NSFRA- 780465

PB 294334

WEIDLINGER ASSOCIATES, CONSULTING ENGINEERS

110 EAST 59TH STREET
NEW YORK, NEW YORK 10022

and

SUITE 245, BUILDING 4
3000 SAND HILL ROAD
MENLO PARK, CALIFORNIA 94025

DYNAMIC SEISMIC ANALYSIS OF
LONG SEGMENTED LIFELINES

By

ivan Nelson and Paul Weidlinger

Grant Report No. 10

Prepared for

National Science Foundation (ASRA Directorate)
1800 G Street
Washington, D.C. 20550

Grant No. PFR 78-15049

NOVEMBER 1978

REPRODUCED BY !

| NATIONAL TECHNICAL
 INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

ASRA INFORMATION RESOURCES CENTER
. NATIONAL SCIENCE FOUNDATION






50272 -101 . — _ s
REPORT DOCUMENTATION |1. REPORT NO. L 2 3 gRpcipe PN Apgson dig
PAGE . NSF/RA-780465" ‘ ' :

4. Titie and Subtitle 5. Report D

ate i

Dynamic Seismic Analysis of Long Segmented Lifelines ° November 1978

6.
7. Author(s) - . B. Performing Organ}iéti}a;nﬁRept. No.
I. Nelson, P, Weidlinger _ | Grant Report No. 10
9, Performing Organization Name and Address 1Q. Project/Task/Work Unit No.
Weidlinger Associates, Consulting Engineers *
-[-IO East 59th Street 11. Contract(C) or Grant{G) No.
New York, New York 10022 ©

« PFR7815049

12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
Applied Science and Research Applications (ASRA) :
National Science Foundation
1800 G Street, N.W. 14, o T
Washington, D.C. 20550
15. Su#&iémentary I’;lotesﬁ .
« Suite 245, Building 4
Also: 3000 Sand Hill Road
Menlo Park, California 94025

-18. Abstract (Limit: 200 words)

The difference in ground motion along a lifeline, the incoherent motion, is an
essential component of the input. A Tong, straight, segmented pipe, with each link
attached to the ground via a spring and dashpot is subjected to incoherent ground
motion caused by a phase delay. The equations governing the axial response of the
system are developed. Modal decomposition is used and closed form expressions are
given for the natural frequencies and mode shapes. Examples are given showing the
center joint displacement time history when the lifeline is subjected to earthquake
loading. Spectral techniques can be used to bound the motion with the Interference
Response (IR) spectrum. This spectrum is the maximum difference in motion (response)
of two adjacent points which are excited by a difference in ground input. It is seen

that the IR spectrum is a useful tool in the dynamic analysis of lifeline over a broad
range of parameters.

17. Document Analysis a. Descriptors

Earthquakes Earthquake resistant structures Pipelines
Dynamic structural analysis Highways Tunnels
Seismology Bridges (structures)

b. identifiers/Open-Ended Terms

Long segmented lifelines

¢. COSATI Field/Group !
18. Availability Statement 19. Security Class (This . Report) 21. No. of %ges
20. Security Class (This Page) 2 PZce n @ /
fCoa ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NT15-35)
Department of Commerce






WEIDLINGER ASSOCIATES, CONSULTING ENGINEERS

110 EAST 59TH STREET
NEW YORK, NEW YORK 10022

and

SUITE 245, BUILDING 4
3000 SAND HILL ROAD
MENLO PARK, CALIFORNTIA 94025

DYNAMIC SEISMIC ANALYSIS OF
LONG SEGMENTED LIFELINES

By

Ivan Nelson and Paul Weidlinger

Grant Report No. 10

Prepared for

National Science Foundation (ASRA Directorate)
1800 G Street
Washington, D.C. 20550

Grant No. PFR 78-15049

November 1978






ABSTRACT . .

TABLE OF CONTENTS

- . . LI . e & . 3 * . . LI . L . . * - - . . -«

.

LIST OF SYMBOLS. . . . & v ¢ ¢« ¢ @ & v o o o o 4 o 2 2 o 4 o« o »
I INTRODUCTION . . . v v v v v v v e e s e o e o n n a e e s
IT EQUATIONS OF MOTION. . v v ¢ v & & s 4 o o o o s o o s o &
A. Pipe with Very Soft Joints . . . . « . + . + + .+ &
B, Pipe Without Intermediate Support Or Bridge. . . . . .
C. Center Joint Displacement Of Long Continuously Supported
Pipe . » .’ * » . L4 » - . * . i d * . . . . * * . . . L] *
11T NUMERICAL RESULTS FOR LONG SUPPORTED PIPES . . . . . « .+ .
A. Mode Shapes And Influence Coefficients . . . . . . . .
B, Time Histories . . . v & & 4 ¢ &« v 4 & o o s o o & o o
C. Response To Earthquake Input . . . . . . +« . . . .« . .
D. Interference Response Spectra. + « « 4 +v o o+ o o o o
v SUMMARY AND CONCLUSTIONS. + « & & & &+ o 4 « o o a o o o« 2 =
REFERENCES S T T T
APPENDIX A: MODE SHAPES AND INFLUENCE COEFFICIENTS. . . . . . .
APPENDIX B: SUMMARY OF SEGPIPE CALCULATIONS . . . . . . . . .
APPENDIX C: ANALYTIC SQLUTIONS FOR SINUSCIDAL TYPE INPUT. . . .

APPENDIX D:

1. Undamped Case - Sinusoidal Input. . . . . .

2. Undamped Case - Haversine Input . . . . . + .+ .
3. Haversine Input —~ Damping Included. . . . . . .
CONTINUOUS PIPE SUBJECTED TO A STATIC DISCONTINUQUS
GROUND DISPLACEMENT . . . . « . & & v & o o v « « W

k
1., Physical Interpretation of Dm e e e e e e

2. Static Solution For An Infinite Continuous Pipe

3. Static Solution For A Finite Continuous Pipe.

4. Static Finite Difference Solution For An Infinite

Pipe. © « v v v o bt e e e e e e e e e e e

ii

10

13
18

18
21
23
30

32
33
35
4l
33

53
57
59

69

69
73
75

79






-i-&

ABSTRACT

The difference in ground motion along a lifeline, the incoherent motien,
is an essential component of the input. A long, straight, segmented pipe,
with each link attached to the ground via a spring and dashpot is subjected
to incoherent ground motion caused by a phase delay. The equations
governing the axial response of the system are developed. Modal
decomposition is used and closed form expressions are given for the natural

frequencies and mode shapes.

Examples are given showing the center joint displacement time history
when the lifeline is subjected to earthquake loading. Spectral techniques
can be used to bound the motion with the Interference Response (IR)
spectrum, This spectrum is the maximum difference in motion (response) of

two adjacent points which are excited by a difference in ground input.

It is seen that the IR spectrum is a useful tool in the dynamic analysis

of lifelines over a broad range of parameters.

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views

- of the National Science Foundation.
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LIST OF SYMBOLS

A = cross-sectional area of pipe; also constant
B = constant

cp = boundary damping coefficient

Cg = ground damping coefficient

Cp = pipe-joint damping coefficient

k . . . ; .
Dm = influence coefficient for center joint displacement in mode k, for

input at joint m, see Eq., (51)
E = Young's modulus

fk = natural frequency of kth mode, Hz.

Jk = jdint modal participation factor, see Eq. (38)

k = integer, mode number

kB = boundary stiffuness

kg = ground stiffness

kp = pipe-joint stiffness

L = total length of pipe

% = length of pipe segment; also, integer (mode number)

m = mass of pipe segment and attached soil; also, integer (joint number)

N = number of segments

P. = modal participation factor, see Eq. (31)
k
_ . th _ .
q = k™ generalized coordinate
Cym = response in kth mode due to input at joint m, see Eq. (49)
SI’ §I = interference response spectrum, cm, see Eq. (22)

[T}, [Tc} = tridiagonal matrices, diagonal terms (except corners) = 2, off
diagonal terms = - 1

t = time, sec

11° tNN = corner terms of [T] given by Eq. (5)

. . th
x; = absolute displacement of i~ segment, cm
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[zB} = matrix (1 x N} of boundary displacements, see Eq. (4)
z; = free field ground displacement at ith segment, cm

z = coherent ground displacement, cm

Ax = difference in displacement between successive segments, center joint
displacement, cm

LAy = Ax - Az

Az = difference in free field ground displacement between successive
successive segments, cm

le = Kroneker delta

nk = relative generalized coordinate 'in kth mode, see Egs. (28) and (39)

6 = angle, radians

Ak = kth eigenvalue of [T]

£ = fraction of critical damping

T = phase delay time between successive segments, sec

T phase delay time between ends of pipe, sec

[¢k] = kth eigenvector of [T]

¢jk = jth element of [¢k]

= circular frequency of (component of) the input

mg = kg/m = circular frequency, secﬁ1

W = circular natural frequency of kth mode of undamped system, sec

Subscripts

i, j, m = segment or joint number

k, 2 = mode number

g = ground
p = pipe-joint
Superscripts

k, & = mode number






I INTRODUCTION

Highways, bridges, tunnels and pipelines are called lifelines. A
characteristic that distinguishes a lifeline from other structures is that
it extends (essentially parallel teo the ground surface) over a distance
which is long compared to its other dimensions. The foundations, therefore,
are either at widely separated points (e.g., bridges) or they extend
continuously over long distances (pipes, tunnels). For this reason, in
considering the effects of ground shaking, we cannot assume a priori that
the motion at all points of ground contact is identical (i.e., that the
ground motion is coherent). The significance of this has been recognized by

other researchers concerned with lifelines, e.g., Newmark (Ref. [1]),

Christian (Ref. [2]) and Matsushima (Ref. [3]).

When the motion is no longer the same at all points, i.e., when it is
not coherent, the relative displacement of the points of contact produces
stresses in the structure, whereas identical (i.e., coherent) excitation at
continuous or closely spaced foundation points may result in primarily rigid
body displacement, with no significant strain. The analysis and design of
lifelines subjected to earthquake induced motion is, therefore, different
from that of buildings, where we customarily assume that the ground motion
over the entire foundation plane is coherent and that the relevant response
is the displacement relative to the ground., The seismic analysis of
buildings is well developed, e.g. Refs, [4] and [5]. When the structure may
be considered linear, modal analysis and the use of response spectra is the

most common procedure.

The important component of the ground input for lifelines is the
incoherent motion. The various sources of incoherent ground motion are
discussed by Weidlinger and Nelson (Refs. [6] and [7]). In the present

paper, the difference caused by a phase delay between adjacent foundation
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points will be the only source of non-coherent motion considered.

