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ABSTRACT 

Optimal design of an earthquake isolation system, consisting of 

natural rubber bearings and special nonlinear energy absorbing devices, 

is presented. An algorithm for efficient analysis of structural 

response, based upon the Newmark and Runge-Kutta methods with optional 

Newton-Raphson iteration, is given. The optimal design problem, 

incorporating this simulation algorithm, is formulated as a mathematical 

programming problem with time-dependent constraints and is solved using 

a feasible directions algorithm. Several numerical examples are 

presented, in which it is demonstrated that a properly designed 

isolation system can substantially reduce structural damage for a class 

of potential earthquakes. 
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1. INTRODUCTION 

Earthquake ground motion introduces accelerations at the base 

of a structure, producing forces and deformations in the structure. 

If there is some type of isolation system between the base of the struc

ture and the ground, the adverse effect of the accelerations on the 

structure may be reduced. Based upon this simple idea, researchers 

have suggested a number of different types of isolation systems. Two 

basic approaches have been followed: One is to support the structure on 

mechanical devices such as rollers, self-centering rocking mechanisms, 

rubber bearings etc.; the major drawbacks of these devices are large 

lateral base deflections and undesirable motion under wind and other 

small excitations. The second approach is the so called "soft story" 

concept in which the first-story columns are designed so that the 

structure remains elastic under small excitations, but yields and 

absorbs a considerable amount of energy under strong earthquakes. 

Large lateral deflections are a problem in this case, resulting in 

damage to the first-story columns during a strong earthquake.' Behavior 

of the main building of the Olive View Hospital in the 1971 San Fernando 

Earthquake is a classic example of this [1]. 

More recently another type of earthquake isolation system using 

natural rubber bearings and mild steel energy absorbing devices has 

been proposed [2]. The structure is supported on natural rubber 

bearings which are very rigid vertically but have a low lateral stiff

ness. To prevent excessive lateral deformation under small earthquakes 

as well as dissipate energy under strong earthquakes, special devices 

are attached at the foundation level and at any other desired floor 
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level. The devices, made of ductile steel, rely on the hysteretic 

behavior of steel subjected to torsional deformation. A half-scale 

model of a steel framed structure employing these energy absorbing 

devices attached at the bottom floor girder was tested on an earthquake 

simulator by Kelly et. al. The results of these tests, reported in 

[2,3,4 and 5], show that for small earthquakes the structure behaved 

as if attached to a rigid foundation, strongly amplifying the ground 

motion, while for strong earthquakes, the devices yielded and absorbed 

large amounts of energy amounting to as much as the equivalent of 

30% - 35% of critical viscous damping. A number of different devices 

with different elastic and post-yield stiffnesses were used. The 

results show that different degrees of isolation were provided by each 

device. The question naturally arises, what is the "best" choice of 

these energy absorbing devices for a particular structure? 

The present research is motivated by this question. The problem 

of choosing the best device parameters is formulated as an optimization 

problem with time dependent constraints. A second important aspect of 

the present study is the application of nonlinear programming 

techniques to solve the optimal design problem resulting from the use 

of energy absorbing devices. 

1.1 Program Objective and Limitations 

The objective of the present research program is to study the 

problem of optimal design of an earthquake isolation system of the type 

described utilizing nonlinear programming techniques, specifically, the 

Method of Feasible Directions. 

The first step is to develop methods for efficient analysis and 

re-analysis of the structural system, which is assumed to remain elastic 
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during the earthquake, the only nonlinearity occuring in the behavior 

of the energy absorbing devices. The optimization process requires 

time-history analysis of structural response at each design iteration. 

This is a very time-consuming operation for a general nonlinear 

structural system, and it requires exploitation of the "localized" 

nonlinear nature of the present problem to obtain a satisfactory com

putational algorithm. The present study is deterministic in the sense 

that an actual ground motion record is used as input. In the absence 

of any suitable method for characterization of earthquakes for non

linear systems, the probabilistic nature of the design problem is taken 

into account by carrying out a series of analyses for different earth

quake inputs and comparing the structural response under these earth

quakes for the isolation system designed from the single record. This 

procedure gives at least an indirect indication of the sensitivity of 

the optimal design to the selection of input earthquake ground motion. 

The method of feasible directions used to find the optimal 

design is a very general method capable of handling a variety of design 

problems. Modifications of the basic algorithm are required to make it 

computationally efficient for the special class of design problems 

associated with earthquake-resistant design. 

The objectives of the present research are thus summarized as 

follows: 

(i) to develop an efficient algorithm for the analysis of structures 

with localized nonlinear energy absorbing devices subjected to 

earthquakes. 

(ii) to formulate the problem of design of an earthquake isolation 

system as an optimal design problem. 
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(iii) to apply the method of feasible directions to achieve the 

optimal design, making use of the special nature of the earth

quake problem to achieve computational efficiency. 

1.2 Report OUtline 

A short description of the test structure and the isolation 

system used in the earthquake simulator tests conducted at the 

University of California, Berkeley, is given in Section 2. In Section 

3, the mathematical model used to describe the hysteretic behavior of 

the energy absorbing devices is described. Equations of motion for the 

system are obtained and an efficient algorithm based upon the Newmark 

and Runge-Kutta methods with optional Newton-Raphson iteration is 

presented. Comments are made about sensitivity analysis results, i.e. 

computation of the rate of change of response quantities with respect 

to the design parameters required by the optimization algorithm. A 

general optimal design problem is then formulated in Section 4, which 

also presents a feasible direction algorithm to solve it. Comments 

about the computational aspects of the algorithm are included. Section 

5 describes application of the general techniques presented in Sections 

3 and 4 to the optimal design of an isolation system for the steel test 

frame described in section 2. The report is completed by some con

cluding remarks in Section 6. 
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2. AN EARTHQUAKE ISOLATION SYSTEM 

A half-scale model of a three-story steel framed-structure with 

an isolation system consisting of rubber bearings and energy absorbing 

devices was tested. on an earthquake simulator. This Section gives a 

brief description of the test frame and the isolation system used. 

Further details of design and fabrication are given in [2,4,5,6]. 

2.1 Steel Test Frame 

The test structure consisted of two identical, three-story, 

single-bay steel frames, interconnected by floor diaphragm systems 

which were essentially rigid in their planes as shown in Fig. 1. The 

model weighed 39.5 kips, was 20 ft high and was 12ft by 6 ft in plan. 

The columns and beams were WS x 12 and W6 x 12 rolled sections, 

respectively, and were welded together by typical moment resistant con

nections. A heavy W10 x 49 girder was used at the base to ensure that 

the rubber bearings would have little tendency to undergo bending 

deformations. Concrete blocks weighing 8 kips were added to each floor 

to simulate the dead weight of the building. The model was supported 

on rubber bearings and energy absorbing devices were attached to the 

base floor through a horizontal link, as shown in Fig. 2. 

2.2 Natural Rubber Bearings 

The natural rubber bearings used in the test are shown in Figs. 

3 and 4. Each layer of a multilayer bearing was hand-fabricated from 

sheets of rubber vulcanization-bonded to aluminum foil. The aluminum 

foil was in turn bonded to the mild steel interleaves using adhesive 

tape over two-thirds of the surface area and epoxy resin, for greater 

shear strength, over the remaining one-third area. 
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The vertical stiffness characteristics of the rubber bearings 

are shown in Fig. 5. After an initial soft cycle, the bearings showed 

little hysteresis. The vertical stiffness under the working load is 

of the order of 150 kips/in. 

Horizontal stiffness characteristics are shown in Fig. 6. The 

initial tangent stiffness at zero deflection is 320 Ib/in., reducing 

to about 250 Ib/in. at 2.5 in. deflection. The hysteresis loops 

represent approximately 10% critical damping. 

2.3 Torsional Energy Absorbing Devices 

A typical energy absorbing device is shown in Fig. 7. The key 

element in the device is the mild steel torsion bar of rectangular cross

section to which four clamps are welded. The outer clamping arms are 

used to attach the device to structural and foundation elements, with 

the inner arms linked to the active structural element. When this 

element is displaced, it pushes the inner arms introducing torsion in 

the mild steel bar. 

