OPTIMAL DESICN OF AN EaRTHOUAKE ISOLATION SYSTEM

by
M. A. BHATTI
K. S. PISTER
E. POLAK

A report on research sponsored by the National Science Foundation

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA • Berkeley, California

For sale by the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

See back of report for up to date listing of EERC reports.

by

M.A. Bhatti
K.S. Pister
and
E. Polak

Prepared under the sponsorship of National Science Foundation

Grant ENV76-04264

Report No. UCB/EERC-78/22
Earthquake Engineering Research Center College of Engineering University of California Berkeley, California 94720

ABSTRACT

Optimal design of an earthquake isolation system, consisting of natural rubber bearings and special nonlinear energy absorbing devices, is presented. An algorithm for efficient analysis of structural response, based upon the Newmark and Runge-Kutta methods with optional Newton-Raphson iteration, is given. The optimal design problem, incorporating this simulation algorithm, is formulated as a mathematical programming problem with time-dependent constraints and is solved using a feasible directions algorithm. Several numerical examples are presented, in which it is demonstrated that a properly designed isolation system can substantially reduce structural damage for a class of potential earthquakes.

ACKNOWLEDGEMENTS

The experimental program investigating the use of energy absorbing devices to mitigate earthquake-induced structural damage constitutes the source of the optimal design problems reported here. This program is under the direction of Professor J.M. Kelly, whose many helpful discussions and comments concerning the present work are gratefully acknowledged.

The research was conducted under National Science Foundation Grant ENV76-04264. The authors are grateful for this support. Careful typing by Ms. Shirley Edwards is gratefully acknowledged.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWI EDGEMENTS ii

1. INTRODUCTION 1
1.1 Program Objective and Limitations 2
1.2 Report Outline 4
2. AN EARTHQUAKE ISOLATION SYSTEM 5
2.1 Steel Test Frame 5
2.2 Natural Rubber Bearings 5
2.3 Torsional Energy Absorbing Devices 6
3. STRUCTURAL ANALYSIS 7
3.1 Mathematical Model for Hysteretic Behavior of the Energy Absorbing Devices 7
3.2 Equations of Motion for the System 9
3.3 Numerical Solution of the Differential Equations of Motion 11
3.4 Sensitivity Analysis 22
4. OPTIMIZATION 24
4.1 Optimal Design Problem 24
4.2 Nonlinear Programming Problem 25
4.3 Method of Feasible Directions 27
4.4 Computational Considerations 39
5. APPLICATIONS 42
5.1 Structural System 42
5.2 Equations of Motion 45
5.3 Design Parameters 45
5.4 Optimal Design Problems 46
5.5 Sensitivity of Optimal Design to Different Earthquake Ground Motions 55
6. CONCLUDING REMARKS 57
REFERENCES 59
NOTATION 61
FIGURES 63

1. INTRODUCTION

Earthquake ground motion introduces accelerations at the base of a structure, producing forces and deformations in the structure. If there is some type of isolation system between the base of the structure and the ground, the adverse effect of the accelerations on the structure may be reduced. Based upon this simple idea, researchers have suggested a number of different types of isolation systems. Two basic approaches have been followed: One is to support the structure on mechanical devices such as rollers, self-centering rocking mechanisms, rubber bearings etc.; the major drawbacks of these devices are large lateral base deflections and undesirable motion under wind and other small excitations. The second approach is the so called "soft story" concept in which the first-story columns are designed so that the structure remains elastic under small excitations, but yields and absorbs a considerable amount of energy under strong earthquakes. Large lateral deflections are a problem in this case, resulting in damage to the first-story columns during a strong earthquake. Behavior of the main building of the Olive View Hospital in the 1971 San Fernando Earthquake is a classic example of this [1].

More recently another type of earthquake isolation system using natural rubber bearings and mild steel energy absorbing devices has been proposed [2]. The structure is supported on natural rubber bearings which are very rigid vertically but have a low lateral stiffness. To prevent excessive lateral deformation under small earthquakes as well as dissipate energy under strong earthquakes, special devices are attached at the foundation level and at any other desired floor
level. The devices, made of ductile steel, rely on the hysteretic behavior of steel subjected to torsional deformation. A half-scale model of a steel framed structure employing these energy absorbing devices attached at the bottom floor girder was tested on an earthquake simulator by Kelly et. al. The results of these tests, reported in $[2,3,4$ and 5$]$, show that for small earthquakes the structure behaved as if attached to a rigid foundation, strongly amplifying the ground motion, while for strong earthquakes, the devices yielded and absorbed large amounts of energy amounting to as much as the equivalent of 30% - 35% of critical viscous damping. A number of different devices with different elastic and post-yield stiffnesses were used. The results show that different degrees of isolation were provided by each device. The question naturally arises, what is the "best" choice of these energy absorbing devices for a particular structure?

The present research is motivated by this question. The problem of choosing the best device parameters is formulated as an optimization problem with time dependent constraints. A second important aspect of the present study is the application of nonlinear programming techniques to solve the optimal design problem resulting from the use of energy absorbing devices.

1.1 Program Objective and Iimitations

The objective of the present research program is to study the problem of optimal design of an earthquake isolation system of the type described utilizing nonlinear programming techniques, specifically, the Method of Feasible Directions.

The first step is to develop methods for efficient analysis and re-analysis of the structural system, which is assumed to remain elastic
during the earthquake, the only nonlinearity occuring in the behavior of the energy absorbing devices. The optimization process requires time-history analysis of structural response at each design iteration. This is a very time-consuming operation for a general nonlinear structural system, and it requires exploitation of the "localized" nonlinear nature of the present problem to obtain a satisfactory computational algorithm. The present study is deterministic in the sense that an actual ground motion record is used as input. In the absence of any suitable method for characterization of earthquakes for nonlinear systems, the probabilistic nature of the design problem is taken into account by carrying out a series of analyses for different earthquake inputs and comparing the structural response under these earthquakes for the isolation system designed from the single record. This procedure gives at least an indirect indication of the sensitivity of the optimal design to the selection of input earthquake ground motion. The method of feasible directions used to find the optimal design is a very general method capable of handling a variety of design problems. Modifications of the basic algorithm are required to make it computationally efficient for the special class of design problems associated with earthquake-resistant design. The objectives of the present research are thus summarized as follows:
(i) to develop an efficient algorithm for the analysis of structures with localized nonlinear energy absorbing devices subjected to earthquakes.
(ii) to formulate the problem of design of an earthquake isolation system as an optimal design problem.
(iii) to apply the method of feasible directions to achieve the optimal design, making use of the special nature of the earthquake problem to achieve computational efficiency.

1.2 Report Outline

A short description of the test structure and the isolation system used in the earthquake simulator tests conducted at the University of California, Berkeley, is given in Section 2. In Section 3, the mathematical model used to describe the hysteretic behavior of the energy absorbing devices is described. Equations of motion for the system are obtained and an efficient algorithm based upon the Newmark and Runge-Kutta methods with optional Newton-Raphson iteration is presented. Comments are made about sensitivity analysis results,i.e. computation of the rate of change of response quantities with respect to the design parameters required by the optimization algorithm. A general optimal design problem is then formulated in Section 4, which also presents a feasible direction algorithm to solve it. Comments about the computational aspects of the algorithm are included. Section 5 describes application of the general techniques presented in Sections 3 and 4 to the optimal design of an isolation system for the steel test frame described in Section 2. The report is completed by some concluding remarks in Section 6.

2. AN EARTHQUAKE ISOLATION SYSTEM

A half-scale model of a three-story steel framed-structure with an isolation system consisting of rubber bearings and energy absorbing devices was tested on an earthquake simulator. This Section gives a brief description of the test frame and the isolation system used. Further details of design and fabrication are given in $[2,4,5,6]$.

2.1 Steel Test Frame

The test structure consisted of two identical, three-story, single-bay steel frames, interconnected by floor diaphragm systems which were essentially rigid in their planes as shown in Fig. l. The model weighed 39.5 kips, was 20 ft high and was 12 ft by 6 ft in plan. The columns and beams were $W 5 \times 12$ and $W 6 \times 12$ rolled sections, respectively, and were welded together by typical moment resistant connections. A heavy W10 x 49 girder was used at the base to ensure that the rubber bearings would have little tendency to undergo bending deformations. Concrete blocks weighing 8 kips were added to each floor to simulate the dead weight of the building. The model was supported on rubber bearings and energy absorbing devices were attached to the base floor through a horizontal link, as shown in Fig. 2.

2.2 Natural Rubber Bearings

The natural rubber bearings used in the test are shown in Figs. 3 and 4. Each layer of a multilayer bearing was hand-fabricated from sheets of rubber vulcanization-bonded to aluminum foil. The aluminum foil was in turn bonded to the mild steel interleaves using adhesive tape over two-thirds of the surface area and epoxy resin, for greater shear strength, over the remaining one-third area.

The vertical stiffness characteristics of the rubber bearings are shown in Fig. 5. After an initial soft cycle, the bearings showed little hysteresis. The vertical stiffness under the working load is of the order of 150 kips/in.

Horizontal stiffness characteristics are shown in Fig. 6. The initial tangent stiffness at zero deflection is $320 \mathrm{Ib} / \mathrm{in} .$, reducing to about 250 1b/in. at 2.5 in. deflection. The hysteresis loops represent approximately 10% critical damping.

2.3 Torsional Energy Absorbing Devices

A typical energy absorbing device is shown in Fig. 7. The key element in the device is the mild steel torsion bar of rectangular crosssection to which four clamps are welded. The outer clamping arms are used to attach the device to structural and foundation elements, with the inner arms linked to the active structural element. When this element is displaced, it pushes the inner arms introducing torsion in the mild steel bar.

In this steel frame test devices were attached to the base floor in such a way that they applied a horizontal force to the model structure. The devices were tested under sinusoidal and random loadings to establish that they are capable of withstanding many cycles of large plastic deformation without appreciable deterioration in their energy absorption capacity. In this regard see Fig. 8. Under small excitations the devices are elastic and the system behaves as a rigid foundation system, while under strong excitations the devices yield and produce large hysteresis loops, thus absorbing a considerable amount of energy.

3. STRUCTURAL ANALYSIS

A procedure for efficient analysis of a structural system containing earthquake isolation devices is the first step in developing an optimal design methodology. This section introduces a mathematical model to describe the hysteretic behavior of the energy absorbing devices. Equations of motion for a multistory frame containing energy absorbing devices are then derived and an efficient algorithm for their numerical integration using substructuring is given.

3.1 Mathematical Model for Hysteretic Behavior of the Energy Absorbing Devices

A number of models have been employed to specify the forcedeformation relationship for inelastic structural elements under cyclic loading. Two of the most common are the bilinear and the Ramberg-Osgood models. The bilinear model exhibits sharp transition from elastic to inelastic states; kinematic or isotropic hardening rules are used for unloading and reloading. The model fails to represent actual material behavior under cyclic loading and is computationally quite inefficient because it requires one to keep track of all stiffness transition points.

The Ramberg-Osgood model, coupled with Masing's rule for unloading and reloading gives a continuous transition from elastic to inelastic states. Computationally, this is a very difficult model to use because of different equations for different parts of the loop. Matzen and McNiven [7] have pointed out that the model as presented originally is not suitable for random earthquake-type excitations. At least thirteen new rules have been added to make it applicable to this case, making the model even harder to use.

Recently a series of newly-proposed models for cyclic behavior of structural elements has been described [8]. These models are given in the form of differential equations and are sufficiently general to include strain hardening, stiffness degradation, etc. A single equation governs initial loading, unloading and reloading (facilitating computation) and it behaves well in the case of arbitrary excitations.

The particular rate-independent model to be used for the energy absorbing devices in this study is given by the following equations:

$$
\begin{align*}
& \dot{F}(t)=K_{0}\left[\dot{U}(t)-|\dot{U}(t)|\left(\frac{F(t)}{F_{0}}-s\right)^{n}\right] \tag{3.1.1}\\
& S(t)=\alpha\left[\frac{U(t)}{U_{0}}-\frac{F(t)}{F_{0}}\right] \tag{3.1.2}
\end{align*}
$$

where

$$
\begin{aligned}
F(t)= & \text { horizontal force in the energy absorber } \\
U(t)= & \text { displacement of the energy absorber } \\
\dot{U}(t)= & \text { velocity of the energy absorber } \\
K_{0}= & F_{0} / U_{0} \\
F_{0}= & \text { yield force } \\
U_{0}= & \text { yield displacement } \\
\alpha= & \text { a constant which controls the slope after yielding, } \\
& K_{0} \approx K_{0} \frac{\alpha}{1+\alpha} \text {. } \\
n= & \text { a material parameter, taken as an odd integer which } \\
& \text { controls the sharpness of transition from the elastic } \\
& \text { to the inelastic region. As } n \rightarrow \infty \text { the model approaches } \\
& \text { a bilinear model. }
\end{aligned}
$$

The parameters F_{0}, U_{0}, α and n are chosen such that predicted response from the model closely matches experimental response. Typical
loops generated by this model under displacements varying sinusoidally in time are shown in Fig. 9.

3.2 Equations of Motion for the System

The structural system considered here, consists of an assemblage of discrete beam and column elements as shown in Fig. 10. The frame may have any number of stories and bays. Axial deformations in both beams and columns are neglected; thus, we have only one lateral and $M+1$ rotational degrees of freedom per story, where M is the number of bays. The nonlinear energy absorbing elements can be attached to any story. Story masses are assumed to be lumped at the floor levels and no rotational inertia is associated with the rotational degrees of freedom. The structure is assumed to remain elastic during an earthquake; thus, the nonlinearity is only associated with the energy absorbers. The equations of motion of the system can be written as follows:

$$
\begin{equation*}
\underline{\tilde{M}} \ddot{\ddot{\tilde{U}}}+\underline{\tilde{\mathrm{C}}} \underline{\tilde{\mathrm{U}}}^{\underline{\tilde{K}^{E}}} \underline{\tilde{U}}^{\tilde{\mathrm{F}}}=-\underline{\tilde{M}} \underline{r}_{g} \ddot{\mathrm{U}}_{g}(t) \tag{3.2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{U}^{T}(t)=\left(U_{1}^{r}, \ldots, U_{N(M+1)}^{r} ; U_{1}^{\ell}, \ldots ; U_{1}^{n}, \ldots\right) \text { is the nodal point } \\
& \text { displacement vector, } \tilde{\mathrm{U}} \in \mathbb{R}^{\mathrm{N}(\mathrm{M}+2)} \text {. } \\
& \dot{\tilde{U}}(t)=\text { velocity vector } \\
& \ddot{\tilde{U}}(t)=\text { acceleration vector } \\
& \underline{\tilde{\mathrm{M}}}=\text { diagonal mass matrix, } \underset{\underline{M}}{\in} \in \mathbb{R}^{N(M+2)} \times \mathbb{R}^{N(M+2)} \\
& \underline{\underline{C}}=\text { damping matrix, } \underset{\underline{C}}{\in} \mathbb{R}^{N(M+2)} x \mathbb{R}^{N(M+2)} \\
& \underline{\mathrm{K}}^{\mathrm{E}}=\text { stiffness matrix of the structure excluding the energy } \\
& \text { absorbing elements, } \widetilde{K}^{E} \in \mathbb{R}^{N(M+2)} x \mathbb{R}^{N(M+2)}
\end{aligned}
$$

$$
\begin{aligned}
\underline{\tilde{E}}= & \text { vector of forces in the energy absorbing elements, } \\
& \tilde{F}_{\underline{F}} \in \mathbb{R}^{N(M+2)} \\
\underline{r}= & (0, \ldots ; l \ldots ; l \ldots 1)^{T}, \underline{r} \in \mathbb{R}^{N(M+2)} \\
\ddot{U}_{g}(t)= & \text { ground acceleration time history. }
\end{aligned}
$$

In order to eliminate rotational degrees of freedom from the system, the matrices $\underset{\sim}{\tilde{M}}, \underset{\mathbb{C}}{\widetilde{K}}$ and ${\underset{\sim}{K}}^{E}$ are partitioned corresponding to the rotational and translational degrees of freedom. The system of equations then has the form

where

$$
\begin{aligned}
& \underline{e}^{T}=(1,1,1, \ldots), \quad \underline{e} \in \mathbb{R}^{\mathbb{N}} \\
& \underline{U}, \underline{U}, \underline{U} \in \mathbb{R}^{N} \quad \text { represent, respectively, translational } \\
& \text { displacement, velocity and acceleration } \\
& \text { vectors. } \\
& \underline{U}_{\theta}, \dot{U}_{\theta}, \ddot{U}_{\theta} \in \mathbb{R}^{N(M+1)} \text { represent state vectors corresponding to } \\
& \text { rotational degrees of freedom }
\end{aligned}
$$

