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ABSTRACT

A computer program is presented for the computation of far-field
tangential time histories due to point earthquake sources. The
program provides accurate results for frequencies of 0-10 Hz and
for receiver distances from one source depth to 500 kilometers.
Cohparisons are made with an independent half~space solution to test
the validity of the far-field assumption in representing time
histories.

A package of four computer programs is given: SHSPEC yields
Fourier spectra on the surface of a multilayered medium at a
specified distance from the point dislocation earthquake soﬁrce;
SHVEL combines the output of SHSPEC with a predetermined source
pulse to generate velocity time histories; DSVLAC uses the output of
SHVEL to generate displacement, velocity and acceleration time
histories; and SDSVSA uses the output of DSVLAC to compute and

tabulate the response spectra of each time history.
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PART I. INTRODUCTION

This report is an update of a publication by Herrmann (1977) for
the U.S. Army Corps of Engineers. Since that time, there have been
many advances in techniques for generating realistic earthquake
ground motion time histories. At present, developments are being
pursued with two approaches involving Laplace transform and Fourier
transform techniques.

The Laplace transform, or Cagniard-de Hoop technique consists
of generalized ray techniques, by which the seismic trace is
constructed by a superposition of seismic arrivals which have taken
separate paths between the earthquake source and receiver. An
advantage is that the method is valid at high frequencies.
Unfortunately, for large distances in a reasonable earth model,
the number of rays contributing to the time history becomes very large
so that considerable effort is involved in keeping track of the rays
as well as computing them.

Helmberger and Malone (1975) applied thebmethod to a study of
local earthquakes. Heaton and Helmberger (1977, 1978) used the
method to model the displacement time histories obtained from
integrated accelerograms of the Borrego Mountain and Brawley earth-
quakes. To a certain extent, the earth model was a variable which
could be modified under constraints to obtain a better fit to the
data. However, good fits were obtained, demonstrating the effect
of the transmission medium upon the ground displacements.
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Displacements, rather than velocities or accelerations were modeled
since lateral heterogeneities in the earth structure should affect
the lower frequency displacements less.

The other approach involves expressing the solution in terms of
a double integral transformation over wave number and frequency
(Haskell, 1964; Hudson, 1969). This method does not consider the
contribution of individual seismic arrivals, but rather yields the
complete solution for an arbitrarily layered halfspace. A drawback is
some difficulty encountered at high freqqencies. On the other hand
the complete solution is found.

The numerical solution is complicated by the presence of
singularities in the wavenumber integrand. For an elastic medium,
branch points aﬁd poles in the complex wavenumber plane are encoun-
tered, The solution may be obtained by a numerical approach to
contour integration (Herrmann, 1977; Herrmann, 1979), or the by
artifice of using slightly complex angular frequency to shift the
complex singularities from the axis of integration (Bouchon and Aki,
1977). If an anelastic medium is considered, the singularities no
longer lie on the real k—axis, so integration may procede simply.
This is quite realistic since the earth is not perfectly elastic,so
one assumes this from the start (Apsel, 1977).

The approach taken here is to expand Herrmann (1977, 1979)'in
detail because it is an independent method and because previous
studies by Nuttli (1973, 1978) have indicated a very low rate of

2



anelastic attenuation in the central United States. The method of

Herrmann (1977) handles these conditions well.



PART II. THEORY

Haskell (1964) and Hudson (1969) obtained the solution for
displacements generated by an elementary point force in the m'th layer
of a structure consisting bf plane parallel layers overlying a
uniform halfspace. Each layer is homogeneous and isotropic with
compressional wave velocity Oy » shear wave velocity Bk and density
Py (k = 1, N). The N'th layer corresponds to the halfspace, A
cylindrical coordinate system (r, ¢, z) is used with origin at the
free surface above the source, with z-axis taken positive downward.
The layer interfaces are the planes z=z, (k=1, 2, ,.., N-1) and the
source is located on the plane z=z +11m. For the purpose of deriva-
tion, the source is required to lie in a layef above the halfspace.
-The thickness of the m'th layer is dm=zm-zm_l.

The expressions for the Fourier transformed displacements at

the free surface z=0 are the following:

u_ (£,6,0,0) =n£0 fo dk {g)° cos n + g°° sin n¢) J, (kr)/F}

T (r,9,0,0) =

. fo dk.{g:C cos np + gzs sin n¢) kJn—l (kr)/FR
n=
- (n/r)(gzC cos n¢ + g:S sin n¢) Jn (kr)/FR 1)



- (n/r)(ggc cos né + gzs sin n¢) Jn(kr)/FL}

E¢(r,¢,0,w) =

nc

oo ns
7 dk {g s

- 2 A o cos np - g
n=0

sin n¢) k Jn—l (kr)/FL

nc

~(n/r) <g$3 cos né - g

sin n¢) J, (kr)/FL

-(n/1r) (g:S cos np - ggc sin n¢) Jn(kr)/FR}.

The displacements are defined such that the vertical displace-
ment uz(r,¢,0,t) is positive downward, that the radial displacement
ur(r,¢,0,t) is positive in a direction away from the source, and that
the tangential displacement u¢(r,¢,0,t) is positive in a clockwise
direction when looking in the positive z-direction.

Since this report is concerned with far-field tangential time
histories, SH, explicit expressions for the P-SV functions 8, 8, and
F afe not given here (c.f. Haskell, 1964). The expressions for

R

the SH functions are as follow:

8y = (g = LS + (Lyy = Lpp) 85°
(2)
8y = (gy = LSy + (Lyy = Lpy) 85°
and
L= "9
where Lij and Jij are the elements of the L and J matricés which are
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defined as the matrix products.

_ 1
I=Ey Agg (@) - - - A @)

(3)
-1
L= EN AN—l (dN—l) e Am +1 (dm + 1) Dm (dm_ hm)'
The layer matrices of Equation 3 are defined as
PV
1 _ N8y 0 (4)
By ) ,
0 -1/3N
- 2
CB SB/DB Vg
A(z) =
2
Lpis "BSB c6 (5)
and - ’
C . ——
B/p SB/po
D(z) = 2 2 , (6)
| 8 V6% B Cg
whefe CB(Z) = cosh sz, SB(Z) = ginh sz, ksqn/B,
and
a - kB2)1/2 K>k,
- 7N
Vg T 2 2
i, -~ k<

The elements of the matrices are to be evaluated using the layer

parameters indicated by the matrix subscripts in Equation 3.



For a point shear dislocation model of an earthquake source, the
source can be represented by two perpendicular dipoles. Let the
orientation of the pressure and tension axes be given by the vectors
P = (Pl, P> p3) and T = (tl, tys t3), respectively. The source

. nc ns
coefficients Si and Si are all zero except for the terms

Sic = -2 (tl ty - Py p3)/4v3;
1s 2
S]7 = =2 (t, ty - py Py)/4mRy (8)
s§°= k(tz—t:?'—pz+p2)/lms2
2 1 2 1 m
st = -2k(t, t, - p, P )/AWBi
2 1 2 172 ’

where k is the wavenumber and By is the shear velocity in the source

layer. The expressions for E _l, D and Sinc,s differ from those given

N
by Haskell (1964) in that they have been modified to eliminate some
apparent singularities. The ratio gnC’S/FL does not differ from that
given by Haskell (1964) or Hudson (1969).

A simple examination of the excitation coefficients in Equation 8
shows that the SH contribution to the tangential displacements
involves just a linear combination of two equivalent sources, a
vertical dip-slip source which has only the n=1 term and a vertical
strike~slip source which has only the n=2 term (a 45° dip-slip source
is another source which involves just the n=2 term). This well known
observation (Langston and Helmberger, 1975 and Harkrider, 1976) means

that the tangential displacements from an arbitrary fault motion

7



model can be represented by a linear combination of the solutions due
to these two sources.

A right lateral vertical strike~slip motion on a fault striking
north would be represented by P=(.707, .707,0) and T=(-.707,.707, 0).
Reverse faulting on a fault dipping 45° to the east or west and
striking north would be represented by P=(0,1,0) and T=(0,0,1).
Vertical dip-slip faulting on a fault striking north with the east
side downthrown would have P=(0, -.707, .707) and T=(0,.707,.707).

The transformed displacements in Equation 1 represent the
displacements due to a delta function time history of motion on the
fault., Usually this delta function response is convolved with s(t),
the time history of the faulting process of the dislocation source,
s(t) = 0 for t<0 and s(t) = M for t>>0. The seismic moment M is
defined by the relation M0 = ﬂG-A, where ﬂ is the rigidity modulus
of the medium,.E is the average dislocation and A is the fault area.
Mo has units of dyne-cm in CGS units. The ground motion as a function
of time is then obtained by taking the inverse Fourier transform of

each transformed displacement in Equation 1. For example,

(r,0,0,8) = @M 7 s(@), (r,0,0,u)exp ({wt)dw (9)

%

where s{w) is the Fourier transform of s(t).

Contour Integration
For a perfectly elastic medium, the evaluation of the wave number

integrals of Equation 1 is complicated by complex singularities along

8



the real k-axis. The integrals to be evaluated are of the form
F(r,w) = f: £ (k,w) J,(kr)dk, (10)

where the function f(k,w) has poles and branch points k and kB

N N
along the real k-axis. The SH functions g¢nc,s and FL do not have-
the ku branch point because of the absence of the v, term in

N N

Equations 4, 5 and 6. Following Ewing, Jardetzky and Press (1957),
branch cuts are taken along the negative imaginary k-axis [-iw, 0]
and along the real k-axis [O, kB 1.
N
Expressing the Bessel function as a sum of Hankel functions of
the first and second kinds, performing contour integration in the

first and fourth quadrants of the complex k-plane, £ = k + it, it is

not difficult to show that Equation 10 becomes

i

K
%JOBN (f, (o) - £_ (w) B2 (lr)d

F(r,w)

_ w1 ] Res £(k,) ngz) (kr) (11)
+(1/7) fj [f+(ir,w) exp(-inm/2)

+f (-it,w)exp(inn/2)] Kn(Tr)dT,

where Kn(z) is the modified Bessel function. The + or - subscripts

indicate that Im v, sV >0 or that Im va , v, <0

N BN N BN

respectively, be used to evaluate the expression for f(k,w).
Equation 11 contains the contributions of a real axis branch line

integral, the surface wave poles and the imaginary axis branch line

9



integral. This expression can be used for P-SV terms as well as for
SH terms since the two real axis branch line integrals can be com-
bined into one in the case of P-SV functions if one is not interested
in evaluating the individual contributions of each branch line

integral.

10



PART III: NUMERICAL TECHNIQUES
Contour Integration

Since both the Hankel function and modified Bessel function are
undefined for zero argument, there are some inherent limitations in
evaluating Equation 10, even before the problems of numerical integra-
tion are introduced. Following Fuchs and Mgller (1971) the real
axis branch line integral is evaluated using the transformation k =
kBN sin v, v = [0, 7/2]. The real-axis branch line integral is now of
the form

/2

k, | s
B 0

sin vy, ) H(z)(k siny r) cosy dvy, (12)
N n "8

BN N

where 1
g(x,w) =3 [£,(x,0) - f_(x,0)].

The reason for this transformation is that it permits the evaluation of
the Sommerfeld integral, which is basic to the wave propagation problem.
A frapezoidal rule can be used to evaluate Equation 12, but such a rule
becomes inefficient at large distances and high frequencies due to the
rapidly oscillating nature of the Hankel function and the g(x,w) term.
To address this problem, it is assumed that a Ay be chosen such that
g(x,w) varies slowly enough over the range [v,Y +Ay]’that it can be

approximated by linear segments. The integral of Equation 12 is now

L L s ey ] 8D (e v sin vy dy (13)
N 121 i i i n BN ?

Yy < (i-1)Ay and Ay = (w/2M).

11



To evaluate Equation 13, a tabulated integral of the Hankel
function from Abramowitz and Stegun (1964) is used together with

recurrence relations of the Hankel functions. Define

* @)
hx) = [ H,"'(2) dz, (14)
0
where the integral can be expressed in terms of Hankel functions
and Struve functions (Abramowitz and Stegun, 1964). The following are

indefinite integrals of the Hankel functions which are of use in this

study:
JEP (@) 4z = n@
reiiP (2) az = = H§2)(z)
raP @ a2 = - 1P (@)
sz§2)(z) dz = -z Héz)(z) + h(z) (15)
! H;z)(z) dz = =2 Hfz)(z) + h(z)

széz)(z) dz = -2 Héz?(z) -2 g§2)(z)

It can be shown that

¥ HAY
i _ (2)
[Ai + Bi(Y Yi)] H (kB r sin v) dy

Yi N

kB rlsin(yi+Ay)
- N e, + D, (t-t )] B P (6) at
k

x sin(y,)
BN i

12



]

(Ci—Diti) [h(t)i+1) - h(ti)]

+ D, [t, H(z)

(2) B
g e Iy (ti+l) - tiHl (ti)] for n=o

(16)

and
_ 2) ey
=-C; [H (ti+l) Ho (ti)]
+ D, [h(t,,,) - h(t,) - (t,,.-t.) H(z) (t)1
i Ui+ i i+l i o i
for n=1
where
t, =k, r sin v,
i BN i
ti+l = kBN r sin (yi+Ay)

C, =A./k, r cos v,
178y i

o
I

2
Bi/(kBN r cos Yi) .

In evaluating Equation 12, a test is made to determine if it is
sufficient to calculate the integral using a trapezoidal rule rather
than using Equation 16.

The residue contribution of a function g(z)/h(z) having a simple
pole at z = z5 is very simply g(zo)/h'(zo), where h'(z) is the first
derivative of h(z) with respect to z. The simple poles of Equation 1

arise due to the zeroes of the functions FR or FL.

