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MODAL ANALYSIS FOR STRUCTURES WITH FOUNDATION INTERACTION 

By Jose'M. Roesset, A.r~. ASCE, Robert V. Whitman,2 F. ASCE, 
and Ri carda Dobry, 3 A. ~1. ASCE 

Figure 1 shows a schematic model often used as the basis for dynamic 

analysis of a structure resting on a deformable foundation. The struc

ture itself is represented by discrete masses connected by springs and 

dashpots. The sailor rock is replaced by two springs and corresponding 

dashpots: one se.t corresponding to swaying (horizontal motion) and the 

other to rocking. Generally, the damping for the soil springs, and es

pecially for the swaying spring, is larger than the damping in the struc

ture. Moreover, as will be discussed subsequently, the damping in some 

parts of this system is viscous in nature while in other parts the damp

ing is more nearly hysteretic. 

Because damping varies as to magnitude and type, classical modal 

analysis generally is not strictly applicable to a structure-soil system. 

For any given mathematical model, an exact solution can be obtained by 

working in the frequency domain: i.e., using Fourier analysis (8). How-

ever, such methods sacrifice the considerable advantages of modal super-

position: 

a) Most practicing engineers involved in the dynamic analysis of 

buildings are familiar with modal analysis and the proper inter

pretation of the ensuing results. 

b) Modal analysis permits better visualization from the values of 

the natural frequencies and the modal shapes, of the significance 
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of the flexible foundation on the response. 

c) When the "input is specified in the form of a response spectrum, 

modal analysis is a direct and logical procedure in spite of the 

inaccuracy involved in the combination of modal maxima. 

Because of these practical advantages, it often will be desirable to use 

modal superposition even though it does not give entirely accurate results. 

In order to apply modal superposition to the soil-structure system 

of Fig. 1, it is necessary to have a rule for assigning an equivalent frac

tional critical damping Sieq to each mode. This paper proposes that Sieq 

be computed by the following we'ighted modal damping rule: 

'i' ER .. 
L 1J 
j 

'\ E 
t,. s". 
J 1 J 

E s .. 
1J 

(1) 

where E is the energy stored in the jth component of the system when s· . 
1J th 

the system deforms in the i mode, and ER;j is an energy ratio: the ratio 

of the energy dissipated in the jth component to the energy stored in the 

component. The relation of ER .. to the usual measures of damping, and the 
1J 

theoretical justification for this rule, will be discussed. 

Use of modal superposition together with eq. (1) involves two types 

of errors. 

a) The structure-soil system will not, in general, have normal modes 

in the classical sense, and this difficulty can at best only partly 

be overcome by using vleighted modal damping. (It is possible to 

retain modal superposition by working in complex arithmetic, thus 

transforming the system into one with twice the number of degrees 

of freedom (1,4), but this procedure sacrifices the advantages 

ci. ted above}. 
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b) In order to carry out modal superposition in the time domain, 

the damping in each mode must be assumed to be viscous. How

ever, the actual damping in parts of the system may be more 

nearly hysteretic, rather than viscous, in nature. 

In the next section of this paper, the potential effect of the second of 

these errors is investigated by comparing the response of single-degree

of-freedom (l.DOF) systems with hysteretic and viscous damping. In the 

final section, the combined effects of both errors is studied for multi

DOF structure-soil systems, by comparing results obtained using weighted 

modal damping with results from exact solutions in the frequency domain. 

HYSTERETIC AND VISCOUS DAMPING 

Viscous Damping 

The concept of viscous damping, as represented by a dashpot with 

a resistance proportional to the velocity, is a familiar one to engineers 

involved in dynamic analyses. It is worth noticing, however, that viscous 

damping is used in structural dynamics because of its mathematical simplic

ity (allowing analytical closed-form solutions), rather than on the basis 

of its physical significance. 

The physical characteristic of viscous damping is the viscosity coef

ficient or dashpot constant Co The fraction of critical damping i3 = c/2/kr~ 

for a 1-00F system depends not only on the dashpot constant but also on the 

mass M and the spring constant k. Thus the same dashpot would produce 

different values of B for two systems with different masses but the same 

stiffness. 

