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ABSTRACT

Optimal design of an earthquake isolation system, consisting of
natural rubber bearings and special nonlinear energy absorbing devices,
is presented. An algorithm for efficient analysis of structural
response, based upon the Newmark and Runge-Kutta methods with optional
Newton-Raphson iteration, is given. The optimal design problem,
incorporating this simulation algorithm, is formulated as a mathematical
programming problem with time-dependent constraints and is solved using
a feasible directions algorithm. Several numerical examples are
presented, in which it is demonstrated that a properly designed
isolation system can substantially reduce structural damage for a class

of potential earthquakes.
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1. INTRODUCTION

Earthquake ground motion introduces accelerations at the base
of a structure, producing forces and deformations in the structure.

If there is some type of isolation system between the base of the struc-
ture and the ground, the adverse effect of the accelerations on the
structure may be reduced. Based upon this simple idea, researchers

have suggested a number of different types of isolation systems. Two
basic approaches have been followed: One is to support the structure on
mechanical devices such as rollers, self-centering rocking mechanisms,
rubber bearings etc.; the major drawbacks of these devices are large
lateral base deflections and undesirable motion under wind and other
small excitations. The second approach is the so called "soft story"
concept in which the first-story columns are designed so that the
structure remains elastic under small excitations, but yields and
absorbs a considerable amount of energy under strong earthquakes.

Large lateral deflections are a problem in this case, resulting in
damage to the first-story columns during a strong earthquake.  Behavior
of the main building of the Olive View Hospital in the 1971 San Fernando
Earthquake is a classic example of this [1].

More recently another type of earthguake isolation system using
natural rubber bearings and mild steel energy absorbing devices has
been proposed [2]. The structure is supported on natural rubber
bearings which are very rigid vertically but have a low lateral stiff-
ness. To prevent excessive lateral deformation under small earthquakes
as well as dissipate energy under strong earthquakes, special devices

are attached at the foundation level and at any other desired floor



level. The devices, made of ductile steel, rely on the hysteretic
behavior of steel subjected to torsional deformation. A half-scale
model of a steel framed structure employing these energy absorbing
devices attached at the bottom floor girder was tested on an earthquake
simulator by Kelly et. al. The results of these tests, reported in
[2,3,4 and 5], show that for small earthquakes the structure behaved
as i1f attached to a rigid foundation, strongly amplifying the ground
motion, while for strong earthquakes, the devices yielded and absorbed
large amounts of energy amounting to as much as the equivalent of

30% -~ 35% of critical viscous damping. A number of different devices
with different elastic and post-yield stiffnesses were used.l The
results show that different degrees of isolation were provided by each
device. The question naturally arises, what is the "best" choice of
these energy absorbing devices for a particular structure?

The present research is motivated by this question. The problem
of choosing the best device parameters is formulated as an optimization
problem with time dependent constraints. A second important aspect of
the present study is the application of nonlinear programming
techniques to solve the optimal design problem resulting from the use

of energy absorbing devices.

1.1 Program Objective and Limitations

The objective of the present research program is to study the
problem of optimal design of an earthquake isolation system of the type
described utilizing nonlinear programming techniques, specifically, the
Method of Feasible Directions.

The first step is to develop methods for efficient analysis and

re-analysis of the structural system, which is assumed to remain elastic



during the earthquake, the only nonlinearity occuring in the behavior
of the energy absorbing devices. The optimization process requires
time~-history analysis of structural response at each design iteration.
This is a very time-consuming operation for a general nonlinear
structural system, and it requires exploitation of the "localized"
nonlinear nature of the present problem to obtain a satisfactory com-
putational algorithm. The present study is deterministic‘in the sense
that an actual ground motion record is used as input. In the absence
of any suitable method for characterization of earthquakes for non-
linear systems, the probabilistic nature of the design problem is taken
into account by carrying out a series of analyses for different earth-
quake inputs and comparing the structural response under these earth-
quakes for the isolation system designed from the single record. This
procedure gives at least an indirect indication of the sensitivity of
the optimal design to the selection of input earthguake ground motion.

The method of feasible directions used to find the optimal
design is a very general method capable of handling a variety of design
problems. Modifications of the basic algorithm are required to make it
computationally efficient for the special class of design procblems
associated with earthquake-resistant design.

The objectives of the present research are thus summarized as

follows:

(i) to develop an efficient algorithm for the analysis of structures
with localized nonlinear energy absorbing devices subjected to

earthquakes.

(ii) to formulate the problem of design of an earthquake isolation

system as an optimal design problem.



(iii) to apply the method of feasible directions to achieve the
optimal design, making use of the special nature of the earth-

quake problem to achieve computational efficiency.

1.2 Report Outline

A short description of the test stiucture and the isolation
system used in the earthquake simulator tests conducted at the
University of California, Berkeley, is given in Section 2. In Section
3, the mathematical model used to describe the hysteretic behavior of
the energy absorbing deviceg is described. Equations of motion for the
system are obtained and an efficient algorithm based upon the Newmark
and Runge-Kutta methods with optional Newton-Raphson iteration is
presented. Comments are made about sensitivity analysis results,i.e.
computation of the rate of change of response quantities with respect
to the design parameters required by thé optimization algorithm. A
general optimal design problem is then formulated in Section 4, which
also presents a feasible direction algorithm to solve it. Comments
about the computaticnal aspects of the algorithm are included. Section
5 describes application of the general techniques presented in Sections
3 and 4 to the optimal design of an isolation system for the steel test
frame described in Section 2. The report is completed by some con-

cluding remarks in Section 6.



2. AN EARTHQUAKE ISOLATION SYSTEM

A half-scale model of a three-story steel framed-structure with
an isolation system consisting of rubber bearings and energy absorbing
devices was tested on an earthquake simulator. This Section gives a
brief description of the test frame and the isolation system used.

Further details of design and fabrication are given in [2,4,5,6].

2.1 Steel Test Frame

The test structure consisted of two identical, three-story,
single-bay steel frames, interconnected by floor diaphragm systems
which were essentially rigid in their planes as shown in Fig. 1. The
model weighed 39.5 kips, was 20 ft high and was 12 ft by 6 ft in plan.
The columns and beams were W5 x 12 and W6 x 12 rolled sections,
respectively, and were welded together by typical moment resistant con-
nections. A heavy W10 x 49 girder was used at the base to ensure that
the rubber bearings would have little tendency to undergo bending
deformations. Concrete blocks weighing 8 kips were added to each floor
to simulate the dead weight of the building. The model was supported
on rubber bearings and energy absorbing devices were attached to the

base floor through a horizontal 1link, as shown in Fig. 2.

2.2 Natural Rubber Bearings

The natural rubber bearings used in the test are shown in Figs.
3 and 4. Each layer of a multilayer bearing was hand-fabricated from
sheets of rubber vulcanization-bonded to aluminum foil. The aluminum
foil was in turn bonded to the mild steel interleaves using adhesive
tape over two-thirds of the surface area and epoxy resin, for greater

shear strength, over the remaining one-third area.



The vertical stiffness characteristics of the rubber bearings
are shown in Fig. 5. After an initial soft cycle, the bearings showed
little hysteresis. The vertical stiffness under the working load is
of the order of 150 kips/in.

Horizontal stiffness characteristics are shown in Fig. 6. The
initial tangent stiffness at zero deflection is 320 1lb/in., reducing
to about 250 1lb/in. at 2.5 in. deflection. The hysteresis loops

represent approximately 10% critical damping.

2.3 Torsional Energy Absorbing Devices

A typical energy absorbing device is shown in Fig. 7. The key
element in the device is the mild steel torsion bar of rectangular cross-
section to which four clamps are welded. The outer clamping arms are
used to attach the device to structural and foundation elements, with
the inner arms linked to the active struétural element. When this
element is displaced, it pushes the inner arms introducing torsion in
the mild steel bar.

In this steel frame test devices were attached to the base
floor in such a way that they applied a horizontal force to the model
structure. The devices were tested under sinusoidal and random loadings
to establish that they are capéble of withstanding many cycles of large
plastic deformation without appreciable deterioration in their energy
absorption capacity. In this regard see Fig. 8. Under small excitations
the devices are elastic and the system behaves as a rigid foundation
system, while under strong excitations the devices yield and produce

large hysteresis loops, thus absorbing a considerable amount of energy.



3. STRUCTURAL ANALYSIS

A procedure for efficient analysis of a structural system con-
taining earthquake isolation devices is the first step in developing an
optimal design methodology. This section introduces a méthematical
model to describe the hysteretic behavior of the energy absorbing
devices. Equations of motion for a multistory frame containing energy
absorbing devices are then derived and an efficient algorithm for their
numerical integration using substructuring is given.