13



The third expression in Equation 11 is an integral of the

form
[, e(t,wK  (rr)dr (17)

Since the function Kn(z) decreases in an exponential manner and
since it has a singularity at z=o, the use of a Gauss-Laguerre
integration rule is suggested if G(t,w) does not oscillate too
rapidly. After a change in variable and some manipulation, appli-
cation of the Gauss-Laguerre yule yields the following approximation
to Equation 17:

m

(1/r) Wj G(xj/r,m)exp(xj)Kh(xj), (18)

z
3=1

where xj and Wj are the absgissas and weights of an m'th order
integration rule. Error is introduced due to the oscillatory
nature of the function G(t,w). However, this can be mitigated by
uging a very high order rule, so that the abscissas are spaced closely
enough to sample the oscillations of G(t,w). Because the weights
decrease rapidly for large Xj’ one can truncate the number of terms
in the summation without significantly affecting the result. Follow-
ing the suggestion of Davis and Rabinowitz (1975), the first 24
abscissas and weights of an m=68 rule are used.

The numerical contour integration techniques were tested by

applying them to two integrands for which known analytic solutions

exist. These are
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g exp(—sz) Jo(kr) k dk

= (z/Rz) (L/R + ikB) exp(—ikBR) (19)
and

.0

£ exp(—sz) (k/vg) Jl(kr) k dk

= @/R®) (/R + ik) exp(-ik,R) (20)
where R2 = r2 + z2. Equations 19 and 20 are obtained by taking the
partial derivatives -3/3z and -3/3r, respectively, of the Sommerfeld
integral. A detailéd study of Equations 1-8 shows. that the functions
of Equations 19 and 20 are directly proportional to the far-field SH
wave solution in an infinite medium excited by vertical dip-slip and
vertical strike-slip sources, respectively. To a first order, SH
wave displacements in a layered medium will involve similar terms.

Thus these integrals provide a realistic test of the numerical inte-

gration techniques. The branch point at k = k_  introduces a singularity

B
in the real axis integratibn for Equation 20, but the change in variable
k = kB sin y removes the singularity. In a layered halfspace,

surface wave poles can coincide witﬁ the branch point. Even though

the change in variable may alleviate this problem, it is avoided

numerically by taking the range of y as [0,n/2-¢]. An e = 0.0001

gives good results for Equations 19 and 20 even at r = 500 km and

15



frequencies up to 10 hz.

The integrals of Equations 19 and 20 were evaluated numerically
using the techniques outlined in Equations 13 and 18. A value of
B = 3.55 km/sec was used. The results of the tests are simply out-
lined. First, the numerical solution is valid at distances, r, as
small as one-half source depth z, for all frequencies. At smaller
distances, numerical evaluation of Equation 17 using the Gauss-
Laguerre rule of Equation 18 breaks down due to inadequate sampling
of the oscillating function G(xj/r,w) at low frequencies; a higher
order rule would have to be used. At large distances and high
frequencies the numerical integration of Equation 12 can fail due to
the rapidly oscillating nature of the Hankel functions. Good re-
sults were obtained for Equation 20 at distances up to 500 km and
frequencies up to 10 Hz using M=100, 200 and 300 for the frequency
intervals (0,1), (1,5), and (5,10) Hz, respectively. On the other
hand, the same choices of M only yielded good results for Equation 19
to distances of 100 km at frequencies of 10 Hz. This is due to the
more rapid oscillation of the integrand of the real axis integral
for Equation 19 than for Equation 20. Equation 19 really fails since
one is trying to duplicate a z/R2 dependence numerically for
R>>z, Experience with more complicated earth models indicates that
the size of the error in evaluating the real axis branch line inte-
gral for a vertical dip-slip source is acceptable, since the con-
tribution of the branch line integrals are quite small compared to

the larger contributions of the surface wave poles,

16



It can be shown that the function g(x,w) in Equation 12 can

be written as

glk,w) = i Im f+(k,w) . (21)

since f+(k,w) is the complex conjugate of f (k,w) for the SH problem
and also for similar terms of the P-SV problem. Since g(k,w) is an
oscillatory function, it is informative to plot Im f+(k,w) as a func-
‘tion of frequency and wavenumber for various sources and earth models
to obtain an appreciation of the nature of the integrand in Equation
12. In the following figures G1I is kIm f+(k,w) for the vertical
dip-slip source and G2I is Im f+(k,w) for the vertical strike-slip
source excitation of SH waves.

Figures 1, 2 and 3 show normalized G1I and G2I for focal depths
of 1, 10 and 20 km, respectively, in a homogeneous halfspace model
given in Table 1. The horizontal axis varies from k=0 to k:kBN.

The functions are plotted.at frequencies of 0.1, 0.5, 1.0, 5.0 and

10.0 Hz, The singularity at k=k6

is due to the branch point for the
halfspace problem. ’
Figures 4~6 present GlI and G2I for various depths in the single
layer over a halfgpace model of Table 1, while Figures 7-9 present
the integrands for the four layer over a halfspace model of Table 1.

The integrands of Figures 1-3 are just those of Equations 19

and 20. It is seen that an increase in frequency or in focal

17



Table 1

Earth Models

d (km) d(km/sec) B8(km/sec) p(gm/cmB)
Halfspace

- 6,00 3.55 2.8

Simple Crustal Model (SCM)
40 6.15 3,55 2.8

- ’ 8.09 4,67 3.3

Central U. S§. Model (CUS)

1 5.00 2.89 2.5
9 6.10 3.52 2.7 .
10 6.40 3.70 2.9
20 6.70 3.87 3.0
— - 8.15 4.70 3.4

.18
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Fig. 1. G1I and G2I as a function of dimensionless wavenumber

(k/kB ) for frequencies of 0,1, 0.5, 1.0, 5.0 and 10.0 Hz.

The sgurce is at a depth of 1 km in a simple halfspace.
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Fig. 2. GI1I and G21 for a source at a depth of 10 km in a simple
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Fig. 4. GLI and G2I for a source at a depth of 1 km in the simple
crustal model.

22



10.00

$.00

1.00

119

0.50

.10

| g T Lot ™ T

.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10.00

5.00

1.00

129

0.50

Fig. 5. G1I and G2I for a source at a depth of 10 km in the simple
crustal model.

23



10.00

119

1.00

g.50

o —\/

0.0 O 0.2 0.3 04 0.5 08 0.7 0.8 0.9 1.0

10.00

129

1.00

0.50

9.0 03 0.2 0.3 0.4 0.5 0.8 0.7 083 0.9 1.0

Fig. 6. GlI and G2I for a source at a depth of 20 km in the simple
crustal model.

24,



10.00

5-00
@
) 1.00
0.50

0.10

6.0 0.1 0.2 0.3 0.4 0.8 0.8 0.7 0.8 0.8 1.0

10.00

5.00

0.50

A__—_————""”’////

0.10

0.0 0.4 0.2 0.9 0.4 0.5 0.8 0.7 0.8 0.9 1.0

Fig. 7. G1I and G2I for a source at a depth of 1 km in the central
U.S. model.

25



| L

680 6. 0.2 0.3 0.4 9085 0.8 0.7 08 0.8 1.0

10.00

1.00

129

0.50

-4 o L L pug v =, ¥ L=

0.0 0. 0.2 0.9 0.4 D5 06 0.7 08 0.3 1.0

Fig. 8. G1I and G2I for a source at a depth of 10 km in the central
U. S§. model.

26



t0.00 | A ‘ ]

5.00

1-00-—‘""'""“‘—~—-\\\\_"—~\J//

(T

¥ -

60 0.4 0.2 0.3 D4 D5 0.8 0.7 ©0.8 0.9 1.0

119

16.00

§.00

1.00

129

00 O0.a 0.2 0.3 0« 0§ 0.8 0.7 08 0.8 1.0

Fig. 9. G1I and G2I for a source at a depth of 20 km in the central
U. S. model.

27



depth causes the function g(k,w) to oscillate more rapidly. The
effect of a more complicated structure is to introduce character to
g(k,mj, but the simple observations still hold. . The integration
techniques used in the program SHSPEC have proven to work well to
distances of 500 km and frequencies of up to 4 Hz (we have not yet
run higher frequencies routinely).

The numerical techniques just described in this section are

used by the computer program SHSPEC.
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Velocity Time Histories

The spectra computed by the program SHSPEC are combined with a
source time function in the program SHVEL to yield a velocity time
history. A velocity time history is computed rather than a dis-
placement time history because a discrete Fourier transform is used
to convert spectra to time histories. Near the earthquake source,
a final static offset is expected in the ground displacements. This
offset cannot be handled by a discrete Fourier transform because of
the inherent periodicity of the time series. To obtain the velocity
time history of the ground motion, one need only convolve the impulse
response of the medium with the velocity time history of the rupture
process, The following two pulses are possible representations of

this source function.

0 t<0
t/T 0<t<t (22)
T sl(t) =

2 -t/ T<E<2T

0 t>21
and

0 t<0

%-(t/r)2 O<t<Tt

2t s, (0) =4-1 @/ + 2@/ e

'% (t/'r)2 - 4(t/1)+8  3tst<bT (23)

L 0 t>4T
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These pulses have been normalized such that the area under each
pulse equals unity. Thé Fourier amplitude spectrum of sl(t)

is such that its shape can be enveloped by an £° and f'-2 asymptote,
which intersect at a corner frequency fc = (1/(wt) Hz. The
Fourier amplitude spectrum of the other pulse can be enveloped by
£° and f_3 asymptotes‘which intersect at a corner frequency of

_fc = 1/(4.36T).

The corner frequencies are mentioned since the estimation of
the corner frequency and seismic moment of an earthquake is current
practice in the specification of an earthquake by seismologists
today. Most observations of the ground motion spectra of earth-
quakes indicate that the high frequency spectra varies as f—z.

Thus the source pulse sl(L) might be favored. However, this choice
is not very appealing on theoretical or numerical grounds since

the whole-space solutions of Equation 19 and 20 would indicate
delta function discontiﬁuities in the acceleration time history at
large distances, whereas the sz(t) large distance accelerations
have only step discontinuities. Boore and Joyner (1978) provided

a partial explanation. While sz(t) might be a good’representation
of a source time function to use for a small portion of the fault
surface or for a faulting process involving coherent rupture, if
one were to superimpose many sz(t) sources on the fault surface
which "turn on" during an incoherent rupture process, the observed

far-field spectrum will be enriched in high frequencies due to
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this incoherence, In the case of incoherent rupture one might be able
to have both finite far—field accelerations as well as a high fre-
quency spectral asymptote varying as f—z.

Since the input to SHSPEC specified layer velocities in units of

2

. . . . . 3
km/sec, distances in units of km and densities in units of gm/cm

source velocity pulses with unit area, such as sl(t) and 52(t>’ will
correspond to sources with a seismic moment of 1.0E+20 dyne-cm.

Two time histories are presented, Gl and G2. Gl is the solu-
tion for the vertical dip-slip source and G2 is the solution for the
vertical strike-slip source. Combining Equations 1, 2 and 8, the
general equation for far-field displacements (those involving only

g¢ kJn_l) are
U¢(t) = Gl[—Z(t2t3—p2p3)cos¢ +2(t1t3—plp3)sin¢] (24)

2

2 2 2, .
+ GZ[—Z(tltz—plpz)coszq)—(t2 —tl ~Py +pl )Ysin2¢]
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Displacement and Acceleration Time Histories

The program DSVLAC uses the velocity time history output of
SHVEL to compute the ground displacement and acceleration time his-
tories. The numerical realization of these ﬁime histories is not as
obvious as it seems, especially for the ground accelerations. The
output of SHVEL consists of ground velocity time histories at discrete
points in time, Some assumption has to be made concerning the veloc-
ity variation at times in between, prior to integration or differen-
tiation of the time series. Several approaches were considered, in-
cluding the use of cubic spline interpolation. After much thought,
the variation of ground velocity was assumed to be linear between the
discretely sampled values. Thus, ground displacements can be com~
puted using a simple two-point trapezoidal integration rule.

The acceleration time history then consists of a sequence of
step segments. While this method of presenting the acceleration timé
history may seem odd, there are certain advantages. The cubic
spline interpolation method was discounted because the smoothing
process introduced ripples, which were purely an artifact of the
smoothing process, into the acceleration time histories. The use of
linear segments for the velocity time history permits an estimate of
the acceleration that is not obscured by a smoothing précess and also

points out the discrete nature of the ground motion synthesis.
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Response Spectra

The program SDSVSA uses the output of the program DSVLAC to
compute the response spectra of the seismic traces. The input to
SDSVSA from DSVLAC consists of the velocity time history at a given
distance for the particular source as well as the computed maximum
displacement, velocity and acceleration of the time history. The
development of SDSVSA follows that of Nigam and Jennings (1969),
with the modification that the velocity varies linearly between two
time samples for the reasons used in discussing DSVLAC,

The equation of motion of a single degree of freedom oscillator
with natural frequency w and fraction of critical damping 7 sub-

jected to a base acceleration a(t) is

..

2 o4 2tk + wix = -a(t). (25)

To find the motion x(t) in the time interval tijpiti the change

+1

of variable T = t—ti is introduced so that the equation of motion

becomes

a%x (1) + 200 dx(T) + 0¥ x(1) = -a(1). (26)

de dr

Integrating with respect to T, one obtains
£(1) - %(0) + 2twx(T) - 2tux(o) + w’ [1 x(r") dr’

- - (D)= (o)} (27)
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When v(T) is given by linear segments, then

_ . AV(O) 28
v(t) = v(0) + T T . (28)
Equation 27 now becomes

%(t) + 2Cwx(t) + wz{j x(t")dt' = %(0) +2§wX(o)-'%%(o) .T (29)

This equation can be solved by using Laplace transform techniques.

After some algebraic manipulation, the motion of the oscillator at

time t.,q can be found iteratively by the relation
X 211 312 *1 by
- + Vie Vi GO
X401 P AY) *1 >
where
a11 =C+wz S
a12 =8
31 = - s
a9 = C -wr S
b, = (-1 +C+ug 5)/ wlht
b, = ~-8/At
C = exp(- TwAt) cos (wdAt)
8 = exp(-CwAt) sin (wdAt)/wd
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and

wg = W 1 - C2)1/2

These results could also be obtained from Nigam and Jennings (1969)
by setting their a; = a5, -

The response spectra are defined as

Sh = MAX [ Xi(w,C) 1

SV = MAX [ xi(w,«i) 1 (31)
and

SA =MAX [ % (w,g) 1 ,
where

2
- (Zf;wxi +w X, )

The pseudo velocity spectra is defined as

PSV = w SD .
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PART IV. NUMERICAL EXAMPLES

Truncation

A term by term inspection of Equation 1 shows that the tangential
displacement can be thought to be made up of a far-field SH term, a
near—-field SH term, and a near-field P-SV term. Since it is much
easier and faster to compute the SH functions than the P-SV terms,
it is of interest to see the distance range at which a truncated
version would provide acceptable results. To do this, a computer
program developed by Johnson (1974) was used to compute the tan-
gential displacements at the surface of an elastic halfspace for a
north-south striking right lateral strike-slip source and for a
north-south striking vertical dip-slip source, with west side down-
thrown, at a receiver azimuth of 0°. A seismic moment of 3.53 E +21

dyne-cm was used together with the source function sz(t) with

T = 0.5 sec at a depth of 10 km in a halfspace with o = 6.15 km/sec,

3.55 km/sec and p = 2.8 gm/cm3.

