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ABSTRACT

The nonlinear dynamic behavior of building frames is con-
sidered. The study covers basic points associated with inelastic
dynamic analysis procedures. A formulation for the inelastic
analysis of a building frame is presented. The formulation is gen-
eral enough to take into consideration different nonlinearities
which might occur in a building frame on a selective basis. Two
types of nonlinearities are studied: those due to material behavior
and those due to geometry changes. The importance of each nonlinear
effect is studied separately and those effects which might be more
important than others are pointed out. Among the different .effects
studied are the P-4 and stability effects, the presence of gravity
loads, axial deformations in the columns, joint size and nonlinear
joint behavior, damping, and nonlinear so%]-structure interaction.

Comparisons are made between different complex, intermediate,
and simple models for inelastic dynamic analysis. From the studies
performed, it would appear that for typical building frames a gen-
eralized bending model including all the nonlinear effects will
yield results which are realistic and physically reasonable. Com-
plex models can be theoretically more exact, but they are also more
sensitive to numerical errors. For the cases studied, use of these
complex and expensive models does not seem justified.



PREFACE

This report is based on a thesis written by Tarek Saleh Abdel
Aziz in partial fulfillment of the requirements for the degree of
Doctor of Science at M.I.T. The research was supervised by José
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CHAPTER I

ANALYSIS OF NONLINEAR INELASTIC STRUCTURES

1.1 GENERAL

During the last decade a number of major developments have
taken place in the area of inelastic analysis and design. The tre-
mendous growth of research interest has resulted in a considerable
amount of knowledge about the analysis and behavior of structures
in the inelastic range. However, inelastic design has not as of
today (1974) been fully recognized in the specifications of many
countries, especially those provisions for seismic design. Inelas-
tic design theory is for many applications a substantial improvement
upon allowable stress theory where stress rather than Toad capacity
is emphasized. The research on inelastic analysis and design has
resulted in some changes in the basic design philosophy of structures.
It has necessitated a more precise definition of the limits of use-
fulness of a structure and brought attention to the potential advan-
tages of using different values of the load factor for different
types of load. Even if the resulting savings in materials and design
time have not been substantial, inelastic analysis and design is still
necessary for a better understanding of the true behavior of struc-
tures.

For the aseismic‘design of structures it is being increasingly

realized that inelastic deformations can happen and should be permit-
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ted to produce economical and safe designs. Over a period of time

a generally accepted design philosophy has emerged. It is based

on the premise that the structure should remain elastic during small
earthquakes, which occur frequently; should undergo "Timited plas-
tic deformation"during moderate size earthquakes; and may undergo
large plastic deformations, without collapse, during infrequent large
earthquakes. Design within the framework of this philosophy requires
a detailed investigation of the inelastic behavior of structures
under dynamic loading.

Current design procedures most probably result in satiﬁfactory
behavior under small earthquakes, but it is not yet generally possi-
ble to accurately predict the response of a structure in the inelas-
tic range, and thus the execution of the second part of the design
philosophy, i.e., that structures should resist very strong seismic
disturbances without total collapse, is still subject to uncertainty.

The increasing cost of urban property is on the other hand mak-
ing the use of highrise buildings in regions of high seismicity an
economic necessity. The average highrise building today has virtu-
ally eliminated redundancy. The concrete exterior walls have disap-
peared in many cases in favor of curtain walls. Interior permanent
walls are now lightweight construction, and partitions are kept
floating most of the time. There is little or no uncalculated strength
and the basic structural frame is thus required to carry the entire

seismic load.



15

1.2 DYNAMIC COLLAPSE OF A STRUCTURAL SYSTEM

A major research effort has been directed to the application
of ultimate design concepts to the design of building frames in
which instability may affect the Tload-carrying capacity. Experi-
ments have been conducted on full-scale braced and unbraced multi-
story frames to study their maximum load-carrying capacity under
static loading. A1l tests under static Toading showed conclusively
that unbraced frames are likely to fail by overall instability be-
fore the formation of a plastic mechanism, and that any rational
analysis and design procedure should attempt to include this effect.

Due to this effect the load-carrying capacity of a frame may
become dependent on the resulting deflections. This kind of inter-
dependence arises frequently in unbraced frames, and it would make
a direct design almost impossible,

On the other hand, there have been some attempts in understand-
ing the collapse mechanism of a multistory building under dynamic
loading. However, there are still many unexplored parameters which
act as contributing factors in causing the collapse of multistory
building frames.

Investigation of the deterioration process and the dynamic col-
lapse behavior of an actual structure can only be done if both grav-
ity effects (the so-called P-A effect) and the strain hardening

effects at least are taken into account in the formulation. The

latter effect, favorable in the sense that it results in stable
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restoring-force characteristics, may be considerably decreased or

cancelled by the former.

1.3 THE PROBLEM

The problem considered here is the analysis and behavior of
nonlinear inelastic planar frames. The structure is characterized
by the fact that generalized distortions of the individual members
are nonlinear functions of the applied generalized loads. The main
reasons for nonlinearities are stability and plasticity.

Various cdnventiona] methods for determining the forces in the
members and displacements of the joints of a structure are available.
However, these methods depend upon a Tinear relationship between
stress and strain. This relationship exists only when nnne of the
stresses are above the proportional 1imit, and are not applicable

if the stresses in any part of the structure exceed it.

1.4 HISTORICAL BACKGROUND

Nonlinear behavior of structures under dynamic¢ Toading has been
a2 topic of interest for years, and the subject of considerable re-
search throughout the past decade., Work in this area has proceeded

basically along two main lines:
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(a) In-depth study of the dynamic behavior of various simple,
one-degree-of-freedom systems, to increase understanding of the
effects of softening and hysteretic dissipation of energy on the
response of different models, the effect of gravity loads, etc.,
both from a deterministic point of view and a probabilistic point
of view. Some of the early papers on the subject focused on the
inelastic response of single-degree-of-freedom systems with elasto-
plastic force deformation relationships. Among such contributions

is the work of Penzien 6] (51)

and Veletsos and Newmark , which ad-
vanced our knowledge on inelastic behavior and ductility require-
ments for simple systems.

Later systems with bilinear, trilinear or more general force
deformation relationships were studied. Among these studies is the

(34, 35)

work of Jennings , on Ramberg Osgood systems including as

particular cases elastic and elasto-plastic behavior, and the work

(50)- (30) studied the inelastic dynamic response

of Veletsos. Hanson
of mild steel structures and concluded that their force displacement
relationship could be represented by an expression of the type sug-
gested by Jennings.

Husid(33) examined the effect of gravity loads (P-A effect) on
thé résponse of an elasto-plastic one-degree-of-freedom system. He
concluded that the effect was significant and was characterized by
a plastic drift. The systems he studied were, however, unrealistic

for actual one-degree-of-freedom models, and the extrapolation to
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actual structures is difficult. It would seem also that the re-
sults are sensitive to the assumed force deformation relationship.
The possible importance of-this effect is not c¢losely known, and

it is the subject of some controversy at the present time.

(b) Studies on multi-degree-of-freedom systems and particu-
Tarly plane, ductile frames. Models with different degrees of com-
plexity have been developed for these analyses.

Clough and Benuska(16) performed a study for HUD. The model
they presented can be considered as intermediate as far as complex-
ity is concerned. Plastic hinges are assumed to occur only at the
ends of each member, with a bilinear moment-curvature re]ationéhip.
Such effects as the spreading of yielding, nonlinear geometry (P-4
effect), variation in axial stiffness with progressive yielding and
axial bending coupling are neglected. As a matter of fact, even
the effect of axial load on the moment capacity of a section was not
explicitly considered.

Goe1(25’ 26) used a model which consists of an equivalent single
bay, multistory, rigidly jointed frame that is symmetrical about its
vertical centerline. The conversion is equivalent to assuming that
all joints at one floor level of the original structure deflect and
rotate by equal amounts at all times during the response. The gir-
ders in his model follow the nonlinear moment-curvature behavior as
defined by the Ramberg-Osgood function. Improvements in Clough and

(4, 5, 6)

Goel's work have been introduced by Anderson , among others,
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These improvements include typically consideration of an interac-
tion type formula to determine moment capacity as a function of
axial load, different functions for the moment-curvature relation-

ship, and inclusion of P-A effects. Lionberger and weaver(42) co

n-
sidered also the effect of finite joint sizes and nonrigid joints.
Bertero(12) presented a simplified formulation of panel zone mechan-
isms in which he assumed that the single component of panel zone
distortion is a shear distortion by virtue of which the rotation of
the columns and the rotation of the girdersat the joint need no
longer be identical. These assumptions might be reasonable for panel
zones in interior columns, where both girders framing into the joints
are approximately of the same depth. Their extension to exterior
columns and top-story joints had to be accepted without experimental
substantiation. A1l these modifications are relatively minor from
the point of view of complexity and time of computation.

More complex models, attempting to reproduce some of the other
effects and in particular the spreading of yielding and its influence
on both bending and axial stiffness, have been used by different
authors. Baron and Venkateson(g) studied the inelastic dynamiclre-
sponse of a prismatic ségment by tracing the stress-strain history
of various fibers at discrete cross sections. The same model had‘

(47)

been used for one-story one-bay frames by Perez and was extended

(40)

to multistory frames by Latona. Latona verified the validity of

the model for predicting elastic behavior and elastic stability, but
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could not verify its ability to predict inelastic behavior.

The author(s) presented a mathematical model for the analysis
of frames which was used to study the incremental static analysis
of steel frames loaded to collapse. In this model both the effects
of local and overall instability are included, as well as all the
nonlinear effects. The model of course is expensive compared to
the bending or the interaction models.

(3)

At the other end of the spectrum, Anagnostopoulas formulated
a simple model which is very economical and which could be used for
the approximate nonlinear analysis of a complete building. The
model 1is attractive, since the building is reproduced as a system of
different nonlinear springs in space, each spring corresponding to

a2 story of a structural element, Application of the model is, of
course, restricted to a certain class of typical buildings. Average
effects for a story of a given structural component are studied,
rather than the values for é particular joint or member. Use of this
model requires, however, preliminary computatidns and a great deal
of engineering judgement to select the most appropriate spring con-
stants for each one.

Table 1.1 presents a short summary of these models, the effects

they include, and the type of structures which were analyzed.



Table 1.1

Summary of Models for Nonlinear Analysis of Buildings

Intermediate Models

CLOUGH
&
BENUSKA

GOEL &
HANSON

ANDERSON
&
BERTERO

Complex Models

LATONA &
ROESSET

AZ1Z

Simple Models

ANAGNOSTOPQULOS
&
ROESSET

Solution Scheme, Effects Attempted to Include, and Structures Analyzed.

Only point hinges with bilinear moment-curvature relationship.
Plane frames and shear walls.

Point hinges with Ramberg-0sgood moment-curvature relationship and
interaction-type formulation for axial loads. P-A effects. Yield-
forced to occur in the girders. One-bay multistory frames.

Point hinges with bilinear moment-curvature relationship and inter-
action-type formula for axial loads, P-A effects. One-bay multistory
frames designed by different philosophies.

Tangent formulation, including spreading of yielding, inelastic axial
behavior, axial bending coupling, overall elastic stability.

