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ABSTRACT

" This report presents the results of fourteen cyclic, in-plane
shear tests on fixed ended masonry piers having a height to widﬁh
ratié of 2. These fourteen tests form part of a test program con-
sisting of eighty single pier tests. Subsequent reports will pfesent
test results of the additional sixty-six tests. Each subsequent
report will be based on the height to width ratio of the piers.

The test setup Qas designed to simulate insofar as possible
the boundary conditions the piers would experience in a perforated
shear wall of a complete building. Each test specimen was a full
scale pier 80 inches high and 40 inches wide. Two types of masonry
construction were used; a hollow ciay brick type, that used an 8 inch
wide unit, and a double wythe grouted core clay brick, 10 inch thick
wall, thaﬁ consisted of two wythes 3% inches thick and a 3 inch grouted
core. The variables included in the investigation were the quantity
of reinforcement and the type of grouting.

The results are presented in the form of hysteresis envelopes,
graphs of stiffness degradation, energy dissipation and shear dis-
tortion, and tabulated data on the ultimate strength and hysteresis
indicators. A discussion of these test results is presented but no
definitive conclusions are offered. These will be included in a final

report at the completion of the eighty tests.
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1. INTRODUCTION

1.1. The Multistory Masonry Building Research Program

A multistory masonry building research program was initiated
at the Earthquake Engineering Research Center in September 1972, and
has continued for the past six years. After an extensive review of

the literature[3’4]*

dealing with resistance of masonry to earthquakes,
it was concluded that shear walls penetrated by numerous window open-
ings (Fig. 1.1) were the components of multistory masonry buildings
most frequently damaged in past earthquakes, and it was decided that
an experimental study of the seismic behavior of such components was
necessary. |

Two structural compongnts can be identified in the shear wall
of Fig. 1.1, the piers and the spandrelbeams. In order to study the
pier behavior, a testing fixture was designed to subject typical
full-scale double pier specimens to combined static vertical (gravity)
and cyclic lateral (seismic) loads (Fig. 1.2). The results obtained
from seventeen such specimens have been reported by Mayes et algs].
These results show significant variations in the pier behavior with
various test parameters: type of grouting, types of reinforcement,
rate of loading, etc. The results are no£ conclusive and demonstrate
the need for more extensive tests to establish definite parametric
relationships.

The cost of the double pier tests, both in money and time,

precluded carrying out by this procedure the extensive parametric

* References are arranged in alphabetical order of the authors' names,

and are listed at the end of the text.



variations that are needed, and consequently, a single pier test system
was designed which greatly simplified the investigation (Fig. 1.3).

A seiies of eighty single pier tests was programmed, which considers
the following test parameters: type of masonry construction, height to
width ratio of the piers, type of grouting, and amount and distribution
of both vertical and horizontal steel reinforcement. The present re-
port dealé with the experimental results of specimens with a height to

width ratio of 2.

1.2 Objectives aqd chpe of the Single'Pier Teét Program

In determining the strength of masonry piers and panels, the
first step is to evaluate the mode of failure. Because most failures
in past earthquakes have been characterized by diagonal cracks, many
reseafch programs have concentrated on this type of failure mechanism.

[1] [2]

, Greenley and Cattaneo , and others

[12]

Test techniques used by Blume
induce the diagonal tension or shear mode of failure. . Scrivener

[10]

Meli[9], Williams[l3] and Priestley and Bridgeman recognized that
there are two possible modes of failure for cantilever piers. In
addition to the shear or diagonal tension mode, they recognized that

for certain piers, a flexural failure could occur. This mechanism is
characterized by yielding of the tension steel of the wall, followed by
a secondary failure at the compressive toe, with associated buckling

of the reinforcement once confinement is lost. Meli[g] described the
flexural failure as similar to that of an under-reinforced concrete
beam; i.e., extensive flexural cracking and strength limited by yielding
of the reinforcement,with failure finally due either to crushing of the

compressive corner or to rupture of the extreme bars.

Because the double pier tests were the first fixed ended piers



to be tested cyclically, the objective of those tests was to determine
the effect of varioué parameters and compare the results with those
already known for cantile&er piers. Both the shear and flexural

modes of failure were included in that investigation.

One of the main objectives of the single pier test program was
to investigate thoroughly the effects of different parameters in the
shear mode of failure. It was evident from the double pier test pro-
gram that the flexural mode of failure in a fixed-ended pier has
desirable inelastic characteristics, although these are not as desir-

[11]

able as those obtained by Priestley in cantilever piers. Further-
more, it was recognized that for fixed-ended piers, with height to
width ratios commonly found in multistory buildings, the amount of
horizontal reinforcement required to force a flexural mode of failure
is substantially greater thaﬁ required by current codes. Therefore,
it was decided to investigate the effects of lesser amounts of hori-
zontal reinforcement on the shear mode of failure to determine if
desirable inelastic behavior could be obtained.

The fourteen tests reported herein are a part of a total program
of eighty single pier tests; a matrix characterizing the first sixty-
three tests is shown in Table 1.1. The parameters for the remainder
of the tests (seventeen) will be selected after an evaluation of these
sixty-three. The test parameters, other than the type of construction
and height to width ratio, include the amount of reinforcement and the
effect of partial grouting. Hollow concrete block piers having height
to width ratio of 2 were not included in the single pier test program
because such piers were investigated in the seventeen double pier tests.

This report presents the results for piers with a height to

width ratio of 2,of which nine tests were performed on hollow clay brick



specimens (HCBR) and five on double wythe grouted core clay brick
specimens (CBRC). Two subsequent reports will present the results
obtained from the single pier specimens with height to width ratios of
1 and 0.5. The results on the series of seventeen specimens which
will cofiplete the proposed research program will be presented in a

separate report.
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2. TEST SPECIMENS

2.1 Design and Construction of Specimens

The overall dimensions of the test specimens discussed here are
shown in Fig. 2.1. They are the same for all fourteen piers except
for the thickness, which is 7-3/8 inches for the hollow clay brick
piers (HCBR) and 10 inches for the double wythe grouted core clay
brick piers (CBRC).

The HCBR panels were constructed from standard two-core hollow
clay bricks, nominally 8 inches wide x 4 inches high x 12 inches long -
as shown in Fig. 2.3(a). The cored area of each brick is approximately
57.4 square inches and the ratio of net to gross area is 67%.

The CBRC piers were constructed from two wythes of "solid" clay
bricks nominélly 4 inches wide x 4 inches high x 12 inches long as shown
in Fig. 2.3(b). The grouted space between the wythes was 3 inches wide
and was filled after the steel reinforcement had been placed in posi-
tion. The bricks have a core (hollow) area slightly less than 25% of
the gross area. The Uniform Building Code definition of a "solid brick"
is one with 25% or less coring.