Yailures of buried pipes subjected to ground shaking have been observed
in both the United States and Japan. Many of the failures occurred at
joints and involved pull out or crushing, Refs. [8] and [9]. In the present
paper, a long, straight, segmented pipe, with each link attached to the
ground through a ground spring and dashpot is subjected to a ground motion
which advances along the axis of the pipe at a constant velocity. The input
and the response are both restricted to the axial direction. The equations
which govern the motion of the system are developed, Modal decomposition is
used, and for specific boundary conditions, closed form expressions are
given for the natrual frequencies and mode shapes. While the present
analysis is for a discrete system, it obvously may be viewed as an

approximate solution for a continuous system as well,.

Examples are given showing the center joint displacement time history
when the lifeline is subjected to earthquake type loading. Spectral
techniques can be used to bound the motion if the standard shock spectrum is
replaced by the Interference Response spectrum. This spectrum is the
maximum difference in motion (response) of two adjacent points which are
excited by a difference in ground input Az(t). It is described more fully

and its properties are given by Weidlinger and Nelson (Refs. [6] and [7]).



1T EQUATIONS OF MOTION

It is convenient to represent a lifeline as a multi-degree of freedom
discrete system. Consider the long, segmented pipe shown in Fig. 1, where
the rigid (or elastic) links are interconnected by elastic springs and
viscous dashpots, 1In addition, each segment is joined to the ground by
another spring dashpot combination. It is assumed that the properties are
uniform along the length of the pipe. A typical joint with two attached
pipe segments of length £ is shown in Fig. 2. The stiffness kp represents
the effective stiffness of the weak elastomeric {(or other caulking
material) jeint plus any contribution of the stiff pipe segment, while c
is used to approximate the hysteresis in the joint, In the case of a
continuous pipe, £ is the finite difference interval and kp is the axial
stiffness of the element (i.e., kp = EA/L)., The mass m includes the mass
of the pipe segment plus possible contributions rom the surrounding soil’
and the enclosed fluid. The soil stiffness kg and damping Cg’ as well as
m, may only be found by solving the soil structure interaction problem.
This will not be done here, but it will be assumed that the values are
known and are constant, i,e., independent of frequency in the range of

interest. ' It is noted that in general cg includes both radiation and

material damping.
. . . cth . . )
The equation of motion of the typical i link is given by

)

" - . PTIR N _ _ N
mX + Cg Xy cp(xi_l 2xi Xi+l) kg X kp(xi_l ZXi Xiv1

=c z.+k =z,
i g i

where X, is the absolute motion of the ith link, and zs is the free field
ground motion at the center of the ith link. The two ends of the pipe

require special attention. The first link, Fig. 3, 1is assumed to be

(1)



directly attached to the ground via boundary spring and dashpot kB and g

If axial motion along the pipe is considered, and if the pipe is attached to

a transverse pipe, then the transverse pipe moves with the ground so that z,

is the motion of the ground at the pipe end, the equation of motion of the
first link is thus

mx, + (c. +e¢ +c¢c)x. -c x
(B P g)l p

+ -
1 + (kB kp + kg)xl kp X

2 2

* *

= cy Z, + cg z1 + kB zo + kg zl

A similar expression may be written at the other end by letting X, - Xy

X, T X -1° and z, > Zye1? where N is the total number segments.

2 N

The system defined by Eqs. (1) and (2) is tridiagonal. It may be

written in matrix form as
mix) +-{cg[I] + cp[Tc}}[iJ + {kg[I] + kp[T]}[x]
= cg[é] + kg[z] + cB[iB] + kB[zB]

where [I] is the identity matrix, and where [Tc] and [T] are tridiagonal
matrices whose elements (except for the corners) are -1, 2 and -1. The

boundary matrix [zB] is a 1 x N matrix defined by

T
[ZB] = lzg» 0, 0 .....0, ZN+1}

The two corner terms of [T] are

t S

_ k
11 tNN =1 + B/I«:p

The two matrices [Tc] and [T] are identical, except CB/cp replaces kB/kp in

the two corner terms.

We note that the only off-diagonal terms in the system, Eq. (3), result

from [T] and [T ]. Consequently, the natural frequencies of free vibration
c

(2)

(3

(4)

(5)



FIG. | LONG JOINTED PIPE SUPPORTED BY SPRINGS
AND DASHPOTS (AXIAL MOTION ONLY CONSIDERED)

FIG. 2 TWO UNDERGROUND PIPE SEGMENTS
CONNECTED BY JOINT






of the undamped system are given by

5 k k
w S =&+ L2
m m

k k

where Ak are the N eigenvalues of [T], i.e.,

[T 1651 = 2 [0

where [@k] is the eigenvector which corresponds to Ak' If the eigenvectors

(or mode shapes) are assumed in the form

¢.k = A cos j@k + B sin 39

J k

then

Ak = 2(1 - cos Gk)

where the Bk are the N roots of the egquation

2

k . -
+ (1 - B/kp) sin (N - 1)6k = 0

. _ _k .
sin (N + 1)9k 2(1 B/kp) sin Nek

The ¢jk are normalized for each mode k so that

I o1
=

h|
We next write the solution to the system, Eq. (3), as the sum of the
modal contributions,

N

L

x, () =
3 k=1

65 a (o

When the system is premultiplied by the transpose of the vector [¢k], and

use is made of the orthogonality condition

th
is the Kroneker delta), one obtains the equation for the k

Opg

generalized coordinate, qk(t)

(6)

(7

(8)

(9)

(10)

(11)

(12)

(13)
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S Sy e e 2 ] o
Ik * (m * Ak m)qk + (m * Ak m)qk T h jzl 91 Zj
c N k c
g k- , B .k k B, k- k -
+ jzl by mg t o O a  F O ) o By 2 T Oy 2 ) (14)

It is noted that if

¢ _k
B/cp = B/kp (15)

then [Tc] is identical te [T] and the modal damping term in Eq. (14) is

exact. Otherwise, it is a good approximation.

Up to this point, except for the last comment, no mathematical
approximations have been made. To progress further, various special cases

must be examined in detail.

A. Pipe With Very Soft Joints

The simplest special case is that in which the joints are very soft.
Mathematically, this is the limiting case as kp/kg <+ 0 and cp/cg > 0, All N

*)

natural frequencies then coalesce into a single value

k
= = ~—g— =
W = \/ e k= 1,2, LN (16)

While the expressions for the normal modes, Eq. (8}, are still wvalid, there
is no need to use a modal approach. Referring back to the equation of
motion of a typical link, Eq. (1), one sees that the equations are

completely uncoupled, i.e.,

FoF20E x tw’x cws +2E b (17)
1 gg 1 g 1 g 1 g8 1

*)

This is true pyvovided none of the Ak are large, see Eq. (6). When
kB >> kp’ two values of Ak will be large, but Eq. (16) will still apply

to the remaining N-2 frequencies.



where

C
= i
gg meg (18)

We may write a similar expression for the adjacent link i + 1. Subtracting

the two equations, and denoting X - X as Ax, and z; -z, as Az

+1 +1

AX + 2w & A}'c+w2Ax=w2Az+2w€ Az (19)
g8 g g 28

Equation (19) relates the relative displacement of two successive links to
the incoherent component of the input, Az(t), over the length & of a single

link. ZLetting
Ay = Ax -~ Az (20)
Eq. (19) transforms into
AV + 20 6 MY+ w by = - AF (21)
£°8 g

The form of Eq. (21) is identical to that for the relative displacement Ay
of a single degree of freedom oscillator of circular frequency mg, damping

ratio Eg and input ground acceleration Az(t).

The physical quantity of interest is the maximum difference in
absolute displacement of adjacent links, MAX[Ax(t)]. Since the polarity
and direction of propagation of the ground motion generally is unknown
a priori, usually one wishes the magnitude of Ax(t) without regard to sign,

MAX|Ax(t) |.

By analogy to the standard response spectrum, Weidlinger and Nelson

(Refs. [6] and [7]) defined the Interference Response spectrum as
Sp(w, &, 2) = MAX{Ax(1)] (22)

where Ax(t) is the solution to Egq. (19) when the input is Az(t). Rather
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than view SI as assoclated with a particular incoherent motion Az(t), which
is generally not available, it will be associated with the total seismic
motion z(t) of the earthquake and the interference interval £. 1In this
paper, only incoherent motion caused by a phase delay T will be considered,
so that the Interference Response spectrum may be written as SI(m, £, T).
Examples of Interference Response spectra, log—log plots of SI versus

period, for several earthquake records are given in Refs. [6] and [7}. The
curves are parametric in the phase delay time T. Methods of estimating SI’
when the standard response spectra are available, are also suggested in
Refs. [6] and [7]. It should be noted that for the current case of a pipe
with very soft joints, the solution MAX|Ax(t)| is immediately available, if
S_ is known, by simply evaluating SI at w = wg, g = Eg and the appropriate

I

delay time T.

B. Pipe Without Intermediate Support Or Bridge

The other extreme is the case where the lifeline is supported only at

the ends, such as a bridge. In this case, kg and cg are both zero, so that

2%
O = T M
and
A c
g = _kp
k mek

h
The equation of motion for the k© generalized coordinate, Eq. (1l4), becones

k
. . 2 B .. k k

+ = =
G t b q T g = Gz T Bz )

Cq k - K

o Bz by zgy)

Since the structure is symmetric, there will be symmetric and antisymmetric
modes. For the symmetric modes, ¢1k = ¢Nk, so that the right hand side of

Eq. (25) can be written

(23)

(24)

(25}



c
kg k B,k .
o 0 (B ey ) T (B Foag,)

k k
kom0 gt
- B1 2z + Bl

2z , kK symmetric

where z(t) is the coherent component of the input. For the antisymmetric

modes, ¢lk = - ¢Nk, so that the right hand side involves the incoherent
motion Az(t) = zo(t) - ZN+l(t)’ or
k
- < 2 B k
q + kaEk 9 + wk 94 == ¢l Az (t)
B .k,
+-?;>¢l Az (t) , k antisymmetric
We introduce the relative coordinate
B ko x
M T 9 2 ¢, Az
0
so that Eq. (27) becomes
. 2 kB¢lk
e + 2mk€k M + ST 5 Az
My
CB kB c K
+ == (1 - =B " Az , k antisymmetric
m kp cp 1

- 11 -

(26)

(27)

(28)

(29

The expression in the parentheses in the second term on the right hand side

of Eq. (29) will vanish under the same condition which was assumed to

justify modal damping, namely Eq. (15). Consequently, Eq. (29) may be

written
A, + 2mk€k N+ o = - P AZ , k antisymmetric
where
k¢ K
_ _B"1 . .
Pk = 5 , k antisymmetric
L

is the modal participation factor for the kth mode,

(30)

(31)
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We assume the critical quantity to be the relative displacement Ax

across the center joint, or the strain Ax/% in the center for a continuous

system. In order for there to be a joint at exactly the center of the pipe,

N must be even. In that case, the contribution to the center joint

displacement of the symmetric modes is zero. The contribution to the center

th . .
joint displacement of the k™ antisymmetric mode is

O (k) () _ ()

= X_E_I_ - X_I-i_'_l = ((bﬁ (b_li_*_l )qk(t)
2 2 2 2

= 2¢N(k) qk(t) » Kk antisymmetric
2

Finally, the total center joint displacement will be the sum of all the

modal contributions
N
Ax(e) = %y - x = ;7 20,8 g (o
N - N k
5 5+1 k antisym. 5

2
In order to use spectral techniques, one observes that when the Az

term vanishes in Eq. (29}, Eq. (27) becomes
G o+ 20E q +w’q =w’PAz+ 2wl P Az
k I R e ™ Kok T K

which is similar to Eq. (19), except 9 replaces Ax, and the incoherent
ground input is multiplied by the modal participation factor Pk'
Consequently, the maximum absolute value of the kth generalized ¢oordinate

is given by

MAX{qk(t)l =P, gl(wk, g0 )

where L is the total distance between support points. Recalling Eq. (32),
the contribution of the kth (antisymmetric) mode to the center joint

displacement is

(32)

(33)

(34)

(35)
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k
wax] ax® (1) | - 260 k P S 1O B L)
2
or, in the case of incoherence due to a phase delay
(k) =
MAX|Ax (e | = 3 S (s Es )

where the alternate form of the interference spectrum has been used (TL is

the delay time corresponding to L) and where

kg oy ok
Jk = 2¢N Pk = ~——§-¢1 ¢N » K antisymmetric
7 ™y R

is a joint modal participation factor.