The significance of the fraction of critical damping is better under

stood by considering the energy Ed dissipated per cycle by a 1-00F system 
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with viscou~ damping, under a steady state harmonic motion at a frequency 

n. Calling J the displacement and u the velocity; and denoting the phase 

angle bye: 

"' u ~ A sin (nt + e) 
. 
u ~ A ncos (nt + e) (2) 

and J
'2 T 2 2 2 Ed ~ cu dt = 2 cA n = ncnA (3) 

o 
1 2 The maximum strain energy Es stored in the spring is Es = 2 kA. Defining 

an energy ratio ER = Ed/Es: 

ER = 2n ~ n = 4n~~ (4) 

where w = ~ is the natural frequency. This energy ratio varies 

directly as the frequency n. 

Hysteretic Da~ing 

Most engineering materials, including soils, exhibit a hysteretic 

stress-strain diagram when strained cyclically. In each cycle energy is 

dissipated, represented by the area within the hysteresis loop. This 

energy loss is a function of the amplitude, but experiments show (4) that 

it is to a large extent independent of frequency. 

A rigorous solution of systems having hysteretic damping requires a 

nonlinear dynamic analysis in the time domain. Their behavior under a 

steady-state harmonic motion of fixed amplitude suggests, however, the 

idea of a type of damping, called linear hysteretic damping (3), that causes 

an energy dissipation (and energy ratio) independent of frequency. This 

formulation has appeared many times in the literature under many different 

names; the name structural damping has often been used (7). Using complex 

notation, the equation of motion for a l-DOF system is: 
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M~ + k(l+2Di)u ;:; f(t) ;:; Pe int 

where D is a hysteretic damping ratio (also called loss factor). 

The energy dissipated per cycle by this system is: 

2 Ed ;:; 2nkDA 

and the energy ratio is independent of frequency: 

ER = 4nD 

(5) 

(6 ) 

(7) 

Thus either D or ER provides a physical characteristic defining damping in a 

system with hysteresis. While Eq.(5)is properly defined only for a steady-

state harmonic motion, by decomposing the input into its frequency compon

ents through the Fourier transform~ the response to a transient excitation 

may be evaluated. 

Equivalent Damping 

Making use of the relation u = inu, eq. (5) can be rewritten as: 

M~ + 2kD 1 u + ku = Peint 
n (8) 

Eq. (8) is similar to that of a viscous system with a dashpot constant 

c = 2kD k. The response of a hysteretic l-DOF system is: 

A = P ;:; _--,..P,....../k __ 
(k-tit2) + 2Dki n2 

(1- -) + 2Di 
w2 

(9 ) 

whereas for a viscous system the corresponding expression would be: 

A = P = _---.P-r-/_k __ _ 
(k_t'1n

2) + icn (1- _n2) + 2Bi g 
w2 w 

(l 0) 

Comparing the steady~state harmonic response of two l-DOF systems, with 

the same mass and stiffness but one with viscous damping and the other with 
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hysteretic damping, it can be seen that the motions will be equal at only 

one frequency. This is the frequency~, which provides the same energy 

ratio for both systems 

~ 4TID ::: 4nS
w or (11 ) 

Since in most problems the damping ratios 0 are small, these systems 

behave essentially as narrow-band filters, and their response to a transient 

input is primarily controlled by the values of the transfer function in the 

neighborhood of resonance ~::: 1). It would seem therefore logical to de

fine them as equivalent when they produce the same energy ratio at resonance, 

that is, when 
o ::: S (12 ) 

Fig. 2 shows the amplitude and phase angle of the transfer function 

(ratio ~ previously defined) for two such systems with 0 ::: S ::: 0.1. While 

both functions are equal at resonance (~/w ::: l), they differ for other val ues 

of ~/w. This difference is more noticeable for large values of ~/w, and 

particularly evident for the phase angle (notice however the logarithmic 

scale used for the amplitude). 

In most cases, however, differences in the response to a transient 

excitation are much smaller than the differences in the transfer function. 

Fig. 3 shows the inverse Fourier transforms of the previous functions. For 

the Viscous case this inverse transform represents properly the impulse 

response function, which would be used for a solution in the time domain 

with Duhamel's integral. For the hysteretic case it can be considered as 

an equivalent impulse response, although this is an approximation since 

the equation of motion is not properly defined in the time domain, The 

differences in these two functions are negligible and only distinguishable 
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for t «2nlw. Response spectra obtained by integration in the time domain 

for viscous systems with a fraction of critical damping S, and by integra

tion in the frequency domain for hysteretic systems with a damping ratio 

o = S, are also practically identica"\, except for relatively long periods. 

Thus the second error mentioned in the introduction, i.e., consider-

ing the modal damping as entirely viscous while it may be in part viscous 

and in part hysteretic, is of little practical importance, provided that 

the contributions of each component's damping to the modal values are pro-

perly computed. 