Secant formulation, including spreading of yielding, inelastic axial
behavior, axial bending coupling, local and overall inelastic stabil-
ity and post-buckling analysis. Static loads only.

Frames reproduced as close-coupled systems, with one spring per story.
Shear walls reproduced as for coupled systems, same as in Clough's
model. Total buildings including torsional effects.

L2
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1.5 SCOPE OF THE RESEARCH

In Chapter Il a general formulation for a mathematical uncoupled
bending model is presented. The model developed is capable of taking
into consideration all the nonlinear effects in a convenient, systema-
tic way. The solution is developed and implemented in such a way that
some of these nonlinear effects can be intentionally neglected as well.
Chapter III contains an extensive comparative study of different bending
models. The study is carried out in a systematic way to compare the
relative importance of different aspects of the problem, Consideration
is given to different ductility definitions, soil-structure interaction,
the overshooting and the backtracking problems and comparisons with re-
sults of other researchers. Analyses for a 10-st0ry frame are presented.
In Chapter IV studies for three frames available in the Titerature were
conducted, using the most general bending model developed which includes
all the nonlinear effects and the least general bending model which
neglects all the nonlinear effects. This Study was carried ouf in con-
junction with a parallel study using a simple trilinear story-wise model
as implemented by Anagnostopoulos.(a) Chapter VI contains a comparatfve
study for a three-story frame using the generalized bending model and a
fiber model. The conclusions and recommendations for future research

are presented in Chapter VII.
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CHAPTER 1II

GENERAL FORMULATION OF A MATHEMATICAL UNCOUPLED
BENDING MODEL

2.1 GENERAL

Nonlinear behavior of structures under dynamic and static
* loading has been a topic of interest for years and the subject of
considerable research throughout the past decade. Most of the
work in the area has proceeded basically a]oﬁg two directions;
simple models where one might be interested in the overall behavior,
and more elaborate models where one might be interested in local
effects, It is useful here to distinguish between two approaches
for analysis.

(1) "“Elastic-Plastic Analysis," where it is assumed that
plastic hinges form at discrete points but the remain-
der of the structure remains elastic.

n

(2) "Compatibility analysis," where consideration is given

to the zones of partial plastification and the M-P-¢ and
M-p-&* relationships are used directly or indirectly.

It is also useful to distinguish between types of analysis

which give the following amount of information, especially under

incremental static loading:

(1) Loads and deflections of the structure immediately prior
to failure.

(2) Behavior of the frame under the full possible range of
loading.
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2.2 BASIC PHILGSOPHY BEHIND A BENDING MODEL

As mentioned before, "Elastic-Plastic Analysis" is based
on the assumption that plastic hinges form at discrete points,
but the remainder of the structure remains elastic. This is the
basic philosophy behind what will be termed in the following the
"Bending Model." This model is considered a generalization for
the “EIastic-P]asfic Analysis," since the elasto-plastic behavior
in the Bending Model (BM) is not a necessary idealization. However,
the concept of a point hinge is a basic characteristic of the model.
An analysis using a BM can be illustrated as follows:

Consider a frame to have external loads applied to it which
are proportionally increasing. The Toads might be static or dynamic
and the only requirement is that they are defined by a single load
factor "A". The frame will behave entirely elastically until the
bending moment at an end of one member is reached. If Toading is
continued, this section will take no additional bending moment, thus
acting as a plastic hinge. On subsequent loading the rest of the
frame will stiil behave elastically and a prediction ofa second
plastic hinge can be undertaken. Thus the behavior can be traced
against the load factor in a static problem or against time in a

dynamic problem.

2.3 SINGLE COMPONENT MODEL SCM

The single component model "SCM" is a model in which

each member in the structure is treated as a single elastic component



25

which is connected to the rest of the structure in a way which
depends on the levels of end forces. For example, if the level of
forces exceeds the plastic 1imit at the beginning of a member, the
member is treated as being released at this end.

The SCM in its simple form as presented above is the basis for
the rigid-plastic analysis of structures, and was first suggested by

Giberson (22).

2.4 DUAL COMPONENT MODEL DCM

The concept of a dual component model was first introduced by

C]ough(]s)

{1967). It provides a form of bilinear moment resistance
for each member. While it has no obvious physical meaning, it is a
mathematical way of arriving at engineering results. In this model
the following is done:

Each member is assumed to consist of two components acting in
parallel: a basic elasto-plastic component which develops a
plastic hinge at either end when the end moment exceeds a specified
yield value, Mp, and a second component which remains fully elastic.
A typical member is shown in Fig. 2.1(a). It is noted that the
fully elastic component is rotated at each end through the total
joint angle, 6, while the elasto-plastic component deforms elastic-

ally only through the angle, ¢. The additional joint rotation, o,

indicated in these components represents the plastic hinge deforma-
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tion, which is assumed to have the ideal plastic hinge property
depicted in Figure 2.1(b)}. It should be mentioned here that the
total moment continues to increase beyond the yield value, due to
the contribution of the elastic component, the amount of this in-
crease can be controlled by using a very flexible elastic compon-
ent.

In general the incremental end forces can be written in

terms of the incremental displacements as follows:

{oF} = [K], (o) (2.1)

The tangent stiffness matrix Et depends on the status of
the member and whether the yield moments at the ends of the member
have been exceeded or not. Four different member yield conditions

may be defined, for which the tangent stiffness coefficients are:

Case (I) Elastic Member - No Hinges:

Al al
4 \Au3 A((’G( 5
£ .
Au'/i AN Au4



where

and

= Moment of inertia of the section

0 0
-12E1 6EI
3(1+2g)  LP(1+2p)
%L 21 (1.8
L=(1+2g) L 1+28
(2.2)
0 0
12E1 _6E]
L3(1+28)  LE(1+2g)
-6E1 A1 (2+8
Z(1s25) T ETFEZ%L
0 0]
0 0
5 S
(2.4)

= Youngs Modulus of Elasticity

0 0
12E1 6F]
L30+28)  Lé(1+2g)
6E1  AEI.  (2+B)
L(1+28) 2(1+28)
0 0
-12E1 _6E1
L3(1+28)  L2(1+2g)
6E1 2E1 . (1-8)
2 (1+28) L 1578
S 0 0
0 S S
0 s, S,
S, 0 0
0 -54 "53
_o Se St
_ BEI
7
L“GA,
E
A = Area of the section
I
AS = Shear Area
G =

Shear Rigidity Modulus.
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L = Length of the Member
51’52’53’54’55’56 and S? are the stiffness coefficient.

It is worth mentioning that for a member of constant (EI)
and constant (EA), S¢ = S3 and S, = S,. However, for a member of

variable (EI) and (EA) Sy # 56 and S, # 52'

Case (II) Hinge at End j

S] 0 0 -S] 0 0
"]St = ' ' 1 1 (2 5)
0 '34 '53 0 S4 '56
where: 5; = 3, 2.6)
: 55 55
' S S
= 5 76
55 = B 55 (2.10)
Sg = 81 Se (2.11)
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Case (ILI) Hinge at End i:

51 0 0 -S.-I 0 0
0 34 53 0 -54 56
" 0 S 0 -S S
Et = 11 3 2 n 3 5 (2']3)
where:
5, = 5 2.14)
" 53 53 :
55 = B 55 (2.18)
v 55 S3
Sg = By Sg *+ By (S - Tz) (2.19)
" 55 55



Case (IV) Hinges at Both Ends:
— (11}
S] 0 0
(13 [§3)
11 (I |
0”| 53 52
(1)} . 0
Kt B S.I 0Ill HI
O _54 -53
i (]
0 56 55
where: [
1 T
and
Si = ELl Si
81 and 82 are defined as follows:

and

B
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component

= (1 - B]).

i
-5
L

-S

848

1]

=S

is given by the slope of its elastic

(2.21)

(2.22)

(2.23)

strain hardening factor in the model and

(2.24)
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2.5 A GENERAL SINGLE COMPONENT MODEL GSCM

A General Single Component Model is by definition a model
where the member is treated as one integrated part which is connec-
ted to the rest of the structure in a certain way. The GSCM has
the advantages that many of the nonlinear effects can be intro-
duced easily. It has a very clear physical meaning and its re-
sults are directly related to some phenomena famjliar to the prac-
ticing engineer. Moreover its parameters are derived experimentally
or assumed to match the situation faced in practice.

Before deriving the stiffness of GSCM, it is convenient to
look at the structure being modeled in a more practical way. The
structure consists of a series of members joined to each other by
connections. In conventional structural analysis it is assumed
that these connections are rigid, which is rarely the case. A
typical steel connection is shown fn Fig. 2.2a. Under a moment
transferred by the member the connection deforms as shown in Fig.
2.2(b) through an angle @ which is the angle of misfit. Realistic-
ally the problem might be even more complicated, since the amount
of distortion is generally dependent on the axial and shearing
forces in the member. However, for all practical purposes it will
be assumed that a relation exists between the applied moment from
the member "M" and the corresponding distortion "€". Such rela-
tions have been measured experimentally and are reported in differ-

ent places. A general form of this relation might take the shape
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shown in Fig. 2.3a.

The only and basic assumption in GSCM which cannot be re-
laxed is that such a relation between M and & exists and is known
beforehand. This means that M-9 curves for the joints should be
provided as initial data for the problem. These can be obtained
from experimental results or by an engineering idealization of

the behavior.

The physical meaning of the moment rotation relationship is
clear when applied to the behavior of the joint. If, on the other
hand, yielding takes place in the member itself, it is necessary to
assume or compute a plastification length to define the yield rota-
tion, and further approximations have to be introduced into the analy-

sis.

2.5.1 Theoretical Formulation of GSCM

The stiffness of a member with shear deformation is as
given by equation 2.2. Assuming for the time being that only the
case of elastic member is considered, and using a sign convention

as shown in Fig. 2.3(c}, one can write:

'} = {u} + [IF]EF) (2.25)

’Vu;[
o

where {u'} = u = Joint displacements vector (2.26)

o4

[ =
(o2 BETS ) BEEN RS g

[
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and {u} = Uz

Member end displacements vector.(2.27)

and {F} = 3

Member end forces vector. (2.28)

L -

[JF] is the joint flexibility matrix given by
r | m
. 0 .
0 0 0
F1= o o I;_J | (2.29)

[{en]
o
o

(]

0
0
1
N J

K; and Kj are the stiffnesses of the two rotational springs.

Hence (E%J and (El) are the flexibility of the springs, f; and fj'
i .

J .
It should be stressed here that it has been arbitrarily

assumed that the rest of the terms in [JF] are equal to zero. This
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is primarily because rotational springs were used to model the
behavior of the Joints. Thus one should laok at K; and K; as
being a kind of equivalent stiffness which produces the same
rotational distortions at the end joints, Ki and Kj could be
either the secant stiffnesses if one is using a secant formula-
tion approach, or the tangent stiffnesses if one is using a
tangent formulation approach. There are no major differences

in the two formulations and in what follows the tangent approach
will be used (although the same equations apply for a secant
approach).