3.1 Mathematical Model for Hysteretic Behavior of the Energy Absorbing
Devices

A number of models have been employed to specify the force-
deformation relationship for inelastic structural elements under cyclic
loading. Two of the most common are the bilinear and the Ramberg-Osgood
models. The bilinear model exhibits sharp transition from elastic to
inelastic states; kinematic or isotropic hardening rules are used for
unloading and reloading. The model fails to represent actual material
behavior under cyclic loading and is computationally quite inefficient
because it requires one to keep track of all stiffness transition
points.

The Ramberg-Osgood model, coupled with Masing's rule for
unloading and reloading gives a continuous transition from elastic to
inelastic states. Computationally, this is a very difficult model to
use because of different equations for different parts of the loop.
Matzen and McNiven [7] have pointed out that the model as presented
originally is not suitable for random earthquake-type excitations. At
least thirteen new rules have been added to make it applicable to this

case, making the model even harder to use.



Recently a series of newly-proposed models for cyclic behavior
of structural elements has been described [8]. These models are given
in the form of differential equations and are sufficiently general to
include strain hardening, stiffness degradation, etc. A single equation
governs initial loading, unloading and reloadiﬁg (facilitating
computation) and it behaves well in the case of arbitrary excitations.
The particular rate-—independent model to be used for the energy

absorbing devices in this study is given by the following equations:

. ] 3 F t n
F(t) = K [U(t) - |U(t)|(—-—(-—) - s)] (3.1.1)
0 F
0
Ut Pt
s(e) =a [HE . E ’] (3.1.2)
0 0
where
F(t) = horizontal force in the energy absorber
U(t) = displacement of the energy absorber
6(t) = velocity of the energy absorber
Ko = Fo/Y
FO = vyield force
UO = yield displacement
ol = a constant which controls the slope after yielding,
o
Ky - K0 1+o0 ©
n = a material parameter, taken as an odd integer which

controls the sharpness of transition from the elastic

to the inelastic region, As n - ® the model approaches
a bilinear model.

, U, d and n are chosen such that predicted

The parameters FO 0

response from the model closely matches experimental response. Typical



loops generated by this model under displacements varying sinusoidally

in time are shown in Fig. 9.

3.2 Equations of Motion for the System

The structural system considered here, consists of an assemblage
of discrete beam and column elements as shown in Fig. 10. The frame
may have any number of stories and bays. Axial deformations in both
beams and columns are neglected; thus, we have only one lateral and
M+l rotational degrees of freedom per story, where M is the number of
bays. The nonlinear energy absorbing elements can be attached to any
story. Story’masses are assumed to be lumped at the floor levels and
no rotational inertia is associated with the rotational degfees of
freedom. The structure is assumed to remain elastic during an earth-
quake; thus, the nonlinearity is only associated with the energy

absorbers. The equations of motion of the system can be written as

follows:
ﬁ§+§§+g’ﬂ§+§=-@gﬁg(u (3.2.1)

where

ﬁll(‘t) = (Ui,..., E(M_*_l);Ui,...;UlI,...) is the nodal point

displacement vector, § € IQN(M+2).

é(t) = velocity vector

é(t) = acceleration vector

M = diagonal mass matrix, M e I{N(M+2) X IKN(M+2)

¢ = damping matrix, C € r N (H2) X IQN(M+2)

EE = gtiffness matrix of the structure excluding the energy

o N (M+2 N (M+2
absorbing elements, 1_<E € R ( ) X R ¢ )



[Reals

r
U (t)
g

In or

10

= vector of forces in the energy absorbing elements,
~ N (M+
F € R (M+2)

= (O,...;l,,,;l...l)T, re RN(M+2)

It

ground acceleration time history.

der to eliminate rotational degrees of freedom from the

. o ~E s .
system, the matrices M, C and K are partitioned corresponding to the

rotational and translational degrees of freedom. The system of

equations th

en has the form

1
. ] - E 1 B
0O 1+ 0 U 0 0 U U
| "6 | “o o0 1 Ser | |8
——te—] b + e L) + T _—
o 1+ mllu o‘gcr} [KETE K U
= = (IR § - -0t : -ttt -
]
0 o 1ollo
T AN QS | S
r o tuflef 7
where
T N
e = (1,1,1,...), e € R
LA N . .

U, U, U € R represent, respectively, translational
displacement, velocity and acceleration
vectors.

. . N (M+1) .
ge, Qe, 96 € R represent state vectors corresponding to

rotational degrees of freedom

The first sub-matrix equation gives

The second equation gives

=
e
-+
10
IGe
+
A
1q
+
1
@ H
—
=]
k=)
D@
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Substituting for U, from the first into the second equation yields

6
?_"9+9‘_J+_9+1_‘"='1‘_’1§Ug(t)
E E E T E -1
h = _
waere - I—<tt {-et] [1—{96] Eet’
Define P(t) =~ Me U (t).

Then, the equations of motion in terms of lateral degrees of freedom

are

() + K° U(t) + F(t) = P(t). (3.2.2)

12
1
@
+
10
1Ce

B N N
M, C, K € R xR

ue), Oe), B e RO

3.3 Numerical Solution of the Differential Equations of Motion

The equations of motion (3.2.2) are solved numerically by
discretizing them in time, with the exact solution U(t), é(t) and ﬁ%t)

approximated by gt’ U_ and ﬁt’ respectively. The step-by-step integra-

t
tion procedures start with the known initial conditions and march for-
ward in time giving the solution at discrete time intervals. The
process for a nonlinear system has two distinct phases. The first
phase is the linearization phase, in which the equations are linearized
about the current state by retaining only the first order terms of the
Taylor series expansion. Estimates of the solution at the next step
are then obtained by using these linearized equations. The second

phase is the state determination phase, in which the internal forces in

equilibrium with the new state of motion are calculated. If the
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discrepancy between these internal forces and the external applied
loads is within some tolerance level, the solution is accepted and the
process repeated for the next step. Otherwise, a Newton-Raphson type
iteration is used until the unbalanced forces are within acceptable
limits.

In this study the estimates of the solution are obtained using
Newmark's method and the internal forces in the energy absorbers are
computed using a fourth-order Runge-~Kutta scheme. The details of the
process are given below.

The equations of motion (3.2.2) at time T = t + At can be

written as

MU +CU +XK U +F =7p (3.3.1)

Define the increments in acceleration, velocity, displacement and force

in the energy absorbers occurring in the time increment At by

bO, = U - G
. - OT - .
g = b - b
Ag, = UL - U
(3.3.2)

My = 5 -

_ JE

- 3_ t Agt

_ N

Substituting these expressions in Eg. (3.3.1) produces the incremental

form of the equations of motion
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.e . N *
M AU, + ¢ Ay, (K +Kt>At_Jt—gt (3.3.3)
where
* — _ °
Bpo=op - |MG e vey vE

Computation of ES

oF,
. . . . . . i
KN is a diagonal matrix whose ith diagonal element is R

-t
it
Since F(t) represents the force in the energy absorbers, only those
elements on the diagonal, which correspond to a degree of freedom at
which an energy absorbing element is attached, will be non-zero.

The force in the energy absorbing element at the ith degree of

freedom is obtained from Egs. (3.1.1) and (3.1.2):

3 . F (t) n
Fo(8) = Ky \U, () - |U (t) ] - 8(t)
Ui(t) F. (t)
Si(t) = 0o g
0
or
L ] L) Fi(t) n
Fi(t) = KO Ui(t) 1 - sign T - Sﬁt)
U, (t) F, (t)
_ i i
where
sign = 1 if Ui(t) >0
= =1 if Ui(t) < 0.
Thus .
F, (t) (Fi(t) )n
- = K 1 - sign - s(t)
3. () 0 FO i

1
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and
aFi Fi(t) n
T = KO 1 - 51gn~( = - Sﬁt)) (3.3.4)
¢ 0
with
U, (t) F,(t)
i i
S(t) = o -
1 UO FO

Newmark's Method

An implicit, single-step, two parameter family of integration
operators described by Newmark [9] is used for the numerical integration
of the equations of motion. The method assumes that the increments in
velocity and acceleration are related to the increment in displacement

and the state of motion at time t, as follows:

% = —Y_. - X_ b - _’_Y__ - ™
Au, e OU, 5 Uy At (28 1) b, (3.3.5)
1 1 - 1 .
AU, = AU - - =5 U (3.3.6)
= I = bt
t 8(At) t BAt =t 28 t
where
At = +time step of integration

Y,B are the two integration parameters.
A "constant average acceleration" operator is obtained with
B8 =1/4 and vy = 1/2, which is unconditionally stable for linear

problems.

