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ABSTRACT

This report presents the results of thirty-one cyclic, in

plane shear tests on fixed ended masonry piers having a height to

width ratio of 1. These thirty-one tests form part of a test

program consisting of eighty single pier tests. A previous report

presented the results of fourteen tests of piers having a height

to width ratio of 2 and subsequent reports will present the test

results of the remaining thirty-five tests.

The test setup was designed to simulate insofar as possible

the boundary conditions the piers would experience in a perforated

shear wall of a complete building. Each test specimen was a full

scale pier 56 inches high and 40 inches wide. Three types of masonry

construction were used; hollow concrete block and hollow clay brick,

both with 8 inch wide units, and a double wythe grouted core wall,

10 inches thick, that consisted of two clay brick wythes 3~ inches

thick and a 3~ inch grouted core. The other variables included in

the investigation were the quantity of reinforcement and the type of

grouting.

The results are presented in the form of hysteresis envelopes,

graphs of stiffness degradation, energy dissipation and shear distor

tion, and tabulated data on the ultimate strength and hysteresis

indicators. A discussion of the test results is presented but no

definitive conclusions are offered. These will be included in a

final report at the completion of the eighty tests.
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1. INTRODUCTION

1.1. The Multistory Masonry Building Research Program

A multistory masonry building research program was initiated at the

Earthquake Engineering Research Center in September 1972, and has continued

for the past six years. After an extensive review of literature [4,5]*

dealing with resistance of masonry to earthquakes, it was concluded that

shear walls penetrated by numerous window openings (Fig. 1.1) were the

components of multistory masonry buildings most frequently damaged in past

earthquakes, and it was decided that an experimental study of the seismic

behavior of such components was necessary.

Two types of structural components can be identified in the shear

wall of Fig. 1.1, the piers and the spandrel beams. In order to study the

pier behavior, a testing fixture was designed to subject typical full-

scale double pier specimens to combined static vertical (gravity) and

cyclic lateral (seismic) loads (Fig. 1.2). The results obtained from

seventeen such specimens have been reported by Mayes et al.[7,8]. These

results show significant variations in the pier behavior with the various

test parameters including the type of grouting, types of reinforcement and

the rate of loading. The results were not conclusive and demonstrated the

need for more extensive tests to establish definitive parametric

relationships.

The cost of the double pier tests, both in money and time, pre-

cluded carrying out extensive parametric variations with the double pier

test setup and, consequently, a single pier test system was designed

which greatly simplified the investigation (Fig. 1.3). A series of eighty

* References are arranged in alphabetical order of the authors names,

and are listed at the end of the te~t.
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single pier tests was planned, which included the following test para-

meters: type of masonry construction, height to width ratio of the piers,

type of grouting, and amount and distribution of both vertical and hori-

zontal steel reinforcement. The present report deals with the experi-

mental results of specimens wjth a height to width ratio of 1.

1.2 Objectives and Scope of the Single Pier Test Program

In determining the shear strength of masonry piers and panels, the

first step is to evaluate the mode of failure. Because most failures in

past earthquakes have been characterized by diagonal cracks, many

research programs have concentrated on this type of failure mechanism.

Test techniques used by Blume[l], Greenley and cattaneo[2], and others

induce the diagonal tension or shear mode of failure. Scrivener[13], Meli[IO],

Williams[14] and Priestley and Bridgeman[ll] recognized that there are

two possible modes of failure for cantilever piers. In addition to the

shear or diagonaltensioD mode, they recognized that for certain piers, a

flexural failure could occur. This mechanism is characterized by yielding

of the tension steel of the wall, followed by a secondary failure at the

compressive toe, with associated buckling of the reinforcement once con

finement is lost. Meli[lO] described the flexural failure as similar to

that of an under-reinforced concrete beam; i.e., extensive flexural

cracking and strength limited by yielding of the reinforcement with failure

finally due to crushing of the compressive corner or to rupture of the

extreme bars.

Because the double pier tests were the first fixed ended piers to

be tested cyclically, the objective of those tests was to determine the

effect of various parameters and compare the results with those obtained

by others on cantilever piers. Both the shear and flexural modes of

failure were included in that investigation.
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One of the main objectives of the single pier test program was to

investigate thoroughly the effects of different parameters on the behavior

shown with the shear mode of failure. It was evident from the double

pier test program that the flexural mode of failure in a fixed ended pier

has desirable inelastic characteristics, although these are not as

desirable as those obtained by priestley[12] in cantilever piers.

Furthermore, it was recognized that for fixed ended piers, with height

to width ratios commonly found in multistory buildings, the amount of

horizontal reinforcement required to induce a flexural mode of failure is

substantially greater than that required by current codes. Therefore,

it was decided to investigate the effects of lesser amounts of horizontal

reinforcement on the shear mode of failure to determine if desirable

inelastic behavior could be obtained.

The thirty-one tests reported herein are a part of a total program

of eighty single pier tests; a matrix characterizing the first sixty-three

tests is shown in Table 1.1. The parameters for the remaining seventeen

tests will be selected after an evaluation of these sixty-three. The

test parameters, other than the type of construction and height to width

ratio, include the amount of reinforcement and the effect of partial grout-

ing. Hollow concrete block piers having height to width ratio of 2 were

not included in the single pier test program because such piers were

investigated in the original double pier tests.

This report presents the results for piers with a height to width

ratio of 1 of which eleven tests were performed on hollow concrete block

specimens (HCBL), thirteen on hollow clay brick specimens (HCBR) and seven

on qouble wythe grouted. core clay brick specimens (CBRC). A previous

report[3] presented the results obtained from piers with height to width
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ratio of 2, and a subsequent report will present the results obtained from

the single pier specimens with height to width ratio of 0.5. The results

from the series of seventeen specimens which will complete the proposed

research program also will be presented in a separate report. The

organization of the present report is similar to the previous one on

piers with height to width ratio of 2[3]. The general background of the

single pier test program has been included again in order to make this

report as self-contained as possible.
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FIG. 1.3 SINGLE PIER TEST SETUP
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2. TEST SPECIMENS

2.1 Design and Construction of Specimens

The overall dimensions of the test specimens discussed here are

shown in Fig. 2.1. They are the same for all thirty-one piers except for

the thickness, which is 7 5/8 inches for the hollow concrete block piers

(HCBL), 7 3/8 inches for the hollow clay brick piers (HCBR) and 10 inches

for the double wythe grouted core clay brick piers (CBRC).