B8
Figures 10, 11 and 12 show the computed displacement, velocity
and acceleration time histories, respectively, at distances of 10,25,
50 and 75 km for the vertical dip-slip source. Figures 13, 14 and 15
are the corresponding displacement, velocity and acceleration time
histories, respectively, for the vertical strike-slip source. The
units for displacement, velocity and acceleration are cm, cm/sec

2
and cm/sec”, respectively. At each distance, the trace on the left
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corresponds to the complete solution, the center trace corresponds
to the solution when the gr/FR term is dropped, while the trace on

the right corresponds to the far-field SH solution obtained by using

only the term g¢kJn_1(kr)/FL in Equation 1.
Remarkably, the complete solution (left trace) and the far-field
solﬁtion (right trace) are very similar at distances greater than
25 km. At nearer distances, the near-field P and SV wave contribu-
tions change the character of the signal, especially for the ground
displacements. The center trace shows the presence of non-causal,
non-propagating arrivals, especially for the vertical dip-slip source.
Herrmann (1978) interpreted this as an effect of improper truncation,
in that the non-causal arrival must be cancelled by a similar
"arrival" in the P-SV term. The difference between the true and far-
field solution is clearly frequency dependent, with the difference
becoming smaller at higher frequencies, as can be seen by comparing
the displacement, velocity and acceleration time histories, or by a
study of the wave number dependence of the terms in Equation 1.
Similar figures were computed using T = 1.0 which indicated
significant differences between true and far-field displacements at
distances less than 50 km, whereas fhe velocity and acceleration
time histories were reasonally close at distances as small as 25 km.
Because of the lack of a similar complete solution for a layered

medium problem, it is assumed that the observations made here

concerning the adequacy of the far-field solution will still hold.
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From this point onward only the time histories associated with

far-field SH contributions will be computed.

Contribution of Singularities

To understand the relative importance of each term in Equation
11, a series displacement of time histories were pfepared. These are
shown in Figures 16 and 17 for a source at a depth of 10 km in the
Central U.S. model of Table 1 with a seismic moment of 3.53 E +22
dyne-cm, a source time function sz(t) with T = 0.5 sec and a low pass
filter set at 1.0 Hz. The traces on the left and right of Figure 16
correspond to solutions at a distance of 25 km due to vertical dip-
slip and vertical strike~slip sources, respectively. Solution (a) is
just the contribution of the poles, (b) is the effect of adding the
real axis branch line integral to the pole contribution, and (c) is
the complete solution consisting of the pole contributions and real
and imaginary axis branch.line integrals. The pole contributions
yield a non-causal arrival for both sources (the later arrivals are
in fact early negative time arrivals due to the inherent periodicity
of the discrete Fourier transform). The addition of the real aﬁis
branch line integral improves causality and raises signal amplitudes
to their final levels. The branch line integral along the negative
imaginary k-axis, affects the signal amplitude slightly while making
the signal causal.

Figure 17 is similar to Figure 16 except that the comparison
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is made at a distance of 300 km. Surprisingly, this figure shows

that at large distances the pole contributions describe the signal
quite well, even the Sn phases. The addition of the real axis

branch line integral just improves causality, while the imaginary

axis branch line integral has little effect because of the 1/r factor
in Equation 18, Using other values of 1 the waveform distortion ob-
tained at short distances using just the poles, or poles and real axis
branch line integrals, is found to get worse as higher frequencies are
excluded.

An insight has been obtained on saving computer time. At short
distances, the complete solution with poles and branch line integrals
is required for proper description of low frequency response. At
large distances, especially if one is not bothered by low amplitude
non-causal arrivals, the pole contributions are all that are re-
quired for a realistic estimate of the solution. By not having to
perform the imaginary axis branch line integral at distances greater
than 100 km, computer time savings can be significant. Swanger and
Boore (1978) presented some examples showing how the individual sur-
face wave modes add to form the solution. Their study also shows how

well the pole contributions alone can fit real strong motion data.
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Model Studies

To obtain an idea of the process of wave propagation, far-field
time histories were computed for two of the earth models given in
Table 1. A point dislocation source with a seismic moment of
3.53 E +22 dyne~cm and a source time function sz(t) witth = 0.5 sec
is placed at a depth of 10 km. The signals have been windowed to
exclude all frequencies greater than 1.0 Hz. The resulting ground
velocity time histofies at various distances are given in Figure 18
for the single layer over a halfspace crustal model and in Figure 19
for the four layer over a halfspace crustal model.- In these figures,
the traces in column "a" correspond to a receiver at the given dis-
tance due north of a north-south striking vertical dip-slip source
with the west side downthrown while those in column "b" correspond
to ground motions due north of a north-south striking right lateral
vertical strike-slip source. In Figure 18, it is seen that the first
arrival is followed by tw6 similar pulses of lower amplitude for the
dip~slip source. These arrivals are the first Moho reflections due
to downward and upward rays leaving the source. As distance in-
creases, these reflections undergo a phase change when supercritical
reflection occurs. The subcritical, non-phase changed, reflections
are of low amplitude relative to the supercritical reflections. The
surface wave can be said to emerge at a distance greater than 75 km

as the number of supercritical reflections in the signal increases.

A similar effect can be seen with the vertical strike-slip source,
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column "b", except that the near vertical reflections at short dis-
tances are not very large. This is because the vertical dip-slip
source has a maximum in fts SH radiation pattern at vertical take-off
angles, while the vertical strike-slip source has a mode for vertical
take-off angles (Helmberger, 1974).

For a complicated structure, Figure 19, interpretation of the
various arrivals in terms of particular ray paths is not very obvious,
The vertical dip-slip source, column "a'", shows some very distinct
reflected phases which can be followed out to 75 km. At larger dis-
tances, the number of significant arrivals within a short time in-
terval becomes so large that they are not seen as distinct arrivals,
but rather és a composite surface wave., Refracted Sn arrivals can be
seen emerging from the surface wave group at larger distances, An
interesting point is the significant variation in the signal character
over distances of only fifty kilometers, whereas gross properties such
as maximum velocity only vary slightly. |

Figures 20 and 21 show the pseudo velocity response spectra at
distances of 25 and 300 km, respectively for a vertical strike slip
source at a depth of 5 km in the central U. S. model of Table 1. A
seismic moment of 5.0E +19 dyne-cm, a source pulse sz(t) with
T = 0.5 sec, an@ a low pass filter set at 4.0 Hz were used. The
insert in each figure shows the computed acceleration time histories.
Tabulated values of the output of SDSVSA corresponding to the plots,

Figures 20 and 21, are givén in Figures 22 and 23.
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Fig. 21. Pseudo velocity response spectra of a vertical strike-slip
source at a distance of 300 km for 0, 2, 5 and 10 percent
critical damping. The inset is the acceleration time history.
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It is interesting to note how much character is introduced into the
response spectrum at the larger distance, which is due just to wave
propagation effects.

As a practical application of the theory presented,the varia-
tion of maximum velocity with distance, focal depth, and source
duration was studied. The signals were generated using a frequency
window of 0 - 1 Hz, as before. To enable comparison with a simpler
model, the single layer over a halfspace crustal model was used,
and the results were compared to those for a uniform halfspace with
properties of just the layer. Figure 24 shows the effect of focal
depth. The source pulse had T = 1 sec and a seismic moment of
3.53 E +>21 dyne-cm, .The.computed single layer over a halfspace
solutions are given by the symbols, while the halfspace solutions
are given by the solid curves. Figure 25 shows the variation with
source pulse duration, seismic moment fixed. Several points are
immediately apparent. Fifst, out to distances of about 75 km the
halfspace solution is quite good. At distances greater than 75 km
the halfspace solution breaks down, especially for the vertical dip-
slip source, for which the apparent geometrical spreading changes
from r-2 to r—l. This is the result of the contribution of super-
critically reflected arrivals, or equivalently, the process of sur-
face wave formation. Note the difference in apparent geometrical
spreading between the vertical dip-slip and vertical strike-slip

sources. Finally the variation of maximum velocity with source pulse
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duration can be used with source spectrum scaling laws to see how
this parameter varies with the size of the earthquakes, e.g. if
seismic moment is proportional to the cube of source pulse duration,
“constant stress drop'" scaling, an increase in seismic moment by a
factor of 8 would yield an increase in maximum velocity by a factor
of about 2, This may be of value in scaling strong motion. Since
only the far-field SH term was used, the scaling at short distances

is only approximate,
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PART V. CONCLUSIONS

The theory for the far-field ground motion due to dislocation
earthquakes has been presented together with a description of the
numerical techniques used for this realization. Some examples were
presented to provide an insight to the numerical methods as well as to
present some examples of how wave shapes are affected by propagation
through a layered earth.

The computer programs documented in this report should be
useful for more detailed studies of wave generation due to complex
earthquake‘rupture processes as well as for inferring more realistic

ground motion scaling rules than are currently being used.
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APPENDIX A: COMPUTER PROGRAM SHSPEC
Function

This program computes the far-field complex Fourier spectra for
point vertical strike-slip and vertical dip-slip earthquake sources at
a fixed depth in a layered medium. The program is written in FORTRAN
IV for the Honeywell 6023 digital computer at Saint Louis University.
The programming has been kept simple to facilitate conversion to other
computers. As it stands, the program provides good results for the
distance range of about 5 km to 500 km for frequencies up to 10 Hz.
Special normalization has been introduced to take into account the
fact that the Honeywell 6023 floating point number is limited to the

38

range 10 ~  to 10+38.

Input

Input is from card through File 60. A description of input

variables is given in Table Al.

Output

Output is through File 61 and also through standard printer
output using the PRINT statement. A description of printer output is

given in Table A2.

File Codes
The following file codes are used for I/0 functions:

11 Mass storage file used for temporary storage
by subroutines EXCIT and WVINT

12 Mass storage file used to store Gl and G2
solutions in frequency domain for specified

distances. Contents of this file are used as
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input by the program SHVEL.

60 Card Reader
61 Printer output using WRITE(61,n) statement.
- Printer output using PRINT n, statement.

Sample Input

Sample input data for generating the traces of Figure 19 are

given in Table A3.

Program Listing

A description of the various subroutines of the program is given

in Table A4, while a listing of the program is given in Table A5.



Table Al

Input Variables

Card Variable Name Columns Format Description
1 DEPTH 1-10 F10.5 Focal depth in km
FL 11-20 F10.5 Low frequency cutoff in Hz
FU 21-30 F10.5 High frequency cutoff in Hz
DT 31-40 F10.5 Sample interval in seconds. Time
series in N*DT seconds long.
N 41-45 15 Number of points in time series.
Must be power of two and .LE.1024,
Large N requires much computer time
VRED 46-55 F10.5 Used to compute reduced travel time
t-R/VRED for shifted time axis. If
VRED.EQ.0, no reduced time used.
2 D 1-10 F10.5 Layer thickness in km. Read Card
2's until end of model indicated by
D.LE.O
11-20 F10.5 Layer P wave velocity in km/sec
B 21-30 F10.5 Layer S wave velocity in km/sec
RHO 31-40 F10.5 Layer density in gm/cm3
3 R 1-10 F10.5 Epicentral distance in km. Keep
reading Card 3's until one found
with R.LT.0, then end program and
close files.
XouT 11-20 F10.5 Control variable
XOUT=0-~complete solution
XOUT=1-~solution using poles and
real axis branch line integral
X0UT=2--solution using poles only
TO 21-30 F10.5 .EQ.O0 use VRED to plot time series

as a function of reduced travel time
.NE.O TO is the time shift for plot




Table A2

Qutput Variables

Name Descritpion

Output File 61:

FL Low frequency cutoff

FU High frequency cutoff

DF Frequency interval (DF=1/(N#DT))

N1 Index to indicate array position of FL

N2 Index to indicate array position of FU

DEPTH Focal depth in km

FREQ Frequencies at which theoretical response is calculated
R Epicentral distance in km

10UT Type of output. IQUT=3-XOUT, XOUT defined in Tabel Al
TO Computed time shift from input TO of VRED input

Output File for PRINT statement

D Layer thickness in km

A Layer P wave velocity in km/sec
B Layer S wave velocity in km/sec
RHO Layer density in gm/cm3
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Table A3

Sample Input

3 L4 6
1 0 0 5 0
10. 0.0 1.0 0.25 256
1.0 5.0 2.89 2.50
9.0 6.1 3.52 2.70
10. 6.4 3.70 2.90
20. 6.7 3.87 3.00
0.0 8.15 4.70 3.40
25. 0.0
50. 0.0
75. 0.0
100. 0.0
150. 0.0
200. 0.0
250. 0.0
350. 0.0
450, 0.0
-1.0




Table A4

Subroutine Description

Subroutine
Name Function

RSHOF Computes the functions of Equation 2 for given wvalues
of real wavenumber k and frequency

EXCIT Computes ratios of the type gl/FL and gl/F£ for
various values of k for each frequency and stores the
results on File 11 for later calls by WVINT

