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ABSTRACT 

This report describes two elements developed to allow inelastic three­
dimensional building frames to be analyzed using the ANSR-I computer program 
[1] . 

The first element is a beam-column which has two-dimensional stiffness 
and yield characteristics. This element may be located arbitrarily in a 
three-dimensional structure and is intended primarily for modelling beams. 
The second element is a beam-column which has three-dimensional stiffness 
and yield characteristics. This element can be used for modelling columns 
in which biaxial bending effects may be important and also for structures 
such as elevator shafts. 

Both elements assume that inelastic behavior is concentrated in plastic 
hinges at the element ends. For the two-dimensional element the plastic 
hinges are affected by moment in the principal bending plane only, or by 
this moment interacting with axial force. For the three-dimensional element 
the plastic hinges are affected by bending moments about both axes, axial 
force and (if desired) torsional moment. 

Allowance has been made for rigid floor diaphragms by means of a 
"slaving" feature. This slaving feature has been incorporated into both 
elements at the element level because ANSR-I cannot account for slaving 
at the nodal level. Both elements also allow for rigid end zones and for 
initial element actions. 

The theoretical formulations are presented and the element character­
istics are described. User1s guides for both elements are included and an 
example analysis is described. 
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1. INTRODUCTION 

This report describes two elements developed to allow inelastic 

three-dimensional building frames to be analyzed using the ANSR-I 

computer program [1]. The elements are as follows: 

(1) A beam-column element which has two-dimensional stiffness 

and yield characteristics, but which may be located 

arbitrarily in a three-dimensional structure. This element 

is similar in concept to "e1ement type 2" of the DRAIN-2D 

program [2], a~d is intended primarily for modelling beams. 

(2) A beam-column element which has three-dimensional stiffness 

and yield characteristics. This element is similar in 

concept to the element originally developed by Porter and 

Powell [3], but uses a continuous rather than a faceted yield 

surface. This element can be used for modelling columns in 

which biaxial bending effects may be important, and also for 

structures such as elevator shafts. 

Both elements assume that inelastic behavior is concentrated in plastic 

hinges at the element ends. For the two-dimensional element the plastic 

hinges are affected by moment in the principal bending plane only, or by 

this moment interacting with axial force. For the three-dimensional 

element the plastic hinges are affected by bending moments about both 

axes, axial force and (if desired) torsional moment. 

Allowance has been made for rigid floor diaphragms by means of a 

IIslaving" feature. This slaving feature has been incorporated into both 

elements at the element level, because ANSR-I can not account for slaving 

at the nodal level. Both elements also allow for rigid end zones and for 
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initial element actions. 

The element characteristics are described in Chapters 2 and 3, and 

an illustrative example is shown in Chapter 4. User's guides for the 

elements are contained in Appendices A and B. 
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2. TWO DIMENSIONAL BEAM-COLUMN ELEMENT 

2.1 GENERAL CHARACTERISTICS 

Beam column elements may be arbitrarily oriented in the global 

XYZ plane. If the slaving feature is to be used the Y axis must be 

vertical. 

Each element must be assigned an axial stiffness plus a major 

axis flexural stiffness. Torsional and minor axis flexural stiffnesses 

may also be specified if necessary, as explained in Section 2.4. 

Elements of variable cross section can be considered by specifying 

appropriate flexural stiffness coefficients. Flexural shear deformations 

and the effects of eccentric end connections can be taken into account. 

Yielding may take place only in concentrated plastic hinges at 

the element ends. Hinge formation is affected by the axial force and 

major axis bending moment only. That is, an element may be placed in 

a three-dimensional frame, but is yield mechanism is only two-dimensonal, 

in the plane of major axis bending. The yield moments may be specified 

to be different at the two element ends, and for positive and negative 

bending. The interaction between axial force and moment in producing 

yield is taken into account approximately. 

Strain hardening is approximated by assuming that the element 

consists of elastic and elasto-plastic components in parallel. With 

this type of strain hardening idealization, if the bending moment in 

the element is constant, and if the element is of uniform strength, 

then the moment-rotation relationship for the element will have the 

same shape as its moment-curvature' relationship (Fig. 2.la). This 

follows because curvature and rotation in this case are directly 
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proportional. If, however, the bending moment or strength vary, then 

the curvatures and rotations are no longer proportional, and the moment­

rotation and moment-curvature variations may be quite different 

(Fig. 2.lb). With the parallel component procedure, a moment-rotation 

relationship is, in effect, being specified. Care must be taken in 

relating this to a moment-curvature relationship. 

If static load analyses are carried out separately (i.e. outside 

the ANSR program), the results of these analyses may be included by 

specifying appropriate initial axial forces and bending moments in the 

elements. The P-delta effect can be considered by including a 

geometric stiffness. 

2.2 ELEMENT DEFORMATIONS 

The beam-column element has three primary modes of deformation, 

namely (a) axial extension and (b) flexural rotations;n the major plane 

at ends i and j. The transformation .relating increments of element 

deformation to increments of nodal displacement (Fig. 2.2) is 

in which 

and the transformation a is well known. -p 

(2.1) 

The element also has three secondary modes of deformation, which 

may have to be considered for reasons explained ;n Section 2.4. These 

consist of minor axis flexural deformations at ends i and j, and an 

angle of torsional twist. Again the transformation from displacements 

to deformations is well known (Fig. 2.2), and can be expressed as 
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dvs = ~s dr (2.2) 

T in which dv
s 

= (dv4, dvS' dv6). 