The piers were constructed on 0.75 inch thick steel plates
as shown in Fig. 2.2. A similar plate was added on top of the pier
after the grout was poured. Both plates had holes to permit anchorage
of the vertical steel reinforcement and keys to provide an adequate
shear transfer between the masonry pier and the steel plate. The
plates also had welded bolts and holes to anchor the pier to the test
rié.

Six of the nine HCBR piers were fully grouted. The other three
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were partially grouted. Partial grouting consists of grouting the
cores containing the vertical reinforcement and the bond beams con-
taining the horiéontal reinforcement. All the CBRC piers had the 3
inch core between the wythes fully grouted and have been termed "solid
grouted”.

The series of tests was planned to determine the effect of the
quantity’of steel reinforcement and of partial grouting on the strength
ana deformation properties of the piers, considering combinations of
steel and grouting as shown in Table 2.1. Details of the reinforcing
bar arrangement are shown in Fig. 2.4(a) for the HCBR piers and in
Fig. 2.4(b) for the CBRC piers. The actual position of the vertical
reinforcement is indicated in Fig. 2.1. When horizontal reinforcement
was used, the bars were evenly distributed over the height of the pier.

The HCBR piers were tested six months after construction. The
first of the CBRC piers (No. 5) was tested 42 days, the last (No. 1)

70 days after the grout was poured.

2.2 Material Properties

Table 2.2 shows the mechanical properties of the materials used
in the construction of the test specimens. The specimens used to
determine the material properties are shown in Fig. 2.3(a) and 2.3(b).

The tests of the single masonry units followed the ASTM C67-73
Specification[sl and were based on five samples for each test.

The joint mortar was specified as standard ASTM Type M (i.e., 1
Cement: 1/4 Lime: 2 1/4 ~ 3 Sand). The grout was specified as 1 Cement:
3 sand: 2G, where G refers to 10 mm maximum size local gravel. Because

the specimens were not constructed or grouted at the same time, the

mortar and grout strength varied according to normal workmanship. A
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minimum of four samples of mortar or of both mortar and grout was
taken from each batch used during construction.

ASTM A6l5 Grade 40 steel was specified for both the vertical
and horizontal steel reinforcement. Three samples of each bar size
were tested to determine the properties listed in Table 2.2.

Six prisms for uniaxial compression tests and three square
panels for diagonal tension tests were constructed from the same mortar
and grout used in each set of wall panels. Three of the six prisms had
a height to thickness ratio of 5. The other three had a height to
thickness ratio of 1.5 for the HCBR piers and equal to 2.0 for the CBRC
piers. All prism tests were performed at a loading rate of 100,000
l1b/min. The compressive strengths are shown in Table 2.2.

The compression test of the prisms having a height to thickness
ratio of 5 was also used to determine the moduius of elasticity of the
HCBR and the CBRC types of masonry (Fig. 2.5). The axial deformations
were measured with mechanical gages attached to both sides of the
prism, over a length of 20 inches. The readings were averaged and the
modulus of elasticity computed; results are shown in Table 2.3(a) for
the HCBR and Table 2.3(b) for the CBRC type of masonry.

The square panels were tested as shown in Fig. 2.6 at a loading
rate of 20,000 1lb/min. The ultimate load'for the square panel tests
is also shown in Table 2.2.

The mortar, grout, prism and square panel samples were cured
under the same normal atmospheric conditions as the piers; also the
prism and square panel tests were performed during the tests of the

corresponding piers.
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TABLE 2.2

MATERTAL PROPERTIES

(Average values. Number in parenthesis indicate the
standard deviation as percent of average value)

Only fully grouted specimens considered

HCBR-21 CBRC-21
Masonry unit gross 5816 9422
compressive strength (psi) (6%) (4%)
Masonry unit net 466 303
tensile strength (psi) (19%) (24%)
Mortar compressive 4380 4438
strength (psi) (10%) (10%)
Grout compressive 5175 4088
strength (psi) (17%) (19%)
*
Prism (2:1) compressive( ) 4806 3384
strength (psi) (3%) (5%)
*
Prism (5:1) compressive( ) 4502 3315
strength (psi) (8%) (5%)
*
Ultimate load of( ) 192 197
square panel (kip) (8%) (9%)
. . 47.3 47.3
Yield strength (ksi
gth (ksi) (1%) (1%)
=
@ . . 81.0 81.0
Ultimate st th (k
o E streng {ksi) (2%) (2%)
00
S
g 8 Modulus of elasticity (ksi) 30580 30580
=]
>
$ | Yield strain (in/in) 0.0017 0.0017
Strain hardening strain (in/in) 0.0101 0.0101
. . 49.7 49.7
Yield strength {(ksi) (3%) (3%)
&
— @ . . 75.4 75.4
3 5 Ultimate strength (ksi) (1) (1%)
S O
o
ni Modulus of elasticity (ksi) 29720 29720
0 A
= $ | vield strain (in/in) 0.00175 0.00175
{ Strain hardening strain (in/in) 0.0126 0.0126
(*)
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TABLE 2.3(a)

MODULUS OF ELASTICITY MEASUREMENTS FOR HOLLOW CLAY BRICK WALLS
(Area of prism = 85.73 in2)

LOAD P STRESS O Ao STRAIN ¢ Ae E = %g
(kip) (ksi) (ksi) (in/in) (in/in) (ksi)
SPECIMEN 1. Gage length = 19.6 in El = 2695 ksi
50 0.583 0 217 x10% | o —_
100 1.166 0.583 | 4.08 1.01 x 102 3054
150 1.750 1.166 | 6.62 4.45 2621
200 2.333 1.750 | 9.43 7.26 2410
SPECIMEN 2. Gage length = 19.5 in B, = 2362 ksi
50 0.583 0 2.18 x 1074 | o —
100 1.166 0.583 | 4.62 2.44 x 102 2390
150 1.750 1.166 | 7.18 5.00 2333
SPECIMEN 3. Gage length = 20.1 in E3 = 2285 ksi
50 0.583 0 2.11 x 102 | o —
100 1.166 0.583 | 4.48 2.37 x 102 2461
150 1.750 1.166 | 7.34 5.23 2230
200 2.333 1.750 {10.20 8.09 2163

Average value for HCBR piers: E = 2450 ksi
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TABLE 2.3(b)

MODULUS OF ELASTICITY MEASUREMENTS FOR GROUTED CORE BRICK WALLS
(Area of prism = 116.25 in<)