WVINT Performs numerical integration

HANK Evaluates Hankel functions Hﬁzz(kr)

b

IHANK Evaluates fg Héz)(z) dz

AXIMAG Performs numerical integration along negative imagi-
nary k-axis

SHCFIK Computes ratio of the type gl/FL for imaginary values
of wavenumber

BESMOD Computes modified Bessel function values

SRCMOD Reads in earth model parameters

SRCLYR Using the given focal depth, this searches for source
layer

SHCOEF Computes matrix products of Equation 3




SHSPEC
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Table A5
PAGE 1

PROGRAM SWSPEC
COMPLEX DUML,DUM2
COMMON 7/ MODEL 7/ D(1%),A(15),B(15),RHO(15),MMAX
COMMON/SOURCE/DEPTH, LMAX,DPH
COMMON /7 INT / 10UY
DIMENSION DATA(2048),DATAL(2048)
THIS PROGRAM EVALUATES THE SH WAVE GENERATION BY A
SOURCE IN A LAYERED MEDIUM, FOR REFERENCES SEE
J. A HUDSON (1969) GEOPHYS,J, VOL 18 PP 353-370,
N,A.MASKELL (1964) B.S,S5,4, VAL 54 PR 377-393,

DATA SHOULD BE ENTERED IN THE FOLLOWING ORDER

CARD 1 DEPTH,FL FU,DTsN

€ARD 2 D,4,B,RKO

vevvos EARTH MODEL READ IN

L ..es+ MORE CARD 2 - D,LE,0 FOR HALFSPACE

eARD 3 R,I10UT,TO

C..w.s MORE CARD 3 -~ USE R,LT,0 YO END CARD 3 SEQUENCE

To SAVE COMPUTER STQORAGE, INTYERMEDIATE RESULTS ARE
WRITTEN ON FILE 11. FILE 12 CONTAINS COMPLEX SPECTRA
AT DISTANCE R,

READ IN FOCAL DEPTH, LOWER AND UPPER FREQUENCY BOUNDS,
DY AND N

READ(60,1) DEPTH,FL,FU,DT,N,VRED

FORMAT(4F10,5,15,F10, 5)

iF(DEPTH,LT,0.,0) GO TQ 9998

WRITE(12,1) DEPTH,FL,FU.DT,N,VRED

call SRCMOD

CALL SRGLYR

DF = 1./(NsDT)
Ne = FL/DF

N2 = PU/DF

Ni = N1 + 1

N2 2 N2 + 1

NYQ = (N/2) + 1

NYQ2 % 2 # NYQ

WRITE(61,9) FL,FU,DFsN12N2,DEPTH

FORMAT(1MO,4HFL =,F10,5,5X,44FU 5,F40,5.5%,4HDF =z,F10,

15.,5X%, 4HN1 -.14.5x.4HN2 2,14,5X, 7HDEPTH =,F10.2)

WRITE(61,2)
PORMAT(1HG,39HFREQUENCIES FOR WHICR RESPONSE COMPUTED)
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aaoaaa

3
100

‘500

601

380

250
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Do 100 | s N1,N2

PREQ * (l~g) « DP

WRITE(61,3) FREQ

#uRMArtiu JF10,6)

CALL EXCIT(FREQ)

CONTINUE

READ(60.,1) R,x0UT,TO

R = ERICENTRAL DISTANCE

XoUT % 0.0 POLES + REAL AX!S BRANCR LINE +« !MAGINARY
AX1S BRANCH LINE INTEGRALS®

XauUT = 1.0 POLES + REAL AX!S BRANCR LINE

XoUT 8 2,0 POLES

fa ,EQ, 0 USE REDUCED TRAVEL TIME,OTHERW]SE USE 70
}F(XOUT L7,0,0,0R,X0UT,B7,2,0) XO0UT = 0,0

ouUT s 3, - XOU

REWIND 11

REDUCED TRAVEL TIME TIME SHIFT
0 = 0,0

¥r(vasn GT,0.0) T0 = R/YRED

WRITE(12,601)R,10UT,T0
FORMAT(E11,4,15,E11,4)
F(R.LT,0,0) GO TQ 9998

NRITE(61 580) DEPTH,R,I10QUT,TH

FORMAT(1X,6HDEPTH=,F6, 2:3x.2HR=.Fé 2,3X.85HI0UT=,14,3X,
13702 ,ELL,4)

EVALU‘TXON OF WAVENUMBER JNTEGRALS

NN 3 2 # N

BO 250 1 & 4, NN

DATA1(1) = 0,0

DATA(]) = 0.0

no 300 1 s N1,N2

PREQ & (1~1) « DP

FAC = 6,2831853 « FREQ # TO0

XR = COS(FAG)

X1 = SIN(FAQ)

CaLL WVINT(R,FREQ,ARL,Al1,)AR2,A12)

DUML = CMPLX{XR.X]) » CMPLX(AR1,AI1)
DUM2 & CMPLX(XR:X]) & CMPLX(AR2,A12)

ARL = REAL (DUM1)

All = AIMAGEDUML)
AR2 = RBAL(DUM2)

Al12 = AIMAG(DUMZ)
J 32 &l »1

K32 1

NATA(Y) = AR1
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DATA(K) = Al1l
DATAL1(J) 3 AR2
DATAL(K) = Al2
300 GONTINUE
WRITE(12,600)(DATACI), 151,NY02)
WRITE(12,600)(DATAL(]I),1=1,NY02)
600 FORMAT(8E11,4)
Go 70 500
9998 CONTINUE
REWIND 12
$TOP
END

SQBROUTINE EXCIT(FRER)

DIMENSION P1(300),P2(300),WVN(300),WVE(300)
'QOMPLEX G1(300).62(300)

COMPLEX X1,X1P,X41M,X2:X2P 1 X2M,FL.FLP,FILM
GOMPLEX EYEP!

COMMON / MODEL / D(13),A(15),B(18),RHO(15),MMAX
COMMON/ SPACE / 61,G2,P1,P2,WVYN,WVE

BYEP] = (0,0,-3,1415927)

c LATER ON ADD BMAX AND BMIN INTO MODE(L
EMAX = B(MMAX)
CMIN & B(1)

OMEGA = 6,2831853sFREQ
WVMN = OMEGA/CMAX
WYMX 3 OME§A/CMIN
fF(FREQ,E0.0,0) 60 TO 4000
APPROXIMATE NUMERICAL INTEGRATION
TEST FOR A FINER GRID FOR HIGHER FREQUENCIES
FWIS SHOULD BE VALID FOR DISTANCES UP TO ABQUT 300 KM
AT FREQUENCIES LESS THAN 10MZ,
NGAM = 100
'F(FREO,GE,4,0,AND.FREQ.LT,5,0) NGAM = 200
iF(FREQ,GE,.5.0) NGAM = 300
NGAM = 3.57079633/NGAM
NROOT® NGAM « 1
DO 3998 151, NGAM
GAM = [ @ DGAM
IF(1.6Q,NGAM) GAM30,9999+1,57079633
WVNO = WYMN » SIN(GAM)
WUNC = WYMN » COS(GAM)
CALL RSHOF(X1,X2,FL.OMEGA, WYNQ,EXE1,EX| 1)
WUNCT) = WVNO
WVCCY) = WVYNC

anona
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ELJ = EXL1 -~ EXEL
FaCX # 0.0
tF(ELJ.GT.~70.) FACX ® EXP(ELJ)
Xt =2 X1/FL
X2 = X2/FL
T4 = FACXe#WVNOsWVYNC
PL(1) = AIMAG(X1)aTL
P2(1) = AIMAG(XZ2)aTl
CONTINUE
WRITE(11,6) OMEGA NGAM,DGAM
WRITE(11.2) ((NVN(J)owvch) PLOJ)sP2(J)) =) NCGAM)
FORMAT(E13,6,15/E13,6)
CaONTINUVE
NROOY = ¢
NMX IS CHOSEN FOR A 40 KM CRUSTAL MOpEL, ROR SHALLOWER
TWICKNESSES A PROPORTIONATELY SMALL NMX CaN BE HSED,
NMX = 100 + (FREQ»100,)
DK = (WVMX~HVMN)ZNMX
1F(DK.,LT.1,.0E~8) GO T0Q 5001
SEARCH FOR ROQTS OF PERIOD EQUATION
€1 = WYMN + 0.01a0K -
CalLl RSHOF(X1,X2,FL,OMEGA,CL1,EXE1,EXLY)
DELY & REAL(FL)
NMXL1 & NMXx *+ 1
D0 5000 I=2,NMX1
€2 = WVMN + (1-1) & DK
CALL RSHOF(X1,X2,FL,OMEGA,C2,EXEL,EXLY)
QEL? 3 REAL(FL)
IF(SIGN(1.0, DELl)*SIGNtl 0,DEL2),.GE,0,0) GO TO 4999
NROOT = NROOT + 1
Cd = G2
DEL4 2 DEL?
DO 4990 I11=s1,5 .
€3 = 0.52(C1+C4)
CALL RSHOF(X1,X2,FL,OMEGA,C3,EXE1,EXLY)
DEL3 = REAL(FL)
'F(SIGN(1.0,DEL1)%SIGN(¢(1,0,DEL3).GE,0,0) GO TO 4994
DEL4 = DEL3
s B3
Go To 4992
DELY = DEL3
€1 = €3
CONTINUE
CONTINUE
63 = 0.5s#(Cc1+C4)
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CALL RSHOF (X1P,X2P,FLP,OMEGA,C3*0,14DK,EJR,ELP)
CALL RSHOF (X1M,X2M,FLM,QMEGA,C3~0,14NK,EJH,ELM)
nrd EJP=EUM

DFL = ELP=ELM

BLJ = ELM~EJM

X1PsXLPoEXP(DFL)

X2PzX2P#EXP(DFL)

PLPIFLPUEXPIDFJ)

Facx s 0.0

{F(ELJ.GT,=70,) FACX = EXPLELJ)

DFDK & (REAL(FLP)~REAL(FLM))/(2,20,14DK)

DFDK = 5,a(REAL(FLP)~REAL(FLM))/DR

G1L (NRQOT) = 0.5 & REAL(X1P + XiM) » EYEP! / DFDK

i

G1(NRQOT) = GL(NRQQOT)=FACX

G2(NROOT) = 0.5 » REAL(X2P + X2M) » EYEP! / DFDK
G2 (NROOT) = G2(NROOT)&FACX

WVNI(NROOT) = C3

€1 s €2

DELY 3 DEL2

CONTINUE

CONTINUE

WRITE(11,5) OMEGA,NROOY

fF(NROOT.EQ,0) GO YO 5002

WRITE(11,2) CCWYNCY),GLCU),G2(J)),0=1,NROOT)
FORMAT(10E13.6)

FORMAT(EL13,6,15)

CONTINUE

RETURN

END

SUBROUTINE WVINT(R,FREQ,ARL,A11,AR2,A12)
DIMENSBIOQN P1(300),P2(300),WVN(300),WVC(300Q)
COMRLEX G1(300),G2(300)

COMPLEX H0!H10H01IH11IHIaSUMOSUMOISUMilSU“Z
COMMON / SPACE 7/ G1.,G2,P1,P2,WVN,WVC

COMMON / MODEL 7/ D(15),AA(15),BB(45),RHO(15),MMAX
COMMON / SQURCE/ DEPTH,LMAX,DPH

COMMON / INT /7 10OUT

Fcr »/(12.56637064BB(LMAXY#BB (LMAX))

PIL 41592653

ARL
A1
AT2
AR2 :
OMEG

HH BN NN

1
3.
0,
.
0.
0'

1
0
0
0
0
6

>

.28318534FREN
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SUML & CMPLX(0,,0,)
SuM2 & CMPLX(0.»0.)
IF(FREQ.EQ.0.0) GO TO 4000
APPROXIMATE NUMERICAL INTEGRATION .
ALONG BRANCH LINE FROM K = 0 TO K = K~BETA(MAX)
READ(11,6) OMEGA,NK,DGAM
READ(11.2) ((WYNCJ) 2 WVC () HPLCU)P2(J) ) »J3LaNK)
FORMAT(E13,6,15,E13,0)
fF(IOUT,EQ, 1) GO TO 4000
WVNO = WVN(1)
TH1 = WVYNO®R
cALL HANK(TO1,1.0.HO0L,H11)
SUML = 0,54P1(1)asM0leDGAM
SUM2 = 0,%aP2(1)sH11aDGAM
call IHANK(TO1,H01,H11,SUMD)
Do 200 I=2,NK
14 g 1~1
WYNO & WYNCI)
Ta & WVNO®=R
call HANK(TO0,1.0:HO,H1)
gaLl THANK(TO,HO,H1l,SUM)
17ST = 1
TFCCTO-ToL) LT.PIL) 1TST=2
60 TO (150,160).17TST

CONTINUE

H1 3 SUM-SUMO

SLP = WyC(I1)eR

SLP2 = SLPsSLP

A = P1(11)

R = (P1(1)~PLl(I1))/DGAM
SUM1 = SUM1*A#RI/SLP

SUMO = TOwH1-TOLla(HI+W11)
SuM1 = SUM1+BeSUMU/SLP2

A s P2(11)

B8 2 (P2(1)=-P2(11))/DGAM
SuM2z = SUM2#Ae(HQ1-HQ) /SLP
8UMO = HI+(T01-T0)wHO

SuM2 = SUM2+B#SUMO/SLP2

Go T0 170

CONTINUE ‘

SUM1 = SUM1I*0.5#(PL(1)aHO+PL(11)6H01)eDGAM
SUM2 = SUM2+0.5%#(P2(1)eH1+P2(]1)aHi1)wDGAM

CONTINUE
MOl = HO
H1l = HJ
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Ta: s IO
SUMO & SUM
200 CONTINUE
SUM1 % SUM1#CMPLX(0,0,-1,0)
SUM2 = SUM2eCMPLX(0,0.~1,0)
4000 GONTINUE
c POLE CONTRINUTIONS
READ(11,5) OMEGA1,NK
5 FORMAT(E13.6,15)
tFINK.EG.0) GO TO 399
READ(11.2) CCWVN(J)»GL(J)G2¢0)),J=4,NK)
2 FORMAT(10E13,.6)
po 300 I = 1,NK
WYNG = WVN(I)
CALL HANK(WVNQ,R,HO,H1)
SUM1 = SUM1=HO#G1(I)eWVND
SUM2 = SUM2-H14G2(1)aWVNO
300 CONTINUE
399 CONTINUE

AR1 = REAL(SUM1)sFCT
AR2 = REAL(SUM2)sFCT
At1 = AIMAG(SUM1)=FCT
A12 = AIMAG(SUMZ)4FCTY
c NUMERICAL INTEGRATION ALONG IMAGINARY AXIS BRANCH LINE