It is assumed that these secondary deformations are elastic, and 

that they do not interact with the primary deformations in producing 

plastic hinges. 

A plastic hinge forms when the moment in the elasto-plastic 

component of the element reaches its yield moment. A hinge is then 

introduced into this component, the elastic component remaining unchanged. 

The measure of flexural plastic deformation is the plastic hinge 

rotation. 

For any increments of total flexural rotation, dV2 and dv3, the 

corresponding increments of plastic hinge rotation, d6 p2 and d6p3 ' are 

given by 

in which A, B, C and 0 are as given in Table 2.1. Unloading occurs at 

a hinge when the increment in hinge rotation is opposite in sign to the 

bending moment. 

Inelastic axial deformations are assumed not to occur in beam-

column elements of this type, to simplify the problem of interaction 

between axial and flexural deformations after yield. Only an 

approximate procedure for considering interaction effects is included, 

as explained in the following section. This procedure is not strictly 

consistent, but is believed to be reasonable for most practical 

applications. 



- 6 -

2.3 INTERACTION SURFACES 

Yield interaction surfaces of three types may be specified, as 

foll ows. 

(1) Beam type (shape code = 1, Fig. 2.3a). This type of surface 

should be specified where axial forces are small or are 

ignored. Yielding is affected by bending moment only. 

(2) Steel column type (shape code = 2, Fig. 2.3b). This type of 

surface is intended for use with steel columns. 

(3) Concrete column type (shape code = 3, Fig. 2.3c). This type 

of surface is intended for use with concrete columns. 

For any combination of axial force and bending moment within a yield 

surface, the cross section is assumed to be elastic. If the force­

moment combination lies on or outside the surface, a plastic hinge is 

introduced. Combinations outside the yield surface are permitted only 

temporarily, being compensated for by applying corrective loads in the 

succeeding load step or iteration. 

This procedure is not strictly correct because the axial and 

flexural deformations interact after yield, and it is therefore wrong 

to assume that the flexural stiffness changes but the axial stiffness 

remains unchanged. However, this procedure is believed to be reasonable 

for practical analyses of buildings. 

If a force-moment combination goes from the elastic range to 

beyond the yield surface in any load step or iteration, an equilibrium 

correction is made as shown in Fig. 2.4a. Also, because the axial 

stiffness is assume-d to remain unchanged, the force-moment combination 

at a plastic hinge will sUbsequently-move away from the yield surface 
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if yielding continues, as shown in Fig. 2.4b. An equilibrium 

correction, as shown, is therefore made in each succeeding step or 

iteration. 

The axial force in an element with a column-type interaction 

surface can, in reality, never exceed the yield value for zero moment. 

However, because of the computational procedure being used, axial forces 

in excess of yield can be computed. For axial forces in excess of yield, 

the yield moments are assumed to be zero. The printed results from the 

program should be examined carefully and interpreted with caution. 

If axial forces approaching or exceeding yield are computed for a column, 

severe column damage is probably implied. 

2.4 ELEMENT STIFFNESS 

The element is considered as the sum of an inelastic component and 

an elastic component in the major plane of bending, plus a further 

elastic component providing torsional and minor axis flexural 

stiffnesses. This third component is needed to avoid singular stiffness 

matrices in certain circumstances. 

The element actions and deformations are shown in Fig. 2.2. The 

axial stiffness is constant, and is given by 

dS, = EA dv L 1 (2.4) 

in which E = elastic modulus, and A = effective cross sectional area. 

The primary elastic flexural stiffness is given by 

ELI [kii k
ij

] ~dV2~ 
k. . k. . dV3 lJ JJ 

(2.5) 
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in which I = reference moment of inertia; and k .. , k .. , k .. are 
11 lJ JJ 

coefficients which depend on the cross section variation. For a 

uniform element, I = actual moment of inertia, k.
1
• = k .. = 4, and 

1 JJ 
k;j = 2. The coefficients must be specified by the program user, and 

may, if desired, account for such effects as shear deformations and 

nonrigid end connections as well as cross section variations. 

After one or more hinges form, the coefficients for the elasto­

plastic component change to kii' kij and kjj' as follows 

kii = k .. (l-A) kij C (2.6) 11 

k ~ . = k .. (1-D) k •. B (2.7) 
1J 1J 11 

kl •. = k .. (1-D) - k .. B (2.8) 
JJ JJ 1J 

in which A, B, C and 0 are defined in Table 2.1. 

If desired, effective flexural shear areas may be specified. The 

program then modifies the flexural stiffness to account for the 

additional shear deformations. 

The minor axis flexural stiffness is obtained by multiplying ,the 

primary elastic stiffness by a user-specified factor, f. The 

torsional deformation is related to torque by 

(2.9) 

in which it is assumed that G = 0.4E and 

J = f(k .. + k .. )1/8 
" JJ 

(2.10) 

in which k .. and k .. are the primary flexural stiffness factors, after any 
" JJ 

modification for shear deformations. 
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The primary and secondary actions are related to their respective 

deformations by 

and 

2.5 GEOMETRIC STIFFNESS 

dS = k dv -p -p-p 

~= k dv -s --s 

(2.11) 

(2.12) 

The geometric stiffness which is used is exactly the same as for 

the ANSR truss element (see Reference [1], Section B1, Appendix B1). 