The first sub-matrix equation gives

$$
\underline{U}_{\theta}=-\left[\mathbb{K}_{\theta \theta}^{\mathrm{E}}\right]^{-1}{\underset{-\theta t}{\mathrm{~K}}}_{\mathrm{K}_{\theta t}^{\mathrm{E}}} \quad \underline{U}
$$

The second equation gives

$$
\begin{aligned}
\underline{M} \underline{U} & +\underline{C} \underline{U}+\underline{K}_{t t}^{\mathrm{E}} \underline{U}+\left[\underline{K}_{\theta t}^{\mathrm{E}}\right]^{\mathrm{T}} \underline{U}_{\theta} \\
& +\underline{\mathrm{F}}=-\underline{\mathrm{M}} \underline{\mathrm{E}}_{\mathrm{U}} .
\end{aligned}
$$

Substituting for U_{θ} from the first into the second equation yields

$$
\underline{\mathrm{M}} \underline{\ddot{\mathrm{U}}}+\underline{\mathrm{C}} \underline{\dot{U}}+\underline{\mathrm{K}}^{\mathrm{E}} \underline{\mathrm{U}}+\underline{\mathrm{F}}=-\underline{\mathrm{M}} \underline{\mathrm{e}}_{\underline{\mathrm{U}}}^{\mathrm{g}}(\mathrm{t})
$$

where

$$
\begin{aligned}
& \underline{K}^{E}=\underline{K}_{t t}^{E}-\left[K_{\theta t}^{E}\right]^{T}\left[K_{\theta \theta}^{E}\right]^{-1} \underline{K}_{\theta t} \\
& \underline{P}(t)=-\underline{M} \underline{E}_{g} \ddot{U}_{g}(t) .
\end{aligned}
$$

Then, the equations of motion in terms of lateral degrees of freedom are

$$
\begin{align*}
& \underline{M} \underline{\ddot{U}}(t)+\underline{C} \underline{U}(t)+\underline{K}^{E} \underline{U}(t)+\underline{F}(t)=\underline{P}(t) . \tag{3.2.2}\\
& \underline{M}, \underline{C}, \underline{K}^{E} \in \mathbb{R}^{N} \times \mathbb{R}^{N} \\
& \underline{U}(t), \underline{U}(t), \underline{U}(t) \in \mathbb{R}^{N} .
\end{align*}
$$

3.3 Numerical Solution of the Differential Equations of Motion

The equations of motion (3.2.2) are solved numerically by discretizing them in time, with the exact solution $\underline{U}(t), \underline{U}(t)$ and $\underline{\ddot{U}}(t)$ approximated by ${\underset{U}{t}},{\underset{U}{U}}^{\dot{U}}$ and ${\underset{U}{t}}^{\prime}$, respectively. The step-by-step integration procedures start with the known initial conditions and march forward in time giving the solution at discrete time intervals. The process for a nonlinear system has two distinct phases. The first phase is the linearization phase, in which the equations are linearized about the current state by retaining only the first order terms of the Taylor series expansion. Estimates of the solution at the next step are then obtained by using these linearized equations. The second phase is the state determination phase, in which the internal forces in equilibrium with the new state of motion are calculated. If the
discrepancy between these internal forces and the external applied loads is within some tolerance level, the solution is accepted and the process repeated for the next step. Otherwise, a Newton-Raphson type iteration is used until the unbalanced forces are within acceptable limits.

In this study the estimates of the solution are obtained using Newmark's method and the internal forces in the energy absorbers are computed using a fourth-order Runge-Kutta scheme. The details of the process are given below.

The equations of motion (3.2.2) at time $\tau=t+\Delta t$ can be
written as

$$
\begin{equation*}
\underline{M}_{\underline{\mathrm{U}}}^{\tau}+\underline{\mathrm{C}} \underline{\mathrm{U}}_{\tau}+\underline{K}^{\mathrm{E}} \underline{\mathrm{U}}_{\tau}+\underline{\mathrm{F}}_{\tau}=\underline{\mathrm{P}}_{\tau} \tag{3.3.1}
\end{equation*}
$$

Define the increments in acceleration, velocity, displacement and force in the energy absorbers occurring in the time increment Δt by

$$
\begin{align*}
& \Delta \ddot{\mathrm{U}}_{t}=\ddot{\underline{U}}_{T}-\underline{\mathrm{U}}_{t} \\
& \Delta \underline{U}_{t}=\underline{\dot{U}}_{\tau}-\dot{\underline{U}}_{t} \\
& \Delta \underline{U}_{t}=\underline{U}_{\mathrm{T}}-\underline{U}_{\mathrm{t}} \\
& \Delta \underline{F}_{t}=\underline{F}_{\tau}-\underline{F}_{t} \tag{3.3.2}\\
& =\left.\frac{\partial \mathrm{E}}{\partial \underline{\mathrm{U}}}\right|_{t} \quad \underline{\mathrm{U}}_{\mathrm{t}} \\
& ={\underset{\mathrm{K}}{\mathrm{t}}}_{\mathrm{N}}^{\Delta \underline{U}_{\mathrm{t}}}
\end{align*}
$$

Substituting these expressions in Eq. (3.3.1) produces the incremental form of the equations of motion

$$
\begin{equation*}
\underline{M} \Delta \underline{\dot{\ddot{u}}}_{t}+\underline{C} \underline{\dot{U}}_{t}+\left(\underline{\underline{K}}^{E}+\underline{K}_{t}^{N}\right) \Delta \underline{U}_{t}=\underline{\underline{P}}_{t}^{*} \tag{3.3.3}
\end{equation*}
$$

where

$$
\underline{P}_{t}^{*}=\underline{P}_{\tau}-\left[\underline{M}_{\ddot{U}_{t}}+\underline{C} \underline{U}_{t}+\underline{K}^{E} \underline{U}_{t}+\underline{F}_{t}\right]
$$

Computation of $\mathrm{K}_{\mathrm{t}}^{\mathrm{N}}$
\underline{K}_{t}^{N} is a diagonal matrix whose ith diagonal element is $\left.\frac{\partial F_{i}}{\partial U_{i}}\right|_{t}$. Since $E(t)$ represents the force in the energy absorbers, only those elements on the diagonal, which correspond to a degree of freedom at which an energy absorbing element is attached, will be non-zero.

The force in the energy absorbing element at the ith degree of freedom is obtained from Eqs. (3.1.1) and (3.1.2):

$$
\begin{aligned}
& \dot{F}_{i}(t)=K_{0}\left(\dot{U}_{i}(t)-\left|\dot{U}_{i}(t)\right|\left(\frac{F_{i}(t)}{F_{0}}-S_{i}(t)\right)^{n}\right) \\
& S_{i}(t)=\alpha\left(\frac{U_{i}(t)}{U_{0}}-\frac{F_{i}(t)}{F_{0}}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& \dot{F}_{i}(t)=K_{0} \dot{U}_{i}(t)\left(1-\operatorname{sign}\left(\frac{F_{i}(t)}{F_{0}}-S_{i}(t)\right)^{n}\right) \\
& S_{i}(t)=\alpha\left(\frac{U_{i}(t)}{U_{0}}-\frac{F_{i}(t)}{F_{0}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\operatorname{sign} & =1 \text { if } U_{i}(t)>0 \\
& =-1 \text { if } U_{i}(t)<0
\end{aligned}
$$

Thus

$$
\frac{\dot{F}_{i}(t)}{\dot{U}_{i}(t)}=K_{0}\left\{1-\operatorname{sign}\left(\frac{F_{i}(t)}{F_{0}}-S_{i}(t)\right)^{n}\right\}
$$

and

$$
\begin{equation*}
\left.\frac{\partial F_{i}}{\partial U_{i}}\right|_{t}=K_{0}\left\{1-\operatorname{sign}\left(\frac{F_{i}(t)}{F_{0}}-S_{i}(t)\right)^{n}\right\} \tag{3.3.4}
\end{equation*}
$$

with

$$
S_{i}(t)=\alpha\left(\frac{U_{i}(t)}{U_{0}}-\frac{F_{i}(t)}{F_{0}}\right)
$$

Newmark's Method

An implicit, single-step, two parameter family of integration operators described by Newmark [9] is used for the numerical integration of the equations of motion. The method assumes that the increments in velocity and acceleration are related to the increment in displacement and the state of motion at time t, as follows:

$$
\begin{align*}
& \Delta \dot{U}_{t}=\frac{\gamma}{\beta \Delta t} \Delta \underline{U}_{t}-\frac{\gamma}{\beta} \dot{U}_{t}-\Delta t\left(\frac{\gamma}{2 \beta}-1\right) \ddot{U}_{t} \tag{3.3.5}\\
& \Delta \ddot{U}_{t}=\frac{1}{\beta(\Delta t)^{2}} \Delta \underline{U}_{t}-\frac{1}{\beta \Delta t} \dot{U}_{t}-\frac{1}{2 \beta} \ddot{\ddot{U}}_{t} \tag{3.3.6}
\end{align*}
$$

where
$\Delta t=$ time step of integration
γ, β are the two integration parameters.
A "constant average acceleration" operator is obtained with $\beta=1 / 4$ and $\gamma=1 / 2$, which is unconditionally stable for linear problems.

A "linear acceleration" operator is obtained with $\beta=1 / 6$ and $\gamma=1 / 2$.

Substituting Eqs. (3.3.5) and (3.3.6) into the incremental equations of motion (3.3.3) and simplifying gives

$$
\begin{equation*}
\underline{K}_{t}^{*} \Delta \underline{U}_{t}=\underline{R}_{t}^{*} \tag{3.3.7}
\end{equation*}
$$

where

$$
\begin{aligned}
\underline{K}_{t}^{*}= & \frac{1}{\beta \Delta t} \underline{M}+\frac{\gamma}{\beta \Delta t} \underline{C}+\underline{K}^{E}+\underline{K}_{t}^{N} \\
\underline{R}_{t}^{*}= & \underline{P}_{t}^{*}+\underline{M}\left[\frac{1}{\beta \Delta t} \underline{U}_{t}+\frac{1}{2 \beta} \ddot{\underline{U}}_{t}\right] \\
& +\underline{C}\left[\frac{\gamma}{\beta} \underline{\dot{U}}_{t}+\Delta t\left(\frac{\gamma}{2 \beta}-1\right) \ddot{U}_{t}\right]
\end{aligned}
$$

$\underline{\text { Solution of } \underline{K}_{t}^{*} \Delta \underline{U}_{t}=\underline{R}_{t}^{*}}$
The most expensive part of the integration process is the solution of the above set of linear equations. Fortunately, because of the localized nonlinearity of the problem, it is not necessary to form and decompose the whole matrix K_{t}^{*} at each step. The substructuring technique is used to separate effectively the nonlinear part from the linear part of the problem as follows:

Partition the displacement vector such that displacements corresponding to the energy absorbers are separated from the remaining displacements

$$
\Delta \underline{U}_{t}=\left[\begin{array}{c}
\Delta \underline{\mathrm{U}}^{\mathrm{E}} \\
\hdashline \underline{\mathrm{U}}^{\mathrm{N}}
\end{array}\right]
$$

$\Delta \underline{\mathrm{U}}^{\mathrm{N}}=\begin{aligned} & \text { incremental displacements corresponding to energy absorbing } \\ & \text { elements. }\end{aligned}$
$\Delta \underline{U}^{\mathrm{E}}=$ incremental displacements corresponding to the rest of the system

Partition the matrices \underline{K}_{t}^{*} and \underline{R}_{t}^{*} accordingly, as follows:

The first equation gives

$$
\underline{K}_{\mathrm{EE}} \Delta \underline{U}^{\mathrm{E}}+\underline{K}_{-\mathrm{EN}} \Delta \underline{U}^{\mathrm{N}}=\underline{R}^{\mathrm{E}}
$$

or

$$
\begin{equation*}
\Delta \underline{U}^{E}=\underline{K}_{E E}^{-1}\left[\underline{R}^{E}-\underline{K}_{E N} \Delta \underline{U}^{N}\right] \tag{3.3.9}
\end{equation*}
$$

The second submatrix equation in Eq. (3.3.8) gives

$$
\begin{equation*}
\underline{K}_{\mathrm{NE}} \Delta \underline{U}^{\mathrm{E}}+\underline{K}_{\mathrm{NN}} \Delta \underline{U}^{\mathbb{N}}=\underline{R}^{\mathrm{N}} . \tag{3.3.10}
\end{equation*}
$$

Substitute Eq. (3.3.9) into Eq. (3.3.10)

$$
\underline{K}_{\mathrm{NE}} \underline{K}_{\mathrm{EE}}^{-1}\left[\underline{\mathrm{R}}^{\mathrm{E}}-\mathrm{K}_{\mathrm{EN}} \Delta \underline{U}^{\mathrm{N}}\right]+\underline{K}_{\mathrm{NN}} \Delta \underline{U}^{\mathrm{N}}=\underline{\underline{R}}^{\mathrm{N}} .
$$

Define

$$
\begin{aligned}
& \underline{Q}=-\underline{K}_{\mathrm{EE}}^{-1} \quad \underline{K}_{\mathrm{EN}} \\
& \underline{Q}^{\mathrm{T}}=-\underline{K}_{\mathrm{NE}} \quad \underline{K}_{\mathrm{EE}}^{-1} .
\end{aligned}
$$

Thus

$$
\left[K_{N E} \underline{Q}+\underline{K}_{N N}\right] \Delta \underline{U}^{N}=\underline{R}^{N}+\underline{g}^{T} \underline{R}^{E}
$$

or

$$
\begin{equation*}
\Delta \underline{U}^{N}=\left[\underline{K}_{N E} \underline{\underline{N}}+\underline{K}_{N N}\right]^{-1}\left[\underline{R}^{N}+\underline{g}^{T} \underline{R}^{E}\right] \tag{3.3.11}
\end{equation*}
$$

Once the $\Delta \underline{U}^{N}$ are known, $\Delta \underline{U}^{\mathrm{E}}$ are calculated from Eq. (3.3.9).
The computational steps can be summarized in the following algorithm.

Algorithm
In the beginning of the integration loop

(ii) triangularize K_{EE} '
(iii) obtain \underline{Q} by forward reduction and back substitution from $\underline{K}_{E E} \underline{Q}=-\underline{K}_{E N}$
(iv) form \underline{Q}^{T} and the product $K_{\mathrm{NE}} \underline{\underline{Q}}$.

At each time step of integration
(i) form $K_{-N N}$ at the current step,
(iii) Solve $\left[\underline{K}_{N E} \underline{\underline{Q}}+\underline{K}_{N N}\right] \Delta \underline{U}^{N}=\underline{R}^{N}+\underline{Q}^{T} \underline{R}^{E}$ for $\Delta \underline{U}^{N}$,
(iv) obtain $\Delta \underline{U}^{\mathrm{E}}$ by forward reduction and back-substitution from

$$
\underline{K}_{\mathrm{EE}} \Delta \underline{\mathrm{U}}^{\mathrm{E}}=\underline{\mathrm{R}}^{\mathrm{E}}-\underline{K}_{\mathrm{EN}} \Delta \underline{\mathrm{U}}^{\mathrm{N}}
$$

Computation of Forces in the Energy Absorbing Elements

After increments in the displacements and velocities are obtained, the next step is to compute the internal resisting forces in equilibrium with this new state of motion. Since the structure is assumed to remain elastic, the internal forces in the structural elements are obtained simply by multiplying the current displacements with the appropriate stiffnesses of these elements. Computation of forces in the energy absorbers, however, is not that simple, because of lack of an algebraic expression for their force-deformation behavior, which instead, is described by a set of first order differential equations. These equations are integrated numerically to compute internal forces in the energy absorbers. An explicit fourthorder Runge-Kutta scheme, with the option of using a smaller time step than the one used in Newnark's method, is used in this study. An explicit scheme is favored over an implicit scheme because of the
added complexity of an implicit scheme, which would involve an additional iteration cycle. The details of the process are given below.

