
PB 296886

R72-54 Structures Publicalian Na. 3'9

Optimum Seismic Protection

and

Building Damage Statistics

Report No.3

:...

NON-LINEAR DYNAMIC RESPONSE AND
DUCTILITY REQUIREMENTS OF BUILDING

STRUCTURES SUBJECTED TO EARTHQUAKES

by

Stavros Aristidou Anagnostopoulos

Supervised by

Jose M. Roesset

John M. Biggs

September 1972

Sponsored by National Science Foundation

Grants GK-27955 and GI-29936





-- ~-----------I
8. Performing Organization Rept. No.

rS~02::7=2:::-1=O:-1-=-::-=:::=:-=:==:-:-"'"'r.-:::::::-::::-::::::------------r-:---------r-:-=:--.=--=--=---;;---"..,.....,------, -,
REPORT ~g~MENTATION II'-RNSFR:RAO~E-72-26_1 __ . __~_. . 3·PiRt2~so t3 86

4. Title and Subtitle 5. Report Date

Nonlinear Dynamic Response and Ductility Requirements of Build- September 1972
ing Structures Subjected to Earthquakes (Optimum Seismic Pro- r6~.~~~~~-~~-----~

tection an,d,.Building __ pa.l]l.Me Statistics) Report No.3
7. Author(s) --~_. -----'---"r'- . ----------

S A Anaanostonoulos ~_~ ~ 1-- ~::--R~.:.~7....2'--~54~------.j
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.

(Cl

(G) GK27955
--------GK29936---- -----1

13. Type of Report & Period Covered

---._-------
14.

- - -- ----------------1
11. Contract(C) or Grant(G) No.

(ASRA)

Massachusetts Institute of Technology
School of Engineering
Department off Civil Engineering
Cambridge, Massachusetts 02139

1-::-::--=---------------------------
12. Sponsoring Organization Name and Address

Applied Science and Research Applications
National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550

r------=:=-------'---------~------------------------- -----
15. Supplementary Notes

Structures Publication No. 349

1------------------- '----- -- .. _- ---------------cc-'---"--t
-16. Abstract (Limit: 200 words)

The dynamic response of single and multi-degree of freedom systems under earthquake
excitation is studied. Some new models that include stiffness and/or strength degrada­
tion are introduc~d, and their response is compared with other frequently used models!
Expressions are derived relating the natural period of simple systems (whose properties
are estimated by' us ing code procedures) to the requi red ductil ity factors for earthquake'
of the El Centro intensity. Curves are obtained relating strength-motion intensity tc>; ';,
the ductility requirements and are further used to obtain base shear coefficient laws
for prespecified values of the ductility factor. A mathematical model, which combines
shear and bending springs in three dimensions, is developed and implemented for studies
of multi-degree of freedom systems. The formulation has included gravity loads and soil
flexibility. Results obtained from the analysis of several buildings are presented and
compared to those obtained by other investigators with more accurate models.

r---------------------~-.----------------------_1
17. Document Analysis a. Descriptors

Earthquakes
Earthquake resistant structures
Mathematical models
Dynamic structural analysis

b. Identlfiers/Open·Ended Terms

Degrees of freedom
Factor analysis
Dynam; c response
Ductil ity

El Centro

c. COSATI Field/Group

19. Security Class (This Report)18. Availability Statement

NTIS

21. No. of Pages

~/~
r--------------l~----"=------

20. Security Class (This Page) IAP,/e.</'- /l tfJ/

(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)
(Formerly NTl5-35)
Department of Commerce





1

OPTIMUM SEISMIC PROTECTION AND

BUILDING DAMAGE STATISTICS

Sponsored by National Science Foundation
Grants GK-27955 and GI-29936

Report No.3

NON-LINEAR DYNAMIC RESPONSE AND DUCTILITY REQUIREMENTS

OF BUILDING STRUCTURES SUBJECTED TO EARTHQUAKES

by

STAVROS ARISTIDOU ANAGNOSTOPOULOS

Supervised by
Jose M. Roesset
John M. Biggs

September, 1972

R72-54 Structures Publication No, 349

,





2

Previ ous Reports

1. Whitmano R.V., Cornell, C.A., Vanmarcke, E.H., and
Reed, J.W.: "iijethodology and Initial Damage Statistics ,"
Department of Civil Engineering Research Report R72-17,
r'~.I.T., f.1arch 1972.

2. Leslie, S.K., and Biggs, J.M., "Earthquake Code Evolu­
tion and the Effect of Seismic Design on the Cost of
Buildings," "Department of Civil Engineering Research
Report R72~20, M.I.T., ~ay 1972.





3

ABSTRACT

The dynamic response of single and multi-degree of
freedom systems under earthquake excitation is studied.
Some new models that include stiffness and/or strength degra­
dation are introduced, and their response is compared with
other frequently used models.

Expressions are derived relating the natural period of
simple systems (whose properties are estimated by using code
procedures) to the required ductility factors for earth­
quakes of the El Centro intensity. Curves are obtained re­
lating strength-motion intensity to the ductility require­
ments and are further used to obtain base shear coefficient
laws for prespecified values of the ductility factor.

A simple mathematical model, which combines shear and
bending springs in three dimensions, is developed and imple­
mented for studies of multi-degree of freedom systems. The
formulation has included gravity loads and soil flexibility.
Results obtained from the analysis of several buildings are
presented and compared to those obtained by other investiga­
tors with more accurate models.
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CHAPTER 1

INTRODUCTION

1.1 Scope

The problem of inelastic response of a complete building

which is excited by an earthquake-type loading is a complicated

one. Even if the load were completely known, the response would

still be highly uncertain, due to the many idealizations that

are made,in order to arrive at a workable mathematical model.

Some of these idealizations and uncertainties are:

1. Replacement of the actual structure with a set of linear
members.

2. Disregard of non-structural or lIarchitectural ll components
such as partitions, facades, etc.

3. Uncertainty about the load deformation characteristics
of the components used, especially under dynamic rever­
sals of loading.

4. Reduction of the actual degrees of freedom to a number
which is almost always determined by the available compu­
tational capacity and corresponding costs.

5. Disregard of the continuous change of stiffness and/or
strength of the structure at levels of deformation above
yielding.

6. Disregard of sudden changes of stiffness and strength
due to brittle failure of structural and non-structural
components.

Almost all the research done in the past few years on the

inelastic response of multistory structures has been limited to the
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study of simple multistory plane frames (7), (8), (9). Because of

tremendous computational requirements, the frames studied were cho­

sen most of the time with one bay, a factor that imposes limitations

on the general applicability of the results obtained. Very often

results obtained by one investigator are in conflict with those ob­

tained by another, or in other cases they cannot be compared due to

different assumptions, different models or different earthquake in­

puts.

In this work we approach the problem from a different angle.

Instead of dealing with one frame, we are trying to determine, from

experimental results available in the literature, simple non-linear

models, which would best reproduce the interstory behavior of dif­

ferent structural components such as: braced or unbraced steel

frames, reinforced concrete frames, shear walls, masonry partitions

and infilled frames. In this way a set of equivalent non-linear

springs can be determined for each floor, each spring corresponding

to one of the components mentioned above. This provides the flexi­

bility of using various load-deflection characteristics for the non··

linear springs and incorporates some of the factors listed earlier

in the analysis. On the other hand, dealing with components rather

than with single members, it is expected that the overall behavior

of a certain class of buildings (namely those for which axial shor­

tening of the columns is not important) will be reproduced at compu­

tational costs lower than those incurred in the detailed analysis of

simple plane frames. Our analysis, of course, will not yield de-
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tailed information such as maximum ductility requirements of one par­

ticular member in one particular frame, but rather average overall

ductilities for the various components in each story, The simpli­

fied model employed combines a set of close-coupled springs, arbi­

trarily arranged on a floor plan, with far-coupled shear-wall type

components, Several real buildings will be analyzed using this model.

Another objective of this study is to gain better insight and

understanding of ductility requirements of structures by studying

single degree of freedom non-linear systems. It is suspected that

the Uniform Building Code does not produce earthquake resistant

structures equally safe for all categories of buildings. We will

investigate this claim, and we will try to gain a clearer picture

of how the base-shear coefficient law influences the ductility re­

quirements of structures.

1.2 Thesis Organization

In chapter 2 results of an extensive literature survey on ex­

perimental work concerning the behavior of various structural com­

ponents are presented, Various mathematical idealizations are dis­

cussed, and some new non-linear models are introduced, Finally

approximate methods to determine the basic parameters of the various

models are suggested.

Chapter 3 contains the studies with one degree of freedom sys­

tems. First we compare responses of the systems introduced in chap­

ter 2, and then we make ductility studies for a wide range of systems
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and earthquake inputs. Curves relating the strength of the struc­

ture, the intensity of the earthquake and the ductility factor are

obtained for a wide range of systems and are used to derive base

shear-coefficient laws that will produce uniform ductility require­

ments over the complete spectral range. Another set of curves is

also derived, which relates ductility factors of l-DOF systems de­

signed by the U.S.C. to their natural period of vibration.

Chapter 4 contains the mathematical formulation for the multi­

degree of freedom systems, discussion and comparisons of several

numerical methods, and some comparisons in the elastic range with

exact methods of analysis. We have also included the formulation

that accounts for gravity loads and a matrix formulation for the

soil flexibility. The capabilities and limitations of the computer

program are also discussed.

Chapter 5 contains results for multidegree of freedom systems

which confirm general trends and conclusions obtained in chapter 3

for l-DOF systems, The effect of torsion on inelastic response is

also given some consideration, but not very extensive, Finally

results are presented from the analysis of 3 actual buildings: a 13­

story steel frame, an ll-story concrete frame, and a l7-story con­

crete shear wall building.

Chapter 6 contains a summary of the results and recommendations

for future research,



22

CHAPTER 2

LOAD-DEFLECTION CHARACTERISTICS OF VARIOUS

STRUCTURAL COMPONENTS

201 Introduction

In this chapter we will present the results of an extensive

literature survey on the experimental work concerning the behavior

of different structural components~ we will discuss various mathe­

matical idealizations frequently used and we will introduce new

models that describe the behavior of some of these components,

Some of these models will be used. as was described in chapter

1, for the modeling of complete buildings that are to be presented

in later parts of this work, There is a large amount of experi=

mental work in countries allover the world and different investi=

gators have tried to incorporate results of their experiments in

mathematical models. It seems, however, that many of them did

so based on their own experiments only and this has resulted

in a wide variety of models and formulas, For this particular

work. we tried to be as general as possible, looking at results

from various sources, In cases where there was a lack of suf~

ficient data we give ranges for possible values of our parameters

and keep the models more general, In what follows we will first

discuss the behavior of reinforced concrete frames, braced and un=

braced steel frames, block walls and infilled concrete and steel

frames, giving at the same time the different idealizations devised
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to simulate their loading and unloading paths. At the end of this

chapter we will give approximate formulas that one can use to deter­

mine the basic parameters of the various models, namely the initial

stiffness Ko and the maximum force the component can attain at yield

~.

2.2 Reinforced Concrete Frames

Most of the experimental work on the behavior of reinforced

concrete frames comes from three sources: Japan, University of

California at Berkeley and PCA-University of Illinois. The PCA

tests are on concrete joints which in essence are half portal frames,

so the results are directly comparable with those in Japan or Berkeley

which are on complete portal frames. Before proceeding with our dis­

cussion, we should clarify that some of the tests done were static.

some others dynamic. However, it has been found that the loops

obtained from a dynamic test are for all practical purposes the same

as those obtained from a static test (Shiga et al, (11), Higashi and

Ohkubo (12)). So no further consideration will be given to this

point.

The behavior of portal frames under cyclic loading is much

more complicated than that of a single member. This is due to the

fact that factors such as joint details. presence of compressive or

tensile axial loads etc. alter the theoretically predicted behavior.

Bad design of the connection and inadequate shear strength of the

columns are the two main factors that reduce significantly the bending
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resistance of the frame and cause brittle failure in many cases,

Diagonal (shear) cracks due to inadequate spacing of the stirrups

can change drastically the overall behavior and reduce the strength

to a minimum, in a very small number of cycles, This was consis-

tently observed in all the cases that showed a considerable decrease

of ultimate load capacity with the increase of displacements and

loading cycles,

The frames and the joints usually tested are shown below

(Fi g, 2--1),

-- -- - -

~~----+-------r

Fi gure 2-1 Test Configurations of Concrete Frames
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No difference was observed in the general shape of the loops

for the portal frames and the multistory-multibay ones. Qualitatively,

they all showed the same tendencies. A continuous decrease of stiff­

ness is present in all the experiments and the envelope curve of the

load-deflection loops can have any of the following three shapes

(Fig. 2..,.2).

(2 )

Figure 2..,.2 Typical Load Deflection Curves

for Concrete Frames

Case 1 applies to the well designed, under",reinforcedframes with

adequate shear resistance. In this case the shear capacity of any

section is at any instant greater than the applied shear. The upward

slope of the second branch varies and is a function of the excess

capacity after the reinforcement has yielded, strain hardening of the

reinforcement, etc. It can be conservatively taken as zero and then

we are in case 2 that marks the transition between 1 and 3. Case

3 is a typical case of inadequate shear strength. The negative slope
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of the second branch can become very steep and in such cases we can

have brittle failure,

It is suggested (Bertero and McClure (17), Shiga et al (11),

N, Hanson and Conner (19)) that the envelope curve can be well

approximated by the curve obtained from a monotonic static increase

of the load,

Ultimate strength is not affected (or very little) by the num-

ber of cycles or increased displacements, provided again that shear

strength is adequate (12), (17)~ (27), (28),

The stiffness however decreases continuously with increased

number of cycles and displacements, ((11) + (37))0

Sketched below (Fig. 2-3) are two typical sets of hysteresis

loops for a well designed portal frame,

p p

Figure 2-3 Hysteresis Loops for
Concrete Portal Frame
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From these loops one can observe that there is practically

no reduction in stiffness before yielding of the reinforcement has

taken place, but after this has happened, the stiffness decreases

rapidly with increased displacements and number of cycles.