This is not the exact geometric stiffness for a beam column element, but 

is sufficiently accurate to account for the P-de1ta effect in 

buil di ng frames. 

2.6 END ECCENTRICITY 

Plastic hinges in frames and coupled frame-shear wall structures 

will form near the faces of the joints rather than at the theoretical 

joint centerlines. This effect can be approximated by postulating 

rigid, infinitely strong connecting links between the nodes and the 

element ends, as shown in Fig. 2.6. The displacement transformation 

relating the increments of node displacements, .91:", to increments of 

displacement at the element ends is easily established, and can be 

written as 

dr = a dr - -e--n (2.13) 
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2.7 GLOBAL STI FFNESS 

The element stiffness, ~, relating global actions and displacements 

is obtained as 

K = aT aT K a a + a K aT + K 
- -e -p -p -p -e -s -s -s -G (2.14) 

where ~G is included only if geometric stiffness effects are to be 

considered. For simplicity, the secondary element is assumed to join 

the nodes i and j directly, without end eccentricities. The geometric 

stiffness is also formulated for a member connecting nodes i and j 

di rectly. 

2.8 RIGID FLOOR DIAPHRAGMS 

A frequently made assumption in the analysis of tall buildings 

is that each floor diaphragm is rigid in its o\'ln plan~. To introduce 

this assumption, a II mas ter ll node at the center of mass of each floor 

may be specified, as shown in Fig. 2.7. Each master node has only 

three degrees of freedom as shown, which are the displacements of the 

diaphragm horizontally as a rigid body. If any beam-column member is 

connected to a diaphragm, its stiffness must be formulated partly in 

terms of these II master ll displacements and partly in terms of displace-

ments which are not affected by the rigid diaphragm assumption. 

The displacement transformation relating the diaphragm displace­

ments, drd, to tQe displacements at a slaved node is as follows. 
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drnl 
\ 1 0 dz 

F: drn3 = 0 -d (2.15) x 

drn5 0 0 1 drs 

or 

drns = ~d drd (2.16) 

The slaved displacements at element nodes i and j can be expressed 

in terms of the displacements at the IImaster ll node (or nodes). The 

corresponding coefficients of ~ (eq. 2.14) are transformed to account 

for the slaving. The resulting element stiffness matrix is assembled 

in terms of the three master degrees of freedom plus the three 10ca1 

degrees of freedom drn2 , drn4 and drn6 at each node,which are not 

affected by slaving. 

2.9 INITIAL FORCES 

For structures in which static analyses are carried out 

separate1y,{i.e. outside the ANSR program), initial primary member 

forces may be specified. The sign convention for these forces is as 

shown in Fig. 2.5. These forces are not converted to loads on the 

nodes of the structure, but simply used to initialize the element end 

actions. For this reason, initial forces need ·not constitute a set of 

actions in equilibrium. The only effects they have on the behavior 

of the system are (a) to influence the onset of plasticity and (b) to 

affect the geometric stiffnesses. 
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Primary initial forces are defined as standard patterns. Each 

element can be identified with a standard pattern, and in addition a 

multiplication factor for scaling the standard pattern may be specified. 

Fixed end forces, as permitted in the DRAIN-2D version of this 

element, are not currently permitted because ANSR-I is not able to 

consider such forces. 

2.10 RESULTS OUTPUT 

The following results are printed at the specified output 

intervals,during static and dynamic analyses, for those elements for 

which element force histories are requested. 

(1) Yield code at each end of element: zero indicates the element 

end is elastic, and 1 that a plastic hinge has formed. 

(2) Axial force, bending moment and shear force acting on each 

end, with the sign convention shown i'n Fig. 2.5. 

(3) Current plastic hinge rotations at each end. The sign 

convention is the same as for primary flexural actions and 

deformations (Fig. 2.2(a) and Fig. 2.5}. 

(4) Accumulated positive and negative plastic hinge rotations 

up to the current time. These values are accumulated as 

shown in Fig. 2.8. 

The maximum positive and negative -values of axial force, bending 

moment, shear force, and plastic hinge rotation, with their times of 

occurence, are printed at the time intervals requested for envelopes. 

The accumulated positive and negative plastic hinge rotations are also 

printed. 
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TABLE 2.1 

COEFFICIENTS FOR PLASTIC HINGE ROTATIONS 

Yield Condition A B C 0 

Elastic ends 0 0 0 0 

Plastic hinge at 1 k .. /k .. 0 0 
end i only 1 J 11 

Plastic hinge at 0 0 k .. /k .. 1 
end j only lJ JJ 

Plastic hinges at 1 0 0 1 
both ends i and j 

Coefficients k .. , k .. , and k .. are defined by Eq. 2.5. 
11 1 J JJ 
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3. THREE DIMENSIONAL BEAM - COLUMN ELEMENT 

3.1 GENERAL CHARACTERISTICS 

Three dimensional beam-column elements may be arbitrarily oriented 

in the global XYZ plane. If the slaving feature is to be used the Y 

axis must be vertical. 

Each element must be assigned flexural 'stiffness and axial stiff­

ness. Plastic hinges can form at the element ends. Interaction among 

the bending moments, torsional moment and axial forces at a hinge 

are taken into account in determining when hinges form. Displacements 

are assumed to be small, although the P-delta effect may be considered. 