The incremental stiffness equations are:

{oF} = [K], [{au'} - [9F], {8F}] (2.30)
[[1] + [K]t[JF}t:I {AF} = [K]t{Au'} (2.31)
or
— -1
{AF} = [[1] + [K]t[JF]t] [K], {au'} (2.32)
{aF} = [K], {Ay} (2.33)
| [K]t= GSCM tangent stiffness matrix
= [RMI[KI, (2-34)
where

- -1
[RM]= Reduction Matrix = [EI] + [K]t[JF];] (2.35)
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-1
then [, = [0+ L 0oF) ] T, (2.36)

n

where: [K]t Augmented tangent stiffness matrix for the assembly

and: [JFJt= Tangent flexibility Matrix which has the same form
as equation 2.29., Only (Ki)t and (Kj)t are substi-
tuted for (Ki) and (Kj)‘

[1] = Unit matrix, i.e. Iij =85

The following relationships between the incremental joint

displacements and the incremental member end displacements exist:

s = [01 + LFD, [k o @2.37)
and -1
{au} = l:[I] + [IFILIK], | {auh} (2.38)
The above equations are valid for any form of [-JF]t and are thus
general in this regard. They are specialized here for the case

where [JF] is as given by equation 2.29. Defining (fi)t and (fj)t

1 1 . .
to be(E;T; and ICARE respectively:

3’
10 0 0 0 0 ]
01 (f), 55 0 0 (F) s
C KR ¢ 0 MRLS o o (7055 | (2.39)
0 0 0 10 0
00 H(f)Sy 01 -(F) 5
0 0 (F) s 0 0 WS,
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Defining D as

= (+(f5) Sp) O+ (F5), 70 - (F;) (F5), S5 S (2.40)
: -1
. [RM] = [[1] + [K]t[JF]t:, (2.41)
D o 0 0 0 0
0 D B 0 0 C
- %. 6 0 D! 0 0 E (2.42)
0 0 0 D 0 0
0 0 -B 0 D -C
K 0 E 0 0 DEJ
where: [
D =1+ (fj)t s, (2.43)
D =1+ (fi)t S, (2.44)
B = (fi)t S (fJ.)t S¢ - (fi)t S4 D (2.45)
C = (fi)t S (fj)t S5 - (fj)t S D (2.46)
E = - (f1.)t Sg (2.47)
E = - (fj)t S (2.48)
and . . :
D =0'*D" -F *E (2.49)
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Finally [K]t is given by [RM][KJt and is evaluated as

(s,)

o= g~

0 -(84) 0 0

(S5} (Sq) 0 -(54)  (Sg)

(Sg)  (s,) 0 -(s3)  (sg)
0 (S) 0 0

-(Sg)  -(S3) 0 (Sq)  -(Sg)

(5¢)  (Sg) 0 -(Sg)  (54)]

1
[52 D + 55 E ]

[53 D + 56 D]

S¢/D
% [Sg D" + S5 E]

1 n
ﬁ-[57 D + 55 E]

(2.50)

(2.51)
(2.52)
(2.53)
(2.54)
(2.55)
(2.56)

(2.57)

and as previously mentioned, the member incremental end displace-

ments are related to the joint incremental displacements by the

relation:

{Au}

or
{aul}

[[1] . [JF][KJJ-]{Au'}

{au'} - [JF] {aF}
t

(2.58)

(2.59)
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[t is worth mentioning that for a member which is rigidly jointed,
(fi)t and (fj)t are both zerao, and hence [RM] is the unity matrix.
[.e., the stiffness matrix of the assembly of a member and two

nonlinear springs is the same as the original stiffness matrix of

- the member by itself.

2.5.2 Effect of Finite Joint Size

So far the stiffness of the member (if a girder) was referred
to the centerlines of the adjacent columns, and thus the columns were
considered of zero width. When dealing with wide columns of shear
walls, ithe clear length of a girder and its centerline length be-
come very different and some consideration should be given to
handle this effect properly. Here this joint size effect is intro-
duced in the analysis through a modified stiffness matrix. Refer-
ring to Fig. 2.4 and assuming that the plane cross seﬁtion of the

column or shear wall remains plane after deformation, one can write:

(u

1

d. 2.60
2)1 (Uz)i + i (US?iI ( )

(ug) = (ug) - d; (ug) (2.61)
5' 5/, j ‘s

J

where (uz). and (u5) are the vertical displacements at the column
1 J
faces and (uz) . and (us),. are the vertical displacements at the
i J
centerline of columns,
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'uf B 0 0 0 0 0] [y]
Uy 0 1 di 0 0 0 U,
ug 0 0 1 0 0 0 uj
= ' (2.62)
Ug 0 0 0 1 0 0 Uy
Ug 0 0 0 0 0 1 u
P - - L. 6J /v
or
{u}.ij = [G] {u}ijjl (2'63)
'[F}_i'jl = [G ] {F}'ij (2.65)
where [G'] is given By:
B 0 0 0 0 0]
0 1 0 0 0 0
0 d, 1 0 0 0 .
[6'] = = [G] (2.66)
0 0 0 1 0 0
0 0 0 1 0
0 0 0 0 -4 1

Then finally T
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and thus the modified stiffness matrix is given by
. - T .

Carrying out the multiplication, one can arrive at the stiffness

matrix shown in equation 2.69.

(s, o0 0 -(s) 0 0o |
0 (5" (S5 0 -5 (sg)
0 (59 (s,) 0 -(S5)  (Sg)
{F}iﬁl = -(ST)I 0 | 0 | (S})[ 0 | 0 | {U}iﬁ'
0 -(sg) (S 0 (5)" -(5g) .69)
0 (s (s 0 (s (s) ]
where: (51)' = (S¢) ’ - (2.70)
(5,) = (5,) + 2(S5) d, + (5,) d2 (2.71)
(530 = (53) + (54) d, (2.72)
(54) = (34) 2.73)
(S5) = (Sg) + (Sg) dy + (59) dy + (5,) 4y, (2.74)
(55) = (5g) * (5,) (2.75)
(57) = (5;) +2(S) d; + (5,) dyd (2.76)

Finally the stiffness equation of GSCM in incremental form can be

written as:
{AF} = [K] {au} €.77)
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where:

[K], = [61'[RMIKI,[6] (2.78)

or:

I

T -1

2.5.3 Stability Effects in GSCM

The main objective of any method of analysis is to predict
the behavior of the structure as the load is applied to it. Due
to the fact that some of the members of a frame may carry large
compressive loads, the elastic and inelastic stability is likely
to become important and hence stability effects should be inciuded
in the analysis. This could be done by the elastic stability func-

tions discovered first by Timoshenko(57)

and tabulated later by
Livesley and Chand]er(ss) in 1956. A similar version of these
stability functions has been derived and presented by Roesset.(sg)
A more general formulation of the inelastic stabi]ity'functions
problem has been presented by Aziz.( 8)
In the current study use is made of these stability func-
tions to include both local and global stability. The stiffness

of an etastic member modified by stability effects is

s 0 0 - 0 0 ]
1 1
K1, =] S3*C; Sp*C, 0 =S50 SgCy (2.80)
-51 a 0 51 0 0
0 -54*(:4 _53*C] 0 54*C4 —56*C1
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The functions C1, CZ’ C3 and C4 above are depend.nt on the
axial force in the member. Fig. 2.5 shows the shape of these
functions and their variation with the axial force P. For a

compression member:

2
(al) = | B (2.81)
2,2
and C, = a"L“(1 - cos alL} (2.82)
A
. 2,2
c. - {aLl) sin al - aL” cos al (2.83)
2 LY
2, 2 .
Cy = aL A aL sin al (2.84)
3,3 _.
C4 -al AFm aL (2.85)

where 2 ,
A = (1 - cos aL)“ - sin at(al - sin al) (2.86)

For a tension member:

5
(ar) = [ B (2.87)
22
C, = a LICZ?h aL -1) (2.88)
2,2 .
C, = a’L cosgeL - aL sinh al (2.89)
. 2,2
c. = ak sinh AL - a”L (2.90)
’3 Al
= a3 : .
Gy = 273 s1nb al (2.91)

A
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where:

A' = 2 sinh aL G%i - tanh %E) (2.92)

Other stability schemes can be used instead of the stabil-
ity functions. For example, corrective terms can be added to the
stiffness matrix or to the member end forces to take into considera-
tion both the local stability and the global stability. Usually
it is better to have the correction occurring in the stiffness
matrix rather than the member end forces. The major advantage of
the stiffness correction is that it doesn't lag a step behind, the
way the force correction does. In practice it turns out that this
difference of one step may lead to a significant discrepancy be-
tween the two methods, especially when there is a great change in
the axial forces in the members. For some dynamic problems, this
might not be important since the axial load doesn't change very
much. In both methods the axial force in the member is the axial
force obtained at the end of the previous step. Finally, a mixed
scheme can be used where the stiffness matrix is corrected for the
axial load, while the force vector is corrected for the change in
the axial l1oad. The procedure for correction can be summarized
as follows:

P

(1) Substitute S(4) by S(4) + -

(i1) Add to the shear at end i the value é%—(u5 - u2)

(iii) Add to the shear at end j the value —.ég.(us - u2)
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where: P is the axial force in the member,

AP is the Tast change in the axial force from the previous
step,

Uy and u. are the lateral displacements at ends i and j
raspectively, and

S4 is the transverse diagonal stiffness term in the stiff-
ness matrix of the member.

The latter scheme proved to be as efficient and as accurate

as the stability functions described before.

2.5.4 Interaction Effects in GSCM

Interaction effects can be introduced in GSCM easily to
provide an interaction model. This model is basically similar to
the bending model, but the criterion for the formation of a hinge
or its removal is different. The criterion for the bending model
is based on the value of the moment, while in the dinteraction
model, it is based on the combination of the values of the bend-
ing moments and the axial forces at the ends of the member. 1If’
such combination of moment and axial force 'would produce a
point inside the interaction domain, no hinge will be assumed.
But if it produces a point on or outside the interaction domain,
a hinge with specified behavior should be assumed. Theoret-
ically speaking, introducing interaction effects leads to a coupled
model and an iterative procedure should be used to make sure that

the combination of the bending moment and axial force leads to a
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point on the interaction surface or inside it, but not outside
it. However, since in the solution of the dynamic problem the
model is stepped through time, many ways can be used and have
been used in the current analysis to enforce the previously men-
tioned condition without having to go through a coupled iterative

formulation.

2.5.5 Possible Idealization for Joint Behaviar

A basic assumption in GSCM is the fact that the behavior
of the joints is known beforehand., Plastic analysis theory is
based on the assumption that the behavior of the joints is rigid-
plastic. This assumption might not be realistic in types of
joints constructed nowadays by typical practices. Many idealiza-
tions for the behavior of joints can be assumed, based on experi-
mental data available in the literature,

Among these idealizations for the behavior, the following

have been implemented (Fig. 2.6):

1. Idealization (A) - Rigid-Plastic Behavior

2. Idealization (B) - Elastic-Plastic Behavior

3. Idealization (C) - Bilinear Behavior.

4. Idealization (D) - Stiffness Degrading Behavior
(parallel unloading branch).

5. Idealization (E) - Stiffness Degrading Behavior

(non-parallel unloading branch)

6. Idealization (F) - Stiffness and Strength Degrad-
ing Behavior

7. ldealization (G) - Stiffness and Strength Degrad-
ing Behavior with physical lower
bound on the properties.
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2.6 DEVELQPMENT OF THE SOLUTION SCHEMES

In the previous sections different bending and interaction
models have been presented. Different analysis effects were intro-
duced into these models to allow realistic consideration of the
true behavior of a building frame. The formulation so far has
been general and is thus applicable to both the static and the
dynamic case of loading., Here further consideration will be given
to the dynamic case, ince the formulation is mainly intended for

this type of analysis.