The HCBL panels were constructed from standard two-core hollow

concrete blocks nominally 8 inches wide x 8 inches high x 16 inches long,

as shown in Fig. 2.3(a). The cored area of each block is approximately

50.6 square inches and the ratio of net to gross area is 58%.

The HCBR piers were constructed from standard two-core hollow clay

bricks nominally 8 inches wide x 4 inches high x 12 inches long, as shown

in Fig. 2.3(b). The cored area of each brick is approximately 57.4

square inches and the ratio of net to gross area is 67%.

The CBRC piers were constructed from two wythes of solid clay

bricks nominally 4 inches wide x 4 inches high x 12 inches long, as shown

in Fig. 2.3(c). The grouted space between the wythes was 3 1/2 inches

wide and was filled after the steel reinforcement had been placed in

position.

The piers were constructed on 0.75 inch thick steel plates as

shown in Fig. 2.2. A similar plate was added on top of the pier after

the grout was poured. Both plates had holes to permit anchorage of the

vertical steel reinforcement and keys to provide an adequate shear

transfer between the masonry pier and the steel plate. The plates also

had welded bolts and holes to anchor the pier to the test rig.

Seven of the eleven HCBL piers and nine of the thirteen HCBR piers
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were fully grouted. The remaining four piers in each of the HCBL and

HCBR series were partially grouted. Partial grouting consisted of grout-

ing the cores containing vertical reinforcement and the bond beams

containing horizontal reinforcement. All the CBRC piers had the 3 1/2

inch core between the wythes fully grouted and have been termed "solid

grouted".

The series of tests was planned to determine the effect of the

quantity of steel reinforcement and of partial grouting on the strength

and deformation properties of the piers, considering combinations of

steel and grouting as shown in Table 2.1. Details of the reinforcing bar

arrangements are shown in Fig. 2.4(a) for the HCBL piers, in Fig. 2.4(b)

for the HCBR piers and in Fig. 2.4(c) for the CBRC piers. The actual

position of "the vertical reinforcement is indicated in Fig. 2.1. When

horizontal reinforcement was used, the bars were evenly distributed over the

height of the pier.

2.2 Material Properties

Table 2.2 shows the mechanical properties of the materials used in

the construction of the test specimens. The specimens used to determine

the material properties are shown in Figs. 2.3(a), (b) and (c).

The tests of the single masonry units followed the ASTM C67-73

specification[9] and were based on five samples for each test.

The joint mortar was specified as standard ASTM type M (i.e., 1

Cement 1/4 Lime: 2 1/4 - 3 Sand, by volume), with a minimum compressive

strength of 2,500 psi at 28 days. The grout was specified as 1 Cement :

3 Sand : 2 G, where G refers to lOmm maximum size local gravel. Because

the specimens were not constructed or grouted at the same time, the

mortar and grout strength varied according to normal workmanship. A
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minimum of three samples of both mortar and grout was taken from each

batch used during construction.

ASTM A615 steel was specified for ,both the vertical and horizontal

steel reinforcement. Yield and ultimate strengths are listed in Table 2.2.

Three prisms for uniaxial compression tests (Fig. 2.5) and three

square panels for diagonal tension tests (Fig. 2.7) were constructed from

the same mortar and grout used in each set of wall panels. All the prisms

were fully grouted and had a height-to-thickness ratio of 5. Their com

pression tests were performed at a loading rate of 12,000 Ib/min, and the

compressive strengths are shown in Table 2.2. In the case of the HCBL

prisms, the compression tests were also used to determine the modulus of

elasticity as shown in Fig. 2.5. The axial deformations were measured

with mechanical gages attached to both sides of the prisms, over a length

of 12 inches. The readings were averaged and plotted as indicated in

Fig. 2.6. The average modulus of elasticity for six samples was 1,140 ksi.

The square panels were tested as shown in Fig. 2.7 at a loading

rate of 8,000 Ib/min, and the ultimate load is shown in Table 2.2. A

modified diagonal tension test setup was also used to duplicate some of

the simplified tests. The modification was intended to provide better

boundary conditions for the application of the shear load, and is discussed

in detail in reference[s]. However the time and cost spent on the

modified diagonal tension tests were not worth the small improvement

obtained in the test results when compared with the simplified test setup.

Because of this, the use of the modified diagonal tension test in the

single pier test program was discontinued.

The mortar, grout, prism and square panel samples were cured under

the same normal atmospheric conditions as the piers; also the prism and
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square panel tests were performed during the tests of the corresponding

piers.
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TABLE 2.1

TEST PROGRAM

Grouting Reinforcing Steel

Specimen
Test Full (F)Pier General Characteristics

Designation
Frequency Partial(P) Vertical Horizontal

(cps) Solid (S)

Masonry type: Hollow Concrete Block HCBL-ll-l 1.5 F No No

Pier height: H = 56 in -2 1.5 P No No

Pier width: D = 48 in -3 1.5 F 2#5 No

Pier thickness: 7.625 in -4 1.5 F 2#5 1#5

Gross section 366 in
2

-5 1.5 2#5 1#5area: P

Bearing load: 20 kip -6 1.5 F 2#5 4#5

Bearing stress: 55 psi -7 1.5 F 2#8 No

-8 1.5 P 2#8 No

-9 1.5 F 2#8 2#5

-10 1.5 P 2#8 2#5

-11 1.5 F 2#8 4#6

Masonry type: Hollow Clay Brick HCBR-ll-l 0.02 F No No

Pier height: H = 56 in -2 0.02 P No No

Pier width: o = 48 in -3 0.02 F 2#5 No

Pier thickness: 7.375 in -4 0.02 F 2#5 1#5

Gross section 354 in
2

-5 0.02 2#5 1#5area: P

Bearing load: 20 kip -6 0.02 F 2#5 5#5

Bearing stress: 56 psi -7 0.02 F 2#5 5#5

-8 0.02 F 2#8 No

-9 0.02 p 2#8 No

-10 0.02 F 2#8 2#5

-11 0.02 P 2#8 2#5

-12 0.02 F 2#8 5#6

-13 0.02 F 2#8 5#6

Masonry type: Double Wythe Grouted CBRC-ll-l 0.02 S No No

Core Clay Brick -2 0.02 S 2#5 No

Pier height: H = 56 in -3 0.02 S 2#5 1#5

Pier width: o = 48 in -4 0.02 S 2#5 5#5

Pier thickness: 10 in -5 0.02 S 2#8 No

Gross section 480 in
2

-6 0.02 2#8 2#5area: S

Bearing load: 20 kip -7 0.02 S 2#8 5#6

Bearing stress: 42 psi
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TABLE 2.2