The final step is to "sum" all the modal contributions. Here, the
problem is completely analogous to that faced in the seismic analysis of
multi-degree of freedom buildings using the conventional response spectra.
If the peak modal responses all occurred simultaneously, then the direct
sum would be appropriate. For distinct and widely spaced natural
frequenc¢ies this is highly unlikely, and most authorities, e.g., Refs. [4],
[5] and [10], suggest using the square root of the sum of the squares of the

modal contributions. The same approach could be used here.

C. Center Joint Displacement Of Long Continuously Supported Pipe

Returning to the general case, let us consider the quantity of interest
to be the relative displacement between two adjacent links near the center
of a long continuously suppotrted, either buried or above ground, pipe. This

corresponds to the opening up or closing of the center joint. For very long

pipes, N >> 1, the end conditions will have a negligible effect on the motion

near the center, and thus, the z and Z1 terms on the right hand side of

Eq. (14) may be dropped. In addifion, we introduce the relative

generalized coordinate

(36)

(37)

(38)
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AR

where wg is given by Eq. (16). The fraction of critical damping in the kth

mode (with Eg given by Eq. (18)) then becomes

c
1+ Ak p/cg)

£k=£g\/ -
1+ Ak( p/kg)
Equation (14), in terms of the relative coordinate, and dropping boundary

contributions, transforms into

. 2 W 2 N K
f + 20,8 N+ o n =~ —55 Z ¢ 7
W j=1
1+ 2 Spled| W )
twE |1 - LN S AT

o+ A )=
In principle, Eq. (41) as is may be solved in the time domain if all the
zj(t) were given. However, it is worthwhile to simplify Egq. (41) further
by dropping the second term on the right hand side. There are three
instances when this is justified. First, if Cp/cg = kp/k the term is
identically zero. Second, for an above ground structure, the damping
Eg << 1, so that the contribution of the term is small., Finally, for a
buried structure, both Cp/cg << 1 and kp/kg << 1, while Ak < 4
typically*). Consequently, the expression in the bracket will be small,

The sum of input ground accelerations may be written as

N
k.. k - . k k. ..
E 5 2y 07 (Z) -z (B + 6, (3

=2
3]
it

*
)By Gerschgorln s theorem, 0 < A <4, k=1, 2, .,., N-2
k

) : k
h < A <
while B/k S Alpe AN <2+ B/kp, for B/kp > 2,

(39)

(40)

(41)

(42)
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Since the structure is symmetric (including the boundary conditions) the

normal modes will be either symmetric or antisymmetric,

For large values of N, the response near the center of the pipe should
not depend strongly on whether N is odd or even. For convenience, we choose
N as even, so that there is a joint at exactly the center of the pipe. 1In
that case, the contribution te the center joint displacement of the

symmetric modes is zero. For the antisymmetric modes
vk
Y4, =0 , k antisymmetric (43)
Introducing the notation
Az (t) = z,(t) - =z, t L4
zJ( ) zJ( h) 3+l( ) (44)
Eq. (42) becomes
Yok k
Z $. z. = E AEj ( z ¢i ) , k antisymmetric (45)

which may be inserted into Eq. (41), while a similar expression between the

ground displacements may be used in Eq. (39).

Consider Azm # 0, while all Azj(t) =0 for j # m. Dropping the z

terms, Eq. (41) becomes

UJZ m k
gy + 2005 Ny ¥ 00 My, = - g A2 Lo, (46)
W i=1
while
2
u m k
U ™ T T 7 07 L0y (47)
wy i=1
The solution to Egs. (46) and (47) is
W m k
G =155 T 6, |r, (B (48)

iZa
W J 1



where rkm is the solution to

e 2
+
+ ZwkE] r W r

2 .
e T Y =W Azm(t) + Zwkék Azm(t)

i lm
Fquation (49) is of the same form as that used to define the Interference
Response spectrum, i.e., Eq. (19), but the input is now Azm. The

R . th . s . .
contribution of Azm to the k™ mode center joint displacement is zero for

symmetric modes, and

(k) _ (x) k) _ ., &k
Axm = %E %§4-1 = ZQE Gy
20 g el 2

for antisymmetric modes. Combining Egqs. (48) and (50)

(k) _ % Tk .k
hx MU= 20 55 ,Z q>j (8} = D5 (6)
7 W 3=l

where the quantity Dmk, defined by the expression within the bracket, is
the influence coefficient for center joint displacement, in mode k, for a
unit ground relative displacement across joint m. It should be noted
that the Dmk depend only on the geometry and mechanical properties of the
system, via the eigenvalues and eigenvectors, and are independent of the

input ground motion.

In general, the Azm(t) are not known. In thé case where the
incoherent ground displacement across a joint is due solely to a phase

delay 1, all Azm will be the same, except for a phase delay, i.e.,
Azm(t) = Az(t - (w~1) T1)

where Az without a subscript is the incoherent ground displacement across
the first joint. The resulting rkm(t) will also all be related by a

similar expression

rkm(t) = rk(t - (m~1) T)

- 16 -

(49)

(50)

(51)

(52)

(53)
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where rk(t) is the solution to Eq. (49) with input Az(t), Hence, the total

th

k mode contribution to the center joint displacement is

K N-1 K
e ey= 7 b (r - @) 1) (54)
m k
m=1
while the total joint displacement is the sum of the modal contributions
S¢S
Ax(t) = Z Ax (t) , k = antigsymmetric only (55)
k=1
At first, it would appear that spectral techniques could not be used
easily. For, in addition to the problem of adding modal contributions
which is always present in a multi-degree of freedom system, there is an
additional problem represented by Eq. (54). This is the fact that the
peak modal response due to the load across each joint will occur at a
different time. Consequently, it is uncertain how to combine them. In the

limiting case, when the load may be assumed to act simultaneously across

*)
the entire pipeline,
N-1
MAX[Ax(k)(t)l =5 (W, &, 1) 5 Dmk (56)
m:l .

Finally, if, in addition, the modal frequencies and damping ratios all

coalesce to w and &, respectively, then the total response will be

N N-1 "
max|ax(e)| = s (w, & T ] R (57)
k=1 m=1
antisym.

k
By Eq, (6), this will only -occur when p/kg + 0, i.e.,, the pipe with very
soft joints discussed previously. Nevertheless, it will be shown

subsequently that the spectral approach has much wider applicability.

*)

It can be shown that Eq. (56) is valid when Ny T << 7 and NQT << 7 where §
isthe circular frequency of the highest frequency component in the input

Az, This is done in Appendix C for a single, sinusoidal input.
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ITT  NUMERICAL RESULTS FOR LONG SUPPORTED PIPES

Since the application of spectral techniques to the other special cases
discussed are straightforward, numerical time domain calculations were
restricted to that of the center joint displacement of a long continuously

supported pipe.

A. Mode Shapes And Influence Coefficients

The eigenvalues and eigenvectors of the system are particularly simple
when kB = kp, i.e., the end joints are identical to the intermediate ones.

In that case, by Egs. (9) and (10)

- _ k.
Ak = 2(1 - cos N+1)

and

k [/ 2 . Jkm
o5 VT 30 w1

k
while k = even are the antisymmetric modes. With the ¢j given -above, the

inner sum of Eq., (45) may be expressed in closed form (Ref. [11], No. 417),

.o dk T o (DK T
‘%(bk:% 2 . ikm ([ 2 |ST 12 S Tt 3
Lot Lo NwH N1 N+1 kT
* N+ 2
while k_,
4 2 . mtl kW 3 m kv
o k. ML (-1) sin(gy ) sin(gg 3)
m k km
1+ 2( p/kg) (1 ~ cos Nl

Using No. 469 of Ref. {1l1], the sum of influence coefficients for a

particular mode may be found in closed form

k 4

2 k w
N-1 ) 2¢-1) cos(N+l 5
L b, = k K
m=1 1+ 2¢( p/kg) (1 - cos ﬁ;ﬁ?

(58)

(59)

(60)

(61)

(62)



- 19 -~

For vanishingly small values of kp/kg, the double sum in Eq. (57) can be
shown t§ equal unity, i,e.,
N N=1 4
Y } bo=1 (63)
k=2,4,6 .., m=1
so that, formally, the current modal approach reduces to that of a pipe with
very soft joints discussed earlier. It should be mentioned that,
numerically, the double sum also equaled unity to the four decimal places
that were printed out for kp/kg # 0. This suggesté that Eq. (63) may be

*
true in general

The mode shapes and influence coefficients are plotted in Fig. 4 for
N = 20 and kg = Akp. Only the even (antisymmetric) modes are plotted. The
values of Dmk for the odd modes are, of course, all zero. The tick marks
represent the joints. Tt should be noted that the mode shapes represent
the axial displacement of each segment, even though they are plotted
transversely. Also shown on the figure are the corresponding values of
the circular frequencies. These values are based on wg = 2m/sec
(frequency = 1 Hz). Any other value of wg would change the wk
proporticnately., The influence éoefficients Dmk are plotted on the right,
Each element of D is constant across a joint. The triangle in th; middle _
marks the center joint, It is observed that the Dmk are symmetric. The
magnitudes of the'Dmk generally are small near the ends. Moreover, the
largest value in any particular mode decreases as the mode number
increases. The sums of the influence coefficients for the various modes

are given in Fig. 4., They alternate in sign and decrease in magnitude as

*)

It was subsequently shown in Appendix D that Eq. (63) is true in general,

at least for N + «, see Eq. (D-53).
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the mode number increases, The mode 2 value is almost 30 times that of

mode 20,

All time history calculations were made with kB = kp. However, this
is not an overly restrictive condition. Mode shapes and influence
] .. k
coefficients were computed numerically for other values of B/kp. For

example, a case was considered in which k_ = lOkp and N = 20, There were

B
two very high frequency modes. However, the mode shapes were non-zero only
near the boundaries. Moreover, the influence coefficients for center joint
displacement were zero. The other 18 modes corresponded aglmost exactly to

the case of kB = kp, but N = 18, Further details, and other examples, are

given in Appendix A.