In this steel frame test devices were attached to the base 

floor in such a way that they applied a horizontal force to the model 

structure. The devices were tested under sinusoidal and random loadings 

to establish that they are capable of withstanding many cycles of large 

plastic deformation without appreciable deterioration in their energy 

absorption capacity. In this regard see Fig. 8. Under small excitations 

the devices are elastic and the system behaves as a rigid foundation 

system, while under strong excitations the devices yield and produce 

large hysteresis loops, thus absorbing a considerable amount of energy. 



7 

3. STRUCTURAL ANALYSIS 

A procedure for efficient analysis of a structural system con-

taining earthquake isolation devices is the first step in developing an 

optimal design methodology. This section introduces a mathematical 

model to describe the hysteretic behavior of the energy absorbing 

devices. Equations of motion for a multistory frame containing energy 

absorbing devices are then derived and an efficient algorithm for their 

numerical integration using sub structuring is given. 

3.1 Mathematical Model for Hysteretic Behavior of the Energy Absorbing 
Devices 

A number of models have been employed to specify the force-

deformation relationship for inelastic structural elements under cyclic 

loading. Two of the most common are the bilinear and the Ramberg-Osgood 

models. The bilinear model exhibits sharp transition from elastic to 

inelastic states; kinematic or isotropic hardening rules are used for 

unloading and reloading. The model fails to represent actual material 

behavior under cyclic loading and is computationally quite inefficient 

because it requires one to keep track of all stiffness transition 

points. 

The Ramberg-Osgood model, coupled with Masing's rule for 

unloading and reloading gives a continuous transition from elastic to 

inelastic states. Computationally, this is a very difficult model to 

use because of different equations for different parts of the loop. 

Matzen and McNiven [7] have pointed out that the model as presented 

originally is not suitable for random earthquake-type excitations. At 

least thirteen new rules have been added to make it applicable to this 

case, making the model even harder to use. 
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Recently a series of newly-proposed models for cyclic behavior 

of structural elements has been described [8]. These models are given 

in the form of differential equations and are sufficiently general to 

include strain hardening, stiffness degradation, etc. A single equation 

governs initial loading, unloading and reloading (facilitating 

computation) and it behaves well in the case of arbitrary excitations. 

The particular rate-independent model to be used for the energy 

absorbing devices in this study is given by the following equations: 

where 

. 
F(t) (3.1.1) 

S(t) (3.1.2) 

F(t) = horizontal force in the energy absorber 

u(t) = displacement of the energy absorber 

. 
U(t) = velocity of the energy absorber 

= 

= 

= 

= 

yield force 

yield displacement 

a constant which controls the slope after yielding, 
a 

Ky ~ KO l+a' 

n a material parameter, taken as an odd integer which 

controls the sharpness of transition from the elastic 

to the inelastic region. As n + 00 the model approaches 

a bilinear model. 

The parameters Fa, uo' a and n are chosen such that predicted 

response from the model closely matches experimental response. Typical 



9 

loops generated by this model under displacements varying sinusoidally 

in time are shown in Fig. 9. 

3.2 Equations of Motion for the System 

The structural system considered here, consists of an assemblage 

of discrete beam and column elements as shown in Fig. 10. The frame 

may have any number of stories and bays. Axial deformations in both 

beams and columns are neglected; thus, we have only one lateral and 

M+l rotational degrees of freedom per story, where M is the number of 

bays. The nonlinear energy absorbing elements can be attached to any 

story. Story masses are assumed to be lumped at the floor levels and 

no rotational inertia is associated with the rotational degrees of 

freedom. The structure is assumed to remain elastic during an earth-

quake; thus, the nonlinearity is only associated with the energy 

absorbers. The equations of motion of the system can be written as 

follows: 

where 

• ~E 

M U + C U + K U + F - M r U (t) 
g 

(3.2.1) 

~T r r ~ n . 
!:!(t) (Ul"",UN(M+l);Ul"";Ul " •• > ~s the nodal point 

U (t) 

U(t) 

M = 

C 

~E 
K 

displacement vector, U € lR N (M+2) . 

velocity vector 

acceleration vector 

. . ~ N (M+2) N (M+2) 
d~agonal mass matr~x, ~ € JR x JR 

- ,.., N(M+2) N(M+2) 
damping matrix, ~ € X< x lR 

stiffness matrix of the structure excluding the energy 

-KE € lR N (M+ 2) x JR N (M+ 2 ) absorbing elements, 
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r 

u (t) = 
g 

10 

vector of forces in the energy absorbing elements, 

F € ]R.N(M+2) 

(0, ••• ; 1 ••• ; 1 ... 1) T, r € R N (M+ 2 ) 

ground acceleration time history. 

In order to eliminate rotational degrees of freedom from the 

~ ~ ~E 
system, the matrices ~, ~ and ~ are partitioned corresponding to the 

rotational and translational degrees of freedom. The system of 

equations then has the form 

where 

[~+~] [~~~ + F+-~-][~J + [-G~~Yf--~~-l G~J 
+ fH = - [~+~] f~-j Dglt) 

e T (1,1,1, ... ), e € JR N 

u, U, U e]R.N represent, respectively, translational 

displacement, velocity and acceleration 

. .. e JR N (M+l) 
ge' ~e' ~e 

vectors. 

represent state vectors corresponding to 

rotational degrees of freedom 

The first sub-matrix equation gives 

The second equation gives 

M U + c U + ~~t ~ + [~~t]T ~e 
+ F - M e ti 

g 
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Substituting for Ue from the first into the second equation yields 

where 

Define 

M U + e U + KE U + F = M e U (t) 
g 

E 
K -
-tt 

P(t) = 

[ E JT [E ]-1 ~et ~ee 

M e U (t). 
g 

Ke . - t 

Then, the equations of motion in terms of lateral degrees of freedom 

are 

U (t) 
. KE M + e U (t) + U(t) + F(t) = p (t) . (3.2.2) 

M, e, KE € ]RN N 
x ]R 

. 
U(t) ]RN ~ (t) , ~(t) , € 

3.3 Numerical Solution of the Differential Equations of Motion 

The equations of motion (3.2.2) are solved numerically by 

. 
discretizing them in time, with the exact solution ~(t), ~(t) and U(t) 

. 
approximated by ~t' ~t and ~t' respectively. The step-by-step integra-

tion procedures start with the known initial conditions and march for-

ward in time giving the solution at discrete time intervals. The 

process for a nonlinear system has two distinct phases. The first 

phase is the linearization phase, in which the equations are linearized 

about the current state by retaining only the first order terms of the 

Taylor series expansion. Estimates of the solution at the next step 

are then obtained by using these linearized equations. The second 

phase is the state determination phase, in which the internal forces in 

equilibrium with the new state of motion are calculated. If the 
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discrepancy between these internal forces and the external applied 

loads is within some tolerance level, the solution is accepted and the 

process repeated for the next step. Otherwise, a Newton-Raphson type 

iteration is used until the unbalanced forces are within acceptable 

limits. 

In this study the estimates of the solution are obtained using 

Newmark's method and the internal forces in the energy absorbers are 

computed using a fourth-order Runge-Kutta scheme. The details of the 

process are given below. 

The equations of motion (3.2.2) at time T 

written as 

M U + c U + KE U + F 
- -T - -T -T-T 

P 
-T 

t + 6t can be 

(3.3.1) 

Define the increments in acceleration, velocity, displacement and force 

in the energy absorbers occurring in the time increment 6t by 

6Qt U 
-T 2t 

. 0 • 
6~t U 

-T ~t 

6~t = ~T ~t 
(3.3.2) 

6~t F ~t -T 

substituting these expressions in Eq. (3.3.1) produces the incremental 

form of the equations of motion 
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p* 
-t 

Computation of ~~ 

P 
-T 
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* ~t 

is a diagonal matrix whose ith diagonal element is 

(3.3.3) 

elF. 
1 au . 
i t 

Since ~(t) represents the force in the energy absorbers, only those 

elements on the diagonal, which correspond to a degree of freedom at 

which an energy absorbing element is attached, will be non-zero. 