LOAD P | STRESS © Ac STRAIN € Ae E = %%
(kip) (ksi) (ksi) (in/in) (in/in) | (ksi)
SPECIMEN 1. Gage length = 19.6 in El = 2248 ksi
50 0.430 0 1.78x 10| o
75 0.645 0.215| 2.80 1.02 x 1072 2108
100 0.860 0.430 | 3.82 2.04 2108
125 1.075 0.645| 5.10 3.32 1943
150 1.290 0.860 | 5.61 3.83 2246
175 1.505 1.075 | 5.99 4.21 2554
200 1.720 1.290 | 6.88 5.10 2530
SPECIMEN 2. Gage length = 20.0 in E2 = 1391 ksi
50 0.430 0 2.00 x 104 | o
75 0.645 0.215 | 3.50 1.50 x 1074 1434
100 0.860 0.430 | 4.88 2.88 1493
125 1.075 0.645 | 6.00 4.00 1613
150 1.290 0.860 | 8.63 6.63 1297
175 1.505 1.075 | 10.50 8.50 1265
200 1.720 1.290 | 12.38 10.38 1243
SPECIMEN 3. Gage length = 19.1 in E3 = 1535 ksi
50 0.430 0 2.24 x 107 | o
75 0.645 0.215 | 3.68 1.44 x 107% 1493
100 0.860 0.430 | 4.88 2.64 1629
125 1.075 0.645 | 6.19 3.95 1633
150 1.290 0.860 | 7.63 5.39 1596
175 1.505 1.075 | 9.73 7.49 1436
200 1.720 1.290 {11.29 9.05 1426

Average value for CBRC piers: E = 1720 ksi
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FIG. 2.2 CONSTRUCTION OF TEST SPECIMENS
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3. TEST EQUIPMENT AND PROCEDURE

3.1 Test Equipment

Test equipment shown in Figs. 3.1 and 3.2 permits lateral loads
to be applied in the plane of the piers in a manner similar to which a
floor diaphragm would load the piers during earthquake excitation. It
consists of two twenty-feet high, heavily-braced reaction frames sup-
porting a pair of hydraulic actuators which act horizontally; a
mechanism capable of applying vertical bearing loads similar to the
gravity loads experienced by the piers in an actual structure; a
bottom beam composed of a concrete base and a wide flange steel beam
which provides anchorage to the test floor and suitable connection
holes to the bottom plate of the specimen; and a top beam fabricated
from two wide flange, steel beams as shown in Fig. 3.2. The top and
bottom beams simulate the action of the spandrel beams in actual
masonry construction; they are connected by two steel columns located
10 feet 7 inches apart, which prevent rotation of the top beam and thus
provide approximate fixed-fixed end conditions during the test.

The maximum dynamic load which may be developed by each of the
horizontal actuators is 75 kips, using an hydraulic pressure of 3000 psi.
The maximum stroke is * 6 inches, the maximum piston velocity is
26 in/sec and the flow capacity of the servovalves is 200 gpm. Either
displacement or load can be controlled with these actuators. Their
operational capabilities are limited by the above mentioned force
capacity, and also by a frequency limitation of about 5 Hz. The
actuator control consoles are shown in Fig. 3.5.

A vertical load up to 160 kips can be applied to the pier through

the springs and rollers shown in Fig. 3.2. The Thomson Dual Roundway
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Bearings connecting the springs to the top of the panel allow the panel
to move freely with minimal friction force. The coefficient of friction
of bearings is purported to be 0.007.

An additional vertical, compressive load results from the
characteristics of this test setup. As significant lateral displace-
ments are imposed on the top beam by the hydraulic actuators, the con-
straint provided by the side columns forces the top beam to move in a
circular arc. The vertical component of this motion is opposed by the
axial stiffness of the pier, resulting in a compressive load being
applied to the pier. The significance of this additional, cyclic
varying compressive load on the test results is discussed in Chapter 5.

Each pier was constructed on a 0.75 inch thick steel plate and
had a similar plate on top, as discussed in Section 2.1. This allowed
the piers to be moved into place before each test and bolted to the
bottom and top steel beams. Prior to the bolting process, hydrostone
was placed between the surfaces of the plates and beam flanges as well

as between the top plate and the top brick course of the pier.

3.2 Loading Sequence

Each pier was subjected to a series of displacement controlled,
in-plane shear loads. The full sequence of loading consisted of sets
of three sinusoidal cycles of loading at a specified actuator displace-
ment amplitude. The specified amplitude was gradually increased; the
full loading sequence is given in Table 3.1. After each stage, (one
set of three sinusoidal displacements at the same amplitude), the walls
were visually inspected and the crack pattern identified and photo-
graphed. The sinusoidal cycles were applied at a frequency of 0.02

cycles per second throughout the test program.



The test of each pier had a duration of 2% to 3 hours. The test
was usually terminated when the shear strength of the pier had dropped
below one third of the maximum shear strength. At this stage the pier
was generally not capable of supporting significant vertical loads.

All of the tests were carried out under a constant primary bearing
stress of 60 psi. Additional cyclic vertical compressive loads were
developed during the test, as indicated in Section 3.1, and discussed
further in the following chapters.

Partially grouted piers were subjected to maximum input displace-
ments of 0.60 inch to 0.70 inch. Fully grouted pier tests failed at
input displacements ranging from 1.00 inch to 2.00 inches.

Because of the flexibility of the reaction frame and other load
transferring devices, the lateral displacement actually experienced by
the pier was always less than the actuator input displacement, this
difference being smaller towards the end of the test when the pier
stiffness had attained its lowest values. There was also a slight
difference between the maximum loads developed during the push and pull
half cycles due to the different type of stress placed on the bolting
system and to the different pier stiffness associated with non-symmetric

crack patterns.

3.3 Instrumentation

The total horizontal load applied by the hydraulic actuators,
as well as the vertical forces developed by the side columns, were
measured using pre-calibrated load cells. Each pier was instrumented
as indicated in Fig. 3.3.

H, and

DCDT's (direct current differential transformers) Hl, H2, 3

I-l4 were attached to an external reference frame and were intended to
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measure the lateral deformation of the pier during each sequence of
loading. The difference between Hl and H4 was used to indicate the

relative lateral deflection of each pier. DCDT's Dl’ D D,, and D4

2" =3
measured the changes in distance between points along the diagonals of
the pier and were used to indicate the shear distortion of the pier as
defined in Fig. 3.4. DCDT's Vl and V2 were also attached to the
external reference frame and measured the rotation at the top of the
pier. This provided a measurement of how well the side columns pre-
vented the rotation of the top section of the pier.

Finally, strain gages were attached by epoxy glue to the
vertical reinforcing bars at the top and bottom sections of the pier,

in order to measure the steel strain at the sections that were expected

to crack first during a test.