To integrate force-deformation equations of energy absorbers from time t to time $\tau=t+\Delta t$, some assumptions regarding the variation of acceleration, velocity and displacement during the time interval (t, τ) are needed. Since the Newmark linear acceleration method has been demonstrated to be quite effective for solving nonlinear structural dynamics problems [10], it seems reasonable to assume linear variation in the acceleration during the time interval. This will imply quadratic variation of velocity and cubic variation of displacement. These variations are shown in Fig. Il.

The force in the energy absorber at the ith floor is given by Eqs. (3.1.1) and (3.1.2):

$$
\begin{aligned}
& \dot{F}_{i}(x)=K_{o}\left\{\dot{U}_{i}(x)-\left|\dot{U}_{i}(x)\right|\left(\frac{F_{i}(x)}{F_{0}}-S_{i}\right)^{n}\right\} \\
& S_{i}(x)=\alpha\left(\frac{U_{i}(x)}{U_{0}}-\frac{F_{i}(x)}{F_{0}}\right) .
\end{aligned}
$$

or

$$
\begin{array}{r}
\dot{F}_{i}(x)=K_{0}\left[\dot{U}_{i}(x)-\left|\dot{U}_{i}(x)\right|\left\{(\alpha+1) \frac{F_{i}(x)}{F_{0}}-\alpha \frac{U_{i}(x)}{U_{0}}\right\}^{n}\right] \\
x \in[0, \Delta t] \tag{3.3.12}
\end{array}
$$

Equation (3.3.12) is integrated by employing a fourth order Runge-Kutta method with time step Δx, where $\Delta x \leq \Delta t$, and the initial condition

$$
\begin{aligned}
& F_{i}(0)=F_{i}(t), \\
& \dot{F}_{i}(x)=f\left(F_{i}(x), x\right)
\end{aligned}
$$

$$
=K_{0}\left[\dot{U}_{i}(x)-\left|\dot{U}_{i}(x)\right|\left\{(\alpha+1) \frac{F_{i}(x)}{F_{0}}-\alpha \frac{U_{i}(x)}{U_{0}}\right\}^{n}\right]
$$

The following calculations are made to advance the solution from x_{K} to $x_{K+1}=x_{K}+\Delta x$

$$
\begin{aligned}
K_{1} & =\Delta x f\left(F_{i}\left(x_{K}\right), x_{K}\right) \\
& =\Delta x K_{0}\left[\dot{U}_{i}\left(x_{K}\right)-\left|\dot{U}_{i}\left(x_{K}\right)\right|\left\{(\alpha+1) \frac{F_{i}\left(x_{K}\right)}{F_{0}}-\alpha \frac{U_{i}\left(x_{K}\right)}{U_{0}}\right\}^{n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \dot{U}_{i}\left(x_{K}\right)=\dot{U}_{i}(t)+\ddot{U}_{i}(t) x_{K}+\frac{\Delta \dot{U}_{i}}{\Delta x} \frac{x_{K}^{2}}{2} \\
& U_{i}\left(x_{K}\right)=U_{i}(t)+\dot{U}_{i}(t) x_{K}+\ddot{U}_{i}(t) \frac{x_{K}^{2}}{2}+\frac{\Delta \dot{U}_{i}}{\Delta x} \frac{x_{K}^{3}}{6} \cdot \\
& K_{2}=\Delta x f\left(F_{i}\left(x_{K}\right)+\frac{1}{2} K_{1}, x_{K}+\frac{1}{2} \Delta x\right) \\
& =K_{0} \Delta x\left[\dot{U}_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)-\left|\dot{U}_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)\right|\right. \\
& \left.\left.(\alpha+1) \frac{F_{i}\left(x_{K}\right)+\frac{1}{2} K_{I}}{F_{0}}-\alpha \frac{U_{i}\left(x_{K}+\frac{\Delta x}{2}\right)}{U_{0}}\right\}^{n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\dot{U}_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)= & \dot{U}_{i}(t)+\ddot{U}_{i}(t)\left(x_{K}+\frac{1}{2} \Delta x\right) \\
& +\frac{\Delta \ddot{U}_{i}}{\Delta x} \frac{1}{2}\left(x_{K}+\frac{1}{2} \Delta x\right)^{2} \\
U_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)= & U_{i}(t)+\dot{U}_{i}(t)\left(x_{K}+\frac{1}{2} \Delta x\right) \\
& +\ddot{U}_{i}(t) \frac{1}{2}\left(x_{K}+\frac{1}{2} \Delta x\right)^{2}+\frac{\Delta \ddot{U}_{i}}{\Delta x} \frac{1}{6}\left(x_{K}+\frac{1}{2} \Delta x\right)^{3} \\
K_{3}=\Delta x f\left(F_{i}\left(x_{k}\right)\right. & \left.+\frac{1}{2} K_{2}, x_{K}+\frac{1}{2} \Delta x\right)
\end{aligned}
$$

$$
\begin{aligned}
&= K_{0} \Delta x\left[\dot{U}_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)-\left|\dot{U}_{i}\left(x_{K}+\frac{1}{2} \Delta x\right)\right|\left\{\begin{array}{r}
(\alpha+1) \frac{F_{i}\left(x_{K}\right)+\frac{1}{2} K_{2}}{F_{0}}- \\
\alpha \frac{U_{i}\left(x_{K}+\frac{1}{2} \Delta x\right.}{} \\
U_{0}
\end{array}\right\}^{n}\right] \\
& K_{4}= \Delta x f\left(F_{i}\left(x_{K}\right)+K_{3}, \quad x_{K}+\Delta x\right) \\
&= K_{0} \Delta x\left[\dot{U}_{i}\left(x_{K}+\Delta x\right)-\left|\dot{U}_{i}\left(x_{K}+\Delta x\right)\right|\left\{(\alpha+1) \frac{F_{i}\left(x_{K}\right)+K_{3}}{F_{0}}-\right.\right. \\
&\left.\left.\alpha \frac{U_{i}\left(x_{K}+\Delta x\right)}{U_{0}}\right\}^{n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \dot{U}_{i}\left(x_{K}+\Delta x\right)=\dot{U}_{i}(t)+\ddot{U}_{i}(t)\left(x_{K}+\Delta x\right) \\
& +\frac{\Delta \dot{\mathrm{U}}_{\dot{i}}}{\Delta \mathrm{x}} \frac{1}{2}\left(\mathrm{x}_{\mathrm{K}}+\Delta \mathrm{x}\right)^{2} \\
& U_{i}\left(X_{K}+\Delta x\right)=U_{i}(t)+\dot{U}_{i}(t)\left(x_{K}+\Delta x\right) \\
& +\ddot{U}_{i}(t) \frac{1}{2}\left(x_{K}+\Delta x\right)^{2}+\frac{\Delta \ddot{U}_{i}}{\Delta x} \frac{1}{6}\left(x_{K}+\Delta x\right)^{3} \\
& \mathrm{~F}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{K}+1}\right)=\mathrm{F}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{K}}\right)+\frac{1}{6}\left(\mathrm{~K}_{1}+2 \mathrm{~K}_{2}+2 \mathrm{~K}_{3}+\mathrm{K}_{4}\right) .
\end{aligned}
$$

Algorithm for Integration of Equations of Motion

Now the algorithm for numerical integration of the equations of motion (3.2.2) can be presented.

A: INITIAL CALCULATIONS

DATA: Integration parameters β, γ
time steps Δt and Δx, .
Convergence tolerance parameter TOL.
structural property matrices $\underline{M}, \underline{K}^{\mathrm{E}}$ and C
energy absorber properties F_{0}, U_{0}, α and n.

STEP 1: Compute the constants

$$
\begin{array}{ll}
a_{1}=\frac{1}{\beta(\Delta t)^{2}} & a_{2}=\frac{1}{\beta \Delta t}
\end{array} a_{3}=\frac{1}{2 \beta} .
$$

STEP 2: Initialize the state of motion, ie. specify $\underline{U}_{0}, \dot{U}_{0}$ and ${\underset{U}{0}}_{0}$.

STEP 3: Partition the stiffness matrix as explained in Eq. (3.3.8), triangularize K_{EE} and form Q .
B. FOR EACH TIME STEP

STEP 4: Form ${\underset{-}{t}}_{*}^{*}$ and $\underline{R}_{\mathrm{t}}^{*}$

$$
\begin{aligned}
& \underline{K}_{t}^{*}=a_{1} \underline{M}+a_{4} \underline{C}+\underline{K}^{E}+\underline{K}_{t}^{N} \\
& \underline{R}_{t}^{*}=\underline{P}_{t}^{*}+\underline{M}_{-}^{*}\left[a_{2} \underline{U}_{t}+a_{3} \ddot{U}_{t}\right]+C\left[a_{5} \underline{U}_{t}+a_{6} \ddot{U}_{t}\right] \\
& \text { where } \underline{P}_{t}^{*}=\underline{P}_{\tau}-\left[\underline{M} \ddot{U}_{t}+\underline{C} \underline{U}_{t}+\underline{K}^{E} \underline{U}_{t}+\underline{E}_{t}\right] \\
& \underline{P}_{\tau}=-\underline{M} \underline{e}_{g}(\tau)
\end{aligned}
$$

STEP 5: Solve

$$
\underline{K}_{t}^{*} \Delta \underline{U}_{t}=\underline{R}_{t}^{*}
$$

for $\Delta \mathrm{U}_{\mathrm{t}}$, using the algorithm given previously.

STEP 6: Update the state of motion at $\tau=t+\Delta t$

$$
\begin{aligned}
& \ddot{\underline{U}}_{\tau}=\underline{\dot{U}}_{t}+a_{1} \Delta \underline{U}_{t}-a_{2} \dot{U}_{t}-a_{3} \ddot{\mathrm{U}}_{t} \\
& \underline{\mathrm{U}}_{\tau}=\underline{\dot{U}}_{t}+a_{4} \Delta \underline{U}_{t}-a_{5} \dot{U}_{t}-a_{6} \ddot{U}_{t} \\
& \underline{U}_{\tau}=\underline{U}_{t}+\Delta \underline{U}_{t} .
\end{aligned}
$$

STEP 7: Compute ${\underset{F}{\tau}}$, the forces in the energy absorbing devices using the fourth-order Runge-Kutta method.

STEP 8: Compute the unbalanced force at time τ

$$
\underline{\hat{\mathrm{I}}}=\underline{P}_{\tau}-\left[\underline{M}_{-\ddot{U}_{\tau}}+\underline{\mathrm{C}} \underline{\dot{U}}_{\tau}+\underline{K}^{\mathrm{E}} \underline{\mathrm{U}}_{\tau}+\underline{F}_{\tau}\right] .
$$

STEP 9: Compute $\left.\left||\underline{\hat{f}}|_{2}\right.$, the Euclidean norm of $\hat{\underline{f}}$. If $||\underline{\hat{f}}|\right|_{2} \leq T O L$, no iteration is needed in this step. Go to step 4 for the next step calculations, else proceed to step 10.

C: ITERATION WITHIN A TIME STEP

STEP 10: Compute $\underline{K}_{\tau}^{*}=a_{1} \underline{M}+a_{4} \underline{C}+\underline{K}^{E}+\underline{K}_{\tau}^{N}$.

STEP 11: Solve ${\underset{-}{\mathrm{K}}}^{*} \delta \underline{\mathrm{U}}_{\tau}=\underset{\underline{\hat{f}}}{ }$ for $\delta \underline{U}_{\tau}$.

STEP 12: Update the state of motion
new ${\underset{\dddot{U}}{\tau}}=\ddot{\ddot{U}}_{\tau}+a_{1} \underline{U}_{\tau}$
new $\quad \dot{U}_{\tau}=\dot{\underline{U}}_{\tau}+a_{4} \underline{\delta U}_{\tau}$
new $\underline{U}_{\tau}=\underline{U}_{\tau}+\underline{\delta}_{\tau}$.

STEP 13: Compute the unbalance as in step 8. See if convergence criterion of step 9 is satisfied. If yes, go to step 4 for next time step. Else go to step 10.

3.4 Sensitivity Analysis

The method of feasibledirections for optimization requires gradients of the constraint functions, which in turn require gradients of the response quantities with respect to the system parameters. The computation of these gradients, so-called sensitivity analysis, is important in itself because the information produced can be used directly for design trade-off studies.

One way of computing such sensitivity matrices is to integrate numerically the sensitivity equations obtained by differentiating the system equations of motion with respect to the system parameters. In the present case because of the complicated nature of the hysteretic model of the energy absorbers, the analytical expressions for sensitivity equations are very complex. Numerical integration of these equations with the same time step as that used for the system equations poses additional difficulties.

Because of these difficulties, a straight-forward approach using finite difference approximations is used. Partial derivatives are given by expressions of the type

$$
\frac{\partial f(b)}{\partial b} \Rightarrow \frac{f(b+\Delta b)-f(b)}{\Delta b}
$$

where
$f($.$) is any response function and$
b is an element of the parameter vector.

Some errors are introduced by the above approximation, but by proper selection of the step size they can be controlled.

4. OPTIMIZATION

In this section a class of optimal design problems is formulated for the multistory frame with energy absorbing devices. The design problem is then transcribed into a canonical form of nonlinear programming problem. A feasible directions algorithm to solve this problem is discussed and some comments made about the computational aspects of the method.

4.1 Optimal Design Problem

The main objective of an earthquake isolation system is to reduce detrimental effects of earthquake ground motion on the structure. Thus, one may formulate an optimal design problem as selection of the controlling parameters (e.g. yield force, yield displacement, etc., of the energy absorber) of the isolation system in such a way as to minimize some measure of the structural response of the system. In this section, the problem is first considered in an abstract manner, since the techniques described are applicable to a broad class of such problems. Specific design problems will then be treated in the next section.

A class of optimal design problems can be written in the form

$$
\min _{\underline{Z}} \max _{t \in T}[F(\underline{R}(\underline{z}, \mathrm{t}))]
$$

such that

$$
\begin{array}{rll}
\max \in T & \underline{G}(\underline{R}(\underline{z}, t)) & \leq \underline{\delta}_{1} \\
\underline{H}(\underline{z}) & \geq \underline{\delta}_{2} \tag{4.1.1}
\end{array}
$$

where

$$
T=\left[t_{0}, t_{f}\right], \text { specified time interval }
$$

The following notation has been used:

As an example, consider the problem of minimizing the maximum acceleration at the top floor of a multistory frame, with an energy absorber at the bottom floor, such that the bottom floor displacement is less than a certain allowable value. The design parameters could be chosen to be the yield force and yield displacement of the energy absorber, with the requirement that both design parameters be positive. Similarly the function F is taken as the square of the top floor acceleration while the function G is the square of the bottom floor displacement. The function \underline{H} represents positivity constraints on the design parameters, as noted above.

4.2 Nonlinear Programming Problem

The design problem formulated in the previous section is not directly suitable for the application of nonlinear programing
techniques; an appropriate canonical form can be expressed as [11, 12, 13, 14]

$$
\begin{equation*}
\min _{\underline{z}}\left\{f^{0}(\underline{z})\right\} \tag{4.2.1}
\end{equation*}
$$

such that

$$
\begin{aligned}
& f^{j}(\underline{z})=\max _{t \in T} \phi^{j}(\underline{z}, t) \leq 0 \\
& j=1, \ldots, M \\
& T \in \mathbb{R} \text { is a compact interval. } \\
& \quad g^{j}(\underline{z}) \leq 0 \quad j=1, \ldots, L
\end{aligned}
$$

where

$$
\begin{array}{ll}
\underline{z} \in \mathbb{R}^{P} & \text { is the design parameter vector. } \\
f^{0}: \mathbb{R}^{P} \rightarrow \mathbb{R} & \text { is the cost or objective function. } \\
f^{j}: \mathbb{R}^{P} \rightarrow \mathbb{R} & j=1, \ldots, M \text { are functional constraints. } \\
g^{j}: \mathbb{R}^{P} \rightarrow \mathbb{R} & j=1, \ldots, L \text { are conventional inequality } \\
& \text { constraints. }
\end{array}
$$

The optimal design problem (4.1.1) can be transcribed to the canonical form (4.2.1) by augmenting the parameter vector z by a dummy cost parameter $\mathrm{z}^{\mathrm{P}+1}$. The dummy cost parameter is an upper bound to the objective function to be minimized, i.e.

$$
\max _{t \in T}[F(\underline{R}(\underline{\mathrm{z}}, \mathrm{t}))] \leq \mathrm{z}^{\mathrm{P}+1}
$$

Thus, the minimization of z^{P+1} implies the minimization of the actual objective function. The design problem can then be written as:

$$
\min _{\underline{z}} \mathrm{z}^{\mathrm{P}+1}
$$

such that

$$
\begin{align*}
& \max _{t \in T}[F(\underline{R}(\underline{z}, t))]-z^{P+1} \leq 0 \\
& \max {[\underline{G}(\underline{R}(\underline{z}, t))]-\underline{\delta}_{-1} \leq 0 } \tag{4.2.2}\\
&-\underline{H}(\underline{z})+\underline{\delta}_{2} \leq 0,
\end{align*}
$$

which is in the canonical form with

$$
\begin{aligned}
& f^{0}(\underline{z})=z^{P+1} \\
& f^{1}(\underline{z})=\max _{t \in T}\left[F(\underline{R}(\underline{z}, t))-z^{P+1}\right] \\
& f^{j}(\underline{z})=\max _{t \in T}\left[G^{j}(\underline{R}(\underline{z}, t))-\delta_{1}^{j}\right] j=2,3, \ldots, M \\
& g^{j}(\underline{z})=-H^{j}(\underline{z})+\delta_{2}^{j} \quad j=1, \ldots, L .
\end{aligned}
$$

4.3 Method of Feasible Directions

An algorithm of the feasible direction type for solving the nonlinear programming problem (4.2.1) is presented in this section. The basic algorithm is due to Polak and Trahan [15]. Only a short description of the algorithm will be given here;readers interested in more details and the convergence proof are refexred to the original paper.