2.6.1 Assumptions in the Formulation

The basic assumptions for the formulation are as follows:

(i} Floor diaphragms are assumed to be completely rigid
in their own plane. They are very flexible for out-
of-plane deformation.

(i1) The mass of the structure is assumed to be lumped at
the floor levels.

(iii) The concepts inherent in a bending model are valid,
matnly the concept of a plastic hinge, although the
hinge might have an arbitrary behavior as illustrated
before.

(iv)} The effects of rotatory inertia are neglected for the
structural system, although they are considered for the
foundation.

(v) Generalized hinges can form at the ends of each girder
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or column and gravity loads on the girder elements
are represented as initial fixed end forces acting
at the nodal points. '

Each nodal point has three degrees of freedom: a hori-
zontal transiation, a vertical translation and a
rotation.

The formulation includes in addition:

(i)

(1)

(ii1)

Axial deformation in the columns. However, axial de-
formations in the girders are neglected since the floor
diaphragms are assumed rigid.

The reduction in frame stiffness due to vertical loads
and the change in geometry,

The effect of axial-flexural interaction on the yield
moment of the columns.

2.6.2 Equations of Motion

The equations of motion for a structural system can be writ-

ten as follows:

where:

-
i

I Inertia force vector

-n
]

p = Damping force vector

Fp = Restoring force vector from the struc-
tural system

L
[}

E Excitation force vector.
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For a system excited by a ground acceleration, the abové
equation becomes:
MU+ Cou+ Flu) =R (2.94)
where:
= Mass matrix

L -4

u, u and U are relative nodal displacement, velocity and
acceleration vectors respectively

= Damping matrix

[ = N |

= Excitation vector which is equal to - M Gg in

case of ground motion where u_ is the input

g
ground acceleration,

F(u) = Restoring force vecter which is dependent on u
{displacement vector); it is generally a non-
linear function of u,

2.6.3 The Mass Matrix

Generally speaking, the replacement of the distributed mass
by a number of concentrated masses reduces the number of degrees
of freedom of the system and affects the response of the structure
particularly in the higher modes.

In a multi-story building, however, for most practical pur-
poses it is sufficient to consider the mass of each floor as con-
centrated at the floor level, and the masses of the columns divi-
ded between the two floors they connect. This scheme results in

a diagonal mass matrix which can be stored as a one-dimensional
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array and thus allows a great saving in storage requirements.

(60),

For all practical problems and typical buildings it was found
(61)

that such scheme is nearly as accurate as a consistent mass
formulation, particularly since a large fraction of the mass is

actually contributed by the slab.

2.6.4 Condensing the Stiffness Matrix

In the present study only the lateral modes of vibration
are considered. A kinematic condensation followed by a static
condensation are used. The kinematic scheme simply impose§ the
condition that all the joints at a given floor level displace
laterally by the same amount. The static condensation scheme
assumes negligible inertia locads corresponding to vertical and
rotary displacements, and considers the static equations to arrive
finally atthe lateral stiffness matrix of the structure. The
result of both the static and kinematic condensation is that only
one degree of freedom per story is retained explicitly, i.e., the
lateral displacement of the floor level; however, the effect of
all other displacements is retained implicitly, and their values

can be obtained from a back substitution process.

2.6.5 The Damping Matrix {

There are several ways by which a convenient damping matrix
can be selected. Most of these ways are based on an elastic analy-

sis approach and they are justified because they lead to a mathe-
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matical simplification in the elastic range. In the inelastic
range there is no major advantage for using any certain form for
the matrix C, since the solution is obtained in the time domain.
However, since the dissipation of energy reproduced by the matrix C
is assumed to take place whether the structure yields or not, it
seems reasonable to consider it constant in both the elastic and
inelastic range.

Ray]eighqq) showed that if the damping matrix is a linear
combination of the stiffness and mass matrices it will be uncoupled.

CaugheyGS)

showed that a sufficient, though not necessary, condition
for the damping matrix to be uncoupled is that it be expressed in

the foliowing way:

(N-1) _
c=M- 7 a, MK (2.95)
ST~ 50
where: N = Number of degrees of freedom
and a, = Undetermined coefficient.

Different observations can be made about the damping matrix
E. If the C matrix is chosen proportional to the mass matrix, the
modal damping decreases continuously for increasing number of modes.
The constant of proportionality is usually chosen to give a prespeci-
fied percentage of critical damping in one particular mode (usually
the first). If the C matrix is chosen proportional to the stiffness

-~

matrix, the modal damping increases for increasing number of modes.
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The constant of proportionality can be chosen to give a pre-
scribed percentage of critical damping in cne particular mode.

If the damping matrix is chosen as a combination of the
mass matrix and the stiffness matrix, one can have more flexibil-
ity in the variation of modal damping over the system's modes,
but ultimately the damping will start increasing for high fre-
quencies. Fig. 2.7 shows this particular behavior.

In the present work use has been made of a direct method
to arrive at the damping matrix for certain specified modal damp-

ing values. The resulting damping matrix has the form:

C=hoge W (2.96)
where:
M = Diagonal mass matrix
¢ = A matrix whose columns are the eigenvectors
~ of the system (normalized with respect to M)
= [@-[ @2 ------ @n]
Bi = Percentage of critical damping in the ith mode
w; = Circular frequency of the ith mode
B =

Diagonal matrix with elements 281“1‘

Since the eigenvalue problem has been solved first, the
matrix C can be formed after arriving at the matrices B and ¢. Thus
the method allows the flexibility of having any desired amount of

viscous damping in any of the modes.
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2.6.6 Numerical Integration Scheme

There are many different procedures available for the
numerical determination of dynamic¢ structural response.

In the present study the equations of motion were solved
using a step-by-step integration procedure. This procedure,
called the "constant velocity method," assumes that the veloci-
ties of the system are constant within the time step. Under these

assumptions the recurrence formulas for velocities and accelera-

tions are:
U= e (U -y ) (2.97)
*n ~ 2at ‘ontl Un-1 :
and
1
u. = —{u -2u_+u_ 4) (2.98)
=N (At)Z n+l ~N ~h-1
and then

-1
1 1 2 '
u = M+ C|.|R -F +—— Mu
~nh+1 [(At)Z ~ At ~] [ n ~n (At)2 ~ N

] 1
- (Ez"f'm@‘in-1 (2.%)

The above matrix equation can be used for the calculation
of the displacement vector at time step n+l, in terms of the dis-
placement vectors at steps n and n-1, and the force vector Fn at
time step n.

The force vector at time step n is computed easily in a tan-

gent formulation. Since the numerical procedure produces total dis-
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placements, the incremental ones are found by substituting the
values of two.consecutive steps. Then the incremental forces in
the different structural components are computed from the tangent
stiffness matrix and accumulated to obtain the total forces,

An obvious problem with the "constant velocity method” is

that it is not self-starting since at any particular time step n

we need the displacements of the two previous steps. This means
that in order to start the method one must obtain the displacements
of the system at the end of the first step. This was done by using
a 4t order Runge-Kutta method which is self-starting. Once the
displacements are calculated, velocities and accelerations can be
computed from the other equations.

The numerical integration scheme used requires a time step
in the order of 1/5 to 1/10 of the smallest natural period, provided
that this time step reproduces well the loading. In some problems,
where the lowest natural period is very small, this implies an ex-
tremely small At, should the method remain stable. For most of the
cases studied, a At of 0.01 sec. was used, which is required to repro-
duce the earthquake loading. This proved very satisfactory for the

type of problems at hand.
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CHAPTER 111

COMPARATIVE STUDIES OF DIFFERENT BENDING MODELS
UNDER DYNAMIC LOADING

3.7 INTRODUCTION

In Chapter III a formulation for the inelastic dynamic analy-
sis of building frames has been presented. This formulation is
general enough to take into consideration different nonlinearities
which might occur in a building frame on a selective basis. The
objective thus is to study the relative importance of each nonlinear
effect separately and signal out those effects which might be more
important than others,

The type of nonlinearities studied can be grouped into two
broad categories: those due to material behavior, and those due to
geometry changes. Since the relative importance of each nonlinear
effect is dependent on the shape of the building frame studied, some
results might not be easily generalized and applied directly to other
unusual configurations. Then the objective here is only to demon-
strate the relative importance of different effects for some build-
ing frames.

The rest of this Chapter will be devoted to discussing further
considerations for the bending models. An extensive comparative study
for a 10-story 1-bay building frame designed previously by Anderson(5 )

is presented, and the relative importance of different effects is

established for this particular frame.
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3.2 DUCTILITY CONSIDERATIONS

3.2.1 General

A widely used measure of the cyclic inelastic behavior of
a structure is the so-called ductility factor. The term has been
commonly used as a measure of the amount of yielding incurred in
a system. Conventionally it is defined as the ratioc of the total
deformation to the elastic deformation at yield, and it has been
variously defined as that ratio for strains, curvatures and deflec-
tions. Strictly speaking, a ductility factor has no precise meaning
until the method of measuring it has been defined. The va]ﬁe of the
ductility factor thus varies widely, depending upon the definition
used.

When using the definition based on strains, the ductility
factor is almost exclusively dependent on the material properties,
while using the definition based on curvatures adds the effects of
the shape and structural properties of the cross section. When duc-
tility is defined based on deflections, the entire configuration and
response of the structure is incorporated.

A general load-deflection curve is shown in Fig. 3.1. Many

characteristic values can be defined for this load-deflection curve

as follows:
dE = Elastic or linear displacement.
dI = Inelastic or nonlinear displacement
dR = Recoverable displacement.
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ja N
1]

. di
max Maximum displacement

[a%
I

Permanent displacement.

Ductility then can be defined by the following measures:

p. = Max. Displacement - dMax. =1+ fl_ (3.1)
1~ Elastic Displacement dE dE )
. d d
0. = Max. Displacement = Max. .44 R (3.2)
2 = Permanent Displacement dP dp '
. d d '
p. = Max. Displacement = Max. _ 44 P (3.3)
3 Recoverable Displacement dR dR )
M Displ t dMax dE
p. = Max. Displacemen - S T (3.4)

4 ~ Tnelastic Displacement 31
%

Permanent Displacement _
5  Elastic Displacement dE

(3.5)

Thus in any analysis using a ductility factor, it is important
to bear in mind the definition used. Moreover, it might become very
difficult to judge the adequacy of ductility since there is no unique
way of measuring it. Probably the most logical measure for ductility
in case of a transient response is the ratic of the permanent dis-
placement to the elastic displacement "DS". However, for a steady-
state response a better measure might be the ratio of the maximum dis-

placement and the elastic displacement "DI"' It is not known currently
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how damage or cumulative damage is related to ductility. The pro-
blem is even more complicated since such relation is not the same
when dealing with a joint, a member or the total structure.
Generally speaking, ductility is and will remain for a time
one of the most impertant quantities for evaluating the capability
of a structure to resist strong earthquake motions without collapse.
It has been defined as discussed before as a ratio of displacements.
It could have been defined as ratio between forces as well. Some-
times it is even more meaningful to measure ductility by the amount
of energy dissipated per cycle or by an equivalent damping (which

dissipates the same amount of energy in each cycle).