3.4 Data Acquisition and Data Processing

Two different data acquisition systems were used during the test
program. The main one consisted of a high speed scanner able to handle
up to 25 channels of information, and the corresponding tape recording
system (Fig. 3.5). All the data were acquired and stored on tape after
being scanned at a rate of 1 point per second per channel. (No higher
rate was necessary because of the low frequency used to run the test).
Three computer programs were used to read the original tape data, to
input the calibration values and geometrical data of each pier and to
reduce the data to their final presentation in computer plots.

The second data acquisition system was used to monitor the
progress of the test and to act as a back-up system in case of any
failure in the main system. It consisted of a direct writing

oscillograph (visicorder) and was used only to record the most important
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data; namely, forces at the actuators and side columns, actuator stroke
and lateral displacement of the pier. This second data acquisition
system proved to be extremely useful in detecting occasional malfunc-
tions of the actuators or the instruments attached to the piers and
provided excellent visualization of the behavior of the piers as the

test progressed.
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TABLE 3.1
LOADING SEQUENCE

INPUT DISPLACEMENT INPUT DISPLACEMENT
STAGE® AMPLITUDE STAGE™ AMPLITUDE

(in) (in)
I 0.02 14 0.60
2 0.04 15 0.70
3 0.06 16 0.80
4 0.08 i 0.90
18 1.00
5 @2 19 1.10
6 0.16 20 1.20
7 0.20 21 1...30
22 1.40
8 0.25 23 1.50
9 0.30 24 1.60
10 0.35 25 170
i I 0.40 26 1.80
12 0.45 27 1.90
13 0.50 28 2.00

*
Each stage consists of three sinusoidal cycles at the amplitude

shown
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4. TEST RESULTS

4.1 Introduction

The experimental results of the fourteen piers having a height
to width ratio of 2 are presented in the form of hysteresis loops,
hysteresis envelopes, stiffness degradation properties, energy
dissipation characteristics, and relative shear distortion. In
addition, a sequence of photographs of the successive crack patterns
is given for each test. An explanation of how each of the graphs was
obtained and the meaning of the terms used above is included in Section
4.3. The complete presentation of the figures and photographs has been
arranged by test numbers and is included in Appendix A. 1In order to
indicate the loading stage at which major diagonal cracking occurred,
a black dot has been placed at the appropriate location on all of the
figures and photographs in Appendix A.

In addition, data on the ultimate strength and hysteresis
indicators for each test are listed in Table 4.1. A discussion of the
modes of failure observed follows in Section 4.2 and a discussion of

the test results is presented in Chapter 5.

4.2 Modes of Failure

Most of the piers (HCBR-21-2, 4, 6, 8 and 9) displayed a com-
[6]

bined shear and flexural mode of failure (Fig. 4.la). This is
characterized by early flexural cracks at the toes of the pier
(horizontal cracks) and later augmented with diagonal cracks that
extend through only a partial zone on the pier. As the load increased

the vertical steel began to yield and the corners of the pier developed

high compressive stresses. The additional compressive load induced by
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the test setup with the increase in lateral deflection allowed the
critical moment sections (top and bottom of the piers) to increase
their flexural moment capacities, thus enabling the horizontal load to
increase while the vertical reinforcement substained further yield
deformation and the compressive toe showed evidence of crushing. This
process continued until the shear strength of the pier was attained and
full diagonal cracks developed. The diagonal tension or shear failure
generally coincided with the ultimate strength of the pier and was
followed by a strength degradation characterized by the opening of
diagonal cracks and the inability of the walls to maintain a serviceable
condition.

The partially grouted piers (HCBR-21-3, 5 and 7) showed a similar
behavior to that described above, the only difference being a lower
shear load capacity than that of the fully grouted piers. As a con-
sequence of this fact, the vertical reinforcement showed only a mild
yield deformation (pier No. 5) or no yielding at all (piers No. 3 and 7)
at the time the ultimate shear strength was attained.

The solid grouted core clay brick piers (CBRC-21-2, 3, 4 and 5)
followed the same type of failure as the fully grouted hollow clay
brick walls, showing a more drastic strength degradation after the shear
failure, characterized by a split between the grouted core and the brick
wythe, as shown in Fig. 4.1b.

Two of the specimens (HCBR-21-1 and CBRC-21-1) had no steel rein-
forcement at all. HCBR-21-1 showed a mode of failure similar to the
fully grouted hollow clay brick piers. However, it is clear that the
additional vertical load imposed by the columns had a significant effect

in that it prevented sliding and rotation of the top and bottom of the
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pier, thus permitting the horizontal load to increase until a shear
failure was produced. Photographs in Fig. A.1 (Appendix A) show that
until stage 16 the flexural type of cracks was confined to the top and
bottom courses of the pier with no diagonal cracks at all. Pier
CBRC-21-1 showed a similar behavior except that in this case crushing

at the toes of the pier became so severe that the shear strength was

not attained. This mode of failure is illustrated in Fig. 4.lc and has
been termed as a flexural mode of failure, although there is no vertical
reinforcement and the compressive failure of the toes was not due to

substantial yielding of the vertical steel in tension.

4.3 Load-Displacement Characteristics

As mentioned above, Table 4.1 summarizes the strength and
hysteresis characteristics of the piers and Appendix A presents the
test results for each of the specimens. 1In oxrder to indicate the
loading stage at which major diagonal cracking occurred, a black dot
has been placed at the appropriate location on all figures and photo-
graphs in Appendix A.

The details of the derivation of each of the figures in Appendix

A are discussed in the following sections.

a) Hysteresis Loops. (Shear Stress vs. Lateral Deflection Diagram).
This graph was obtained by plotting the gross shear stress
against the relative lateral displacement of the pier for the
duration of the test. The gross shear stress is computed by
dividing the measured horizontal force by the gross cross section
area of the pier, (the thickness multiplied by the width), as
indicated in Table 2.1 (310 in’ for the HCBR piers and 420 in> for
the CBRC piers). The relative lateral displacement is computed

from the difference between the lateral deflections at the top and
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bottom of the pier (Hl - H, as defined in Fig. 3.3), for the CBRC

4
piers; in the case of the HCBR piers, only the displacement at the
top of the pier is considered because of problems with the measure-
ment of H4. The hysteresis loops are not smooth lines because of
the electronic noise associated with the * 2.0 inch DCDT used to
record the displacement at the top of the pier (Hl). This problem

was solved for future tests by using a filter that eliminates the

electronic noise.