MATERIAL PROPERl'IES

Vertical Reinforcement Horizontal Reinforcement

Specimen

HCBL-11-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

Average

HCBR-ll-l

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

Average

CBRC-1l-1

-2

-3

-4

-5

-6

-7

Average

Gross
Compressive

Strength

(psi)

1800

5816

5443

Net

Tensile
Strength

(psi)

293

466

253

Mortar
Compressive

strength

(psi)

2754.

2754.

2965.

2965.

2754.

2965.

2322.

2942.

2942.

2322.

2322.

2728.

3840.

3840.

3840.

3044.

3838.

4316.

1870.

3080.

3838.

3044.

3044.

1870.

3044.

3270.

2640.

2640.

2640.

2640.

2640.

2'640.

26;40.

2640.

Grout
Compressive

Strength

(psi)

3810.

3810.

4020.

4020.

3810.

4020.

6895.

6860.

6860.

6895.

6895.

5263.

4225.

4225.

4225.

4327.

5780.

4857.

4225.

4207.

5780.

4327.

4327.

4225.

4327.

4543.

4230.

4230.

4230.

4230.

4230.

4230.

4230.

4230.

Prism (5 :1)
Compressive

Strength

(psi)

1330.

1833.

1833.

1833.

1905.

1905.

1330.

1710.

2535.

2535.

2722.

2722.

2535.

2866.

2722.

2535.

2722.

2655.

2507.

2507.

2507.

2507.

2507.

2507.

2507.

2507.

Ultimate
Load of
Sq. Panel

(kip)

58.4

64.5

64.3

63.4

78.1

78.1

62.7

67.

144.1

144.1

185.8

171.9

144.1

149.9

185.8

144.1

185.8

162.

142.0

142.0

142.0

152.5

142.0

152.5

152.5

147.

Yield
strength

(ksi)

70.81

70.81

70.81

70.81

69.20

69.20

69.20

69.20

69.20

69.9

75.00

71.34

71.34

71.34

75.00

69.20

69.20

12.87

n.B7

76.00

72.87

72.5

71.72

71. 72

71. 72

72.87

72.B7

72.87

72 .3

Ultimate
Strength

(ksi)

108.71

108.71

108.71

108.71

105.91

105.91

105.91

105.91

105.91

107.2

113.00

108.07

108.07

108.07

113.00

105.91

105.91

112.19

112.19

108.20

112.19

109.7

110.11

110.11

110.11

112.19

112.19

112.19

111.2

Yield
strength

(ksi)

47.91

47.91

47.91

47.91

47.91

73.85

52.2

70.00

70.00

64.20

72.60

68.71

68.71

73.85

74.66

70.3

68.28

68.28

73.87

74.66

71.3

ultimate
strength

(ksi)

75.65

75.65

75.65

75.65

75.65

102.25

80.1

109.04

109.04

100.33

109.7

95.32

95.32

102.25

109.89

103.9

102.37

102.37

106.46

109.89

105.3
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FIG. 2.2 CONSTRUCTION OF TEST SPECIMENS
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FIG. 2.5 PRISM TEST AND MODULUS OF ELASTICITY MEASUREMENT
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3. TEST EQUIPMENT AND PROCEDURE

3.1 Test Equipment

The test equipment shown in Figs. 3.1 and 3.2 permits lateral

loads to be applied in the plane of the piers in a manner similar to

which a floor diaphragm would load the piers during earthquake

excitation. It consists of two 20 feet high, heavily-braced reaction

frames supporting a pair of horizontally acting hydraulic actuatorsi

a mechanism capable of applying vertical bearing loads similar to the

gravity loads experienced by the piers in an actual structure; a bottom

beam composed of a concrete base and a wide flange steel beam which

provides anchorage to the test floor and suitable connection holes to

the bottom plate of the specimen; and a top beam fabricated from two wide

flange, steel beams as shown in Fig. 3.1. The top and bottom beams

simulate the action of the spandrel beams in actual masonry construction;

they are connected by two steel columns located 10 feet 7 inches apart,

which prevent rotation of the top beam and thus provide approximate

fixed-fixed end conditions during the test.

The maximum dynamic load which may be developed by each of the

horizontal actuators is 75 kips, using a hydraulic pressure of 3,000 psi.

The maximum stroke is ± 6 inches, the maximum piston velocity is 26 in./sec

and the flow capacity of the servovalves is 200 gpm. Either displacement

or load can be controlled with these actuators. Their operational capa

bilities are limited by the above mentioned force capacity, and also by

a frequency limitation of about 5 Hz. The actuator control consoles are

shown in Fig. 3.5.

A vertical load up to 160 kips can be applied to the pier through

the springs and rollers shown in Fig. 3.2. The Thomas Dual Roundway
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Bearings connecting the springs to the top of the panel allow the panel

to move freely with minimal friction force. The coefficient of friction

of bearings is purported to be 0.007.

An additional vertical, compressive load results from the charac

teristics of this test setup. As significant lateral displacements are

imposed on the top beam by the hydraulic actuators, the constraint pro

vided by the side columns forces the top beam to move in a circular arc.

The vertical component of this motion is opposed by the axial stiffness

of the pier, resulting in a compressive load being applied to the pier.