B. Time Histories

In order to investigate if any further simplifications are justified,
time histories were computed for a variety of cases, A computer program,
SEGPIPE, was written which computes the total center joint displacement,
and the modal contributions to it, due to the identical incoherent ground
input Az(t) at every joint, but with a constant time delay T between
successive joints, A total of 29 different calculations were made, only a
few of which will be presented. A summary of the various calculations may
be found in Appendix B. The first 23 runs used sinuscidal ground motion
z(t) with, either a single frequency, or with several in combination. Many
aspects of the results were thus more easily understood since analytical
approximations (say for small T) were available, These are described in

Appendix C. These analytical results also served as checks on the code.

In the undamped case, for © # W, , beat phenomena were observed in the modal

k’

responses where the input frequency { was close to a modal frequency. When

damping was included, a more complex response occurred, where at early
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times, the damped response was/similar te but smaller than the undamped
result, while at later times a steady state would develop. Except for cases
in which W, = 2, the peak modal responses generally occurred during the
transient. It should be mentioned that with 5% of critical damping, it was

not possible to excite the highest mode to give the largest response, even

when the input frequency ! was made slightly larger than Wy

Among the quantities varied were the number of segments N, the ratio
kg/kp, the phase delay T, and the damping as well as the input. Values of N
of 20, 22 and 40 were tried. The ratio kg/kp controls the spread of the
natural frequencies, For kB = kp, by Gerschgorin's theorem, 0 < Ak < 4, so
that by Eq. (6)

_\[k f k
w o =Ve/ S Lo 1+4(p/kg)

g

For buried pipes, large values of kg/kp are anticipated. Calculations were
made with kg/kp = 2, 4 and 10, The results presented are all for kg/kP = 4,

so that the modal frequencies (assuming wg = 2m/sec) are restricted to
w
< = <
1 Hz < fk k/21T < \2 Hz

A1l the results presented are for T = 0.020 sec, This could represent a
20 ft (6 m) pipe segment and a 1000 ft/sec (300 m/sec) propagation velocity.

For small values of T, the results are linear in T, see Appendix C.

Also considered was partial loading whereby only the joints near the
center were loaded. Leaving off the load near the ends had negligible
effect on the center joint response. Loading only the 3 or 5 center joints
of a 20 segment pipe actually resulted in slightly higher total responses
than loading the entire pipe. However, the individual modal responses
varied, with the higher modes contributing more in the partially loaded

case. These results suggest that the joint displacement is a local

(64)

(65)
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phenomenon with the situation more thai a few segments away having little

effect. Thus, the number of links, the end conditions, and even the gradual

variation in Az from point to point would not materially affect the results.
This is not surprising if one examines the sum of influence

N
coefficients, of all modes at each joint, ) D . This sum

k=2,b,...
represents the static solution due to a unit input at joint m. It is
largest at the center joint, and its value falls off rapidly at either side.
Except for the few joints near the center (the actual number depends on
kp/kg), the sum is essentially zero., The static continuous analog to the

current problem, see Appendix D, shows the strain decreasing exponentially

from the point of application of the load.

C. Response To Earthquake Input

While Eq. (49) was solved analytically for the variocus sinusoidal
loadings, this was no longer possible once actual earthquake records were
used as the input motion. Consequently, the program was revised so that
Eq. (49) was solved numerically for each mode, assuming the incoherent
ground acceleration Az to be piecewise linear. Then Eq. (53) was used to

shift the time scale by the appropriate delay time for each node m.

The total center joint response, and the modal contributions of the
lowest five modes, for a 20 segment pipe subjected to the north-south
component of the EL CENTRO May 1940 record are shown in Fig. 5. The
calculation was continued to a final time of 20 seconds. The damping was
assumed to be 57 of critical for each mode*). The incoherent ground motion

across the center joint is shown in Fig. 5a. It is noted that Az is zero

until the earthquake reaches the center joint. Readers familiar with

*) This assumption is not quite valid,

since &, should vary according to
Eq. (40). « :
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*)

earthquake records will recognize the input as the velocity record times T °,
The total joint displacement reaches a maximum value of 1.87 cm, répresenting

an amplification of 2.85.

The first three modal contributions are larger than the total response.
However, the modes alternate in sign, as do the ID (see Fig. 4), so that
all modes are required to reach the total., Nevertheless, the peak modal
responses do decrease as the mode number increases. The peak value of the
lowest mode not shown, mode 12, is 0.80 cm, while that of mode 20 is merely
0,076 cm. Except for a scale factor, the total response is most similar to

the mode 2 contribution, the largest contribution to the total.

The total center joint response of a 40 segment pipe is compared with
that of a 20 ségment pipe, both with 5% of critical damping, in Fig. 6. The
corresponding incoherent ground motions across the center joint are shown in
Fig. 6a. The phase delay is the only difference in the two curves** .
Except for the phase delay, the two total response curves are essentially
the same, Individual modal responses, of course, cannot be compared
directly. It is worth noting, however, that for N = 40, the mode 2 response
is larger than the total response and more than twice any other modal
contribution. Except for the amplitude, the total response is similar to

the mode 2 contribution. The center joint displacement for somewhat larger

damping, 10% of critical, for a 20 segment pipe is shown in Fig. 7. Except

*)

For longer delay times this is not necessarily true, see the discussion
in Refs. [6] and [7].

*k
)The time scale in each case starts when the traveling ground motion

crosses the center of the first segment,
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for the obvious decrease in the amplitude of the oscillations, the curve is

similar to those in Fig. 6. Here, the amplification is only 2.0.

The response of 20 and 40 segment lightly damped systems (1% of critical
damping) are compared in Fig. 8. For early times, t < 8 sec, the two curves
follow one another with the appropriate phase delay. The amplification
during this time, and the peak value for N = 40, is 4.05. TFor N = 40, the
mode 2 contribution is again larger than the total response and more than
twice any other modal contribution. The peak total response occurs about
2.5 sec after the peak in the input. The situation for N = 20 is different
from that in any other case considered. The peak total response is larger
than that of any modal contribution, and occurs at later times, long after
the peak in the input ground motion. At the time of the peak, eight of the
ten modal contributions, the lowest seven plus mode 18, are all moving in the
same direction, and thus add to the total response. The largest modal

contribution to the peak, mode 8, is only 357 of the total.

If the input were zero for t > 8 sec, each mode would be experiencing
free vibrations with a slightly different frequency. If one waited long
enough, all the modes would be in phase, and contribute to the total, With
any appreciable damping, however, the resulting peak would be much smaller
than that observed during forced vibrations. For the longer pipe, N = 40,
interference caused by the accumulated phase delay from one end of the pipe

*}

to the other leads to smaller responses in the higher modes .

*)

This statement is more easily understood by referring to Fig. 4b. If there
were a phase delay of 7w radians between the quarter and three-quarter
points, the mode 4 regponse would be zero. Similarly, if the delay were T
between modes 3 and 17, the mode 6 response would be only a third of that

with no phase delay.
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Consequently, eyven if the various modes were in phase, the resulting total

(at least up to 20 sec) is less than that observed during forced vibrations.

D. Interference Response Spectra

The Interference Response (IR) spectra for the EL CENTRO May 1940
north-south record for T = 0,02 sec and damping ratios of 1, 5 and 107 are
plotted in Fig. 9, The spectra are drawn to a linear scale and only a
limited frequency range, 0.7 to 1.5 Hz, is shown. The bounds to the natural
frequencies of the system, Eq. (65), are shown in the figure, as are the

lowest antisymmetric frequencies for N = 20 and 40, £, = 1.011 Hz and

2
1.003 Hz, respectively. Horizontal lines are drawn corresponding to the
peak values of the center joint relative displacement attained in the
various time history calculations. Dots mark the intersection of MAX]Ax(t)I

and the appropriate £ For 574 of critical damping, there were two

9
calculations, both with the same peak response. For 1% damping, the N = 20

peak value of 5.90 is off-scale for the reason discussed previously.

In all other cases, the peak response is within 1% of the corresponding
IR spectra at the lowest antisymmetric frequency, Moreover, even if the
lowest frequency were not known, the spectral value at the lower bound
frequency (1 Hz in this case) is an excellent approximation to the peak
response of the center joint. One additional earthquake record alsc was
used as input, and the results again agreed with the IR spectrum.
Consequently, it appears that the IR spectrum offers a useful technique for

evaluating the dynamic response of long segmented pipes.
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Iy  SUMMARY AND CONCLUSIONS

The equations which govern the dynamic- axial response of a long
segmented pipe subjected to a traveling ground motion were developed. When
the jointed pipe is very soft relative to the ground, kp/kg << 1, the pesk
joint response is given directly in terms of the Interference Response (IR)

spectrum.

When there is no intermediate support, modal decomposition can be used.
The natural frequencies will be distinct and separated and a modal
participation factor can be defined. Again, each modal response may be
obtained from the IR spectrum. The problem of combining the modal
contributions is similar to that in multi-degree of freedom buildings, and

the square root of the sum of the squares is probably the best approach.

Finaliy, the problem of a long supported pipe of non-negligible pipe/
joint stiffness was studied in detail. It was seen that, for reasonable
amounts of damping, the center joint response was predominantly a local
phenomenon, and was not affected by the end conditiong, the number of links,
or variations in the ground input near the ends. Amplification ratios with
respect to the difference in ground displacement of from 2 to 4 were
obtained with damping ratios of from 10 to 1% of critical. Actual joint
opening (or closing) of 2 to 3 cm was found for pipes of various parameters

subjected to the EL CENTRO earthquake,

The most important conclusion is that the IR spectrum at the lower
bound frequency can be used directly to predict the response of pipes with
non-negligible values of kp/kg. Certainly, for kp/kg as large as 1/4,
computed peak responses were within 1% of the IR spectrum at the lowest anti-
symmetric frequency. Thus, the Interference Response spectrum is a useful

tool in the dynamic analysis of lifelines over a broad range of parameters.
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APPENDTX A
MODE SHAPES AND INFLUENCE COEFFICTENTS

In this appendix examples are given of the variation of the mode
k
shapes ¢j and influence. coefficients Dmk with the ratio kB/kp and the
number of links N. The eigenvalues and their associated mode shapes were

found numerically. The values of Dmk were obtained via

k w? k kK . v ok

- 8 - T

e W2 ( ¢.11 ¢£\T_+1 ) .il ?5 (A-1)
k 2 2 J

where 1 <m < N - 1. When N is even and k is restricted to antisymmetric modes,
the above reduces to that given by Eq. (51) in the text. For N odd, integer

arithmetic (truncation) yields N/2 - (N - 1)/2 and N/2 + 1 ~ (N + 1)/2.