Hysteresis Envelopes

This plot was cobtained from the hysteresis loops by averaging
the absolute values of the three extreme positive and the three
extreme negative forces (or gross shear stresses) and the corres-
ponding absolute values of the relative lateral displacement, for
each stage of the test at a given input displacement. One point on
the hysteresis envelope was obtained for each stage of 3 cycles of
loading. The average lateral displacement obtained in the hysteresis
envelope is always less than the input displacement, as explained in
Section 3.2.

The black dot indicated on this graph generally corresponds to
the stage at which the diagonal crack occurred, as observed in the
corresponding photographs. This shear crack usually developed
during the first of the three cycles and coincided with the maximum
strength of the pier. Nevertheless, the black dot is almost always
below and following the peak of the curve. This is due to the fact
that the load usually drops in the cycles following the one where
the shear crack occurs and the average maximum load computed for

this stage is smaller than the average value for the previous stage.
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The maximum strength obtained from the hysteresis envelope is
indicated in Table 4.1 under "average ultimate shear force or
stress". The "peak ultimate shear force or stress" values that
appear in Table 4.1 were obtained from the maximum force (stress)
developed in any one cycle of loading. The average value is always
less than the peak value, varying from 85% to 95% of the peak value.
The compressive load at ultimate indicated in Table 4.1 corresponds
to the maximum axial compressive load developed during each of the
tests. This maximum value always occurred at the same time as the
peak ultimate shear force, and is computed from the readings of the
load cells located in the vertical columns plus the bearing load
applied prior to each test (Table 2.1).

The last two columns of Table 4.1 correspond to hysteresis
indicators obtained from the hysteresis envelopes and defined in
Fig. 4.2. The level of 0.70 Pu used to define these indicators,
where Pu is the maximum strength indicated by the hysteresis
envelope, was arbitrarily chosen. Indicator hl tells how much the
pier has deviated from its initial, theoretical stiffness, and
indicator d2 gives an indication of the deformation capability of
the pier. The initial theoretical stiffness of the pier was com-
puted assuming that the piers were fixed against rotation at both
the top and bottom. The moment of inertia was calculated using the
gross, uncracked section, neglecting the effect of steel reinforce-
ment; the modulus of elasticity was taken from the measured values
(Tables 2.3a and 2.3b) and the Poisson's ratio was assumed to be
0.15. Further discussion on the correlation of the theoretical

stiffness and the measured stiffness is presented in Chapter 5.
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Stiffness Degradation

A cyclic definition of the stiffness, as indicated in Fig. 4.3,
was used to measure the stiffness of the piers throughout each
test. The three cyclic stiffness values obtained from each stage
of loading were averaged and plotted against the average gross

shear stress and the relative lateral displacement.

Energy Dissipation

The energy dissipated per cycle of loading was expressed in
terms of a dimensionless ratio EDT. EDT is defined as the ratio of
the energy dissipated to the total stored strain energy per cycle
and is diagrammatically shown in Fig. 4.3. The three EDT values
obtained for each stage of loading were averaged and plotted

against the average lateral displacement.

Shear Distortion

The values of the shear distortion Gs were calculated as indicated
in Fig. 3.4. The absolute values of 65 corresponding to the three
extreme positive and three extreme negative forces were averaged
for each stage of the test, and plotted against the respective
average relative lateral displacement, (total deformation of the
pier), obtained from the hysteresis envelope. The plot depicts how
much of the total deformation of the pier is due to shear distortion
as defined in Fig. 3.4. Since the instruments used to measure the
diagonal deformations were usually removed three or four stages
before the end of the tests, the number of stages used to plot this
graph is usually smaller than the number used for the previous

graphs.
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(a) COMBINED SHEAR AND (b) CORE SPLIT IN GROUTED
FLEXURAL YIELDING CORE BRICK WALLS

(c) FLEXURAL

FIG. 4.1 MODES OF FAILURE
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DEFINITION OF HYSTERESIS INDICATORS hl AND d2

COMPUTATION OF INITIAL STIFFNESS KO

L = height of pier

E = modulus of elasticity

3
K;I = i%ﬁf = o I ﬁé G = 57%1‘3 shear modulus
D = width of pier
t = thickness of pier
SPECIMEN il < = i A 5 2 v B
(in): (in)| (in) (in ™)/ (in ) (Ksi) (kip/in)
HCRB-21

. 80 42 | 7.375 | 45533|309.75 2450 | 0.15 1485
Full grouting

*
HCBR—Zl( )

i . 80 42 | 7.375 | 33864(170.84 2450 ( 0.15 960
Partial grouting

CERC-21

. - 80 42 10.0 | 61740(420.0 1720 | 0.15 1414
Solid grouting

(*) Bedded plus grouted cell area considered

FIG. 4.2 DEFINITION OF HYSTERESIS INDICATORS AND COMPUTATION OF
INITIAL STIFFNESS
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5. DISCUSSION OF TEST RESULTS

5.1 Introduction

The test results presented in Appendix A and Table 4.1 are
discussed in this chapter with reference to the two parameters that
were varied during these fourteen tests, namely, the amount of horizon-
tal reinforcement and the type of grouting. Other parameters, such as
the initial bearing stress and the cyclic frequency, which were varied

[6], were held constant during

in the first seventeen double pier tests
these fourteen tests. It is also important to note that the results
presented herein were obtained from a particular loading sequence. The
choice of this loading sequence has been discussed previously[el. Other
types of load sequences are used in some of the additional sixty-six
tests that complete the single pier test program.

In considering the results of these fourteen tests on 2 to 1
piers it is important to realize that conclusions which appear valid
for these tests may not hold for tests on piers with other height to
width ratios. The complexity of the problem requires the completion
of the test program (eighty tests) before valid conclusions concerning
an adequate design of masonry structural elements can be made.

Finally, it is important to recall that all of the fourteen
piers except CBRC-21-1 showed a shear mode of failure combined with
flexural yielding of the vertical reinforcement. The ultimate strength

always occurred when diagonal cracks developed in both directions of

horizontal loading over the full height of the pier.
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5.2 Ultimate Strength

5.2.1 Effect of Horizontal Reinforcement

In the hollow clay brick tests (HCBR-21) no increase in the
ultimate shear strength of the fully grouted piers was observed when
the amount of horizontal reinforcement was increased over three No. 5
steel bars, (a reinforcement ratio of 0.0030). Piers with three, four
or five No. 5 bars exhibited an average ultimate shear stress of the
order of 315 psi (Table 4.1). The ultimate strength decreased from
this value by 13% and 35% as the amount of horizontal reinforcement was
reduced to two No. 5 bars (reinforcement ratio of 0.0020) and to none,
respectively. This increase in the ultimate shear strength with
increasing amounts of horizontal reinforcement (up to a certain point)
was not observed in the double wythe, grouted core clay brick piers
(CBRC-21). In this case, the piers attained an average ultimate shear
stress of the order of 250 psi (Table 4.1), independent of the amount

of horizontal reinforcement.