SIMPLE TWO-OEGREE-OF-FREEOOM SYSTEM 

Now consider a simple 2-DOF system formed by two identical l-OOF sys

tems. For each l~DOF system individually, the natural frequency is 

w = !kIM. For the coupled system, the natural frequencies are: 

1 (-w2 = "2 w 15 + 1) (13 ) 

Modal superposition in the frequency domain rigorously applies to the 

coupled system for both viscous and hysteretic damping (4), but only for 

viscous damping can superposition be used in the time domain. 

First let us assume that thel-DOF systems each have viscous damping S. 

Then the fractions of critical damping for the two modes are: 

(14 ) 

Thus the ~i for the two modes are different, and each is different from 

the S for the component 1-DOF systems. 
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On the other hand, now suppose that each l~OOF system has hysteretic 

damping O. Then the damping ratio for each mode of the 2-00F system also 

is O. If damping in a multi-OOF system is linear hysteretic and uniform, 

then the damping for the components is the same as the damping for the 

system. 

For both viscous and hysteretic damping, the energy ratio is the same 

for each component and for the overall system. However, with viscous damp

ing ER for both components and system varies with frequency, whereas with 

hysteretic damping ER is independent of frequency. 

Since the energy ratios are the same for both component l-DOF systems, 

Eq. (1) reduces to 
w 

1 i 
Q = -- ER = S --- or = D fJ; eq 4TI w 

(15 ) 

which predicts correctly the modal damping for both cases. 

DEFINITION OF DAMPING IN SOIL-STRUCTURE SYSTEM 

The most troublesome aspect of analyzing soil-structure interaction 

is defining the damping in the system in a useful, meaningful way. To use 

Eq. 1, it is necessary to know the energy ratio for each component. 

Dampi ng in Soil 

Using results from the theory for a mass resting upon an elastic half

space en, the force deflection equations for the soil-structure interface 

may be written, neglecting coupling terms, as: 

} (16 ) 
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where P is a steady-state sinusoidal force applied to the foundation, 

Mr a steady·~state sinusoidal moment, and u and cp the corresponding dispace

ment and rotation. The spring IIconstantsll kh and kr and the dashpot "con

stants ll cn and cr are, in reality, functions of frequency. However, kh eh 
and kr vary smoothly with frequency and hence may be taken, without intro

ducing appreciable error, as constants over the frequency range of interest. 

On the other hand, cr has considerable variation, but the ratio cr/kr is 

small. 

Adding now some internal dissipation of energy in the soil, of a hys

teretic nature, represented by a damping ratio 0, these equations become: 

(17) 

For the range of frequencies ~ of interest and typical values of 0 of 

about 0.05, the term ch is much larger than 2Dkh/~ and the latter can be 

neglected. On the other hand cr is much smaller than 2Dkr/~. For prac

tical purposes it is thus reasonable to assume that the horizontal (sway

ing) spring is associated with a viscous dashpot ch' whereas the rocking 

spring has a hysteretic dissipation of energy represented by the damping 

ratio D. Thus the equations simplify to: 

P :::: khu + chu 

} 2Dkr . (18 ) 

M ;:: k cp + --<jl r r rl 

That is, the damping associated with swaying is essentially viscous, while 

the damping associated with rocking is primarily hysteretic. 

Using these results, the meaning of critical damping ratios for the 
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foundation may be understood. Since rocking damping is hysteretic, damp-

ing ratio is defined fully without reference to any mass. However, when 

it is said that the swaying spring has 20% of critical damping in a par

ticular problem, it is necessary to define for what mass, or at which fre

quency. Notice, however, that as long as the fraction of critical damping 

Bh and the reference frequency wh are picked consistently, so that 
c 

Bh = if-wh' the results should always be the same. 
h 

Damping in Structure 

If damping is assumed to be linear hysteretic and the same in all 

parts of the structure, the damping ratio Di for each mode is the same as 

the damping ratio for each component OJ = D. The damping matrix CH is 

then simply 
(19 ) 

where K is the stiffness matrix, and the matrix equation for a steady-

state motion is 

MU + (K + iCH)U = exciting forces 
(20) 

,. 1 . 
or MU + Q CHU + KU = exciting forces 

If it is assumed, on the other hand, that the damping in each component 

is viscous, the matrix equation of motion is: 

MU + CVU + KU = exciting forces (21) 

With this assumption it is possible to obtain solutions in the time 

domain, but it becomes very difficult to define the damping for each compon

ent in a meaningful way. 