Before presenting the algorithm, some definitions and assumptions are required. As noted earlier, the nonlinear programming problem (NLP) is defined as:

$$
\min _{\underline{z}}\left\{f^{0}(\underline{z}) \mid f^{j}(\underline{z}) \leq 0, j \in J_{m} ; g^{\dot{j}}(\underline{z}) \leq 0, j \in J_{\ell}\right\}
$$

where

$$
\begin{equation*}
f^{j}(\underline{z})=\max _{t \in T} \phi^{j}(\underline{z}, t) \tag{4.3.1}
\end{equation*}
$$

$$
\begin{aligned}
& T=\left[t_{0}, t_{f}\right] \\
& J_{\mathrm{m}}=\{1,2, \ldots, M\} \\
& J_{\ell}=\{1,2, \ldots, L\} \\
& f^{0}: \mathbb{R}^{P} \rightarrow \mathbb{R}, g^{j}: \mathbb{R}^{P} \rightarrow \mathbb{R}, j \in J_{\ell} \text { are assumed to be con- } \\
& \phi^{j}: \mathbb{R}^{P} x \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}, j \in J_{m} \text { are continuously differentiable. } \\
& \text { in the first variable and con- } \\
& \text { inferentiable }
\end{aligned}
$$

Define the feasible set,

$$
F=\left\{\underline{z} \in \mathbb{R}^{P} \mid f^{j}(\underline{z}) \leq 0, j \in J_{m} ; g^{j}(\underline{z}) \leq 0, j \in J_{\ell}\right\}
$$

The interval T is discretized into $q+1$ points and is denoted by T_{q} Define

$$
\begin{aligned}
& \tilde{\psi}_{q}(\underline{z})=\max \left\{\phi^{j}(\underline{z}, t), j \in J_{m}, t \in T_{q} ; g^{j}(\underline{z}), j \in J_{\ell}\right\} \\
& \psi_{q}(\underline{z})=\max \left\{0, \quad \tilde{\psi}_{q}(\underline{z})\right\}
\end{aligned}
$$

Note that, if $\underline{z} \in F$, then $\psi_{q}(\underline{z})=0$. Define the " ε-active constraint" points

$$
\tilde{\mathrm{T}}_{\mathrm{q}, \varepsilon}^{j}(\underline{z})=\left\{t \in \mathrm{~T}_{q} \mid \phi^{j}(\underline{z}, t)-\psi_{q}(\underline{z}) \geq-\varepsilon\right\}, j \in J_{\mathrm{m}}
$$

Now define the "intervals"

$$
I_{\underline{q}, \varepsilon, k}^{j}(\underline{z}) \subset \tilde{T}_{q, \varepsilon}^{j}(\underline{z}) \quad k=1,2, \ldots, k_{q, \varepsilon}^{j}(\underline{z}), j \in J_{m^{\prime}}
$$

recursively, as follows.
To define the first interval, $I_{q, \varepsilon, l}^{j}(\underline{z})$, let t_{l} be the smallest number in $\tilde{\mathrm{T}}_{\mathrm{q}, \varepsilon}^{\mathrm{j}}(\underline{z})$ and let n_{1} be the largest integer such that

$$
\left(\mathrm{t}_{1}+\mathrm{n}_{1} \Delta \mathrm{t}\right) \in \tilde{\mathrm{T}}_{\underline{q}, \varepsilon}^{j}(\underline{z}), \text { but }\left(\mathrm{t}_{1}+\left(\mathrm{n}_{1}+1\right) \Delta \mathrm{t}\right) \notin \tilde{\mathrm{T}}_{\mathrm{q}, \varepsilon}^{\mathrm{j}}(\underline{z})
$$

where

$$
\Delta t=\left(t_{f}-t_{0}\right) / q
$$

Then

$$
I_{q, \varepsilon, 1}^{j}=\left\{t_{1}, t_{1}+\Delta t, t_{1}+2 \Delta t, \ldots, t_{1}+n_{1} \Delta t\right\}
$$

Next suppose that $I_{q, \varepsilon, k}^{j}(\underline{z})$ have been defined for $k=1,2, \ldots, k_{1}$, then $I_{q, \varepsilon,\left(k_{1}+1\right)}^{j}(\underline{z})$ are defined as follows. Let $t_{k_{1}+1} \in \tilde{\sim}_{q, \varepsilon}^{j}(\underline{z})$ be the smallest number such that

$$
t_{k_{1}+1} \notin{\underset{k=1}{\mathrm{U}_{1}}}_{I_{q, \varepsilon, k}^{j}(\underline{z}),}
$$

and let $n_{k_{1}+1}$ be the largest integer such that

$$
\left(\mathrm{t}_{\mathrm{k}_{1}+1}+\mathrm{n}_{\mathrm{k}_{1}+1} \Delta \mathrm{t}\right) \in{\underset{\mathrm{T}}{\underline{q}, \varepsilon}}_{\mathrm{j}}^{(\underline{z})} \text { but }\left(\mathrm{t}_{\mathrm{k}_{1}+1}+\left(\mathrm{n}_{\mathrm{k}_{1}+1}+1\right) \Delta \mathrm{t}\right) \varnothing \tilde{\mathrm{T}}_{\mathrm{q}, \varepsilon}^{\mathrm{j}}(\underline{z})
$$

Then define
$I_{q, \varepsilon_{,}\left(k_{1}+1\right)}^{j}(\underline{z})=\left\{t_{k_{1}+1}, t_{k_{1}+1}+\Delta t, t_{k_{1}+1}+2 \Delta t, \ldots, t_{k_{1}+1}+n_{k_{1}+1} \Delta t\right\}$, and define

$$
K_{q, \varepsilon}^{j}(\underline{z})=\left\{1,2, \ldots, k_{q, \varepsilon}^{j}(\underline{z})\right\}
$$

Note that

$$
\tilde{\mathrm{T}}_{\mathrm{q}, \varepsilon}^{\mathrm{j}}(\underline{z})={\underset{k \in K_{q, \varepsilon}}{j}(\underline{z})}^{I_{q, \varepsilon, k}^{j}(\underline{z})}
$$

Next, define the "local maximum points"

$$
\mathrm{t}_{\mathrm{q}, \varepsilon, k}^{j}(\underline{z}) \quad \text { of } \quad \mathrm{I}_{\mathrm{q}, \varepsilon, k}^{j} \quad, \quad k \in K_{q, \varepsilon}^{j} \underline{(z)}
$$

as follows.

$$
t_{q, \varepsilon, k}^{j}(\underline{z})=\left\{t^{*} \in I_{q, \varepsilon, k}^{j} \mid \phi^{j}\left(\underline{z}, t^{*}\right) \geq \phi^{j}(\underline{z}, t), t \in I_{q, \varepsilon, k}^{j}\right\}, j \in J_{m}
$$

and the local maximum ε-active constraint points set is defined as

$$
T_{q, \varepsilon}^{j}(\underline{z})={\underset{k}{U} \in K_{q, \varepsilon}^{j}(\underline{z})}^{t_{q, \varepsilon, k}^{j}(\underline{z})}
$$

The " ε-active constraint index" sets are defined as

$$
\begin{aligned}
& J_{\varepsilon, q}^{\phi}(\underline{z})=\left\{(j, t) \mid \phi^{j}(\underline{z}, t)-\psi_{q}(\underline{z}) \geq-\varepsilon, j \in J_{m}, t \in T_{q}^{j}, \varepsilon(\underline{z})\right\} \\
& J_{\varepsilon}^{g}(\underline{z})=\left\{j \mid g^{j}(\underline{z})-\psi_{g}(\underline{z}) \geq-\varepsilon, j \in J_{\ell}\right\}
\end{aligned}
$$

The optimality function for the NLP is defined by

$$
\theta_{\varepsilon, q} ; \quad \mathbb{R}^{P} \rightarrow \mathbb{R}
$$

where for any

$$
\begin{align*}
& \varepsilon \geq 0, \gamma \geq 1, q>0 \\
& \theta_{\varepsilon, q}(\underline{z})=\min _{\underline{h} \in \mathbb{R}^{P}}[\frac{1}{2}||\underline{h}||^{2}+\max \left\{<\nabla f^{0}, \underline{h}>-\gamma \psi_{q}(\underline{z}) ;\right. \\
&<\nabla g^{j}(\underline{z}), \underline{h}>, j \in J_{\varepsilon}^{g}(\underline{z}) ; \\
&\left.\left.<\nabla_{z} \phi^{j}(\underline{z}, t), \underline{h}>,(j, t) \in J_{\varepsilon, q}^{\phi}(\underline{z})\right\}\right] \tag{4.3.2}
\end{align*}
$$

and in the dual form

$$
\begin{aligned}
& \theta_{\varepsilon, q}(\underline{z})=\max _{\mu>0}\left[-\frac{1}{2} \| \sum_{j \in J_{\varepsilon}^{g}}^{\sum}{\underset{(\underline{z})}{ } \mu_{g}^{j} \nabla_{g}^{j}(\underline{z})+\sum_{(j, t) \in J_{\varepsilon, q}^{\phi}(z)} \mu_{\phi}^{j} \nabla_{z} \phi^{j}(\underline{z}, t)}\right. \\
& \left.\left.+\mu^{0} \nabla f^{0}(\underline{z})| |^{2}+\gamma \mu^{0} \psi_{q}(\underline{z}) \mid \sum_{j \in J_{\varepsilon}^{g}} \sum_{(\underline{z})} \mu_{g}^{j}+\sum_{j \in J_{\varepsilon, q}{ }^{\phi} \underline{(\underline{z})}} \mu_{\phi}^{j}+\mu^{0}=1\right] \text { (4.3.3) }\right]
\end{aligned}
$$

$$
\begin{equation*}
-\underline{h}_{\varepsilon, q}(\underline{z})=\sum_{j \in J_{\varepsilon}^{g}(\underline{z})} \mu_{g}^{j} \nabla_{\underline{g}}^{j}(\underline{z})+\sum_{(j, t) \in J_{\varepsilon, q}^{\phi}(\underline{z})} \mu_{\phi}^{j} \nabla_{z} \phi^{j}(\underline{z}, t)+\mu^{0} \nabla f^{0}(\underline{z}), \tag{4.3.4}
\end{equation*}
$$

where
$\|\cdot\|$ denotes the Euclidean norm in \mathbb{R}^{P} and is defined by $||\underline{x}||=\sqrt{\langle\underline{x}, \underline{x}\rangle}$
<. , . > denotes the scalar product in \mathbb{R}^{P} and is defined by $\langle\underline{x}, \underline{y}\rangle \sum_{i=1}^{P} x_{i} y_{i}$.
$\nabla f(\underline{z}) \quad$ denotes the gradient of the function $f: \mathbb{R}^{P} \rightarrow \mathbb{R}$ at z. The gradient vector is treated as a column vector.

THEOREM
If $\underline{\hat{z}}$ is optimal for NLP (4.3.1), then $\theta_{0, q}(\hat{\underline{z}})=0$.
An implementable form of the feasible directions algorithm can now be presented.

ALGORITHM

DATA: $\quad \alpha \in(0,1), \beta \in(0,1), \gamma \geq 1$
$\delta \in(0,1], \varepsilon_{0}>0$
$\mu_{1}>0, \mu_{2}>0, M>0$
$q_{0}>0, q_{\max } \geq q_{0}, z_{0} \in \mathbb{R}^{p}$.

STEP 0: Set $i=0, q=q_{0}$
$\operatorname{STEP} 1:$ Set $\varepsilon=\varepsilon_{0}$
STEP 2: Compute $\left(\theta_{\varepsilon, q}\left(\underline{z}_{i}\right), \underline{\underline{h}} \varepsilon_{, q}\left(\underline{z}_{i}\right)\right)$ by solving (4.3.3) and (4.3.4)
STEP 3: If $\theta_{\varepsilon, q}\left(\underline{\underline{i}}_{i}\right) \leq-2 \varepsilon \delta$, go to step 6; Else set $\varepsilon=\varepsilon / 2$ and go to step 4.
$\operatorname{STEP} 4:$ If $\varepsilon<\varepsilon_{0} \frac{\mu_{1}}{q}$ and $\psi_{q}\left(\underline{z}_{i}\right)<\frac{\mu_{2}}{q}, \quad$ Set $q=2 q$ and go to step 5; Else go to step 2.

STEP 5: If $q>q_{\text {max }}$, STOP; Else go to step 1.

STEP 6: Compute the smallest integer $k\left(\underline{z}_{i}\right)$ in $\lambda\left(\underline{z}_{i}\right) \in(0, \hat{M}]$ with $\lambda\left(\underline{z}_{i}\right)=\beta^{k\left(\underline{z}_{i}\right)}$ and $\hat{M}=\max \left\{1, \frac{M}{\|\left.\left|\underline{h}_{-\varepsilon, q}\left(\underline{z}_{i}\right)\right|\right|_{\infty}}\right\}$ such that
(i) if $\underline{Z}_{i} \in \mathrm{~F}^{\mathrm{C}}$ (the complement of F in \mathbb{R}^{P})

$$
\psi_{q}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(z_{i}\right)\right)-\psi_{q}\left(\underline{z}_{i}\right) \leq-\alpha \lambda\left(\underline{z}_{i}\right) \delta \varepsilon
$$

$$
\text { (ii) if } \underline{z}_{i} \in F
$$

$$
f^{0}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, g}\left(z_{i}\right)\right)-f^{0}\left(\underline{z}_{i}\right) \leq-\alpha \lambda\left(\underline{z}_{i}\right) \delta \varepsilon
$$

$$
g^{j}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{\underline{i}}\right) \underline{h_{\varepsilon, g}}\left(\underline{z}_{\underline{i}}\right)\right) \leq 0 \quad j \in J_{\ell}
$$

$$
\phi^{j}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(z_{i}\right), t\right) \leq 0 \quad j \in J_{m}
$$

$$
\mathrm{t} \in \mathrm{~T}_{\mathrm{q}}
$$

$\operatorname{STEP} 7:$ Set $\underline{z}_{i+1}=\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(\underline{z}_{i}\right)$. Set $i=i+1$ and go to step 2.

REMARK
The algorithm as presented above does not require an initial feasible point. If $\underline{z}_{0} \notin F$, then $\psi_{q}\left(\underline{z}_{0}\right)$ is non-zero and the algorithm constructs a sequence of points which forces the design into the feasible domain. This aspect of the algorithm is very advantageous in the case of complicated problems where the choice of an initial feasible point is not obvious, e.g., in earthquake resistant design if the relative drift of a particular story in a framed structure is to be
limited to a certain value, it is not easy to find an initial design that will satisfy that requirement. Of course, the algorithm is more efficient if one can find an initial feasible point.

EXPLANATION OF THE ALGORITHM

The algorithm has two distinct phases. First, a feasible direction is computed by solving equations (4.3.3) and (4.3.4), then a step is taken in this direction in such a way that the objective function is reduced and none of the constraints is violated.