TF(1OUT(NE.3) GO TO 403
CALL AXIMAG(CONT1,CONT2,0MEGA,R)
ARL = ARL - CONT1sFCT
ARZ = AR2 - CONT2FCT
403 CONTINUE
RETURN
END

SUBROUTINE HANK(WYNG,R,HOHL)

COMPLEX HO,H1

REAL W0,J1,V12

Z = NVNO&R

100 1F(2.67.3.0) GO TO 200

X = (2/3.)ae82/34)

Jo = 1,-X#(2.2499997-X6(1,2656208=X"(,3163866~X*(
1.0444479-Xa(,0039444~-Xa(,0002100))3)))

Jiz = 0.5-X#(,56249985=X#(,21003573-X#(,03954289~Xe(
1,00443319-X#(,00031761~X%(,00001109))))))

Ji = Z % J1d

Yo = (2./3,1415927)#AL,0G(0,5eZ)aj0 + (0,36746691 +Xa(
1,60559366-X®(,74350384~Xu(.28300117~X#(.04261214-X#(
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2.,00427916-X#(,00024846))))))

v1Z = (2./3,1415927)828A10G(N,542)8d1 - 0,6366198+Xa(
1,2212091+X2(2,1682709+X#(-1,3164827+Xw(,3123951+%=(
2~.0400976+x#(.00278731)))))

HA = CMPLX(J0D,~-Y0)

Ha = CMPLX(J1,-Y12/2)

RETURN
CCONTINUE

X = 3¢/Z

FAC = 1./SQRT(2)

Fo = .79788456+X#(-.00000077 + Xe{-,00552740 + Xaf
1=.00009512+Xs(,00137237+Xs(»,00072805+X=(,.00014476))))
2))

To = 2 - .78536816+%X8(~.04166397+Xa(~,00003954+Xa(
1,00262573+%x#(-,00054125+X#(»,00029333+X={,00013558))))
2))

Fi1 7 79788456+X8(,00000156+%X%(,01659667+¢x#(,00017105+
1Xa#(~,00249511+X#(,00113653+Xu(-,00020033))))))

T1 = 7-2.35619449+%X%(,12499612+X#(,00005650+X*(

1 -.00637879+X#(.00074348+Xa(,00079824+X#(~,00029166)))
2)))

Ju = FAC « Fo » COS(TO)
Yo = FAC e« Fp » SIN(TO)
Ji1 = FAC » F1 = COS(T1)
Y1 = FAC & F1 = SIN(TL)
HB = CMPLX(J0,=-Y0)

M1 = CMPLX(J1,-Y1)
RETURN ,

END

SUBROUTINE IHANK(X,HO,H1,SUM)

COMPLEX HO,H1,SUM

REAL [J0,1Y0

IF(X.GT.5.0) GO TO 1000

IF(X.GT.2.,0) GO TO 101
11021,49457E-5+X#(,9994805+X#(,0027178+X#(~-,0884971+
# X#(.0042605+Xe(,0017411)))))

6o T0 200

IF(X.GT.4,0) GO TO 102
10=0,1680514+x#(.6216918+X4(,3516254+X#(-,2553154+
& X#(,0458084+X#(-,0025809)))))

Go To 200

1.U0=~4,003215+X#(5,493378+Xus(~1,870851+
# X#(.2501106*Xe(~,0114415))))

IF(X.GT.0,5) GO YO 201
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Qoo

1YD=X#(~2,983395+%X#(10,69899+X4(-30,65599+
# X#(48,83985+Xa(-30,89077)))))
6o TO 999
201 IF(X.GT.1,0) GO TO 202
1Y0=-0,0851148+Xu(~1,649010+yn(1,878871+
# X#(=1,218732+Xe(,55325934Xa(=-,1151309)))))
60 TO 999
202 1F(X.GT7.3,0) GO TO 203
1Y0=-,2089732+X#(-1,081949+X0(,7960879+X8(-,1464996+
@ X#(,0037485+X#(.0005744)))))
203 [Y0=.9766188+X#(-2,799556+X#(1,780798+X#(~,4238574+
# Xo(.0416846+%s(~,0013983)))))
999 CONTINUE
SUM=CMPLX(1J0,=1Y0)
, RETURN
lp00 2=1,/X
G0==3,08168E~7+24(,6366825+Za(~,0004799+
¢  Zu{-,6797933+2+4(.889303))))
S1246366201+2%(~6,88024E~54+76(,639624+
# 28(-,0508577+2a(=1,689329+22(2,711393)))))
Sn=50~AIMAG(HD)
S1=zS1~-AIMAG(H1)
SUM=X#(HO+1,570796338(S08H1=514H0))
RETURN
END

SUBROUTINE AXIMAG(SM1,SM2,0MEGA,R)

TWIS PERFORMS BRANCH LINE INTEGRATION ALONG THE IMAGIN
THE INTEGRATION 1S PERFORMED BY LAGUERRE § RULE AND IS

R.GT. 0.5 H , WHERE H IS THE SOURCE DEPTH

To IMPROVE THE EVALUATION NOTE THAT BMODO AND BMOD1 AR
OMEGA, HENCE THIS FUNCTION CAN BE COMBINED WITH THE WE

AN EARLY INTIALIZATION,

COMPLEX G1,G2

DIMENSION X(24),W(24)

DATA (X(1),1=1,24)/0,02110687,0,11122305,0,27339875,
10.50775546,0.81442137,1,1935599,1,645373342,1701028,
22.7680303,3.4394792,4,1848148,5,0044459,578988261,
36.8684550,7,9138802:9.0356983,10,234598,11.511161
442.866265,14.300688,15,815308,17,411070,19.088986,
520.850141/, (W(1),1=1,24)/.05303710,0.11284582,

60.15082452,0,16279133,0.15185641,0,12593625,.09419893,

70.64078814F~01,0,39845646E~01,0,22724136E-01,

80.119122356-01,0,57483106E~02,0,25559349E=02,
9.10478123E-02,.39617000E~03,.438162065-03,
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A.44439761F-04,.1318U0466E~-04, ,36033694E~05.
B.90760433E-06,.,21049269E~06,,44918756E-07,
C.88129729E-08,.15882974E-08/

TWOPI = 0,63661977

Sm1 = 0.0
SM2 = 0.0
pe 100 11 = 1,24

1 =25 - 11

THE FIRST 24 TERMS OF AN N=68 GAUSS-LAGUERRE INTEGRAL
APPROXIMATION ARE USED, THE ERROR IN DROPPING THE
HIGHER TERMS SHOULD BE LESS THAN 1,0E-09

TAU = X(])/K

Z = X(I)

CALL SHCFIK(GL1,G2,0MEGA,TAY)

cALL BESMoD(BMODO,BMOD1.,7)

SMl = SML1 + AIMAG(G1) = BMODO = W(T)

GM2 = SM2 + REAL(G2) « BMOD1 # W(I)

CONTINUE

SM1 = - TWOPI & SM1 / (R«R)
SM2 = TWOPL « SM2 / (RsR)
RETURN

END

SUBROUTINE SHCFIK(G1,G2,0MEGA, TAU)

THIS ROUTINE EVALUATES THE G4 AND G2 COEFFICIENTS FOR
A PURELY IMAGINARY WAVENUMBER

COMMON / MODEL 7/ nt15),A(15),B(15),RH0(13), MMAX
COMMON/SOURCE/DEPTH,LMAX, DPH

COMPLEX 61,62

COMPLEX EJ11,EJ21,EL11,ELL2,EL2L,EL22,FL,61,E2

A1l = 1.0
At2 = 0,0
A21 = 0.0
A22 = 1.0
Enil = 1.0
£En12 = 0.0
En21 = 0.0
En22 = 1.0

B22 = ~-1,/(B(MMAX)aB(MMAX))
XKB = OMEGA/B(MMAX)
E11lz SQRT(TAUsTAU+XKBaXKB)#RHO(MMAX)

E11R = 0,0
To AVQID NUMERICAL PROBLEMS, MATRIX MULTIRLICATION

GOES FROM BOTTOM LAYER UPWARD
MMM1 = MMAX - 1
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DO 1340 K = 1,MMM1

M = MMAX - K

XKB = OMEGA/B(M)

RB = SQRT(TAU#TAY + XKBe#xKB)
Q@ = D(M) # RB

H = RHO(M) @ B(M) #» B(M)
IF(RB,.EG.0,0) GO TO 1401

cosaqa = COS(G)

SING = SIN(Q)

Y = SINQ/(H#RB)
2 = - H & RB # SINQ
G0 TO 1402 '

1401 Y = D{M)/H
Z=0-0
CosSG = 1.0

1402 CAONTINUE
Eall = A1l # COSQ + A12 » Z
EA12 5 A11 ¢ Y + A12 # COSQ
EA21 = A21 @ COSQ + A22 « 2
EA22 = A21 = Y + A22 # COSQ
A1l = EA11
A12 = EA12
A21 = EA21
A22 = EA22

L1 = LMAX + 1
TF(L1.NE.M) GO TO 1340

ED11 s A1l
ED12 = A12
ED21 = A21
ENn22 = A22

1340 CONTINUE
M = RHO(LMAX) & B(LMAX) & B(LMAX)
XKB = OMEGA / B(LMAX)
RB = SQRT(TAUsTAY + XKBaXKB)
Q@ = DPH =# RB '
{F(RB.EQ.0,0) GO 70 1501
cosq = C0s(Q)
SING =  SIN(Q)
Y = SING/(H®RE)
2 =-H # RB # SINQ
G0 TO 150z

1501 CONTINUE
Y = DPH/H
2 = 0,0
€oSG = 1.0
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1502 CONTINUE

100

150
151

D11 = (ED11 # COSQ + ED12 ® Z)/RHOULMAX)
N12 ==-(ED11 & Y + ED12 # COSQ)#B(LMAX)#B(LMAX)
D21 = (ED21 & CO0SQ + ED22 # 7)/RHOILMAX)
BN22 =-(ED21 # Y + ED22 # COSQ)aB(LMAX)#B(LMAX)

F1 = CMPLX(E11R»E111)
E2 = CMPLX(E22,0.0)
£J11 = E1 » All

FJ21 = E2 « AZ21

EL1i = E1 # D11

EL12 = E1 » D12

EL21 = E2 « D21

EL22 = E2 » D22

61 = (EL21 - EL11) / FL

G2 = (EL22 =~ EL12) # CMPLX(0,0,TAU) 7/ FL
RETURN

END

SUBROUTINE BESMOD(BMODQ,RBMODY1,2)

THIS SUBROUTINE EVALUATES THE FUNCTIONS
BMODO 5 Z & EXP(Z) & KO(Z)
BMOD1 = Z # EXP(Z) & K1(Z)

WHWERE KO AND K1 ARE THE MODIFIED BESSEL FUNCTIONS

DIMENSION T(11),U(¢11),V(11)

DATA (T(1),1=1,12)/0,0,0,0540,1+40,2:0,3,0.,4,0.510,6,
11..1.5,2./, (U(1)»1=24,113/0.0,0,163695,0,268232,
20.428151,0.555788,,665073,,762055,.850042%,1.144463,
31.437315,1,683136/,¢v(1),1=21,111/1.0,1.046523,
41.089018,1.166677,1.237547,1,303469,1,3655048,
54,424352,1,63615349,1,86474881,2,1349418/

{F¢2,67,0,0) GO TO 100

BMODO = 0,0
BMODL = 1.0
RETURN

iF(Z,GE.2,0) GO TO 200

IN THIS RANGE OF FUNCTIONAL, LINEAR INTERROLATION IS
ALL RIGHT

DO 1sg I = 1,10

Id =1 A

1F(Z.GYT,T(1) ,AND,Z,LE.TC(1+1)) GO To 151

CONTINUE

CONT INUE

BMODASUCT Y *(Z=-T(IUN#(UCTJ+rL)-UCTUN/Z(TIY+ L) =T (1))
BMOD1=VEIU)+(Z-TCLUIIo(V(TIJ+1) VTN /(T(1Y+1)-T(I D))
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RETURN

200 CONTINUE

20
21

400

X = 2./

BMODO = SORT(Z)#(1,25331414+Xa(~-,07832358+X#(,02189568
1eX8(-,01062446+X8(,00587872+X%(~.00251540+X#(.00053208
2)1 1)) ,

BMOD1 = SORT(Z)#(1.25331414X%(,23498619+Xs(~,03655620
1ex8(,01504268+X#(~,00780353+X%(,00325614+Xu(~,00068245
230N

RETURN

END

SUBROUTINE SRCMOp

READ IN EARTH MODEL

COMMON / MODEL 7/ D(15),A(15),8(15),RH0O(15),MMAX
Do 20 I = 1,15

READ(60+1) DCI),ACI),BC1),RHOCI)
FORMAT(4F10,3)

MMAX = |

IF(DC1),LE.U.0) GO TO 21

CONTINUE

CONTINUE

MMX1 = MMAX = 1

PRINT 2

FORMAT(1HO,7Xs1HD, 9Xs1HA)9X,4HB, 9X, 3HRHO/)
00 400 I = 1,MMX1

FORMAT(1H ,4F10,2)

PRINT 3,D(1),AC1),BC1),RHOCT)

PRINT 5, A(MMAX),B(MMAX), RHO(MMAX)

FORMAT(1H ,10X,3F10.2/1H0)

RETURN

END

SUBROUTINE SRCLYR

COMMON / MODEL / D(15),A(15),B(15),RHO(15),MMAX
COMMON/SOURCE/DEPTH, LMAX, DPH

LMAX = SOURCE LAYER

DEPTH = SOURCE DEPTH

"DPH = HEIGHT OF SOURCE ABOVE LMAX + 1 INTERFACE
LMAX = 0 IS THE FREE SURFACE

DEP = 0,0

MMXL = MMAX =~ 1

DO 100 M = 1,MMX1

DEP = DEP + D(M)