The force in the energy absorbing element at the ith degree of 

freedom is obtained from Eqs. (3.1.1) and (3.1.2): 

or 

where 

Thus 

. (Ui (tl F. (t) KO 1 

s. (t) 
(Ui(tl 

= a 
1 Uo 

. . 
F. (t) KO u. (t) 

1 1 

S. (t) 
(Ui (tl 

= a U 1 
0 

sign = 1 if u. (t) > 0 
1 

(1 

-1 if U.(t) < o. 
1 

. 
F. (t) 

1 . 
u. (t) 

1 

eo (tl 
\Ui(t)\ ~o - Si(tl/) 
Fi(tl) 

FO 

(o(tl -Si(tY) . 1 
slgn F 

0 

Fi (t) 
FO 
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with 

dF. 
1 

dUo 
1 t 
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{ (

F. (t) 

KO 1 - sign ~o 

(

U
i 

(t) 

a U 
o 

(3.3.4) 

Newmark's Method 

An implicit, single-step, two parameter family of integration 

operators described by Newmark [9] is used for the numerical integration 

of the equations of motion. The method assumes that the increments in 

velocity and acceleration are related to the increment in displacement 

and the state of motion at time t, as follows: 

6U l6U 
y • 

6t (2
Y
B - 1) ~t -t B6t -t S ~:\ (3.3.5) 

6" 1 
6~t 

1 • 1 
~t --U ~t 

B(6t)2 B6t -t 2S (3.3.6) 

where 

6t time step of integration 

Y,B are the two integration parameters. 

A "constant average acceleration" operator is obtained with 

B = 1/4 and Y = 1/2, which is unconditionally stable for linear 

problems. 

A "linear acceleration" operator is obtained with S 1/6 and 

Y = 1/2. 

Substituting Eqs. (3.3.5) and (3.3.6) into the incremental 

equations of motion (3.3.3) and simplifying gives 
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* * K 
-t 6~\ = ~t (3.3.7) 

where 

* ~M Y KE KN 
!5t + 66t ~ + + 

66t - -t 

* * 
[ S~t 

. 1 
~t J R ~t + M ~t + 26 -t 

It . 6t (is -1) ~t] + C ~t + 

* * solution of!5t 6~t ~t 

The most expensive part of the integration process is the 

solution of the above set of linear equations. Fortunately, because 

of the localized nonlinearity of the problem, it is not necessary to 

* form and decompose the whole matrix !5t at each step. The substructuring 

technique is used to separate effectively the nonlinear part from the 

linear part of the problem as follows: 

Partition the displacement vector such that displacements 

corresponding to the energy absorbers are separated from the remaining 

displacements 

~ [-:~~-] 
6UN incremental displacements corresponding to energy absorbing 

elements. 

= incremental displacements corresponding to the rest of the 
system 

* * Partition the matrices !5t and ~t accordingly, as follows: 

(3.3.8) 
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The first equation gives 

or 

(3.3.9) 

The second submatrix equation in Eq. (3.3.8) gives 

(3.3.10) 

substitute Eq. (3.3.9) into Eq. (3.3.10) 

Define 

2 
-1 

- ~E K 
-EN 

QT 
- ~E 

-1 
K 
-EE 

Thus 

[~E 9 + ~N] 6U
N RN + gT RE 

or 

= (3.3.11) 

Once the 6U
N 

are known, 6~E are calculated from Eq. (3.3.9) • 

. The computational steps can be summarized in the following 

algorithm. 

Algorithm 

(i) 

(ii) 

In the beginning of the integration loop 

T 
form ~EE' ~N' ~E = ~N ' 

triangularize ~E' 
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(iii) obtain 9 by forward reduction and back substitution from 

~EE 9 = - ~EN' 

(iv) T 
form 9 and the product ~E 9 . 

At each time step of integration 

(i) form ~ at the current step, 

(ii) form E RN load vectors Rand , -
(iii) Solve [~E 9 + ~N] t.~t + 

for t.~N, 

(iv) obtain t.~E by forward reduction and back-substitution from 

computation of Forces in the Energy Absorbing Elements 

After increments in the displacements and velocities are 

obtained, the next step is to compute the internal resisting forces in 

equilibrium with this new state of motion. Since the structure is 

assumed to remain elastic, the internal forces in the structural 

elements are obtained simply by mUltiplying the current displacements 

with the appropriate stiffnesses of these elements. Computation of 

forces in the energy absorbers, however, is not that simple, because 

of lack of an algebraic expression for their force-deformation 

behavior, which instead, is described by a set of first order 

differential equations. These equations are integrated numerically to 

compute internal forces in the energy absorbers. An explicit fourth-

order Runge-Kutta scheme, with the option of using a smaller time step 

than the one used in Newmark's method, is used in this study. An 

explicit scheme is favored over an implicit scheme because of the 
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added complexity of an implicit scheme, which would involve .an 

additional iteration cycle. The details of the process are given 

below. 

To integrate force-deformation equations of energy absorbers 

from time t to time T = t + ~t, some assumptions regarding the 

variation of acceleration, velocity and displacement during the time 

interval (t,T) are needed. Since the Newmark linear acceleration 

method has been demonstrated to be quite effective for solving non-

linear structural dynamics problems [10], it seems reasonable to 

assume linear variation in the acceleration during the time interval. 

This will imply quadratic variation of velocity and cubic variation of 

displacement. These variations are shown in Fig. 11. 

The force in the energy absorber at the ith floor is given by 

Eqs. (3.1.1) and (3.1.2): 

. ~ Ui (x) F. (x) K 
~ 0 

(Ui (xl 
s. (x) = a u ~ 

0 
or 

F. (x) = 
~ 

(F. (x) 
lUi (x) I ~o 

F. (x) ). ~ 

FO 

F. (x) 
~ 

Si)n ~ 

_ a _U ~_. ~_X_I n 
x e [0, ~t] (3.3.12) 

Equation (3.3.12) is integrated by employing a fourth order Runge-Kutta 

method with time step ~, where ~ < ~t, and the initial condition 

F. (0) = F. (t), 
1. 1. 

F i (x) = f (F i (x), x) 
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where 

where 

K3 
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[ t 
F. (x) 

= K U
l
. (x) - I U

l
. (x) I (0,+1) --.;l=--_ 

o FO 
_ Ui (x)}n] 
au· 

o 

The following calculations are made to advance the solution 

/::.xf ~ i (xK) , X K ) 

~ KO lUi (xKJ - lUi (xK) I 
{ F. (xKJ 

(0,+1) l 

FO 
- a Ui~:KT ] 

(XK + i llx) 
. 

+ U. (t) (xK + ~ llX) u. U. (t) 
l l l 

llU. 

i (XK 1 Y l + -- + 2' llx llx 

(XK + ~ llx) 
. 

(xK + ~ llx) u. u. (t) + U. (t) 
l l l 

1 ( 1 Y llU. 
1 ( 1)3 + U. (t) l - x + - llx + -- - x +-llx 

l 2 K 2 llx 6 K 2 

llx f(Fi (xk ) 
1 

+ 2' K2 , xK + ~ llx) 
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where 

. 
+ U. (t) (XK + llx) u. (t) 

1 1 

llU. 

t (XK + 6.x l 1 
+ --llx 

Ui (t) + Ui (t) (XK + llX) 

6.U. 
+ Ui (t) t (XK + llx Y + 6.Xl ~ (XK + llx? 

+ 
1 
6 

+ 

Algorithm for Integration of Equations of Motion 

+ 

Now the algorithm for numerical integration of the equations of 

motion (3.2.2) can be presented. 

A: INITIAL CALCULATIONS 

DATA: Integration parameters S, y 

time steps llt and llx, . 

Convergence tolerance parameter TOL. 

structural property matrices ~, KE and C 

energy absorber properties Fa, Uo' a and n. 
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STEP 1: compute the constants 

1 1 1 
a

l S(6t)2 
a

2 S6t 
a

3 2(3 

a
4 

::: -'L 
as ::: 

y 
a

6 
::: 6t (is - 1) B6t S- . 