Analytical models with a varying degree of sophistication

have been proposed by different authors. The simplest model that

has been used is the typical elastoplastic or bilinear hysteretic,

whose loading and unloading is always parallel to the initial slope,

if the force is below the yield level.

Tani et al (27), (2S) propose a very complex model of the

form:

Q(x) = Al tan h(A2x)

and f(x) = Cl(X+l)l/S - 1 - C2 tan h(C3x-C4) - C5 + C6"

.tan h(C7x-CS) + Cg

The first equation is for the envelope curve and the second

for the loading-unloading loops.

Shiga et al (11) use the virgin static curve as envelope

curve and a cubic equation for the loops (Fig. 2-4).
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Figure 2-4 Shiga's Curve

Nielsen and Imbeault (29) use a bilinear envelope curve with linear

loading and unloading branches. The slope of these branches is

degrading with increased displacements (Fig. 2-5). They claim that

this model gives satisfactory prediction of the dynamic behavior of

reinforced concrete beam-column assemblies, but at low levels of

excitation, they had to assume 5% viscous damping because th~ system

does not account for energy absorption in the elastic range. Change

in stiffness takes place only when a prior maximum displacement is

exceeded.

------I--.:-.---I---.....L..-~<5

<5max
0.5 < a < 0.6

Fi gure 2-5 Niel sen I s Model
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Clough and Johnston (69) have also used a degrading stiffness model

which is based on the PCA tests. The envelope curve of this model

is elastoplastic and the unloading is always parallel to the initial

slope. Each reloading however is done with a reduced slope, based

on the last point on the envelope curve previously achieved. It

is shown schematically below (Fig. 2~6).

P

Figure 2~6 Clough's Model

This model has the advantage that each reloading tends to reach the

same point in the P-o plane from which unloading started, which agrees

with the experimental data. Nielsenis model does not simulate this.

However, Clough's model fails to reproduce the continuously changing

slope of the unloading parts of the loops. There is a continuous

decrease of the slope of the unloading curves with increased dis­

placements, as can be seen from Figure 2~3.

A new model is proposed here, that combines the advantages of

both Clough1s and Nielsen's models. This model has an elastoplastic

envelope curve (it could have been bilinear with slope of the
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second branch same as Nielsen's, i,e. 3% of the initial stiffness);

it loads the same way as Clough's model, i.e. with degrading stiff-

ness as determined by the maximum displacement ever reached beyond

yielding; and it unloads with a reduced slope. After analyzing

several of the reported experimental curves, it was found that the

change of slope of the unloading curves follows approximately the

1aw:
K _( cS \.35

K; - -(;;;

The proposed model is shown below (Fig. 2-7):

P
p

2.1

Figure 2-7 Modification of CloughlsModel

The new model approximates better than any of the other two~ the

experimental loops, and is as easy to use as Clough's. The only

information needed at any point in order to find the loading or un­

loading path is the coordinates (in the P-cS plane) of the point
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defining the maximum displacement attained up to that moment. The

envelope curve can be elasto-plastic or bilinear with positive or

negative slope for the second branch.

The slope of the first branch is the one corresponding to the

frame's stiffness. The second branch starts after the tension rein­

forcement of the beams or columns has yielded. It should be mentioned

here that different people define stiffness differently. When they

plot for example stiffness reduction vs. deflection or number of

cycles, what they call stiffness is usually the slope of the straight

line connecting the two peaks of the loop. This is different from

the average slope of the loading and unloading branches taken sepa~

rately.

2.3 Unbraced Steel Frames

The basic characteristics of the load-deflection curves for

steel frames or beam-column assemblies is that there is practically

no decrease of strength or stiffness as the number of loading cycles

increases. The loops obtained are stable even after 30 cycles, with

distortions well beyond first yielding (46), (48), (49), (51). Local

buckling of the flanges near the panel zone however could materially

affect the shape of the loops (47), (48). No significant difference

was observed between curves obtained under static and curves obtained

under dynamic loading (39), (46). A very important characteristic

is that a considerable increase of lateral load capacity (up to 40%)

over that expected from a monotonic analysis is possible (47). This
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is primarily due to strain hardening, which plays a very important role

in the overall post-elastic behavior. Spreading of yielding in the

plastic hinge locations and Bauschinger effect in the material can

cause come reduction of stiffness which will affect the shape of the

hysteresis loops, but for all practical purposes this reduction can

be neglected (48).

Typical load deflection curves for frames and beam-column

assemblies are shown below (Fig, 2-8).

o ~
~ ....-------,

Fi gure 2-8 Test Configurations and
Hysteresis Loops for Steel
Frames

Ramberg-Osgood functions of the form:

o P (1 +S;=r;-
r-l

I-P-I )
Py



33

can best represent these loops. Depending on the degree of sophisti­

cation that one desires, one can use a bilinear hysteretic model which

will approximate with straight lines the observed behavior. The para­

meters of the bilinear model are the slopes of the two branches and

the yield level. The slope of the first branch (initial stiffness) is

determined as it will be discussed later in this chapter, while the

second slope is typically taken as 3 to 5 per cent of the initial

slope. The determination of the yield level can be approximately

determined by ultimate-load theory, as it will be discussed at the

end of this chapter.

Two of the three parameters of the Ramberg-Osgood function, i.e.

initial stiffness and yield level, can be determined in the same

way as for bilinear models. The third parameter, the exponent r, has

a typical value of 8,9 or 10 (8), (44). The larger the exponent the

more flat the curve becomes.

Another model--trilinear in shape--that accounts for a smoother

transition due to the gradual formation of hinges will be discussed later.

If the connections of the frame are bolted, the load deflection

loops are of the so-called slip-type, similar to those for braced

frames (Fig. 2-9). The larger the difference between the nominal

diameter of the bolt and the hole, the larger the slip. Such a case

could possibly be treated with the model used for a braced frame.

2.4 Braced Steel Frames

Bracing in steel frames increases not only their stiffness and

strength but changes considerably the basic shape of the hysteretic
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loops. During a cycle the compression braces usually buckle, contri=

buting less or nothing (depending on the type) to the lateral stiff=

ness. Shown below (Fig, 2-9) are some typical experimental curves

taken from reference (45) and obtained for zero and one half yield axial

load,

o N=O

---I---I-/-jr-l-l--I------C;

Figure 2-9 Hysteresis Loops for Braced Steel Frames

The usual mathematical model frequently used to simulate this behavior

;s the so=called "s lip=model" which is shown in Figure 2-100
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Figure 2-,-10 Slip Model

It seems however that a degrading stiffness model like those discussed

in the paragraph for concrete frames (Clough's model) approximates

the experimental loops better. It is worth noting that the slip model

neglects the resistance of the frame completely during unloading cycles.

2.5 Walls Without Bounding Frames

Plain walls can be either brick masonry or plain concrete walls.

In both cases, if the wall is not reinforced, the load deflection

curve is practically a straight line up to the first crack (which occurs

at the foundation) and then we have complete failure, since the

carrying capacity drops to the frictional resistance of the wall

sliding along the foundation. Structurally speaking, this can be

neglected (52), (53), (54). This is shown below in Figure 2-11.
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omax

Figure 2-11 Load-Deflection Curve for Plain Walls

If the wall is reinforced, the first crack will force the steel to

yield and the carrying capacity will be reduced to the load the steel

alone can carry. Reinforced concrete walls with a steel ratio of

p =0.0025 have a shear load capacity of the steel alone, which is

about 1/3 of that required to produce first cracking" The tensile

strength of the base will usually be critical for walls with length-

height ratios of approximately 4 or less. If the ratio rises above

4 the shear stress at the center of the wall may be larger than the

maximum tensile stress,

However tests show that brick masonry has a strength in bond

several times greater than its direct tensile bond strength, The

practical solution of the problem will then be found by assuming

that foundation cracks in all walls will occur as a result of normal

stresses rather than shear stresses.

Unbound walls like the ones discussed above will very rarely

be used as load carrying structural components, even for one or

two story structures. They were included here for completeness and

in order to distinguish their behavior from that of the walls bound

by frames,
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Their mathematical model is shown below (Fig. 2-12).

p

I,'" Ko ,~ a
maxi

----t--~------?'7 0

;

f; 0
: ! max

" , ; Pmax

Fi gure 2-12 Mathematical Model for Plain Walls

Determination of Ko and Pmax will be discussed in the last paragraph

of this chapter.

2.6 Infilled Frames

Infilled frames cannot be considered as a simple superposition

of a frame and a wall. Quite the contrary, both components act as an

integral unit, with a resulting strength much larger than the sum of

the individual strengths. Once cracking occurs, however, there is a

considerable decrease in strength and stiffness which is aggravated

with increasing number of cycles and magnitude of deformation

(52) 7 (57), (92), (93). It has been proposed to idealize the infill

walls with equivalent bracing that extends from the corner where the

load acts to the opposite one (this would be a special kind of bracing,

acting in compression rather than in tension). When the horizontal

load increases, the bond between the wall and the infill deteriorates

at the corners and when the tensile strength of the infill is

exceeded, diagonal cracks appear, forming a series of parallel struts.
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This is clearly shown in Figure 2-13, which was taken from reference

(52). Load deflection curves for the structure at the top part of

the figure are also shown there. It is interesting to observe that

the cracks initiated in the infill extended into the columns of the

frame. It is actually this behavior that causes the deterioration

of the complete unit, after the infill starts cracking. In the case

of steel frames, the propagation of the crack will not continue in

the columns of the frame and the unit will remain with a minimum

strength and stiffness, equal to those of the frame alone, after the

infill has completely deteriorated (50). In any case, the stronger

the bond between the frame and infill and the stronger the infill

itself, the higher is the probability that the combination of the

two elements will act as a single unit, with very high stiffness and

strength. Figure 2-14, taken from reference (5), also indicates

the same behavior.

Esteva (55) gives a series of experimentally obtained load­

deflection curves for square masonry diaphragms framed by reinforced

concrete members and subjected to alternating static loading. His

main conclusions are that although the stiffness decreases significantly

with increasing deflections and cycles of loading, the strength de­

creases but not significantly. These conclusions however are restricted

to the cases in which the material of the infill is not excessively

brittle and diagonal tension cracking of the frame does not occur.

All the above discussion applies to the case of one-story

panels, in which the ratio of the applied shear to the base moment
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is excessively high. In a case of a multistory infill frame, this

ratio is low and the unit should be expected to act as a cantilever,

provided of course that there is good construction and sufficient

bond between frame and infill. That this is actually the case was

confirmed by a full scale test, performed in Johannesburg, South

Africa. Two frames were tested: one with infi11 and another with-

out, The cracks in the two cases and the corresponding load

deflection curves are shown below in Figure 2~15, taken from

reference (5).

p p

A

T
12'

t
12 t

t
12 I

~.1

I.r-----fl~

Figure 2-15 Behavior of 3-Story Infilled Frame
(Taken from Reference (5))

The location of the cracks in the case A shows that the infi1led

frame behaves as a cantilever, while' in case B we have a typical
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case of rigid frame action. The load capacity of the simple frame

was only 20% of the infilled one. In the right of the picture we

see that in the second cycle, the maximum capacity has been reduced

by 10-20% of the initial. Model tests in Japan show similar behavior.

Selection of an appropriate mathematical model for an in­

filled frame (steel or concrete) has to depend on the slenderness

of the frame (height to width ratio), the type of the infill and

the quality of the bond (in some cases, infills are built as floating

partitions, in order to avoid this combined action and the ensuing

degradation of strength). While more experimental work in this

area seems warranted, for most usual buildings a stiffness and strength

degrading model seems appropriate. Ohsaki et al (31) have used a

stiffness and strength degrading model, whose reduction factors

for strength and stiffness are functions of the number of loading

cycles. A new model is proposed here, that accounts not only for

the number of cycles but also for the maximum displacement.

If we call Ko and Fo the initial stiffness and strength

and K, F the stiffness and strength at the nth cycle the new model

is described by the following laws:

K (1 = ~l~. °max) bn
Ko

:=

a 0y

F (1 = __. 1__ • (omax )2) cn
Fy

:=

a2 0y

2.2

2.3
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and in addition for steel frames:

Kmin = K(frame alone)

Fmin = F(frame alone)

w'here: 0max = maximum absolute displacement occurred

0y = yield displacement (or displacement at cracking)

n = number of complete loading cycles

a, b, c = parameters

The value of the parameter a should be determined from the reduction

of strength and stiffness, in half cycle of static loading (n =0 ),

a little before collapse. It should always be

a > at static :collapse

For example if °max
(~)at static collapse = 10

and we take a = 15, it will mean that a little before collapse the

strength reduction factor from displacement alone is:

102
- -- = .555

152

and the stiffness:

10
-15 = .333



Values of a in the range of 10 to 40 seem reasonable.

could have the following values:

b = 075 .90

c = 090 .95

band c

The values suggested for the above parameters are a ~little mcre"

than guesses. As more experimental evidence becomes available,

different and more specific values might be more appropriate. The

proposed model implies faster degradation of stiffness than strength,

which is consistent with the existing experimental data. Figure

2-16 shows the variation of the different factors.