5.2.2 Effect of Partial Grouting

The ultimate shear stress of partially grouted piers, computed
using net areas, was of the order of 90% of the stress of comparable
fully grouted piers (Table 4.1). It should be noted that the partially
grouted piers required much less horizontal load to develop the ultimate
shear strength, and as a result practically no yielding of the vertical
reinforcement occurred. Correspondingly, the amount of compressive
load developed at ultimate was considerably smaller than that for

the tests of the fully grouted piers.
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5.3 1Inelastic Behavior

The hysteresis envelopes (average maximum force-deflection
curves) are used as a frame of reference to discuss the inelastic
behavior of the piers. The question as to what can be considered a
desirable hysteresis envelope has been discussed in reference [6]
pp. 68-70 in qualitative terms. It is appropriate to recall that the
usefulness of the hysteresis envelopes is that they provide visual
comparisons of ductility and ultimate strength; however, they give no
indication of the energy dissipated per cycle, and consideration of
this parameter in conjunction with the ultimate strength, the defor-
mation capacity and a comparison of crack patterns at equal displacements
is necessary to evaluate completely the inelastic characteristics of
the pier behavior.

The problem of making mathematical models to predict the
hysteretic behavior revealed in the data has recently been explored.
Such a model includes not only the hysteresis loops themselves, but
also the hysteresis envelope.

In order to quantify the deformation capabilities of the piers,
hysteresis indicators, defined in Section 4.3, are listed in the last

two columns of Table 4.1.

5.3.1 Effect of Horizontal Reinforcement

Figures 5.1 and 5.2 show the changes in the hysteresis envelopes
as the amount of horizontal reinforcement varies. The observations
of Section 5.2 with respect to ultimate strength also are evident in
these figures. 1In addition the form of the hysteresis envelopes of
the HCBR piers improves as the amount of horizontal reinforcement

increases from none to three No. 5 bars. However, there is no
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significant difference in the hysteresis envelopes of the piers as the
horizontal reinforcement increases from three to four to five No. 5
reinforcing bars (Fig. 5.1). Hysteresis indicator hl has a constant
value around 7.0 and 62 increases from 0.61 inch for no horizontal
reinforcement to 0.95 inch for three, four or five No. 5 steel bars.
In the case of the CBRC piers, there is no significant difference in
the hysteresis envelopes as the amount of horizontal reinforcement
increases from none to five No. 5 horizontal reinforcing bars (Fig.

5.2). Hysteresis indicator h., has a constant value around 6.0 and d2

2
shows a decrease (from 1.0 inch to 0.68 inch) as the amount of
horizontal reinforcement is increased (from none to five No. 5 steel
bars). Therefore, the use of increasing amounts of horizontal rein-
forcement has a slight detrimental effect on the deformation
capabilities of the CBRC piers.

A heavy dot has been drawn on all figures at the loading stage
where the major diagonal crack first developed. It can be observed
that all the CBRC piers, as well as the HCBR piers with horizontal
reinforcement less than three No. 5 bars, have a sharp degradation of
strength following the formation of major diagonal cracking. As the
horizontal reinforcement of the HCBR piers is increased to three No. 5
bars or more, the strength degradation is less pronounced after the
formation of the major diagonal cracks.

The piers with no vertical or horizontal reinforcement (HCBR-21-1
and CBR-21-1) have not been included in the above discussion and their
characteristics are not compared with others. It was clear to the

investigators that the behavior of the nonreinforced piers was

significantly influenced by the presence of the additional compressive
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axial load imposed by the columns and discussed in Section 4.2.
Accordingly, these tests will be repeated in a later sequence where
the test setup will be modified to exclude this increase in com-

pressive load.

5.3.2 Effect of Partial Grouting

Figure 5.3 shows the comparison of hysteresis envelopes of fully
and partially grouted HCBR piers based on gross shear stress. Figure
5.4 shows the same comparison using the net shear stress (net area
based on bedded plus grouted cell area). Although the effect of
partial grouting was not significant as far as ultimate strength was
concerned, it definitely reduced the deformational capability of the
piers; the hysteresis envelopes of the fully grouted piers have a much

more desirable shape. The hysteresis indicator 4. of the partially

2
grouted piers dropped to between 0.30 inch and 0.40 inch. The post
cracking behavior of the partially grouted piers displayed more

brittle characteristics compared with that of the corresponding fully

grouted piers.

5.4 sStiffness Degradation

It is apparent from the test results that the piers suffer sub-
stantial stiffness degradation when subjected to gradually increasing
lateral displacements. Table 5.1 summarizes this effect and shows two
types of results. The first is a comparison between the theoretical
initial stiffness and the maximum stiffness measured during the early
stages of the test. The theoretical initial stiffness has been com-
puted in Fig. 4.2 and the assumptions used are indicated in Section
4.3(b). The measured value is always smaller than the theoretical

value and it ranges from 32% to 74% of the theoretical value for the
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HCBR fully grouted piers, from 43% to 75% for the HCBR partially
grouted piers, and from 37% to 79% for the CBRC piers. These large
differences in the two values are attributed to the flexibility of the
boundary conditions at small lateral displacements as discussed in
Section 5.8. Unlike the double pier test results[7}, the assumed
fixed-fixed rotation conditions at the top and bottom of the pier do
not appear to be achieved physically for small displacements and hence
the discrepancy in the calculated and measured values.

The second set of results presented in Table 5.1 is a comparison
of the measured stiffnesses of all piers at applied shear stresses of
50 psi and 100 psi, and the percentage decreases in stiffness at these
stress levels with respect to the maximum initial measured value. The
applied stress level of 50 psi generally corresponds to the shear
stress at which the first visible cracks occur (usually flexural cracks).
Because the maximum initial stiffness developed at a shear stress close

to 50 psi for some of the tests, the percentage of stiffness degradation

is more uniform for the 100 psi level than for the 50 psi level.

5.4.1 Effect of Horizontal Reinforcement

Figures 5.5 and 5.6 present the stiffness degradation curves
for different amounts of horizontal reinforcement for HCBR and CBRC
piers, respectively. It can be seen from the figures that there
appears to be no relationship between the amount of horizontal rein-
forcement and the rate at which the stiffness degrades. Specimens 4
and 6 show a lower stiffness degradation with respect to the initial
measured stiffness. However, these results are attributed to the
particularly flexible boundary conditions during the early stages of
the test, which produced very low initial measured stiffness values

(Table 5.1).
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5.4.2 Effect of Partial Grouting

Figure 5.7 shows a comparison of the stiffness degradation
curves for fully and partially grouted HCBR piers based on gross areas.
Figure 5.8 is similar but uses the net area to compute the shear
stress of the partially grouted piers. The trend of these results for
both types of grouting is similar, and so it appears that degradation
is independent of the type of grouting. However, it must be noted
that these results were obtained under displacement increments that
gradually increase. Later tests will determine if the type of
degradation observed is similar for both grouting conditions under a

more random type of loading sequence.