. 
go' STEP 2: Initialize the state of motion, i.e. specify !!o' !:fa and 

STEP 3 : Partition the stiffness matrix as explained in Eq. (3.3.8) , 

triangularize ~EE and form Q. 

B. FOR EACH TIME STEP 

* * STEP 4: Form ~t and ~t 

* KE KN 
~t a

l 
M + a

4 C + + -t 

* * 
[a2 

. 
2t] las 

. 
2t] R ~t + M ~t + a

3 
+ C ~t + a

6 -t 

* 
[ ~ 2t 

. 
KE ~t] where P = P + C ~t + ~t + 

-t -T 

P = M e U (T) 
-T - - g 

STEP 5 : Solve 

for 6~t' using the algorithm given previously. 

STEP 6: Update the state of motion at T = t + 6t 

. 
QT 2t + a

l 6~t a
2 ~!t a

3 ~t 

. . . 
Qt ~T ~t + a

4 6~t as ~t a
6 

U ~t + 6~t . -T 
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STEP 7: Compute F , the forces in the energy absorbing devices using 
-1" 

the fourth-order Runge-Kutta method. 

STEP 8: Compute the unbalanced force at time 1" 

f = P - M U + C U + K U A [.. • E 
- -1" - -1" - -1" - -1" + F J. -1" 

STEP 9: Compute 1 I!I 12, the Euclidean norm of f. If 1 I!I 12 2 TOL, no 

iteration is needed in this step. Go to step 4 for the next 

step calculations, else proceed to step 10. 

C: ITERATION WITHIN A TIME STEP 

* KE KN STEP 10: Compute K a l ~ + a 4 C + + -1" -1" 

* A 

STEP 11: Solve K aU f for aU 
-1" -1" -1" 

STEP 12: Update the state of motion 

new U -1" ~1" + a l a~1" 

. . 
new U -1" U -1" + a 4 aU -1" 

new U -1" U -1" + aU 
-1" 

STEP 13: Compute the unbalance as in step 8. See if convergence 

criterion of step 9 is satisfied. If yes, go to step 4 for 

next time step. Else go to step 10. 

3.4 Sensitivity Analysis 

The method of feasible directions for optimization requires 

gradients of the constraint functions, which in turn require gradients 

of the response quantities with respect to the system parameters. The 

computation of these gradients, so-called sensitivity analysis, is 

important in itself because the information produced can be used 

directly for design trade-off studies. 
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One way of computing such sensitivity matrices is to integrate 

numerically the sensitivity equations obtained by differentiating the 

system equations of motion with respect to the system parameters. In 

the present case because of the complicated nature of the hysteretic 

model of the energy absorbers, the analytical expressions for 

sensitivity equations are very complex. Numerical integration of these 

equations with the same time step as that used for the system equations 

poses additional difficulties. 

Because of these difficulties, a straight-forward approach using 

finite difference approximations is used. Partial derivatives are 

given by expressions of the type 

where 

df(b) 
db 

f(b+~b) - f(b) 
& 

f(.) is any response function and 

b is an element of the parameter vector. 

Some errors are introduced by the above approximation, but by proper 

selection of the step size they can be controlled. 
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4. OPTIMIZATION 

In this section a class of optimal design problems is formulated 

for the multistory frame with energy absorbing devices. The design 

problem is then transcribed into a canonical form of nonlinear pro-

gramming problem. A feasible directions algorithm to solve this 

problem is discussed and some comments made about the computational 

aspects of the method. 

4.1 optimal Design Problem 

The main objective of an earthquake isolation system is to 

reduce detrimental effects of earthquake ground motion on the structure. 

Thus, one may formulate an optimal design problem as selection of the 

controlling parameters (e.g. yield force, yield displacement, etc., of 

the energy absorber) of the isolation system in such a way as to 

minimize some measure of the structural response of the system. In 

this section, the problem is first considered in an abstract manner, 

since the techniques described are applicable to a broad class of such 

problems. Specific design problems will then be treated in the next 

section. 

A class of optimal design problems can be written in the form 

such that 

where 

min max IF (R (~,t»] 
z tST 

max ~(~ (~,t» ~ ~l 
t€T 

> 0 
- -2 

T ~ Ito' tfl , specified time interval 

(4.1.1) 
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The following notation has been used: 

Q: 

P: 

is some function of structural response 

which is to be minimized. 

number of structural response functions. 

is the design parameter vector. 

total number of design parameters. 

R ]R. P x ]R. -+ JR Q x ]R.: is some function of structural response. 

G ]R. P x ]R. -+ JR M x JR: are the time dependent inequality constraints 

(functional constraints) 

M: number of functional inequality constraints. 

H ]R.P-+ JR L : are conventional inequality constraints. 

§l 
M 

€ ]R. , §2 € JR L : are prescribed constraint bounds. 

As an example, consider the problem of minimizing the maximum 

acceleration at the top floor of a multistory frame, with an energy 

absorber at the bottom floor, such that the bottom floor displacement 

is less than a certain allowable value. The design parameters could 

be chosen to be the yield force and yield displacement of the energy 

absorber, with the requirement that both design parameters be positive. 

Similarly the function F is taken as the square of the top floor 

acceleration while the function G is the square of the bottom floor 

displacement. The function ~ represents positivity constraints on the 

design parameters, as noted above. 

4.2 Nonlinear Programming Problem 

The design problem formulated in the previous section is not 

directly suitable for the application of nonlinear programming 
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techniques; an appropriate canonical form can be expressed as [11, 12, 

13, 14] 

such that 

where 

z e JRP 

fO JRP -rJR 

fj JRP -rJR 

gj JRP-rJR 

min {f0 (z) } 
z 

max 
teT 

</) (~, t) < 0 

j = 1, ••. ,M 

T e JR is a compact interval. 

j 1, ..• , L 

is the design parameter vector. 

is the cost or objective function. 

j 1, ... ,M are functional constraints. 

j = 1, ... ,L are conventional inequality 

constraints. 

(4.2.1) 

The optimal design problem (4.1.1) can be transcribed to the 

canonical form (4.2.1) by augmenting the parameter vector ~ by a 

P+l 
dummy cost parameter z The dummy cost parameter is an upper bound 

to the objective function to be minimized, i.e. 

max 
teT 

< P+l z 

Thus, the minimization of zP+l implies the minimization of the actual 

objective function. The design problem can then be written as: 

min zP+l 
z 
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such that 

[F (R (~,t»] 
PH < ° max - z 

t€T 

max [G (R (z,t» ] - 0 < 
-1 - ° (4.2.2) 

t€T 

- !! (~) + §2 < ° , 

which is in the canonical form with 

fO(z) '"' z PH 

fl(z) '"' max [F (!3- (~,t) ) zP+l J 
t€T 

fj(z) '"' max [G
j 

(R (~, t» oi] j 2,3, •.• ,M 
t€T 

gj (z) '"' H
j 

(z) + oj 
2 

j 1, .•• , L . 

4.3 Method of Feasible Directions 

An algorithm of the feasible direction type for solving the 

nonlinear programming problem (4.2.1) is presented in this section. 

The basic algorithm is due to Polak and Trahan [15]. Only a short 

description of the algorithm will be given hereireaders interested in 

more details and the convergence proof are referred to the original 

paper. 

Before presenting the algorithm, some definitions and assumptions 

are required. As noted earlier, the nonlinear programming problem 

(NLP) is defined as: 

where 

min {fa (~) I fj (z) < 0, 
z 

max 
t€T 

j e J 
m } 

(4.3.1) 
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J {l, 2, .•• ,M} 
m 

J.Q, {l,2, •.. ,L} 

fO: lRP-+lR, gj: lR
P 

-+ lR, j e J.Q, are assumed to be con-

tinuously differentiable. 

¢j: lRPx lR -+lR x lR, j € J are continuously differentiable 
m 

in the first variable and con-

tinuous in the second. 