From computer runs which will be described in the next chap­

ter, it was found that the proposed model is sensitive mainly to b

and c and not so much to a.

Williams and Benjamin (53) give detailed formulas for the

determ'ination of Fy and Ko' We will give some cruder approximations

at the end of this chapter.

Before closing this section, it is worth mentioning that a

particularly important (and dangerous) case is that of concrete frames

with partial infill (up to a certain height, the remaining space

being used for windows). The bottom of the frame acts then essen­

tially as an integral unit (if there is bond between the columns and

the in1'il1), whereas the top is left as a frame with very short col­

umns. If this condition is not properly accounted for in the design,

the short columns will probably fail in shear.
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K,F

f n

Stiffness

Strength

n

Strength

Stiffness

oomax
~

ao
f- (- mc,x)--->l

o
Y col.

p

n=3

-~~--+--+----+---------7"u

n=2

Figure 2-16 Proposed nodel for Strength
and Stiffness Degradation
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2.7 Shear Walls

Shear walls properly designed should behave as cantilever

beams, If the shear resistance is not exceeded, they can be con~

siderE!d as a series of members between floor slabs with moment-

curvature relation for each joint (at the slab level) given by a

constant strength-stiffness degrading model. The effect of the

rigidity of the slab could be accounted for.

The same comments essentially apply to box-type elements

such as elevator shafts. Initially they will act as a cantilevers

connected to the slab at the floor levels, with bending in both

directions and considerable torsional stiffness. However for

the element to behave as an integral unit~ the corners should be

properly reinforced~ because otherwise they will crack and the dif-

ferent sides wi 11 act independently of each other.

2.8 Approximate Determinati?n of Initial Stiffness and Yield

Level

In the previous pages we described the behavior of various

structural components under alternating loading and we gave straight

line mathematical idealizations which approximate this behavior.

Here ~~e will give approximate formulas with which the two basic

parameters of the various models, namely the initial stiffness Ko
and the yield level Fy ' could be estimated. It is believed that the

confidence level of this approximation is consistent with the rest
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of the assumptions about the loading and the modelling of the building.

2.8. 1 Initi a1 Sti ffness of a Story ina Multi s tory Frame

We can estimate the stiffness of a parti cul ar story by

making the following assumptions:

a) Column shears above and below a joint equal

b) Inflection points in columns above and below at

same location

c) Rotation of all joints in a floor equal

With these assumptions and using slope~deflection equations, we can

obtain:

Ko
24E 2.4=7"

2 + + 1

2:Kc 2:K9a 2: Kgb

where:

E = modulus of elasticity

h = story hei ght

"= beam length

I = moment of inertia

2:K = X;' l for all columns in the storyc . h

I for all beams in floor above2: Kg = L -a 9.-

2: Kg = L: 1 for all beams in floor belowb 9.-
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The derivation of this formula is given in Appendix A, In the

case of concrete frames one difficulty that arises is that of the

moment of inertia to be used. This is due to the following three

factors 0

a) At the section level, the effective moment of inertia

is not constant but a function of the axial force and

moment.

b) At the member level, the moment of inertia is variable

due to the variation of the moment along the member.

c) Being a function of the loading, it varies from one time

step to another.

Some people have suggested using the moment of inertia of the cracked

section, where the moment is maximum, computed from gravity loads

only. This results in using the gross moment of inertia for the

columns and the red~ced, due to cracking of the section, for the

girders. Another approach is to use the formula suggested by the 1971

ACI code, which however does not account for gravity loads. A some-

what more accurate approach is suggested here, which is based on

Medland and Taylor, Shown in Figure 2-17 are plots

vs ~y for various values of the ratio . ~y

refer'ence (20) by

of the ratio ~+
gross

taken from reference (20),

My is the ultimate moment capacity of the section for zero

axi al load.

Py is the ultimate axial load capacity of the section for

zero moment.
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1·4
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0·0 0·2 0-4 06 0·8 1·0

Figure 2~17 Moment of Inertia of Reinforced
Concrete Sections
(Adapted from Reference (20))
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19ross is the moment of inertia of the uncracked section.

From this figure we see that for P = 0, the ratio ~i
M gross

is relatively constant and equal to 0.35 for 0.2 < -M < 0.95.- y-
This could be used for the moment of inertia of girders.

For columns and for 0.1 < ---pP < 0.5 the ratio E1
- Y- ~ross

MvariE!S between 0.5 and 0.9 for 0.2 < ---M < 1.4.- y-
if we take into account the extreme complexity of the problem due

to the factors menti oned ea rl i er and the fact that someti mes

the columns of the structure could be put in tension due to the

earthquake, the following simple rules for the effective moment of

inertia of concrete members seem justified.

Beams:

Columns:

Use

Use

I = 0 40 Ieff . gross

I eff = 0.80 Igross

2.8.2 Stiffness of Braced Frames

For braced frames we could use:

where Kofr is computed from 2.4 and

AE 2KBR = L ---£- cos a

where A area of bracing

£ length of bracing

2.5
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a = angle between bracing and beam

E = summation over all the braces working in tension.

The above formula is not as accurate as in the case of the unbraced

frames and depending on the particular configuration (e.g. number

of bays braced) a more accurate approach might be desirable.

2.8,3 Walls and Infilled Frames

For plain walls a formula derived from elastic theory could

be appropriate. For example one could write:

1
Ko = h 3

--+ h
AG IE!

h = height of the wall

A = area of the wall

I = moment of inertia of the section in bending

E, G = elasticity constants

A = parameter depending on conditions of fixity at the

2.6

ends. It coul d vary from 3 to 12.

The stiffness of infilled frames could be found by summing the stiff­

nesses computed from 2.4 and 2.6 for the two elements, However if

the frame has a height to width ratio which is large (tall frame,

small number of bays), this superposition will not be valid and the

unit will have to be treated as a bending element rather than as a

shear beam. The comments made in paragraph 2,6 are pertinent in

this case.
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2.8,4 Yield Levels for Frames

An upper bound of the strength of one particular story could

be estimated by assuming that this story has been transformed into

a mechanism. There are two possibilities: hinges in the girders

and hinges in the columns, In the case that we have hinges in the

girders the story is not exactly a mechanism but its additional strength

after the girders have yielded is very small, So we can write

Fy - mi nmax - 2" ~g } 2,7

where h = story height

~Myg = sum of plastic moment capacities for all girders in the

floor

i:Myc = sum of plastic moment capacities for a11 columns in the

floor, reduced for the effect of axi al load,

Again the reduction of the ul timate capacity due to the axial loads

could be accounted for, in an exact analysis (see for example reference

(9) ) , For the approximate model used in this thesis however, this

is not possible except in a rather crude way. This is by using the

ultimate moment capacity of the columns as modified for the effect

of gravity loads,

Another point worth mentioning is that the yield level

computed from 2.7 is an upper bound, Due to the gradual formation

of hinges, the load deflection curve will start deviating from the

straight line before the total shear reaches the value of FYmax' The

value of the story shear when the 1st hinge forms could be as low
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as half the amount computed from 2.7 (see for example reference (38)).

To account for this phenomenon, a trilinear model was developed

as a combination of two elastoplastic ones. It is shown schematically

Trilinear

Actual Behavior

__ -"_ ~n i near
r­
ymax

in Figure 2-18 and described in more detail in Appendix 8.
p

Figure 2-18 Trilinear and Bilinear Model

The value Fy x computed from 2.7 should be lower than the shearrna

strength of the columns. If this is not the case it is possible to

have a shear failure before this value is ever attained. However,

frames designed by the code and well detailed should not have such a

problem.

In the case of bracing an additional term should be added to

the value computed from 2.7. We could write:

FY(Braced frame) = FY(Unbraced) + Lay Abr cos a 2.8

where L 0y= yield stress of the member

Ahr = area of bracing
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a = angle between bracing and beams

L = summation over all braces working in tension.

The second term comes from the contribution of the diagonal members

to the ultimate capacity.

2.8.5 Yield Levels for Walls and Infilled Frames

For plain walls we can write:

2.9

where 'max = maximum shear stress the wall can stand

o maximum tensile stress the wall can standmax
W = section modulus

h,b,t, = wall dimentions

For infilled frames we can assume that the wall acts as a series of

diagonal struts and then we can write:

Fy - Fy frame + LPmax cos amax

where Fy frame is computed from 2.7

Pmax is computed from 2.9

a is the angle that the di agonal forms in a bay with

the horizontal.

2.10

2.9 Comparisons of Deflections Obtained Using the Approximate

Formulas with Exact Values
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In order to examine how accurate results one could obtain

using the approximate formulas for stiffness suggested in this chapter,

several frames were analyzed using these formulas and by an exact

computer program. The frames examined are shown in Figure 2-19
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Two types of loadings were used: a) uniform over the height and

b) triangular decreasing from top to bottom. Since there was almost

no difference in the comparisons of the two cases with the results

obtained from the exact analysis~ we will give here only the comparison

for the uniform load. These results are tabul ated in Table 2-10

INTERSTORY DISPLACEMENTS

FRAME A FRAME B FRAME C
FLOOR

APPROX EXACT APPROX EXACT APPROX EXACT

1 .875 .849 .526 .523 0454 .461

2 1,08 1,11 .345 0400 .443 .523
3 .895 .943 .282 .344 .345 .452
4 .805 .884 .258 .331 .256 .394

5 0403 .494 .129 .207 .128 .269

TOTAL DISPLACEMENT AT TOP

I 4.058 I 4.281 I 1.54 I 1,80 I 1.626 I 2010

RATIO OF stop / stop
exact approx

I 1.05 I 1, 17 I 1,29 :
Table 2-1 Comparisons of Deflections Obtained by

Using Approximate Formula for the Stiffness

From the above table we see that the results obtained using

the approximate formula are better for the lower stories than the top
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ones. Also they are better for regular frames than for irregular or

frames with bracing. In all the cases the approximate displacements

are smaller than the exact. This is something to be expected, since

the approximate method does not account for column shortening. In.

cases where this is not important, the agreement should be better.
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CHAPTER 3

STUDIES OF ONE~DEGREE-OF-FREEDOM SYSTEMS

3.1 Introduction

The inelastic dynamic response of one-degree-of-freedom sys­

tems (1 D.O.F.), with the spring characteristics introduced in Chap­

ter 2~ will be presented here, in order to compare the effect of the

different non1inearities. This will have first only a qualitative

character, although later in this chapter quantitative comparisons

will be made for some of the systems. The excitation used for this

part is the NS EL CENTRO 1940 accelerogram, the N69W TAFT 1952 (fac­

tored to an intensity equal to that of the EL CENTRO record) and

finally a sinusoidal motion. Extensive studies on ductility require­

ments for the nonlinear systems that best represent frame behavior

will then be presented, and the possibility of drawing conclusions

from these results for mu1ti-degree-of-freedom systems will be dis­

cussed. Five different historical records were used for this part

of thE! investigation. Finally, some comments on the effect of grav­

ity loads on the dynamic behavior will be made. Housner (61), (62)

and Berg and Thomaides (63) studied the response of single elasto­

plast'ic systems, using energy considerations. Ve1etsos and Newmark

(64), Veletsos, Newmark and Chelapati (65) and Veletsos (66) have

done extensive studies on the response of a 1 D.O.F. with various

nonlinear force displacement characteristics. They have derived re­

sponsE~ spectra for such systems, and they suggested practical rules

to derive these spectra from those of an associated elastic system.
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These rules will be discussed later in this chapter together with

their range of application. Clough and Johnston (69) compared the

response of a stiffness degrading model with that of an elastoplas­

tic system, and their main conclusion was that the ductility require­

ments of a stiffness degrading system with natural periods greater

than 0.5 seconds are not materially different from those observed

in ordinary elastoplastic structures. Ductility requirement (or

ductility factor) is defined in general as the ratio of the maximum

deformation to the yield one. For systems with periods less than

0.5 seconds, the differences might be significant. For long period

structures, the loss of stiffness results in an increase of the

period of vibration that leads to a decrease of the response. Jen­

nings (67) studied the response of simple structures with Ramberg­

Osgood type characteristics. Kaldjian and Fan (60) derived response

spectra for elastoplastic and Ramberg-Osgood systems, and one of their

conclusions is that the maximum displacement and the maximum energy

input for the two systems are comparable. Husid (68) has studied the

effect of gravity on the response of simple, idealized structures,

and some of his conclusions will be discussed later in this chapter.

3.2 Nonlinear Response of 1 D.O.F. Systems under Earthguake Excita­
tion

The equation of motion for a 1 D.O.F. system (Fig. 3-1) subjec-

ted to a ground excitation is:

mU + cO + kF(u)
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or dividing by the mass

where:

m = mass

u = displacement of the mass relative to ground

c = coefficient of viscous damping

S = c/21kITI percentage of critical damping

k = initial stiffness of the spring

w = Ik7iTl

F(u) = force in the spring divided by k (Fig. 3-1)

U = ground accelerationg

. + denotes differentiation with respect to time.

(3.1 )

:~ u.. (re 1at i ve to
I ground)

nonlinear
~ spring

F(u.)

LA

_---~---- -uy

Figure 3-1 1 D.G.F. System with non­
linear Resistance Function
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The function F(u) for the nonlinear spring follows any of the laws

discussed in chapter 2 and is characteristic of the particular type

of the resisting element.