3.2.2 Joint Ductility

In the current study joint ductility is measured as the ratio
of the maximum joint distortion to the yield distorsion. Strictly
speaking, joint ductility is defined only for GSCM, but not for a

DCM, and is given by the equation

(A¢)M
Joint ductility = ax. (3.6)
Y
where ) o ‘ ‘
(A¢)max. = Maximum joint distorsion
8 = Joint distortion at yield.
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3.2.3 Member Ductility

Two definitions of member ductilities have been commonly used and

were implemented for the present study. The first one is based on rota-

tion: ) 8
rotation ductility = M$?515"§0§§§?§L°” = mgx. (3.7)
Y
=1+ P]ast1g Rotation (3.8)
y

To define the yield rotation ey it is commonly assumed that hinges

will form almost simultaneously at both ends of the member, so that

M L

8, = -6-% (3.9)

This assumption is reasonable for the girders when the frame is
subjected only to lateral loads, but it becomes questionable when gravity
loads are present.

The second definition based on moments assumes that a bilinear re-
lationship exists between moment and curvature, although none of the two
models (DCM or GSCM) can enforce directly this type of constitutive rela-

tion. Then M - M
moment ductility = 1 + Lﬁm—ﬂ (3.10)

where r is the second slope of the model.

Both definitions are equivalent in the particular case of a member
loaded with equal and opposite end moments. For other cases they will
both include approximations which have not been thoroughly studied., The
validity of the definitions is even more questionable when dealing with
members under a variable axial load (columns). This is a subject which

needs further research but which is beyond the scope of the present work.
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Finally, it is stressed again that ductility is not a unique
quantity, but depends on the way of measuring it. This means that
comparing the results of different analyses should not be done un-
less both use the same definition. The problem will be discussed
later when comparisons are made with other researchers' published

work.

3.3 SOIL-STRUCTURE INTERACTION CONSIDERATIONS

In reality, most structures are situated on flexible founda-
tions, and recorded observations have shown that the response of a
structure might be influenced by its foundation medium.

Several methods and mathematical models have been prepared
to represent the flexible foundation medium. Whatever model is used,
the amplification and attenuation effects of the supporting soil
should be properly accounted for in the earthquake resﬁonse analysis
of the soil-building system.

Here the soil-structure interaction is treated by an equival-
ent lumped nonlinear model for the soil. The initial properties of
the soil model can be determined from the eiastic half-space or the
elastic layered half-space, which are commonly used in the classical
problem of vibration of plates resting on elastic foundation. For
example, by utilizing Bycroft's@;) elasticity solutions for a

dynamically loaded continuum, frequency -dependent stiffness and

associated damping coefficients that characterize the dynamic proper-
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ties of the medium can be determined. (See for example Whitman
and Richart.)(SS) Later Parmelee, Perelman and Lee(sz) have shown
that the stiffness and associated damping characteristics of the
foundation medium can be assumed to be Fonstant and are determined
by the physical properties of the soil-structure system. Thus for
the purpose of this study it will be assumed that by an evaluation
and analysis of the underlying soil, appropriate springs, masses
and damping values have been determined to simulate the initial be-
havior of the soil.

Using such properties, the equations of motion for the cou-

pled soil-structure system can be derived as follows:

Equations of Motion for the Structure

[m] ¢V} + [c] {0} + [k] {u} =0 (3.11)

where [m], [c] and [k] are the mass, damping and lateral stiffness

matrices respectively, and

Y
Y = Y2 = Total horizontal displacements
Y of each floor.
3
K

and is given by:

{Y}
or: {Y}

{u} + [h] {J} pp + {9} up + {3 ue (3.12)
W't + 19} ug (3.13)
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where
h, ]
h, 0
- (3.14)
[h] =
9 "
and | fnxn
(1]
1
g = |
(3.15)
[1]n x1

Up and ¢F are the horizontal displacement and rotation of the foun-
dation respectively. u' is the total displacement vector with re-

spect to the foundation.
[m] €0} + [m] [h] L0} o + [m] {0} G + [m] 40} G
+ [c] {u} + [k] fu} =0 (3.16)

Base Shear and Overturning Moment

The base shear and the overturning moment exerted by the
structure on the foundation are given as follows:

n n

E kesu, + ) ¥ c.s u,

L3 U 4 NN S R - T =) RN

=95“+§S‘] (3.17)
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0.T.M.

n
Il 1
m
>0
1
ne--133
==
||-[VJ =
-~
[ -

+
ne~13
=
ne-1

(@]

=kl ku+hl cu (3.18)

In tensorial notation:

B.S. = 8. kes Us + 82y Cux Us (3.19)

0.T.M. = &..h. k.. U. + 8.5 h: C.. U, (3.20)

Total Moment on the Base

If gravity loads are included in the analysis, an expression

for the total moment can be written as follows:

T.M. = 0.T.M. + Moment due to vertical loads {3.21)

= 0.B.M. + g [m] {Y - Joug -4 ug} (3.22)

= 0.T.M. + g [m] {u} + g [m] [h] 19} ¢; - (3.23)
LTMecnTkuencusgnurgnhde (3.2

Equations of Motion for the Foundation

The equations of motion at the foundation are given as follows:

MF YF + kx up + ¢ up - B.S. = 0 {3.25)

I ¢F + kg ¢F *Cy ¢p - T.M. =0 (3.26)
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Equations of Motion for the Coupled System

Choosing the unknowns to be the total displacements with

respect to the foundation, the coupled equations of motion take

the form:
mu+ c g + 5 u= - g UG (3.27)
where
[ my
m;
my 0
m = : (3.28)
0 mn
Mg
and
K -k J -k h
k=0 kH'k; 3"k h (3.29)
-hTk hY kg k +h7 KB
| -~ R 7 T
B - ¢ -ch |
c = (3.30)
¢ emled alen
hTe Med clen
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u = g (3.31)

Nl

where u' are the total displacements relative to the foundation.

0
0 n
3 = 0 (3.32)
~ 0
MF 2
01 d
and ~
hy m
h2 m2
h = : and m = . (3.33)
m
") 1

Including gravity effects in the soil model can be done by

either of two methods:

(i) Modifying the elements in the stiffness matrix by the

structural weights as shown below:
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k -k l -k h
T T, . T
-J 'k ketd” k| | g kh
ke ="~~~ I (3.34)
1 t
popy b T
- h'k-gm + | kgth'k b
9n’y |

(i1) Adding to the excitation vector a gravity excita-
tion vector given by:

where

[ = o (3.35)

et

L]

u and up are the values obtained at the previous time step.
The latter scheme is more economical and faster, and is used

in the study.
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3.4 THE QVERSHOOGTING AND THE BACKTRACKING PROBLEMS: EFFECT OF
TIME STEP OF INTEGRATION

The overshooting and backtracking problem is the major dis-
advantage of using a tangent formulation as implemented here. The
state of yield for each component in the structural system is de-
termined only once at the beginning of each time increment, then
the initial value problem is progressed through either the load
domain or the time domain. In structural systems which have a well-
defined yield point, whether this yield point is at the stress-strain
level or at the total behavior level, "overshooting" and backtracking
ﬁake place. The phenomenon is best illustrated as shown in Fig. 3.4,
Whenever the component yields, the yield level is overshot by a small
amount upon entering the nonlinear state. Upon returning to the non-
linear state, the behavior is backtracked for one domain step.

A similar effect might be introduced by modifyinﬁ the yield
capacity at the ends of a member for a given interaction surface as
the analysis progresses.

In the current work the problem of overshooting and backtrack-
ing was studied to establish the most convenient time increment to be
used in the analysis. Since recently most of the historical records
of earthquakes have been reprocessed at California Institute of Tech-
nology, it was decided to use the first 6 sec. of the most recent
version of the Imperial Valley 1940 N-S earthquake record (E1

Centro). The initial time step for this record is 0.02 seconds; thus
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two other records were obtained by redigitizing the original record
at 0.071 sec. and 0.005 sec. From the mathematical point of view,
the three digitized records are identical and they form a minimiz-
ing sequence. Response spectra for the original record are shown
in Fig. 3.5 for different damping values. The 10-story 1-bay frame
shown in Fig. 3.6, which was previously designed by Anderson, was
subjected to the three records mentioned above. A 5% damping pro-
portional to the mass, and a DCM with 5% second slope were used,
Gravity effects were introduced by appropriate initial static forces
and stability was introduced by the stability functions presented
before. The interaction formula of AISC for axial-bending strong
axis interaction was used.

The results of the study are shown in Figs. 3.7 through 3.17.

From the results presented, the following conclusions can be reached:

1. As far as the relative displacements of the structure are
concerned, using a At of 0.02 leads to a small error which is larger
for the Tower stories than the upper stories of the building. The
error is always positive.

2. The error in the interstory displacements is generally of
the same order as the error in the floor displacements. '

3. The story forces are the most affected among all response
parameters, since high-frequency components are expected to contribute
more to this parameter. However, this phenomenon does not seem to
affect the other response parameters.

4. The error in the story shears is more for the upper stories
and is relatively less for the Tower stories.
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5. Axial forces in the columns are not affected by the
time increment for the range of time increments studied, while the
overturning moment is slightly affected.

6. The individual member forces are slightly affected. The
columns are affected more than the girders, because they experience
interaction and other nonlinear effects.

7. Column ductilities and girder ductilities are affected
by the increment size, although some Tocations in the building did
not show any effect,

8. Using an increment size of 0.01 sec. is both economical
and accurate, and thus all the fellowing analyses will be done using
such time increment. Decreasing the time increment below 0.01 sec.
does not 1ead to any significant or justified increase in accuracy.
This is easily concluded by comparing the response curves for incre-
ment size of 0.01 sec. versus 0.005 sec., which tend to be very close
to each other,

8. The constant velocity method which was used'to solve the
equations of motion might offer some advantages over other integra-
tion schemes particularly in the inelastic range. The time interval
of integration should be small enough tc both represent the earthquake
loading aécurately and also to avoid any excessive overshooting or
backtracking.

10. Generally speaking, a minimizing sequence exists for most
of the response parameters, whick suggests that one can  obtain an
upper bound of these response parameters by using a well-chosen incre-
ment size. Strictly speaking, this upper bound is not observed in the
individual member forces, since the results oscillate around the real
solution. This could be attributed to the special nature of the over-

shooting and the backtracking phenomenon encountered here.
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3.5 COMPARATIVE STUDIES FOR DIFFERENT BENDING MODELS

3.5.1 Comparisons with Results by Anderson

To verify the correctness of the computer program developed, the
10-story 1-bay frame shown in Fig. 3.6 was studied. The earthquake
excitation used was the N-S component of E1 Centro, 1940. 1t is worth
mentioning that there are at least two versions of this component in
addition to the new version reprocessed recently by California Insti-
tute of Technology. The response spectra of these two versions are
shown in Figs. 3.15 and 3.16. In Fig. 3,17 the three spectra for 5%
damping are plotted on top of each other. It is evident that although
the three records are very similar, they can differ at a specific fre-
quency by as much as 30 - 50%, especially for frequencies between 0.5
to 0.7 cps. In the current study the second version of El Centro, which
came originally from California, was used.