The orientation of the local element axes is as shown in Fig. 3.1. 

Node k, together with nodes i and j, defines the plane containing the 

local y axis. 

Trilinear relationships can be specified for the moment-rotation 

relationship about the element y axis (My-8y)' moment-rotation about 

the element zaxis {My-ez}, torque-twist {T-¢}, and force-extension 

{F-e} for the element, as indicated in Fig. 3.2. Different yield 

strengths can be specified at the two ends if desired. Different 

strengths can also be specified for axial tension and axial compression. 

Each element is automatically divided into three parallel elements, 

two of which are elastic-perfectly plastic and the third elastic. The 

stiffnesses and strengths of these parallel elements are calculated by 

the program such that the action-deformation relationships for the combined 

element have the specified trilinear forms. Each elastic-perfectly 

plastic parallel element may develop a concentrated plastic hinge, 

with zero lengths, at one or both ends. The forces at each potential 
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hinge interact according to one of two available yield functions 

to produce yield. The two available functions define elliptical and 

parabolic yield surfaces, as shown in Fig. 3.3. The origin of the 

yield surface may be shifted along the force axis, as shown, so that 

the surface can be made to approximate that for a reinforced concrete 

column. 

Elements with varying strengths can be modelled by specifying 

different action-deformatlon relationships at the two element ends, 

but the element stiffness is assumed to be constant along the element 

length. Shear deformations and interaction effects with shear are 

ignored. 

Eccentric end connections, initial forces, and rigid diaphragm 

slaving, as for the 2-D beam-column element, may be specified. 

3.2 TANGENT STIFFNESS FOR AN ELASTO-PLASTIC PARALLEL COMPONENT 

A tangent stiffness matrix can be derived which relates increments 

in the element end actions to increments in the element deformations 

for a single parallel component. That is, 

in which dS = vector of element action increments, 

dv = vector of element deformation increments, and 

~t = element tangent stiffness matrix. 

(3.1) 

The following basic assumptions are necessary for developemnt of the 

theory. 

Ca) Element deformation increments can be decomposed into 
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elastic and plastic components. That is, 

dv = dv + dv - ~ ~ 

(3.2) 

in which dVe = vector of elastic deformation increments, and 

~ = vector of plastic deformation increments. 

(b) Element action increments are related to the elastic 

deformation increments by the elastic action-deformation 

relationship. That is, 

dS = ~e dVe (3.3) 

in which k = initial elastic stiffness matrix. -e 

·(c) The plastic increment of deformation is normal to the 

yield surface, directed outwards. For a hinge, at, say, 

element end i, this assumption can be expressed as 

~i = ~i ,s • Ai (3.4) 

in which ¢i,s = gradient vector of yield function at end i, 

each term being a partial derivative of the yield function 

with respect to the corresponding element action; and Ai = a 

(positive) scalar which determines the magnitude of the 

plastic deformations. 

With these three assumptions, the tangent stiffness matrix for an element 

with hinges at either or both ends is formed as follows. 
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For the hinges at ends i and j, from Eq 3.4 

~i = ~i,s • Ai 

and 

Eqs. 3.5a and 3.5b can be combined to give 

) dv . ( 

~~:~ 
or 

= 

~. = ~,s ~ 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 

At each hinge, the value of the y;e1d function must remain constant 

That is, 

and 

or 

d4>; = 0 

d4>. = 0 
J 

T 
2;,5 • d~; = 0 

(3.8a) 

(3.8b) 

(3.9a) 
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Eqs. 3.9a and 3.9b can be combined to give 

or 

~T • dS = 0 ,S 

= o 

Substitution of Eq. 3.2 into Eq. 3.3 gives 

and substitution of Eq. 3.7 into Eq. 3.12 gives 

Premu1tip1icat;on of Eq. 3.13 by ~:s gives 

(3. 9b) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Hence, from Eq. 3.11 

cp T k (dr - <p A) = 0 _,s -e -- _,s- (3.15) 

or (3.16) 

Eq. 3.16 can be solved for ~ to give 

(3.17} 

It can be shown that for certain cases, in particular when an element is 

yielding at both ends under axial force alone or under torque alone, the 

determinant of ~:s ~e ~,s is zero. That is, the two simultaneous 

equations represented by Eq. 3.16 are linearly dependent. For such 

cases it can be assumed that the plastic deformation magnitudes at 

ends i and j (i.e. Ai and "j)are equal. This assumption avoids the 

singularity. 

Substitution of Eq. 3.17 into Eq. 3.13 yields the elasto-plastic 

stiffness relationship 

or 

which is the required tangent stiffness relationship. 

From equilibrium of axial forces and torques, it follows that 

and dT. = 
1 

(3.18) 

(3.19) 

(3.20a) 

(3.20b) 

where F and T denote axial force and torque, respectively. Eqs. 3.20 

must hold in all situations, whether an element yields at one or both 



- 20 -

ends and whether there are equal or different yield strengths at the 

two ends. This requirement suggests that 6 element degrees of freedom 

can be used, as shown in Fig. 3.5, rather than the 8 degrees of freedom 

shown in Fig. 3.4. A theory similar to that outlined above can be 

derived, with the 8-by-2 matrix ~ compacted into a 6-by-2 matrix _,s 

such that Eq. 3.11 still holds. Using this modified matrix, the 

increments of plastic axial and torsional deformation, as computed by 

Eq. 3.7, become the combined plastic deformations at both hinges. 