Equation 3.1 can be solved numerically for any kind of input

ground motion. The numerical method used here is the so-called "im­

pulse acceleration" or "cons tant velocity method," (see for example

Biggs (1), Roesset (6)), which was checked for its accuracy against

exact solutions. Because we have only one degree of freedom, the

method is almost as accurate as any other, provided that the time

step used is small enough. One tenth of the elastic natural period

of the system is usually a good guess for the time step to be used,

provided of course that it reproduces the input function well. In

all the studies reported in this chapter, the time interval used was

0.01 second.

Figures 3-2 - 3-9 give the time history of the displacement

response and the force vs. deformation in the springs for the differ­

ent nonlinear systems discussed in chapter 2. The ground motion used

was the first 10 seconds of the N-S component of the 1940 El Centro

record. The properties of the different systems used are summarized

in Table 3-1, according to notation introduced in chapter 2. In

general k stands for stiffness, Fy for yield force, and a, b, care

factors for the degrading models, as defined in 2.6.

Since this part of the study was aimed mainly at a qualitative

evaluation of the behavior of the different systems, it was consid-

ered appropriate not to include any viscous damping. The stiffness
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T, 't FYl
Fy2 0y1 nl ..

k2 k Fy ,
TYPE (sec) (kips) (kips) (i n) a b c min mln

ELASTIC .56 - 8 - .533 - - - -- -

ELASTOPLASTIC .56 - 8 - .533 - - - - -

BILINEPIR .56 .03k l 8 - .533 - - - - -

TRILINEAR .56 ·2kl 4 8 .267 - - - - -

STIFF .DEGR.l .56 - 8 - .533 - - - - -
STI FF .DEGR. 2 .56 - 8 - .533 .35 - - - -

STREN.81 STI FF . .156 66 .29 40. .9 .8 -DEGRAD.l - - -

STREN . 8! STI FF . .156 66 - .29 40. .9 .8 22.5 28.DEGRAD.2 -

Table 3-1 Properties of 1 D.O.F. Systems Analyzed

of the last two models, which are for infilled frames, was chosen

much larger than the stiffness of the others, so their initial period

of vibration is much smaller. Yield levels for the first six systems

were chosen so that the ductility factor would be in the order of

3 - 6 (except for the tril i near model whose ductil ity is with respect

to the first yielding level). For the last two, yield levels were

chosen by assuming certain properties for the frame and the infill

and using formulas from chapter 2.

Figure 3-2 is the response of an undamped elastic system with

period .56 seconds. The force-deformation function is a straight

line as shown in the bottom part. The maximum displacement is 6.52 in.

Figure 3-3 and 3-4 are the responses of the elastoplastic and

bilinear systems, respectively. They are quite similar except that

the elastoplastic has a bigger permanent set than the bilinear. Their
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ductility factors are 3.95 and 3.68 respectively. The irregulari-

ties in their response are of course due to yielding.

The response of a trilinear model is shown in Figure 3-5, and

one can observe that it is controlled more from the second slope.

Figure 3-10 shows the envelopes of the elastoplastic and the trilinear

system. This effect makes the system softer and is probably the rea-

~ elastoplastic

.267 .533

I

~t '1.
1

n 1near
I
I
I
I
I

"I ,.
.• 0

Figure 3-10 Trilinear Model

son for the initiation of some plastic drift after the 8th second.

The maximum displacement here is 2.43 in. (larger than that of the

elastoplastic and bilinear) and the ductility factor with respect

to 1st yield level is 9.12, while with respect to the 2nd , is only

1 .51 .

The next two figures, 3-6 and 3-7, correspond to the two

stiffness degrading models. As it was mentioned in chapter 2, their

only difference is in the slope of their unloading branches. For
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all practical purposes, however, their responses can be considered

identical, as one can observe from the top parts of the figures.

Their ductility factors are 5,26 and 5.73, respectively: i.e., 33%

and 45% larger than that of the elastoplastic. This is in agreement

with Clough's results discussed in the introduction. The increase

in the period of vibration is due to the continuous decrease in stiff­

ness after 1st yielding. The increase of the period alters the re­

sponse significantly only if the system has a period either very

small or very large. If the initial period of the system is near the

beginning of the horizontal plateau of the spectrum, (plotted against

period), then no significant changes in the response should be expec­

ted. Due to the close similarity of the response of the two stiff­

ness degrading models, the conclusion that the second model is insen­

sitive to the values of a at least in the range a - 35, is evident.

Figure 3-8 corresponds to the stiffness and strength degrading

model that is proposed for an infilled concrete frame. Before first

yielding occurs, the response is insignificant, but after that it

deteriorates very fast, in contrast to Figure 3-9, which corresponds

to an infilled steel frame, in which there is a minimum of stiffness

and strength, that of the bare frame alone. The following should be

made clear, however. Several computer runs were performed, in which

the three basic parameters of the model were varied. It was found

that the model is rather insensitive to the value of a, but the same

is not true for band c (the parameters that associate degradation

to the number of cycles of loading). Appropriate adjustment of these
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two parameters could produce any desired behavior. Due to the lim-

ited amount of experimental data, the numbers used are only a "1ittle

more" than guesses. As new experimental evidence becomes available,

more realistic values for these two parameters could be determined.

The bottom part of all the previous plots give the force vs. deforma-

tion curves for the system considered. They are interesting in the

sense that one can see the effect of load reversals, the amount of

yielding taking place in each cycle; and they also serve as a check

of the analysis.

Figures 3-11, 12, and 13 show the response of the degrading

models to the first 10 seconds of the Taft 1952 N69W earthquake

scaled to an intensity equal to that of El Centro, 1940. Figure 3-14

shows the response of the strength and stiffness degrading model 1 to

a sinusoidal motion with period .5 seconds and maximum acceleration

320 in/sec2. These additional plots were included to see whether any

significant difference in the shape of the loops from those for El

Centro would be observed. It is only for the sinusoidal motion that

the shape of the loop is different, but this comes from the regular­

ity of the excitation which makes the system stay in the plastic

range longer.
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3.3 Studies on Ductility Requirements of Simple Systems

3.3.1 Importance of Ductility

It has been long recognized that ductility is a highly de­

sired property for a structure, to resist strong earthquakes and to

avoid possible collapse. A structure that possesses ductility has

the ability to accommodate large inelastic deformations and to ab­

sorb a substantial amount of energy through inelastic action. But

use of a ductile material is not sufficient to guarantee this behav­

ior. Other factors such as the complexity of the structure, the

degree of indeterminacy, detailing of the joints and connections,

speed of loading and temperature are also important for the overall

ductile behavior. Structural steel and reinforced concrete designed

in accordance with the code can behave as ductile materials, so for

usual structures it is the other reasons that influence the ductility.

Simple members usually possess more ductility than entire structures.

Usual structures consisting of frames from ductile materials designed

and detailed according to the codes can exhibit ductility factors

between 3 and 8 (5). Experience from structural failures, however,

indicates that very often the construction is very poor, especially

at those locations (namely structural joints) that more than any

others need good and careful detailing to ensure the overall ductility.

From the point of view of the designer the first question is

to determine the amount of ductility required by the structure to en­

dure safely (and with a minimum of damage) a strong earthquake.

And if this ductility is excessive, how can it be reduced
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Ideally a building should have enough stiffness to resist wind loads

and small or moderate earthquakes with little or no damage. Under

a very strong earthquake it should be ductile enough to avoid collapse.

3.3.2 Inelastic Response Spectra

The idea of the elastic response spectra has been extended

to nonlinear systems. Although they cannot be readily used for multi­

degree-of-freedom systems through a modal analysis~ they are useful

in that trends can be observed and some general conclusions can be

drawn. Veletsos (66) has obtained spectra for several types of non­

linear models~ and Kaldjian (60) has compared the responses of elasto-

plastic and Ramberg-Osgood systems. The trends in all of them are

more or less the same~ so we will limit ourselves in this part to the

elastoplastic springs (which are the ones most widely used.) Inelas­

tic spectra are drawn for constant values of the ductility factor ~

(being defined as the ratio of the maximum deformation to the yield

deformation) and having continuously decreasing ordinates for increas­

ing values of ~ over the whole frequency range (Figure 3-15). This

does not mean~ however~ that the maximum displacement of the elasto­

plastic system is smaller than the elastic. It mayor it may not be.

To find the maximum displacement from the response spectra~ the spec­

tral value must be multiplied by the corresponding ductility factor ~.

What the decreasing ordinates actually say is that the smaller the

yield level F , the more yielding will take place.
y
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Tc!>ec)

Figure 3-15 Response Spectra for Elastoplastic Systems

Veletsos, Newmark and Chelapati (65) derived elastoplastic

response spectra for several inputs and came to the following con­

clusions: In the long period range of the spectrum, the maximum

deformation of the elastoplastic system is approximately equal to

that of the elastic. In the short period range, it is the maximum

acceleration that is approximately equal and in the medium range

it is energy that is preserved. These conclusions are closely re-

lated to the basic properties of the elastic spectra in the corre­

sponding regions (i.e., spectral displacements close to ground dis-

pl~cements for long periods, spectral accelerations close to ground

acceleration for short periods, and conservation of energy for inter­

mediate range). Following the above conclusions, detailed rules for
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deriving elastoplastic spectra from corresponding elastic spectra

are suggested in the same reference. Here we will give a simplified

version of these rules: For long periods, obtain ordinates of elasto-

plastic spectra from those of the elastic, dividing the second by

the desired ductility factor. (In other words, assume the same maxi­

mum displacement for both systems.) In the short period range,

assume the acceleration of the two systems to be the same, and in the

intermediate, divide the elastic spectra by the quantity 12v - 1.

This quantity can be easily derived, as shown below, by equating the

maximum strain energies of the two systems. (Figure 3-16).

r

'el

Figure 3-16

uy = yield displacement for
elastoplastic system

u = maximum displacement for
o elastic system

um = maximum displacement for
elastoplastic system

u

Derivation of Factor 12v-l

We want to express um in terms of Uo by equating the corresponding

energies. This means that the two shaded areas should be equalo Then:
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A2 = (u ~ u ) Fm 0 y

(u - u )2
(u - u ) = 0 y

m 0 2uy

u
Dividing both members of the above equation by uy and setting ~ = ~uy

/2~ - 1 (3.2)

One useful observation that can be made, based on the above

conclusions, is that for long period structures one could get reason-

able values of the required ductility by dividing the forces obtained

from an elastic dynamic analysis by the design forces.

The above conclusions, looked upon from a different point of

view, suggest that structures in the short or even in the intermedi­

ate period range may require excessive ductilities if they are not pro­

vi ded VJith adequate strength. Newmark, ina di scussi on of a paper by

Clough, Benuska and Wilson (70), notes that presently (1965) avail-

ab1e codes do not provi de the same amount of ductility over the whole

range of building periods that the designer might encounter. This is

a serious problem for strong earthquakes, because the factor of safety
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against collapse is very closely related to the amount of ductility

built into the structure. We address this problem in the following

paragraph.

3.3.3 Ductility Requirements of Structures Designed by Code Proced­
ures.

In this paragraph we will try to answer the question posed

in 3.3.1: i.e., "What wi 11 the ductil i ty requi rements of a structure

be, for a strong earthquake?" To do this, we chose a set of struc-

tures in the range of .1 to 4. seconds natural period. The masses

were varied proportional to the natural periods in an attempt to

simulate multistory buildings. This was done by assuming a mass of

0.1 kips-sec2/in. per floor and a variation of periods in proportion

to the number of floors. The corresponding stiffnesses were then

computed from the natural periods and the masses. The design shears

were computed according to the Uniform Building Code provisions for

a z = 1 and k = .67 (we will comment later on the possibility of

varying k). The code states that "for all one- and two-story build-

ings, the value of c shall be considered as 0.1." In the case of

the .1 period, we chose the most conservative value of c = 0.108, as

determined from the formula. Finally, the ultimate shear was assumed

to be twice the design shear. This assumption was based on the fol­

lowing facts: a) We designed according to the code several columns

as l-D.O.F. with different periods, for gravity loads coming from

the corresponding masses and earthquake loads as determined by the
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U.B,C, Sections were selected from the steel manual and ultimate

capacities were computed using the interaction formulas, In the

cases examined, the ratio of the ultimate to the design shear was

2.04,1.96,1,86. b) It is recognized that in a column of a multi­

story frame this number will vary with height, being a function of

the ratio of the design moment to the design axial load, For girders

that carry very little axial load, this number is about constant and

very closely equal to 2. Given then that the desired behavior is to

have the columns elastic by forcing yielding into the girders, this

assumption looked reasonable. c) Clough (69), in his studies for

inelastic dynamic response, used the same number for the l-D.O.F"

and aliso the same number for the girders of his multistory frame (7),

The properties of the systems are given in Table 3-2. The units are

kips, inches and seconds.

-
T m w k kc Vdes F Fy/wy

0.10 0,10 38.6 395.00 .0722 2.79 5.60 ,145

0.25 0.25 96.5 158.00 .0532 5.14 10.28 .106
0.50 0.50 1930 0 79,00 .0422 8.15 16.30 .085

1.00 LOO 386.0 39.50 .0335 12.92 2-5.84 ,067

2.00 2.00 882.0 19.75 .0266 20.50 41.00 .053

3.00 3.00 1160.0 13.20 .0232 26.90 53.80 .046
4.00 4.00 1540.0 9.88 .0211 32.50 65.00 .042

Table 3~2 Properties of 1 D.D.F, for Ductility Studies

The notation is:
T = period
m = mass

w = weight

k = stiffness
kc = U.B.C. coefficient for design shear

Vdes = earthquake design shear
Fy = ultimate capacity (2 Vdes )
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Results were obtained for five different accelerograms which were

(3.3)
o

1((3) = arc cos S

g ,,/1 - S2

brought to an intensity equal to that of the 1940 NS El Centro earth­

quake. The definition of intensity used is that given by Arias (71).