Direction finding subproblem

As noted,a feasible direction is found by first solving the problem

$$
\begin{align*}
& \theta_{\varepsilon, q}(\underline{z})=\max _{\underline{\mu}>0}\left[\left.-\frac{1}{2} \right\rvert\, \sum_{j \in J \bar{\sigma}} \sum_{(\underline{z})} \mu_{g}^{j} \nabla_{g}^{j}(\underline{z})+\sum_{(j, t) \in J_{\varepsilon, q}^{\phi}(\underline{z})} \mu_{\phi}^{j} \nabla_{z} \phi^{j}(\underline{z}, t)\right. \\
& \left.+\mu_{0} \nabla E^{0}(\underline{z})| |^{2}+\gamma \mu_{0} \psi_{q}(\underline{z}) \mid \sum_{j \in J}^{g} \sum_{(\underline{z})}^{\mu_{g}^{j}+\sum_{(j, t) \in J}^{q} \sum_{q, q}^{(\underline{z})}} \mu_{\phi}^{j}+\mu_{0}=1\right] \tag{4.3.3}
\end{align*}
$$

and then computing the direction from

$$
\begin{equation*}
-\underline{h} \varepsilon, q(z)=\sum_{j \in J_{\varepsilon}^{g}}(\underline{z})<\sum_{g}^{j} \nabla_{g}^{j}(\underline{z})+\sum_{(j, t) \in J_{\varepsilon, q}^{\phi}(\underline{z})} \mu_{\phi}^{j} \nabla_{z} \phi^{j}(\underline{z}, t)+\mu_{0} \nabla_{f^{0}}(\underline{z}) \tag{4.3.4}
\end{equation*}
$$

Equation (4.3.3) can be transcribed into a standard quadratic programming problem as follows. Let $k_{g}(\underline{z})$ be the total number of points in $J_{\varepsilon}^{G}(\underline{z})$ and $k_{\phi}(\underline{z})$ be the total number of points in $J_{\varepsilon, q}^{\phi}(\underline{z})$. Define the vector

$$
\underline{\mu} \in \mathbb{R}^{1}+\mathrm{k}_{\mathrm{g}}(\underline{z})+\mathrm{k}_{\phi}(\underline{z})
$$

as follows:

$$
\underline{\mu}^{\mathrm{T}}=\left[\mu_{0}, \mu_{g}^{1}, \mu_{g}^{2}, \ldots, \mu_{g}^{\mathrm{k}_{g}}, \mu_{\phi}^{1}, \ldots, \mu_{\phi}^{\mathrm{k}_{\phi}}\right] .
$$

Define the matrix

$$
\underset{A}{A} \in \mathbb{R}^{l+k_{g}(\underline{z})+k_{\phi}(\underline{z})} \times \mathbb{R}^{P}
$$

as

Then Eq. (4.3.3) can be written as

$$
\max _{\mu \geq 0}\left\{\left.-\frac{1}{2}\left(\underline{\mu}^{T} \underline{A}\right)\left(\underline{\mu}^{T} \underline{A}\right)^{T}+\gamma \mu_{0} \psi_{q}(\underline{z}) \right\rvert\, \sum_{j=0}^{1+k_{g}+k^{\prime} \phi} \mu^{j}=1\right\}
$$

or

$$
\begin{equation*}
\min _{\mu \geq 0}\left\{\left.\frac{1}{2} \underline{\mu}^{T} \underline{A} \underline{A}^{T} \underline{\mu}-\gamma \mu_{0} \psi_{g}(z) \right\rvert\, \sum_{j=0}^{1+k_{g}+k^{\prime}} \mu^{j}=1\right\} \tag{4.3.5}
\end{equation*}
$$

Define a vector

$$
\underline{D} \in \mathbb{R}^{I+k_{g}(\underline{z})+k_{\phi}(\underline{z})}
$$

such that

$$
\underline{\mathrm{D}}^{\mathrm{T}}=-\left[\gamma \psi_{\mathrm{g}}(\underline{z}), 0,0, \ldots .\right]
$$

and a matrix

$$
\underline{Q} \in \mathbb{R}^{1+k_{g}(\underline{z})+k_{\phi}(\underline{z})} \underset{x}{ } 1+k_{g}(\underline{z})+k_{\phi}(\underline{z})
$$

such that

$$
\underline{Q}=\underline{A}_{\underline{A}} \underline{\mathrm{~T}}^{\mathrm{T}} .
$$

Then Eq. (4.3.5) can be written as

$$
\begin{equation*}
\min _{\mu>0}\left\{\frac{1}{2} \underline{\mu}^{T} \underline{Q} \underline{\mu}+\left.\underline{D}^{T} \underline{\mu}\right|^{1+k} \sum_{j=1}^{(\underline{z})+k_{\phi}(\underline{z})} \mu^{j}=1\right\} \tag{4.3.6}
\end{equation*}
$$

which is a standard quadratic programming problem. Once the μ 's are obtained, the direction is computed from

$$
\begin{equation*}
-\underline{h}_{\varepsilon, q}(\underline{z})=\underline{\mu}^{T} \underline{A} \tag{4.3.7}
\end{equation*}
$$

Computational Considerations

The quadratic programming problem (QP) as formulated in Eq. (4.3.6) may be computationally ill-posed because of different magnitudes of the gradients of different functions. Proper scaling of these gradients is therefore essential to make the problem computationally efficient. In the present version the following scaling was used. Define

$$
\begin{align*}
& S_{g}^{j}=\left\|\nabla g^{j}(\underline{z})\right\|_{\infty}, j \in J_{\varepsilon}^{g}(\underline{z}) ; \\
& S_{\phi}^{j}=\left\|\nabla_{z} \phi^{j}(\underline{z}, t)\right\|_{\infty},(j, t) \in J_{\varepsilon, q}^{\phi}(\underline{z}) ; \tag{4.3.8}\\
& S_{0}=\left\|\nabla f^{0}(\underline{z})\right\|_{\infty}
\end{align*}
$$

where
$\|\cdot\| \|_{\infty}$ is the maximum norm in \mathbb{R}^{P} defined by

$$
\|x\|_{\infty}=\max _{i \in \mathbb{R}}\left|x_{i}\right|
$$

Define

$$
\tilde{S}=\max \left\{S_{0} ; S_{g}^{j}, j \in J_{\varepsilon}^{g}(\underline{z}) ; S_{\phi}^{j}, j \in J_{\varepsilon, q}^{\phi}(\underline{z})\right\}
$$

Define a vector

$$
\underline{R} \in \mathbb{R}^{1+k_{g}(\underline{z})+k_{\phi}(\underline{z})}
$$

as

$$
\underline{R}=\left[\begin{array}{l}
\tilde{s} / s_{0} \tag{4.3.9}\\
\eta \tilde{s} / s_{g}^{1} \\
\eta \tilde{s} / s_{g}^{2} \\
\cdot \\
\cdot \\
\eta \tilde{s} / s_{g}(z) \\
\eta \tilde{s} / s_{\phi}^{1} \\
\cdot \\
\cdot \\
\eta \tilde{s} / s_{\phi}(z)
\end{array}\right]
$$

where $\eta \in \mathbb{R}$ is a parameter which may be adjusted to force the direction vector toward or away from a constraint.

The A matrix is scaled as

$$
\underline{Q}=\underline{A}_{\underline{A}} \underline{\mathrm{~T}}^{\mathrm{T}} .
$$

Then, the scaled version of $Q P$ can be written as

$$
\begin{equation*}
\min _{\underline{\mu} \geq 0}\left\{\left.+\frac{1}{2} \underline{\mu}^{T} \underline{Q} \underline{\mu}+\underline{D}^{T} \underline{\mu} \right\rvert\, \underline{R}^{T} \underline{\mu}=1\right\} \tag{4.3.11}
\end{equation*}
$$

The direction vector is still obtained from Eq. (4.3.7).

Step Length Computation

After a feasible direction is obtained, the next step is to compute the step length in that direction. If the current design is inside the feasible domain, the step length should be chosen in such a way that there is a maximum reduction in the objective function, while still maintaining feasibility. When the current design is outside the feasible domain, the objective is to take a step such that the new design is as close to the feasible domain as possible. The step size calculations begin by minimizing the objective function along the feasible direction and then checking whether any of the constraints is violated. If any one of the constraints is violated, the step length is reduced until the new design satisfies all of the constraints. A number of methods are available for this unidirectional search, the most popular among them being Fibonacci search, Newton's method, quadratic or cubic fit, etc. [11,l6]. For general non-convex problems, these methods tend to be very expensive. Since computation of the exact minimum along the feasible direction is not absolutely necessary, an approximate line search technique, known as the Armijo step size rule, is often used [11,17]. The method performs only an approximate line search and is quite efficient for general non-convex problems. The method is as follows.

Given the constants $\alpha, \delta, \varepsilon, \beta, M$, current design vector z_{i}, $\underline{h}_{\varepsilon, q}\left(\underline{z}_{i}\right)$ and $\psi_{\varepsilon, q}\left(\underline{z}_{i}\right)$, compute the smallest integer $k\left(\underline{z}_{i}\right)$ in $\lambda\left(\underline{z}_{i}\right) \in(0, \hat{M}]$ with $\lambda\left(\underline{z}_{i}\right)=\beta^{k}\left(\underline{z}_{i}\right)$ and

$$
\hat{M}=\max \left\{1, \frac{M}{\prod_{\underline{\varepsilon}, q}\left(\underline{z}_{i}\right) \prod_{\infty}}\right\}
$$

such that
(i) if $\psi_{\varepsilon, q}\left(\underline{z}_{i}\right)>0$ (i.e. $\left.\underline{z}_{i} \notin F\right)$,

$$
\text { then } \psi_{\varepsilon, q}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) h_{\varepsilon, q}\left(\underline{z}_{i}\right)\right)-\psi_{q}\left(\underline{z}_{i}\right) \leq-\alpha \lambda\left(\underline{z}_{i}\right) \delta \varepsilon ;
$$

(ii) if $\psi_{\varepsilon, q}\left(\underline{z}_{i}\right)=0$, i.e. $\underline{z}_{i} \in F$,
then $f^{0}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(\underline{z}_{i}\right)\right)-f^{0}\left(\underline{z}_{i}\right) \leq-\alpha \lambda\left(\underline{z}_{i}\right) \delta \varepsilon$,
$g^{j}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(\underline{z}_{i}\right)\right) \leq 0 \quad j \in J_{\ell}$,
$\phi^{\dot{j}}\left(\underline{z}_{i}+\lambda\left(\underline{z}_{i}\right) \underline{h}_{\varepsilon, q}\left(\underline{z}_{i}\right), t\right) \leq 0 \quad j \in J_{m}$ $t \in T_{q}$

The algorithm to implement the above process is as follows
STEP 1: Set $\lambda=\beta$. Compute $\hat{M}=\max \left\{1, \frac{M}{\prod \underline{h}_{\varepsilon}, \underline{q}\left(\underline{z}_{i}\right) \prod_{\infty}}\right\}$
Set $F L A G=0 . \quad$ Set $n=0$.

STEP 2: Compute ${\underset{-}{i}}_{\underline{n}+1}^{n}=\underline{z}_{i}+\lambda \underline{-}_{\varepsilon, q}\left(\underline{z}_{i}\right)$

STEP 3: If $\psi_{\varepsilon, q}\left(z_{i}\right)>0$, go to step 5 , Else go to step 4.
STEP 4; Compute $f^{O}\left(z_{i+1}^{n}\right)$.
If $f^{0}\binom{n}{z_{i+1}}+\alpha \lambda \leq f^{0}\left(\underline{z}_{i}\right)$, go to step 5
Else go to step 7.

STEP 5: Compute $g^{j}\left(\underline{z}_{i+1}^{n}\right)$, $j \in J_{\ell}$
and $\phi^{j}\left(\underline{z}_{i+1}^{n}, t\right), j \in J_{m} \quad t \in T_{g}$
If $g^{j}\left(\underline{z}_{i+1}^{n}\right) \leq 0, j \in J_{\ell}$ and $\phi^{j}\left(\underline{z}_{i+1}^{n}, t\right) \leq 0$
$j \in J_{m}, t \in T_{g}$,
go to step 6
E1se go to step 7
$\operatorname{STEP} 6: \quad$ Set $\lambda=\lambda / \beta$

If F LAG $=-1$ go to step 8

Else set FLAG $=1, \mathrm{n}=\mathrm{n}+1$ and go to step 2.

STEP 7: $\operatorname{set} \lambda=\lambda \times \beta$

If FLAG $=1$, go to step 8
Else set $\operatorname{FLAG}=-1, \mathrm{n}=\mathrm{n}+1$ and go to step 2.

STEP 8: Set $\lambda=\lambda^{*}$ and the new design vector is

$$
\underline{z}_{i+1}=\underline{z}_{i}+\lambda^{*} \underline{h}_{\underline{\varepsilon}, q}\left(\underline{z}_{i}\right)
$$

4.4 Computational Considerations

As is clear from the previous section, the feasible directions algorithm requires computation of constraint functions and gradients of "active" constraint functions at each iteration. The computation of conventional inequality constraints (functions 'g' in the previous section) and their gradients presents no great difficulty. The functional constraints (functions ' ϕ ' in the previous section), however, are very expensive to compute because they require the computation of the time history of response of the structure, which for a nonlinear
system is not a trivial matter. The problem becomes even more complicated because the algorithm requires computation of the gradients of the functional constraints, which in turn, require sensitivity analysis, i.e., computation of gradients of the response quantities with respect to the design parameters. The structural response equations, in their state-space formulation, can be differentiated with respect to design parameters, using the chain rule, to obtain differential equations for sensitivity analysis [18,19]. Numerical integration of the sensitivity equations then gives the required gradients of the response quantities. For a nonlinear system of the type considered here the analytical form of the sensitivity equations becomes quite complicated, so that the direct finite difference scheme of computing these derivatives seems to be more appropriate. The finite difference scheme requires an additional p time history analyses, where p is the total number of design parameters. Thus, computation of functional constraints and their gradients requires $p+1$ time history analyses of an "N" degree of freedom nonlinear system, clearly a major computational task. Therefore, any reduction in the number of times that these calculations are executed will significantly reduce the total computational cost.

In the actual implementation of the algorithm for the type of problem under consideration a number of things can be done to reduce the computational cost. The most obvious is to make the integration of response equations as efficient as possible. This is done by exploiting the localized nonlinear nature of the problem, using substructuring techniques. An efficient Newmark method with optional Newton-Raphson iteration is used to carry out numerical integration of the equations of motion. Provision is made in the program to do the
structural and/or sensitivity analysis only if the design parameters are changed "appreciably". Thus, if at a particular iteration,design parameters are changed very little, so that the maximum difference between the new and old design parameters is less than a certain prescribed value, the program does not compute the new time history analysis, instead, it uses the previous values.

A closer look at the algorithm shows that, when none of the functional constraints is active, gradients of the response quantities are not needed. In the program, therefore, constraint functions are first computed and then checked to determine if any of the constraints is active. If none of the constraints is active, the sensitivity analysis part is skipped, resulting in a significant saving in computation. Another source of considerable savings is the observation that gradients of response quantities are required only at those times included in the ε-active constraint set defined in the previous section. In earthquake problems structural response typically builds up slowly and then dies down, whence the ε-active times are for the most part much smaller than the total duration of the response time history. Therefore, when performing sensitivity analysis it is not necessary to compute the response time history beyond the maximum time included in the ε-active set. This feature has been incorporated into the program.

5. APPLICATIONS

The general techniques described in the previous sections have been applied to the three-story steel test frame described in Section 2. This section describes the formulation of the mathematical model for the test structure and presents numerical results for several design problems.

5.1 Structural System

The structural system chosen for numerical studies consists of a three-story, single bay steel frame as shown in Fig. 12. The bottom floor is supported on rubber bearings and an energy absorbing device attached to the frame at that level in such a way that the device exerts a horizontal force on the frame.

If axial deformations in beams and columns are neglected, the frame has 12 degrees of freedom as shown in Fig. 13. The 12×12 stiffness matrix ($\underline{\tilde{K}}^{\mathrm{E}}$, in Eq. (3.2.1)) for a single frame is shown in Table 1.