A "linear acceleration" operator is obtained with = 1/6 and
Y = 1/2.
Substituting Egs. (3.3.5) and (3.3.6) into the incremental

equations of motion (3.3.3) and simplifying gives



15

* A * 3.3.7
Ke B0 = Ry (3.3.7)
where
* 1 Y E N
= == Ve +
e gie 2t g St K %
* * l . l
% T R T OB [BAt ¢ T 28 -t]
Y ¢ X _
Tos [B % 7 At<28 l) L-’t]
]_ . f * A *
Solution o Et gt = Bt

The most expensive part of the integration process is the
solution of the above set of linear equations. Fortunately, because
of the localized nonlinearity of the problem, it is not necessary to
form and decompose the whole matrix 5; at each step. The substructuring
technique is used to separate effectively the nonlinear part from the
linear part of the problem as follows:

Partition the displacement vector such that displacements

corresponding to the energy absorbers are separated from the remaining

displacements
E
R
A[_JN
AgN = incremental displacements corresponding to energy absorbing
elements.
AQE = incremental displacements corresponding to the rest of the
system

* *
Partition the matrices gt and Bt accordingly, as follows:

1 E B
I AU R
_:_.E___i_f}_nj T B A (3.3.8)
KNE E K A[-JN EN
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The first equation gives

E N B
I.SEE A[_J + ISEN AI;I = R
okr
E -1 B N
AT = Ko [ R™ - Ky AU ] . (3.3.9)

The second submatrix equation in Eq. (3.3.8) gives

K 200+ Ko M0t = BV (3.3.10)
Substitute Eg. (3.3.9) into Eq. (3.3.10)
-1 E N N __N
N N R S
Define
_ -1
2 =~ % XN
T _ -1
2 =~ Kg % -
Thus
[KNE 0+ §N§] AgN _ —Nv N 9T BE .
ox
A = [ISNE 0 + ISNN]'l [13“ + Q" I_zE] (3.3.11)

Once the AgN are known, AgE are calculated from Egq. (3.3.9).
' The computational steps can be summarized in the following

algorithm.

Algorithm

In the beginning of the integration loop

: T
(1) form Ko, Kour ENE = Koy

(ii) triangularize EEE’
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(iii) obtain Q by forward reduction and back substitution from

K = - K
“eg 2 ~EN

. T
(iv) form Q and the product ENE Q .

At each time step of integration

(1) form ENN at the current step,
. . E N
(ii) form load vectors R™ and R ,
(iii) Solve + A = )Y O+ of RF
52e 2 F Bw |8 = E 2 R
for AQN,

(iv) obtain AQE by forward reduction and back-substitution from

E E
= R -
Xee AU Xen Y

N

Computation of Forces in the Energy Absorbing Elements

After increments in the displacements and velocities are
obtained, the next step is to compufe the internal resisting forces in
equilibrium with this new state of motion. Since the structure is
assumed to remain elastic, the internal forces in the structural
elements are obtained simply by multiplving the current displacements
with the appropriate stiffnesses of these elements. Computation of
forces in the energy absorbers, however, is not that simple, because
of lack of an algebraic expression for their force-deformation
behavior, which instead, is described by a set of first ordex
differential equations. These equations are integrated numerically to
compute internal forces in the energy absorbers. An explicit fourth-
order Runge-Kutta scheme, with the option of using a smaller time step
than the one used in Newmark's method, is used in this study. B2n

explicit scheme is favored over an implicit scheme because of the
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added complexity of an implicit scheme, which would involve an
additional iteration cycle. The details of the process are given
below.

To integrate force-deformation equations of energy absorbers
from time t to time T = t + At, some assumptions regarding the
variation of acceleration, velocity and displacement during the time
interval (t,T) are needed. Since the Newmark linear acceleration
method has been demonstrated to be quite effective for solving non-
linear structural dynamics problems [10], it seems reasonable to
assume linear variation in the acceleration during the time interval.
This will imply quadratic variatioh of velocity and cubic variation of
displacement. These variations are shown in Fig. 11.

The force in the energy absorber at the ith floor is given by

Egs. (3.1.1) and (3.1.2):

. . . Fi(x) n
F,(®) =K U (x) - U ()] P T si) ;
U. (x) F, (x)

1 1

S5, (%) = - .
i U, F,
or

. . F. (%) U, (x) )

F,(x) = Ky o, (0 - |u; )| Sta+l) — - o —=
0 0
x € [0, At] . (3.3.12)

Equation (3.3.12) is integrated by employing a fourth order Runge-Kutta

method with time step Ax, where Ax < At, and the initial condition.

Fi(t),

f (Fi(x), x)

Fi(O)

It

ﬁi(x)



from x_ to x = X

where

where

19

F, (%)

— he -— . 1
= K_ [Ui(x) |u; () | {(uﬂ) =

0

U, (x) }n
1
Yo

The following calculations are made to advance the solution

+ Ax

K K+1 K

~
il

1 Ax £ (Fi(xK), xK)

F.(x)) U, (x. ) )*
_ . . 1 K 1 K
= Ax KO [Ui(XK) - lUi(XK)l {(OH‘].) —*Ej————— o o } ]
0 0
. . ) AU. 'x12<
. . x12< Aﬁi x13<
U.l(xK) = U.l(t) + Ui(t) X+ Ui(t) > i e -
- 1 1
K2 = Ax f(Fi(xK) + 5 Kl, X + 5 Ax)
[ 1 L4 l
= KO Ax [Ui (XK + '?? AX) - |Ui (XK + E’ AX)I
1 . AX n
. (XK) + -é' Kl Ul (XK + 7)
(o+1) 7 - g -
0 0
{J (x +—1-Ax=I.J(t)+f5(t) (x +-]-'—Ax)
i X 2 i i 2
AU,
i 1 1 2
f e 5 (% +5AX)
U ( +3A)—U(t) + 0, (t) < +lA)
i\ T2/ =Y g T3 BX
AG
6 0y L 1ax)? + 2 _1_( 1 )3
+Ui(t)2(xK+2Ax>+ " 6xK+2Ax
K=Axf<F(x)+1'-K x+—Ax)
3 ik 2 2f
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F.(x.) + =K
_ . . 1 K 2 72
= K, Ax Ul(xK + = Ax) - IUi(xK + E'AX)I { (o+1) 3
1 n
N _iggK + 5 Ax!
UO
K4 = Ax f(Fi(xK) + K3, X, + Ax)
. . F (xK) + K3
= KO Ax Ui<xK + Ax) - U:L <xK + Ax)l (a+1) FO -
n
Ul(xK + Ag)
@ ="
0

where

Ui(xK + Ax) = Ui(t) + Ui(t) (XK + Ax)
(xK + Ax)2

AG,

4+ 1
Ax

N

Ui<xK + Ax> = Ui(t) + Ui(t) (xK + Ax)
AG .
v 1 2 i 1 3
+ Ui(t) E'(XK + Ax) + T E'(XK + Ax)
F‘(X ) = F (x ) + l— <K + 2K + 2K + K >.
i\"K+1 i\"K 6 1 2 3 4

Algorithm for Integration of Egquations of Motion

Now the algorithm for numerical integration of the equations of

motion (3.2.2) can be presented.

A: INITIAL CALCULATIONS

DATA: Integration parameters £, Yy
time steps At and Ax, .
Convergence tolerance parameter TOL.

structural property matrices M, EE and C

, U., o and n.

energy absorber properties FO 0
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STEP 1: Compute the constants

a = a = X Q. = X
1 B(At)2 2 BAt 3 2R
I = X - XY
8 T BAt 8 T 3B 8 7 At<26 l)‘

STEP 2: Initialize the state of motion, i.e. specify U, é and ﬁo.

0

STEP 3: Partition the stiffness matrix as explained in Eq. (3.3.8),

triangularize §EE and form Q.

B. FOR EACH TIME STEP

* *
TEP 4: F
S orm gt and Bt
* E N
= +
Kg = ag M ot oagc o+ K+ K
* * . L . ]
= + + +
SO [az B * a3 Ut] te [as Ue ¥ 3 O
h * M § ; E
where P = P - [_ G + cu. + K U+ gt]
P, == Me Ug(T)
STEP 5: Solve
* A *
I_<t gt - Bt

for Agt, using the algorithm given previously.

STEP 6: Update the state of motion at T = t + At

Up = G * o380 - a8 - o3l

5 - a

. - . + _
U U a, Au a & 6 Y

t 4 =t 5

= + .
u, = U, + Ag
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STEP 7: Compute ET' the forces in the energy absorbing devices using

the fourth-order Runge-Kutta method.