The significance of this additional, cyclic varying compressive load on

the test results is discussed in Chapter 5.

Each pier was constructed on a 0.75 inch thick steel plate and had

a similar plate on top, as discussed in Section 2.1. This allowed the

piers to be moved into place before each test and bolted to the bottom

and top steel beams. Prior to the bolting process, hydrostone was

placed between the surfaces of the plates and beam flanges as well as

between the top plate and the top brick course of the pier.

3.2 Loading Sequence

Each pier was subjected to a series of displacement controlled,

in-plane shear loads. The full sequence of loading consisted of sets of

three sinusoidal cycles of loading at a specified actuator displacement

amplitude. The specified amplitude was gradually increased; the full

loading sequence is given in Table 3.1. After each stage, (one set of

three sinusoidal displacements at the same amplitude), the walls were

visually inspected and the crack pattern identified and photographed.

The sinusoidal cycles were applied at the frequency of 1.5 cycles per

second during the HeBL pier tests and at 0.02 cycles per second for the
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remainder of the test program.

The test of each pier had a duration of 2~ to 3 hours. The test

was usually terminated when the shear strength of the pier had dropped

below one third of the maximum shear strength. At this stage the pier

generally was not capable of supporting significant vertical loads. All

the tests were carried out under a constant primary bearing stress of

55 psi (HCBL piers), 56 psi (HCBR piers) or 42 psi (CBRC piers). Addi

tional cyclic vertical compressive loads were developed during the test,

as described in Section 3.1 and discussed further in the following

chapters.

Partially grouted piers were subjected to maximum input displace

ment amplitudes of 0.20 inch to 0.45 inch. Fully or solid grouted piers

failed at input amplitude displacements ranging from 0.30 inch to 0.80

inch.

Because of the flexibility of the reaction frame and other load

transferring devices, the lateral displacement actually experienced by

the pier was always less than the actuator input displacement, this

difference being smaller towards the end of the test when the pier stiff

ness had attained its lowest values. There was also a slight difference

between the maximum loads developed during the push and pull half cycles

due to the different type of stress placed on the bolting system and to

the different pier stiffness associated with non-symmetric crack patterns.

3.3 Instrumentation

The total horizontal load applied by the hydraulic actuators, as

well as the vertical forces developed by the side columns, were measured

using pre-calibrated load cells. Each pier was instrumented as indicated

in Fig. 3.3.
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DeDT's (direct current differential transformers) HI and H
2

were

attached to an external reference frame in order to measure the lateral

deformation of the pier during each sequence of loading. The difference

between HI and H
2

was used to indicate the relative lateral deflection

of each pier. DeDT's 01 and 02 measured the changes in distance between

points along the diagonals of the pier and were used to indicate the

shear distortion of the pier as defined in Fig. 3.4.

3.4 Data Acquisition and Data Processing

Two different data acquisition systems were used during the test

program. The main one consisted of a high speed scanner able to handle

up to 25 channels of information, and the corresponding tape recording

system (Fig. 3.5). Three computer programs were used to read the original

tape, input the calibration values and geometrical data of each pier and

to reduce the response data to their final presentation in computer plots.

The second data acquisition system was used to monitor the progress

of the test and to act as a back-up system in case of any failure in

the main system. It consisted of a direct writing oscillograph (visi

corder) and was used only to record the most important data; namely,

forces at the actuators and side columns, actuator stroke and lateral

displacement of the pier. This second data acquisition system proved to

be extremely useful in detecting occasional malfunctions of the actuators

or the instruments attached to the pier and provided excellent visual

ization of the behavior of the pier as the test progressed.
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TABLE 3.1

LOADING SEQUENCE

*
INPUT DISPLACEMENT

STAGE AMPLITUDE
(in)

1 0.02

2 0.04

3 0.08

4 0.10

5 0.12

6 0.14

7 0.16

8 0.20

9 0.25

10 0.30

*
INPUT DISPLACEMENT

STAGE AMPLITUDE
(in)

11 0.35

12 0.40

13 0.45

14 0.50

15 0.55

16 0.60

17 0.70

18 0.80

19 0.90

20 1.00

21 1.10

22 1.20

*Each stage consists of three sinusoidal cycles at the
amplitude shown
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FIG. 3.2 OVERVIEW OF SINGLE PIER TEST
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4. TEST RESULTS

4.1 Introduction

The experimental results for the thirty-one piers having a height

to width ratio of 1 are presented in the form of hysteresis loops,

hysteresis envelopes, stiffness degradation properties, energy dissipation

characteristics, and relative shear distortion. In addition a sequence

of photographs of the successive crack patterns is given for each test.

An explanation of how each of the graphs was obtained and the meaning

of the terms used above is included in Section 4.3. The complete

presentation of the figures and photographs has been arranged by test

numbers and is included in Appendix A.

In addition, data on the ultimate strength and hysteresis indicators

for each test are listed in Tables 4.1(a), (bl and (cl. A discussion of

the modes of failure observed follows in Section 4.2 and a discussion of

the test results is presented in Chapter 5.

4.2 Modes of Failure

All the thirty-one piers displayed a shear mode of failure (Fig.

4.1). This is characterized by early flexural cracks at the toes of the

pier (horizontal cracks) and later augmented with diagonal cracks that

extended through a partial zone of the pier. As the horizontal load

increases, as a consequence of the increase in the flexural moment

capacity of the sections of the pier, the diagonal tensile stress reaches

the tensile strength capacity of the masonry with resulting large diagonal

cracks characteristic of the shear mode of failure (Fig. 4.1). The

diagonal tension or shear failure generally coincided with the ultimate

strength of the pier and was followed by a strength degradation character

ized by the opening of diagonal cracks and the inability of the walls to
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maintain a serviceable condition.

In some of the fully grouted specimens (HCBL-11-6, HCBR-11-3, 4,

6 and 7, and CBRC-11-2, 3, 4, 6 and 7) the shear failure was accompanied

by yielding of the vertical steel reinforcement. This is what has

previously been called a combined shear and flexural mode of failure[7].