It is defined as

and has the advantage that its variation with respect to S, the per­

centage of critical damping, is very small. For S = 0.20, results

were also obtained by using Housner's definition of intensity and

were quite similar. For two cases the peak ground acceleration was

used as a measure for intensity and the results presented a bigger

scatter than using Arias' intensity. Table 3-3 gives the different

earthquakes and the corresponding scaling factors.

"

uG(El Cen) IHousn. iArias Scale Scale ScaleEl Cen. El Cen. Factors Factors FactorsEQ. UG EQ IHousn.
\

rAri as for uG for forEQ EQ 11... ; ::>c u~ ,~~~~

1 1 1 386. 386. 3860
I

EL CENTRO
(NS)

EL CENTRO 1.46 1.15 1. 21 562. 466. 4450
(EW)

OLYMPIA .97 1.48 1.24 386, 480, 572.
(S80W)

~AFT 2.00 1.85 1.87 772. 720. 715,
(S69E)

TAFT 1.77 1.97 1.90 685. 735, 7600
(N2l E ,

Table 3-3 Factors to Multiply Accelerograms
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The duration of the earthquakes in Table 3-3 is as follows:

El Centro NS First 10 sec.
El Centro EW First 19.2 sec.
Olympia S80W First 19.60 sec.

Taft S69E First 19.20 sec.
Taft N21E First 19.36 sec.

Before presenting the resu1ts obtained, it is interesting to

write the equation of motion (3.1) in a nondimensional form, in terms

of a new variable z = u/uy (note that for u > uy ' zmax =~) and draw

some conclusions from it:

If we define a function f(z) such that f(z) = l/uy F(u)

(where F(u) has been defined in paragraph 3.2), then F(u) = uyf(Z),

i.e., the new function f(z) is obtained from F(u) by dividing its

ordinates by u .. y
plastic system:

This function is sketched in Fig. 3.17 for an elasto-

tW
f(z) = z } for z < 1

1 ---- f(z) = 1 furz>l

1 z

Figure 3-17 Resistance Function in Nondimensional Form
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Introducing z in 3.1 we obtain:

.. 2 ()2Sw u z + w u f z - - ugy y

or

or

.. .. 2 ( )z + 2Sw z + w f z
u

= _ ---9..
u.¥,

k(~)
y

(3.4)

From this equation we see that the dimensionless response

z = u/uy of a nonlinear system depends on the amount of viscous

damping, the natural period of the system and the ratio of the maxi­

mum acceleration of the motion to the yield level. This means that

if we have a nonlinear system and we want to study the effect of

the yield level or of the earthquake intensity, we only need to vary

one of them. Note also that the above is true for any of the non­

linear models introduced in chapter 2, since the loading and unload­

ing laws governing these models do not affect the validity of equa­

tion 3.4.

From the same equation we can make the observation that if we

multiply the mass, the stiffness and the yield level of a nonlinear

system by some factor a, and use the same earthquake motion, the non-

dimensional response z remains unchanged. This is because in the

left side w is left unchanged and in the right side the ratio k/Fy

remains also unchanged.

In the next pages the results of our investigation are presen­

ted in a graphical form. They are for three different systems: elasto-

plastic, bilinear and stiffness degrading. For the bilinear, the
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slope of the second branch was chosen as 3% of the first, The degrad­

ing stiffness model is the simplified one that unloads parallel to the

initial slope. The two other models that include strength degradation

as well were not included in this study because ductility cannot be de­

fi ned for the complete uni t: i. e., the frame and the i nfi 11 , whi ch the

model is designed to simulate. Four different values of viscous damp­

ing were selected, corresponding to: S = 0, 0.05, 0.10 and 0.20. We

will not elaborate on which of these values is a more realistic one,

but we will mention that for a ductility analysis that is done for a

strong earthquake, nonstructuralelements might have cracked, and sub­

stantial damage might have occurred, which suggests that the viscous

damping present at that stage of the response (in addition to the hys­

teretic damping of the yielding structure) could be significant.

Figures 3-18 through 3-23 show the variation of the required duc­

tility factor ~ as a function of the natural period of the system,

Under each figure the law that describes the appropriate straight

lines that best fitted the data is written. The solid line is the

lIaverage" line, and the dotted is an "upper-bound" line. In almost

all the cases the solid lines are a little conservative for the long

period range, and a little unconservative for the intermediate, This

of course could be eliminated by a more elaborate curve fitting. From

the expressions at the bottom of the figures, the decrease of the re­

sponse with increase of the viscous damping becomes apparent. No

significant difference appears between the undamped response of the

elastoplastic and the bilinear model. For all the damped cases, how-
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ever, the bilinear has smaller ductility requirements in the low

period regions, while it is almost identical to the elastoplastic

in the long periods. This confirms the observations of Veletsos and

Newmark in their comparisons of elastic and inelastic response in

the same period ranges (see paragraph 3.3.2). The stiffness degrad­

ing model, compared to the elastoplastic, has slightly less ductility

requirements in the long period region and slightly higher in the

short period region. Again this is as expected and in agreement with

comments made in paragraph 3.2 about the behavior of such a model in

the different frequency ranges.

The most important conclusions, however, independent of the

particular system, is that the ductility requirements for these struc­

tures are not uniform and increase as we go from long periods to

short ones. While it can be argued that it is hard to find buildings

designed as ductile frames (as this analysis has assumed with k = .67),

in the period range, where the curves indicate extremely high duc­

tility requirements, a three- to ten-story frame could very well lie

in the region of .3 to 1 seconds, for which case the plots indicate

an average value of ductility requirements from 5 to 10, even with

10% viscous damping. We consider this range of ductility to be high

and difficult to attain, even for well designed and constructed struc­

tures.

A desirable situation would be to have a rather uniform dis­

tribution of ductility requirements over the complete range of natural

periods in which framed buildings could be. In that case the lines
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of the previous figures would tend to be horizontal or at least

with a slope smaller than that in the figures. Given that the duc­

tility requirements decrease with an increase of strength (as it

will be seen in the following set of curves), it would seem that

the design shear should be increased for stiff structures. In

other words the coefficient 1/3 in the expression:

0.05
c = 173

T

should increase to a value a, where a > 1/3.

The value of a could easily be determined, as it will be sug­

gested later, given that an acceptable level of ductility has been

established. In a more general sense the ideal kind of a relation-

ship for the design shear coefficient should have the form of:

c = f(ll,S) (3.5)

where T is the natural period of the structure and f, a are func­

tions of the desired ductility factor II and the percentage of criti­

cal damping S. The functions f and a could also be obtained either

through some reasonable idealization of inelastic response spectra,

or through random vibration theory.

At this point it seems that additional studies should be made

to obtain similar curves for other values of the U.B.C. coefficient

"k" (e.g. for k = 0.80, 1.00, 1.33 etc.) in order to include cases

of buildings that include shear walls and if possible to use a closer
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interval of natural periods examined, and maybe more earthquake

records. The cost of computer runs for these studies is small,

because we have only a one-degree-of-freedom system, and the numer­

ical method used is very efficient and fast.

As a final remark before closing this section, figures 3-24

and 3-25 show the same curves for 20% viscous damping, determined

by using Housner's definition of intensity, and are almost identi­

cal with the corresponding ones using Arias' definition. Figure

3-26 shows similar curves obtained by equating peak ground accelera­

tions rather than intensities. The scatter here is bigger than in

the other cases.

3.3.4 Ductility Variation as a Function of Strength

The most important factor that influences the ductility re­

quirements of a structure for a given earthquake motion is the

strength, defining as such the maximum force it can sustain at yield­

ing, Here we will try to answer the second question posed in 3.3.1:

i.e., IIWhat is the required strength for a structure, so that the

ductility factor will be within a specified range?" To do this, we

computed again the time history response through a step-by-step

numerical integration of the systems examined in the previous sec-

tion, but this time for several values of the yield level Fy ' So

we obtained the maximum deformations and through them the correspond­

ing ductility factors dividing by the deformation at yielding. This

analysis was performed again for the same earthquakes as before, and
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the same systems. The results are plotted in dimensionless form

for the different values of natural periods, viscous damping, and

for the three systems: elastoplastic, bilinear and stiffness degrad­

ing. The ordinate is the ductility factor ~ and the abscissa is

the dimensionless quantity (mU/Fy)' (Figures 3-27 - 3.68).

If we recall equation 3.4, ~ is only a function of the ratio

Ug/Fy' The earthquake records were multiplied again by the factors

given in Table 3-3 and the Ug used was that of El Centro: i.e.,

0.32g. The complete set of curves is aimed to be a design aid. For

values of period between those in the charts one could interpolate

linearly.

One possi ble use for these curves could be the determination

of appropriate laws for base shear coefficients so that we could

have uniform ductility requirements for the complete range of the

spectrum. This could be done as follows:

Write:
Vdes = kcmg

F = a V
y des.

Then:
F

c - --Y..­- akmg (3.6)

For the curves in this chapter Ug .32g.

So 3.6 becomes:

where

.32c = -'ak

"I .32
1\ = ---ar

F
A' (rntf)

g
(3.7)
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Table 3-4 gives a range of values for A for various combina-

tions of a and k.

.064

.048/

.108

.080
.2141.16
.160 .12

1.00
1.33

I
I

A .32/akI =i
! ,

a=l .5 I I
I k I a=2 i a=3 I a=5
i, -

I

I
.24 .160 I .095 I.67 ! .320 ,

I I
.80 .267 .20 , .133 i .080,

I i

Table 3-4 Values of A

Selecting values of viscous damping S and ductility values w,

we can enter figures 3-27 - 3-68 and determine corresponding values

of mUg/Ft for any set of natural periods. Then by using 3.7 with

some appropriate A, we can compute c and plot it as a function of T.

This was done for the case that a = 2, k = .67, .80,1,1.33, S = 5%

and an elastoplastic system. Values of Fy/mug are tabulated in

Table 3-5 for 5 values of wand 7 values of T.

..
i

Is = 5%

F/mUq
i I

T wl w2 w3 ! ].1=4 ].1=5

.10 1.470 1.180 1.000 .930 .860

.25 2.000 1.300 1.000 .860 .770

.50 2.000 1.000 .625 .475 .400,
1.00 1.040 .590 .417 .333 .270\

i ,
2.00 .500 .222 .150 .118 .1001

3.00 .285 .167 .111 i .083 .068\
!

4.00 .167 , .095 .067 : .053 .044:

Table 3-5 Values of F /mu
y 9
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The results are plotted on log-log paper in figures 3-69, 70,

71. In all the cases the code formula has also been plotted. In the

case of k = .67 (ductile frames), straight-line fits were performed

and the appropriate laws are summarized here:

).l = 1

).l = 2 c =

c = for T <.5 sec.

for T < .4 sec.

for T < .3 sec..24

c =.5max

cmax = .28

.25
T1.2

.11
T

.076c = -T-3).l

).l = 5 cmax =.2 for T < .25 sec.

).l 4 c = .06
T

.05c = T

= .21 for T < .28 sec.

As it was expected, the numbers show that for one-degree-of­

freedom systems with a = 2, the U.B.C. would be unconservative in the

short period range and conservative for long periods.

All the above shows one way by which one could obtain reason-

able values of the base shear coefficient for prespecified ductility

levels. This kind of study could be used to determine laws of the

form 3.5, which would allow the designer for more combinations of

strength and ductilities. Of course, before one adopts such a law

to include it in a code, he should perform more studies: namely, for

all possible values of ,\ and percentages of critical damping. The

effect of gravity should also be investigated mainly in the long

period range where the new coefficients become smaller than the ones

currently in use. It is believed, however, that this is not a prob-

1em, as the following thinking suggests. As it was mentioned earlier,
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the maximum deformation~of a system in the long period range remain

relatively constant (approximately equal to the elastic) independent

of the amount of yielding. Then even if we reduce the base shear

coefficient and the structure becomes relatively weaker, the effect

of gravity forces which is a function of the displacements will not

change significantly.

As a final point in this paragraph, comparisons will be made

between ductility factors obtained for multistory frames and numbers

obtained by using the curves of the previous pages. Clough and

Benuska (7) obtained ductility factors for frames of different peri­

ods. They have designed these frames following a code approach simi-

lar to the one used to derive the curves of the previous pages. One

of their conclusions is that the columns remain elastic except for

the ones in the top one or two stories. The girders yield and their

ductility factors vary with the height. The variation is irregular

and has a shape as shown below (figure 3-72).

'20

1

fA GIR.DeR

Figure 3-72 Ductility in Story Level
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Values of ~ave. and ~max were estimated by drawing two vertical

lines as shown in figure 3-72. These two values are compared with

values obtained from figures 3-18 through 3-23 of this chapter.

The comparisons are summarized below.

6 = 0%

Clough (7) Fig. 2-2~
Present Fig. 3-20Work

T ~ave. ~max. ~ave . ~max.

1.6 4 7 4 6
2.2 3 6 3 4.8
2.8 2.5 5.5 2.4 3.7

*61=.10,62=;041,63=.025 6 = .10 6 = .05

Clough (7) Fig. 2-78 Fig. 3-21 Fi g. 13-20

T ~ave. ~max. ~ave. ~max. ~ave. ~max.