Fig. 3.18 shows the response of the frame to the three differ-
ent versions of E1 Centro (as obtained with the present computer pro-
gram) and the results of Anderson. It can be seen that the solution
with the California version of E1 Centro, labeled current study, is in
very good agreement with Anderson's. Differences 6f up to 30% do, how-
ever, exist between the displacements resulting from the three versions

of supposedly the same earthguake.

3.5.2 Single Component Model versus Dual Component Model

In the previous Chapter the GSCM and DCM models were discussed.
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Theoretically speaking, there is no simple way to match the response
of a GSCM with that of a DCM. The number of conditions which should
be satisfied is more than the number of variables to be chosen {which
are mainly the strain hardening factors). Figs. 3,19 and 3.20

show a case study of the 10-story 1-bay frame with the following

madels:

T. A DCM with 5% strain hardening.
2. A GSCM (Bilinear in nature) with a 0.01% strain hardening.

3. A GSCM (Bilinear in nature) with a 0.001% strain hardening.
The case study suggests the following:

1. The bilinear GSCM gives in general similar results to the
DCM in the cases where both of them can be used.

2. The results of the analysis are not substantially affected
by the strain hardening factor used within the range considered. Any
reasonable value of the correct order is sufficient from the practi-
cal point of view for the cases studied.

3. Although there is no theoretical way to get perfect match
between a GSCM and a DCM, the results obtained were close from the
practical point of view.

3.5.3 Effect of Stability Schemes

As discussed before in Chapter II, two stability schemes can
be used; the first is based on the stability functions, and the other
on carrective terms added to the stiffness matrix. Both

schemes were used here and compared. The results of the comparison
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are shown in Figs. 3.21 and 3.22. From a study of the different
response parameters it was concluded that the two schemes give
almost identical results. There is no advantage of using one or
the other. However, if the stability functions were used in the
conventional way, the cost of analysis might increase. In the cur-
rent study look-up files which contain the different stability
functions were created in data blocks. This scheme of storing and
retrieving the stability functions proved to be as economical and
accurate as the other stability schemes, and thus was used through-

out most of the rest of this work.

3.5.4 P-A Effects

- The relative importance of the P-A effects in the analysis
is studied in Figs. 3.23 through 3.34., The figures represent re-
sults obtained when the P-A effects are properly taken into consider-
ation or intentionally neglected. Also Figs. 3.35 and 3.36 repre-
sent the time history of the roof displacement and the time history
of the axial force in the first~story column. Based on these Figures
the following can be concluded for the case studied:

1. The P-A effects tend to increase both the displacements
of the frame and the interstory displacements. They seem to reduce
the story shears and they have little effect on the story forces.

2. The P effects tend to increase the ductility require-
ments for both columns and girders. The increase is more pronounced
for the lower stories.
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3. The P-A effects tend to increase joint distortions and -
member forces, but they might not cause physical collapse of the

.structure considered. Neglecting the P-p effects in the analysis
is in this case unconservative.

4, The P-A effects are generally not as serious as they
seem to bé, and in a code-type approach for design, equivalent
static forces might be determined to introduce such effects in the
analysis. Currently codes are evolving, and it might be possible
through extensive studies for typical building frames to push this
approach forward in a rational way.

3.5.5 Gravity Loads Effects

The presence of gravity loads can affect the behavior of a
building frame under seismic action in several ways: Gravity loads
on the structure may reduce substantially the elastic range under
lateral loads due to earlier formation of inelastic action. Since
the effective yield moments of the columns depend on the axial-flexural
interaction, it is expected that gravity loads have more significant
effects on these members. The problem is magnified by the additional
moments introduced due to the P-4 effects.

For the purpose of this study, gravity loads are adequately
represented by initial static forces acting at the ends of the differ-
ent members.

To demonstrate the effect of gravity loads on the response, the
following analyses are made.

1. Analysis where gravity loads are accounted for and the axial

flexural interaction is properly considered by a given interaction sur-
face.
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2. Analysis where gravity loads are considered but the axjal-
flexural interaction is taken into consideration by reducing the plastic
moment capacities under the static loads onty.

3. Analysis where gravity loads are considered, but no axial-
flexural interaction is considered.

4. Analysis where gravity loads are considered as axial forces
in the columns only and axial-flexural interaction is not considered.

9. Analysis where gravity loads are completely neglected.

Figures 3.37 through 3.45 demonstrate the results obtained for
the above five different analyses. From these results the following

conclusions can be derived.

1. Gravity effects can introduce a considerable reduction in
the overall stiffness of the structure and its elastic limit.

2. Considering gravity loads leads to larger ductility require-
ments for both the girders and the columns. The effect is more pro-
nounced for the columns than for the girders.

3. It seems that as far as the overall behavior is concerned,
using a bending model with reduced plastic moments due to the static
initial axial forces in the columns gives results very similar to those
of a more accurate interaction model.

4. Introducing axial-flexural interaction in the case studied
leads to an increase in displacements and to a reduction in forces. It
also leads to an increase in ductility requirements—in narticular—
for the columns.

Figures 3.46 and 3.47 demonstrate the effect of introducing
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gravity as axial loads only, versus introducing it as axial loads
and moments; while Fig. 3.48 demonstrates the effect of
reducing the plastic capacity beforehand under the static axial
forces versus performing a proper interaction analysis.

Finally, it is worth noticing that accidentally in the case
studied when gravity loads are neglected in the analysis, the re-
sponse is almost elastic, and only slight yielding occurs in the

girders.

3.5.6 Effects of Axial Deformations in the Columns

Axial deformations in the columns might affect the analysis
in two ways:
1. The axial distortions of the columns lead to an increase

in the elastic period of the structure, which in turn might change
the response under dynamic loading.

2. The accumulated effect of column distortions leads to an
increase in the upper story displacements and also to an increase in
the drift and thus to a magnification in the P-4 effects.

To study the relative importance of axial deformations, a
fictitious model with large areas for the columns (10,000 inz) Was
compared to the original frame model. Figs. 3.49 through 3.57 demon-
strate the relative importance of such effect. The following conclu-

sions can be reached for the case studied.

1. Neglecting axial deformation will Tead to a reduction in
the fundamental period (smaller in the higher modes).
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2. A substantial increase in story and interstory displace-
ments can occur when axial deformations in the columns are intro-
duced in the analysis, for slender frames.

3. An increase in ductility requirements for both the col-
umns and the girders is observed when axial deformations in the
columns are properly taken into account. Also a similar increase
in plastic deformations for both the columns and the girders is ob-
served.

3.5.7 Effect of the Length of Plastification Zone

To establish the relative importance of a point hinge assump-
tion versus a finite length plastification zone assumption, a model
consisting of the basic frame with an assumed plastification zone of
10" for the columns and 20" for the girders was studied. The effect
of assuming such a soft zone in the joints is to increase the funda-
mental period of the structure from 2.189 sec. to 2.507 sec., since
an additional joint flexibility was introduced even in the elastic
range. This change in period combined with the change in the inelas-
tic rotational capacity at the ends of each member resulted in an
increase in the roof displacement from approximately 14" to 18".

Figs. 3.58 through 3.65 demonstrate such effect. They are
self-explanatory. An obvious increase in story displacements, inter-
story displacements, column and girder ductilities is observed when
introducing joint flexibility in the analysis. [t might be worth

noticing that the story shears did not get affected that much, although

an increase in the overturning moment is observed.
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3.5.8 Effect of Beam-Column Connection Size

In the current analysis the size of beam-to-column connec-
tion can be introduced. Three frames with three assumed column
widths were studied. The widths chosen were 0, 14" and 30". Figs.
3.66 through 3.76 show the effect of the three widths on the re-

sults. From these figures the following can be concluded.

1. Beam column overlap can affect the results of the analy-
sis substantially, since it changes the period of the structure on
one hand, and on the other hand it moves the location of the plastic
hinge away from the columns, which may be equivalent to an increase
in the plastic capacity of the girders.

2. Neglecting the width of the columns in the analysis is
generally on the safe side. Introducing it might not be on the safe
side, since the joint interior is assumed here to be infinitely rigid.
In reality such interior is subjected to large shear deformations
which tend to offset the above demonstrated effect.

3. Generally speaking, the effect of the finite size of the
joints can be sometimes as important as other effects previously
studied (for example, the P-A effect). Further research should be
directed toward a better understanding of the mechanism of deforma-
tion inside the beam column overlap, since such zone might affect
the analysis substantially.

3.5.9 Effect of Damping

Damping can be assumed in several different mathematical terms.
Figs. 3.77 through 3.88 show the effect of choosing different damp-

ing values or damping schemes on the results of the analysis. All the
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schemes were chosen to give 5% damping in.the first mode. From
these figures it can be concluded that the effect of the damping
scheme used is as important as many of the other nonlinear effects
studied before. Further research should be directed to establish
both the value and the mathematical form of damping to be used in

dynamic analysis.

3.5.10 Soil-Structure Interaction Effects
In performing an analysis for a soil building system, one

might face the following situations:

1. An inelastic structure resting on an elastic soil.
2. An elastic structure resting on an inelastic soil.
3. An inelastic structure resting on an inelastic soil.

Four models were compared in the current study. In the first
model, soil-structure interaction was completely neglected, and the
classic rigid foundation assumption was used; in the second model two
elastic springs and two viscous dashpots were introduced to simulate
an elastic linear soil; and in the third model, two bilinear springs
were introduced to simulate a nonlinear soil with the same viscous
soil damping used in the second model. The fourth mbde] is identical
to the third model, but a zero value of viscous damping was assumed
for the soil.

The initial soil properties were determined for an equivalent

circular footing resting on an elastic half-space. These properties
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might be typical of many highrise structures constructed- nowadays.
Figs. 3.89 and 3.90 demonstrqte the effect of elastic 5011;

structure interaction on the response of the basic frame studied.

The response of the other two models happened to lie in between, aﬁq

are not plotted for clarity purposes. From the results presented, it

seems that soil-structure interaction has very little effect on the |

dynamic response of the frame studied.

3.6 CLOSING REMARKS

In this Chapter an attempt was made'to systematically study the
different nonlinear effects on a building frame. The study was re-
stricted to a 10-story 1-bay frame designed by Anderson. However, the
analysis was automated and implemented in a genera1 computer program
to be able to repeat the same approach for any different building frame
encountered in practice. Different conclusions were reached with re-
spect to each nonlinear effect, as reported in the corresponding sec--

tions.
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CHAPTER 1V
COMPARATIVE STUDIES FOR SIMPLE VERSUS BENDING MODELS

4,1 GENERAL

In Chapter 1l the 10-story 1-bay frame designed by Anderson was
subjected to extensive comparative studies using a generﬁ]ized bend-
ing model. In this Chapter comparisons are made between the pre-
diction of the most general bending model which includes all the
nonlinear effects and the prediction of the least general bending
model which neglects all the nonlinear effects. Different frames
which appeared in the literature will be used as working material
for this comparative study. In conjunction with the study, the two
models mentioned above will be used as yardsticks for eQaTuating a
very simple approximate model which gained some attraction by other
researchers (3,64,65) for its economy and inherent intuitive

engineering features.