After the first flexural cracks occurred at the toes of the pier and as

the horizontal load increased, the vertical steel began to yield and the

corners of the pier developed high compressive stresses. The additional

compressive load, induced by the test setup with the increase in lateral

deflection, allowed the critical moment sections (top and bottom of the

pier) to increase their flexural moment capacities, thus enabling the

horizontal load to increase while the vertical reinforcement sustained

further yield deformation. This process continued until the shear

strength of the pier was attained and full diagonal cracks developed as

in the shear mode of failure.

The partially grouted piers (HCBL-11-2, 5, 8, 10 and HCBR-11-2,

5, 9 and 11) showed a shear mode of failure. These piers required much

less horizontal load to develop the ultimate shear strength and as a

result no yielding of the vertical reinforcement occurred. Correspondingly

the amount of compressive load developed at the ultimate load was generally

smaller than that for the tests of the fully grouted piers.

The solid grouted core clay brick piers displayed a shear failure

characterized by a split between the grouted core and the brick wythe, as

shown in Fig. 4.1.

4.3 Load-Displacement Characteristics

As mentioned before, Tables 4.1 (a), (b) and (c) summarize the

strength and hysteresis characteristics of the piers and Appendix A
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presents the test results for each of the specimens.

The details of the derivation of each of the figures compiled

in Appendix A is discussed in the following sections.

a) Hysteresis Loops (Shear Force vs. Lateral Deflection Diagram)

This graph was obtained by plotting the horizontal load against

the relative lateral displacement of the pier for the whole duration

of the test. The horizontal shear force was directly obtained from

the load cell readings. The relative lateral displacement was com

puted from the difference between the lateral deflections at the

top and bottom of the pier (HI - H
2

as defined in Fig. 3.3).

b) Hysteresis Envelopes

This plot was obtained from the hysteresis loops by averaging

the absolute values of the three extreme positive and the three

extreme negative forces and the corresponding absolute values of the

relative lateral displacement, for each stage of the test at a given

input displacement. One point on the hysteresis envelope was obtained

for each stage of 3 cycles of loading. The average lateral displace

ment obtained in the hysteresis envelope is always less than the input

displacement, as explained in Section 3.2.

The maximum strength obtained from the hysteresis envelope is in

dicated in Tables 4.1 (a), (b) and (c) under "average ultimate shear

force or stress", (the stress values are computed by dividing the

horizontal force by the cross section area of the pier). The "peak

ultimate shear force or stress" values that appear in Tables 4.1(a),

(b) and (c) were obtained from the maximum force (stress) developed in

anyone cycle of loading. The average value is always less than the

peak value, varying from 81% to 98% of the peak value. The

compressive load at ultimate indicated in Tables 4.1 (a), (b) and
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(c) corresponds to the maximum axial compressive load developed

during each of the tests. This maximum value usually occurred

at the same time as the peak ultimate shear force l and is computed

from the readings of the load cells located in the vertical columns

plus the bearing load applied prior to each test (Table 2.1).

The last two columns of Tables 4.1 (a), (b) and (c) correspond

to hysteresis indicators obtained from the hysteresis envelopes and

defined in Fig. 4.2. The level of O.70P used to define these indi
u

cators, where P is the maximum strength indicated by the hysteresis
u

envelope, was arbitrarily chosen. Indicator hI tells how much the

pier has deviated from its initial, theoretical stiffness, and indi-

cator d
2

gives an indication of the deformation capability of the

pier. The initial theoretical stiffness of the pier was computed

with the assumption that the piers were fixed against rotation at

both the top and bottom. The moment of inertia was calculated using

the gross, uncracked section, neglecting the effect of steel rein-

forcernent; the modulus of elasticity was taken from the measured

values (Fig. 2.6 for the HCBL piers, Tables 2.3 (a) and (b) in

reference [3J for the HCBR and CBRC piers, respectively), and the

Poisson's ratio was assumed to be 0.15. Further discussion of the

correlation of the theoretical stiffness and the measured stiffness

is presented in Chapter 5.

c) Stiffness Degradation

A cyclic definition of the stiffness, as indicated in Fig. 4.3,

was used to measure the stiffness of the piers throughout each test.

The three cyclic stiffness values obtained from each stage of load-

ing were averaged and plotted against the average gross shear stress
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and the relative lateral displacement.

d) Energy Dissipation

The energy dissipated per cycle of loading was expressed in terms

of an equivalent damping ratio, which can be related to a dimension-

less energy dissipation ratio EDT, as shown in Fig. 4.3. EDT is

defined as the ratio of the energy dissipated to the total stored

strain energy per cycle and is diagrammatically shown in Fig. 4.3.

The three damping values obtained for each stage of loading were

averaged and plotted against the average lateral displacement.

e) Shear Distortion

The values of the shear distortion, 6 r were calculated as
s

indicated in Fig. 3.4. The absolute values of 8 corresponding to
s

the three extreme positive and three extreme negative forces were

averaged for each stage of the test, and plotted against the

respective average relative lateral displacement, (total deformation

of the pier), obtained from the hysteresis envelope. The plot

depicts how much of the total deformation of the pier is due to

shear distortion as defined in Fig. 3.4. Since the instruments used

to measure the diagonal deformations were usually removed three or

four stages before the end of the tests, the number of stages used

to plot this graph is usually smaller than the number used for the

previous graphs.
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LOAD

HYSTERESIS
ENVELOPE

)7K0f-~~~-----'~
I
I
I

do d I d 2 DISPLACEMENT

DEFINITION OF HYSTERESIS INDICATORS hI AND d
2

COMPUTATION OF INITIAL STIFFNESS K
o

L height of pier

E modulus of elasticity

-1 L
3

L E
shear modulusK --+ 1.2 G

0 12EI AG 2(1+v)

D width of pier

t = thickness of pier

L D t I A E V KoSPECIMEN
(i 1\) (in) (in) (in

4
) (in

2
) (Ksi) (Kip/in)