.6 7-8 11.0 6.8 10.0 7.5 11.5
1.0 ~ 5.0 7.5 4.5 6.5 5.0 7.7
1.6 ~ 3.0 5.6 3.0 4.4 3.5 5.5
2.2 2.4 5.0 2.2 3.5 2.8 4.4
2.8 2.0 4.0 1.8 2.7 3.3 3.5

Average for the
Two Values Of

Damping

~ ~max.ave.

7.15 10.75
4.75 7.10
3.25 5.00
2.50 4.00
2.05 3.10

*

Chapter 5, had for 6 = 0.02: ~ = 1.3 and ~ = 2.87. Theave. max.
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natural period of the building is 4.2 sec. The corresponding num-

bers from the curves are: ]l = 1 3']l = 2 85ave. ., max. ..

As a final comparison we take figure 2.47 from (7), where

Clough studies the effect of intensity on ductility. To obtain cor-

responding numbers we must make use of both sets of curves given in

thi s chapter.

Clough B = .10 Present Work T = 2.2

T = 2.2 B = .05 B= .10 Average
B =.05 8! .10

Intens. ]lave. ]lave. ]lave . ]lave.

.7 1.8 2.0 1.6 1.8
1.0 2.4 2.8 2.3 2.5

1.3 3.2 3.8 3.2 3.5

From Fig. 3-20: B = 5%

From Fig. 3.21: B = 10%

T = 2.2 +]l = 2.8 }ave.
T = 2.2 +]l = 2 3ave. .

Mil
{ Fig. 3-53 T = 2 ]lave. = 2.8 + r = 6.61s = 5% Y

r,m
Fig. 3-59 T = 3 ]lave. = 2.8 + r =8.6

Y

Interpolate
for T = 2.2
and get:

r~u

g - 7F
y

" -

B = 10%

t11j'
.7 (~F)=4.9} }+ ]l = 2.1

Y
ave.

T=2
t~u'

1.3 (~)=9.2 + ]l = 4.0Fy ave.

T = 3

]lave.= 1.55

]lave.= 3.00

Inter­
polate
for

T = 2.2

and find for T = 2.2 and B= 5% and Intensity~ .7 + ]lave. =
1.3+]l =dve.

2

3.8
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,

3-54 T = 2 ]lave. = 2.3+r=5.5 Interpolate
y for T = 2,2

[3 = 10% and get:
W r'1u

Fig. 3-60 T = 3 = ~ = 8.5 r = 6,10]lave, 2.3 + F
Y Y

..
MU

.7(r) = 4.31 + ]lave. = 1. 70 +]l - 1.2 Inter-ave. pol atey
[3 = 10%

8 JT=2
T=3 for

" T = 2.2MU
1.3(r) = + ]l = 3.5 +]l - 2,2

y ave. ave.

and find for T = 2.2, S = 10% and
/.7+]lave.

i ntens ity

'"1 .3 + ]lave.

= 1.6 }

= 3.20

The above comparisons indicate very good agreement between the

numbers obtained from inelastic analysis of actual multistory frames

and the curves derived in this chapter for 1 D,D.F. systems. This

suggests that the curves could possibly be used for multistory frames

to give average and maximum levels of required ductility. More stud-

ies and comparisons are needed, however, to substantiate this claim.

As a final comment, it should always be kept in mind that the nature

of the problem is such that one should be satisfied with levels of

ductilities and average numbers, rather than with exact values carry-

ing several digits after the decimal.

3.4 Effect of Gravity Loads

As of this time, our studies on the effect of gravity loads were

inconclusive, As far as simple structures that can be modelled as
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1 D.D.F. systems are concerned, one will have to assume natural

periods between say 0.5 and 0.1 seconds. In this region it was found

that even for ductility factors of the order of 10, gravity loads

presented no problem. If we try, however, to extrapolate conclu­

sions to more complicated actual structures, the main problem that

we encounter is the problem of height: i.e., what is an appropriate

height to use for the 1 D.D.F. In a multistory frame, the way

gravity load acts is by introducing additional shears at each story

level. In that respect it is the interstory height that becomes

important. As far as overturning moments are concerned, however,

these additional shears are multiplied with their distances from

the ground. While Husid (68) makes it clear that his studies are

not aimed towards actual 1 D.D.F. structures, it is not apparent

to what kind of structure the heights of 5, 10, 20 and 3D feet he

selected may correspond. If his studies were for 1 D.D.F. actual

systems, then his parameter ay should have been much greater than

the one he used. It is our feeling that the effect of gravity loads

should be studied only with an exact analysis of the multi-degree-

of-freedom system rather than with the simpler 1 D.D.F.
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CHAPTER 4

ANALYSIS OF MULTIDEGREE-OF-FREEDOM SYSTEMS

4.1 Introduction

One of the main purposes of this work was to develop a con­

venient mathematical model for the inelastic dynamic analysis of a

certain class of buildings. On one hand, it was desired to include

such effects as torsion, non structural elements, stiffness and/or

strength degradation, etc., while on the other, considering mainly

computational costs, lt was decided to avoid the sophistication of

treating each member in the structure individually as it is done in

a regular stiffness analysis.

Clough and Benuska (7), Goel (8), Anderson (9), Latona (10)

and Hanson and Fan (81) describe formulations for the inelastic

dynamic analysis of plain frames. Vitielo (78) gives a formulation

for the in-plane combination of bending elements (shear walls) with

shear elements (frames). Velcov (79) performed inelastic analysis

of a shear-type, symmetric building using elastop1astic and bilinear

models for the resistances between floors. Juyukovski and Bickovski

(80) give a formulation for the elastic dynamic response of shear

buildings, accounting for torsion. Odaka et al. (84) have included

rocking and swaying of the foundation in their formulation for the

dynamics of shear buildings. Nigam and Housner (83) studied the

elastic and inelastic response of simple structures for directions

of the motion other than the principal ones, Shiga (97) dealt with

elastic torsional vibrations, and Tadaki et al. (96) considered the
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problem of inelastic torsional response.

In this chapter we will present the mathematical model, we

will discuss the underlying assumptions and the method of solution,

and we will describe the capabilities of the computer program devel­

oped for the analysis. Faced with the problem of choosing an appro­

priate numerical method for the step-by-step solution of the equa­

tions of motion, we compared several numerical methods and results

of these comparisons will be given here. Finally, we will present

a general formulation of the problem, extending it for the cases

where gravity loads and soil flexibility are to be included in the

analysis.

4.2 The Mathematical Model

The mathematical model used for this investigation is a com­

bination of shear and bending springs, in any of the x, y directions,

with masses lumped at the floor levels. The shear springs are in­

tended for frames, in which axial deformation of the columns is not

important (shear behavior) and the bending springs are intended for

shear walls. We can have any number of shear and bending springs

linked together in any direction on the floor plan.

The force-deformation characteristics of the shear springs

could be any of those discussed in chapter 2, depending on the par­

ticular characteristics of the structure (elastoplastic, bilinear,

trilinear, stiffness, and/or strength degrading). The bending

springs (shear walls) are treated as an assembly of simple members
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between floor slabs, with moment-curvature relation for each joint

(at the slab level) given by a bilinear or stiffness degrading model.

The floor slabs are considered rigid in their planes, so we have

three degrees of freedom per floor: two translations and one rota-

tion (Figure 4-1),

v B,S, = Bending Spring
e

5.5. £V1

I--I---+----, eI

- - u,

y

F

F;-~

Il----------to- U

FOR S.s.

M

r-OR e.s.

K2. =r k1

S,S. = Shear Spring

"u • x

Figure 4-1 Mathematical Model for the
Multi-Degree of Freedom System
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Since we consider motion along three directions simultaneously,

symmetry in the layout is not a problem, so we can deal with unsym­

metric and eccentric-mass situations (Figure 4-2).

Elevator
Box

I Center of Mass
I

- -.--
I

I (Xjo ,Y j 0)

vJa 11

o

y

.------""-7) X

Frame i

Figure 4-2 Floor Plan

<::1 b ~. th Fl
~,a OT J . oar

The basic assumptions for our analysis are:

1. Slabs are rigid in their planes.

2. There are 3 degrees of freedom per floor.

3. Height-to-width ratio for frames such that effect of
axial shortening of columns is insignificant.

4. Frames act as shear springs with properties computed as
described in chapter 2.

5. Walls have a bilinear moment curvature relation.



6. If at any time during the analysis the shear capacity
of an element is exceeded, a shear failure is assumed,
and the element is eliminated. In the case of shear
walls, the wall in the floors below the level in which
failure occurred is still active, while in the floors
above it is considered as block-partition type element.

Assumptions number 3 and 4 mean that in cases of tall slender frames

the method would not give good results.

As a first step in the analysis we compute the dynamic char­

acteristics of the structure in the elastic range (small vibrations),

i.e., natural frequencies and modal shapes. The formulation used

is outlined below and is given in terms of lateral stiffness matri-

ces, so in this sense it is general, and it could be applied to cases

where all the degrees of freedom of a frame had been considered.

Consider the dynamic equilibrium of slab j (Figure 4-3):

y

I ii
-----...' Uu

(Xlj, Yu)

Figure 4-3 Notation for Slab j
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Let A be a point in the slab with coordinates x, y and displace­

ments u, v, 8(8 rotation). Since the slab is assumed rigid in its

plane, we can write:

u = u. - Y 8.
JO JO

v = Vjo + x 8.
JO

8 = e.
JO

(4.1 )

The differential inertial forces at A are given from:

dfx - - pdAu

)dfy - - pdAv

dfz = + pdAyu - pdAxv

(4.2)

where p is the density of the slab at A.

To fi nd the total inertia forces of the slab, we must inte-

grate 4.2. Doing so and ut il i zi ng 4. 1, we obtain:

..

I
f = - m u. + 8. Sx JO JO Y.. " (4.3)fy - - m v. - 8. SJO JO x..

S -v. Sfz - - I 8. + u.
JO JO Y JO x

where: m = total mass, I = moment of inertia

S = JJ pxdA, S = JJ pydAx y

If we choose 0 as the center of mass, then Sx = S = 0, and hence
y

f = "

I
x - m ujo Inerti a forces

f = - m Vjo applied to slab (j) (4.4 )y ..
f z = - I 8.

JO
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The forces that resist the inertia forces come from the different

elements (frames , shear walls, etc). Let i be such an element whose

lateral stiffness matrix is K. Then the force exerted by element i

on slab j is given by:

f .. =
lJ

and its x component:

n i .
f .. = cos a. I k

J
. n o~

1J x 1 SI,= 1 N IV

where: n = number of stories

= S(,th component of the displacement
vector (relative to the ground)
for element i.

k}9" = element of the jth row of K

oi
SI,

To simplify notation, we dropthe index i, but we still refer to

element i. It is:

o. = U. cosa + v. sina
J J J

and from assumption 1 :

u. = u. - y. e.

}
J JO J JO

v. = v. + x. e.
J JO J JO

(4.6 )

o. = (u. - y. e. )cosa + (v. + x. e. )sina (4.7)
J JO J JO JO J JO

and replacing to 4.5, we obtain (dropping the index i)
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2 n n n
= cos a I kJ'~ u~o + cosa sinal k.~ v~ + d.cosa I k.~ G~ (4.8)

~=1 ~=1 J 0 J ~=1 J 0

where: d. = x. sina - y. cosa
J J J

(4.9)

Similarly:

f.
JY

n 2 n n
= cosa sina I k' n Un + sin a I k' n Vo + d.sina I k·nG n (4.10)

,Q,=1 J "" ",,0 ,Q,=1 J "" ",,0 J ,Q,= 1 J "" ",,0

and writing:

f. = - f. y. + f. x.
JZ JX J JY J

we obtain:

n n 2 n
f. = d.cosa I k.,Q, Uno + d.sina I k

J
. n V,Q,o + d

J
. I k' n GnoJZ J ,Q,= 1 J "" J ,Q,=1 "" 9,=1 J "" ""

for equilibrium: fx = I f.

)
1 JX

fy = ~ f jy or
1

f = I f jzZ i

L f. + m U. = 0
i JX JO

I f. + m V. = 0
i JX JO

I f. + " 0I G. =
i JZ JO

(4.11)

(4.12)

Equations 4.12 describe the dynamic equiliJrium of floor j. For

each floor we have three such equations, so for n floors the number

of equations is 3 x n. Written in matrix form these equations

become:
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'\x Kxy KxZ u Mx a

"'1Kyx ~y K v + M i/ = a (4.13)
yz y

eJK Kzy Kzz 8 a rzx

The submatrices of the stiffness matrix are given by the following

expressions:

m 2
K \' K.cos a.,
xx = l, ,

i =1

m
Kxy = I K,.cos a.sina.,

i =1 "

m
I o. K.cos a.

. 1 ' , ,,=

m 2I K.sin a.,
. 1 1 ,,=

m
I O.K. sin a.

. 1 ' , ,,=

m
Xl

M =
x

K = KT
zy yz'

M
= I O.K.O.

i=l ' , ,

I =

11

d., n

In the above expressions the summations are over the resisting

elements.
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K. = lateral stiffness matrix of element i
1

a. = angle that the centerline of element i forms with the
1

x axis

Di = diagonal matrix for element i, containing dj (eq. 4,9)
which are the distances of the element's centerline
from the centroids of the slabs at the different levels

i\, i~y = diagonal mass matrices in x, y directions

I = diagonal matrix containing the moments of inertias of
the different slabs about a perpendicular axis through
their centroid

u, v, 8 = vectors containing the x, y translations and the rota­
tions of the centroids of the slabs with respect to the
ground

T - stands for "transposed"

- indicates differentiation with respect to time

It should be noted here that r~x may be different from ny because in

some cases \'Jhere the building has several similar frames in both

directions we may want to model only part of it.