STEP 8: Compute the unbalanced force at time T

1+h>

_ _ . . E
=p - | vt &y ]
STEP 9: Compute ||£||2, the Euclidean norm of E. If l|§||2 < TOL, no

iteration is needed in this step. Go to step 4 for the next

step calculations, else proceed to step 10.

C: ITERATION WITHIN A TIME STEP

* E N
STEP 10: Compute ET = a; M + a, c+K + ET .
* S
STEP 11: Solve XK_6u_ = f for ©&uU_ .
-T =T = =T

STEP 12: Update the state of motion

new U_=10_+ a; SQT

=T T
= + a
new gr 91 4 691
= + .
new gT gT SQT

STEP 13: Compute the unbalance as in step 8. See if convergence
criterion of step 9 is satisfied. If yes, go to step 4 for

next time step. Else go to step 10.

3.4 Sensitivity Analysis

The method of feasibledirections for optimization requires
gradients of the constraint functions, which in turn require gradients
of the response quantities with respect to the system‘parameters. The
computation of these gradients, so-called sensitivity analysis, is
important in itself because the information produced can be used

directly for design trade-off studies.
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One way of computing such sensitivity matrices is to integrate
numerically the sensitivity equations obtained by differentiating the
system equations of motion with respect to the system parameters. In
the present case because of the complicated nature of the hysteretic
model of the energy absorbers, the analytical expressions for
sensitivity equations are very complex. Numerical integration of these
equations with the same time step as that used for the system equations
poses additional difficulties.

Because of these difficulties, a straight-forward approach using
finite difference approximations is used. Partial derivatives are

given by expressions of the type

9f (b) f(b+Ab) - £(b)

——

ob ~ b

where
f(.) 1is any response function and

b is an element of the parameter vector.

Some errors are introduced by the above approximation, but by proper

selection of the step size they can be controlled.
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4., OPTIMIZATION

In this section a class of optimal design problems is formulated
for the multistory frame with energy absorbing devices. The design
problem is then transcribed into a canonical form of nonlinear pro-
gramming problem. A feasible directions algorithm to solve this
problem is discussed and some comments made about the computational

aspects of the method.

4.1 Optimal Design Problem

The main objective of an earthquake isolation system is to
reduce detrimental effects of earthquake ground motion on the structure.
Thus, one may formulate an optimal design problem as selection of the
controlling parameters (e.g. vield force, yield displacement, etc., of
the energy absorber) of the isolation system in such a way as to
minimize some measure of the structural response of the system. In
this section, the problem is first considered in an abstract manner,
since the techniques described are applicable to a broad class of such
problems. Specific design problems will then be treated in the next
section.

A class of optimal design problems can be written in the form

min max [F (R (z,t))]

Z  tEeT
such that
max G(R (2z,t)) f-él
teT
H(z) ke §2 (4.1.1)
where

T = [to, tf], specified time interval
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The following notation has been used:

Q

F: R"TxR >R x R: is some function of structural response
which is to be minimized.

Q: number of structural response functions.
P . .

z€ R : is the design parameter vector.

P: total number of design parameters.
P 0 . .

R: R xR >~ R*x R: is some function of structural response.

P
G: R xXx R > I{M x R are the time dependent inequality constraints

.o

(functional constraints)

M: number of functional inequality constraints.
P L . . . .

H: R >R : are conventional inequality constraints.
M L . .

§l € R , §2 € R : are prescribed constraint bounds.

As an example, consider the problem of minimizing the maximum
acceleration at the top floor of a multistory frame, with an energy
absorber at the bottom floor, such that the bottom floor displacement
is less than a certain allowable value. The design parameters could
be chosen to be the.yield force and yield displacement of the energy
absorber, with the requirement that both design parameters be positive.
Similarly the function F is taken as the square of the top floor
acceleration while the function G is the square of the bottom floor
displacement. The function H represents positivity constraints on the

design parameters, as noted above.

4.2 DNonlinear Programming Problem

The design problem formulated in the previous section is not

directly suitable for the application of nonlinear programming
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techniques; an appropriate canonical form can be expressed as [11, 12,

13, 143}
. 0, '
min {f (2)} (4.2.1)
z
such that
j - 3
£7°(z) = max ¢-(z, t) < 0
teT .
ji=1,...,M
T € R is a compact interval.
gj(g)i 0 j=1,...,L
where
z € IQP is the design parameter vecéor.
0 P . . . .
f " : R >R is the cost or objective function.
£ I{P + R 3 =1,...,M are functional constraints.
gj : IiP > R j=1,...,L are conventional inequality

constraints.

The optimal design problem (4.1.1l) can be transcribed to the
canonical form (4.2.1) by augmenting the parameter vector z by a
P+l

dummy cost parameter =z . The dummy cost parameter is an upper bound

to the objective function to be minimized, i.e.

max [F (R (z,£))] < zF*%

teT

Thus, the minimization of zP+l implies the minimization of the actual

objective function. The design problem can then be written as:

min ZP+l
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such that
max [F (R (z,£)] =2z '~ < 0
ter
max [G (R (z,8))] - 6, < O (4.2.2)
teT

-H@ + 8, < 0,

which is in the canonical form with

O - 2P

fl(g) = max [F (R (z,£)) - ZP+l]
teT

fj(g) = max [GjJ (5 (E,t)) - (Si] j=2,3,...,M
teT

g(z) =- wl(z) + & J=1,...,L.

2

4.3 Method of Feasible Directions

An algorithm of the feasible direction type for solving the
nonlinear programming problem (4.2.1) is presented in this section.
The basic algorithm is due to Polak and Trahan [15]. Only a short
description of the algorithm will be given here;readers interested in
more details and the convergence proof are referred to the original
paper.

Before presenting the algorithm, some definitions and assumptions
are required. As noted earlier, the nonlinear programming problem
(NLP) is defined as:

min {fo(g) | fj(é) <0, J € Jm ; gj(g) <0, j € JQ }
z

where

£(z) = max ¢7(z,b) (4.3.1)
te€T
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T = [to, tf]
g, = {1,2,...,M}
3, = {1,2,...,1}
0 P 3 P .
f: R">R,g: R >R, J€J are assumed to be con-

L

tinuously differentiable.
¢J: IQP X R R xR, j€ Jm are continuously differentiable
in the first variable and con-

tinuous in the second.
Define the feasible set,
F o= {g e R |£(z) < 0,5 ¢ I i g(z) <03 e J,Q}

The interval T is discretized into g+l points and is denoted by Tq

Define

wq(g) max {¢J(§,t), jed.,te Tq; gj(g), j e JQ}

wq(g) max {0, @q(g)}

Note that, if =z € F, then wq(g) = 0.

Define the "e-active constraint” points

~J _ J _ _ .
Tq’e(g) = {t € Tq|¢ (z,t) wq(E).i s} s B

Now define the "intervals"

(2 = E;le(g> k = l,2,...,k3'

d4,€,k = q s(é) r 3 € I

recursively, as follows.

To define the first interval, I:l

9, l(E), let t, be the smallest
14 r

1

number in %é 8(g) and let n, be the largest integer such that
r

1
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o o
(tl + nlAt> € Ty, , but (tl+(nl+l) At) £ Tq,e®

where

At = (tf - to)/q .

Then

3 -
I = {tl, £ F A, ot

q,€,1 +2 Myt +ng At} .

Next suppose that I; c k(g) have been defined for k = 1,2,...,kl, then
14 14 .
j

i =]
Iq,S,(k1+l)(E) are defined as follows. Let ¢t ., € Tq,E(E) be the

1
smallest number such that

kl ;5
G foadl Tgex @)
and let Ny 4 be the largest integer such that

1

~ ~J
b t + +1yAtY g T (z)
(tkl+l + nkl+l At) € que(_z_) ut ( kl+l (nkl+l_ ) ) q,e'Z

Then define

k. +1’ tk +1 + b, tk +1 k., +1 k. +1

J (z) = %t
1 1 1 1 1

PR +
Iq,e,(kl+l) + 2 At, 't n Ats,

and define

3 ]
que(g) {l,2,...,kq,€(§)} .
Note that

J
q,€,k

T o (2) U o I
4 k € K _(z)

q,€ -

(z) .

Next, define the "local maximum points"
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] J 3
t of I , k €K z
q,e,k(g) _ q,€.k q,e(—)
as follows.
j _fox 3 3oy o*y s 43 j}.
tq’e,k(g) {t € Iqle,kl¢ (z,t7) > ¢7(2,t), t € I ekl 3 €9,

and the local maximum €-active constraint points set is defined
as ™ (z) = U . J (z)

t
q,€ - J q,€,k
k € que(g)

The "e-active constraint index" sets are defined as

¢
e,q'?