Figure A-1 compares the mode shapes and influence coefficients for
N = 12, and for kB = kp and kB = (0, In the latter case, the lowest mode corresponds
to a rigid body displacement. The influence coefficients of all symmetric
(odd) modes are zero. The frequencies for the stiffer system on the‘left
are all slightly higher than the corresponding values for the free end pipe.
Also, the magnitude of the sum of the influence coefficients in each mode is
larger for the stiffer system. It is noted that the double sum of the influence

coefficients is unity, even for the case of kB = 0.

Figure A-2 compares the mode shapes and influence coefficients for N = 20,
but with stiff boundary springs (kB = lO’kp), with those for N = 18 and kB = kp'
The highest two modes for N = 20 affect only the links near the ends, the left
for mode 20 and the right for mode 19. The two frequencies are the same and
much larger than all the others. In both modes, the influence coefficients
for center joint displacement are all zero. For all other modes, the N = 20
frequencies are just below the corresponding values for N = 18. The mode shapes

are also very similar (some are plotted upside down). The influence coefficients
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for the lower modes, those which contribute the largest shares to the dynamic
response, again are very similar. The two ID's for mode 2 agree to 0.5%.

The relative difference between the two cases, in the ID's, grows as thg
mode number increases, with the maximum difference reaching +25%, but

only 1% of the mode 2 sum. Consequently, one can expect that the dynamic
response of the two systems would be virtually identical. Once again, note
the double sum of influence coefficients is (essentially) unity in both

cases.

The effect of the number of links, including whether N is odd or even,

on the mode shapes and influence coefficients is illustrated in Fig. A-3,

u

where those corresponding to N = 18, 19, and 20 are compared. All cases were

computed with kg/kp = 4 and kB kp. For N = 19, the influence coefficients
apply to the ninth joint, marked with the triangle. As anticipated, the sum
of the influence coefficients in the odd modes are not zero for N = 19. Never-

theless, for the lowest modes, the odd sums are much smaller than the adja-

cent even.ones. For example, the mode 1 value is only 7% of that of mode 2.

For the lowest several modes, there is a gemeral correspondence in
frequency, mode shape and influence coefficients for the three cases. For
the highest modes, there is also agreement when the mode number is counted
from the top, i.e., highest compare to highest, next highest with next highest,
etec. It is only in the middle modes, where for N = 19 the adjacent ID's are
comparable, that it is difficult to relate one case to the others. Neverthe-
less, based on the lower modes, restricting the discussion in the text to
N = even does not appear to be unduly restrictive. Again, the double sums

of influence coefficients are all (essentially) unity, even for N odd.
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SUMMARY OF

APPENDIX B

SEGPIPE CALCULATIONS
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APPENDIX B ~ Summary of SEGPIPE Calculations

N
Run File Links kg/kp w, T Tiodd ) Damping Tfinal
1 - 20 10 1.0044+1.1823 0.10 sinQt 1.3 0 2.5
2 - 20 10 1.00441.1823 0.10 sinQt 1.3 0 12.5
3 - 20 10 1.0044-1.1823 0.10 sinQt 1.3 0 50
4 - 20 2 0.457 »0.7732 0.10 sinft 1.3 0 50
5 - 20 10 1.0044-+1.1823 0.10 ‘%(l~cosﬂt) 1.3 0 20
6 - 20 10 1.0044~1.1823 0.025 %{1—cosﬂt) 1.3 0 20
74 - 20 4 6.3526+8.8734 0.02 ‘%(lrcosﬁt) 5.88 0 8
8 - 20 4 6.3526+8.8734 0.02 % (I-cosfit) 5.88 0.05 8
1
9 = 20 4 6.3526-+8,8734 0.02 E’(l—cosﬂt) 9.0 0 8
1
10 - 20 4 6.3526->8.8734 0.02 E’(i—COSQt) 9.0 .05 8
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Joints lLoaded Purpose Conclusions Run
19 First try. Too short, QTfinal<W' 1
19 Try to observe beat Beat observed. 2

developing. Uncertain if max actually reached.
19 Show complete Beat, Two complete beats mode 2 (w.=1.004),( 3
One complete beat mode 20 (w20=1.182L
19 Try to spread natural Total response is only about 1/4 4
frequencies W« of input Az,
19 More realistic More complex beating phenomena. 5
(smooth) input than
Run 3,
19 Test linearized Error 0.65% for k=2, increases to 6
result for "small" t. 15% for k=20.
19 More realistic Half beat mode 2, close to 7
numerical input, i.e. resonance. Mode 2 response ~20
f_k v 1 Hz. times input.
19 Effect of Damping by Total response .}/2 of undamped ~7xAz.| 8
comparing to Run 7. Also true for mode 2, effect on
higher modes smaller,
19 Attempt to excite T too short, since the mode 20 9
higher modes, OQ>w_. final
’ n max should ocecur at t=25, Max modal
contribution is mode 16; mode 2 next.
19 Effect of Damping by Total response only ~ twice input 10

comparing to Run 9.

Az and occurs during transient.
Largest modal contribution is mode
2. Observe steady state developing.
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SEGPIPE Calculations- Continued

N
Run File Links kg/kp @ T Load £ Damping T, . 4
11 | SEGPIPE 20 4 6.3526+8.8734  0.02 -%(1—cos@t) 7.7872 0 16
12 | SEGPIPD 20 4 6.3526*8.8734  0.02 ~%(l—cosﬂt) 7.7872  0.05 16
13 | SEGPU40 40 4 6.3016+8.8825 0.02 -%(l~cosﬂt) 7.7872 0 16
14 | SEGPD4O 40 4 6.3016>8.8825  0.02 %(l—cosﬂt) 7.7872 0.05 16

15 (Noplots) 40 4 6.3016>8.8825 (.02 -%(l—cosﬂt) 7.7872  0.05 16
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Joints Loaded Purpose Conclusions Run
19 Baseline case when Total response 48 x input Az, 11
input @ between Wig & (Undamped case is unrealistic.)
Wyoe Modes 10 & 12 are in phase at max.
19 Effect of Damping by Total response only ~3.6:% Az, 12
comparing with Run 11, Occurs during transient, but less
than 10% larger than the steady state.
Modes 10 & 12 response 0,2 of
undamped values.
39 Effect of Number of Results may be inconclusive since 13
links by comparing with T of mode 22 = 58 >> 16 = T_, .
Run 11 max final
' Total response %5.7 x Az << that
for N=20. (However, max oCccurs near
T..) Largest modal contribution is
mode 2 which is v total response.
Mode 22 is building up (vAz)@t=16.
39 Effect of Damping by Total response 3.1 x input Az. 14
comparing with Run 13. All beats except lst are negligible.
Effect of Number of For higher modes (k>2) steady state
links for damped system response << transient < Az. Thus,
by comparing with Run 12. k=2 time history almost identical
to that of total response. For
different N, cannot compare indivi-
dual modal responses. Early transient
(peak for N=40) same as for N=20.
Later transient (peak for N=20) and
steady state smaller for N=40.
Hence, max total response V.85 of
N=20.
N
1
7 Effect of partial Total response " same as fully loaded. 15

loading by comparing
with Run 14,

Mode 2 response smaller, higher modes
larger.
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SEGPIPE Calculations - Continued

N _
Run File Links kg /kp wy T Load 2 Damping T,..
16 | S5GPD40 40 4 6.3016+8.8825 0.02 -%(l—cosﬂt) 7.7872  0.05 16
17 | S3GPD4O0 40 4 6.3016+8.8825 0.02 ‘%(l—cosﬂt) 7.7872  0.05 16
18 | sierp40 40 4 6.3016+8.8825 0.02 -%(l—cosﬂt) 7.7872  0.05 16
3, )
19 | SF3FD20 20 4 6.3526+8.8734 0.02 ] ~(l-cos@,t) 5.88,  0.05 16
t=1 L 7.7872,
9.0
_ 3 1 '
20 | SN3FD20 20 4 6.352678.8734 0.02 } =(l-cosp,t) 5.88,  0.05 16
, i
=1 7.7872,
9 . 0



Joints Loaded Purpose
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Conclusions

Run

5 Effect of partial loading
by comparing with Run 14,

3 Effect of partial loading
by comparing with Run 14.

1 Effect of partial loading
by comparing with Run 14,
Check analytical result for
small T.

Total response.peak and steady
state larger than fully loaded
Run 14. Peak ~15% > Run 14 Peak.

‘Mode 2 still largest contribu-

tion, but only ~40% of fully
loaded case.

Mode 440 (D, ~0 for juN/2).
Higher modesjgenerally > those of
Run 14. Many modes contribute

to total response.

Total response peak and steady
state both larger than fully
loaded Run 14. Peak ~20% > Run 14
Peak; Peak n3.86 x Az. Order of
modal contributions is 18, 14, 10,
2, 6, 22. Many modes contribute to
total response.

Peak total response 757 of Run 14,
2.3 Az, Both occur during
transients. Steady state 83% of

peak and essentially same as that

of Run l4. Order of modal contribu-
tions is 22, 18, 14, 26,10,6, 2, 30.
Modes divisible by 4 << others.

(D fm are small). Mode 2

N/2
response increases with number of
joints loaded. Mode &4, full load
causes large transient; partial
load responses are small ; mode 8
similar. Error in calculating
steady state modal contributions

(assuming %? << 1) less than 1%.

(%—T-: 0.08 << 1).

16

17

18

19 Effect of more realistic
loading. Establish new
Baseline.

17 Effect of not loading
end joints (~ boundary
conditions).

No steady state since complicated
input. Peak total response 73.28xAz
input peak. Mode 2 waveform largest
and similar in shape to total
response.

19

Negligible!

20



File Links

SEGPIPE Calculations - Continued

Load

- 48 -~

9 Damping T

SF3FD22 22

SF3FD40 40

CHKFILE 40

g/ p k

4 6.34+8.88
4 6.30+8.88
4 6.30+8.88

0.02 Z %(1—cosﬂit)

0.02 ] F(1-cosa,t)

2 %{1—cosﬁ.t)
=1 1

final

5.88, 0.05 16
7.79,

9.0

5.88, 0.05 16
7.79,

9.0

5.88, 0.05 16
7.79,

9.0



Joints Loaded Purpose Conclusions Run
21 Effect of small variation  Total response very similar to 21
in number of links by Run 19. Peak total response ~15%
comparing with Run 19. less than that of Run 19. (Perhaps

sensitive to whether or not N is
divisible by 4.) Lower modal
responses virtually identical.