HCBL-ll
56 48 7.625 70272 366.0 1140 0.15 1808

Full grouting

HCBL-ll*
56 48 7.625 59303 219.8 1140 0.15 1200

Partial grouting

HCBR-ll
56 48 7.375 67968 354.0 24S0 0.15 3759

Full grouting

HCBR-ll *
56 48 7.375 48355 188.8 2450 0.15 2185

Partial grouting

CBRC-ll 56 48 10.0 92160 480.0 1720 0.15 3577
Solid grouting

* Bedded plus grouted cell area considered

FIG. 4.2 DEFINITION OF HYSTERESIS INDICATORS AND COMPUTATION OF
INITIAL STIFFNESS
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FORCE

ENERGY DISSI PATION RATIO:

DISSIPATED ENERGY
EDT = TOTAL STORED ENERGY =

EQUIVALENT DAMPING RATIO:

t I A _1- EDT
EQ :: 27T . A+B = 2 7T

I/2ZJ =B

d, DEFLECTION

A
A+B

PIER STIFFNESS:

K=I~-P21
I d l - d2 1

~ , P2 ' d
l

' d
2

MUST BE TAKEN

WITH THEIR OWN SIGN

FIG. 4.3 DEFINITIONS OF ENERGY DISSIPATION AND PIER STIFFNESS
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5. DISCUSSION OF TEST RESULTS

5.1 Introduction

The test results presented in Appendix A and Tables 4.1 (a), (b)

and (e) are discussed in this chapter with reference to the three

parameters that were varied during these thirty-one tests; namely, the

amount of vertical reinforcement, the amount of horizontal reinforcement

and the type of grouting. Other parameters, such as the initial bearing

stress and the test cyclic frequency, which were varied in the first

seventeen double pier tests[7], were held constant during these

thirty-one tests. The test frequency was not originally intended to be

held constant during these tests. However, after the HeaL pier tests

were performed using a test frequency of 1.5 cycles per second, it was

observed that the anchorage of the vertical bars, (provided by the top

and bottom steel girders), became precarious as soon as the vertical

reinforcement began to yield. For this reason the test frequency was

changed to 0.02 cycles per second for the HCBR and the CBRC pier tests.

It is also important to note that the results presented herein

were obtained from a particular loading sequence. The choice of this

loading sequence has been discussed previOUSly[7]. Other types of load

sequences are to be used in some of the additional thirty-five tests that

complete the single pier test program.

In considering the results of these thirty-one tests on 1:1 piers

it is important to realize that conclusions which appear valid for these

tests may not hold for tests on piers with other height to width ratios.

The complexity of the problem requires the completion of the test program

(eighty tests) before valid conclusions concerning an adequate design

of masonry structural elements can be made.
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Finally, it is important to recall that all of the thirty-one

piers showed a shear mode of failure, sometimes combined with flexural

yielding of the vertical reinforcement. The ultimate strength always

occurred when diagonal cracks developed over the full height of the

pier in both directions of horizontal loading.

5.2 Ultimate Strength

5.2.1 Effect of Vertical Reinforcement

No significant difference was observed in the ultimate strengths

of the HCBL, HCBR and CBRe piers as the amount of vertical steel was

increased from two No. 5 to two No. 8 steel bars (reinforcement ratios

and ultimate strengths are shown in Tables 4.1 (a), (b) and (c». The

reason for this result is that the ultimate strength is determined by

the shear strength of the piers which is not influenced by the vertical

steel. It was expected before the tests that the piers with

two No. 5 steel bars as vertical reinforcement would have their strength

controlled by the yielding strength of the vertical bars, (flexural mode

of failure), as opposed to the shear mode of failure expected from the

piers with two No. 8 steel bars. However, the presence of the additional

compressive load, discussed in Sections 3.1 and 4.2, produced an increase

in the horizontal load capacity of the piers and suppressed the flexural

mode of failure, (see Section 5.6 in reference [3]>, thus offsetting the

effect of reducing the amount of vertical reinforcement.

5.2.2 Effect of Horizontal Reinforcement

The results obtained for the average ultimate shear stresses of

fully grouted piers (Tables 4.1 (a), tb) and (c» indicate no consistent

relation between the amount of horizontal reinforcement and the ultimate

strength of the piers. In all cases, the piers with horizontal
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reinforcement had equal or more strength than the corresponding piers

with no horizontal reinforcement. However, this increase does not

appear to be a function of the amount of horizontal reinforcement. For

instance, for the HCBR piers with two No. 5 bars as vertical reinforcement,

specimens with one or five No. 5 horizontal bars (HCBR-11-4 and 6) had

the same strength which was 25% more than the specimen with no horizontal

reinforcement (HCBR-11-3); nevertheless the other specimen with five No.

5 horizontal bars (HCBR-11-7) had the same strength as the nonreinforced

specimen (HCBR-11-3). Similar inconsistencies can be found for the HCBR

piers with two No. 8 vertical bars and the CBRC piers with two No. 5 or

two No. 8 vertical bars. The only case where some consistent trend is

observed is that of the HCBL piers; in this case the specimens with four

No. 5 or four No. 6 (HCBL-11-6 and 11) horizontal bars had 58% higher

strength than the corresponding piers with no horizontal reinforcement

(HCBL-11-3 and 7). However, while the pier with one No.5 horizontal

bar (HCBL-11-4) had 30% higher strength than the corresponding non

reinforced pier (HCBL-11-3), the specimen with two No. 5 horizontal bars

(HCBL-11-9) had the same strength as the nonreinforced one (HCBL-11-7).

The average ultimate shear stress values obtained for the fully

grouted specimens was 162 psi for the HCBL piers, 284 psi for the HCBR

piers and 237 psi for the CBRC piers.

5.2.3 Effect of Partial Grouting

The ultimate shear stress of partially grouted HCBL piers, computed

using net areas, was about 22% higher than the stress of comparable fully

grouted piers. In the case of the HCBR piers the partially grouted

specimens had an average ultimate shear stress about 23% less than the

value obtained for comparable fully grouted piers.
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5.3 Inelastic Behavior

The hysteresis envelopes (average maximum force-deflection curves)

are used as a frame of reference to discuss the inelastic behavior of the

piers. The question of what can be considered a desirable hysteresis

envelope has been discussed in reference [7J pp. 68-70 in qualitative

terms. It is appropriate to recall that the usefulness of the hysteresis

envelopes is that they provide visual comparisons of ductility and ultimate

strength; however, they give no indication of the energy dissipated per

cycle and consideration of this parameter in conjunction with the

ultimate strength, the deformation capacity and comparison of crack

patterns at equal displacements is necessary to evaluate completely the

inelastic characteristics of the pier behavior.