. J : 3
{(J,t)l¢ (z,t) - wq(g) >-g jeJ.,te qua(g)}
g I I 3 _ _ .
Jo. () = {J | g (z) wg(g) >-€,]e€ JQ}

The optimality function for the NLP is defined by

where for any

€>0, Y>1, g>0

, 2
6 (z) = zglr];PHHf_lH +max {< 7%, 0 > - v (=)

m

Q

1
1

g

<Vgl(z), h > je

(z);

<V 4 (z,0), b >, (3.b) € ngq(g)}] (4.3.2)

and in the dual form

= -1 | 3 ;|
B, q(2) max |- 2 ||. g My V() + | Z¢ My V07 (z8)
- Jjess (z) (J,t)eJerq(z)
O . .
+ U Vfo(é)llz +y UO wq(g)l Z U; + z u; + uo =1
R | e
J€d. (2) jeJE,q(E)
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- b @ =] w B+ ) W) 7,07 20 + 1),
3ea%(2) G.oe? (@
(4.3.4)
where
e II denotes the Euclidean norm in R' and is defined by
[l = < x>

. P . .
< ., . > denotes the scalar product in R and is defined by

P
<}_§,Z> Z Xiyi.
i=1

Vf(g) denotes the gradient of the function f : IQP + R at

z. The gradient vector is treated as a column vector.

THEOREM
If 2 is optimal for NLP (4.3.1), then 6 q(@) = 0.
’
An implementable form of the feasible directions algorithm can

now be presented.

ALGORITHM
DATA: o€ (o,1) , Be (0,1) , Y>1
§ € (0,11 EO>0
W, >0, U, >0, M>0

P
> > .
99 0 Tnax = 9 ' %o € R

STEP 0: Set 1

Olq=q0

STEP 1: Set € €

0

: i 3 d (4.3.4
STEP 2: Compute (eelq(gi) , bs,q(éi)) by solving (4.3.3) and ( )

STEP 3: If GE q(gi) < - 2e8, go to step 6; Else set £ = £/2 and go to
, =

step 4.
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M M

1 2
STEP 4: If € < g — and (z.) < — Set = 2gq and go to
g wq Z; g q q g

0
step 5; Else go to step 2.

STEP 5: If g > qmax , STOP; Else go to step 1.

STEP 6: Compute the smallest integer k(z,) in A(z;) € (0,M] with

O EEE—— such that
e @zl

X(gi) = B and M = max {1,

(i) if z, € ¢ (the complement of F in I{P)

wq(_z_i + A(z;) }—le,q(zi)) - W lzy) < - o AMz,) S ey

(ii) 1if zi €F

fo(gi + Az;) bi—:,g(zi)) - fo(gi) <-aMz) Se

I A
o
e
m
[
=

J
g (gi + A(z;) k_lelg(gi))

3 .
#(z; + Mz b g(=p.t) <0 jed

m
t €T .
q
STEP 7: Set Ziygl < %4 + K(gi) be,q(gi)' Set i = i+l and go to
step 2.

The algorithm as presented above does not require an initial
feasible point. If z, € F, then wq(go) is non-zero and the algorithm
constructs a sequence of points which forces the design into the
feasible domain. This aspect of the algorithm is very advantageous in
the case of complicated problems where the choice of an initial feasible
point is not obvious, e.g., in earthquake resistant design if the

relative drift of a particular story in a framed structure is to be
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limited to a certain value, it is not easy to find an initial design
that will satisfy that requirement. Of course, the algorithm is more

efficient if one can find an initial feasible point.

EXPLANATION OF THE ALGORITHM

The algorithm has two distinct phases. First, a feasible
direction is computed by solving equations (4.3.3) and (4.3.4), then
a step is taken in this direction in such a way that the objective

function is reduced and none of the constraints is violated.

Direction finding subproblem

As noted,a feasible direction is found by first solving the

problem
O, ql7) = max |- % N zg U; Vgl (z) + ) 113) Vzcbj(g,t)
, Kz0 jede (=) 3,0e? (2
3. e, q2
su V@ |2 vy, v (2] ) 3 ) 3y
0 z 0 Ygq 2 . “g A U¢ Hg
jes.  (2) (j’t)eJe,q(E)
(4.3.3)

and then computing the direction from
- - I o3 J 3 0
he 4@ Zg My Vo) + Z¢ ug V07 (z08) +ug VE (2)
‘e .
jea. (=) (3 t)eJE,q(g)
(4.3.4)

Equation (4.3.3) can be transcribed into a standard quadratic pro-

gramming problem as follows. Let kg(E) be the total number of points

in JZ (z) and k¢(§) be the total number of points in Ji q(g).
1

Define the vector

: I{l + kg(z) + k¢(§)



as follows:

Define the matrix

Ae ]Rl + kg(g) + k¢(§) % JRP
as
v @]"
[Vgl(g)]T
a o= | [vd*a=z]”
1 1 T
[vz(b (g, tqlsll>]
k k
[V ¢ ¢(z, t ¢ )]T
Z - q,€,k
¢4
Then Eq. (4.3.3) can be written as
l+kg+k
max (-2 @' @t HT +yu v 2] ]
H20 4 =0
or
l+kg+k¢
. T j
min %— praaty-y Mo ¥ (2) T
H>0 ? j=0

Define a vector

such that

34

1 2 k 1 k
= ' ’ reeeyg gl oo ¢'
U [“o Ms g MGTs Moo ety ]

(4.3.5)
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and a matrix
1 +k (z) +k,(2)
0e R g = R

1+ k (2) + ky(2)

such that

9 = aa.

Then Eg. {(4.3.5) can be written as

l+kg(§)+k¢(§)

min ¥ u y w o= 1 (4.3.6)
1>0 3=1

N
=
0
g
+
(Aw]

which is a standard quadratic programming problem. Once the U's are

obtained, the direction is computed from

_ T
“heg® = w2 (4.3.7)

Computational Considerations

The quadratic programming problem (QP) as formulated in Eq.
(4.3.6) may be combutationally ill-posed becaﬁse of different magnitudes
of the gradients of different functions. Proper scaling of these
gradients is therefore essential to make tﬁe problem computationally

efficient. In the present version the following scaling was used.

Define
sg = @l e 3 @ s
sy = v, @oll, . Goe 3 @; (4.3.8)
s = |17,

where

. ‘|m is the maximum norm in R® defined by

I
1ER
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Define

g

3 = . j 1 - j 2 d)
S max {SO ; Sg ¢ J € J€ (z) ; S¢ : J € Jelq(g)}.
Define a vector

1+ k (2) +k,(2)
R € R g ¢

as

(4.3.9)

1
1l

n s/s
L. (b .

where 1 € R is a parameter which may be adjusted to force the
direction vector toward or away from a constraint.

The A matrix is scaled as
_ . —
| [Vfo(g)] /s,

1 T, 1
[yg (%)] /Sg

[ k (z) T ky(2) (4.3.10)
Vg (z) /Sg

[Vz“bl (5 tclz, &l)] T/Si

1
i

k, (2) ky (2) ok, (2)
v, b (E, tq,a,k(b(g))] /s¢
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min {+ %-p QU+ D U

u = 1} (4.3.11)
u>0

The direction vector is still obtained from Eqg. (4.3.7).

Step Length Computation

After a feasible direction is obtained, the next step is to
compute the step length in that direction. If the current design is
inside the feasible domain, the step length should be chosen in such
a way that there is a maximum reduction in the objective function,
while still maintaining feasibility. When the current design is out-
side the feasible domain, the objective is to take a step such that
the new design is as close to the feasible domain as possible. The
step size calculations begin by minimizing the objective function
along the feasible direction and then checking whether any of the
constraints is violated. If any one of the constraints is violated,
the step length is reduced until the new design satisfies all of the
constraints. A number of methods are available for this unidirectional
search, the most popular among them being Fibonacci search, Newton's
method, quadratic or cubic fit, etc. [11,16].  For general non-convex
problems, these methods tend to be very expensive. Since computation
of the exact minimum along the feasible direction is not absolutely
necessary, an approximate line search technique, known as the Armijo
step size rule, is often used [11,17]. The method performs only an -
approximate line search and is quite efficient for general non-convex

problems. The method is as follows.
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Given the constants o, §, €, B, M, current design vector z.
h . . i L) i
—E,q(gl) and wE,q(él)' compute the smallest integer k(gl) in

Mzy) € (0,8) with A(z)) = 8%(z,) ana

A

M
M = max {]., TT* },

such that

(i) if wg q(Ei) > 0 (i.e. Z, g F) ,

then wg,q (Ei + X(gi) h8 q(gi)> - wq(gi) < - X(gi) § e ;

(ii) if ws,q(éi) = 0, i.e. z; €F ,

0 0
then £ (Ei + A(gi)ge,q(gi)> - f (gi) <-a A(gi) S e,
J .
g <§i ¥ A(gi)gelq(gi)) <o deq .,

. .
b (Ei + Mzpho (29 t) <0 jea

The algorithm to implement the above process is as follows

A

STEP 1: Set A = 8. Compute M = max {1, M
IESECRIe

Set FLAG = 0. Set n = 0.

n
STEP 2: te =
TEP 2 Compu Zi z, + A be,q(éi)

STEP 3: If @ q(zi) > 0, go to step 5, Else go to step 4.