Since the masses are assumed to be lumped at the floor levels, the 12×12 stiffness matrix can be condensed to a 4×4 matrix with respect to lateral degrees of freedom only, as explained in Section 3. The condensed stiffness matrix for the frame (matrix K^{E} in Eq. (3.2.2)) is
$\left[\begin{array}{rrrr}23.19 & -33.32 & 11.52 & -1.39 \\ & 72.20 & -48.25 & 9.37 \\ \text { SYMMETRIC } & & 61.22 & -24.49 \\ & & & 16.51\end{array}\right]$.
I GIGYZ

58.81	-58.81	0	0	-940.90	-940.90	-940.90	-940.90	0	0	0	0
	117.61	-58.81	0	940.90	940.90	- 0	0	-940.90	-940.90	0	0
		81.82	-23.01	0	0	940.90	940.90	437.53	437.53	-503.37	-503.37
			23.01	0	0	0	0	503.37	503.37	503.37	503.37
				57658.3	8756.67	20072.5	0	0	0	0	0
					57658.3	0	20072.5	0	0	0	0
						97803.3	8756.67	20072.5	0	0	0
	SYMM	ETRIC					97803.3	0	20072.5	0	0
								87021.5	8756.67	14681.6	0
									87021.5	0	14681.6
										253748.0	112192.0
											253748.0

[Units are kip-inches]

Thus, the lateral stiffness matrix of the complete structure, including the stiffness of rubber bearings at $1.2 \mathrm{kip} / \mathrm{in}$ is

$$
\underline{\mathrm{K}}^{\mathrm{E}}=\left[\begin{array}{cccc}
46.38 & -66.64 & 23.04 & -2.78 \\
144.40 & -96.50 & 18.74 \\
\text { SYMMETRIC } & 122.43 & -48.97 \\
& & 34.21
\end{array}\right]
$$

The mass matrix of the structure corresponding to the lateral degrees of freedom is

$$
\underline{M}=\left[\begin{array}{llll}
0.02438 & & \\
& 0.02438 & & \\
& & 0.02514 & \\
& & 0.02832
\end{array}\right]
$$

Rayleigh damping is assumed in constructing the damping matrix

$$
\underline{C}=\alpha \underline{M}+\beta \underline{K}^{\mathrm{E}}
$$

The coefficients α and β are computed from

$$
\left[\begin{array}{cc}
\frac{1}{\omega_{1}} & \omega_{1} \\
\frac{1}{\omega_{2}} & \omega_{2}
\end{array}\right]\left\{\begin{array}{l}
\alpha \\
\beta
\end{array}\right\}=\left\{\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right\}
$$

where ω_{1} and ω_{2} are first and second mode frequencies, and ξ_{1} and ξ_{2} are the respective critical damping ratios in these modes. The damping matrix for the present structure, assuming $\xi_{1}=3 \%$ and $\xi_{2}=1 \%$, is given below.

$$
\underline{\mathrm{C}}=\left[\begin{array}{crrr}
.0279 & -.0332 & .0115 & -.0014 \\
& .0768 & -.0481 & .0093 \\
\text { SYMMETRIC } & .0660 & -.0244 \\
& & & .0226
\end{array}\right]
$$

5.2 Equations of Motion

The equations of motion expressed in terms of lateral degrees of freedom of the structure can be written as

$$
\underline{M} \underline{\ddot{U}}+\underline{C} \underline{U}+\underline{K}^{E} \underline{U}+\underline{F}=-\underline{M} \underline{e}_{g}(t)
$$

where $M, \underset{C}{ }$ and \underline{K}^{E} are given in the previous section and

$$
\begin{aligned}
& \underline{U}^{T}=\left[U_{1}, U_{2}, U_{3}, U_{4}\right] \\
& \underline{F}^{T}=\left[0,0,0, F_{4}^{N}\right] \\
& \underline{e}^{T}=[1,1,1,1] \\
& \mathrm{F}_{4}^{\mathrm{N}}=\text { force in the energy absorbing device, whose } \\
& \text { constitutive equations are } \\
& \stackrel{\rightharpoonup}{F}_{4}^{N}=K_{0}\left[\dot{U}_{4}(t)-\left|\dot{U}_{4}(t)\right|\left(\frac{\mathrm{F}_{4}^{N}(t)}{\mathrm{F}_{0}}-s\right)^{n}\right] \\
& S(t)=\alpha\left[\frac{U_{4}(t)}{U_{0}}-\frac{F_{4}(t)}{F_{0}}\right] \text {. }
\end{aligned}
$$

These equations are integrated using the numerical techniques given in section 3.3.

5.3 Design Parameters

It is assumed here that the characteristics of the rubber bearings are fixed. Therefore, only the energy absorbing device will
be adjusted to obtain the optimal design. The two basic variables in the design of energy absorbers are the elastic stiffness and the postyield stiffness. These variables are controlled by the parameters $\mathrm{F}_{0^{\prime}}$, U_{0} and α in the hysteretic model of the energy absorbers. The elastic stiffness is approximately equal to F_{0} / U_{0} and the post-yield stiffness is approximately equal to $\frac{F_{0}}{U_{0}}\left(\frac{\alpha}{1+\alpha}\right)$. Thus, the design variables are $\mathrm{F}_{0}, \mathrm{U}_{0}$ and α. Another parameter which may influence the design is the exponent " n " in the hysteretic model, but it is not considered as a variable in the present study.

5.4 Optimal Design Problems

The purpose of an earthquake isolation system is to minimize some measure of the response of the structure. There are a number of response quantities which could be minimized, e.g., the maximum acceleration in the structure, maximum base shear, maximum story shear, maximum inter-story drift, etc. In order to get meaningful results, response constraints are also needed. Some of the constraints are dictated by the problem itself, e.g., the design parameters F_{0}, U_{0} and α are not allowed to attain negative values. Such constraints constitute what are known as conventional inequality constraints. Constraints on the response quantities are also needed; e.g., when accelerations in the frame are minimized, the displacements at the base must not be arbitrarily large. These restrictions give rise to functional inequality constraints. Thus, a number of design problems could be formulated depending upon the objective function and the type of constraints placed on the response. In what follows several design problems of interest are considered.

Design Problem 1
In this problem, the top story shear is minimized while maintaining the bottom floor displacement within a prescribed limit. Mathematically, this problem can be expressed as

$$
\min _{\underline{z}}\left[\max _{t \in T}\left\{\mathrm{~K}_{1}\left(\mathrm{U}_{1}(\underline{z}, t)-\mathrm{U}_{2}(\underline{z}, t)\right)^{2}\right\}\right]
$$

subject to

$$
\max _{t \in T}\left(U_{4}(\underline{z}, t)\right)^{2} \leq \delta^{2}
$$

where

$$
\begin{aligned}
\mathrm{K}_{1} & =\text { top story lateral stiffness, } \\
\mathrm{U}_{1}, \mathrm{U}_{2} \text { and } \mathrm{U}_{4}= & \text { top, second and bottom floor displacements, } \\
& \text { respectively, } \\
\mathrm{T} & {\left[\mathrm{t}_{0}, \mathrm{t}_{\mathrm{f}}\right], \text { the time interval of interest } } \\
\delta & \\
\underline{\mathrm{z}}^{T} & \text { prescribed limit on } U_{4}, \\
= & {\left[\mathrm{z}^{1}, \mathrm{z}^{2}, \mathrm{z}^{3}\right]=\left[\mathrm{F}_{0}, U_{0}, \alpha\right] . }
\end{aligned}
$$

As explained in Section 3.2, the problem can be transcribed into a mathematical programming problem, as follows.

The parameter vector \underline{z} is augmented by a dummy cost parameter z^{4} and the above problem is then equivalent to the problem

$$
\min _{\underline{z}} z^{4}
$$

subject to

$$
\max _{t \in T}\left\{K_{1}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)^{2}\right\} \leq z^{4}
$$

and

$$
\begin{aligned}
& \max _{t \in T}\left[U_{4}(\underline{z}, \mathrm{t})\right]^{2} \leq \delta^{2} \\
& F_{0}, U_{0}, \alpha>0 .
\end{aligned}
$$

In terms of the nonlinear programming problem in canonical form, Section 4.2, equation (4.2.1), the above problem is expressed as

$$
\begin{aligned}
& f^{0}(\underline{z})=z^{4} \\
& \nabla f^{0}(\underline{z})=[0,0,0,1]^{T} \\
& \phi^{I}(\underline{z}, t)=\frac{K_{1}}{z^{4}}\left[\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)^{2}\right]-1.0 \\
& {\left[\frac{2 K_{1}}{z^{4}}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)\left(\frac{\partial U_{1}(\underline{z}, t)}{\partial z^{1}}-\frac{\partial U_{2}(\underline{z}, t)}{\partial z^{1}}\right)\right]} \\
& \nabla_{z} \phi^{I}(\underline{z}, t)=\left(\frac{2 K_{1}}{z^{4}}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)\left(\frac{\partial U_{1}(\underline{z}, t)}{\partial z^{2}}-\frac{\partial U_{2}(\underline{z}, t)}{\partial z^{2}}\right)\right. \\
& \frac{2 \mathrm{~K}_{1}}{z^{4}}\left(\mathrm{U}_{1}(\underline{z}, t)-\mathrm{U}_{2}(\underline{z}, t)\right)\left(\frac{\partial \mathrm{U}_{1}(\underline{z}, t)}{\partial z^{3}}-\frac{\partial \mathrm{U}_{2}(\underline{z}, t)}{\partial z^{3}}\right) \\
& -\frac{K_{1}}{\left(z^{4}\right)^{2}}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)^{2} \\
& \phi^{2}(\underline{z}, t)=\frac{1}{\delta^{2}}\left(U_{4}(\underline{z}, t)\right)^{2}-1.0
\end{aligned}
$$

$$
\begin{aligned}
& \nabla_{z} \phi^{2}(\underline{z}, t)=\left[\begin{array}{ccc}
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{1}} \\
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{2}} \\
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{3}} \\
0 &
\end{array}\right] \\
& g_{1}(\underline{z})=-0.2 z^{1}+1.0 E-5 \\
& g_{2}(\underline{z})=-10 z^{2}+1.0 E-5 \\
& g_{3}(\underline{z})=-20 z^{3}+1.0 \mathrm{E}-5 \\
& \nabla g(\underline{z})=\left[\begin{array}{ccc}
-0.2 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -20 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The factors $0.2,10$ and 20 in the above expressions are used to obtain an initial scaling of all constraints to a value of 1.

RESULTS

A computer program based on algorithms presented in Sections 3 and 4 was used to solve the above design problem. The initial values of parameters were obtained from experimental data on the energy absorbing devices [2,4]. The following parameters were used:

$$
\mathrm{F}_{0}=5.0, \quad U_{0}=0.11, \quad \alpha=0.064, \quad \mathrm{n}=1
$$

The upper limit on U_{4}, i.e. δ was equal to 4 inches. The dummy cost parameter z^{4} is the upper bound on the maximum shear in the top story. The initial value for z^{4} was 2.22.

The Parkfield $N 65^{\circ} \mathrm{E}$ (1966) earthquake, with amplitude and time scaling as used in the experimental program [5] was used to excite the system. This accelerogram is shown in Fig. 14. The optimum parameters obtained are

$$
\begin{array}{lll}
\mathrm{F}_{0}=3.5185 & \mathrm{U}_{0}=0.07782 & \alpha=0.07165 \\
\mathrm{z}^{4}=1.53094 & & \mathrm{n}=1
\end{array}
$$

Figure 15 shows the decrease in cost parameter as a function of iteration number. The percentage reduction in the dummy cost parameter is about 31%, which means that the relative story drift at the top story has been reduced by about this much. To see the effect of these new design parameters on overall structure response, the system was analysed with the new energy absorbing device parameters, and interstory shear-time histories at all three floors were plotted along with the initial shear-time histories. These plots, which are shown in Figs. 18-20, show clearly that the local peak shears are reduced throughout the time history. The base displacement time histories is also plotted for initial and optimal parameters in Fig. 21. As expected the base displacements are increased with the optimal design parameters indicating that the optimal system is softer at the base than the original system. The elastic stiffness is reduced from 45.5 to 45.22 and the post yield stiffness is reduced from 10% to 6.6% of the elastic stiffness. Since the earthquake used was not strong enough to cause extensive nonlinearity in the energy absorbing device, the change in stiffness is not significant. It is expected (as shown
later by design example 2) that a strong earthquake would produce significant changes in these stiffnesses.

Hysteresis loops in the energy absorber are also plotted in Fig. 16, 17. The loops show that, except for a few large inelastic excursions, the energy absorbers remain in their elastic range and therefore there is no significant energy absorption in the energy absorbers.

Design Problem 2

This problem consists of minimizing the total shear at the bottom floor level subject to the condition that the maximum displacement in the bottom floor is less than a certain prescribed value, δ. Mathematically we have

$$
\begin{gathered}
\min _{\underline{z}}\left[\operatorname { m a x } _ { t \in T } \left\{\left(\mathrm{~K}_{1}\left(\mathrm{U}_{1}(\underline{z}, t)-\mathrm{U}_{2}(\underline{z}, t)\right)\right)^{2}+\left(\mathrm{K}_{2}\left(\mathrm{U}_{2}(\underline{z}, t)-\mathrm{U}_{3}(\underline{z}, t)\right)\right)^{2}\right.\right. \\
\left.\left.\quad+\left(\mathrm{K}_{3}\left(\mathrm{U}_{3}(\underline{z}, t)-\mathrm{U}_{4}(\underline{z}, t)\right)\right)^{2}\right\}\right]
\end{gathered}
$$

subject to

$$
\begin{aligned}
& \max _{t \in T}\left(U_{4}(\underline{z}, t)\right)^{2} \leq \delta^{2}, \\
& F_{0^{\prime}}, U_{0}, \alpha>0 \\
& T=\left[t_{0}, t_{f}\right] \\
& \underline{z}^{T}=\left[z^{1}, z^{2}, z^{3}\right]=\left[F_{0}, U_{0}, \alpha\right]
\end{aligned}
$$

$K_{1}, K_{2}, K_{3} \quad=$ the story stiffnesses (top down),
$\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{4}=$ displacement response histories at the floor levels (top down).
$\delta=$ prescribed limit on the bottom floor displacement, selected to
be 4 inches in the present problem.

The equivalent nonlinear programming problem, is

$$
\begin{array}{ll}
\quad \begin{array}{ll}
\min & z^{4} \\
\text { subject to } \\
\max _{t \in T} & {\left[\left\{\mathrm{~K}_{1}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)\right\}^{2}+\left\{K_{2}\left(U_{2}(\underline{z}, t)-U_{3}(\underline{z}, t)\right)\right\}^{2}\right.} \\
& \left.+\left\{K_{3}\left(U_{3}(\underline{z}, t)-U_{4}(\underline{z}, t)\right)\right\}^{2}\right] \leq z^{4} \\
\max _{t \in T}\left[U_{4}(\underline{z}, t)\right]^{2} \leq \delta^{2} \\
& \\
& F_{0}, U_{0}, \alpha>0 .
\end{array}
\end{array}
$$

In terms of the canonical form of NLP given by (4.2.1) we have

$$
\begin{gathered}
f^{0}(\underline{z})=z^{4} \\
\nabla f^{0}(\underline{z})=[0,0,0,1]^{T} \\
\phi^{1}(\underline{z}, t)=\frac{1}{z^{4}}\left[\left\{K_{1}\left(U_{1}(\underline{z}, t)-U_{2}(\underline{z}, t)\right)\right\}^{2}+\left\{K_{2}\left(U_{2}(\underline{z}, t)-U_{3}(\underline{z}, t)\right)\right\}^{2}\right. \\
\left.+\left\{K_{3}\left(U_{3}(\underline{z}, t)-U_{4}(\underline{z}, t)\right)\right\}^{2}\right]-1.0
\end{gathered}
$$

$$
\phi^{2}(\underline{z}, t)=\frac{1}{\delta^{2}}\left(U_{4}(\underline{z}, t)\right)^{2}-1.0
$$

$$
\begin{aligned}
& \nabla_{z} \phi^{2}(\underline{z}, t)=\left[\begin{array}{ccc}
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{1}} \\
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{2}} \\
\frac{2}{\delta^{2}} & U_{4}(\underline{z}, t) & \frac{\partial U_{4}(\underline{z}, t)}{\partial z^{3}} \\
0 &
\end{array}\right] \\
& g_{1}(\underline{z})=-0.2 z^{1}+1.0 \mathrm{E}-5 \\
& g_{2}(\underline{z})=-10 \mathrm{z}^{2}+1.0 \mathrm{E}-5 \\
& g_{3}(\underline{z})=-20 \mathrm{z}^{3}+1.0 \mathrm{E}-5 \\
& \nabla g(\underline{z})=\left[\begin{array}{ccc}
-0.2 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -20 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

RESULTS
El Centro 1940 NS ground motion, with modified time scale and amplitude, as used in the experimental investigation [5], was used for this problem. The ground acceleration time history is shown in Fig. 22. This motion is very strong as compared with the Parkfield motion used for problem 1 ; therefore, considerable inelastic deformations can be expected in the energy absorbers. The initial values of the parameters are the same as those used for the first problem, i.e.
$F_{0}=5.0$,
$U_{0}=0.11$,
$\alpha=0.064$,
$\mathrm{n}=1$.