Two approaches can be followed to obtain the damping matrix CV' In 

one approach which is not possible from the practical standpoint at this 

time, the component dampings are assumed directly and Cv is assembled 
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as the stiffness or mass matrices. The resulting system will not have 

in general normal modes. 

The second approach starts by assuming the existence of normal modes 

and assigning a fraction of critical damping Si for each mode. The damp

ing matrix is then given by (3, 10): 

(22 ) 

where t is an arbitrary integer and the coefficients a. are obtained from 
J 

the solution of the system of equations: 

~+n 2j 
2S·w. = L a·w· 

1 1 j =£ J 1 

Particular cases frequently used are 

a) 

(23) 

(24 ) 

1 The resulting modal dampings are then Si = 2 alwi, increasing 

linearly with frequency. This corresponds to the situation of the 

two-degree-of-freedom system used before as an example. 

b) (25) 

1 ao The resulting modal dampings are then S· = --- and decrease 
1 2 w. 

1 
with frequency. This corresponds to a case where each dashpot is 

associated with a mass (joining it to the base) rather than with a 

spring. 

c} To approximate better a condition of constant modal damping, 

a linear combination of the two previous cases is used: 

(26) 

11 



1 ao 1 
The resulting modal dampings are then Si ~ 2~ + 2 alwi · 

1 

In the first 2 cases the coefficients alao are selected so that the 

desired value of S is reached at a specified frequency. In the third case 

this value will also be obtained only at one frequency setting a relation 

between ao and al , A second relation can be obtained by specifying an 
1 ao 1 

additional property of the function Sew) ~ 2~ + 2 alw. The variation 

of this function is illustrated for the three cases in Fig. 4. It is 

worthwhile noticing that the third solution has the convenient, but possi-

bly dangerous, property of rapidly filtering low and high frequency compon

ents, 

Alternatively the matrix transformation 

Cv ~ MQBQT~1 (27) 

where Q is the modal matrix containing the ith modal shape, normalized, 

as its ;th column, and B is a diagonal matrix Bii = 2Si wi' will also pro

duce the desired nodal dampings in each mode. When all the modal shapes 

are known Eq. (27) provides a simpler solution than Eq. (22), but in both 

cases the physical meaning of the terms of the Cv matrix is difficult to 

visualize. 

Combined Damping 

For the remainder of this study, damping for the soil-structure system 

will be assumed to follow the pattern indicated in Fig. 1. While in this 

figure the structure is idealized as a close-coupled system (shear type 

building) this is not a requirement. Neither is it required that the struc

ture have constant modal damping of a hysteretic nature. The basic assump

tion for the study is that the energy dissipation can be reproduced by 

associat"ing an energy ratio (viscous or hysteretic) with each spring {or 
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stiffness term). This implies that for the schematic system of Fig. 1 

one can define for each spring j a hysteretic damping ratio OJ and a vis

cous dashpot cj (or a fraction of critical damping Sj and a reference 

frequency Wj ) where the dashpot force is proportional to the rate of strain 

in the spring. The situation shown in the figure, with a constant modal 

damping for the structure (a constant hysteretic damping ratio for each 

structural element), a hysteretic damping ratio for the rocking spring 

and a viscous dashpot for the swaying spring is, howev~, probably the most 

realistic. 

As pointed out earlier in defining the viscous damping for the swaying 

spring in the form of a fraction of critical damping S, it is necessary to 

specify also a mass or a reference frequency. In this study the value of 

Sh is defined as the one corresponding to the so-called swaying frequency, 

Wh' which would be the natural frequency of a rigid structure with the same 

total mass and a rigid rocking spring. It corresponds thus to taking the 

total mass of the building and its foundation. In the same way the rocking 

frequency wr would be defined as the frequency of a rigid structure with 

the same total mass and base moment of inertia and a rigid swaying spring. 