€y

Of n
STEP 4; Compute £ Ei+l)'

Of n 0
+ <
If £ (?i+l) o A £ (gi), go to step 5

Else go to step 7.



STEP 5:

STEP 6:

STEP 7:

STEP 8:

39

Compute gj(??+l), j € J2
3 n .
and ¢ (?i+l R t) , 3 € Jm t € Tg

jf.n < . if n
If g (?i+l)-— 0, j € Iy and ¢ (?i+l’ t) < 0
jeJm,teTg,

go to step 6

Else go to step 7

Set A = A/B
If FLAG = - 1 go to step 8

Else set FLAG =1, n=n + 1 and go to step 2.

Set A =Ax B
If FLAG = 1, go to step 8

Else set FILAG = - 1, n=n + 1 and go to step 2.

Set A = A¥ and the new design vector is

*
21 T Z TN B g(2p)-

4.4 Computational Considerations

As is clear from the previous section, the feasible directions

algorithm requires computation of constraint functions and gradients of

"active" constraint functions at each iteration. The computation of

conventional inequality constraints (functions 'g' in the previous

section) and their gradients presénts no great difficulty. The

functional constraints {(functions '¢' in the previous section), however,

are very expensive to compute because they require the computation of

the time history of response of the structure, which for a nonlinear
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system is not a trivial matter. The problem becomes even more com-
plicated because the algorithm requires computation of the gradients
of the functional constraints, which in turn, require sensitivity
analysis, i.e., computation of gradients of the response quantities
with respect to the design parameters. The structural response
equations, in their state-space formulation, can be differentiated
with respect to design parameters, using the chain rule, to obtain
differential equations for sensitivity analysis [18,19]. Numerical
integration of the sensitivity equations then gives the required
gradients of the response quantities. For a nonlinear system of the
type considered here the analytical form of the sensitivity equations
becomes quite complicated, so that the direct finite difference scheme
of computing these derivatives seems to be more appropriate. The
finite difference scheme requires an additional p time history analyses,
where p is the total number of design parameters. Thus, computation of
functional constraints and their gradients requires p + 1 time history
analyses of an "N" degree of freedom nonlinear system, clearly a major
computational task. Therefore, any reduction in the number of times
that these calculations are executed will significantly reduce the
total computational cost.

In the actual implementation of the algorithm for the type of
problem under consideration a number of things can be done to reduce
the computational cost. The most obvious is to make the integration
of response equations as efficient as possible. This is done by
exploiting the localized nonlinear nature of the problem, using sub-
structuring techniques. An efficient Newmark method with optional
Newton-Raphson iteration is used to carry out numerical integration of

the equations of motion. Provision is made in the program to do the
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structural and/or sensitivity analysis only if the design parameters
are changed "“appreciably". Thus, if at a particular iteration,design
parameters are changed very little, so that the maximum difference
between the new and o0ld design parameters is less than a certain
prescribed value, the program does not compute the new time history
analysis, instead, it uses the previous values.

A closer look at the algorithm shows that, when none of the
functional constraints is active, gradients of the response quantities
are not needed. In the program, therefore, constraint functions are
first computed and then checked to determine if any of the constraints
is active. If none of the constraints is active, the sensitivity
analysis part is skipped, resulting in a significant saving in com-
putation. Another source of considerable savings is the observation
that gradients of response quantities are required only at those times
included in the €-active constraint set defined in the previous section.
In earthquake problems structural response typically‘builds up slowly
and then dies down, whence the £-active times are for the most part
much smaller than the total duration of the response time history.
Therefore, when performing sensitivity analysis it is not necessary to
compute the response time history beyond the maximum time included in

the €-active set. This feature has been incorporated into the program.
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5. APPLICATIONS

The general techniques described in the previous sections have
been applied to the three-story steel test frame described in Section 2.
This section describes the formulation of the mathematical model for
the test structure and presents numerical results for several design

problems.

5.1 Structural System

The structural system chosen for numerical studies consists of
a three-story, single bay steel frame as shown in Fig. 12. The bottom
floor is supported on rubber bearings and an energy absorbing device
attached to the frame at that level in such a way that the device
exerts a horizontal force on the frame.

If axial deformations in beams and columns are neglected, the
frame has 12 degrees of freedom as shown in Fig. 13. The 12 x 12
stiffness matrix (ﬁE, in Eg. (3.2.1)) for a single frame is shown in
Table 1.

Since the masses are assumed to be lumped at the floor levels,
the 12 x 12 stiffness matrix can be condensed to a 4 x 4 matrix with
respect to lateral degrees of freedom only, as explained in Section 3.

The condensed stiffness matrix for the frame (matrix §E in Eq. (3.2.2))

is
r—23.19 -33.32 11.52 - 1.39—1
72.20 -48.25 9.37
SYMMETRIC 61.22 -24.49
16.51
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Thus, the lateral stiffness matrix of the complete structure, including

the stiffness of rubber bearings at 1.2 kip/in is

— ]
46.38 -66.64 23.04 -2.78
144.40 -96.50 18.74
E
I_( =
SYMMETRIC 122.43 -48.97
34.21

The mass matrix of the structure corresponding to the lateral degrees

of freedom is

0.02438
0.02438
0.02514

0.02832 ) .

l —

Rayleigh damping is assumed in constructing the damping matrix

The coefficients o and B are computed from

1

- W o £

wl 1 1

1

— w B a '
wz 2 2

where wy and wz are first and second mode frequencies, and El and €2
are the respective critical damping ratios in these modes. The damping

matrix for the present structure, assuming El = 3% and 52 = 1%, is

given below.
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.0279 -.0332 .0115 -.0014
.0768 -.0481 .0093
c =
. 0660 -.0244
SYMMETRIC 0226 | .

5.2 Equations of Motion

The equations of motion expressed in terms of lateral degrees of

freedom of the structure can be written as

E

=2
1
+
10
1Ce
+

U + F =- MeU(t)

where M, C and KE are given in the previous section and

T
U = [YUpr Uy U3 U]
T N
Foo= [o, 0, 0, F4]
° T
e = [1, 1,1, 1]
Fz = force in the energy absorbing device, whose
constitutive equations are

o ) ) ¥ (£) n
F = - -

e Ko | Uy (E) |U4(t)l F S

U4(t) ‘ F4(t)
s(t) = o 5 - 7 .
0 0
L

These equations are integrated using the numerical techniques given in

Section 3.3.

5.3 Design Parameters

It is assumed here that the characteristics of the rubber

bearings are fixed. Therefore, only the energy absorbing device will
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be adjusted to obtain the optimal design. The two basic variables in
the design of energy absorbers are the elastic stiffness and the post-
yield stiffness. These variables are controlled by the parameters FO,

UO and o in the hysteretic model of the energy absorbers. The elastic

stiffness is approximately equal to FO/UO and the post-yield stiffness

F

. . o . .

is approximately equal to ﬁg‘(II&> . Thus, the design variables are
0

FO, UO and 0. Another parameter which may influence the design is the
exponent "n" in the hysteretic model, but it is not considered as a

variable in the present study.

5.4 Optimal Design Problems

The purpose of an earthquake isolation system is to minimize
some measure of the response of the structure. There are a number of
response quantities which could be minimized, e.g., the maximum
acceleration in the structure, maximum base shear, maximum story shear,
maximum inter-story drift, etc. In order to get meaningful results,
response constraints are also needed. Some of the constraints are

o’ UO and

dictated by the problem itself, e.g., the design parameters F
o are not allowed to attain negative values. Such constraints con-
stitute what are known as conventional inequality constraints.
Constraints on the response quantities are also needed; e.g., when
accelerations in the frame are minimized, the displacements at the
base must not be arbitrarily large. These restrictions give rise to
functional inequality constraints. Thus, a number of design problems
could be formulated depending upon the objective function and the type

of constraints placed on the response. In what follows several design

problems of interest are considered.
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Design Problem 1

In this problem, the top story shear is minimized while main-
taining the bottom floor displacement within a prescribed limit.