The dummy cost parameter, \mathbf{z}^{4}, which is an upper bound on the total shear at the bottom floor level was 35.0 . The optimal parameters obtained are

$$
\mathrm{F}_{0}=4.2773 \quad \mathrm{U}_{0}=1.7529 \quad \alpha=0.005768 \quad \mathrm{z}^{4}=9.1509
$$

Figure 23 shows the plot of the cost parameter vs the iteration number. Story shears, bottom floor displacement and hysteresis loops in the energy absorbers are plotted in Fig. 24-29, for both initial and optimal parameters. The plots of story shears clearly show the effectiveness of the optimal isolation system, which reduces the story shears by as much as half of the values with the initial parameters. Again the bottom floor displacements are increased, although they remain within the allowable limit of 4 inches. Likewise a comparison of the initial and optimal design hysteresis loops in the energy absorbers indicates the effectiveness of a "softer" system.

5.5 Sensitivity of the Optimal Design to Different Earthquake Ground Motions

As is clear from the preceding development, only one earthquake ground motion is used in the optimal design process. Since earthquakes are random in nature, it is unlikely that the same earthquake ground motion will be repeated at some future time. Therefore, it becomes necessary to see the effectiveness of the optimal design process for different earthquakes. To get meaningful results, these additional earthquakes should have characteristics similar to the one used in the design process. This requirement prohibits the use of actual past earthquake records, inasmuch as for a given site there is typically an insufficient number of past records. An alternative is the use of artificially generated earthquakes of the same class.

For the present study a family of five earthquakes having characteristics similar to the El Centro 1940 NS earthquake was generated using the computer program PSEQGN developed by P. Ruiz and J. Penzien [20] and later modified by M. Murakami [21]. The earthquake accelerograms were generated by passing nonstationary shot noise through two second-order linear filters and applying a base line correction. Each accelerogram was of thirty seconds duration with four seconds of parabolic built up, eleven seconds of constant intensity followed by fifteen seconds of exponential decay. The maximum acceleration in each record was about 0.30 g . The structure was analyzed twice, with initial and optimal parameters obtained from problem 2, subjected to these five earthquakes. Story shears and bottom floor displacements are compared for the initial and the optimal parameters. The five accelerograms, along with structural response quantities for initial and optimal designs, appear in Figs. 30-34. In all the cases response is considerably reduced in the optimal system, while the base displacement is increased, although remaining within the specified constraint of four inches.

6. CONCLUDING REMARKS

Two of the main objectives of the present research were to study the effectiveness of the feasible directions method for optimal design problems with time dependent constraints and to arrive at an improved earthquake isolation system.

The feasible directions algorithm seems to be quite effective for the types of problems considered. The effectiveness of the algorithm depends, among other things, on a number of parameters which control the convergence and other numerical aspects. Some experience with these parameters is needed before arriving at the most suitable set of parameters for a particular problem. An interactive system, where the user can change these parameters during the optimization process seems to be a more efficient way of handing this situation. At the time of this research no such facilities were available,therefore this aspect has not yet been explored. Access to an interactive system is expected shortly and the work on implementing this algorithm interactively is underway.

The optimal design obtained shows that a softer isolation system, subjected to displacement constraints, is the better design. As pointed out in the Introduction, the softer systems have excessive lateral deflections under small earthquakes and wind excitations. Thus, in order to arrive at a more practical design some additional requirements, limiting the response under small earthquakes, are needed. This aspect is currently being investigated by introducing two levels of constraints, an upper limit on response under large earthquakes and a lower limit on response under small earthquakes. An additional
advantage of this kind of methodology would be that, instead of considering only two earthquakes, a family could be considered, and an optimal design would be achieved for the entire class of records considered.

1. Mahin, S.A., Bertero, V.V., Chopra, A.K. and Collins, R.G., "Response of the Olive View Hospital Main Building during the San Fernando Earthquake," EERC 76-22, Earthquake Engineering Research Center, U.C. Berkeley, October 1976.
2. Kelly, J.M., Eidinger, J.M. and Derham, C.J., "A Practical Soft Story Earthquake Isolation System," UCB/EERC-77/27, Earthquake Engineering Research Center, U.C. Berkeley, November 1977.
3. Kelly, J.M. and Tsztoo, D.F., "Earthquake Simulation Testing of a Stepping Frame with Energy-Absorbing Devices," UCB/EERC-77/17, Earthquake Engineering Research Center, U.C. Berkeley, August 1977.
4. Kelly, J.M. and Tsztoo, D.F., "The Development of Energy Absorbing Devices for Aseismic Base Isolation System," UCB/EERC-78/01, Earthquake Engineering Research Center, U.C. Berkeley, January 1978.
5. Eidinger, J.M. and Kelly, J.M., "Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," UCB/EERC-78/03, Earthquake Engineering Research Center, U.C. Berkeley, February 1978.
6. Clough, R.W. and Tang, D.T., "Earthquake Simulator Study of a Steel Frame Structure, Vol. 1: Experimental Results," EERC 75-6, Earthquake Engineering Research Center, U.C. Berkeley, April 1975.
7. Matzen, V.C. and MCNiven, H.D., "Investigation of the Inelastic Characteristics of a Single Story Steel Structure using System Identification and Shaking Table Experiments," EERC 76-20, Earthquake Engineering Research Center, U.C. Berkeley, August 1976.
8. Ödemir, H., "Nonlinear Transient Dynamic Analysis of Yielding Structures," Ph.D Dissertation, Division of Structural Engineering and Structural Mechanics Department of Civil Engineering, U.C. Berkeley, 1976.
9. Newmark, N.M., "A Method of Computation for Structural Dynamics," Journal of the Engineering Mechanics Division, ASCE, Vol. 85, No. EM3, pp. 67-94, 1959.
10. Mondkar, D.P. and Powell, G.H., "Static and Dynamic Analysis of Nonlinear Structures," EERC 75-10, Earthquake Engineering Research Center, U.C. Berkeley, March 1975.
11. Polak, E., Computational Methods in Optimization Academic Press, New York, New York. 1971.
12. Polak, E. and Mayne, D.Q., "An Algorithm for Optimization Problems with Functional Inequality Constraints," IEEE Transaction on Automatic Control, Vol. AC-21, No. 2, April 1976.
13. Ray, D., Pister, K.S. and Chopra, A.K., "Optimum Design of Earthquake-Resistant Shear Buildings," EERC 74-3, Earthquake Engineering Research Center, U.C. Berkeley, January 1974.
14. Walker, N.D. and Pister, K.S., "Study of a Method of Feasible Directions for Optimal Elastic Design of Framed Structures Subjected to Earthquake Loading," EERC 75-39, Earthquake Engineering Research Center, U.C. Berkeley, December 1975.
15. Trahan, R. and Polak, E., "An Improved Algorithm for Optimization Problems with Functional Inequality Constraints," To be published.
16. Luenberger, D.G., Introduction to Linear and Nonlinear Programming. Addison-Wesley, 1973.
17. Armijo, L., "Minimization of Function Having Continuous Partial Derivatives," Pacific Jr. Math. 16, pp. 1-3, 1966.
18. Ray, D., "Sensitivity Analysis for Hysteretic Dynamic Systems: Application to Earthquake Engineering," EERC 74-5, Earthquake Engineering Research Center, U.C. Berkeley, April 1974.
19. Ray, D., Pister, K.S. and Polak, E., "Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," EERC 76-12, Earthquake Engineering Research Center, U.C. Berkeley, February 1976.
20. Ruiz, P. and Penzien, J., "PSEQGN - Artificial Generation of Earthquake Accelerograms," A Computer Program Distributed by NISEE/Computer Applications, U.C. Berkeley, March 1969.
21. Murakami, M. and Penzien, J., "Nonlinear Response Spectra for Probablistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," EERC 75-38, Earthquake Engineering Research Center, U.C. Berkeley, November 1975.

NOTATION

\mathbb{R}^{n}	Denotes the euclidean space of ordered n-tuples of real numbers. When an n-tuplet is a vector in \mathbb{R}^{n}, it is always treated as a column vector.			
$<., .\rangle$	Scalar product in \mathbb{R}^{n} defined by $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i}$.			
$\left.11 \cdot 1\right\|_{2}$	Euclidean norm defined by $\\|x\\|_{2}=\sqrt{\sqrt{x^{T}} \mathrm{x}}$			
$\\|\cdot\\| \\|_{\infty}$				
\underline{z}	Underscore signifies that z is a vector or a matrix			
\underline{z}^{T}	Transpose of z			
\underline{z}^{-1}	Inverse of matrix \underline{z}			
$\|x\|$	Absolute value of x			
$A \subset B$	A is contained in B			
$A \cup B$	Union of A and B			
$\{x \mid p\}$	Set of points x having property p .			
$x \in A$	x belongs to A .			
$\mathrm{x} \notin \mathrm{A}$	x does not belong to A.			
(a, b)	Open interval			
[a,b]	Closed interval			
$(\mathrm{a}, \mathrm{b}]$	Semi-open or Semi-closed interval.			

$\mathrm{f}(\cdot)$ or f	Denotes a function, with the dot standing for the undesignated variable; $f(z)$ denotes the value of $f(\cdot)$ at point z. Domain A and range B of function $f(\cdot)$ is indicated by $f: A \rightarrow B$.
$\nabla f(\underline{z})$	Denotes the gradient of f at z. The gradient is treated as a column vector. If f is a function of more than one variable, the variable with respect to which the gradient is evaluated is shown as a subscript to the gradient symbol, e.g. $\nabla_{z} f(z, t)$ indicates gradient with respect to z of a function of z, and t.
$\min \{\underline{E}(\underline{z}) \mid \underline{z} \in C\}$	Minimum of $f(\underline{z})$ over $\underline{z} \in C$
$\dot{U}(t)$	The dot over the functions represents the derivative with respect to time. i.e. $\dot{U}(t)=d U(t) / d t$.

FIGURE 1 MODEL STRUCTURE

FIGURE 2 ENERGY-ABSORBING DEVICE CONNECTION - DETAIL

FIGURE 5 VERTICAL STIFFNESS OF EEARINGS

FIGURE 6 HORIZONTAL STIFFNESS OF BEARINGS

FIGURE 7 DIMENSIONS OF ENERGY ABSORBING DEVICES

FIGURE 8 HYSTERESIS OF DEVICE UNDER SINUSOIDAL LOADING

$$
\begin{gathered}
\text { N STORY - M BAY FRAME } \\
\text { El, E2 - Non-linear Energy absorbing elements } \\
U^{r} \text { - Rotational degrees of freedom } \\
U^{1} \text { - Lateral degrees of freedom } \\
U^{n} \text { - Lateral degrees of freedom } \\
\quad \begin{array}{l}
\text { associated with the non-linear } \\
\\
\text { energy absorbing devices. }
\end{array} \\
\text { Total number of degrees of freedom }=N(M+2)
\end{gathered}
$$

FIG. 10 THE STRUCTURAL SYSTEM

FIG. 11 VARIATIONS IN ACCELERATION, VELOCITY AND DISPLACEMENT DURING TIME INTERVAL $[t, \tau=t+\Delta t]$

FIGURE 12 DIMENSIONS OF STRUCTURE

Stiffness of rubber bearings $=1.2 \mathrm{k} / \mathrm{in}$		
Section properties:	Area $\left(\right.$ in $\left.^{2}\right)$	Moment of Inertia $\left(\right.$ in $\left.^{4}\right)$
W6xl2	3.54	21.7
W5x16	4.70	21.3
Wl0x49	14.40	272.9

FIGURE 17

FIGURE 21 BASE DISPLACEMENT TIME HISTORY

LNヨWヨコ $\forall 7 d S I 0 \exists S \forall g$

FIGURE 22

FIGURE 24

y $\forall \exists H S$ 人yo

FIGURE $30(\mathrm{a})$
$y \forall \exists H S$ 人 $y 0 \perp S$

y $\forall \exists H S$ 人yO

（コ）NOI \forall yヨาヨココ \forall ONกOyコ

ソVヨHS 人ソOLS• \perp SI

ภYOUSIH
y $\forall \exists H S$ 人yOमS・ロy

У \forall قHS 人 $ソ O \perp S \cdot O N Z$

४ $\forall \exists H S$ 人 $\forall 0 \perp S$ - वyモ

y $\forall \exists H S$ 人 $\forall O \perp S$ • 15 I

y $\forall \exists H S$ 人 $O \perp S$ •ONZ

〔コ〕NOI」 \forall yヨาヨココ \forall aNกOy

> Optimal Design

> FIGURE 34 (c) SECOND STORY SHEAR TIME HISTORY
y $\forall \exists H S$ \& $\forall O \perp S$ - ONZ
y $\forall \exists H S$ 人 $\forall O \perp S \cdot \perp S I$

$y \forall \exists H S$ 人 $\forall 0 \perp S$－$\quad \forall \varepsilon$

」NヨWヨゴフdSIロ ヨS＊g

EARTHQUAKE ENGINEFRING RESEARCH CENTER REPORTS

EC 73-3	"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Pow 1973 (PB 248 315) A09
EPRC 73-4	"Experimental Investigation into the Seismic Behavior of Critical Refions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)A09
EERC 73-5	"Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien-1973 (PB 239 568)AO3
EERC 73-6	"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G.H. Powell-1973 (PB 221 260)A08
EERC 73-7	"A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A.K. Chopra-1973 (AD 766 271)A04
EERC 73-8	"Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyclic Loads." by 0. Küstü and J.G. Bouwkamp - 1973 (PB 246 117)A12
EERC 73-9	
EERC 73-10	"Deconvolution of Seismic Response for Linear Systems," by R.B. Reimer-1973 (PB 227 179) A08
EERC 73-11.	"SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J. Bathe. E.L. Wilson and F.E. Peterson-1973 (PB 221 967)A09
EERC 73-12	"Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by w. S. Tseng and J. Penzien-1973 (PB 227 816)Al0
EERC 73-13	"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A.K. Chopra and J.A. Gutierrez-1973 (PB 222 970)A03
EERC 73-14	"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R.W. Clough, J.M. Raphael and S. Mojtahedi-1973 (PB 223 763)A09
EERC 73-15	"Cyclic Plastic Analysis of Structural Steel Joints," by R.B. Pinkney and R.W. Clough - 1973 (PB 226843$)$ A08
EERC 73-16	"QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I.M. Idriss, J. Lysmer, R. Hwang and H.B. Seed - 1973 (PB 229 424)A05
EERC 73-17	"Dynamic Echavior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen. J.P. Hollings and J.G. Bouwkamp - 1973 (PB 240 718)A06
EERC 73-18	"Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Bertero. J. Hollings, O. Küstü, R.M. Stephen and J.G. Bouwkarp -1973
EERC 73-19	"Olive View Medical Center Materials Studies, Phase I," by B. Bresler and V.V. Bertero-1973 (PR 235986 A06
EERC 73-20	"Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges." by W.S. Tseng and J. Penzien - 1973
EERC 73-21.	"Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J.M. Kelly and P.F. Gillis 1973 (PB 226 024)A03
EERC 73-22	"DRAIN - 2D Usex's Guide," by G.H. Powell-1973 (pB 227 016)A05
EERC 73-23	"Earthquake Engineering at Berkeley - 1973," (PB 226 033)All
EERC 73-24	Unassigned
EERC 73-25	"Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra 1973 (AD 773 052)A09
EERC 73-26	"Investigation of the Failures of the Olive View Stairtowers During the San Fexnando Earthquake and Their Implications on Seismic Design," by V.V. Bertero and R.G. Collins-1973 (PB 235 106)A13
EERC 73-27	"Further Studies on Seismic Behavior of Steel Beam-Column Subassemblages," by V.V. Bertero, H. Krawinkler and E.P. Popov-1973 (PB 234 172)A06
EERC 74-1	"Seismic Risk Analysis," by C.S. Oliveira-1974 (PB 235 920)A06
EERC 74-2	"Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C,K. Chan and H.B. Seed 1974
EERC 74-3	"Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K.S. Pister and A.K. Chopra - 1974 (PB 231 172)A06
EERC 74-4	${ }^{\text {"LUSH }}$ - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T . Udaka, H. B. Seed and R. Hwang - 1974 (PB 236 796)A05