WEIGHTED MODAL DAMPING 

Let then M represent the mass matrix and K the stiffness matrix of 

the soil-structure system. If w; are the natural frequencies and ¢i the 

corresponding modal shapes (normalized so that ¢~M¢i = 1) computed by a 

regular dynamic analysis, it is possible to define for each spring j a modal 

strain ~jl corresponding to a set of displacements U = ¢i' Assuming a 

steady~state periodic motion at a frequency ~, U = A¢isin(flt + e), and the 
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the maximum strain energy would be 

E = A 2 Ilk .11~ • s. . 2 J lJ 
1 J 

(28) 

and the energy dissipated per cycle 

212 2 Ed = 21TA (r;l \' k Sj .- 1\:. + l k. D. 6: .• ) 
. ~ J w. tJ . J J lJ 
1 J J J 

(29) 

The first summation represents the viscous dissipation of energy, 

the second the hysteretic losses. An energy ratio can thus be defined for 

the ith mode 

ER. = 4TIr;l 
1 

1 2 
~ kj S. - 6 .. 
J J Wj lJ 
• .. 2 

~ k. li' J J J 

2 L k.D .6 .. 
j J J 1 J 

+ 2 L k .6 .. 
. J 1 J 
J 

(30) 

, 
Assuming on the other hand in each mode i a damping ratio Di and a frac-

, 
tion of critical viscous damping Si at the natural frequency wi 

ER 4 I iL + 4"'" '. . = TIS· IIU 
1 1 W. 1 

1 

(31) 

Equating these 2 expressions 

(32) 

and 

(33) 

Thus, if normal modes exist, each mode should have a viscous fraction of 
~ 

critical damping Bi at its natural frequency w; and a hysteretic damping 
I 

ratio Di , as defined by the above equations. 

For a one-degree~of-freedom system (as represented by a modal equation), 

-14-



interchanging a hysteretic damping ratio 0 by a fraction of critical vis

cous damping S = D makes in general a negligible difference. Thus each 

mode can be considered to have an equivalent viscous damping Sieq 

S. 1eq 

w. 
L (S· _1 + D.) 

= J J Wj J 
2 I k.IL. 

j J 1 J 

2 k .il .. 
J 1 J 

(34) 

1 2 2 Calling Eso 0 = 2 kjilijA the maximum strain energy in spring j under a 
1J h 

steady-state periodic motion with the shape of the it mode: 

w. 
I (s. _1 + 0 0) E 
. J w. J s .. 

Q J J 1J 
l-' i eq = .><..--I--"'-E-----"<--

. s. 0 

J 1 J 

(35) 

This formula can also be interpreted as stating that the energy ratio in 

each mode at resonance (~ = wi) is a weighted average of the energy ratios 

in each individual component at the same frequency, where the weighting 

factors are the individual energy terms E . s· . 
1J 

Eq. (35) is the weighted modal damping rule foreseen by Eq. (1). This 

general form of rule had been suggested earlier by Biggs (6) who used terms 

only in the form of Dj(Si = 0). The earlier rule was thus equivalent to 

assuming only hysteretic damping. Eq. (35) extends it to include ooth 

viscous and hysteretic damping. 

Relation to Normal Mode Theory 

Combining Eqs. (20) and (21), the equations of motion for the soil-

structure system can be written in a general form as: 

. 
MU + CVU + (K + iCH)U = 

or 
1 • 

MU + (CV + ~ CH)U + KU = 

15 

exciting forces } 

exciting forces 
(36) 



where Cv and CH are damping matrices, the first one corresponding to the 

viscous dissipation of energy, the second one to the hysteretic losses. 

For the conditions assumed, both matrices are assembled in the same way 

as the stiffness matrix K. 

The condition for this system to have normal modes, in the classical 
T T sense, is that ~iCV¢j and ¢iCH~j = 0 for i t j, or if Q is the modal matrix 

(with the modal vectors ¢i as columns), that the two matrices QTCVQ and 

QTCHQ be diagonal. If this condition is satisfied, each mode i will have 
I I 

a fraction of critical viscous damping Si and a hysteretic damping ratio Di 

given by 

and 

I 1 T 
S· = -2 - ¢,CV<P' 

1 Wi 1 , 

I 

O. = , T 1 2 ¢. CH ¢. 
2wi ' , 

f 
(37) 

I 11 IT 1 T 
Sieq = Si + Di = 2 (wi ¢iCV¢i + ~ ¢i CH ¢i) 

It can be shown that Eqs. (37) are identical to Eqs. (32), (33), (34). 

The rule suggested provides therefore the correct values of modal damping 

if normal modes exist. For the general case, when normal modes do not 

exist, the rule is equivalent to neglecting the off-diagonal terms in the 

matrices QTCVQ, QTCHQ . 

EXAMPLES 

To determine the validity of the suggested rule, several typical cases 

were analyzed. For each case, three different analyses were performed; one 

in the frequency domain using the actual damping matrices Cv and CH, providing 

what wi 11 be referred to as "exact I' sol uti on. In the second ana lys i s normal 

modes were assumed, neglecting in effect the off-diagonal terms of matrices 
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T T Q CVQ and Q CHQ; viscous and hysteretic damping terms were kept, however, 

separate, and the solution was again obtained in the frequency domain. 