Mathematically, this problem can be expressed as

. 2
min | max (K (U (z,t) - U (z,t)
g[teT%ll' ° )H

subject to
max (U4(§(t)>2 < 62
teT
where
Kl = top story lateral stiffness,

Ul' U2 and U4 top, second and bottom floor displacements,
respectively,

T = [to, tf] , the time interval of interest

O
It

prescribed limit on U4,

T ’Zl 2 23 = | U a
E |.I ! - OI OI .

As explained in Section 3.2, the problem can be transcribed into a

mathematical programming problem, as follows.

The parameter vector z is augmented by a dummy cost parameter

z4 and the above problem is then equivalent to the problem

. 4
min 2z

IN

subject to

max %Kl (Ul(gyt) - Uz(g,t))z% < z4 ’
teT



48

and

max [U4(§,t)]2 < 62
teT

F,U, , o >0.

In terms of the nonlinear programming problem in canonical form,

Section 4.2, equation (4.2.1), the above problem is expressed as

22z = 2!
vez) = 10, 0, 0, 117
K
d>l(§,t) = —2 [(Ul(g,t) - U2(_z_,t)>2] - 1.0
Z
—_
2K oU. (z,t) oU. (z,t)
1 1'= 2=
z 9 z 3 z
2K U, (z,t) U, (z,t)
1 -1 1= _ 2=
Vo (z.t) = 2 (Ul(g,t) - Uz(g,t))< 5 3
z 9 z 9 z
2K U, (z,t) U, (z,t)
_1 1=’ 2°=’
z (Ul(_z,t) - Uz(g,t)> — - .
z 2z 9 z
Kl 2
- (24)2 (Ul(E’t) - UZ(Ert))
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U, (z,t) |
5 uEn ———
§ 9 z
U, (z,t)
VZ¢2(z,t) = 2y (z,t) 4
- 2 4= 2
$ 9 z
oU, (z,t)
Z yen ———
§ J z
e 0 —
, 1
91(:.5),. = -0.22z + 1.0 E-5
2
9,(2) = =102z + 1.0 E-5
3
g;(2) = =202z +1.0E-5
r_— 0.2 0 0
0 - 10 0
Vg(z) =
0 0 - 20
0 0 0
- .

The factors 0.2, 10 and 20 in the above expressions are used to obtain

an initial scaling of all constraints to a value of 1.

RESULTS

A computer program based on algorithms presented in Sections 3
and 4 was used to solve the above design problem. The initial wvalues
of parameters were obtained from experimental data on the energy

absorbing devices [2,4]. The following parameters were used:

FO = 5.0, U0 = 0.11, a = 0.064, n=1.
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The upper limit on U i.e. § was equal to 4 inches. The dummy cost

4’
parameter z4 is the upper bound on the maximum shear in the top story.
The initial value for z4 was 2.22.

The Parkfield N65°E (1966) earthquake, with amplitude and time
scaling as used in the experimental program [5] was used to excite the

system. This accelerogram is shown in Fig. 14. The optimum parameters

obtained are

3.5185 UO = 0.07782 o = 0.07165 n=1

&)
O
It

1.53094

N
[}

Figure 15 shows the decrease in cost parameter as a function of
iteration number. The percentage reduction in the dummy cost parameter
is about 31%, which means that the relative sfory drift at the top
story has been reduced by about this much. To see the effect of these
new design parameters on overall structure response, the system was
analysed with the new energy absorbing device parameters, and inter-
story shear-time histories at all three floors were plotted along with
the initial shear-time histories. These plots, which are shown in
Figs. 18-20, show clearly that the local peak shears are reduced
throughout the time history. The base displacement time histories
is also plotted for initial and optimal parameters in Fig. 21. As
expected the base displacements are increased with the optimal design
parameters indicating that the optimal system is softer at the base
than the original system. The elastic stiffness is reduced from 45.5
to 45.22 and the post yield stiffness is redﬁced from 10% to 6.6% of
the elastic stiffness. Since the earthquake used was not strong
enough to cause extensive nonlinearity in the energy absorbing device,

the change in stiffness is not significant. It is expected (as shown
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later by design example 2) that a strong earthguake would produce
significant changes in these stiffnesses.

Hysteresis loops in the energy absorber are also plotted in
Fig. 16, 17. The loops show that, except for a few large inelastic
excursions, the energy absorbers remain in their elastic range and
therefore there is no significant energy absorption in the energy

absorbers.

Design Problem 2

This problem consists of minimizing the total shear at the
bottom floor level subject to the condition that the maximum displace-
ment in the bottom floor is less than a certain prescribed value, 6.

Mathematically we have

nmin [max%(Kl(Ul(g,t) - Uz(g,t))>2 + (KZ(U2(§,t) - U3(E't)>)2

zZ teT

+(K3 <U3(g,t) - U4(§,t)>)2$]

subject to

max (U4(g,t))2 < & '
teT
FO, UO, a > 0

T = [FO, tf]
T 1 2 3
o G I PR

N

A~
i

the story stiffnesses (top down),

a
I

displacement response histories at the floor levels

(top down).
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§ = prescribed limit on the bottom floor displacement, selected to

be 4 inches in the present problem.

The equivalent nonlinear programming problem, is

subject to

2
+

2
KZ(Uz(g,t) - u, (g,t)>$

max K (U (z,t) = U (E,tvs
teT [ A 2

. 4

2
K3<U3(§,t) - U4(§,t)>£ ] <z

max [U4(g,t)]2 < 52
tE€T

FO, UO, o >0 .

In terms of the canonical form of NLP given by (4.2.1) we have

fo(z) = z4

(0, 0, 0, 117

<1
th
o
IN
i

¢l(§'t) = fz—[gKl(Ul(g,t) - Uz(g,t))$2 + Kz(ﬁz(g,t)— U3(§,t)>$2

+ %K3<U3(g,t) - U4(§,t))§2] - 1.0



V4N (z,t) =

2

Z

4

5 ou; (z,t)
K] (Ul(g,t) - Uz(g,t)) T
oz
5 U, (z,t)
oz
5 3U3(§,t)
+ K3<U3(§,t) - U4(§,t)) I
oz
5 BU (z,t)
K (0 (2,0) - U,(z,0)
E)z
5 U (z,t)
+K2(U (z,t) -U (zt)
82
ou (z,t)
+ K§<U3(E,t) - U4(E,t)< 3
82
ou, (z,t)
2 1
K1<Ul(g,t) - U2 z, t) <
Bz
5 BU (z,t) BU (z,t)
¥ K2(U2(§ £) - Uz, t)
BU (z,t)
2
+ K3<U3(_z_ t) (z t))< >
- 2
7 K1<Ul(§,t) - Uz(z,t))
2z
+ <K (U (z,t) - U, (z t)>$2
2\ 2'=1 3=
+ <K (U (z,t) - U (z t))gz]
3\3= 4 =7
¢2(§,t) = L2 (U4(§,t))2 - 1.0
§
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302(5',1;))
57"

i 8U3(g,t)
le

du, (g,t)>
le

3u,, (z,t))

U, (2, t)>

3u, (2, t>

BU (z,t)

3U (z,t)
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., 8u, (z,t) |
5 lzt — 5
§ 9z
39U, (z,t)
Volz,) = | = U (z,t) —
z - 2 4" = 2
§ 3z
5 3U4(§,t)
2 Uglz®) 3
§ 9z
0
L ]
1
g (z) = -0.22z + 1.0E-5
2
gz(g) = =10 z + 1.0 E-5
3
g3(§) = =20 z + 1.0 E-5
-0.2 0 0
0 -10 0
Vg(z) =
0 0 -20
0 0 ]
RESULTS

El Centro 1940 NS ground motion, with modified time scale and
amplitude, as used in the experimental investigation [5], was used for
this problem. The ground acceleration time history is shown in Fig.
22, This motion is very strong as compared with the Parkfield motion
used for problem 1; therefore, considerable inelastic deformations can
be expec£ed in the energy absorbers. The initial values of the para-

meters are the same as those used for the first problem, i.e.

F.=5.0, UO = 0.11, o = 0.064, n=1.
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The dummy cost parameter, z4, which is an upper bound on the total
shear at the bottom floor level was 35.0.

The coptimal parameters obtained are

FO = 4.2773 UO = 1.7529 o = 0.005768 z4 = 9.15009.

Figure 23 shows the plot of the cost parameter vs the iteration number.
Story shears, bottom floor displacement and hysteresis loops in the
energy absorbers are plotted in Fig. 24-29, for both initial and
optimal parameters. The plots of story shears clearly show the
effectiveness of the optimal isolation system, which reduces the story
shears by as much as half of the values with the initial parameters.
Again the bottom floor displacements are increased, although they
remain within the allowable limit of 4 inches. Likewise a comparison
of the initial and optimal design hysteresis loops in the energy
absorbers indicates the effectiveness of a "softer" system.