39 Effect. of large variation Except for being ~15% larger, 22
in number of links by mode 2 response is the same as
comparing with Runs 19 & 21. the total response. .
Effect of more realistic Other modes < “40% of total.
loading by comparing with Total response for N=40 & N=22
Run 14, almost identical. Total response

for N=40 & N=20 similar except
N=40 ~207% smaller. With single
input frequency beat developed
shape with complicated load
different, but peaks of total
response within ~20%.

Note, peak response = SI(wZ,E,T).

39 Check revised code, i.e. Total response almost identical. 23
read ground motion from Some medes, where the peak occurs
file. early, differ by 3% or 4% or more.




SEGPIPE Calculations- continued
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, N Input Ground
Run File Links kg/kp Wy T Motion Comp Damping
24 | SGPLCNT 40 4 6.30 +8.88 0.02 EL CENTRO SO0E  0.05
May 1940
25 SCGPVNT? 40 4 6.30>83.88 0.02 14724 Ventura N78W 0.05
SAN FERNANDO
Feb. 1971
26 SGPLCN?2 20 4 6.35+8.87 0.02 EL CENTRO SO0E 0.05
May 1940
27 | SGPLCN3 20 4 6.35 >8.87 0.02 EL CENTRO SOOE  0.01
May 1940
" 28 SGPLCN4 20 4 6.35+ 8.87 0.02 EL CENTRO SOOE 0.10
May 1940
29 | SGPLCNS 40 4 6.30~+ 8.88 0.02 EL CENTRO SQ0E  0.01

May 1940

T

=) -
o

20

20

20

20

20

20
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Joints Loaded Purpose Conclusions Run
39 Find response to real Mode 2 > twice any other modal con- 24
earthquake, tribution and total response. Peak

total response occurs 2.5 sec
after input peak. Amplification = 2,85,
Except for amplitude, total response
v mode 2. Peak within 0.5% of SI at wz.
39 Alternate earthquake Mode 2 > any other modal contri- 25
record, bution and teotal response. Peak total
response almost simultaneous with
input peak. Amplif, = 1.80. Peak
total within 0.2% of SI at W,
19 Effect of N for real Except for phase shift, total 26
earthquake by comparing response almost identical.
with Run 24. Amplif. = 2.85. Peak " within 1% of
of SI at ,.
19 Effect of small Total response peak > any modal 27
damping by comparing contribution, Total response
with Run 26. peak occurs much later than input
peak. Amplif,= 9.0 ! First 7 modes,
plus mode 18 contribute to peak.
Largest, mode 8, only 35% of total.
SI at w, only 1/2 of peak, but
= early time peak.
19 Effect of larger Except for less amplification, 28
damping by comparing similar to Run 206. Amplif.= 2.0,
with Run 26. Peak within ~17% of SI at w,.
19 Effect of N for real Except for amplification, similar 29

earthquake for small
damping by comparing
with Run 27.

to Run 24, i,e. peak occurs 2.5 sec
after input peak. Amplif.= 4.05.
Mode 2 > twice any other mode and
greater than total response,

For t < 8 sec, total response
similar to Run 27. Peak total

response within 0.57 of SI( w, ).
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APPENDIX C

ANALYTIC SOLUTIONS FOR SINUSOIDAL TYPE INPUT

1. Undamped Case - Sinusoidal Input

- 53 -~

Consider the solution rk(t) to Eq. (49) when
0 £t <0
Az(t) = A sin Qt 0<t<T (c-1)
Alsin §fit - sin Q(t - 1T)] t2>T
Without damping, Eg. (49) reduces to
Eorw e, = w? ha(t)
T T U T T b2 (C-2)
Rest initial conditions are assumed
rk(O) = 0
rk(O) = 0 (C-3)
The solution for the three time domainsg are
rk(t) =0 t <0 (C-4a)
r, () = - S in §it - i3 sin w, t 0<t<T
k 7, 2 |Si® © Kk sts (C~4b)
1 - Q7 /w k
k
_ A . . 2 . .
r, (t) = ——Fo—— (sin Qt - sin QC(t - T) -~ -~ {sin w t - sin @ (t - T)]
k 2 2 W k k
1 -8%/w k
k
_ W T
= —-£¥%Z—~*§ sin<%; cos Q(t - 1/2) -~ Er—sin —Ew-cos wk(t -~ 1/2)
1 - 0/w k
k
t>T (C-4¢)

Equation (53) may now be used in conjuction with Eqs., (C-4) to

obtain rkm(t),which is then inserted into Eq. (54) to give the joint modal

response Ax(k)(t). The values of both r. and r

k

k

at the transition time t = T

Preceding page blank
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rk(T) = —~——é§~—~§~ sin QT - él-sin ka
1 - Q7 /w k
k
fk(r) = ~ﬁ—A&%——ﬂ§ cos §T - cos wkT
1 -8 /wk

are small for small values of T, i.e.,

QT << wf2  and wkt << 7w/2

Rather than three separate expressions, rkm(t) may be written as a single

approximate expression for small 1, i.e.,

(t) = ~——é§z~——i H(t") cos §t' - cos w t!

Tr
km 2 k
1 Q /wk
where
t' =t - (m- 1)t - /2

. . . th |, |
is the time after the traveling wave has crossed the m joint. For

m # N/2, the response at the symmetric point N - m is

() = —~végg 5 H(E™) cos §t" - cos w, t"

k
1 9} /wk

rk(N-m)
where

t" =t - W-m - 1)1t - /2

is the time after the signal has crossed the N - mth joint, Recalling

Dmk = DN—mk’ the contribution of joints m and N - m to Ax(k) for t" > 0Qis
K AT Dmk i
+ = e ' . "o_ t "
Dm [rkm rk(N—m)] 55 |cos Q' + cos Ot cos ), t cos w, t
1-8 /mk
2a0t D * T N-1 N
= m—T . Heos (L - T —=) cos QT{(= - m)
2 2 2 2

N-1 N 1
- cos wk(t -1 ~§~) cos wkT(E»— m|, t > (N=-m- T

(C~5a)

(C-5b)

(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(C-11)
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The largest arguments of the second cosine factors above occur when

m= 1., For N>>1

N N .
cos QTCE-— 1y = 1 and cos kaCE -~ 1) =1
if

NQT << 7 and Nka << Tn

Physically, Egs. (C-13) require that the total transit time from one end
of the pipe to the other be much smaller than half a period of any
component of the input, or of any natural frequency of the system. They

are, of course, much more restrictive conditions than Egs. (C-6).

Assuming Bqs., (C-13) to be valid, Eq. {C-11) may be written

approximately [not quite true for t_ < (N/2 - m)T] as

4A00T D k 8+ w w, -8

= H(t ) T~ sin k t sin . —

c 2 2 2 c 2 c
1-8 /wk

k

Dm [tkm + rk(N—m)]

where

is the time after the traveling input wave has crossed the center joint,
Finally, the contribution from all joints m may be summed, and recalling

k
the symmetry in Dm .

N-1 n
2801 | ] P 2+ w w, =
(k) m=1 , k .k
Ax (t) = H(t ) sin -~ t sin ———— t
2 2 c 2 c 2 c
1 -9 /wk

Equation (C-16) is sketched in Fig. C-1. The function in the brackets
starts at t = T(N - 1)/2 and then exhibits a beat phenomenon. The

apparent frequency is the average of {! and w, , while the enveloping

k

function reaches a peak every 27r/(wk - )., As the input frequency &

(C-12)

(C-13)

(C-14)

(€-15)

(C-16)
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approaches W the applitude increase, and also the duration required to
reach the peak increases as well. With regard to the last remark, it is
worth noting that the strong motion phase of a real earthquake does not

last more than several seconds, i.e., a few cycles of the dominant

frequency.

2. Undamped Case - Haversine Input

The incoherent input given by Eq. (C-1) corresponds to a ground
motion at a point, z{t) =A H(t) sin Qt, While this function is initially
zero, the corresponding initial velocity is AR # 0. A discontinuous
ground velocity is unrealistic. A function z(t) which is initially =zero,
and whose first derivative is also initially zero, is the haversine

function.

Let the incoherent motion be given by

0 £ <0
Az(t) = Af2(L - cos {t) 0<t<T
A/2{cos Q(t-1) - cos Qt] t 2T

The solution to Eq. (C-2), subject to initial conditions Eq. (C-3), is

then
rk(t) =0 t <0
rk(t) = % 1- 12 5 cos Ot - (Qz/wkz) cos wkt 0<t<T
. 1 -8 /w
k
rk(t) = Az 5 cos St - T) - cos 0t -
2 (1 -0/ )
k
2 2
1 /wk } | cos wk(t - 7)) - cos mkt t>T

(C-17)

(C-18a)

(C-18b)

(C~18c)
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The values of rk and r, at the transition time t = T are smaller than the
corresponding values given by Eq. (C-5) for small T. (They are zero to a

higher order in 7.) Again, one may write a single approximate expression

for rkm(t) for small T

H{(t") sin Qt' - jz~sin w, t?
W k

h
and a similar one for N - n® Jjoint

ADT

— 2
Y t == " 11 . e
k(N_m) ( ) P) 2 H(t ) sin Qt - — gin w t

2(L - @ /u)k ) k

where t' and t" are given by Egs. (C-8) and (C-10), respectively.

sum of the two terms, for t" > 0, is

AQT , N
5 | sin th cos QT(Z m)

T _—TT TS
2
1-8 /wk

+ =
kR (N-m)

Q N
i sin w tc cos mkréf - m)

" k

t!!)O

which may be simplified if Eqs. (C-13) hold to

Q + W,
H(tc) M cosénjfww* tc - 8)

ART

£, +r -
km k {N-m) i - QZ/MkZ

where the enveloping function M{t) is given by
1/2

2, 2
M{t) = 1+ 80 /wk -~ 252/03k cos (2 - mk)tC
and where the variable phase angle is given by
. T
1 - Q/wk) cos t,

8(t) = tan -
1+ Q/wk) sin —— t

- 58 -

(C-19)

(C-20)

(C-21)

(C-22)

(C~23)

(C~24)
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In the above, tC is the time after the traveling input wave has crossed
the center joint, given by Eq. (C-15). Finally, recalling the symmetry in
Dmk, Eq. (54) may be written as

N-1 N-1

(k) v k 1 k
= D — B —
Ax () E T =5 Z Do e+ Tie(wem) | (C-25)
m=1 m=1
or, since Eq. (C-22) is independent of m,
N-1
k
D
(k) AQT(mEl m ) 9+ u
Ax () = H(t ) M(t) cos| —=—t =~ O(t) (C-26)
2 2 c 2 c
2¢1 - €7 /w. )
k
Equation (C-26) is plotted in Fig. C-2 for Q/wk= 0.8. The enveloping
functions * M(t), given by Eq. (C-23), are shown as dashed lines. While
not a sine curve, the function is periodic with a beat period of
ZW/(wk - 1), the same as in the previous figure. The maximum and minimum
values of M are 1 * Q/wk, respectively. Consequently, the peak modal
response is bounded by
N-1
aot] 5 D ¥
a1 (9 (1) | ¢ 2L (c-27)
= 2(1 - Q/wk)

The period of the actual response function is only approximately 4ﬂ/(mk'+ ),

since the phase angle changes by 7 within a beat.