Compaction from 8 degrees of freedom to 6 has the advantage 

of reducing the computational effort. The formulation with 6 degrees 

of freedom is used in the computer program. 

The preceding derivation can be applied to the case with only 

one plastic hinge as well as the case with two hinges. For an element 

with one hinge, the column of the matrix !,s corre~ponding to the 

elastic end becomes zero and is deleted. The vector A then becomes 

a scalar. 

3.3 TOLERANCE FOR STIFFNESS REFORMULATION 

Each time a new hinge forms or an existing hinge unloads, the 

element stiffness changes. Moreover, because the yield surface is 

curved, the stiffness of a yielding element will generally change 

continuously. This change in stiffness results from differences in the 

directions of the tangents to the yield surface as the actions at the 

hinge change, as shown in Fig. 3.6 for successive states. If the 

angle a is small, the change in stiffness is small and can be neglected, to 
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avoid recalculating the stiffness. In the computer program, an option 

is provided for the user to set a tolerance for the angle a. If a non­

zero tolerance is specified, the element stiffness is reformed only 

when the change in state is such that the angle between the current state 

and that at which the stiffness was last reformed exceeds the tolerance. 

For computational reasons, the program computes a by adding the absolute 

values of changes in a over succeeding steps. This is conservative~ 

but provides a reasonable measure of the true angle. 

Tangent stiffnesses for each of the two inelastic parallel elements 

are computed according to the preceding theory. These stiffnesses are 

then added together, and further added to the stiffness of the elastic 

parallel element. The change in stiffness since the preceding stiffness 

formulation is found, transformed to the global coordinate system, and 

returned for use by the ANSR base program. 

3.4 P-DELTA EFFECT 

Even for small displacements, changes in the shape of a structure 

can have a significant effect (the P-delta effect) on the equilibrium 

of the structure. This effect can be accounted for by adding a geometric 

stiffness to the element elastic or elasto-plastic stiffness. The 

geometric stiffness assumed for the element is that for a truss bar 

in three dimensions, which depends on the axial force only. The 

geometric stiffness is changed each time the e1asto-plastic stiffness 

changes, using the current axial force, but is otherwise assumed to 

remain constant. 
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3.5 STATE DETERMINATION FOR AN ELASTO-PLASTIC PARALLEL COMPONENT 

Increments of the element and actions are computed from Eq. 3.3. 

For an element with elastic ends, dVe is equal to dv. For an element 

with one or two plastic hinges, dVe is obtained from Eq. 3.2. The plastic 

deformation, dv is obtained from Eq. 3.4 after first computing A by 
~ -

Eq. 3.17. A negative value of A for any end indicates that unloading 

has occurred at that end. If a plastic hinge unloads the matrix, t,s is 

recalculated without the hinge befdre applying the above equations. 

During any load step, the element end actions may move outside 

the yield surface. This is not admissible and must be corrected. As 

an example, consider Fig. 3.7, showing paths which the actions at ends 

i and j might take during a single step. At the beginning of the step 

the actions are at points A, end i being elastic and end j plastic. 

Assuming linear behavior within the step, the final actions would be at 

points B. However, these actions are outside the yield surfaces at 

both ends, which is not correct. 

It is assumed, first, that the actions reach points B along 

straight lines from A to B (that is, the deformations increase 

proportionately from A to B.) The action points C, along lines AB, 

are then obtained by computing the portion of the deformation increment 

which just brings end i to yield. The actions at end j, as shown by 

point C, will be slightly outside the yield surface because the true 

behavior at end j is not linear. These actions are scaled to give 

point D on the yield surface, along the line joining C to the centroid 

of the yield surface. At this stage, the actions at both ends are 

on the yield surface, at points D. For the remainder of the deformation 
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increment, hinges are present at both ends. The increments in element 

actions are computed, giving points E. Again, the actions are not 

exactly on the yield surface. A further correction is therefore made 

by scaling the actions to give points F. 

The actions for each of the parallel elements are calculated in 

this way and are then added together to give the total element actions. 

Plastic deformations, consisting of plastic hinge rotations, twists, 

and extensions at each end, are also calculated. Because there are 

two elasto-plastic elements in parallel, two different sets of plastic 

deformations are present. The deformations printed by the program are 

those for the parallel element which yields first. The deformations 

for the other element are not printed. 

3.6 END ECCENTRICITY 

Rigid end zones may be specified as described in Section 2.6 for 

the 2-D beam-column element. 

3.7 RIGID FLOOR SLAVING 

The procedure for rigid floor slaving ;s as described in Section 

2.8 for the 2-D beam-column element. 

3.8 INITIAL FORCES 

Initial forces may be specified as described in Section 2.9. The 

sign convention for positive forces is shown in Fig. 3.8. 

3.9 RESULTS OUTPUT 

The following items are printed for the elements for which results 

are requested: 

(1) Element number. 

(2) Node numbers at ends i and j. 
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(3) Yield codes for ends i and j. This code is as follows for 

each end: 

00: both elasto-p1astic parallel elements are elastic. 

10: only one of the elasto-p1astic parallel elements 

is plastic. 

11: both e1asto-p1astic parallel elements are plastic. 

(4) Moments about the element y and z axes, at each end, and 

torque and axial force. Positive directions of the actions 

are shown in Fig. 3.9. 