4.2 APPROXIMATE SIMPLE MODELS (STORY-BY-STORY BEHAVIOR)

The idea of an approximate formulation for the behavior of a
building by a series of shear springs has been recognized for many
years. The concept involves modeling the building based on its
story-by-story behavior and was suggested first for the linear elas-
tic case and proved to be satisfactory for certain classes of struc-

tures—mainly those for which axial shortening of the columns is
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not important (for example, wide frames). Extending the concepts
of story-by-story behavior to the inelastic case was a natural pro-
gress in thinking which took place some years later. Anagnostopou-
105( 3) implemented a formulation in which different types of shear
springs between-floors are arbifrarily assumed to reproduce the
overall behavior. He was motivated by the idea thét“a set of equiv-
alent nonlinear springs can be determined for each floor, each
spring corresponding to one of the components in the buiiding. This
type of anélysis,rof course, is on]y intended as an approximate tool;
it will not yield detailed information about a particular member in

a particular frame, but rather will average overall behavior for the
various components in eaéh story. Determining the properties of the
non]iﬁear models which would best reproducé the ihterstory behavior
of the structural components is a crucial problem in using a method
of this kind. In this Chapter no attempt is made to derive the most
appropriate model for each case. Instead a simple model sﬁggested
by Anagnostopoulos as an average for steel frames will be used. The
model is based on a trilinear relationship between the story shear

and the corresponding diéplacement as shown in Fig. 4.1. Thé story

yield level is determined by the equation

M M
F = Min. 2 &, 2 8
Ymax.
where F = Max.. story yield force
Ymax.
h = Story height
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Fig. 4.1 Simple Trilinear Model Used in the Analvsis
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EMyc

M

Sum of plastic capacities for all columns in the floor.

Sum of plastic capacities for all girders in the floor,

Two further assumptions were tentatively suggested by Anagno-
stopoulos and are used here. The first assumption concerns the
transition point "A", which is assumed to be at a level of half the
story yield force. The second assumption concerns the slope after

the other transition peint "B", assumed to be 20% of that of "QA".

4.3 CASE STUDY I - ANDERSON'S FRAME (1969)

The frame studied brevious]y in Chapter I1l is used as the first
working specimen to compare the simple model and the two bending
models. Two levels of excitation are used. The first type is the
N-S component of E1 Centro 1940 (version #2, first 6.seconds), while
the second type is the same record magnified by 1.5. The objective
thus is to evaluate the different modeis under typical design excita-
tion and also under large levels of excitation. Fig. 4.2 shows the
maximum story displacements for the three models. Fig. 4.3 shows
interstory displacements, and Fig. 4.4, story forces. Fig. 4.5 shows
the different ductility predictions. One must keep in mind, however,
the difference in the definition used to measure ductilities in both
models. It is worth mentioning that the bending models Tead to rela-

tively more uniform ductility values than the simple model.
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Figs. 4.6 through 4.9 demonstrate the results obtained with
the three models for a higher earthquake excitation. It is evident
that while the two bending models become closer, the simple model
moves far away from them, The simple model's ability to predict
the interstory displacements at some levels is reasonably good, but
it is relatively poor at other levels. Since ductility is defined
differently for each model, it is very difficult to derive any con-
clusions from Fig. 4.9, but again the bending models seem to predict
a2 more uniform distribution of ductilities with height.

Fig. 4.10 shows the different time histories of the roof dis-
placements of the three previously studied models.

Table 4.1 summarizes the maximum base shears and the maximum
overturning moments for the three models under the two levels of
excitation. Generally speaking, one can conclude that the error
introduced by the simple model as used here is of the order of 35

percent.

4.4 CASE STUDY II - KAMIL'S FRAME - 1972

The next frame studied is that designed by Kamil, 1972.(39)
The frame is a 10-story 3-bay frame and has the properties and dimen-
sions shown in Fig. 4.11. The frame has been subjected to the same two

earthquake excitations discussed before, and the results are reported
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ANALYSIS OF 1 BAY 10 STORY FRAME
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Table 4.1

Base Shears and Overturning Moments of Anderson's Frame -

Earth- Model Base Shear Overturning Moment
* *
quake {kips) % (in.kips) %
Simple (Trilinear) 88.61 67.0 71154.2 64.0
o
£ Bending (A11 non- 132.62 100.0 116878.9 100.0
& linear effects)
_ _
o Bending (Neglecting 148.03 111.8 111401.2 101.0
~ nonlinear effects)

Simple (Trilinear) 107.37 68.5 85780.44 63.3

Bending (A11 non- 156.89 100.0 135821.87 100.0
linear effects)

1.5 EL CENTRO

Bending (Neglecting 200.82 128.0 151544, 44 111.1
nonlinear effects) .

% of bending with all nonlinear effects.
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in Figs. 4.12 through 4.18. From these figures the following observa-
tions can be made:

1. Under both levels of excitation the simple model tends to give
reasonable results up to a certain height; then it deviates from the
other two models.

2. The different nonlinear and analysis effécts helped in this case
to reduce the response of the frame by almost 15%. This type of be-
havior is observed for both E1 Centro and a higher excitation Tike 1.5
E1 Centro.

3. The simple model underestimates the story forces in the upper
stories (Fig. 4.14) and the interstory displacements in the intermediate
floors (Figs. 4.13 and 4.17). The order of the discrepancies does not
seem to change much with the level of excitation.

4, The simple model predicts again a larger variation in floor duc-
tilities along the height of the building than the variation in member
ductilities resulting from the bending models. The largest ductility
from the simple model occurs again at the bottom story. When comparing
the actual ductility values one should still keep in mind that ductilities
are defined in different ways for both models.

5. The simple model predicts again base shears and overturning
moments of the order of 60% - 70% of the exact values. Table 4.2 sum-
marizes the different base shears and overturning moments for different
models and is self-explanatory.
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Table 4.2

Base Shears and Overturning Moments of Kamil's Frame

Earth- Model Base Shear Overturning Moment

quake kips 3 in.kips %
Simple (Trilinear) 130.18 64. 112744.9 73.
=
= Bending (A1 non- 202.99 100. 154232.5 100.
= linear effects)
—
Lot
< Bending (Neglecting 285.36  140.. 189768.75 123.

all nonlinear effects

Simple {Trilinear) 151.76 65.6 124378.00 72.

Bending (A1l non- 230.96 100. 173127.87 100.
linear effects)

1.5 EL CENTRO

Bending (Neglecting 322.69 140. 229775.87 132,2
all nonlinear effects)

*
% of bending with all nonltinear effects.
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4.5 CASE STUDY III - GOEL'S FRAME - 1973

Another frame available in the literature, designed by Goel
in 1973, was studied using the three different models. The geome-
try and the properties of the frame are shown in Fig. 4.19., The
frame has 10 stories and is one-bay-wide. The frame has been sub-
jected to the same two levels of excitations used in the previous
cases. Figs. 4.20 through Fig. 4.27 show the results from the

three models; the following observations can be made.

1. The simple and the bending models predict similar results
up to a certain height, then they start to deviate.

2. The simple model underestimates, however, the displacement
of the upper stories, since it is not capable of reproducing a bend-
ing-type behavior caused by axial deformation of the columns.

3. The average ductilities predicted by the simple model tend
again to vary along the height in a more pronounced way than the
member ductilities predicted by the bending model.

4. The simple model predicts base shears which are roughly 50%
lower than the correct values, and it predicts also overturning mom-
ents which are 60% - 80% of the correct values.

Table 4.3 summarizes the base shears and the overturning moments

obtained by the different models,
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Table 4.3

Base Shears and Qverturning Moments of Goel's Frame

Model Base Shear Overturning Moment
* k4
kips % in.kips %
Simple (Trilinear) 49.08 41.7 43153.15 77
Bending (A11 non- 117.71 100.. '56076.79 100.

Tinear effects)

Bending (Neglecting 118.57 101.
all nonlinear effects)

Simple {Trilinear) 58.27 42.6

Bending (A1} non- 136.60 100.
Tinear effects)

Bending (Neglecting 161.56 118.
all nonlinear effects)

* % of bending with all nonlinear effects.

59739.86

46662.43

77082.50

76039.75

106.4

60.5

100.

99,
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4.6 CLOSING REMARKS

In this Chapter an attempt has been made to evaluate the ability

of simple models to predict the behavior of a building frame. Re-
suits of the simple model were compared with those obtained from

the most realistic bending model which accounts for all the nonlinear
effects and with those provided by a‘simplified bending model which
does not account for some nonlinear effects. The results of the
study indicate that the simple model as used may predict the correct
behavior up to a certain level. Its ability to predict the behavior
of the upper stories is impaired when overall bending due to axial
deformation of the columns is important. The study demonstrated also
that the nonlinear effects might be sometimes favorable, while in
other cases they are unfavorable. Conceptually it may be possible to
find properties for simple models which lead to a final response
which matches better the correct ones. It is necessary, however, to
do more work in order to find simple rules to derive the spring param-
eters for each story. Of particular significance is the fact that
ductilities as predicted by the bending model seem to be much more
uniform than the corresponding quantities resulting from the simple

model.
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CHAPTER V

INELASTIC ANALYSIS VIA A COUPLED NONLINEAR MODEL

5.1 GENERAL

By describing the equilibrium and compatibility equations in
incremental form and combining these with the incremental consti-
tutive equations, a unified solution procedure can be formulated
for problems with combined geometric and material nonlinearities.
This solution procedure is recognized as the "Finite Deflection
Theory" of structural analysis.

In this Chapter the objective is to develop and bresent differ-
ent complex analytical models which are capable of performing a
“theoretically exact" nonlinear analysis under a static or dynamic
loading. The words "theoretically exact" are used here to indicate
the fact that an exact model is still subject to numerical errors.

These models are theoretically a refinement over all the models
presented before. In particular they are able to take into consider-
ation the following points:

1. The fact that inelastic deformations are spread over part
of the member and are not localized at a section.

2. The coupling of axial and bending effects when a section
yields.

3. The fact that under different loads the member might suffer
from both local and global inelastic stability.
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From the numerical point of view, two different approaches
~can be followed in the soclution of any model.

The first approach is a tangent incremental solution which
introduces small errors at each step, since equilibrium may not be
perfectly satisfied. Special attention must be paid to avoid ex-
cessive propagation of these errors.

The second approach is a secant formulation which is usually
expensive but allows through iteration the guarantee that equili-
brium is satisfied.

In both approaches the results are stepped through either the
time domain or the load domain. In the tangent-type models, piece-
wise linearization of the properties is used. In the secant-type
models, iteration is used to arrive at the correct secant.

Generally speaking, the models can be divided into different
levels: fiber models, section models, member models, story models,
and frame level models,

Fiber models at one end of the spectrum are attractive from the
theoretical point of view, while story models on the other end of
the spectrum are attractive from the practical point of view for
their economical features.

From the theoretical point of view it is not easy to compare two
models of two different families. For example, it is hard to find a
section model which matches exactly a fiber one, since the properties

for both are specified differently. This becomes clear when one
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tries to determine a strain-hardening factor to use in an analysis.
In the presence of nonlinear effects, a small value of strain harden-
ing becomes a crucial problem, since the presence of any small strain
hardening might prevent the dynamic collapse of the model completely,
while its absence, combined with a certain type of ground motion,
might Tead to a free body motion.

