53 50 36 10 

UBC 2 H 0 0 29 52 53 

H 0 0 1 11 31 

T 0 0 0 1 5 

C 0 0 0 0 1 

0 100 57 25 5 0 

L 0 43 50 48 25 

USC 3 M 0 0 25 41 53 

H 0 0 0 6 21 

;, T 0 0 0 0 1 
~ 

~, C 0 0 0 0 0 
~ 

~ 

~ 0 100 67 30 10 0 

L 0 33 49 58 40 

S M 0 0 21 29 52 

H 0 0 0 3 8 

T 0 0 0 0 0 

C 0 0 0 0 0 

IX 

(; 
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0 

0 

75 

25 

O· 

0 

0 

0 

80 

20 

0 

0 

20 

52 

23 

5 

0 

10 
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:2 

0 

.... J,-."l 

X 

0 

0 

-0 

0 

25 

75 

0 

0 

0 

0 

60 

40 

0 

0 

0 
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80 

20 
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