5.5 Energy Dissipation

The effect of horizontal reinforcement on the EDT ratio is
shown in Fig. 5.9 for the HCBR piers and in Fig. 5.10 for the CBRC
piers. The effect of partial grouting is shown in Fig. 5.11. It can
be concluded from these graphs that the energy dissipation capacity of
the piers appears to be independent of the amount of horizontal rein-
forcement and the type of grouting. For all piers the EDT ratio
increases linearly as a function of the imposed displacement until a
major crack forms. At this point there is a significant increase in
the EDT ratio as further increases in lateral displacement occur. As
with stiffness degradation, investigation of the EDT ratio under a
more random load sequence is important before analytical models based

on the results are formulated.

5.6 Effect of Compressive Load on Inelastic Behavior

The additional compressive load imposed by the columns during

the tests has been discussed briefly in Sections 3.1 and 4.2. The
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magnitude of the load appears to be directly proportional to the axial
stiffness of the pier and to the square of the lateral displacement,
and inversely proportional to the height of the vertical columns that
restrain the top beam from rotation. The presence of this compressive
axial load is generally detected as soon as an applied actuator
amplitude displacement of 0.10 inch is achieved and reaches maximum
values close to 150 kip (484 psi) in the HCBR piers and 200 kip
(476 psi) in the CBRC piers, (See Table 4.1). Specimens HCBR-21-1 and
CBRC-21-1 sustained larger lateral deformations at their maximum
lateral loads and consequently developed compressive stresses larger
than 500 psi. On the other hand, partially grouted piers have a lower
deformation capability at their ultimate load and therefore develop
lower compressive loads than the fully grouted specimens. The
additional imposed compressive load began to decrease immediately after
the maximum shear strength was attained coincident with the occurrence
of major diagonal cracking. This decrease is attributed to the
reduction in the axial stiffness of the specimens.

Although this increasing compressive load is not uncommon in
multistory buildings subjected to the overturning effects of
earthquake excitation, it forces the piers to fail in the shear mode
even though they exhibit a flexural type of behavior as explained below;
this may affect the desirability of the hysteresis envelopes (see [6],
Pp. 68-70). Desirable inelastic behavior can generally be characterized
in two ways., It is desirable for the pier to sustain a sizable
horizontal load for large amplitude of deflection and also for the
pier to absorb and dissipate as much energy as possible before this
horizontal load drops off. Both of these properties are reflected in

the hysteresis envelope derived for a particular pier.
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If the horizontal load, together with a moderate vertical load,
imposes more demands on the pier in flexure than in shear, the
vertical reinforcing on the tension side can be made to yield allowing
a large horizontal displacement at the top before failure occurs due
to crushing of the compressive corner or to rupture of the bars in
tension. 1In this case the hysteresis envelope would show a yield
plateau extending to a large displacement thus displaying desirable
characteristics.

When a significant increase in vertical load accompanies an
increase in displacement, the resisting flexural moment can continue
to increase without any sizable increase in the extreme tensile
stresses. Thus both the top displacement and the resisting horizontal
force continue to increase without the vertical tension reinforcing
displaying much, if any, increase in yield strain. But as the
horizontal and vertical forces increase they build up a stress field
in the pier in which diagonal tension reaches the tensile strength
capacity of the masonry so that large diagonal cracks appear which are
associated with shear failure. This is a brittle failure and occurs
at top horizontal displacements which are much smaller than would
accompany a ductile tension failure.

Since the growth in vertical load during a test caused the piers
to display shear failures, it is interesting to speculate how the piers
would behave (reflected through their hysteresis envelopes) if these
additional vertical loads were absent. In what follows a theory to
predict this behavior is developed.

In quantitative terms the effect of the compressive load is

illustrated in Fig. 5.12, where the figure depicts a free-body diagram
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at the bottom section of the pier. By taking moments about O (the toe
of the pier), and neglecting the moment of the compressive force at the
toe,an equation can be developed for the increase in lateral force
capacity AP above that required to yield the vertical reinforcement.
This is expressed in terms of the increment in axial compressive force,
AN,and the associated increment in moment,AM,developed by applied loads
of the external steel columns.

Table 5.2 presents a comparison of the computed and measured AP
for specimen HCBR-21-9. To perform the computation a specific point in
one load cycle was chosen: the point at which the maximum lateral
force in the pull direction developed as indicated in Fig. 5.12. The
stage at which the tension vertical reinforcement commenced to yield
was determined from the strain gage readings for the vertical rein-

forcement (SG, in Fig. 3.3). The incremental computed values of the

1:
lateral force, AP, are indicated in the second to last column. The last
column indicates the incremental values (AP)O actually measured from

the actuator load cells. The values of AP and (AP)0 are significanfly
close until stage 19, where the tension steel reinforcement ceased to
yield and major diagonal cracking occurred.

The same computations shown in Table 5.2 for specimen HCBR-21-9
were performed for all of the tests where the vertical reinforcement
yielded in tension. The results are shown in Fig. 5.13(a) for HCBR
piers and Fig. 5.13(b) for CBRC piers. Because the peak values in
each stage were considered for this analysis, the hysteresis envelope
obtained from peak values has been used for comparison, (the hysteresis
envelopes obtained from average values are also shown as reference).

The computed AP values have been subtracted from the hysteresis

envelope to produce a theoretical hysteresis envelope that would have
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been obtained if no additional axial compressive force was present.

It is apparent from the curves in Fig. 5.13 that a flexural type of

failure with a yield plateau would have developed. Future tests, with

a modified test setup to remove this axial force effect, will be per-

formed to validate this analytical result. Hysteresis envelopes to

be obtained from future tests will not be exactly the same as the

curves presented in Fig. 5.13, due to the following assumptions made

in the above analysis:

a)

b)

@)

The onset of yielding in the vertical reinforcement is delayed
by the presence of the compressive axial force, and should occur
at an earlier stage when this axial force is removed. In fact,
if the yield stress of the vertical steel is used to compute the
yielding moment at the top and bottom sections of the pier and no
effect of additional compressive force is considered, the lateral
load at which yielding would begin is 47 kip for HCBR piers and
50 kip for the CBRC piers. The yield point shown in Figs. 5.13(a)

and 5.13(b) ranges from 56 kip to 72 kip.