3. Haversine Input - Damping Included

When (small) damping is included, the solution for small T to Eq. (49)
with the incoherent ground motion given by Eq. (C-17), and subject to rest

initial conditiomns, Eq. (C-3), is
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_ At/2 H{t")
T (E) = 7 N\2 5
JEN p e B
N kG
k 4
_ 2 2
-1+ - ap 2 E
=) Et' LUZ k wz e
Q k “k K k , 7
(wk) e sin W, V/l - g0t
1-¢°
k
2
X , 2,
+ Zik(w ) cos Wy 1 Ek t
Kk
2 2 3
+ 1--9—2-+(z£k R sin Ot' - 28 (55 cos @t
w kw,
w, K k

where t' is given by Eq. (C-8). The terms involving sin Qt' and cos §it'
constitute the steady state solution, while those multiplied by the
decaying exponential term contribute to the transient solution only. It
is observed that setting gk = 0 in Eq. (C-28) results in the equation
reducing to Eq. (C-19), deriﬁed assuming no damping. Also, when { = wk’
but Ek # 0, Eq. (C-28) becomes

-Qf t!
Q -
rkm(t) = é'*Z“I'H(t') e k 1 sin Q4,/1 - Ekz t!

a1 - gkz

+'“;~'cos R/l ~ & 2 t! + sin Rt - - cos ft?
ZEk k 2£k

The peak amplification during the steady state response in that case is
Amp. Ratio = 1+ ——a. =

A
2 28,

where the approximation holds for small damping Ek.

- (C-28)

(C-29)

(C-30)
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For the general case, the gmplification ratio for the steady state

*
solution to Eq., {(C~28) is )

MAX[rkm(t)|sg%ggg _ 1+ (ng Q/wk)z
MAX] Az (t)] B

Amp. Ratio =

2

§ 2, 2.2 N
(1 - Q770" + (28, Q/mk)

At early times, for small damping, Eq. (C-28) involves terms with closely
spaced frequencies § and Wy V1~ gkz, and whose coefficients are
comparable, For example, for t' = 0, the cepefficients of the two cosines
terms differ only in sign, Thus, at early times, beat phenomena, similar
to those illustrated in Figs. C-1 and C-2, mark the response of a damped
system. The 'mean” value of the envelope is given by the steady state
value, i.e., Eq. (C-31)., As time progresses and the transient portiomn
decays, the difference between the envelope maximum and minimum values
decreases, until only the steady state portion remains, Finally, if
conditions Eq. (C-13) hold, Eq. (C-28) may be converted to the
contribution of the kth mode to the center joint displacement, Ax(k>(t),
by replacing t' with tc’ and multiplying the result by Nil Dmk.
m=1

The effect of damping on the modal contributions is illustrated in

Figs. C-3 to C-5. The curves in the figures are the results of actual

SEGPIPE numerical calculations, in which conditions Egq. (C-13) are not

satisfied. Consequently, the magnitudes of the curves are somewhat

*)

Eqﬁation (C-31) differs from the amplification ratio for steady state
damped vibrations found in textbooks on vibrations. The second term in
the numerator does not appear in textbeoks. However, most texts have a
single sinusoidal input term, while Eq. (49) includes a second term,

2Ek Q/wk times the first, and 7/2 radians out of phase with it.

(C-31)
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lower, although the trends follow the equations developed 1in this

appendix. In the three figures, the solid line corresponds to Ax(k) in

(&) j1 the damped

the undamped case and the dot-dash line to the response Ax
case, The dashed line represents Az(t), the incoherent ground motion
across the center joint, i.,e., Eq. (C~17). The mode 8 response curves in
Fig. C~3 are from SEGPIPE Runs 9 and 10, i.e., N = 20, T = 0.02, & = 9.0,
wo = 7.2115, :Ei Dm8 = - 1.2544 and Ek = (0 and 0.05, respectively (see
Appendix B), m;t is noted that while conditions Eq. (6—6) are satisfied
(it = 0.18, WeT = 0.144, both << m/2), conditions Egs. (C-12) and (C-13)

are not, i.e.,

i
it

cos Q1 (-g- - 1)] = cos(1.62) = - 0.049 # 1

cos{mBT(-gl - 1)] = cos(1.30) 0.269 ¢ 1 (C-32)

Consequently, while the solid curve is very similar to that shown in

Fig. C-2 since mglﬁ = 0.80, the peak amplitude of 0.271 cm is considerably
less than the 0.455 cm computed via Eq. (C-27). Following Fig. C-2, the
response would start at (N - 1)1/2 = 0.19 sec, and the envelope would peak
at t = 1.947 and 5.460 sec, while minima would occur at t = 3.703 and
7.216 sec, The solid curve agrees with these values. The damped response
starts by following very closely the undamped response. However, by the

second beat, the amplitude of the beat is considerably reduced.

The trends are perhaps more clearly illustrated in Fig. C-4, where
the mode 6 responses with and without damping are shown for Q = 7.7872 and
We = 6.8491, corresponding to SEGPIPE Runs 11 and 12. Here the ratio

w,/ = 0.88 is closer to unity so that there are more cycles per beat, and

6
greater amplification. The envelope in the undamped case, Eq. (C-23), reaches

its maxima at t = 3.539 and 10.237 sec. The Run 1l response maxima (actually

minima) occur at t = 3.64 and 10.08 sec. The magnitude of the computed value,
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- 0.5778 cm,is still less than the value MAX]AX((’)] = 0.8622 cm given by
Eq. (C-27). The damped response again begins by following the undamped
result, but soon deviates from it. By the end of the second beat a steady
state situation is reached, The wvalue of the steady state response is

~ 0.23 cm, The ratio of the steady state response to the undamped peak is
0.40, not far from the 0.437 computed from Eqs. (C=27) and (C-31), The
peak response in the damped case, however, is -~ 0.3507 cm and occurs

during the transient.

The final example, Fig. C-5, is from the same fwo calculations, but a
case very close to resonance, mode 10. Here the frequency ratio
wlo/ﬂ = 0.9758. The peak undamped response based on Eq. (C-27) is 3.1484,
and would occur at t = 16.865 sec, just beyond the end of the calculation.
The computed minimum in Run 11 is - 1.9574 em and occurs just before the
end of calculation. 1In this case, the damped response never builds up
beyond the steady state value of 0,4305 cm. The ratio of the computed
steady state response to the undamped maximum is 0.220, very close to the

theoretical value of 0.218 for this case.
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APPENDIX D
CONTINUOUS PIPE SUBJECTED TOD A
STATIC DISCONTINUOUS GROUND DISPLACEMENT

A good deal of insight concerning the dynamic response of segmented
pipes may be obtained from the simpler static continuous problem., Several

aspects of this relation are outlined in this appendix.

1. Physical Interpretation Of Dmk

The equation governing the static response of the system may be

obtained by dropping the [x] and [é] terms in Eq. (3), i;e.,
k [1] + k [T]} =k [z] + k_ [z D-1
{ g[ i p[ 1Hix] g[ ] B[ B] (D-1)
Let us introduce the transformation
N
x] = ) Ak[¢k] (D-2)
k=1

where the constants Ak will be shown to be related to the modal
participation factors, and the {¢k] are the eigenvectors of [T].
Premultiplying Eq. (D-1) by the transpose of [ék], and using the
orthogonality condition of the mode shapes, Eq. (13), the equation of
equilibrium Eq. (D-1) becomes
K, T kT
(e, ¥l ADA = R IOTT 2] +iglo7] Lz] (D-3)

When there is no intermediate ground support, kg = 0, so that

k T k
B k _ _B k k
P K Pk
For antisymmetric modes
k¢ <
A = Loz - z = P ,
k- Tk o T Aney) T By Le (0-5)
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where Pk is given by Egq. (31)

Returning to the general case, for long pipes we may neglect the

boundary contribution. Using Eqs. (86) and (16), the constant Ak’becomes

2
k © T w N K
b= T (0] (2] = 55 ] ¢ 2y (D~6)
g pKk w o J=1

Considering antisymmetric modes only, and using an identity relating

displacements similar to Eq. (45), one obtains

w 2 N-1 3 K :
A, = —B ? Az, ( 2 . ) , k .antisymmetric (D-7)
k 2 Lk i . i
w - 3=1 i=1
k
Taking all Azj = 0, except for Azm = 1, Eq. (D-7) becomes
052 m k
A = B Z ¢, ,» kK antisymmetric (D-8)
km 2 i
wk i=1

which is the static response in mode k due to a unit discontinuous ground
displacement across joint m. The corresponding center joint displacement

is the sum of all modal contributions, i.e.,

N

K
~ ¢ AL = ) 2054 (D-9)
= Ne1 Tl k=2,4,. 5

where (at this point) the antisymmetric modes have been assumed to be even,

Substituting Eq. (D-8) into Eg. (D-9)

2
N w- m H
b= ] 2¢Nk £ 7 ¢f=z [ ook (0-10)
k=2,4,. 3 o 3=1 b k=24, .M

where Dmk is defined by Eq. (51) in the text.

Equation (D~10)vshows that the sum over all antisymmetric modes of
. i
the influence coefficients Dm at a particular joint m is the static

response (center joint displacement) due to a unit ground displacement
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across joint m. It was observed that the sums Eq. (D-10) dropped off
extremely rapidly away from the center and appeared to be independent of
N. For example, for kB = kp and kg = 4kp, the values of the sums at the

center and adjacent joints were (to four decimal places)

0.7071, 0.1213, 0.0208, 0.0036, 0.0006, 0.0001 and 0.0000

for both N = 20 and N = 40.