(5) Plastic rotations about the element y and z axes, plastic 

twist and plastic axial extension for each end of the 

element. Positive directions of the plastic deformations 

are shown in Fig. 3.9. 

Envelope values of resu1ts (i .e., maximum positive and negative values 

of results and the corresponding times at which they occur) can also be 

printed if requested. 
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4. EXAMPLE ANALYSIS 

The single-story building frame shown in Fig. 4.1 was modelled 

and subjected to horizontal ground motions to demonstrate an application 

of the two beam-column elements described in this report. 

The floor diaphragm is assumed to be rigid, with a center of mass 

located at the master node. The panel zones at the member intersections 

are assumed to be rigid and are modelled using the end eccentricity 

feature. The building was subjected simultaneously to the horizontal 

ground motions of Fig. 4.2. 

All members were assumed to have identical initial elastic stiff­

nesses. All beams were proportioned with identical bilinear moment­

curvature relationships, without moment-axial load yield interaction. 

The co 1 umns were proporti oned as follows. Column 1 was assumed to have 

bilinear action-deformation relationships, and columns 2 and 3 were 

assumed to have identical trilinear relationships. A listing of the 

input data for the model is given in Table 4.1. All units are in kips 

and feet. The building's horizontal mass was lumped at the master node 

as follows: 

translational mass = 1 kip-sec 2 /ft 

rotational mass = 5 kip-5ec2 

Three time history analyses were performed for the duration of 

the ground acceleration (0-1 sec) as follows: 

(1) Linear elastic step-by-step (24 steps). 

(2) Nonlinear step-by-step with equilibrium correction 

(24 steps). 

(3) Nonlinear step-by-step with equilibrium correction 

(48 steps). 
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The x and z displacement histories of the diaphragm master node are 

plotted in Figs. 4.3 and 4.4, respectively. 
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APPENDIX A 

USER1S GUIDE 

TWO-DIMENSIONAL BEAM-COLUMN ELEMENT 

See Chapter 2 for description of element. Number of words of 

information per element = 199. 

The global Y axis is assumed to be vertically upwards if the 

slaving feature is used. 

Al. CONTROL INFORMATION (1015, 6F5.0) - One card 

Cols. 5: Element group indicator. Punch 2 (to indicate that 
the group consists of two-dimensional beam-column 
elements) 

6-10: Number of elements in this group 

11-15: Element number of the first element in this group. 
If blank or zero, assumed to be 1. 

16-20: Number of different element stiffness types (max 35) 

21-25: Number of different and eccentricity types (max 15) 

26-30: Number of different yield interaction surfaces for 
cross sections (max 40) 

31-35: Number of different initial force patterns (max 30) 

36-50: Blank 

51-55: Initial stiffness damping factor, So. I~ blank or 
zero, assumed to be equal to the system So value 
input in card C6 of Reference [1]. 

56-60: Current tangent stiffness damping factor, ST. If 
blank or zero, assumed to be equal to the system 
ST value input in card C6 of Reference [1]. 
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A2. STIFFNESS TYPES (I5,4F10.0,3F5.0,F10.0,2F5.0) - One card for each 
different stiffness type. 

Co1s. 5: Stiffness type number, in sequence beginning with 1. 

6-15: 

16-25: 

26-35: 

36-45: 

46-50: 

51-55: 

56-60: 

61-70: 

71-75: 

76-80: 

Young's modulus of elasticity 

Strain hardening modulus, as a proportion of Young's 
modulus. Must be less than 1. 

Average cross sectional area 

Reference moment of inertia 

Flexural stiffness factor k .. 
11 

Flexural stiffness factor kjj 
Flexural stiffness factor k .. lJ 
Effective shear area. Leave blank or punch zero if 
shear deformations are to be ignored, or if shear 
deformations have already been taken into account 
in computing the flexural stiffness factors. 

Poisson's ratio (used for computing shear modulus, 
and required only if shear deformations are to be 
considered) . 

Factor by which the major axis bending stiffness is 
multiplied to give the minor axis bending stiffness. 
The torsional stiffness is also obtained from this 
factor. See Section 2.4 for explanation. If zero 
or blank, zero torsional and minor axis bending 
stiffnesses are assigned. 

A3. END ECCENTRICITIES (I5,6F10.0) - One card for each end eccentricity 
type. 

Omit if there are no end eccentricities. See 
Fig. 2.6 for explanation. All eccentricities 
are measured from the node to the element end, 
in global coordinates. --

eols. 1- 5: End eccentricity type number, in sequence beginning 
wi th 1. 

6-15: Xi = X eccentricity at end i. 

16-25: X. = X eccentricity at end j. 
J 

26-35: Yi = Y eccentricity at end i. 
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36-45: Y. 
J 

= Y eccentricity at end j. 

46-55: Zi = Z eccentricity at end i. 

56-65: Zj = Z eccentricity at end j. 

A4. CROSS SECTION YIELD INTERACTION SURFACES (2I5,4F10.0,4F5.0) - One 
card for each yield surface. 

See Fig. 2.3 for explanation. 

Cols. 1- 5: Yield surface number. in sequence beginning with l. 

10: Yield surface shape code, as fall ows. 

1 : Beam type, without P-M interaction 

2: Steel I-beam type 

3: Reinforced concrete column type 

11-20 : Positive (sagging) yield moment, Ny+' 

21-30: Negative (hogging) yield moment, M . y-
31-40: Compression yield force, Pyc Leave blank if shape 

code = 1. 