The hysteresis envelope computed after removal of the axial force
effect has been based on the assumption that the lateral displace-
ment does not change when AP is subtracted from the shear force P;

this may not be true.

The analytical curves can only be derived from the hysteresis
envelopes (peak values) while the vertical steel is yielding in
tension. Besides, it is assumed that the deformation capacity can-
not be larger than the capacity shown for the shear mode of failure.
The defecrmation capacity of a pier failing in the flexural mode,
with no additional axial force present, may be larger than the

capacity shown by the analytical curves.
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d) The strain hardening effect in the steel reinforcement under

tension has not been taken into account in this analysis.

The test setup is being modified so that the vertical load is
controlled during a test; and therefore, the additional vertical load
is eliminated. This setup will enable tests to be carried out to

verify the preceding theory.

5.7 Correlation Between Square Panel and Pier Critical Tensile Strength

This analysis is presented in Table 5.3 and is discussed in more
detail in reference [7]. The purpose of this investigation is to
evaluate an alternative and more appropriate test procedure for
determining the code allowable shear strength of masonry walls,
Currently, the code allowable shear strength is based on the compressive
strength of a masonry prism.

The square panel critical tensile strength has been determined
from a study made by Blume[l], who proposed the expression shown in
Table 5.3. The ultimate load P was taken as the average value obtained
from three square panel tests for each type of pier, as indicated in
Table 2.2.

The critical tensile strength of the piers has been computed at
the neutral axis of the pier sections, following the simple beam
theory for a section under combined flexure, shear and axial force.

A parabolic distribution of shear stresses over the cross section has
been assumed. The piers developed their shear cracks at the same
time that the ultimate shear strength was attained. Therefore the
peak shear force, and the corresponding compressive load from Table

4.1, have been used to evaluate the pier critical tensile strength.
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The square panels were all fully grouted; for this reason the
correlation only considers fully grouted HCBR piers and all the CBRC
piers.

The correlation obtained is considered to be reasonable. This
type of analysis will continue to be performed throughout the pier
test program. Future results will permit a better assessment of this

test method in predicting the shear strength of masonry walls.

5.8 Other Test Results

The last graph in the test results is a comparison between the
lateral displacement of the piers and the percentage of this displace-
ment that can be attributed to shear distortion as defined in Fig. 3.4.
These results reflect the amount of diagonal cracking present at each
stage of the test. 1In accordance with the absence of diagonal cracking
in specimens HCBR-21-1 and CBRC-21-1 the figures for these piers show
only a small amount of shear distortion (as can be observed from the
photographs). It is interesting that in the initial stiffness computed
in Fig. 4.2, the flexural and shear components of the deformation are
in the ratio of 1.3:1 for fully or solid grouted piers and 1l:1 for the
partially grouted HCBR piers.

Also it is appropriate to report on how well the test rig
reproduced the fixed end condition at the top of the pier. There are
two measures of the rotation of the top section; one is an absolute
measure through the instruments placed at the top of the pier, (DCDT'S
Vl and V2 in Fig. 3.3), and the other is the computation of the
location of the inflection point from the forces acting on the pier.

The results of these measurements and computations show that at the

very early stages of the test the absolute rotation of the top spandrel
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beam reached 60% of the value that could be expected from a cantilever
type of test. As a result the initial calculated pier stiffness
(Section 5.4) was substantially underestimated. However, after the
first four or five loading stages, the position of the inflection
point was confined to the 10% of the pier immediately above the mid-
height. This indicates a reasonably good reproduction of fixed end

conditions against rotation at the top of the pier.
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APPENDIX A

CATALOG OF TEST RESULTS

The experimental results are arranged in three pages for each
test, containing six photographs of the successive crack patterns and
six graphs obtained from the data collected during the test. These
graphs include the hysteresis loops, the hysteresis envelope, stiffness
degradation, energy dissipation and amount of shear distortion as com-
pared with total deformation.

In order to show the relation between the photographs of the
crack patterns and the diagrams showing the results, a black dot has
been drawn on the graphs and by the corresponding picture of the crack
pattern.

The details on how each of the diagrams was obtained are

presented in Chapter 4.
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FIG. A.9 SUCCESSIVE CRACK FORMATION
AND EXPERIMENTAL RESULTS
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FIG. A.10 SUCCESSIVE CRACK FORMATION
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FIG. A.12 SUCCESSIVE CRACK FORMATION
AND EXPERIMENTAL RESULTS
TEST EBRC-21-3
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FIG. A.13 CONTINUE CBRC-21-4
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EERC 73-3 “Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Powell
1973 (PB 248 315)A09

EERC 73-4 "Experimental Investigation into the Seismic Behavior of Critical Reqgions of Reinforced Concrete Components
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J.G. Bouwkamp - 1973 (PB 246 117)Al2

EERC 73-9 "Earthquake Analysis of Structure-Foundation Systems," by A.K. Vaish and A.K. Chopra - 1973 (AD 766 272)Aan7
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"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by
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Mahin and V.V. Bertero - 1975 (PB 246 306)Al6

"Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R.W. Clough angd
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"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical
Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Hamati - 1975 (PB 251 540)Al0
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“The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear
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"Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and
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T. Endo ~ 1975
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(NUREG 0026)A13

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction
Analyses,"” by H.B. Seed, I.M. Idriss, F. Makdisi and N. Banerjee - 1975 (PB 252 635)A03
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R.N. Hwang and C.-F. Tsai - 1975 (PB 253 570)A03

"The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading,"
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(PB 252 173)A03

"Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1975
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"Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell - 1976 (PB 252 220)
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"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T.
and J. Penzien (PB 260 556)Al1l.

"Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, S.W.
and R.W. Clough - 1976

"Cyclic Shear Tests on Concrete Masonry Piers," Part I - Test Results,” by R.L. Mayes, Y. Omote and R.W.
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"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications,” by D. Ray, K.S. Pister and

E. Polak - 1976 (PB 262 859)A04

"Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra -
1976 (PB 257 907)A09

"Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976
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and R.W. Clough ~ 1976

"Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and
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"Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by
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"Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov - 1977
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"Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks,” by D.P. Clough
(PB 272 280)Al3
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(PB 276 821)A04

“Dynamic Plastic Analysis Using Stress Resultant Finite Element Formulation,” by P. Lukkunapvasit and
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(PB 276 814)A07

"Seismic Safety of Existing Buildings and Incentives for Hazard Mitigation in San Francisco: An
Exploratory Study," by A.J. Meltsner - 1977 (PB 281 970)A0S5
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