Define the feasible set, 

gj (~) :5.. 0, j € J.Q,} 

The interval T is discretized into q+l points and is denoted by T 
q 

Define 

1JJ (z) 
q -

Note that, if z € F, then "ljJ (z) = 0. 
q -

Define the "s-active constraint" points 

Tj 
(z) 

q,s -
€ T I¢j(z,t) - "ljJ (z) > 

q - q -

Now define the "intervals" 

Tj 
(z) 

q,£ - k 
j 

l,2, ... ,k (z) 
q,£ -

recursively, as follows. 

j € J 
m 

j e J , 
m 

j 
To define the first interval, I l(z), let tl be the smallest 

q, S, -

number in T~,S(~) and let n l be the largest integer such that 
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but Tj 
(z) 

q,E -

where 

Then 

Next suppose that r j 
k(z) have been defined for k = 12k then q,E, - ' , •.. , l' 

r
j 

(k 1) (~) are defined as follows. q,E, 1+ 

smallest number such that 

Let 

and let n
k 

+1 be the largest integer such that 
1 

Then define 

and define 

K
j 

(z) 
q, e: -

Note that 

Tj 
(z) 

q,E -

but 

={1,2, ... ,k
j (Z)}. 
q,E -

= U 
k e K

j 
(z) 

q,E -

Next, define the "local maximum points" 

Tj 
(z) be the 

q,E -
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t
j 

k(z} q,E, 

t
j 

(z) 
q,E,k -
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of keK
j 

(z) 
q,E -

and the local maximum E-active constraint points set is defined 

as T
j 

(z) 
q,E -

U 
k e K

j 
(z) 

q,E -

t
j 

k(z) q, E, -

The "E-active constraint index" sets are defined as 

J¢ (z) 
E,q -

> - E, j e J , t e T
j (Z)} 

m q,E -

The optimality function for the NLP is defined by 

where for any 

e (z) 
E,q -

and in the dual form 

E > 0, y ~ I, q > 0 

< 'i]gj (~), !: >, j e J
g (~) i 
E 

< 'i] ¢j (z,t), h >, (j,t) e J¢ (Z)}] 
z - - E,q -

e (z) 
E,q - = max [- 1: II L 

>0 2 
11_ jeJg 

E 

(4.3.2) 

. 0 ] L 11¢ + 11 = 1 
jEJ¢ (z) 

E,q -
•••• (4.3.3) 
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- h (z) 
-E,q - L 11 j Vj(z) + g g- L 

where 

THEOREM 

j€J
g 

(z) 
E -

(j ,t) €J¢ (z) 
E,q -

II . II 

< • , • > 

Vf(z) 

(4.3.4) 

denotes the Euclidean norm in JR P and is defined by 

denotes 

< ~, X > 

the scalar product in JR P and is defined by 
P 
L x. y .• 

i=l J. J. 

denotes the gradient of the function f : JR P -+- JR at 

z. The gradient vector is treated as a column vector. 

If z is optimal for NLP (4.3.1), then 8
0 

(z) = o. 
,q -

An implementable form of the feasible directions algorithm can 

now be presented. 

ALGORITHM 

DATA: a € (0,1) , f3 € (0,1) , Y ..:. 1 

o € (0,1] . E > 0 , 0 

111 > 0 , 112 > 0 , M > 0 

STEP 0: Set i o , q 

STEP 1: Set E = E o 

STEP 2: Compute (8 E (z.) ,hE (z.») by solving (4.3.3) and (4.3.4) ,q -J. - ,q -J. 

STEP 3: If 8 (z.) < - 2EO, go to step 6; Else set E = E/2 and go to E,q -J. 

step 4. 
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STEP 4: If 
~l ~2 

E < E - and t/J (z.) < o q q -1 q Set q = 2q and go to 

step 5; Else go to step 2. 

STEP 5: If q > ~ax' STOP; Else go to step 1. 

"-
STEP 6: Compute the smallest integer k (z. ) 

-1 
in A (z. ) 

-1 
e (O,M] with 

13k (~i) "-
{I, M } A (z. ) = and M == max such that 

-1 
II ~E,q (~i) I LX) 

(i) if z. e F
C 

-1 
(the complement of F in lR

P
) 

t/J (z. + A (z. ) h (z. ) ) - t/J (z.) < - a A (z.) o E , 
q -1 -1 -E,q 1 q -1 - -1 

(ii) if z. e F 
-1 

fO(z. + A (z. ) h (z. ) ) ° A (z. ) o E - f (z.) < - a 
-1 -1 -E,g 1 -1 -1 

gj (z. + A (Z. ) h (Z.») < ° j e J9, -1 -1 -E,g -1 

q) (z. + A (z. ) h (z.), t) < 0 j e J 
-1 -1 -E,q 1 m 

t e T q 

STEP 7: Set ~i+l z. + A (z. ) h (z.) . Set i = i+l and go to 
-1 -1 -E,q -1 

step 2. 

REMARK 

The algorithm as presented above does not require an initial 

feasible point. If ~O ~ F, then t/Jq(~o) is non-zero and the algorithm 

constructs a sequence of points which forces the design into the 

feasible domain. This aspect of the algorithm is very advantageous in 

the case of complicated problems where the choice of an initial feasible 

point is not obvious, e.g., in earthquake resistant design if the 

relative drift of a particular story in a framed structure is to be 
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limited to a certain value, it is not easy to find an initial design 

that will satisfy that requirement. Of course, the algorithm is more 

efficient if one can find an initial feasible point. 

EXPLANATION OF THE ALGORITHM 

The algorithm has two distinct phases. First, a feasible 

direction is computed by solving equations (4.3.3) and (4.3.4), then 

a step is taken in this direction in such a way that the objective 

function is reduced and none of the constraints is violated. 

Direction finding subproblem 

As noted,a feasible direction is found by first solving the 

problem 

e (z) 
E,q - max [- ! II I 

].1>0 2 jEJg 
-- E 

(z) 
I 

(j ,t) EJ¢ (z) 
E,q -

].1 j \j ,j,j (z t) ¢ z't' _, 

I ].1~ + ].10=1] 
(j,t)EJ¢ (z) 

E,q -

(4.3.3) 

and then computing the direction from 

- h (z) -E,q I 
jEJ~ (z) 

\ ].1j \j ,j,j(z t) 
L ¢ z't' _, 

(j ,t) EJ¢ (z) 
E,q -

(4.3.4) 

Equation (4.3.3) can be transcribed into a standard quadratic pro-

gramming problem as follows. Let k (z) be the total number of points 
g -

in J~ (~) and k¢(~) be the total number of points in J:,q(~)' 

Define the vector 
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Define the matrix 

as 
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A e ]R 1 + kg (~) + kcp (~) x ]R P 

[~7fo (~)]T 

[Vgl(~)]T 

A [Vgkg(~)]T 

LV zcpl (~, t~,€,l)]T 

Then Eq. (4.3.3) can be written as 

or 

max 
1l:0 

min 
1l:0 

Define a vector 

such that 

D e 

l+k +k,j, 

I 
g 'I' . 

- Y 110 \)Jg(z) .I llJ 
J=O 

(4.3.5) 
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and a matrix 

Q € 
1 + kg(~) + k¢(~) 1 + kg(~) + k¢(~) 

JR xJR 

such that 

Then Eq. (4.3.5) can be written as 

min 
lJ>O 

\ 

1 T 
"2 ~ 9 ~ + 

l+kg(~)+k¢(~) 

L lJj (4.3.6) 
j=l 

which is a standard quadratic programming problem. Once the lJ's are 

obtained, the direction is computed from 

- h (z) 
-E,q -

T 
E A (4.3.7) 

computational Considerations 

The quadratic programming problem (QP) as formulated in Eq. 

(4.3.6) may be computationally ill-posed because of different magnitudes 

of the gradients of different functions. Proper scaling of these 

gradients is therefore essential to make the problem computationally 

efficient. In the present version the following scaling was used. 