This solution is referred to as modal superposition in the frequency domain. 

Finally in the third analysis a modal solution was obtained by using Eq. (34) 

and considering all the modal damping to be viscous. This is referred to 

as modal superposition in the time domain. The third type of analysis is 

the one which would be used in practice. 

Comparison of results for the first and second analyses shows the error 

introduced by assuming normal modes. Comparison of the second and third 

analyses shows the additional error introduced by replacing hysteretic modal 

damping by viscous modal damping. Comparison of the first and third solutions 

indicates the overall error resulting from use of weighted modal damping. 

Rigid Structures 

A set of three rigid cylinders with variable height H were first con-

sidered. The excitation was an artificial earthquake with characteristics 

similar to those of the El Centro 1940 earthquake but a peak acceleration 

of O.lg. Soil properties and dampings were as in Fig. 1. (The factor ~ 

in Cs is a strain reduction factor.) The acceleration at the top and at 

the bottom of the cylinder, and the corresponding transfer functions, were 

compared. Table 1 shows the values of the peak top accelerations for the 

three cylinders. The maximum difference is about 10%, and results ~ll)stly 

from the assumption of normal modes, rather than from the equivalencing of 

viscous and hysteretic terms. 

5-Story Building 

Thi s bui 1 ding rested on a very soft soil with a shear wave velocity 

of 3001/2 feet per second. Table 2 shows the natuY'a 1 frequenci es of th is 

17 



TABLE 1 - EXACT AND APPROXIMATE RESULTS - COUPLED ROCKING AND 

SWAYING - RIGID CYLINDERS 

Exact 

Modal superposition in 
the frequency domain 

Modal superposition in 
the time domain 

Peak Acceleration 

H = 75 ft. H = 225 ft. 

0.18g 0.27g 

0.16g 0. 259 

0.16g 0. 2459 

18 

at Top 

H = 450 ft. 

O.17g 

0.17g 

0. 1659 



system. fR represents the rocking frequency and fH the swaying frequency 

as defined previously. f~H and f~~ are the coup"led rocking-sVJaying fre

quencies (rigid structure) and fl ,f2' and f3 the first three natural frequencies 

of the soil-structure system. The values shown for rigid foundation would 

be the frequencies of the structure alone. 

It can be seen that the flexibility of the foundation reduces the 

fundamental frequency by a factor of about 2, and that a considerable 

coupling should be expected between swaying and rocking since fR and fH are 

very close. Because of this large interaction and the considerable differ-

ence between damping values (50% viscous for the swaying spring at fH' 5% 

hysteretic for the rocking spring, 3% hysteretic for all modes of the struc

ture) this should be an unfavorable case for the suggested rule. The re

sults from the three analyses, in terms of peak accelerations at the bottom 

of the foundation (swaying acceleration) and the top of the structure, and 

peak forces in the top and bottom springs, are shown in Table 3. The maxi

mum difference occurs in the force in the top spring and is of the order 

of 20%. Differences in the accelerations and base shear are of the order 

of 10%. 

l5-Story Building 

This shear-type building, shown in Fig. 1, was studied for a range of 

soils with a shear wave velocity from 800//2 to 2000//2 ft. per second. The 

corresponding frequencies are shown in Table 4 (fRH representing the first 

of the two coupled rocking-swaying frequencies). As could be expected, the 

differences between the approximate and exact solution were negligible for 

the stiffer soils (little interaction), and for the softer soil the maximum 

error, again in the peak force in the top spring, was less than 5%. The 

results for this case are shown in Table 5. 

19 



TABLE 2 - FREQUENCIES (cps) FOR 5-STORY BUILDING 
WITH SOIL~STRUCTURE INTERACTION 

fR fH 
I fIl f1 f2 fRH RH 

Cs = 300/12 cps 2.4 2.2 1.8 4.4 1.6 4.9 

rigid foundation 3.3 10.0 

TABLE 3 - EXACT AND APPROXII~ATE RESULTS - 5-STORY BUILDING 
WITH SOIL-STRUCTURE INTERACTION 

f3 

9.0 

16.5 

Peak Acceleration 9 Peak Force - 1 b x 104 

Bottom Top Top Bottom 

Exact 0.093 0.188 88 540 

Modal superposition in 0.094 0.163 72 500 
the frequency domain 

Modal superposition in 0.094 0.163 72 500 the time domain 
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TABLE 4 - FREQUENCIES FOR 15~STORY BUILDING 