For the special case of kp/kg = 0 (and kB = ka the sum may be found

analytically. Using Dmk given by Egq. (61),

k
? P - § E%I'(bl)z l Sin(%;%'%;) sin(ﬁgi‘%?)
k=2,4,, m k=2’4"
k
N/2 1
- & § (-1)%  [cos Bl - cos LZmHL) kimy
"k (D2~ 9% (WD) 2
7702,
Using No. 429 of Ref, [11],
¥ cos (2m+1) u
E D k = 2 ("l}N/z _ CcOs '?T/z " SAe 2
k=2 44 o N+ 2cos . 2 _Zm-H.) i
=2,4,. o 2 (WD) COS(E@:I 5

The first term in Eg. (D-13) is always zero; the second term is alsc
zero provided 2m + 1 # N + 1, or m # N/2. When m = N/2, recalling N is

even and, taking the limit

limit [goi(NH)G:l _ N+l [sin(NJrl)ﬂlz:l - N+1(_1)N/2

8-+ 7m/2 2cos 6 2 sin /2 2
so that

1 for m = N

N 2

i k

Z b = for k =0

m P
k=2,4,. N

0 for m # 2

(D-11)

(D-12)

{D-13)

(D-14)

(D-15)
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Again, when there is no interaction between links, the static joint

displacement follows exactly the corresponding incoherent free field ground

displacement across the joint,

Unfortunately, it was not possible to obtdin an analytical expression

N
ke
for ) Dm when kp # 0. However, the observed numerical behavior,
k=2,4,. "

e.g.» Eq. (D-11) did provide the motivation for the remainder of this

Appendix,

2. Static Solution For An Infinite Continuous Pipe

The geometry of the problem is shown in Fig. D-la. The uniform pipe is
continuously attached to the ground. There is a continuous ground spring so
that the frictional force per unit length is ~ks(u - z), where u is the pipe
(axial) displacement and z is the free field ground displacement. This
frictional force is balanced by the change in the axial force EA du/dx in
the pipe. Consequently, the equation of equilibrium is

2
EAQ—E - ksu =« k z

dxz s

The ground motion is takenm to correspond to Fig, D-1b, i.e,,

+z /2 ~—w<x <-Db
o —

]

z(x)

-z /2 - b <x <o
o <

The location x = 0 is assumed to correspond to the center of the pipe, so
that b is a measure of the distance from the discontinuity to the response
point, the center. Let ul(x) represent the solution in the region x < - b,
and uz(x) that in x > - b, The boundary conditions are that the displacement

remain finite at either end, i.e.,

finite

]

uy (=)

u2(+<ﬂ) finite

(D-16)

(b-17)
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and that the displacement and pipe force are continueus at x = - b, i.e.,
u (= b) = u,(=b)
du du
1 - 2
dx * b) = dx b)

The general sclution in both regions are

- Bx -Bx
ul(x) = Cle + C2e + 20/2 x < ~-b

uz(x) Gy Bx 43_6X - 20/2 x>-b

]
o}
M
+
]

where

B = Jk /EA
S

Conditions Eq. (D-18) require C, and Cy both to be zero, while Egs. (D-19)

are satisfied if

Solving simultaneously for C1 and CA’ Egqs. (D-20) become

Z
ul(X) 'éa [J.— eB(X+b) ] x<-b

A
uz(x) = [emﬁ(x+b) - l] x>-b

1

2

The quantity of interest is the strain at x = 0
du, © - - Bzo -8
dx ‘ 2
Equation (D-24) shows that the strain decreases exponentially with the
distance to the discontinuous input, and that as the pipe stiffness to soil

stiffness decreases, the rate of decay increases.

(D-19)

(D-20)

(D-21)

(D-22)

(D-23)

(D-24)
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3. Static Solution For A Finite Continuous Pipe

The same differential equation applies in the case of a finite pipe as
in the previous case, Eq., (D-16), and the same ground motion (except for
the limits), Eq. (D-17). The continuity conditions Eqs. (D-19) remain

valid, but boundary conditions Egs. (D-18) are replaced by

#

z(~L/2)

[

ul(—LIZ) z0/2

fi

z(L/2)

fl

uz(le) - 20/2

The solution in the two rvegions are

ul(x) = C_ sinh Bx + C

1 cosh Bx + 20/2 -L/2 < x <-D

2

it

uz(x) 03 sinh Bx + ¢, cosh Bx =~ 20/2 -b < x < L/2

4

where B = \/kS/EA [Eq. (D-21)], and where the four constants are unrelated

to the previous set. Applying Egs. (D-25),

ul(x) = Cl(sinh Bx + tanh %;-cosh Bx) + 20/2 , -L/2 <x <-b

BL
)

uz(x) C3(sinh Bx — tanh cosh Px) -~ 20/2 , =b <x< L/2

Finally, applying Egs. (D-19)

s [. cosh Bb BL BL ]
ul(x) =-7§. i- _-—;w7§: (1 + tanh 7Z~tanh Bb) (sinh Bx + tanh 7T-cosh Bx)
L tanh ==
2 —
2, T h Bb BL BL i
u, ()= - > ],4-5551—J§— (1 - tanh - tanh 8b) (sinh Bx - tamh -3 cosh Bx)
2 2 RL 2 2
5 tanh 5 n

Here, the displacement and strain at x = 0 are

z
uz(O) = - 7;- [1 - cosh Rb + sinh Bb tanh_égi}
and
du2 z B L
2 (0) = = —2——— lcosh Bb - sinh Bb tanh B =
dx 8 2
2tanh ==

2

(D-25)

(D-26)

(D-27)

(D-28)

(D-29)

(D-30)
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BL

respectively., It is noted that as L -+ ®, tanh 5 + 1 so that Egs. (D~29) and

(D-30) reduce to Eq. (D-23) evaluated at x = 0, and Eq. (D-24).

To relate the present solution to the discrete system, one must identify

the pipe/joint stiffuness as
kp = EA/L (D-31)

where % is the finite difference interval, and the discrete ground stiffness

as
k =k £ (D-32)
Consequently, the parameter B, given by Iq. (D-21) is
k k /&
B= ....._s_= --g—.-=
EA kpﬁ

For the many calculations in which kg/kp was 4, B is 2/%. The distance b

k

ol b

g/kp (D-33)

from the center joint to the loaded joint may be written as

b=32= G- me (D-34)
while the total length of the pipe is

L = N2 (D-35)

Substituting Eqs., (D-33) to (D-35) into Eq. (D-30), and using the notation of

the discrete system,

du2 z
-3 75:»(0) = A%E ' O [}osh j g/k - sinh 3,}
2 g/k
‘/ k -
g/ Pil {D-36)

!
1t

tanh(

ro| 2

H

When kg/k 4 and z =1,
P o

1 , l
Ax = - cosh 24 sinh. 2% tanh N D-37
. tanh N J 1 ( )
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The tanh function approcaches one very rapidly. For example,
tanh (5)=0,999909 and tanh(10)=1 - 4 x 10_9. Thus, for W > 10, for all
practical purposes the pipe may be considered infinite. Consequently,
recalling Egq. (D-10), for kg/kp = 4
Ax = § Dmk z o2
k=2,4,.

independent of the number of links.

4, Static Finite Difference Solution For-An Infinite Pipe
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(D-38)

The values given in Eq., (D-11) for the sum of the influence coefficients

over all the modes agree only very approximately with those computed

according to Eq, (D-38). 1In order to seek a better understanding of the

discrepancy, a closed form solution to the finite difference formulation of

the problem in Section 2 of this Appendix was obtained. The notation and the

free field ground displacement are shown in Fig. D-3. The pipe and ground

displacements are written as u,, and z, 6 to the right of the discontinuity,

+3 +3

and u_j and zuj to the left. The governing differential equatioen, Eq. (D-16),

in finite difference form is

2 2 _ 2.2
I T T

where £ is given by Eq. (D-21) and where zj = + zo/Z for § < 0 and

z, = -z /2 for i > 0,
] o}

For j < 0 we assume a solution in the form

.

20/2 + C1 ad , <0

[
1t

where Cl and & are constants to be determined. We note that for uj to

(D~39)

(D-40)

approach zj = 20/2 for j » - o, fal must be greater than one., When Eq. {D-40)

is substituted into Egq. (D-39), the latter becomes
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c, o3t [ocz - (2 + B %yo + 1] =0

Letting the constant C, = 0 results in the trivial solution, uj =z /2.
o

1

Since a # 0, the only alternative .is for the bracket to be zero, yielding

two possible solutions for o

2.2 2
- B4 / B4
Otl,z =1 + 5 + RY 1 + (.._é_)

Since o > 1, Oy (the value with the + sign) is the appropriate choice for

j < 0.

Alternatively, we could assume a solution for j > O

= - _j i >
uj 20/2 + C2 , >0

Where I&I < 1 for uj + - 20/2 as j + + =, This assumption again results

and a replace C. and a, Noting a < 1, the

in Eq. (D-41), except C 1

2

solution to Eq.(D-42) with the minus sign, az, is the appropriate value for

j > 0.
Equation (D-39) is next applied at j = - 1
o, 0" @+ 5222)01 al"l *c, uzl -z
and at J =+ 1
¢, 0,7t - @+ 855, 0t 40, 0 = -

Solving Egs. (D-44) and (D~453) simultaneously, and noting Eq. (D-42), we

obtain

- . - .
Cp = -2 o + 1 and G, = z_ o + 1

The solution for j < 0 is thus

(D-41)

(D-42)

(D-43)

(D-44)

(D~45)

(D-46)
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1
u_j_= z {-5 - H_mu—kﬁifri] (D-47)
+
(ul 1)0Ll |
and for j > 0O .
J
O, O
u, = 2 [} %-+ &} +21 } =z [~ %—+ —HH“4£*ﬁtjj} = -u_, (D-48)
J o 1. (OL +1)CL J J
1 1
where use has been made of a0, = 1. Thus, not unexpectedly, the solution

is completely antisymmetric. Denoting the difference between the

displacements of two adjacent links as ij,,i.e.,

Ax, T u, - u, = q , -u D-49
i 3 i+l ~3-1 -] ( )
then
o, - 1
- 1 1 _ 1
ij = {%o P ] s Axo ; (D-50)
1 al al :

where Eq. (D-50) applies for all values of j > 0, The ij are, of course,
symmetric., When PL = 2, corresponding to kg/kp = 4 [see Eq. (D-33)],

al =3 4+ ZV/; so that AXO = zo/\/z = 0.7071 Zo' For z, = 1, the values
for ij given by Eq. (D-50) match identically the values of the sum of the

influence coefficients given in Eq., {(D-11).

Thus, Eq. (D-50) may be used to represent the limiting case for large

N of the sum of the influence coefficients over all the modes, i.e.,

N a, - 1 :
limit y p K - L L (D-51)
N > o« k=2,4,. gﬂ_j 0y + 1 O‘11

where, using Egs. (D-33) and (D-42),

o, = 1 +% (kg/kp) + (kg/kp) [1 +% (kg/kp):l (D-52)

Finally, the limiting case of the double sum over all modes and all joints

of the influence coefficients may be written
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N N-1 Kk 1 o

limit z Z Dm = [éx + 2 z ij] 1 (D-53)
N > k=2,4,, m=1 o © j=1

where Eq. (D-50) and the sum of a geometric series have been used. Thus,

Eq. (63) in the text has been proved in general, at least for N = <,

The final step is to show that the finite difference solution approaches

the continuous solution as £ > 0. Writing the strain as

du e = __8 1 1 (D-54)

For small values of B, a, * 1 + BR, so that Eq. (D-534) becomes

1
du , _ EE B (1 + Bg)‘j (D-55)
dx L 2 + BA

Letting b = i and £ = 1/(RL), and taking the limit as & -+ = (BL =+ Q)
du _ limit ~z 8 (2 + ge) ~b/%
dx BE -0 2 4+ B

.. -z B |
s () e

Recognizing the limit of the bracket as the definition of e,

]

z
g§-= - g e PP : (D-57)

which is identical to Eq. (b-24).
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