Define 

sj = IIVgj(~)lloo j g € J
g 
E 

(~) ; 

sj = IIVzcpj (~,t) 1100 , (j , t) € J:,q(~)i ¢ 
(4.3.8) 

So = II VfD (z) II _ 00 

where 

II • 1100 is the maximum norm in JR P defined by 

II x 1100 = Ix. I 
~ 
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Define 

8 = max { So 
sj j e g 

Define a vector 

1 
R e JR 

as 

R 

J
g 

(~) sj 
s ¢ 

+ k (z) 
g - + k¢(~) 

8/S
0 

8/S
1 

n g 

n 8/S
2 
g 

k (z) 
n 8/S g 

g 

~ 1 
n S/S¢ 

j e J¢ (Z)}. s,q -

where n e JR is a parameter which may be adjusted to force the 

direction vector toward or away from a constraint. 

The A matrix is scaled as 

A = 

('ilfO (~)]T ISO 

['ilg1 (~)]T /s~ 

. 
[ 

k (z) JT k (z) 
'ilg g (z) /S g -

- g 

[vz~l(:, 

(4.3.9) 

(4.3.10) 
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Then, the scaled version of QP can be written as 

min {+ ~ 1:! T Q 1:! + D T 1:! I ~ T 1:! = I} 
1:!~O 

The direction vector is still obtained from Eq. (4.3.7). 

Step Length Computation 

(4.3.11) 

After a feasible direction is obtained, the next step is to 

compute the step length in that direction. If the current design is 

inside the feasible domain, the step length should be chosen in such 

a way that there is a maximum reduction in the objective function, 

while still maintaining feasibility. When the current design is out-

side the feasible domain, the objective is to take a step such that 

the new design is as close to the feasible domain as possible. The 

step size calculations begin by minimizing the objective function 

along the feasible direction and then checking whether any of the 

constraints is violated. If anyone of the constraints is violated, 

the step length is reduced until the new design satisfies all of the 

constraints. A number of methods are available for this unidirectional 

search, the most popular among them being Fibonacci search, Newton's 

method, quadratic or cubic fit, etc. [11,16]. For general non-convex 

problems, these methods tend to be very expensive. Since computation 

of the exact minimum along the feasible direction is not absolutely 

necessary, an approximate line search technique, known as the Armijo 

step size rule, is often used [11,17]. The method performs only an 

approximate line search and is quite efficient for general non-convex 

problems. The method is as follows. 
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Given the constants a, 6, E, S, M, current design vector z., 
-1 

h (z.) and ~e (z.), compute the smallest integer k(z.) in 
-E,q -1 ~,q -1 -1 

A(Z.) e (O,M] with A(z.) : Sk(z.) and 
-1 -1-1 

such that 

(i) if 

A 

M max {l 

z. Ii! F) , 
-1 

then ~ (z. + A(z.) h (Z») ~ (z.) < - a A(z.) 6 E E,q -1 -1 E,q -i - q -1 -1 

(U) 0, Le. z. e F , 
-1 

then fO(z. + A(z.)h (Z.») - fO(z.) < - a A(Z.) 8 E , 
-1 -1 -E,q -1 -1 - -1 

gj(z. + A(z.)h (z.») < 
-1 -1 -E,q -1 ° j e J,Q, , 

cpj(z. + A(z.)h (z.) , t) < ° j e J 
-1 -1 -s,q -1 m 

t e T 
q 

The algorithm to implement the above process is as follows 

STEP 1: Set A: S. 

Set FLAG: 0. Set n : 0. 

STEP 2: compute 
n 

~i+l z. + A he (Z.) 
-1 -~,q -1 

STEP 3: If ~e (z.) > 0, go to step 5, Else go to step 4. 
~,q 1 

STEP 4; Compute fO(~:+l)' 

If fO(~~+l) + a A 

Else go to step 7. 

< ° f (z.), go to step 5 
-1 
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STEP 5: Compute gj(~~+l)' j e J.Q, 

and ¢j (~~+1 t) j e 

If gj(zn )< -i+1 - 0, j e J.Q, 

Else go to step 7 

STEP 6: Set A = A/S 

If FLAG = - 1 go to step 8 

J m 

and 

t e T 
g 

j( n 
¢ ~i+l' < 

j€J ,teT, 
m g 

go to step 6 

Else set FLAG = 1, n = n + 1 and go to step 2. 

STEP 7: Set A = A x S 

If FLAG = 1, go to step 8 

o 

Else set FLAG = - 1, n = n + 1 and go to step 2. 

STEP 8: Set A = A* and the new design vector is 

~i+1 z. + A* h (z.). 
-1. -E,q -1. 

4.4 Computational Considerations 

As is clear from the previous section, the feasible directions 

algorithm requires computation of constraint functions and gradients of 

"active" constraint functions at each iteration. The computation of 

conventional inequality constraints (functions 'g' in the previous 

section) and their gradients presents no great difficulty. The 

functional constraints (functions '¢' in the previous section), however, 

are very expensive to compute because they require the computation of 

the time history of response of the structure, which for a nonlinear 
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system is not a trivial matter. The problem becomes even more com

plicated because the algorithm requires computation of the gradients 

of the functional constraints, which in turn, require sensitivity 

analysis, i.e., computation of gradients of the response quantities 

with respect to the design parameters. The structural response 

equations, in their state-space formulation, can be differentiated 

with respect to design parameters, using the chain rule, to obtain 

differential equations for sensitivity analysis [18,19]. Numerical 

integration of the sensitivity equations then gives the required 

gradients of the response quantities. For a nonlinear system of the 

type considered here the analytical form of the sensitivity equations 

becomes quite complicated, so that the direct finite difference scheme 

of computing these derivatives seems to be more appropriate. The 

finite difference scheme requires an additional p time history analyses, 

where p is the total number of design parameters. Thus, computation of 

functional constraints and their gradients requires p + I time history 

analyses of an "N" degree of freedom nonlinear system, clearly a major 

computational task. Therefore, any reduction in the number of times 

that these calculations are executed will significantly reduce the 

total computational cost. 

In the actual implementation of the algorithm for the type of 

problem under consideration a number of things can be done to reduce 

the computational cost. The most obvious is to make the integration 

of response equations as efficient as possible. This is done by 

exploiting the localized nonlinear nature of the problem, using sub

structuring techniques. An efficient Newmark method with optional 

Newton-Raphson iteration is used to carry out numerical integration of 

the equations of motion. Provision is made in the program to do the 
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structural and/or sensitivity analysis only if the design parameters 

are changed "appreciably". Thus, if at a particular iteration,design 

parameters are changed very little, so that the maximum difference 

between the new and old design parameters is less than a certain 

prescribed value, the program does not compute the new time history 

analysis, instead, it uses the previous values. 

A closer look at the algorithm shows that, when none of the 

functional constraints is active, gradients of the response quantities 

are not needed. In the program, therefore, constraint functions are 

first computed and then checked to determine if any of the constraints 

is active. If none of the constraints is active, the sensitivity 

analysis part is skipped, resulting in a significant saving in com

putation. Another source of considerable savings is the observation 

that gradients of response quantities are required only at those times 

included in the €-active constraint set defined in the previous section. 

In earthquake problems structural response typically builds up slowly 

and then dies down, whence the €-active times are for the most part 

much smaller than the total duration of the response time history. 

Therefore, when performing sensitivity analysis it is not necessary to 

compute the response time history beyond the maximum time included in 

the €-active set. This feature has been incorporated into the program. 
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5. APPLICATIONS 

The general techniques described in the previous sections have 

been applied to the three-story steel test frame described in Section 2. 

This section describes the formulation of the mathematical model for 

the test structure and presents numerical results for several design 

problems. 

5.1 Structural System 

The structural system chosen for numerical studies consists of 

a three-story, single bay steel frame as shown in Fig. 12. The bottom 

floor is supported on rubber bearings and an energy absorbing device 

attached to the frame at that level in such a way that the device 

exerts a horizontal force on the frame. 

If axial deformations in beams and columns are neglected, the 

frame has 12 degrees of freedom as shown in Fig. 13. The 12 x 12 

stiffness matrix (KE , in Eq. (3.2.1» for a single frame is shown in 

Tqble 1. 

since the masses are assumed to be lumped at the floor levels, 

the 12 x 12 stiffness matrix can be condensed to a 4 x 4 matrix with 

respect to lateral degrees of freedom only, as explained in Section 3. 