PERC	74-5	"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications 1974 (PB 233 213)A06
EERC	74-6	"Soil Stxucture Interaction Analyses for Evaluating Seismic Response," by H.B. Seed, J. Lysmer and R. Hwang 1974 (PB 236 519)A04
ELRC	74-7	Unassigned
ELRC	74-8	"Shaking Table Tests of a Steel Frame - A Progress Report," by R.W. Clough and D. Tang - 1974 (PB 240 Pf.9)A0?
LERC	74-9	"Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V.V. Bertero, E.f. Popov and T.Y. Wang - 1974 (PB 236 797)A07
E:SRC	74-10	"Applications of Reliability-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitief1lo and K.S. Pister - 1974 (PB 237 231) A06
EERC	74-11	"Liquefaction of Gravelly Soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan 1974 (PB 242 042)A03
EERC	74-12	"Site-Dependent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer - 1974 (PB 240 953)A03
EERC	74-13	"Earthquake Simulator Study of a Reinforced Concrete Frame," by F. Hidalgo and R.W. Clough - 1974 (PB 241 9:4)Al3
EERC	74-14	"Nonlinear Earthquake Response of Concrete Gravity Dams," by n. Pal - 1974 (AD/A 006 583)A06
EERC	74-15	"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)A06
EERC	75-1	"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol, I: Desrription. Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S. -H. Fang - 1975 (PB 259 407)A15
EERC	75-2	"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. II: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang - 1975 (PB 259408)All (For set of EERC 75-1 and 75-2 (PB 259 406))
EERC	75-3	"Seismic Risk Analysis for a Site and a Metropolitan Area," by C.S. Oliveira- - 1975 (PB 248 134)A09
EFRC	75-4	"Analytical Investigations of Seismic Response of Short, Single or Multiple-Span Highway Bridges," by M.-C. Chen and J. Penzien-1975 (PB 241 454)A09
EERC	75-5	"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by S.A. Mahin and V.V. Bertero-1975.(PB 246 306)Al6
EERC	75-6	"Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough and D.T. Tang-1975 (PB 243 981)A13
EERC	75-7	"Dynamic Properties of San Bernardino Intake Tower," by D. Rea, C.-Y. Liaw and A.K. Chopra-1975 (AD/A008406) A05
EERC	75-8	"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R.E. Hamati-1975 (PB 251 539)A07
EERC	75-9	"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Hamati-1975 (PB 251 540)Al0
EERC	75-10	"Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G. H. Powell - 1975 (Pb 242434) A08
EERC	75-11	"Hysteretic Behavior of Steel Columns," by E.P. Popov, V.V. Bertero and S. Chandramouli-1975 (PB 252 365)All
EERC	75-12	"Earthquake Engineering Research Center Library Printed Catalog, - 1975 (PB 243 711) A26
EERC	75-13	"Three Dimensional Analysis of Building Systems" (Extended Version)," by E.L. Wilson, J.P. Hollings and H.H. Dovey - 1975 (PB 243 989)A07
EERC	75-14	"Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba, C.K. Chan and H.B. Seed-1975 (NUREG 0027) A08
EERC	75-15	"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R.W. Clough - 1975 (PB 246 292)Al0
EERC	75-16	"Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.v. Bertero and E.P. Popov-1975 (RB 246 388)A05
EERC	75-17	"Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Moderately Strong Earthquakes," by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248172)A03
EERC	75-18	"The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands." by J. Mulilis. C.K. Chan and H.B. Seed-1975 (Summarized in EERC 75-28)

1\%RC	76-5	"Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell-1976 (PB 252220) Alo
FERC	76-6	"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubn and J. Penzien (PB 260 556)All
PERC	76-7	"Expected Porformance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, S.W. Chen and R.W. Cloug̣h - 1976
EfPR	76-8	"Cyclic Shear Tests on Concrete Masonry Piers," Part I-Test Results," by R.L. Mayes, Y. Omote and R.W. Clough-1976 (PB 264 424)A06
EERC	76-9	"A Substructure Method for Earthquake Analysis of Structure-Soil Interaction," by J.A. Gutierrez and A.K. Chopra-1976 (PB 257 783)A08
EERC	76-10	"Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and J.R. Booker - 1976 (PB 258 820) A04
FERC	$76+11$	"Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames." by G.H. Powell and D.G. Row - 1976
EERC	76-12	"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and E. Polak-1976 (PB 262 859)A04
EERC	76-13	"Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra 1976 (PB 257 907)A09
EERC	76-14	"Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976
EERC	76-15	"Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and J. Gidwani - 1976 (PB 261 323)A08
EERC	76-16	"Cyclic Shear Tests on Masonry Piers, Part II - Analysis of Test Results," by R.L. Mayes, Y. Omote and R.W. Clough - 1976
EERC	76-17	"Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and C.w. Roeder - 1976 (PB 260 715)A05
EERC	76-18	"Experimental Model Studies on Seismic Response of High Curved overcrossings," by D. Williams and w, G. Godden - 1976
EERC	76-19	"Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure," by F. Baron and R.E. Hamati - 1976
EERC	76-20	"Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1976 (PB 258 453)A07
EERC	76-21	"Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick - 1976 (PB 260 378)A04
EERC	76-22	"Response of the Olive View Hospital Main Building during the San Fernando Earthquake," by S. A. Mahin, R. Collins, A.K. Chopra and V.V. Bertero - 1976
EERC	76-23	"A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel, R.L. Mayes, R. W. Clough and S.W. Chen - 1976
EERC	76-24	"GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during Cyclic or Earthquake Loading," by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)A04
EERC	76-25	"Rehabilitation of an Existing Building: A Case Study," by B. Bresler and J. Axley - 1976
EERC	76-26	"Correlative Investigations on Theoretical and Experimental Dynamic Behavior of a Model Bridge Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388) All
EERC	76-27	"Earthquake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk - 1976 (PB 265 157)A07
EERC	76-28	"Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen - 1976 (PB 262 899)A03
EERC	76-29	"Analysis and Design of Numerical Integration Methods in Structural Dynamics," by H.M. Hilber - 1976 (PB 264 410)A06
EERC	75-30	"Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by L.J. Edgar and V.V. Bertero - 1976
EERC	76-31	"The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R.E. Hamati 1976
EERC	76-32	"Infilled Frames in Earthquake Resistant Construction,". by R.E. Klingner and V.V. Bertero - 1976 (PB 265 892)A13
		Reproduced from best available copy.

	109
$\because C B_{1}$ EEPC－77／01	＂PLUSH－A Computer Progran for Probabilistic finite Element Analysis of Seismic Soil－Structure Inter－ action，＂by M．P．Romo Organista，J．Lysmer and H．B．Seed－ 1977
cc3／Espc－77／02	＂Soil－Structure Interaction Effects at the Humboldt Bay power plant in the Ferndale Earthquake of June 7，1975，＂by J．E．Valera，H．3．Seed，C．f．Tsai and J．tismer－ 1977 （p3 265 795）A04
UCB／EERC－77／03	＂Influence of Sample Disturbance on Sand Response to Cyclic Loading，＂by K．Mori，H．B．Seed and C．K． Chan－1977（PB 267 352）A04
CC3／EERC－77／04	＂Seismological Studies of Strong motion Records，＂by J．Shoja－Taheri－ 1977 （ 23 L 269 655）al0．
UCS／EミRC－77，05	＂Testing Facility for Coupled－Shear Nalls，＂by L．Li－Hyung，V．V．Bertero and E．P．Popov－ 1977
UC3／EERC－77／06	＂Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings，＂by No． 1 － B．Bresler；No． 2 －B．Bresier，T．Okada and D．Zisling；No．3－T．Okada and B．Bresler；No． 4 －V．V． Bertero and B．Bresler－ 1977 （PB 267 354）A08
UCS／Espc－77／07	＂A Literature Survey－Transverse Strength of Masonry Walls，＂by Y．orote，R．L．Mayes，S．W．Chen and R．W．Clough－ 1977 （P3 277 933）A07
UCS／EERC－77／08	＂DRAIN－TABS：A COmputer Program for Inelastic Earthquake Response of Three Dimensional Buildings，＂by R．Guendelman－Israel and G．H．Powell－ 1977 （PB 270 693）207
UCB／EEPC－77／09	＂SUBNALL：A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design of Structural Walls with Substructure Option，＂by D．Q．Le，H．Peterson and E．P．Popoy－ 1977 $(P B 270567) A 05$
UC3／EERC－77／10	＂Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks，＂by D．P．Clouch （PB 272 280）Al． 3
UC3／EEFC－77／11	＂Earthquake Engineering Research at Berkeley－1976，＂－ 1977 （pB 273 507）A09
UCミこミミRC－77／12	```"Hy=mated Design of Earthquake Resistant Multistory S=eel 3uilding Frames," by N.D. Walker, Jr. - 1977 :F3 276 526)A09```
UC3／EEPC－77／13	＂Concrete Confined by Rectangular hoops subjected to Axiai Loads，＂by J．Vallenas，V．V．Bertero and E，P．Popov－ 1977 （PS 275 165）A06
UCB／EERC－77／14	＂Seismic Strain Induced in the Ground During Earthquakes，＂by Y．Sugimura－ 1977 （PB 284 201）A04
CCS／EERC－77／15	＂Bond Deterioration under Generalized Loading，＂by V．v．3ertero，E．？．Popov and S．Viwathanatepa－ 1977
UCB／EERC－77／16	＂Computer Aided Optimum Design of Ductile Reinforced Concrete Moment Resisting Frames，＂by S．W． Zagajeski and V．V．Bertero－ 1977 （PB 280 137）A07
UCB／EERC－77／17	＂Earthquake Simulation Testing of a Stepping Frame with Energy－Absorbing Devices，＂by J．M．Kelly and 2．5．Ts 2000 － 1977 （PS 273 506）A04
LCB／EERC－77／13	＂Inelastif Behavior of Eccentrically Braced Steel Frares under Cyclic Loadings，＂by C．w．Roeder and E．？．Popov－ 1977 （PB 275 526）A15
UCS／EERC－77／19	＂A Symplified Procedure for Estimating Earthquake－Incuced Deformations in Dams and Embankments．＂by F．I． Maxilisi and H．B．Seed－ 1977 （PB 276 820）A04
UCB／EERC－77／20	＂The Performance of Earth Dams during Earthquakes，＂by H．B．Seed，F．I．Makdisi and P．de Alba－ 1977 （F3 276 821）A04
UCB／EERC－77／21	＂Jrnamic plastic Anaiysis Using Stress Resultant Finite Element Formulation，＂by P．Lukkunapvasit and J．M．Kelly－ 1977 （PB 275 453）A04
UCE，	＂Proliminary Experimental study of seismic Uplift of a steel Erame，＂by R．w．Clough and a．d．tuckelbridge 1977 （PB 278 769）A08
UCD／EERC－77／23	＂Earthquake Simulator Tests of a Nine－Story Steel Frame with Colums Allowed to Uplift，＂by A．A． Huckelbridge－ 1977 （PB 277 944）A09
UCB／EERC－77／24	＂Nonlinear Soil－Structure Interaction of Skew Highway Bridges，＂by M．－C．Chen and J．Penzien－ 1977 （PB 276 176）A07
UCS／EERC－77／25	＂Seismic Analysis of an Offshore Structure Supported on pile Foundations，＂by D．D．－N．Liou and J．Penzien 1977 （PB 283 180）A06
UCB／EERC－77／2E	＂Dynamic Stiffness Matrices for Homogeneous Viscoelastic yalf－planes，＂by G．Dasgupta and A．K．Chopra－ 1977 （PB 279 654）A06
UCB／EERC－77／27	＂A Practical Soft Story Earthquake Isolation Syster，＂by J．M．Kelly and J．M．Eidinger－ 1977 （PB 275 814）A07
UCS／EERC－77／28	＂Seismic Safety of Existinq Buildings and Incentives for Hazard Mitigation in San Erancisco：an Exploratory Study，＂by A．J．Meltsner－ 1977 （PB 281 970）a0s
UC3／EERC－77／29	＂Dynamic Analysis of Electrohydraulic Shaking Tables，＂by D．Rea．S．Abedi－Hayati and Y．Takahashi 1977 （PB 282 269）A04
C3／EERC－77／30	＂An phproach for ampovinel se s＂ic－fusislifit Behavior of Reinforced Concrete Interior Joints，＂by

UCB/EERC-78/01	"The Development of Energy-Absorbing Devices for Aseismic Base Isolation Systems," by J.M. Kelly and D.F. Tsztoo 1978 (PB. 284 978) A04
UCB/EERC-78/02	"Effect of Tensile Prestrain on the Cyclic Response of Structural Steel Connections," by J.G. Bouwkamp and A. Mukhopadhyay - 1978
UCB/EERC-78/03	"Experimental Results of an Earthquake Isolation System using Natural Rubber Bearings," by J.M. Eidinger and J.M. Kelly - 1978
UCB/EERC-78/04	"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa 1978
UCB/EERC-78/05	"Hysteretic Behavior of Reinforced Concrete Columns Subjected to High Axial and Cyclic Shear Forces," by S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978
UCB/EERC-78/06	"Inelastic Beam-Column Elements for the ANSR-I Program," by A. Riahi, D.G. Row and G.H. Powell - 1978
UCB/EERC-78/07	"Studies of structural Response to Earthquake Ground Motion," by O.A. Lopez and A.K. Chopra - 1978
UCE/EERC-78/08	```"A Laboratory Study of the Fluid--Structure Interaction of Submerged Tanks and Caissons in Earthquakes," by R.C. Byrd - 1978 (PB 284 957)A08```
UCB/EERC-78/09	"Models for Evaluating Damageability of Structures," by I. Sakamoto and B. Bresler - 1978
UCB/EERC-78/10	"Seismic Performance of Secondary Structural Elements," by I. Sakamoto - 1978
UCB/EERC-78/11	Case Study-Seismic Safety Evaluation of a Reinforced Concrete School Building," by J. Axley and B. Bresler 1978
UCB/EERC-78/12	"Potential Damageability in Existing Buildings," by T. Blejwas and B. Bresler - 1978
UCB/EERC-78/13	```"Dynamic Behavior of a Pedestal Base Multistory Building," by R. M. Stephen, E. L. Wilson, J. G. Bouwkamp and M. Button - }197```
UCB/EERC-78/14	"Seismic Response of Bridges - Case Studies," by R.A. Imbsen, V. Nutt and J. Penzien - 1978
UCR/EERC-78/15	"A Substructure Technique for Nonlinear Static and Dynamic Analysis," by D.G. Row and G.H. Powell - 1978
UCB/EERC--78/16	"Seismic Performance of Nonstructural and Secondary Structural Elements," by Isao Sakamoto - 1978

BIEL. $10 G R A P H I C ~ D A T A ~$ SHEST Report No.	
4. Title and Subritle Optimal Design of an Earthquake Isolation System	5. Report Date October 1978
7. Author(s) M.A. Bhatti, K.S. Pister and E. Polak	8. Performing Organization Rept. No:JCB/EERC-78/22
9. Performing Organization Name and Address Earthquake Engineering Research Center University of California, Richmond Field Station 47 th and Hoffman Blvd Richmond, California 94804	10. Project/Task/Work Unit No. 11. Contract/Grant No. EnV76-04264
12. Sponsoring Organization Name and Address National Science Foundation 1800 G. Street, N.W. Washington, D.C. 20550	13. Type of Report \& Period Covered 14.

15. Supplementary Notes

16. Abstracts

Optimal design of an earthquake isolation system, consisting of natural rubber bearings and special nonlinear energy absorbing devices, is presented. An algorithm for efficient analysis of structural response, based upon the Newmark and Runge-Kutta methods with optional Newton-Raphson iteration, is given. The optimal design problem, incorporating this simulation algorithm, is formulated as a mathematical programming problem with time-dependent constraints and is solved using a feasible directions algorithm. Several numerical examples are presented, in which it is demonstrated that a properly designed isolation system can substantially reduce structural damage for a class of potential earthquakes.

17b. Ideatifiers/Open-Ended Terms

17c. Cosati Field/Group			
18. Availability Statement	Release Unlimited	19. Security Class (This Report) UNCIASSIFIED	21. No. of Pages 120
	$\stackrel{\square}{\square}$	20. Security Class (This Page UNCI.ASSIFIED	22. Price $A Q C-A \varnothing 1$