Equation 4.13 can be written in a more compact form as:

Ku + ~~u = 0 (4.14)

This is the general eigenvalue problem, which when solved will give

the natural frequencies and modal shapes.

For the system sketched in fi gure 4-1, the ei genval ue prob-

lem is somewhat easier, because we can form the lateral stiffness

matrix of the shear springs (which in this case is tridiagonal)

directly from the spring constants, For the bending springs, how-
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ever, we must perform a condensation on the total stiffness matrix

to obtain the lateral one by eliminating the rotational degrees of

freedom at the joints. This is done by treating the bending springs

as a beam with supports at the floor levels and accounting for the

shear deformation.

The contribution of each frame or wall can be assembled

directly into the total stiffness matrix as soon as its lateral

stiffness matrix is computed. Note also that this procedure is

general and is not restricted to the assumption of shear behavior

for the frames (that assumption was made for the nonlinear part of

the analysis). It only requires a computer routine that will read

the properties of the frame, form its total stiffness matrix and

condense it to obtain the lateral one.

This formulation is not accurate for tall buildings designed

to act as a tube. In that case it is necessary to consider all the

6 degrees of freedom per joint of the space frame, form the total

stiffness matrix (which in this case will be of a much bigger size)

and then condense it using the assumption of the rigid diaphragms

for the slabs.

For the solution of the eigenvalue problem, we used the stan­

dard IBM routine)with a slight modification,which utilizes Jacobi's

method. This routine is efficient for the size of problems this

program was designed to handle.

After having computed the dynamic properties of the building

in the elastic range, we proceed with the time-history analysis,
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If we call: U • v the time histories of the ground accelerutiong g

in the xand y di recti ons and set:

uabs = u. + u
.10 g

vabs = v. + v (4.15)
,)0 g

8 = 8.abs .10

equation 4.14 becomes:

Ku + Mu R

where:

R - -

If we are to include viscous damping which is described by a damp­

ing matrix C, then these equations take the form:

Mu + CO + Ku = R (4.16)

These are the differential equations of motion in matrix form, for

the multidegree of freedom system described earlier, excited by a

ground acceleration in the x and y directions. These equations,

however, are only good for the elastic range. When the structure

starts yielding, its stiffness matrix changes. In other words, the

coefficients of the displacements in the above equations, which in

the elastic case are constant, in the inelastic are not, but depend

on the displacements. Hence it is appropriate to write 4.16 as:

MU + Cu + F(u) = R (4.17)
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where now F(u) is a vector of forces, function of the displacement

vector u, Before describing the numerical procedure used for the

solution of 4.17, we will discuss briefly the selection of the damp­

ing matrix C. There are several ways by which the damping matrix

can be selected, The most commonly used are the following:

(i) C = aM

}(i 1) C = bK a, b constants

(i i i ) C = at·1 + bK

In the first case the C matrix is proportional to the mass

matrix, and the modal damping decreases continuously for increasing

number of modes. The parameter a can be selected such that we have

a prespecified percentage of critical damping in one particular

mode (usually the first),

In the second case, where C is proportional to the stiffness

matrix, the modal damping increases for increasing number of modes,

Again b can be selected so as to have a prespecified percentage of

critical damping in one particular mode.

Case (iii) is a combination of the first two, and the result­

ing viscous damping is sometimes called IIRaleigh damping" II In this

case we can have more flexibility in the variation of modal damping

over the system's modes, but ultimately the damping will start in­

creasing for high frequencies, since the term aM will give modal

dampings tending to zero, In this work we used a method known as

Kuzak's method (6), which produces a C matrix that gives any desired
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percentage of critical damping in any mode. This matrix is given

as the product:

where: M= mass matrix

B = diagonal matrix with elements 2S·w.
1 1

S. percentage of critical damping in the .th mode= 1
1

w. = circular frequency of the i th mode
1

Q = matrix whose columns are the eigenvectors of the
system (normalized with respect to M)

Since in our work we solve first the eigenvalue problem,

Kuzak's method is as easy to use as any of the others described

earlier and in addition gives us the flexibility of having any

desired amount of viscous damping in any of the modes. In all our

studies we used constant percentage of critical damping for all the

modes.

Equation 4.17 was solved numerically using a step-by-step

integration orocedure. This procedure, sometimes called II cons tant

velocity method ,II assumes that the velocities of the system are

constant within the time step. (See for example (1)). Under this

assumption the recurrence formulas for velocities and accelerations

are:

(4.18)
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Replacing these two expressions in 4.17, we obtain:

or

and:
-1

un+l' [~:2M+ 2lt c] .[Rn- F +-L2~1U-
n.6t n

1 1 ],(-2 M - 2llt C)un_lllt
(4.19)

Matrix equation 4.19 can be used for the calculation of the displace-

ment vector at time step n+l, in terms of the displacement vectors

at steps nand n-l, and the force vector Fn at n.

The force vector at time step n is computed easily for the

shear springs, From the displacements of the center of mass un' vn '

en' using the geometrical relation 4.7, we can compute the distortions

of the various shear springs at time step n. Maving the distortions

and the forces in these springs at time step n-l, it is simple to

compute the incremental forces and hence the total forces, The com-

putation of the incremental forces depends on the particular type of

force-deflection curve assumed for each spring, and special routines

were written for each type of spring used. These forces then are

used to form the total force vector Fn.

vectors:

F consists of three sub­
n
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Fx is the summation of all resisting forces on the x direc­
tion

Fy is the summation of all resisting forces on the y direc­
tion

Fz is the summation of all resisting torsional moments about
the centroids of the slabs.

The determination of the contribution of the bending springs

in the force vector Fn is a more difficult task. For this case we

must work with increments of displacements and rotations rather than

with total values. Since the numerical procedure produces total

displacements, the incremental ones are found by subtracting the

values of two consecutive steps. The equilibrium equations for the

shear wall are in this case:

Kt ¢¢
I

Kt¢o L1¢n a
I
I = (4.20 )----1---

Kto¢
I KtM Mn 6FbnI
I n-l

where:

n-l

Tangent stiffness matrix
= . for the wall, partitioned

for the bending rotations
and the displacements(fig­
ure 4-4), at time step n-l.

A~ = ~ - ~ = vector of incremental J'oint rotations at'l'n 'l'n 'l'n-l
step n

= 0 ~ 0 1 = vector of incremental joint displacementsn n- at step n

= Fbn - Fb,n-l = vector of incremental joint forces at step n,
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Story n

Story i

Story 2

Story 1

I
I
I¢..
~o.

1
I
I

I
I
r¢2.
~62.

.~J _ ('
~ l'-"? 01

I

7

Figure 4~4 Degreesof Freedom for the Bending
Springs (Shear Walls)

Again the 8's can be computed from the displacements un' vn' en of

the center of mass at each story level, using equation 4.7. From

equation 4,20 we have:

and

and
(4,22)

This is the contribution of the bending springs (shear walls) to the

total force vector Fn, required for the determination of un+l from 4019,

The bending moments in the shear walls are computed from the

incremental shears obtained from 4,21, by multiplying them with the
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appropriate heights, These bending moments are checked at each time

step against the ultimate moments of the section and if larger, a

plastic hinge is assumed with moment at that section equal to the

plastic moment. The total tangent stiffness matrix for the wall is

assembled then, by using the appropriate stiffness matrices for each

segment, as determined by the conditions of its end. The stiffness

matrices for the various states of a segment and for the degrees of

freedom shown in figure 4-5 are given below. (Axial deformations

have been neglected.)

¢I!> I

T B~<S~ I

Kep¢ I Kepo
l/ ___ J____

~
f, I

I

1 Ko¢ I Koo
¢.

I

A SA

M
Mf> -_-_-_""""_=_-_.--' K2. ::: r- k I

MA
epA

f1
8

~fl_F :::: u =:
r-

°A
r A

I FB °B
1-

- - Curvature, s::: 1- rR

Figure 4-5 Stiffness Notation for Bending
Spring (Shear Wall Segment)
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K~~" [: :]
[-c :]KcjJo ::;

-c

T
KocjJ ::; K¢o

K
M "C -:J-d

172

No hinges

_ 2EI(2 + 8)
a - h(1 + 28)

b - 2EI(l - B)
- h(l + 2B)

c ::; 6EI
h2(1 + 2B)

d::; 12EI
h3 (1 + 2B)

I ::; moment of inertia of the section

As ::; shear area

T ::; stands for Jltranspose Jl

2. IMAI < Mp ~ ~1B Hinge at top

KN = {: :] [:1 ~]
b2

e ::; a --
+ s 1 a

be ::; C (1 - -)2 a

~c :J+ S r:2

:~
c2

e ::; d - -
KcjJo ::; r 3 a

-c
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3. I~~B I < Mp .::. MA Hinge at bottom

K~~ = rf j +s [: e~ ]

r J [:2 :2JK¢o = r +s
-c

4. Hinges at both ends
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= r[ d -~
-d ~

The factor r which is the ratio of the two slopes of the mom-

ent-curvature diagram was chosen for most of our studies as 0,03,

From equation 4.19 we see that at any particular time step we

need the displacements of the two previous steps, This means that

in order to start using the method we must have the displacements of

the system at the end of the first step. This was done by using a

4th order Runge-Kutta method which is self sufficient, After comput-

ing the displacements, velocities and accelerations can be computed

from 4.18,

Ductility factors are computed for the shear springs by divid-

ing the maximum deformation induced in the spring by the yield de-

formation and for the bending springs by dividing the maximum mom-

ent at the joints by the yield moment,

For all our analyses we used: ~t = 0,01 sec, The numerical

method just described was selected, among others, because it is very

simple and hence less time consuming, and because its accuracy for

the size of problems considered here compares well with that obtained

by using more sophisticated methods. In the next section we will

present results obtained from comparisons of different numerical

methods,

4.3 Comparisons of Numerical Methods

For a multidegree-of-freedom system most numerical integration
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schemes require a time step in the order of 1/5 to 1/10 of the small­

est natural period, provided that this step reproduces well the load-

ing. In some cases, where the higher modes correspond to very stiff

configurations, this implies an extremely small 6t if the method is

to be stable. The purpose of this comparison was two-fold, Fi rst

we wanted to check whether a method described by Farhoomand and Wilson

(98), which filters out higher frequencies, was really stable and

accurate for the situations mentioned above, If that was the case,

it was anticipated that the size of 6t could be determined only from

the smallest significant period. Second we wanted to see whether

the rule of choosing 6t as 1/5 to 1/10 of the smallest natural period

would give equally good results for the simple and fast !Iconstant

velocitylt method, as for a more sophisticated one like the 4th order

Runge-Kutta or Wilson's.

In all our comparisons we used 4 different numerical methods:

1) The 4th order Runge-Kutta, 2) Wilson's method, 3) "Constant

velocity method," 4) "~~odified constant velocity" method. We also

programmed the exact solution (using modal analysis) for all the

cases, The modified "cons tant velocity" method is essentially the

same as the one described earlier (eq, 4.19), except for the fact

that it works with incremental displacements and forces rather than

with total values. Since the results obtained from it were almost

identical to those obtained from the "cons tant velocity," it will not

be discussed any further.

The basic idea of Wilson's method is the following: The accel-
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eration of each point of the system is assumed to vary linearly with­

in a small time interval 26t, With this assumption the accelera-

tions at time steps t - 6t and t + 6t can be computed, The average

of these two values then, is taken as the acceleration at time step t,

Using this and equation 4.17, the following recurrence formulas were

derived:

un = u + 16t(U + Un)n-l 2 n-l

3 3
A = Kt ,n-l + 2M C + --2 M

26t

3P = Rn+l - Fn_l + (2C + 6t M) un_l + (6tC + 2M) Un- l

where: M = mass matrix
C = damping matrix

Kt tangent stiffness matrix
R = load vector

F = force vector

I
~. (4.23)

The case selected to test Wilson's method is shown in figure 4,6. It

is a portal frame whose dynamic degrees of freedom are the lateral

displacements of the two joints, 1,2. It has two modes of vibration,

one corresponding to the simultaneous motion of the two joints in

the same direction (influenced mainly by the bending stiffness of the

members) and the other corresponding to the motion of the two joints



177

in opposite directions (influenced mainly by the axial stiffness of

the girder). The stiffness matrix, masses, natural periods and exci-

tation are shown in the same figure.

F 0, b2. ~ 6774.46 -6650.54J
~ K =

-6650.54 6774.46

fil = ~12 = 0.126

Tl
= 0.2 sec

F = 80 sin~(n6.t) T2 0.0192 sec.

Figure 4-6 Portal Frame to Test Wilson's Method

Results for three different cases are tabulated in table 4-1,4-2.

From the results in the upper part of table 4.1 we see that a time

step 6.t = 0.01, which is 20 times less than the significant mode, is

inadequate for the Runge-Kutta and constant velocity methods. Wilson's

method, on the other hand, is stable, but it gives results that are

not correct or at least are far away from the exact answers. When a

value of ~t = 0.002 was used, which is approximately one-tenth of the

smallest period of the system, all methods gave good results. The

numbers from Wilson's method are slightly smaller than the correct ones.

Table 4.2 gives results for ~t = 0.002, but ~ = lOTI. Again the same

conclusions are valid. A more careful look at the numbers obtained
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~ = 20'IT £'It =. 0.01 sec
.----~--
!