41-50: Tension yield force, P t' Leave blank if shape 
code = 1. Y 

51-55: M-coordinate of balance point A. as a proportion of 
My+' Leave blank if shape code = 1. 

56-60: P-coordinate of balance point A, as a proportion of 
Pyc ' Leave blank if shape code = 1. 

61-65: M-coordinate of balance point B, as a proportion of 
M . Leave blank if shape code = 1. y-

66-70: P-coordinate of balance point B, as a proportion of 
Pyc ' Leave blank if shape code'= 1. 

A5. INITIAL ELEMENT FORCE PATTERNS (I5,6F10.0) - One card for each 
initial force pattern. 

Omit if there are no initial forces. 
See Fig. 2.5a for force and moment 

. di recti on. 
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Gals. 1- 5: Pattern number, in sequence beginning with 1. 

6-15: Initial axial force, F i . 

16-25: Initial shear force, Vi' 

26-35: Initial moment, Mi' 

36-45: Initial axial force, F .. 
J 

45-55: Initial shear force, Vj . 

56-65: Initial moment, Mj . 

A6. ELEMENT GENERATION COMMANDS (11I4,2I3,2I5,2F5,O,I5,F5.0) - As many 
cards as needed to generate all elements 
in this group. 

Cards must be in order of increasing 
element number. Cards for the first and 
last elements must be included. See 
Note A1 for explanation of generation 
procedure. 

Co1s. 1- 4: Element number, or number of first element in a 
sequentially numbered series of elements to be 
generated by this command. 

5- 8: Node number at element end i, NODI 

9-12: Node number at element end j, NODJ 

13-16: Node number, NOOK, not collinear with NODI and NODJ, 
which lies in the member's major bending (local xy) 
plane. If element generation is used, this node is 
the same for all elements in the series. 

17-20: Node number increment for element generation. If 
zero or blank, assumed to be 1. 

21-24: Number of node (diaphragm node) to which end I is 
slaved, NSI. If not slaved, leave blank. 

25-28: Number of node to which end J is slaved, NSJ. If 
not slaved, leave blank. If element generation 
is used, nodes NSI and NSJ are the same for all 
elements in the series. For a description of the 
slaving procedure see Section 2.8. 

29-32: Stiffness type number. 

33-36: End eccentricity type number. Leave blank or punch 
zero if there is no end eccentricity. 
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37-40: Yield surface number for element end i. 

41-44: Yield surface number for element end j. 

47: Code for including geometric stiffness. Punch 1 if 
geometric stiffness is to be included. Leave blank or 
punch zero if geometric stiffness is to be ignored. 

50: Time history output code. If a time history of element 
results is not required for the element covered by this 
command, punch zero or leave blank. If a time history 
printout, at the intervals specified in Card D(a) of 
Reference [lJ, is required, punch 1. 

51-55: Initial force pattern number. Leave blank or punch zero 
if there are no initial forces. 

56-60: Scale factor to be applied to initial element forces. 

NOTE Al. ELEMENT GENERATION 

In the element generation commands, the elements must be 

specified in increasing numerical order. Cards may be provided 

for sequentially numbered elements, in which case each card 

specifies one element and the generation option is not used. 

Alternatively, the cards for a group of elements may be omitted, 

in which case the data for the missing group is generated as 

follows: 

(1) All elements are assigned the same node k, strength 

type, interaction surface type, etc. as for the element 

preceding the missing group of elements. 

(2) The node numbers for each missing element are 

obtained by adding the specified node number increment to the 

node numbers of each preceding element. The node number 

increment is that specified for the element preceding the 

missing set of elements. 
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In the printout of the element data, generated data is 

prefixed by an asterisk. 
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APPENDIX B 

USER I S GUIDE 

THREE-DIMENSIONAL BEAM-COLUMN ELEMENT 

See Chapter 3 for description of element. Number of words of 

information per element = 254. 

The global y axis is assumed to be vertically upwards if the 

slaving feature is used. 

B1. CONTROL INFORMATION (10I5,6F5.0) - One card. 

Co1s. 5: 

6-10: 

11-15: 

16-20: 

21-25: 

26-30: 

31-50: 

51-55: 

Element group indicator. Punch 3 (to indicate that 
the group consists of inelastic beam-column elements). 

Number of elements in this group. 

Element number of the first element in this group. 
If blank or zero, assumed to be 1. 

Number of different element strength types (max 20). 
If blank or zero, assumed to be 1. 

Number of di fferent end eccentri ci ty types (max 15). 

Number of different initial force patterns (max 30). 

Blank 

Initial stiffness damping factor, So. If blank or 
zero, assumed to be equal to the system So value 
input in card C6 of Reference [lJ. 

56-60: Current tangent stiffness damping factor ST' If 
blank or zero, assumed to be equal to the system 
6T value input in card C6 of Reference [lJ. 

B2. STRENGTH TYPES - One set of three cards, as follows, for each 
strength type. 

B2(a). Bending Properties about Local y Axis (I5,5F10.0) - One card. 

Cols. 1-5: Strength type number, in sequence beginning with 1. 

6-15: Flexural stiffness (effective elastic EI value) Kl 
about y axis. See Section 3.1 Figure 3.2 for 
explanation. 