The condensed sti:Uness matrix for the frame (matrix KE in Eq. (3.2.2» 

is 

23.19 

SYMMETRIC 

-33.32 

72.20 

11.52 

-48.25 

61.22 

- 1.39 

9.37 

-24.49 

16.51 
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Thus, the lateral stiffness matrix of the complete structure, including 

the stiffness of rubber bearings at 1.2 kip/in is 

46.38 -66.64 23.04 -2.78 

144.40 -96.50 18.74 

SYMMETRIC 122.43 -48.97 

34.21 

The mass matrix of the structure corresponding to the lateral degrees 

of freedom is 

0.02438 

0.02438 
M 

0.02514 

0.02832 

Rayleigh damping is assumed in constructing the damping matrix 

The coefficients a and S are computed from 

/;1 

where wl and W2 are first and second mode frequencies, and 1;1 and /;2 

are the respective critical damping ratios in these modes. The damping 

matrix for the present structure, assuming 1;1 = 3% and 1;2 = 1%, is 

given below. 
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.0279 -.0332 .0115 -.0014 

.0768 -.0481 .0093 
C 

.0660 -.0244 

SYMMETRIC 
.0226 

5.2 Equations of Motion 

The equations of motion expressed in terms of lateral degrees of 

freedom of the structure can be written as 

. 
M U + C U = M e U (t) 

g 

where M, C and KE are given in the previous section and 

= [0, 0, 0, F~] 

F~ force in the energy absorbing device, whose 

S(t) 

constitutive 

. Ko[U
4

(tJ 

[ 

U 4 (t) 

a U 
o 

These equations are integrated using the numerical techniques given in 

Section 3.3. 

5.3 Design Parameters 

It is assumed here that the characteristics of the rubber 

bearings are fixed. Therefore, only the energy absorbing device will 
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be adjusted to obtain the optimal design. The two basic variables in 

the design of energy absorbers are the elastic stiffness and the post-

yield stiffness. These variables are controlled by the parameters FO' 

Uo and a in the hysteretic model of the energy absorbers. The elastic 

stiffness is approximately 

is approximately equal to 

equal to FO/U
O 

and the post-yield stiffness 

F 0 ( a) Thus, the design variables are 
Uo l+a 

FO' Uo and a. Another parameter which may influence the design is the 

exponent "n" in the hysteretic model, but it is not considered as a 

variable in the present study. 

5.4 Optimal Design Problems 

The purpose of an earthquake isolation system is to minimize 

some measure of the response of the structure. There are a number of 

response quantities which could be minimized, e.g., the maximum 

acceleration in the structure, maximum base shear, maximum story shear, 

maximum inter-story drift, etc. In order to get meaningful results, 

response constraints are also needed. Some of the constraints are 

dictated by the problem itself, e.g., the design parameters FO' uo and 

a are not allowed to attain negative values. Such constraints con-

stitute what are known as conventional inequality constraints. 

Constraints on the response quantities are also needed; e.g., when 

accelerations in the frame are minimized, the displacements at the 

base must not be arbitrarily large. These restrictions give rise to 

functional inequality constraints. Thus, a number of design problems 

could be formulated depending upon the objective function and the type 

of constraints placed on the response. In what follows several design 

problems of interest are considered. 
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Design Problem 1 

In this problem, the top story shear is minimized while main-

taining the bottom floor displacement within a prescribed limit. 

Mathematically, this problem can be expressed as 

subject to 

where 

T 

T 
z 

min 
z 

top story lateral stiffness, 

top, second and bottom floor displacements, 

respectively, 

= [to' tfl , the time interval of interest 

= prescribed limit on U4 ' 

r 1 2 3] Lz , z , z 

As explained in Section 3.2, the problem can be transcribed into a 

mathematical programming problem, as follows. 

The parameter vector z is augmented by a dummy cost parameter 

4 z and the above problem is then equivalent to the problem 

subject to 

max 
teT 

min 
z 

4 
z 

< 
4 

z 



and 

max 
t€T 
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< 

In terms of the nonlinear programming problem in canonical form, 

Section 4.2, equation (4.2.1), the above problem is expressed as 

fO(~) 

IJfO(~) 

1 
cjJ (~,t) 

1 IJ cjJ (z,t) 
z -

= 

4 
z 

[0, 0, 0, 1] T 

Kl [(U1 (~,t) - U2(~,t) )2] - 1.0 4 
z 

1.0 
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2 
U4(~,t) 

aU4(~,t) 
-
02 d Z 

1 

2 2 aU4(~,t) 
II ¢ (z, t) ;::; - U 4 (~, t) z-

02 2 
a z 

2 
U

4 
C~,tl 

aU4(~,t) 
-
02 a z 3 

0 

91 C~l 
0.2 

1 
1.0 E-S ;::; - z + 

g2 (::;) 10 
2 

1.0 E-S ;::; - z + 

g3 C~) 20 
3 

1.0 E-S = - z + 

0.2 o o 

o - 10 o 
I1g (~) = 

o o - 20 

o o o 

The factors 0.2, 10 and 20 in the above expressions are used to obtain 

an initial scaling of all constraints to a value of 1. 

RESULTS 

A computer program based on algorithms presented in Sections 3 

and 4 was used to solve the above design problem. The initial values 

of parameters were obtained from experimental data on the energy 

absorbing devices 12,4]. The following parameters were used: 

S.o, Uo = 0.11, a = 0.064, n = 1 . 
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The upper limit on u
4

' i.e. 0 was equal to 4 inches. The dummy cost 

4 
parameter z is the upper bound on the maximum shear in the top story. 

The initial value for z4 was 2.22. 

The Parkfield N65°E (1966) earthquake, with amplitude and time 

scaling as used in the experimental program [5] was used to excite the 

system. This accelerogram is shown in Fig. 14. The optimum parameters 

obtained are 

FO = 3.5185 

4 
z = 1.53094 

0.07782 0.07165 n 1 

Figure 15 shows the decrease in cost parameter as a function of 

iteration number. The percentage reduction in the dummy cost parameter 

is about 31%, which means that the relative story drift at the top 

story has been reduced by about this much. To see the effect of these 

new design parameters on overall structure response, the system was 

analysed with the new energy absorbing device parameters, and inter-

story shear-time histories at all three floors were plotted along with 

the initial shear-time histories. These plots, which are shown in 

Figs. 18-20, show clearly that the local peak shears are reduced 

throughout the time history. The base displacement time histories 

is also plotted for initial and optimal parameters in Fig. 21. As 

expected the base displacements are increased with the optimal design 

parameters indicating that the optimal system is softer at the base 

than the original system. The elastic stiffness is reduced from 45.5 

to 45.22 and the post yield stiffness is reduced from 10% to 6.6% of 

the elastic stiffness. Since the earthquake used was not strong 

enough to cause extensive nonlinearity in the energy absorbing device, 

the change in stiffness is not significant. It is expected (as shown 
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later by design example 2) that a strong earthquake would produce 

significant changes in these stiffnesses. 

Hysteresis loops in the energy absorber are also plotted in 

Fig. 16, 17. The loops show that, except for a few large inelastic 

excursions, the energy absorbers remain in their elastic range and 

therefore there is no significant energy absorption in the energy 

absorbers. 

Design Problem 2 

This problem consists of minimizing the total shear at the 

bottom floor level subject to the condition that the maximum displace-

ment in the bottom floor is less than a certain prescribed value, o. 

Mathematically we have 

m~n [~:) (Kl (U 1 (~, t) U 2 (~, t») ) 2 + (K2 (u 2 (~, t) - u 3 (~ , t) ) ) 
2 

+(K3(u3(~'t) - U4(~'t»))2~] 
subject to 

T 
z 2 z , 

~ the story stiffnesses (top down), 

~ displacement response histories at the floor levels 

(top down). 
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8 prescribed limit on the bottom floor displacement, selected to 

be 4 inches in the present problem. 