5.5 Sensitivity of the Optimal Design to Different Earthquake Ground
Motions

As is clear from the preceding development, only one earthquake
ground motion is used in the optimal design process. Since earthquakes
are random in nature, it is unlikely that the same earthquake ground
motion will be repeated at some future time. Therefore, it becomes
necessary to see the effectiveness of the optimal design process for
different earthquakes. To get meaningful results, these additional
earthquakes should have characteristics similar to the one used in
the design process. This requirement prohibits the use of actual past
earthquake records, inasmuch as for a given site there is typidally an
insufficient number of past records. An alternative is the use of

artificially generated earthquakes of the same class.
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For the present study a family of five earthquakes having
characteristics similar to the El Centro 1940 NS earthquake was
generated using the computer program PSEQGN developed by P. Ruiz and
J. Penzien [20] and later modified by M. Murakami [21]. The earth-
quake accelerograms were generated by passing nonstationary shot noise
through two second-order linear filters and applying a base line
correction. Each accelerogram was of thirty seconds duration with
four seconds of parabolic built up, eleven seconds of constant inten-
sity followed by fifteen seconds of exponential decay. The maximum
acceleration in each record was about 0.30g. The structure was
analyzed twice, with initial and optimal paiameters obtained from
problem 2, subjected to these five earthquakes. Story shears and
bottom floor displacements are compared for the initial and the optimal
parameters. The five accelerograms, along with structural response
quantities for initial and optimal designs, appear in Figs. 30-34.

In all the cases response is considerably reduced in the optimal
system, while the base displacement is increased, although remaining

within the specified constraint of four inches.
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6. CONCLUDING REMARKS

Two of the main objectives of the present research were to
study the effectiveness of the feasible directions method for optimal
design problems with time dependent constraints and to arrive at an
improved earthquake isolation system.

The feasible directions algorithm seems to be quite effective
for the types of problems considered. The effectiveness of the
algorithm depends, among other things, on a number of parameters which
control the convergence and other numerical aspects. Some experience
with these parameters is needed before arriving at the most suitable
set of parameters for a particular problem. An interactive system,
where the user can change these parameters during the optimization
process seems to be a more efficient way of handling this situation.

At the time of this research no such facilities were available, there~
fore this aspect has not yet been explored. Access to an interactive
system is expected shortly and the work on implementing this algorithm
interactively is underway.

The optimal design obtained shows that a softer isolation system,
subjected to displacement constraints, is the better design. As
pointed out in the Introduction, the softer systems have excessive
lateral deflections under small earthquakes and wind excitations. Thus,
in order to arrive at a more practical design some additional require-
ments, limiting the response under small earthquakes, are needed. This
aspect is currently being investigated by introducing two levels of
constraints, an upper limit on response under large earthquakes and a

lower limit on response under small earthquakes. An additional
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advantage of this kind of methodology would be that, instead of con-
sidering only two earthquakes, a family could be considered, and an
optimal design would be achieved for the entire class of records

considered.
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NOTATION

Denotes the euclidean space of ordered n-tuples of real numbers.
When an n-tuplet is a vector in Iin, it is always treated as a

column vector.

n
Scalar product in R" defined by <x,v> = 2 x, yi.
i=1
. : . T
Euclidean norm defined by l‘xllz = V/x x
Maximum norm in R, defined by ||xHoo = max lxil
ier™

Underscore signifies that z is a vector or a matrix

Transpose of z

Inverse of matrix z

Absolute value of x

A is contained in B

Union of A and B

Set of points x having property p.

X belongs to A.

x does not belong to A.

Open interval

Closed interval

Semi-open or Semi-~closed interval.
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Denotes a function, with the dot standing for the
undesignated variable; £(2) denotes the value of
f(¢) at point z. Domain A and range B of function

f(*) is indicated by f: A > B.

Denotes the gradient of £ at z. The gradient is
treated as a column vector. If f is a function of

more than one variable, the variable with respect to
which the gradient is evaluated is shown as a subscript
to the gradient symbol, e.q. sz(z,t) indicates

gradient with respect to z of a function of z, and t.
Minimum of f(z) over z € C

The dot over the functions represents the derivative

with respect to time. i.e. 6(t) = du(t)/dt.
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FTIGURE 1 MODEL STRUCTURE
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EARTHQUAKE ENGINEFRING RESEARCH CENTER REPORTS

Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service; thesc are
a price code.  Copies of the reports may be ordered from the National Technical Information Service, 5285
Road, springficld, Virginia, 22161. Accession Numbers should be quoted on orders for reports (I'B -—= --- )

renittance must accompany each order. Reports without this information were not available at time of printing.

regquest,

ZIRC

ZERC

ZIRC

ZERC

EERC

GR-3

63-4

69-10

69-11

69-12

69-13

69-14

69-15

69-16

70~1

70-2

70-3

-4

RC will mail inquirers this information when it becomes available.

"Feasibility Study Large~Scale Earthquake Simulator Facility," by J. Penzien, J.G. Bouwkamp. R.W. Cloudh
and D, Rea - 1987 (B 187 905}A07

iinassiyned

"Ineclastic Behavior of Beam~to-Column Subassemblages Under Repeated Loading," by V.V. Bertero - 1968
(PR 184 888)A05

A Graphical Method for Solving the Wave Reflection-Refraction Problem," by H.D. McNiven and Y. Menqgi - 1968
(PR 187 943)A03

"Pynamic Properties of McKinley School Buildings," by D. Rea, J.G. Bouwkamp and R.W. Clough - 1968
(PR 187 902)A07

"Characteristics of Rock Motions During Earthquakes," by H.B. Seed, I.M. Tdriss and F.W. Kiefer - 196%
(FR 188 338)A03

"Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)All

"Nonlinear Seismic Response of Barth Structures," by M. Dibaj and J. Penzien - 1969 (PB 187 904)AD8

"Probabilistic Study of the Behavior of Structures During Earthquakes," by R. Ruiz and J. Penzien - 1969
(PB 187 886)AN6

"Numerical Solution of Eoundary Valuye Problems in Structural Mechanics by Reduction to an Initial Value
Formulation,”" by N. Distefano and J. Schujman - 1969 (PB 187 942)Aa02

"Dyramic Programming and the Solution of the Biharmonic Equation,” by N. Distefano -1969 (PB 187 941)A02
“Stochastic Analysis of Offshore Tower Structures,” by A.K. Malhotra and J, Penzien - 1963 (PR 187 903)A0%
"Rock Motion Accelerograms for High Magnitude Earthquakes," by H.B. Seed and I.M. Idriss - 1969 (PR 187 940 702

"Structural Dynamics Testing Facilities at the University of California, Berkeley," by R.M. Stephen.
J.G. Bouwkamp, R.W. Clough and J. Penzien - 1969 (PB 189 111)A04

"Seismic Response of Soil Deposits Underlain by $loping Rock Boundaries," by H. Dezfulian and H.B. Seed
1963 (PB 189 114)A03

"Dynamic Stress Analysis of Axisymmetric Structures Under Arbitrary Loading," by S. Ghosh and E.L. Wilson
1969 (PB 189 026)Al0

"Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and
V. V. Bertero - 1969 (PB 190 662)Al0

"Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments," by
,V. Bertero, B. Bresler and H. Ming Liao - 1969 (PB 202 942)A07

"Response of Non~Uniform Soil Deposits to Travelling Seismic Waves," by H. Dezfulian and H.B. Seed - 1969
(PB 191 023)A03

"Damping Capacity of a Model Steel Structure,” by D. Rea, R.W. Clough and J.G. Bouwkamp - 1969 (PB 190 663)A06

"Influence of Local Soil Conditions on Building Damage Patential during Earthquakes," by H.R. Seed and
I.M. Idriss - 1969 (PB 191 036)A03

"The Behavior of Sands Under Seismic Loading Conditions,"” by M.L. Silver and H.B. Seed - 1969 (AD 714 982}A07

"Earthquake Response of Gravity Dams," by A.K. Chopra - 1970 (AD 709 640)A03

"Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967." by
H.B. Seced, I.M. Idriss and H. Dezfulian - 1970 (PB 195 762)A05

“"Cyclic Loading of Full Size Steel Connections,” by E.P. Popov and R.M. Stephen - 1970 (PB 213 545)A04

"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela,"” by Subcommittee of the SEAONC Research
Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, E.L. Wilson, L.A. Wyllie,

H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)A06
Reproduced from
best available copy.
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CERC

TTRC

EERC

EFRC

EERC

ERRC

EERC

EERC
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