In order to quantify the deformation capabilities of the piers,

hysteresis indicators defined in Section 4.3 are listed in the last

two columns of Tables 4.1 (a), (b) and (c).

5.3.1 Effect of Vertical Reinforcement

No difference can be observed in the hysteresis envelopes of the

HCBL, HCBR and CBRC piers (Figs. 5.1, 5.2 and 5.3, respectively) as the

amount of vertical reinforcement increases from two No. 5 to two No. 8

bars. The same can be said for the inelastic behavior as reflected by the

hysteresis indicators hI and d
2

. It is clear, however, that the

ability of the vertical reinforcement to control the inelastic behavior

of a masonry pier is not well reflected by these results because of the

effect of the additional compressive load developed during the tests,

as explained in Section 5.2.1.
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5.3.2 Effect of Horizontal Reinforcement

Figures 5.1, 5.2 and 5.3 show the changes in the hysteresis

envelopes as the amount of horizontal reinforcement varies. The influence

of the amount of horizontal reinforcement on the inelastic behavior of

the piers is not well defined and although there is a trend indicating

a positive correlation between them, this trend is not consistent as

some of the specimens with a large amount of horizontal reinforcement,

(i.e. HCBR-11-7 and HCBR-11-13), display less desirable inelastic be

havior than specimens with considerably less horizontal reinforcement,

(i.e. HCBR-11-4 and HCBR-ll-10). Hysteresis indicator hl has values

ranging from 3.4 to 8.0 and d
2

from 0.23 inch to 0.64 inch; piers with

the largest amount of horizontal reinforcement, (over four No. 5 steel

bars), generally present the largest inelastic deformation capacities,

as indicated by d
2

.

The strength degradation characteristics, after the ultimate

strength is attained, are more favorable for the HCBL piers than for the

HeBR and CBRe piers. However, the amount of horizontal reinforcement

appears to have no influence in controlling this strength degradation.

5.3.3 Effect of Partial Grouting

Figure 5.4 shows the comparison of hysteresis envelopes of fully

and partially grouted HeBL piers using both gross and net shear st~esses.

Figure 5.5 does the same for the HCBR piers. For the HCBL series, the

inelastic behavior of the partially grouted piers based on net stresses

is better (particularly in the piers with horizontal reinforcement) than

the fully grouted piers. For the HCBR series, the fully grouted piers have

better (particularly with horizontal reinforcement) inelastic behavior than
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the partially grouted piers. For both the HCBL and HCBR tests partial

grouting reduces the deformation capability of the piers. The

hysteresis indicator, d
Z

' of the partially grouted specimens has an

average value only 82% of that of the fully grouted piers in the case

of the HCBL piers and 62% in the case of the HCBR piers. As was true

of the ultimate strength, the effect of partial grouting is detrimental

to the inelastic behavior of HCBR piers but does not significantly affect

the inelastic behavior of HeBL piers.

5.4 Stiffness Degradation

All the piers suffered substantial stiffness degradation when

subjected to gradually increasing lateral displacements. Table 5.1

summarizes this effect and shows two sets of results. The first is a

comparison between the theoretical initial stiffness and the maximum

stiffness measured during the early stages of the test. The theoretical

initial stiffness has been computed in Fig. 4.2 and the assumptions used

are indicated in section 4.3(b). The measured value is almost always

smaller than the theoretical value and it ranges from 38% to 102% for the

HCBL partially grouted piers, from 34% to 65% for the HCBL fully grouted

piers, from 25% to 115% for the HCBR partially grouted piers, from 23%

to 46% for the HCBR fully grouted piers and from 36% to 52% for the

CBRe piers. These large differences in the two values are attributed to

the flexibility of the boundary conditions at small lateral displacements,

as discussed in Section 5.8 of reference [3]. Unlike the double pier test

results[8], the assumed fixed-fixed rotation conditions at the top and

bottom of the pier do not appear to be achieved for small lateral dis-

placements and hence the discrepancy between the calculated and measured

values.
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The second set of results presented in Table 5.1 provides a

comparison of the measured stiffnesses of all piers at applied shear

stresses of 50 psi and 100 psi, and also shows the percentage decreases in

stiffness at these stress levels with respect to the maximum initial

measured value. The average percentage decreases at 50 psi were 24%, 16%

and 19% for the HCBL, HCBR and CBRC piers, respectively. The corresponding

average percentage decreases at 100 psi were 51%, 35% and 33%.

It must be noted that all the stiffness degradation results have

been obtained using displacement increments that gradually increase. Later

tests will determine if the type of degradation observed is similar under

a more random type of loading sequence.

5.4.1 Effect of Reinforcement

Figures 5.6, 5.7 and 5.8 present the stiffness degradation curves

for different amounts of vertical and horizontal reinforcement in the

HCBL, HCBR and CBRC piers, respectively. It is difficult to identify any

consistent relation between the amount of vertical or horizontal reinforce

ment and the rate at which stiffness degrades.

5.4.2 Effect of Partial Grouting

Figures 5.9 and 5.10 compare the stiffness degradation curves for

fully and partially grouted HCBL and HCBR piers, respectively. The trend

of these degradation results is similar and appears to be independent of

the type of grouting.

5.5 Energy Dissipation

The effect of reinforcement on the equivalent damping or energy

dissipation ratio is shown in Figs. 5.11, 5.12 and 5.13 for the HCBL,
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HCBR and CBRC piers, respectively. The effect of partial grouting is

shown in Figs. 5.14 (HCBL piers) and 5.15 (HCBR piers).

Results show that the energy dissipation capacity of all the piers

increases as the lateral displacement increases. This is attributed to the

effect of progressive cracking. However, the amount of both vertical

and horizontal reinforcement and the type of grouting appear to have

little effect on the rate at which the energy is dissipated, except for

the partially grouted HCBR piers (Fig. 5.15) which show a sudden increase

in the energy dissipation at the 0.10 inch lateral displacement level,

relative to the corresponding fully grouted piers.