WITH SOIL STRUCTURE INTERACTION 

fR fH fRH fl f2 f3 

Cs = 800/12 fps 1.6 3.8 1.3 0.88 3.1 5.0 

Cs = 2000 /12 fps 4.3 10.0 3.5 1.07 3.2 5.2 

Rigid foundation 1.11 3.2 5.2 

TABLE 5 - EXACT AND APPROXIMATE RESULTS - 15-STORY BUILDING 
WITH SOIL STRUCTURE INTERACTION Cs = 800/12 fps 

Peak Acceleration at Top - 9 Peak Force - lb x 106 

Swa~ing Rocking Top Bottom 

Exact 0.10 0.12 0.25 1 .14 

Modal superposition in 0.102 0.125 the frequency domain 0.24 1 .13 

Modal superposition in 0.102 0.125 0.24 1.13 
the time domain 
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WEIGHTED VS. UNIFOR~l ~iODAL DM~PING 

In the seismic design of structures (and particularly nuclear reac

tors), including the effect of foundation flexibility, it is often assumed 

that a constant value of damping applies to each mode. This value is 

normally limited to 4 to 7%. The rule proposed here suggests on the other 

hand a weighted modal damping which would be different in each mode, and 

substantially higher for modes where the swaying motion plays a predominant 

role. 

When a uniform modal damping is used, the effect of the swaying spring 

is greatly distorted, resulting in horizontal accelerations at the base of 

the structure considerably higher than those of the input earthquake (by a 

factor often of 2 or even more). This result is not in agreement with evi

dence from actual earthquakes (2). 

Fig. 5 shows the soil-structure interaction effect, measured as the 

ratio of the base shear for the structure on flexible foundation, to the 

corresponding shear for a rigid foundation, for a nuclear reactor contain

ment structure on a range of soils with different shear wave velocities. 

The shear is that at the base of the interior pedestal supporting the reactor 

itself. For the case of constant modal damping the interaction with the 

soil may produce ampl ifications of the base shear of as much as 50% (there 

might be an even larger peak in the neighborhood of that point). When weigh

ted modal damping is used, on the other hand, the interaction effect ;s 

always beneficial. 

CONCLUSIONS 

From the cases studied, it would seem that modal analysis of struc

tures with foundation interaction, with the modal dampings computed from 
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Eqs. (34) or (37), provides reasonably accurate results in spite of its 

lack of mathematical rigor. The approximation is good even when the damp-

ing values are very different for the various components, resulting in 

off-diagonal terms in the matric~s QTCVQ, QTCHQ which are by no means 

negligible. It deteriorates, however, in other kinds of problems (soil 

amplification studies for instance) when there is not only a substantial 

difference in the components' dampings but also in their stiffnesses (a 

couple of orders of magnitude or more). In these cases solution in the 

frequency domain is recommended. Further comparative studies may be appro

priate to determine better the actual range of applicability of modal analy

sis when normal modes do not properly exist, but for the problem at hand it 

would seem to cover most practical situations. 

The use of a constant modal damping in soil-structure interaction 

studies will distort the effect of the swaying spring and produce unrealistic 

amplifications of the base motion. A weighted modal damping reproduces much 

better the actual behavior and should thus be used. Otherwise it might be 

closer to reality to suppress the swaying spring considering it rigid (8). 
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APPENDIX II - NOTATION 

The following symbols are used in this paper: 

A 

8, 8' 

i 

j 

K 

U, 0, U 

amplitude of steady-state periodic motion 

coefficients 

diagonal matrix with viscous damping terms 

fraction of critical damping 

equivalent fraction of critical damping for ith mode 

viscous and hysteretic damping matrices 

dashpot constant 

shear wave velocity of soil 

hysteretic damping ratios 

energy dissipated and strain energy in a steady-state 
periodic motion 

energy ratio 

natural frequencies in cycles per second 

diagonal matrix with hysteretic damping terms, height of 
structure 

1=1, also denotes mode number 

denotes component 

stiffness matrix 

spring constants 

mass matrix, mass 

sinusoidal moment applied at the foundation 

sinusoidal horizontal force applied at the foundation 

modal matrix and its transpose 
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· u, u 

6ij 

<Pi<Pu 

<P 

n w 

wi 

w. 
J 

wh' 

e 
wr 

displacement and velocity of a l-DOF system 

strain in jth component in ith mode 

modal shapes for soil structure system 

phase angle and rotation 

frequencies in radians/second 

natural frequency of ith mode 

natural reference frequence for viscous damping in jth component 

swaying and rocking frequencies 

phase angle 

26 



-.
;, I 

r-
--

-7
5.