DPH = DEP - DEPTH

A-19



SHSPEC

QO Q

100
101

PAGE 14

LMAX = M

IF(DPH.GE.0,0) GO TO 101
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE RSHOF(GG1,GG2,FL,0MEGA,WVNO,EXE,EXL) _
COMPLEX EJi1,EJ21.EL11,8L12,EL24,EL22,E1,82,FL,GGy,G62
CaLL SHCOEF(A11,A12,A21,A22,D11,D12,D21,022,E11R,E11?,

1E22,0MEGA, WYNO,EXE,EXL)

E1 = CMPLX(E11iR,E111)
E2 = GMPLX(E22,0,0)

EJil s BE1 & All
Bu21 = E2 « A21
EL11 = E1 # D11
ELi2 = E1 « D12
EL21 = E2 « D21
EL22 = E2 # D22
G61 (EL21 - EL11)

GG2 = (EL22 - EL12) # WVNO
FL = EJ11 - EJ21

RETURN

END

SUBROUTINE SHCOEF(A11,A12,A24,A22,D11,D12,D21,D22,E11R
19E111,E22,0MEGAWYNO,EXE,EXL)
COMMON / MODEL / D(15),A(15),B(15),RH0(15),MMAX

COMMON /SOURCE/ DEPTH,LMAX,DPH

SINCE THIS 1S WRITTEN FOR A MACHINE WHOSE LARGEST
NUMBER IS 1,0E+39, SPECIAL NORMALIZATION 1S USED TO
AVOID EXPONENT OVERFLOW OR UNDERFLOW

A1l = 1.0E-20

A21i = 0,0

A12 = 0,0

A22 = 1,0E-20

En1i = 1,0E-20

Eni2 = 0.0

Ep21 = 0,0

Ep22 = 1,0E*20

ExE = 0,0

EXL = 0.0

WyNG2 = WYNCawyNO
22 = -1,/(B(MMAX)«B(MMAX))
XKB = OMEGA/B(MMAX)
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RBR = SQRT(ABS(WVNQ2-XKB#XKB))
E11R = 0.0
E111 = 0.0

FAC = RHO(MMAX)*®RB
IF(WYNO.GT.XKB) E11R=FAC
IF(WVNO.LT,XKB)Y E11l = FAC
TOD AVOID NUMERICAL PROBLEMS, MATRIX MULTIRLICATION
GOES FROM BOTTOM LAYER UPWARD
MMM1 = MMAX - 1
N0 1340 K = 1,MMM1
M = MMAX - K
XKB = OMEGA/B(M)
RE = SORT(ABS(WVYNO2 - XKB«XXB))
Q@ = D{(M) « RB
M = RHO(M)aB(M)®B(M)
IF(WVYNO-XKB)1231,1221,1209
1231 SINQG = SIN(G)
Y = SING/(H®*RB)
7 = -HsRB#«SINQ
&nsSe = COS(Q)
G0 TO 1242
1221 co0SQ@ = 1,0
Y = D(M)/H
2 = 0,0
go TO 1242
1209 tF(Q.GT.5,0) GO 71O 1208
EXQP = EX?(O)
ExQM = 1,/EXQP
SING = (EXQGP-EXQAM)/2,
Y = SINQ/(H®*RB)
2 = SINGsMaRB
oS = (EXQP+EXQAM)/2,
80 TO 1242
1208 EXE = EXE + @
2 = OoS“HﬁRB
Y = 0,5/ (HeRB)

aQQ

€osa = 0,5
1242 CONTINUE
Eall = A114C0S0 + Al2#2
EA12 = AllsY + A12sC0SQ
Ea21 * A21#C0SQ + A22#7
EA22 = A24sY + A22eC0SQ
A1l = EA1ll
A12 = EA12
A21 = EA21%
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A22 = EA22
L1 = LMAX+1
1F(L1,NE. M) GO TO 1340
EXL = EXE
ED11 = Atl
Eni2 A2
ED21 = A24
En22 s A22
1340 CONTINUE
M = RHOCLMAX)#B(LMAX)a#B(LMAX)
XKB = OMEGA/B(LMAX)
RR = SQRT(ABS(WVYNQ2-XKB#XKR))
Q@ = DPH = RB
1F (WYNO-XKB)1131,1121,1111
1131 SING = SIN(G)
Y = SING/(H#RB)
7 = -WsRBeSING
¢nse = Cos(Q)
G0 To 1142
1121 €asSQ@ = 1.0
Y = DPH/H
2 = 0.0
GO TO 1142
1111 1F(Q.G7,5,0) GO TQ 1108
EXQP = EXP(Q)
EXQM s 1,/EXQP
SING (EXQP-EXQM) /2,
Y = SING/(H®RB)
2 = SINGsHaRB
0S8 = (EXQP+EXGM)/2,
6o TO 1142
1108 ExL = EXL + Q
7 = H#RBap.5
Y = 0,5/ (WeRB)

cosa = 0.5
1142 CONTINUE
pil = (EpilecOSG + ED12#2)/RHO(LMAX)
Di2 = ~(EDilaY + ED12#COSQ)aB(LMAX)2B(LMAX)
D21 = (ED21%C0SG + ED22#7)/RHO(LMAX)
D22 = -(ED21#Y + ED22#COSQ)#(B(LMAK)#B(LMAX))
Re TURN
END
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APPENDIX B: COMPUTER PROGRAM SHVEL

Function

This program performs the inverse Fourier transform of Equation
9, using the source velocity pulse sz(t) of Equation 23. The source
pulse, its Fourier amplitude spectrum and the filtered source pulse
are plotted as output. The output of SHSPEC is read in on File 12,
the pulse parameters are read from card on File 60, printer output is
on File 61, CALCOMP off-line plots are on File 10, an& the velocity

time histories are on File 20 for use by the program DSVLAC.

The card input is very simple and is given below rather in a

table:
Card Variable Name Columns Format Description
1 TL 1-10 F10.5 The pulse parameter 1 of

Equation 23.

XMOM 11-20 E10.3 A scaling factor used to adjust
source spectrum level. Gl and
G2 are output from SHSPEC. for
a seismic moment of 1.0E+20
dyne~cm since the area under
sz(t) is unity. XMOM permits

the use of another moment as
well as the adjustment for

focal mechanism. XMOM is the
desired seismic moment times

the terms in the square brackets
of Equation 24. XMOM.LT.1 is
interpreted as XMOM=1.0E+20

(More Card 1's are read until one with TL.LE.O is found, which causes

program termination and closing of files). To generate Figure 19,
TL=0.5 and XMOM=7.06E+22 were used (seismic moment of 3.53E+22 dyne-
cm and a focal mechanism factor of 2.0).
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The printer output of SHVEL is mostly diagnostic. TFile 61
gives the values of TL, DT, and XMOM (DT is read from File 12),
Under the system standard printer output (PRINT statement),

YMAX and YMIN are the maximum and minimum amplitudes of each time
plot; R, TOUT and TSHIFT are the parameters R, IOUT and TO written

on File 12 by the program SHSPEC.

A description of the subroutines is given in Table Bl. The

program listing is given in Table B2,
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Table Bl

Subroutine Description

Subroutine

Name Function

PULSE Defines the source pulse of Equation 23. Other
normalized source pulses can be used by rewriting this
subroutine.

FOUR Performs numerical approximation to the Fourier inte-
gral by using a fast Fourier transform.

SEISPLT Sets up a CALCOMP plot of ground motion time histories.
Other plotters can be used by rewriting this subroutine.

SPPLT Sets up log-log CALCOMP plot of Fourier amplitude
spectra,

ALOGAXES Sets up log-log axes for SPPLT.
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PROGRAM SHVEL

DIMENSION DATA(2048),X(1026),Y(1026),DATAS(1026)
DIMENSION DATA1(2048)

DIMENSION IBUF (1000)

INPUT DATA

CARD 1 TL. XMOM

TL IS SOURCE PULSE PARAMETER, XMOM 1S SEISMIC MOMENT
IN DYNE-CM, IF XMOM=0 PROGRAM DEFAQLTS TO 1,0E+20 D-CM
vosrs MORE CARD 1 - USE TL.LY,O0 7O END CARD 1 SEQUENCE
¢aLlL PLOTS(IBUF.,1000,10)

CONTINUE

REWIND 12

READ(iZci) DEPTH,FL,FUDT,N,VRED

NYQ = N/2 + 1

NYQ2 = 24NYQ

DF = 1./(NaDT)

N1 = FL/DF

N2 s FU/DF

READ(60,111) TL,XMOM

FORMAT(4F10,5,15,F10,5)

FORMAT(F10.5,215,2F10.5)

FORMAT(F10,5,£10,3)

NS = 2

WRITE(20,11)TL,NS,N,DT,DEPTH

{F(TL.LE.O,0) GO TO 9999

WRITE(61,4) TL,DT,XMOM

FORMAT(1HO,4HTL =,F10,5,5X,4KRDT =,F10,5,5%, 4HMOM=
1E40.3)

XMOM = XMOM / 1.0E20

[F(XMOM,LT,1,0E-20) XMOM = 1,0

CALL PULSE(X,Y,N, DT, TL)

call SEISPLTE(X,Y,N,0,0,0,6HINPYUT )

PLOT SOQURCE PULSE AND SPECTRA

Do 200 1’3_1:N

]
[y

K= 2 1
{F(]1.GE.NL,AND,I,LE.N2) GO TO 205
DATACGJ) =0,0
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DATA(K) = 0,0

CONTINUE

CALL SPPLT(DATA,X,Y,NYQ,DF,8H SPEC )
DO 206 1 = 1,NYQ2

DATAS(I) = XMOM @ DATA(I)

CALL FOUR(DATA,N,+1,DT,DF)

DO 210 1 =“11N

Jz2s1 -1

X(1) = (1=1) * D7

vytry = pataly)

CONTINUE

PLOT FILTERED SOURCE PULSE

CALL SEISPLT(X,Y,N,0,0,0,6H FILT )
CONTINUE

READ(12,601)R,I10UT,TO
FORMAT(E11,4,15,E11.4)

WRITE(20,601) R,10UT,To

IF(R.LT.0,0) GO TO 9998

PRINT 5.,R,10UT,TO

FORMAT(1HG,4H R =,F8,2,8H 10UT =,13,95X,410H

1F8.2)

READ(12,600) (DATA(I)0§=1ANYQE)
READ(12,600)(DATAL(1),1=21,NY02)
FORMAT(8E11.4)

pe 700 I = 1,NYQ

J e 28] - 1

K = 2 # 1

ARL = DATAC)

All = DATA(K)

AR2 = DATAL(J)

Ai2 = DATAL1(K)

DATACJ) = DATAS(J)#AR1 - DATAS(K)walq
DATA(K) = DATAS(K)#AR1 + DATAS(J)sAly
DATAL(J) = DATAS(J)#AR2 - DATAS(K)=Al2
DATA1(K) = DATAS(K)#AR2 + DATAS(J)aAl2
1IF(1.EQ.1) GO 7O 700

11 s N+ 2 =1

Jd =2 # J1 -1

KK 5 2 & 11

DATACJJ) & DATACY)

DATA(KK) = = DATA(K)

DATA1(JJ) = DATAL(U)

DATAL(KK) = - DATAL1(K)

CONTINUE

CONTINUE

"o N
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CALL FOUR(DATA,N,+1,DT,DF)
CALL FOUR(DATA1,N,+1,D7,DF)
no 400 1 = 1.,N

Jz 21 -1

Xt1) s DATACY)

Y(1} = DATA1CJ)

400 CONTINUE
WRITE(20,6002(XC(1),1=21,N}
WRITE(20,600)(¢(Y(1),1=1,N)
Go TO 9997

$999 CONTINUE"
caLlL PLOT(12,0,0,0,999)
ST0P
END

SUBROUTINE PULSECT,F,N,DT,TL)
DIMENSION T(1),F(1)

T1 = 0.0
T2 = T1 + TL

T3 = T2 + TL

T4 = T3 + TL

T = T4 + TL

no 100 I = 1,N

T(I) = (I-1) & DT

y = 1(1)

=Y -T1

F(l) = 0.0
tF(Y.GT.T1) GO TO 101
Go TO 100

101 fF(Y.GT.T2) g0 TO 102
FeIY = (Z/TL)=(Z/TL)#0,5
60 TO 100

102 {F(Y.GT.T3) 6O 7O 103
Pel) = = (Z/TL)#(2/TL)w0,5 + 2,08(2Z/TL) = 1,0
6o TO 100

103 IF(Y.GT.T4) GO TO 104
F(l) 3 - (Z/TL)#(2/TL)20.% « 2,08(2/7L) - 1,
6o TO 100

104 IF(Y.GT.T5) GO 7O 105
FC1) 5 (Z/7TLYe(Z/TL) & 0.5 =4,0 & (Z/TL) + 8.0
Go TO 100

105 Fe1) # 0.0

100 CONTINUE

v AREA OF PULSE NORMALIZED TO UNITY

NG 200 I = 1,N
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Ftl) & F(I) /(2.aTL)
RETURN
END

SUBROUTINE FOUR(DATA,NN,ISIGN,DT,DF)

THE COOLEY-TOOKEY FAST FOURIER TRANSFORM IN USAS!
BASIC FORTRAN TRANSFORM(J)=SUM(DATA(l)skWea(I-1)(J-1)),
WHERE 1 AND J RUN FROM 1 TO NN AND W=zEXP(}SIGN#2:Pls
SORT(~1)/NN)., DATA IS A ONE=DIMENSION AL GOMPLEX ARRAY
(1.E.. THE REAL AND IMAGINARY PARTS OF DATA ARE
LOCATED IMMEDIATELY ADJACENT IN STORAGE, SUCH AS
FORTRAN IV PLACES THEM) WHOSE LENGTH NN IS A POWER OF
TWO, ISIGN IS +1 OR -1, GIVING THE SIGN OF THE
TRANSFORM, TRANSFORM VALUES ARE RETURNED IN ARRAY
DATA, REPLACING THE INPUT DATA, THWE TIME 1S PROPOR-
TIONAL TO N#LOG2(N), RATHER THAN TRE USUAL Ne#s2

RMS RESOLUTION ERROR BEING BOUNDBD BY 6%SQRT(I1)#
LOG2(NN)s2aw#(-B), WHERE B 15 THE NOMBER OF BITS IN THE
FLOATING POINT FRACTION. PROGRAM AQTOMATIGALLY TAKES
INTQ ACCOUNT DIMENSIONALITY