The equivalent nonlinear programming problem, is 

subject to 

min 
z 

4 
z 

~:~ [ 1 Kl (U 1 (~, t ) - U 2 (~ , t) )! 2 
+ l K2 (u 2 (~, t) - u 3 (~, t) ) ~ 2 

+ 1 K3 (u 3 (~, t) - U 4 (~ , t) ) ~ 2 ] < z 
4 

max [u4 (~,t)J2 
t€T 

< 

In terms of the canonical form of NLP given by (4.2.1) we have 

4 z 

[0 0 0, 1] 
T , , 

cp 
1 (~ , t) = z14 D Kl ( U 1 (~, t) - u 2 (~, t) ) ~ 2 + ~ K2 (u 2 (~, t) - u 3 (~ , t) ) ~ 2 

+ '~(U3(~'t) -U4(~'t))~2] - 1.0 



1 2 
\j ¢ (z,t) =-

Z - 4 
Z 
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+ K~ (U3 (~,t) 
~QU3 (~,t) 

- U4(~,t) 1 
dZ 

_ au, (~,t)j 
dZ

1 

K~ (u 1 (~, t) -
) (aul (""t) aU2 (~'t9 

U2(~,t) 2 - 2 
dZ dZ 

+ K~ ( U 2 (~ , t) 
~(3U2 (~,t) 

U3(~,t) 2 
dZ 

aU3 (~'t)) 
dZ 2 

+ K~ (u 3 (~ , t) 
)~U3(~'t) 

- U4(~,t) dZ 2 

_ au, (~'t)j 
dZ 2 

+ ~K2(U2(~'t) - U3(~'t»)t2 

+ ~K3(U3(~'t) - U4(~'t»)~2] 

1.0 
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2 
U4(~,t) 

dU4(~,t) 
-
82 

dZ
l 

2 2 dU4(~,t) 
IJ cp (z,t) - U4(~,t) z - 82 

dZ
2 

2 
U4 (~,t) 

dU4(~,t) 
-
82 

dZ
3 

0 

gl (~) -0.2 z 
1 

+ 1. 0 E-5 

g2(~) -10 
2 

+ 1. 0 E-5 = z 

g3(~) -20 z 
3 

1. 0 E-5 + 

-0.2 0 0 

0 -10 0 
IJg(~) 

0 0 -20 

0 0 0 

RESULTS 

El Centro 1940 NS ground motion, with modified time scale and 

amplitude, as used in the experimental investigation [5], was used for 

this problem. The ground acceleration time history is shown in Fig. 

22. This motion is very strong as compared with the Parkfield motion 

used for problem Ii therefore, considerable inelastic deformations can 

be expected in the energy absorbers. The initial values of the para-

meters are the same as those used for the first problem, i.e. 

5.0, Uo = 0.11, a 0.064, n 1. 
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The dummy cost parameter, 
4 

z , which is an upper bound on the total 

shear at the bottom floor level was 35.0. 

The optimal parameters obtained are 

FO = 4.2773 U = 1.7529 o 0.005768 
4 

z 9.1509. 

Figure 23 shows the plot of the cost parameter vs the iteration number. 

Story shears, bottom floor displacement and hysteresis loops in the 

energy absorbers are plotted in Fig. 24-29, for both initial and 

optimal parameters. The plots of story shears clearly show the 

effectiveness of the optimal isolation system, which reduces the story 

shears by as much as half of the values with the initial parameters. 

Again the bottom floor displacements are increased, although they 

remain within the allowable limit of 4 inches. Likewise a comparison 

of the initial and optimal design hysteresis loops in the energy 

absorbers indicates the effectiveness of a "softer" system. 

5.5 Sensitivity of the Optimal Design to Different Earthquake Ground 
Motions 

As is clear from the preceding development, only one earthquake 

ground motion is used in the optimal design process. Since earthquakes 

are random in nature, it is unlikely that the same earthquake ground 

motion will be repeated at some future time. Therefore, it becomes 

necessary to see the effectiveness of the optimal design process for 

different earthquakes. To get meaningful results, these additional 

earthquakes should have characteristics similar to the one used in 

the design process. This requirement prohibits the use of actual past 

earthquake records, inasmuch as for a given site there is typically an 

insufficient number of past records. An alternative is the use of 

artificially generated earthquakes of the same class. 
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For the present study a family of five earthquakes having 

characteristics similar to the El Centro 1940 NS earthquake was 

generated using the computer program PSEQGN developed by P. Ruiz and 

J. Penzien [20] and later modified by M. Murakami [21]. The earth

quake accelerograms were generated by passing nonstationary shot noise 

through two second-order linear filters and applying a base line 

correction. Each accelerogram was of thirty seconds duration with 

four seconds of parabolic built up, eleven seconds of constant inten

sity followed by fifteen seconds of exponential decay. The maximum 

acceleration in each record was about 0.30g. The structure was 

analyzed twice, with initial and optimal parameters obtained from 

problem 2, subjected to these five earthquakes. story shears and 

bottom floor displacements are compared for the initial and the optimal 

parameters. The five accelerograms, along with structural response 

quantities for initial and optimal designs, appear in Figs. 30-34. 

In all the cases response is considerably reduced in the optimal 

system, while the base displacement is increased, although remaining 

within the specified constraint of four inches. 
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6. CONCLUDING REMARKS 

Two of the main objectives of the present research were to 

study the effectiveness of the feasible directions method for optimal 

design problems with time dependent constraints and to arrive at an 

improved earthquake isolation system. 

The feasible directions algorithm seems to be quite effective 

for the types of problems considered. The effectiveness of the 

algorithm depends, among other things, on a number of parameters which 

control the convergence and other numerical aspects. Some experience 

with these parameters is needed before arriving at the most suitable 

set of parameters for a particular problem. An interactive system, 

where the user can change these parameters during the optimization 

process seems to be a more efficient way of handling this situation. 

At the time of this research no such facilities were available, there

fore this aspect has not yet been explored. Access to an interactive 

system is expected shortly and the work on implementing this algorithm 

interactively is underway. 

The optimal design obtained shows that a softer isolation system, 

subjected to displacement constraints, is the better design. As 

pointed out in the Introduction, the softer systems have excessive 

lateral deflections under small earthquakes and wind excitations. Thus, 

in order to arrive at a more practical design some additional require

ments, limiting the response under small earthquakes, are needed. This 

aspect is currently being investigated by introducing two levels of 

constraints, an upper limit on response under large earthquakes and a 

lower limit on response under small earthquakes. An additional 
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advantage of this kind of methodology would be that, instead of con

sidering only two earthquakes, a family could be considered, and an 

optimal design would be achieved for the entire class of records 

considered. 
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NOTATION 

~n Denotes the euclidean space of ordered n-tuples of real numbers. 

When an n-tuplet is a vector in ~ n, it is always treated as a 

column vector. 

n 
<. , . > scalar product in ~ n defined by <x,y> L 

i=l 

11.11 2 Euclidean norm defined by I Ixl 12 

11.11
00 

Maximum norm in ~n, defined by Ilxlloo = max Ixil 

ie~n 

z Underscore signifies that z is a vector or a matrix 

T z Transpose of z 

-1 
z Inverse of matrix z 

Ixl Absolute value of x 

A is contained in B 

A U B Union of A and B 

Set of points x having property p. 

x e A x belongs to A. 

x ~ A x does not belong to A. 

(a,b) Open interval 

[a,b) Closed interval 

(a,b] Semi-open or Semi-closed interval. 



f (e) or f 

e 

U(t) 
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Denotes a function, with the dot standing for the 

undesignated variable; fez) denotes the value of 

fCe) at point z. Domain A and range B of function 

fee) is indicated by f: A ~ B. 

Denotes the gradient of f at z. The gradient is 

treated as a column vector. If f is a function of 

more than one variable, the variable with respect to 

which the gradient is evaluated is shown as a subscript 

to the gradient symbol, e.g. V f(z,t) indicates 
z 

gradient with respect to z of a function of z, and t. 

Minimum of fCz) over z e c 

The dot over the functions represents the derivative 

with respect to time. i.e. U(t) = dU(t)/dt. 
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FIGURE 1 MODEL STRUCTURE 
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