~ • 

15
 

S
to

ri
e

s 

T
-

0
.0

6
N

 
1

6
5

' 
y
-

15
 p

e
f 

{!
J
=

5
0

%
 V

 

~
 

,,
-

8
0

0
 I

 V
2 

fp
s
 

D
=

5
-t

.H
 

F
IG

U
R

E
 

T
Y

P
IC

A
L

 
S

O
IL

 
S

T
R

U
C

T
U

 R
E

 
S

Y
S

T
E

M
 



100 

Z 
o:;::~ :;:: 10% 

Q 

tc 10 
~ 
LL. -t 
2 
c 
1.&1 
J-
::> 
..J 

Q 
III 0.1 C 

aol~------~--------L-~----~ 
0.1 10 100 

18 0-

H 

/-, 
1.&1 14 
..J 

5° '" ,V 

" (!) 

Z 
C 

4 

" ..... ...... ---CI' 

5-

~ 
~ 

0.1 I 10 100 
FREQ. I RESONANT FREQ. 

FIGURE 2: TRANSFER FUNCTIONS FOR VISCOUS 
AND HYSTERETIC SYSTEMS 



'I' 

• 
~ -... 

.9 

.8 

7 

·6 

.5 

.4 

.3 

.2 

/ 

C 0 
It 

'" ..J -. / 

'" u -.2 
u 
C -.3 

-.4 

-.5 

-.6 

-.7 

.. - . .. 

~ 

-.9 o 

HYSTERETK 
____ VISCOUS 

f\ 

J'\ 

r\ r /"'- ~ .-

~ V V '-/ -
\.r 

V 

\J 

/0 20 30 40 50 

TIME x w (RADIANS) 

FIGURE 3: IMPULSE - RESPONSE FUNCTIONS OF 
EQUIVALENT LINEAR - HYSTERETC AND 

VISCOUS I-OOF SYSTEMS,IJ - 0 - 0.10 

.... 
~ 



~ ~ I 
~~ N I II >-
(; ~ :r u 

u I z -t 
:I I 

l&J 

~ \ 
::> 

II yl 
a 

c1 w 
~ 

/\ LA.. 
>-
0 
Z 

9NldNYO 1YOO,. L&.I 
:J 
a 
L&.I 
a: 
LL 

~ 
0 (J) 
N >- > II 
J u 

z 
UJ (!) 

2 ::> Z 

" 
a 
l&J Q.. cr: 
LA.. :I 

<I 
0 

9NldW'10 1\100W 
V 

lIJ 
a: 

~ :::l 
N >- (!) 
I~ U 

LL Z u W a :> 

" a 
J l&J 

cr: 
LA.. 

9NldWVO 1'100~ 



" 
.q

 

2
. 

, 

- ~ =
 

0 
&I

I 
en

 
.J

 
!!

 0
 

)
(
 

C3
 

L&
J 

-
..

J 
« 

~r
 

~
 

I 
, " 

-+ 
U

N
tF

O
M

I 
I 

'" 
D

A
M

PI
N

G
 

I 
b

--
. 

-
--

-0
.,

 .... 
I 

' 
....

 
, 

'G
 

"-
, 

I 
I 

~
 

c
( L&
J 

%
: 

(I
) 

W
EI

G
H

TE
D

 
M

OD
AL

 
D

A
M

PI
N

G
 

0
.
5
~
-
-
-
-
-
-
-
-
-
-
~
~
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
~
 

o
~
·
 __

__
__

__
__

__
__

__
 ~
 __

__
__

__
__

__
__

 ~
 __

__
__

__
__

__
__

 ~
~
 __

__
__

__
__

__
__

 ~ 
o 

1
0

0
0

 
2

0
0

0
 

3
0

0
0

 
4

0
0

0
 

SH
E

A
R

 
W

A
V

E 
V

E
L

O
C

IT
Y

, 
ft

 I
se

e
 

F
IG

U
R

E
 

5
: 

S
O

IL
 

S
T

R
U

C
T

U
R

E
 

IN
T

E
R

A
C

T
IO

N
 

E
F

F
E

C
T

 
U

S
IN

G
 

U
N

IF
O

R
M

 
A

N
D

 
W

E
I G

H
TE

D
 

M
O

D
A

L 
D

A
M

P
IN

G
 