DIMENSION DATA(L)

N = 2 & NN

IF(DT,EQ.0,0) DT = 1,/(NN#DF)

1IF(DF,EQ,.0.0) DF = 1,/(NNeDT)

1F(DT.NE, (NNaDF)) DF = 1,/(NNeDT)

J =1

DD 5‘1319N02

1IF(I-J)1,2,2

TEMPR = DATA(J)

TEMP1 = DATA(J+1)

BATA(J) = DATA(D)

DATA(J+1)=DATA(I+1)

DATA(]) = TEMPR

DATA(l+1) = TEMPI

Moz N/2

IF(J-M) 5,5,4

J oz J=M

M = M/2

1F(M-2)5,3,3

JaJtM

MMAX = 2

IF (MMAX-N) 7,10,10

ISTEP= 2 #MMAX

THETA = 6,283185307/FLOAT(ISIGN=MMAX)
SINTHESIN(THETA/2,)
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WETPR=-2,#SINTH#SINTH
WSTPI=SIN(THETA)
WR=1.0
Ww1=0.0
no 9 M=1,MMAX,2
Do 8 1=M,N,]STEP
Je 1 +MMAX
TEMRREWR=DATACJ) -WI#DATA(J+1)
TEMPI=WR+DATA(J*1)+W]1#DATA(J)
DATACJ)=DATA(1)~-TEMPR
DATA(J*1)=DATA(I+1) ~TEMP]}
DATA(I)=DATACI)+TEMPR
8 DATA(I+1) = DATA<1+1>+TEMP!
T TEMPR = WR
WR = WReWSTPR-WI#WSTP] + WR
9 WI 35 WIWSTPR+TEMPR#WSTP] + W]
MMAX = ISTEP
6o TO 6
10 CONTINUE
IF(ISIGN,LT,0) GO TO 1002
C FREQUENCY TO TIME DOMAIN
BO 1001 IIIl = 1,N
1001 DATA(IIII) s DATA(IIII) s DF
RETURN
1002 gONTINUE
c TIME TO FREGUENCY DOMAIN
Do 1003 111l = 1,N
1003 DATA(III1) = DATA(IIII) « DY
RETURN
END

SUBROUTINE SEISPLT(X,Y,N,DIST,1D,SYM)
CHARACTER SYM
DIMENSION X(1),Y(1)
CALL PLOT(0,0,-11,0,~3)
CALL PLOT(0,0,2.0,=3)
YMIN = 1,0E+38
YMAX = ~1,0E+38
0 100 I = 1,N
F(YCL)«GT.YMAX) YMAX
TFAY (L) LLT,YMIND YMIN
100 EONTINUE
[FCID.GT.0) PRINT 1,YMAX,YMIN,DIST
IF(ID,EG,0) PRINT 2,YMAX,YMIN
1 FORMAT(1H ,6HYMAX =,E10,3,10H YMIN = ,810.3,3X,

Yi1)
Y(1)

B~8
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186HDIST = ,F6.1)

FORMAT(1H ,6HYMAX =,E10,3,10H YMIN = ,E10.3)
IFCABSCYMINY GT-YMAX) YMAX = ABS(YMIN)

Xt(N+1) 5,0

X(N+2) = 15,

Y(N+1) - YMAX

y(Ne2) = 2, & YMAX

CALL AXIS€(0425,0,0,10HT - X/4,67 y=10:5,0,90,0,X0N+1)
1/ X(N+2))

CALL AXIS(0,0,-0,25,1H b 1,4.,0,480,0,Y(N+1),Y(N+2))
YIN#2) = =~ Y(N+2)

CALL LINECYsXsN2+1,0.0)

1F(1D,GT,0) CALL NUMBER(-0,75,4,5,0,14,D187,90,0,-1)
CALL SYMBOL(-1,0,-1,5,0.14,5YM,0.0;+6)

CALL PLOT(3,0,0,0,-3)

RETURN

END

SUBROUTINE SPPLT(DATA,X»Y,NP,DF,SYM)

THIS PLOTS AMPLITUDE SPECTRA ON 2 X 3 CYCLE LOG-L0G
SCALE

DIMENSION DATA(1),Y(1),X(1)

CHARACTER TTLX(2),TTLY(2)

CHARACTER SYM

CALL PLOT(0,0,-11,0,=3)

CALL PLCOT(040,2.0,-3)

xMiN = 0,1
XMAX = 10,
YMAX = 1,0E-38

J .20
THE ZERO FREQUENCY POINT 1S NOT PLOTYED
DO 5700 I = 2,NP

J =z J+1

XtJ) = (1-1) « DF
[FOXCJY LT, XMIND X(J) = XMIN
TF(X(J).GT . XMAX) X{J) = XMAX
K =2 &1 -1

L =2 « 1

Y(J) 3= SOQRT(ABS(DATA(K)#DATA(K) + BATA(L)&DATA(CL)))
IF(Y(J) GT,YMAX) YMAX = Y(J)
CONTINUE

YY = ALOG10(YMAX)

LYy = YY

Yy=LY

IFCYY.GT.LY) YY = LY + 1

B~9
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YMIN = 10,4#(YY - 3.)
YMAX = 10,%sYY
N = J
Do 5701 1 = 1.N
IFCYCD)LLT.YMIN) Y(I) = YMIN
5701 CONTINUE

XAXLEN = 3,732
YAXLEN = 5,598
DELTAX = 2./XAXLEN
DELTAY = 3,/YAXLEN
X4 = ALOGIO(XMIN)
NOCX = 2

NOCY = 3

Yy = YY - NOCY
TTLX (L) =6HFREQ (

TTLX(2) = 6NWHZ)
TTLY(L) = 6HAMP (C
TTLY(2) = 6HM=-SEC)
MTX = 12

MTY = 12

CaLL ALOGAXES(XAXLEN, YAXLEN,NOCX,NOCY, TTLX, TTLY MTX,
1MTY6X1:Y1lDELTAxoDELTAY)
Do 5703 1 = 1,N
Y(1) = ALOGIOCY(I))
5703 X(1) = ALCGIO(X(I))

X(N+1) = X1
X(N+2) = DELTAX
YIN+1) = Y&
Y(N+2) = DELTAY

CALL LINE(XaYsN,1,0,0)

CALL SYMBOL(0,0,-1,0,0,14,5Y4,0,0,+6)
¢aLL PLOT(10,0,0,0,-3)

RETURN

END

SUBROUTINE ALOGAXES(XAXLEN,YAXLEN,NOCX,NOEGY,TTLX,TTLY,
AMTIX MTY,X1,Y1,DELTAX,DELTAY)

CHARACTER TTLX(1),TTLY(1)

SLY = 0,02#YAXLEN

S§ST = 0.01 # YAXLEN

SP -0.,06e¢YAXLEN

§S = 0,03%5sYAXLEN

S5P = SP + SS ~ 0.06

TTLP = -0,118YAXLEN ~ 0.1

STTL & 0.035#YAXLEN
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XNUM & 1

YL = Y1

Yu = Y1 + ANOCY

1F(ABS(YL),GE.10, ,OR, ABS(YU),GE,10, )XNUM
1F(ABS(YL),GE.100..0R, ABS(YU),GE,100,)XNUM
[F(Y1,LT,0) XNUM = XNUM + 1,0

caLL PLOT(-5.T7,0,0,2)

CaLL PLOT(0,0,=-SLT,3)

CALL PLOT(0,0.0.0.,2)

XP0 = X1

YPO = Y1

{F(NOCX,EQ,0) GO TO 4

ANOEX = NOCX

FACTX = XAXLEN/ANOCX

cALL SYMBOL(-,6%S5,SP.S§,2H10,0,0,2)
CALL NUMBER(999.,SSP,0,6#8S8,%1,0.0,-1)
CALL PLOT(0,0,0.0,3)

pa 3 J = 1,NOCX

po 2 1 1,10

X = 1

X = ALOGLO(X) oFACYX + (J=1)aFACTX
1IF(1.EQ.1)GC TO 2

CALL PLOT(X20.,0:2)

CALL PLOT(X,=-SST,2)

CALL PLOT(Xy0.0:3)

CALL PLOT(X:-SLT,2)

CALL SYMBOL(X-,648S,SP,SS,2H10,0.0,2)
XPO = XPO + 1.0 :

€aLL NUMBER(999.,SSP,0,648S,XP0,0,0.-1)
CALL PLOT(X,0.0,3)

XTL = MTX
XTL = (XAXLEN=-XTL#STTL)/2.0

CALL SYMBOLCXTLsTTLPSTTL,TTLX,0,0,MTX)

6o To 6

CALL AXISC0,0,0,04TTLX,=MTX,XAXLEN; 0,0, XL,y DELTAX)
CaLL PLOT(0,0,0.0,3)

IF(NOCY.EG.0) GO TO 10

ANOCY = NOcY

8P = SP - (XNUM - 1,5) #» 0,5 # SS

TTLP = TTLP - (XNUM-1.,)#0,5#SS

FaCTY = YAXLEN/ANOCY

call SYMBOL(SP-0.4,-0.,548S,85,2H10,0,0.,2)
CALL NUMBER(999., .5¢SS~,06,.,6#SS,Y1,0,0,~1)
CALL PLOT(0.0,0.0,3)

Do 9 J = 1,NOCY

XNUM +1,
XNUM +1,
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Do 8 1 = 1,10

Y =1

Y = ALOG1D(Y) # FACTY + (J-L)#FACTY
1F(1.EQ,1)60 TO 8

caLl RPLOT(D,0.Y22)

CALL PLOT(-SST,Y,2)

CaLL PLOT(0.0,Y:3)

gALL PLOT(-SLT,Y,2)

call SYHBOL(SP--40Y”.SGSS!SSQ2H10|010‘2)

YRO = YPO + 1

CALL NUMBER(999-)Y*-S“SS'0061c6*SSaYP0'0oD:F1)
CALL PLOT(0,0,Y 3]

YTLEMTY

YTL = (YAXLEN-YTL®STT{)/2.0

CALL SYMBOLC(TTLP-,2,YTLsSTTL,TTLY,90,,MTY)
RETURN
CALL,AXIS‘O.O:OnO;TTLY,MTY;YAXLEN;90..YlyDELTAY)
RETURN

END
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APPENDIX C: COMPUTER PROGRAM DSVLAC
Function

This self-contained program takes the velocity time series com-
puted by the program SHVEL, plots the displacement, velocity and
acceleration time histories and also prepares én output file for use
by the program SDSVSA. Input is from File 20, generated by SHVEL.
CALCOMP output for off-line plotting is on File 10. File 21 contains
data for use by the program SDSVSA. Printer output is through the

PRINT statement and consists of the following for each source pulse:

Line 1 TL,NS,N,DT,DEPTH where the variables are ‘as described
for SHSPEC and SHVEL, except that NS indicates the
number of focal mechanisms for each distance (NS=2
here since Gl and G2 traces are plotted)

Line 2 R, IOUT, TO

Line 3 SYM, YMAX, YMIN, R (tabulation of trace extrema.

Dl is Gl displacement, D2 is G2 displacement, V1 is
Gl velocity, Al is Gl acceleration history, etc.)

Line 3 repeats 3*NS times,

The subroutines are only three: SEISPLT plots the time traces;
DISP calculates displacement time histories by trapezoidal rule; and
ACCL calculates acceleration time histories by assuming linear velocity

segments.

The program DSVLAC is given in Table C1.
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PROGRAM DSVLAC

TWMIS TAKES VELOCITIES GENERATED BY SHVEL AND COMPUTES
AND PLOTS ALL THREE

DIMENSION IBUF(1000)

DIMENSION v(1026),D(2050), < 050)

CHARACTER 1L(2),1V(2).1A(2

aago

1p(1) = 6H DI
ID(2) = 6H D2
IV(1) = 6K Vi
jv(2) = 6n V2
1A(1) = 6K AL
14(2) = 6h A2
REWIND 20

REWIND 21

CALL PLOTS(IBUF.1000,10)
1 FORMAT(F10.5,215,2F10,5)
600 FORMAT(BE11,4)
601 FORMAT(E11,4,15,E11,4)

9998 CONTINUE
READ(20+1)TL,NS/N,DT,PEPTH
WRITE(21,1) TL,NS,N,DT,DEPTH
IF(TL,LE.0.0) GO TO 9999
PRINT 1,TL,NS,N,DT,DEPTH

9997 CONTINUE
READ(20,601) R,IOUT,TC
WRITE(21,601)R,I10UT,TO
IF(R.LT,2,0) GO TO 9998
PRINT 601, R,I10UT,TC
Do 9996 L = 1,NS
READ(20,600) (v(1),1=1,N)
CaLl DISP(V ,DT,N,T,D)
call SEISPLT(T,D,N,R,1,1ID(L),DMAX)

cALL SEISPLT(T, V,N,R,i.l (L), YMAX)
Call ACCL(VJDT,N,M,T,D)

caLl SEISPLT(T,D,M,R,1,TACL) ,AMAX)
WRITE(21,604) AMAX,VMAX,DMAX

604 FORMAT(3EL11,4)
WRITE(21,600)0(V(1),1=1,N)
9996 CONTINUE
GO TO 9997
9999 CONTINUE
CaLL PLOT(12.0,0,0,999)
STOP

EnD
SUBROUTINE SEISPLT(X,Y,N,DIST,1D,SYM,YMAX)
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CHARACTER SYM

DIMENSION X(1),Y(1)
CALL PLOT(040,=11,0,-3)
CALL PLOT(0+0:2.5,-3)
YMIN = 1.0E*38

YMAX = -1,0E+38

po 100 I s 1,N
IFCY(I).GT, YMAX) YMAX = Y(1)
PFCYCD)LLT.YMIN) YMIN = ¥(I)

CONTINUE

IFCID,G6T.0) PRINT 1,S5YM,YMAX,YMIN,BIST
1F(1D,EQ,0) PRINT 2.YMAx vaw

1 FORMAT(1H ,A6,6HYMAX —,Eiﬂ 3,10H YMIN = ,E10,3,3X,

16mDIST =,F64,1)

2 FORMAT(LM ,6HYMAX =,E10.3,10H YMIN = ,E10.3)

100

IF(ABSC(YMIN) ,GT.YMAX) YMAX = ABS(YMIN)