16-25: Flexural stiffness K2 about y axis. 
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26-35: Flexural stiffness K3 about y axis. 

36-45: Yield moment YSl about y axis. 

46-50: Yield moment YS2 about y axis. 

B2(b). Bending Properties about Local z Axis (5X,5F10.O) - One card. 

Cols. 1-5: Blank 

6-55: Bending stiffnesses and yield moments about z axis, 
in same sequence as in card 82(a). 

B2(c). Torsional Properties (5X,5F10.O) - One card. 

Cols. 1-5: Blank 

6-55: Torsional stiffnesses (effective GJ) and yield 
moments, in same sequence as in card B2(a). 

B2(d). Axial Properties (5X,6F10.0) - One card. 

Cols. 1-5: Blank 

6-55: Axial Stiffnesses (effective EA) and yield forces, in 
same sequence as in Section B2(a). 

55-65: Yield strength YS3 (input as a positive value). See 
Fig. 2.3. If blank or zero. assumed to be equal to 
YS1. This allows for different tension and 
compression yield forces. Note that YS4 can not be 
specified, because YS4-YS3 = YS2-YS1. 

B3. END ECCENTRICITIES (I5,6F10.O) - One card for each end eccentricity 
type. 

Cols. 1-5: 

6-15: 

16-25: 

26-35 : 

36-45: 

Omit if there are no end eccentricities. See 
Fig. 2.6 for explanation. All eccentricities 
are measured from the node to the element end, 
in global coordinates. --

End eccentricity type number, in sequence beginning 
with 1. 

X. , = X eccentricity at end i. 

Xj = X eccentricity at end j. 

y. = Y eccentricity at end i. , 
Yj = Y eccentricity at end j. 
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46-55: Z. = Z eccentricity at end i. 
1 

56-65: Zj = Z eccentricity at end j. 

84. INITIAL ELEMENT FORCE PATTERNS (I5,6Fl0.0) - One card for each 
initial force pattern. 

Omit if there are no initial forces. 
See Fig. 3.8 for force and moment 
direction. 

Cols. 1-5: Pattern number, in sequence beginning with 1. 

6-15: Initial moment, Myy at end i. 

16-25: Initial moment, M zz at end i. 

26-35: Initial moment, Myy at end j. 

36-45: Initial moment, Mzz at end j. 

46-55: Initial Axial force, F. 

56-65: Initial Torque, M . xx 

85. ELEMENT GENERATION COMMANDS (10I5,F10.0) - As many cards as needed 
to generate all elements 
in this group. 

Cards must be entered in order of increasing element number. Cards 
for the first and last element must be included. See Appendix A, 
Note Al for explanation of generation procedure. 

Cols. 1-5: Element number. or number of first element in a 
sequentially numbered series of elements to be 
generated by this card. 

6-10: Node number at element end i. 

11-15: Node number at element end j. 

16-20: Node number increment for element generation. If 
zero or blank, assumed to be 1. 

21-25: Number of a third node, k, lying the the xy plane, 
for definition of the local y axis orientation. Leave 
blank if y axis orientation is to be assigned 
automatically. See Note Bl for explanation of y axis 
orientation. 

26-30: Number of node (diaphragm node) to which end I is 
slaved, NSI. If not slaved, leave blank. 
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31-35: Number of node to which end j is slaved, NSJ. If 
element generation is used, nodes NSI and NSJ are 
the same for all elements in the series. For a 
description of the slaving procedure, see Section 2.8. 

36-40: Strength type number at element end i. 

41-45: Strength type number at element end j. 

46-50: End eccentricity type number. Leave blank or punch 
zero if there is no end eccentricity. 

51-55: Initial Force pattern number. Leave blank or punch 
zero if there are no initial forces. 

60: Interaction surface type. Punch 1 for elliptical 
yield surface, or 2 for parabolic yield surface. 

65: Geometric stiffness code. Leave blank or punch zero 
if geometric stiffness is not to be included. Punch 
1 if geometric stiffness is to be included. 

70: Time history output code. Leave blank or punch zero 
for no time history. Punch 1 if time history output 
is required, at the intervals specified in card D(a) 
of Reference [lJ. 

71-80: Stiffness reformulation angle tolerance, ex (in radians). 
See Section 3.3 for explanation. 

NOTE Bl. ELEMENT y AXIS ORIENTATION 

The element y axis is oriented in a plane passing through 

nodes i and j and a third node, k, specified in the element 

generation card, as shown in Fig. 3.1. If a third node is not 

specified, the element y axis is assumed to be in a plane which 

is parallel to the global Y axis and passes through nodes i 

and j (typically the vertical plane containing the element). 

In effect node k is given a very large positive Y coordinate. 

If the element is parallel to the global Y axis, then this 

default procedure does not work, and the element y axis is 

assumed to be parallel to the global X axis. 
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NOT ZERO 

FIG.2.8 PROCEDURE FOR COMPUTATION OF 
ACCUMULATED PLASTIC DEFORMATIONS 
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My, Mz' T and F denote bending moments about the element y and z axes, 
torque and axial force respectively. Subscript u denotes ultimate. 
Fut and Fuc are axial ultimate strengths in tension and compression. 
Note that the interaction surfaces above are for a particular value 
of torque, T. 

FIG. 3.3 INTERACTION SURFACES FOR ELASTO-PLASTIC 
COMPONENT 
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