As with the stiffness degradation property, investigation of the

energy dissipation characteristics of the piers under a more random load

sequence is necessary before analytical models based on the results are

formulated.

5.6 Effect of Compressive Load on Inelastic Behavior

The additional compressive load imposed by the columns during the

tests has been briefly mentioned in Sections 3.1 and 4.2 and has been

discussed and analyzed in detail in Section 5.6 of reference [3].

Therefore, only the specific results from the thirty-one piers with height

to width ratio of 1 will be presented here.

Even though the initial bearing stress for all the tests was set at

50 psi, the additional compressive load resulting from the test fixture

caused this bearing stress to increase to 150 psi for the HeBL piers, to

325 psi for the HCBR piers and to 275 psi for the CBRC piers. As

expected, these maximum values are lower than the maximum bearing stresses

obtained for the piers with height to width ratio of 2, because of the

smaller value of lateral displacement at which these maximum bearing
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stresses were recorded. As was observed before, (piers with height

to width ratio of 2), the piers with no reinforcement at all developed

larger maximum bearing stresses than the values obtained for the rest

of the piers, which are indicated above.

Figure 5.16 shows a free-body diagram at the bottom section of

the pier and the necessary equations to determine the amount of

horizontal load that can be associated with the additional compressive

load. This analysis, which is subject to the limitations established

in Section 5.6 of reference [3J, permits prediction of the pier behavior

if this additional vertical load were not present. The results for

specimens HCBL-11-6 and HCBR-11-6 are indicated in Fig. 5.17. The

procedure followed to obtain the hysteresis envelopes shown in Fig. 5.17

is explained in detail in reference [3], the only difference being in

the determination of the commencement of yielding in the tension vertical

reinforcement; static equilibrium equations and experimental yield

stresses for the vertical reinforcement were used instead of strain gage

readings and experimental yield strains.

The onset of yield in the vertical reinforcement from Fig. 5.17

shows that the lateral force required to produce yield was 70 kip for

specimen HCBL-11-6 and 81 kip for HCBR-11-6. If only the initial

compressive load were considered, the theoretical yielding lateral force

for HCBL-11-6 and HCBR-11-6 would be 52.5 kip. Future tests, with a

modified test setup to remove this axial force effect, will be performed

to validate these theoretical estimates.
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5.7 Correlation Between Critical Tensile Strengths of Square Panels
and Piers

This correlation is presented in Table 5.2 and is discussed in

more detail in reference [8]. The purpose of this investigation was

to evaluate an alternative and more rational test procedure for

establishing the code allowable shear strength of masonry walls. Currently,

the code allowable strength is based on the compressive strength of a

masonry prism.

The square panel measure of critical tensile strength was determined

from a study made by BIUme[l], who proposed the expression shown in Table

5.2. The ultimate load P was taken from the experimental values indicated

in Table 2.2.

The critical tensile strength indicated by the pier tests was

computed at the neutral axis of the pier sections, following the simple

beam theory for a section under combined flexure, shear and axial force.

A parabolic distribution of shear stresses over the cross section was

assumed. The piers developed shear cracks at the same time the ultimate

shear strength was attained; therefore, the peak shear force and the

corresponding compressive load from Tables 4.1 (a), (b) and (c) were used

to evaluate the pier critical tensile strength.

The square panels were all fully grouted; for this reason the

correlation only considers fully grouted HCBL and HCBR piers and all the

CBRC piers. The correlation is considered to be reasonable. This type

of analysis will continue to be performed throughout the pier test

program. The consideration of the whole set of results will permit a

better assessment of this test method in predicting the shear strength of

masonry walls.
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5.8 Other Test Results

The last graph in the test results (Appendix A) shows a comparison

between the lateral displacement of the piers and the percentage of this

displacement that can be attributed to shear distortion as defined in

Fig. 3.4. These results reflect the amount of diagonal cracking present

at each stage of the test. It is interesting to note that in the

initial stiffness computed in Fig. 4.2, the flexural and shear components

of the deformation are in the ratio of 1:2 for fully or solid grouted piers

while the ratio is 1:2.8 for the partially grouted HCBL and HCBR piers.
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TABLE 5.1

EFFECT OF 5Ht:AR STRESS. STEEL RE.t-'FORCD'Etn' A.~D TYPE OF GROUTING ON STiFFNESS DEGRADATION
(Net areas used for ~rtially grouted piers)

Grouting vertic.. l Horizontal TheOretIcal Measured Stiffness at 50 pSl Stiffness at 100 psi
Full (F) s~eel Steel tnit-hl MaXUIWI

PercentaqeSpeci_n P,1rtial (PI Re inforcement Reinforcel"ent Stiffness Initial Percent..ge

SOlid (S) St.f!nes. Measured Decrease Measured Decrea$e

~1tipfinl ('kip/inj (kip/inl ,,, U<.ip{inl '"
HCBL-ll-l , ... ... 1808 ." '" " '" "-, p ... ... 1200 m 124 7l - -

-) , "5 ... 1808 '" "0
,

'" "-. , "5 '.5 1808 1011 .52 11 "0 SO

-5 p "5 "5 "00 .05 m 29 no ..
-, , "5 4'5 1808 '21 .40 • Sf>< "-, , ,.. '0 ,.08 610 412 2J 290 52
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TJ\BL.E 5.2
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APPENDIX A

CATALOG OF TEST RESULTS

The experimental results are arranged in three pages for each test,

containing six photographs of the successive crack patterns and six graphs

obtained from the data collected during the test. These graphs include

the hysteresis loops, the hysteresis envelope, stiffness degradation,

equivalent damping ratio and amount of shear distortion as compared with

total deformation.

In order to show the relation between the photographs of the crack

patterns and the diagrams showing the results, a black dot has been drawn

on the graphs and next to the corresponding picture of the crack pattern.

The details on how each of the diagrams was obtained are presented

in Chapter 4.
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