X(N+1) = =5,0

X(N+2) = 15,

Y(N+1) = = YMAX

Y(N+2) = 2, & YMAX

CALL AXIS(0,25,0,0,10HT = X/4,67 ,=10:5.,0,90,0,%X(N+1)
'X(N"’Z))

CALL aXIS(o, o.-o 25, 1H »1,1,0,180:0,Y(N+1),Y(N+2))
YIN+2) = - Y({N+2)

cabl LINE(Y,X,N.1,0,0)

1FCID.GT.0) CALL NUMBER(~(,7544,5,0,14,D158T7490,0,~1)
CALL SYMBOL(-1.0,-1,5,0.14,SYM,0.0,+6)

CALL PLOT(3,0,0.0,-3)

RETURN

END

SUBROUTINE DISP(V,DT,N,T,D)
DIMENSION v(1),T(¢(1),D(1)
pt1) = 0.0

SUM=0,0

DO 100 I = 2,N

T¢1) & (1-1) « DY

SUM = SUM + 0,5 & DT # (V{I)aV(I-1))
D(1) = SUM

CONTINUE

RETURN

END

SUBROWTINE ACCL(V,DT,N,M,T,4)
DIMENSION v(1),T(1),A(1)
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AtkK) s DIF

‘CONTINUE

DIF = (V(1) =~ VIN))/DT
J = 2#N - 1

K = 2%N

TCJ) = (N-1)oDT

T(K) = NaDT
AtJ) & DIF
A(k) s DIF
RETURN

END

C-4



APPENDIX D; COMPUTER PROGRAM SDSVSA
Function

This program used the output of DSVLAC to compute the response
spectra of each trace using Equations 30 and 31. The input is on File
21 generated by the program DSVLAC. Off-line CALCOMP graphic output
is on File 10. Printer output is through the use of the PRINT state-
ment. The output consists of a plot of the response spectrum as
well as a listing of the response spectrum values, including SD, SV,
SA, PSY and the Fourier spectrum FS, for damping values of O, 2, 5 and
10 pércent critical and oscillator periods from DT to 100 sec (it
is meaningless to compute the response for periods less than the sam~

pling interval),.

The subroutines are MOTION which performs the computations for
each input time history, SVLOG which performs the logarithmic plot

and AMATRIX which computes the matrix elements of Equation 30.

The program listing is given in Table DI1.
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300
1000
1100
1200
1300
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Table D1
PAGE 1

PROGRAM SD,SV,SA,PSV,FS
DIMENSION VEL(1024),TMAX(3)
DIMENSION IBUF(1000)
CHARACTER SYM(2)

CALL PLOTS(IBUF,1000,10)
REWIND 21

SyM(1)= 6HGL

SYM(2)= 6&HKHG2

READ(21,1600) TL,NS,N,DT,DEPTH
IF¢ TL.LE.O,0 ) GO TO 300
CALL AMATRIX(N,DT)

CONTINUE

READ(Q1,1100) R,IQUT,To

tF( RLLT.0.0 ) GO TO 100

Do 200 11s1,4NS

READ(21,1200) (TMAX(1),1=1,3)
READ(21,1300) (VEL(I).1=1,N)
CALL MOTION(VEL,»TMAX,SYM(]1),R,DEPTH)
CONTINUE

60 TO 105

caLL PLOT(10,0,0,0,999)
FORMAT(F10,5, 215.2?10 5)
FORMAT(EL11.4,15,E11,4)
FORMAT(3E11o4)

FORMAT(8EL1,4)

STOP

END

SUBROUTINE MOTION(VEL:TMAX,SYM,R,DEPTH)

1S PROGRAM TAKES THE VELOC]TY GENERATED AND FINDS
+SV,SA,PSV,FS BY THE MODIFIED NIGAM-JENNINGS METHOD

THE INRUT VELOCITY GRID POINTS ARE CONNECTED BY LINEAR

SEGMENT

VELOCITY GENERATED, USED AS INPUT
NAME OF THE INPUT VELOCITY
EPICENTER DISTANT

SOURCE DEPTH

VEL
SYM

R
DEPTH

DIMENSION VEL(1),TMAX(1)
DIMENSION SD(49,4),5V(49,4),5A(49,4),PSV(49,4),FS(49)
COMMON/ABCOEF/AL11(49,4),A12(49,4),A21(49,4),A22(49,4)
s ,B1(49,4),B2(49,4);PERIOD(49),KNDT(49)
8 TKN1(49),DAMP(4), L

“ NN
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CHARACTER SYM,E#153,F(102),G(3)
DO 200 l1=(,49

NBT = KNDT(11)

N.  F KN1(11)

FREG = 6.283185/PERIOD(I1)

Y4 s FREQ®FREQ

DO 200 12=1,4

Y5 s 2,#FREQeDAMP(12)
DMAX 3 0,
VMAX = 0.
AMAX = 0O,
xi = ol
= 0‘

Vi
C THE MAIN DO LOOP

100

200

Do 100 1=1,N1

J = (1+NpT-1)/NDT

DVEL = (VEL(J+1)=-VEL(J
( Y #DVEL
( )sDVEL

X = Al1(11,12)eX1+A12
v = AR1(11,12)a8X1+pA22
X3 = X
Vi = ¥
T44X+T5aV
= ABS(X)
s ABS(V)
= ABS(A)
IF( DMAX,LT.XABS ) DMAX
1F( VMAX,LT,VABS ) VMAX
[F( AMAX.LT,AABS ) AMAX
CONTINUE
fF( 12.EQ0,1 ) FS(11) = SQRT(T4aXaX*Vay)
sD(11,12) DMAYX
SV(11,12) = VMAX
SA(IL,12) AMAYX
PSV(I1,12) = FREQeDMAX
GONTINUE
fALL SVLOG(PSV,SYM,R)
G(1) = 6H AMAX=
G(2) = 6H VMAX=
G(3) = 6H DMAX=
PRINT 1000, SYM!R
PRINT 1080, (DAMP(
#] o] 30° 1=Ln49
ENCODE(E,1100) FS§(1),S

ND
IZ)QVl*Bl(l
12

)1/ND
13, i !
11,]12)ev1eB2(11,1

)
o on o
N

B G
>
VW ©
wwmym

XABs
VABS
AABS

#Ht unon

«1),PSVLL, 1)
2),PSV(1,2)
3):PSV(1.3)

mmm
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-
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* 2 SDCY,4),5V),4),5A(144),PSV(],4)
DECODE( E,1200 ) F
PRINT 1300, (PERIOD(I).F)
300 CONTINUE
1000 FORMAT(1IHL,////751%X,h642X,3H{R=,F7,2,3H KM,8H DEPTH=

1 1F6,204H KMI//49%X03(A6,E9,2,1X))
1080 FORMAT(/34X,4(5HDAMP=,F4,2,15X)/14X,6HPERLIOD, 3X, 2HFS,
@ 4(4X,2HSD,4X,2HSV,4X,2HSA,3X,3HPSV))

1100 FORMAT(17E9,2) |
1200 FORMAT(17C(AL,1X,3A1,4%,A1,1X,A1))

1300 FORMAT(13X,F6,2,1X,102A1)

RETURN

END

SUBROUTINE SVLOG(SVP,SYM,R)
c
C PLOT PSV-PERIOD ON LOG~LOG SCALE
c

DIMENSION SVYP(49,4)

DIMENSION PSV(49,4),FS5(51),FP(51)
CHARACTER SYM

COMMON/ PERLOG /7 PERIOD1(51),L

CYCLE = 1,84
NOCX = 3
NOCY = 4

CALL PLOT(D,,»=11.,~3)

CalLL PLOT(D,,2.0-3)

YMIN = 1, E+38 ‘

DO 400 lisL .49

DO 400 12s1,4

T = SVP(I11,12)

PSV(I4,12) = ALOGLOK(T)

T = PSV(IL,12)

fF¢ T,LT.YMIN ) YMIN =T
400 CONTINUE

DO 450 1=2.9
T =1
450 Fs(1) = ALOG10(T)=CYCLE
XLEN = NOCXa«CYCLE
YLEN = NOCY#CYCLE
SEG = 0,01aXLEN
S1ZE = 0,027¢XLEN
S12E1 = 0,62S12E
LYMIN = YMIN=1,

IFC YMIN,GT.0. ) LYMIN = LYMIN*1

D4
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Do 800 11=1,2
1F( I11,EQ,2 ) GO TO 490

T4 = 1,
12 : 0'
T3 = 0,09
T4 = 0,015
NoC = NOCY
POWER = LYMIN-1
60 TO 500

490 T4 = 0,
T2 z 1,
T3 = 0,022
T4 = 0,04
NaC = NOCX
POWER = -2,

500 X0 = -T3«XLEN
Yo =z -T4#XLEN
Yol = YD+0.62%S]2E

NOCL1 3 NOC+1
no 600 1=1,N0C1
X1 T2#(1-1)=2CYCLE
Y1 Ti#(1-1)aCYCLE
CaLL PLOT(X1,Y1,3)
X2 = X1+X0
Y2 = Yi+Y(D
catlL NUMBER(X2,Y2,S1ZE,10,,0,,=-1)
POWER = POWER*1,
Y2 = Yi+YQ01
CALL NUMBER(999,,Y2,S12E1,PQuER,0,,-1)
CALL PLOT(X1,Y1,3)
X2 = T2u9X1+T1#XLEN
Y2 = T1eY1+T2eYLEN
CALL PLOT(XZ2,Y2:2)
600 CONTINUE
CALL PLOT(0090.03)
Do 700 12s51,2 _
S1 7 (12-1)#(T1eXLEN+T24YLEN)
82 = {3,-2,#12)*SEG
ne 700 I=1,NOC
§3 = (1~1)#CYCLE
Do 700 J=2,9
X4 = T19S1+T28(FS(J)*S3)
\ £ T2281+T10(FS(J)+S3)
CaLL PLOT(X1,Y1,3)
X2 = X1+T1aS2
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Y2 = Y1+T28S2

CALL PLOT(X2,Y2,2)

CONTINUE

CALL PLOT(D0,4,0.¢3)

CONTINUE

SJZE 3 0.035#XLEN

¢ALL SYMBOL(0,308XLEN:,=-0,L11eXLEN,S1ZE,12HRERIOD (SEC),
10.0.12)

CaLL PLOT(0,0,040,3)

CaLL SYMBOL(~0,13#XLEN,0,452XLEN, S!ZE.12HPSV (CM/SEC),
190.0,12)

caLt PLOT(0,0,0.0,3)

X4 = 0, SOwXLEN

Y1 = »0,234XLEN

cAaLL SYMBOL(X1,Y1,SI12E,SYM,0,.6)

CaLL SYMBOL(999.,Y1,S81ZE,2HR=,0,,2)

CALL NUMBER(999.,Y1,S]ZE,R,0,,-1)

ALl SYMBOL(999.,Y1,S1ZE,2HKM,0,,2)

cALL PLOT(0,,0Q.,.3)

K1 s 50~-L

FRIK1#1) = =1,
FP(K1+2) = 1./CYCLE
FS(K1#1) = LYMIN
FS(K1¢2) = 1./CYCLE
Do 900 Jz 1 4

Do 890 1= L,49

K = I+*i-L

FR(K) = PERIODL(ID)

FS(KY = PSV(1,J)

CONTINUE

CALL LINE(FP,FS,K1,1,0,0)
CALL PLOT(10,40.,~3)
RETURN

END

SUBROUTINE AMATRIX(ND.DTO)

N0 = NUMBER OF GRID POINTS
DT0 = TIME INTERNAL USED IN SAMPLING THE INPUT VEL

COMMON/ABCOEF/AL11(49,4),A12(49,4),A21(49,4),A22(49,4)

# »B1(49, 4)082(49!4) PERIOD(49) KNDT(49)
# yKN1(49), DAMP‘4)'L

COMMON/ PERLOG 7/ PERIODl(El) b1

DAMP(1) = 0,

D~6
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DAMB(2) = 0,02
DAMP(3) = 0,05
DAMP(4) = 0.1
Jel

PERIOD(1) = 0.1
no 90 11=1,3
ADD = 0.02#30.#%(¢l1-4,)
DO 83 12=105
J o= Jvl

80 PERIOD(J+1) = PERIOD(J)*+ADD
ADD = 2,5#ADD
DO 85 12=6,11
J = J*1

85 PERIOD(J+1) = PERIOD(J)+ADD
ADD = 2.,%ADD
DO 90 12=z12,16
J = J*1

90 PERIOD(J+1) = PERIOD(J)+ADD
TNYG = 2,8DTD
Do 92 1=1,49
T = PERIOD(D)
IF(T.GE, TNYG) GO TO 94

92 GONTINUE

94 | 3 |
Lt = L
DO 95 121,49
T = PERIOD(])

95 PERIOD1(1) = ALOG10(T)
Do 100 I1=L,49

C FIND THE PROPER TIME INTERVEL

nY1 = PERIOD(I1)/10.
NpT = DTO/DT1+1,

DT = DTG/NDT

N = (NG—l)*NDTél
Nt = N~-i

FREQ = 6,283185/PERIOD(IL)
KN1¢14) = N1
KNDT(11) = NDT
B0 100 12s1.4
C FIND TME MATRIX A,B USED IN CALCULATING X,V
SGRT15 SQRT(1,~DAMP(I2)#DAMP(12))

WD = FREQuSQRT1

WDT ® WDeDT

T1 s ~FREGaDAMP(12)#DT
T2 = DAMP(12)/SGRTY
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EXPL 5 EXP(T1)
SIN1 # SIN(WDT)
¢oS1 3 COS(WDT)
T3 & ~1,+EXP15(C0S1+T2s5IN1)
T4 s FREQ#FREQ ;
A11¢11,12) & EXP1«(T24SIN1+C0OSY)
A12(11,12) = EXPL1#SINL/WD
A21(11,12) = ~FREQeEXP1#SIN{/SQRTY
A22(11,12) = EXP1a(C0S1~T2sSIN1)
B1(11412) 7 T3/(T4+DT)
B2(11,12) = <EXP1sSIN1/WDT

100 CONTINUE
RETURN
END
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