However, from the practical point of view one expects that some

parameters can be reasonably chosen to arrive at comparable models.

5.2 COMPARATIVE STUDIES FOR FIBER MODELS VERSUS GENERALIZED BENDING
MODELS.

In the fiber model one starts by specifying the stress-strain
curve of the material from which one can obtain the inelastic stiff-
ness coefficients as presented in Ref. 40, and consequently the
stiffness of an inelastic member. Appendix "A" gives the expressions
for the stiffness of a member obtained by integrating the inelastic
stiffness coefficients. Whatever integration scheme is used, there
is usually a numerical error involved in the analysis. The error is
dependent on the increment size used to step the model through the
load or the time domain, and also on the shape of the stress-strain
diagram. For well-defined yield materials the errors might accumu-
late and lead to fictitious results.

In this Section, comparison is made between the GSCM modeis stud-

jed in previous chapters and complex models at the fiber level.
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Four different models were used to evaluate the response of
the one-bay three-story frame shown in Fig. 5.1. This frame has

been previously used by Latona(40).

The frame might not represent
a typical three-story building in seismic intensity 3; but it suits
the purpose of the current analyses, The properties of the differ-

ent models and their nature are defined as follows.

Model A - Interaction Model

In this model the effect of interaction is taken by the AISC
formula, while stability is introduced by the stability functions.
Initial axial forces are assumed in the columns as shown in Fig. 5.1.
A strain-hardening factor of 0.001% is used in the analysis, with a

damping value of 0.0%.

Model B - Pure Bending

In this model the interaction, initial axial forces, and stabil-
ity effects are neglected, The other properties are identical to

model A.

Model C - Seven Fiber Model

In this model the members are segmented into fibers. Seven fibers
are used to simulate each section, and sections are taken along the
member. The strain-hardening factor at the fiber level is taken as
0.00001 (simulating an almost elasto-plastic material). Initial axial
forces and the stability effects are considered and properly accounted

for in this model.
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Model D - Elastic Nonlinear Model

In this model a pure elastic solution is performed. The P-4
effect is introduced by using the stability functions.

The different models were subjected to the N.S. 1940 compon-
ent of E1 Centro, magnified by 1.5. The version used is that desig-
nated as version (1) in Chapter III.

In order to investigate first the adequacy of the time step of
integrationlfor the fiber model, two runs were pérformed with 4t =
0.01 and 0.005 second. As indicated by figure 5.2, the results were
almost identical.

Table 5.1 lists the fundamental periods of the different models,
while Table 5.2 summarizes the base shears and the overturning mom-
ents obtained. The time histories of displacements at the top of
the structure for the four models are presented in Figs. 5.3 through
5.6. Figs. 5.7 to 5.10 show a comparison of different response
parameters.

The following observations can be made:

1. The 7-fiber model - which is theoretically the most exact -
gives very similar results to the interaction model with all the non-
linear effects accounted for. The order of difference of their pre-
diction is of the order of 10%, which can be expected considering the
variation in the moment rotation relationships. This observation is
confirmed by comparing the time histories in Figs. 5.3 and 5.5.

2. The earthquake forces for the inelastic models are much small-
er than those of the corresponding elastic model.

3. Gravity effects and P-8effects do not seem to lead to any dy-
namic collapse for the case studied.
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Table 5.1

Fundamental Periods'of Different Models

Mode1  First Second  Third
Interaction .508 . 140 .068
Pure Bending .490 137 .067
7-Fiber 484 J135 -~ ,066
Elastic Nonlinear .508 .140 .068

Summary of Total Base Shear and Moments

Model Base Overturning
Shear Moment
Interaction 207.8 54559.9
Pure Bending 232.20 71248.3
7-Fiber 182.95 53686.3

Elastic Nenlinear 366.7 106857.2
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CHAPTER VI
SUMMARY AND CONCLUSIONS

6.1 SUMMARY

In the current work attempts have been made to clarify some of
the basic points associated with inelastic analysis of building frames.

The study is preceded by a review of the basic work done in the
area, focusing on the features of each contribution and what factors it
introduced in the analysis. Three levels of analytical models were
discussed and compared: a simple model resuiting in a close coupled
system, where each story of a frame is replaced by an equivalent non-
linear spring; intermediate models where point hinges are assumed to
occur at the joints or at the ends of the members when the moment
capacity is exceeded; and complex models, such as the fiber model, where
account is taken of the spreading of yielding and of the coupling of
axial and bending effects. The intermediate, point hinge or bending'
models are the ones most commonly used today and most of the work in
this study was devoted to study their sensitivity to various assump-
tions. Simple models are particularly attractive from a practical
point of view because of their reduced cost: in this work they were
used in a standard form without any attempt to improve on the selection
of the spring parameters (which may be a key point in ensuring their
applicability). Fiber models are far too expensive for practical appli-
cations, but may be of value in resolving important questions, such

as the best definition of ductility.
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In Chapter IT a formulation for the inelastic dynamic analysis
of building frames has been presented. The formulation is general
enough to take into consideration different nonlinearities which
might occur in a building frame on a selective basis. The objective
thus was to study the importance of each nonlinear effect separately
and to point out those effects which may be more important than others.
The types of nonlinearities studied can be grouped into two broad
categories; those due to material behavior and those due to geometry
changes.

Since the relative importance of each nonlinear effect is depend-
ent on the shape of the building frame studied, some results may not
be generalized and applied directly to other unusual configurations.
Thus the objective here was only to demonstrate the relative impor-
tance of different effects for some building frames (a one-bay 10-
story frame previously reported in the literature in particular). Duc-
tility considerations as defined by fiber ductiliy, joint ductility,
member ductility, and frame ductility were discussed. The need for a
more general and consistent definition of ductility must be stressed.

Numerical problems like the overshooting and the backtracking were
studied, and the effect of the time step for the integration of the
nonlinear equations of motion was established. Comparisons between a
general single component model "GSCM" and a dual component model "DCM"
were conducted for the cases where they may be comparable. The study
demonstrated that although a theoretical perfect match for both models

is not possible, the results obtained will be very similar in cases
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where both are applicable.

Different stability schemes were compared for some frames. The
first-order solution scheme based on corrective terms added to the
stiffness matrix proved to give almost identical results to a more
accurate analysis using stability functions.

The relative importance of P-4 effects in the analysis was alse
investigated. Based on the cases studied, it is concluded that P-A
effects tend to increase both the displacements of the frame and the
interstory displacements. It seems, however, to reduce the story
shears. The P-4 effects seem to put impact on ductility requirements
in both columns and girders. The increase is more pronounced for the
lower stories. [t tends to increase joint distortions and member
forces, but this might not cause physical collapse of the structure.
The study demonstrated that under normal conditions the P-A effects
are not as serious as might have been expected from some of the work
reviewed, and in a code type approach for design, equivalent static
forces might be determined to introduce such effects in the analysis.
Currently codes are evolving, and it might be possible through more
extensive studies for typical frames to push this approach forward
in a rational way.

The effect of gravity loads proved to affect the response in
several ways. Gravity loads on the structure may reduce subsfantia]]y
the elastic 1imit under lateral loads, due to earlier formation of

inelastic action. It can introduce a considerable reduction in the
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overall stiffness of the structure. Since the effective yield mom-
ents of the columns depend on the axial-flexural interaction, it is
expected that gravity loads have more significant effect on these
members. The effect may be magnified by the additional moments intro-
duced due to the P-A effects. Considering gravity leads to larger
ductility requirements for both girders and columns. It seems, however,
that as far as the overall behavior is concerned, using a simplified
bending model witﬁ reduced plastic moments due to the static initial
axial forces in the columns gives results very similar to those of a
more accurate interaction model.

Studies on the effect of axial deformation in the columns demon-
strated that it might lead to an increase in the elastic period of
the structure, which in turn may change the dynamic response. The
accumulated effect of column distortions leads to an increase in the
upper-story displacements, and alsoc to an increase in the drift (and
thus to a magnification in the P-A effects). An increase in plastic
deformations and thus ductility requirements for both columns and
girders is observed when axial deformations in the columns are properly
taken into account.

Two factors which have opposite effects are the joint size and
joint flexibility. The study showed that each one of them separately
can produce an important variation in the results, affecting the funda-
mental period of the structure even in the elastic range. Further

research should be directed towards a better understanding of the mech-
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anism of deformation inside the beam-column overlap (panel zone).

From studies on the effect of damping, it was concluded that
damping schemes used can be as important as many of the other non-
linear effects. Further research should also be directed to es-
tablish both the value and the mathematical form of damping to be
used in dynamic analysis.

From the Timited cases studied for soil-structure interaction
effects through a nonlinear lumped model for the soil under the
structure, it seems that soil-structure interaction has very little
effect on the dynamic response of the type of frames studied.

In Chapter IV comparisons are made between the prediction of the
most general bending model which includes all the nonlinear effects
and the prediction of the least general bending model which neglects
all the nonlinear effects. Different frames which appeared in the
Titerature were used as working material for the comparative study.
The two models were then used as yardsticks for evaluating simple
approximate models based on the assumption of shear-type behavior of
the frame. The study showed that the bending models seem to lead to
more uniform variations of ductility through height than the simple
model, The ability of the simple model to predict displacements is
relatively good up to a certain story level, but deteriorates for the

upper stories. As a result, interstory displacements are alsc poorly

predicted in the upper part of the building.
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Conceptually it may be possible to find properties for simple
models which lead to a final response which matches better the cor-
rect ones. It is necessary, however, to do more work in order to
find simple rules to derive spring parameters for each story.

The study demonstrated that sometimes the different nonlinear
and gravity effects helped the frame to yield earlier, resulting in
a reduction of its seismic forces and displacements.

In Chapter V different complex analytical models capable of
performing a "theoretically exact"” nonlinear analysis under a static
or dynamic loading were discussed. These models are theoretically
a refinement over fhe models presented before, but they may be more
sensitive to numerical errors and require a smaller integration step.

0f particular importance in comparing results with these models
is the need to define consistently the strain-hardening factor. In
the presence of nonlinear effects, a small value of strain hardening
becomes a crucial parameter, since it might prevent the dynamic col-
lapse of the mbde], while its absence, combined with a certain type
of ground motion, might lead to a free body motion.

The fiber model was compared with the interaction model. While
a perfect match should not be expected, since many variables are de-
fined in a different way, for the cases presented the two models gave

almost identical results.
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7.2 CONCLUSIONS

From the studies performed in this thesis, it would appear
that for typical building frames a generalized bending model in-
cluding all the nonlinear effects will yield results which are
realistic and physically reasonable. Some additional work may be
necessary to refine the way joint size and panel zone flexibility
are accounted for and to determine the most realistic type of damp-
ing to use. Fiber models can theoretically be hore exact, but they
are also more sensitive to numerical errors. For the cases studied,
use of these complex and expensive models does not seem justified.
The difference in predictions reported by Latona for the three-story
frame studied in Chapter V was not found in this study (the strain-
hardening factor used by Latona was not known).

Simple models, while attractive because of their economy, need,
however, further study to arrive at convenient and accurate deter-
mination of the stiffness characteristics of each story. Use of
these models with scme standard spring for each story will not yield

satisfactory results, particularly in the upper part of the building.
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APPENDIX A

STIFFNESS MATRIX OF A FIBER MODEL
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