WILSON [CONST VELOCITYIRUNGE-KUTTAEXACT
i

, Time Time Time i Time
o~ °1 °1 ,max I o 1Step ! ,max Step Step Step

I
7 .034 6 ,0360

13 -.034 14 -,0260
I,
: 107 .035 108 .0230I

113 -.033 122 - .0270

307 .037 Blows up 306 ,0019 Blows up
I

314 -.032 312 -.0168

507 .038 507 .0130 I

514 -.030 513 -.0050

707 ,039 707 .0060 I

714 -.028 72 -.0100 I
907 .039 907 .0100

914 -.026 I 912 -.0080
I

~ = 20'IT M = 0,002 sec
I
I,

I
I

I
I

I34 .0340 34 ,0140 33 .0348 32 .0346

I
I

66 -.0340 66 -00340 67 -.0344 66 -,0346 ,
1

533 ,0350 533 ,0350 534 ,0362 I 533 ,0353 I
I

-.0330 566 -.0336 568 566
J

566 -.0325 - 0339 I

i
766 -.0329 766 -,0333 768 -.0317 766 - 0337 !

834
,

833 .0358 833 ,0357 .0369 833 .0356 l
\

866 -.0326 866 -.0332 868 -.0313 866 -.0334 I
933 .0358 933 .0359 934 ,0371 933 .0358 I

i
966 -.0326 966 - 0331 968 - 0390 I 966 -.0335 II

Table 4-1 Results for Portal Frame to Check Stability
of the ~,1ethods, ~ .::, 20'IT .
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by Wilson1s method will reveal that they keep decreasing constantly

as the time increases. This leads to the conclusion that the method

introduces artificial damping into the system which confirms the

same observation made in reference (98).

~ = 10n Llt = 0.002 sec

EXACT RUNGE-KUTTA WILSON CONST. VELOCITY

Time
°1 ,max

Time
°1 ,max

Time
°1 ,maxStep Step Step

49 .0637 50 .0635 49 .0638

99 - .1276 100 -.1269 99 - 0 1276

199 -.2550 200 -02530 199 -.2550
Was not 249 .3190 250 .3170 249 .3190
Computed 349 .4460 351 .5530 349 .4470

399 -.5100 401 -.5070 399 -.511 0

750 0956 751 .9470 750 09570

800 -.1020 802 -1 .010 800 -100200

950 1.211 952 10198 950 1.2120

999 -1.273 999 -1.240 999 -1.2740

Table 4-2 Results for Portal Frame to Check Stability
of the Methods 0 ~::: 10n

For the case at hand, however, when only the lateral displace­
ments of the floors of a building are maintained as dynamic degrees of
freedom (with girders assumed infinitely rigid in axial deformations)
the smallest natural period is essentially constant independent of the
height of the building. For a shear beam the natural frequencies are:
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:0 (2n - 1)'lT /[
wn 2H ~p

H = total height
p = density

If we take n stories and n modes and write: H = nh, then:

w =(l __l)~ ~
n 2n h A./ P

and for relatively large n

(4.24)

(4,25 )

which is twice the frequency of one story. A time step 6t of 0.01

seconds (used to reproduce the earthquake) should then be adequate

for all buildings that behave in a shear manner, independently of the

number of stories. To check this and at the same time compare the

accuracy of the various methods, a 30-degree-of-freedom close-coupled

system was analyzed for various inputs. The first three natural peri­

ods of the system are 3 sec, 1 sec, .6 sec, and the smallest 0.078 sec.

The system was with uniform mass and stiffness over the height, Re-

sults for various loading cases and various 6t are shown in tables

4-3, 4-4, and 4.5.

From tables 4-3 and 4-4 we can see that the time step chosen

was inadequate for Runge-Kutta and constant velocity methods. Wilson's

method, although stable, gave erroneous results. From both these

tables we can see that the response is predominantly 1st mode response

and the response obtained from the first three modes (table 4-4) is

for all practical purposes identical to the exact. The time step
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for this case is 0.05 sec, more than ten times smaller than the third

natural period, which is 0.6 sees. When the time step, however, was

decreased to t.t :: 0.01 sec, all methods gave good results for both

sinusoidal and earthquake motion.

SINUSOIDAL GROUND MOTION Llg = 100 si n7T(nt.t) , t.t = 0.12 sec

EXACT (30 modes) 1st MODE SOLUTION WILSON

Time a Time a Time
atop,maxStep top ,max Step top ,mas Step

12 -34.62 12 - 33. 15 12 -34.81

24 54.44 24 53.82 24 52,48

36 -54.81 36 -54. 01 36 -48.86
48 35.11 Runge-Kutta 48 33.65 48 24.13

72 -34.31 and Constant 72 -32.85 73 -39.36Velocity
84 54.27 blow up 84 53.70 85 52,19

96 -54.93 96 -54.12 97 -43.06
108 35.40 108 33.94 121 17.60
132 -34.04 132 -32.55 133 -43.36

144 54.13 144 53.58 145 50,71

156 -55.04 156 -54.22 157 -36.76

168 35.69 168 34.23 182 24.47

192 -33.78 192 -32.25 194 -45.71

204 53.98 204 53.45 206 47.66

216 -55. 16 216 -54.32 218 -29.64
----- .

Table 4-3 Comparison of Wilson's :1ethod for t.t = .1 sec,
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SINUSOIDAL GROUND MOTION Ug = 100 sinn(n6t), 6t '" 0,05 sec.

EXACT (30 modes 3 Hodes 2 Modes 1 Mode WILSON

Time
°top,max °top,max °top,max °top,max

Time
°top,maxStep Step

24 -35,27 -35.26 -35,40 -33.86 24 -35,12

48 55.60 55.52 55,77 54,85 48 54,85

72 -55.76 -55.68 -55,91 -54,98 72 -54.66

96 35.60 35.57 35.74 34.19 96 32,60

144 -34,97 -34.96 -35.09 -33.55 145 -36,00

168 55.43 55.38 55,64 54.73 168 55,65

192 -55.89 -55.81 -56.03 -55.09 192 . -53,73

216 35,89 35.86 36.04 34049 216 29.98

264 -34,66 -34,65 -34.78 -33.24 265 -37.60

288 55.27 55.23 55.51 54,61 289 56,23

312 -56.01 -55.93 -56.14 -55.19 313 -52.21

336 36.19 36.15 36.33 34,78 336 28.08

384 -34,38 -34,35 -34.46 -32.93 385 -39.47

408 55.12 55.08 55,37 54.48 409 56.30

432 -56.13 -56,05 -56.25 -55.29 433 -51,02

456 36.47 36.44 36.64 35.08 457 26.16

504 -34.09 -34.05 -34,15 -32,62 505 -40.87

528 54.97 54.95 55.23 54.34 529 56.27

Runge-Kutta and Constant Velocity blow up.

Table 4.4 Comparison of Wilson's Method for 6t = ,05 sec,
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SINUSOIDAL GROUND MOTION U = 100 simT(nLt), Lit = ,01
9

EXACT (30 modes) RUNGE- KUTTA WILSON CONST. VELOCITY

Time a Time a Time
atop,max

Time
Stop ,maxiStep top,max Step top,max Step Step

I

120 -35.49 120 -35.51 121 -35.49 120 -35.49

241 55.99 241 56.00 242 55,91 241 56,00

357 -56.13 357 -56.09 358 -56,05 357 -56,.15

477 35.80 477 35.70 479 35.58 477 35.81

720 -35.18 720 -35.31 721 -35,37 720 -35.17

840 55.81 840 55.87 841 55.72 840 55.83

957 -56.23 957 -56.19 958 -56,13 957 -56.27

SAME SYSTEM FOR 10 sec. OF EL CENTRO, Lit = 0.01 sec.

177 7.29 177 7,29 178 7.28 177 7,30

329 -17.51 329 -17,51 330 -17.61 329 -17.51

489 25.10 489 25,12 488 25.29 489 25.12

622 -28.44 622 -28A4 616 -28.49 622 -28.54

770 29.09 771 29.10 768 29.30 773 29,10

925 -31,16 925 -31 018 921 -31 .37 925 -31 .19

Table 4-5 Comparisons of All r~ethods for &t = 0,01 sec,

For all the above cases the value of viscous damping was zero,

To test our routines with damping a 10-degree-of-freedom system was

analyzed for the first 10 seconds of El Centro, Its largest natural

period was 1.42 sec, and its smallest 0,111 sec, The time step used

&t = 0.01 sec and the percentage of critical damping B = 3%.
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The resul ts obtained are listed here:

EXACT 0 = 6,2644 11 at t = 6013 sec,top,max
RUNGE-KUTTA 0 = 602649" at t = 6012 sectop,max
CONSTANT VELOCITY 0 = 6,2570 at t = 6012 sec,top,max

From all these comparisons, and others that are not reported here,

the following conclusions were reached:

1. A time step 6t = 0.01 is sufficient for all the methods exam­
ined here and for the range of structures to be considered
in this thesis,

20 The accuracy of the results obtained by the constant velocity
method were comparable with those obtained from the 4th order
Runge-Kutta and slightly better from those obtained by Wilson's.

3. Wilson's method was always stable for all the 6t's examined
in contrast to the other two.

4. Results obtained by Wilson's method are not correct if the
time step is not sufficiently small,

5. It is not enough for Wilson's method to select the appropriate
~t from the natural period corresponding to the last signifi­
cant mode, It is very probably the smallest natural period
that determines the size of 6t (for the results to be correct),
as in the other methods.

6. Wilson's method introduces damping into the system.

Based on the above, the constant velocity method, being the simplest

and the fastest of all, was selected with a 6t = 0,01 sec" for all

our analyses.
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404 Brief Description of the Computer Program

A computer program was developed for this analysis, written

in FORTRAN IV, that uses 350k of primary memory on an IoB.fl, 370/155

computer. No secondary storage is required. The program is designed

for buildings having a maximum of 30 stories, 30 different structural

elements (in plan) and 3000 points of ground acceleration in each

direction.

Since it was intended primarily for research, no special ef­

fort was put into adding special features, desirable in a program for

commercial use (such as free input, problem-oriented language, unit

conversion, etc,). The geometry of the building is specified through

the number of stories, the heights, the number of elements, and a plano

The information given for a plan is the coordinates of some point

along the centerline of each element and the orientation of this cen­

terline with respect to the x axis. The masses are given for each

floor level separately, together with the coordinates of the centroid

and the corresponding moments of inertia. For bending springs (shear

walls) the required properties are given floor by floor. For shear

springs there is the option of either specifying the spring charac­

teristics (and spring type) floor by floor directly or in the case

of frames to specify its geometry and the member properties at each

level, and then the program will compute the spring properties by

using the approximate formulas presented in chapter 2. Information

for identical elements or floors need not be repeated. A single num­

ber is required for the viscous damping,the percentage of critical to
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be used in each mode. The user has the option to specify the num-

ber of modes he wants for the elastic part of the analysis, together

with the coordinates of a IIgeometrical center ll with respect to which

the modal shapes will be computed, The next set of information

needed by the program is about the earthquake ground motions. It

can read and store two different earthquake records (up to 3000

points each), one for the x and the other for the y direction, and

it can combine them with appropriate direction cosines, so that direc­

tions of the motion other than x and y can be considered. The user

can also specify a number of scales by which the originally read

accelerograms will be multiplied and new analyses will be performed.

The information given with each earthquake record is a scale factor,

a time interval ~t and the values of the acceleration. Finally, the

last piece of information required concerns plotting of various time-

histories for relative displacements, absolute accelerations, inter-

story displacements and force versus deformation, at any level and

for any direction. If the required number of plots exceeds the capac-

ity of the program, the analysis will automatically be repeated until

all the requested plots have been produced. This particular feature

was a product of trade-off between increasing core requirements, pos­

sibility of using secondary storage and computational costs, arising

from the fact that at each step of the numerical analysis previous

information is lost, unless stored.

The program will print the following results:

10 Natural periods and modal shapes 0 (two for x and y and one
for torsion).
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2. For each element and for each floor it will print maximum
interstory displacements, maximum ductility factors and
permanent sets.

3. For each floor level:

a) Maximum floor acceleration, direction and time of occur­
rence.

b) Maximum floor displacement (with respect to the ground)
direction and time of occurrence.

c) Maximum interstory displacement (of the centroids), direc­

tion and time of occurrence.

d) Maximum x acceleration, displacement and interstory dis­
placement, corresponding y and rotational values and
times of occurrence.

e) Maximum y acceleration, displacement and interstory dis­
placement, corresponding x and rotational values and
times of occurrence.

f) Maximum torsional acceleration, rotation and interstory
rotation, corresponding x and y values and times of
occurrenceo

4. For each floor level:

Root mean square of the maximum accelerations and inter­
story displacements of all the elements for the x and y
directions,

5. For each floor level:

Root mean square of the time histories of the global accel­
erations and interstory displacemtns for the x and y directions
and for the torsion,

6. For each floor level:

Average root mean square of accelerations and interstory
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displacements for the x and y directions computed from
time histories of each of the elements.

7. Maximum base shears and overturning moments in the x and y
directions.

Output 4, 5, 6 is intended for later use of the program to estim­

ate economic damage to the building due to earthquakes of differ­

ent intensities. The program has also the capability of producing

plots on an 5C4020 plotter. The user can request and obtain any

number of plots for the following:

1. For any floor level and for any of the three directions:

a) Time histories of absolute accelerations.
b) Time histories of displacements (and rotation) relative

to ground.
c) Time histories of interstory displacements (and rota­

tions).
d) Plot of total floor shear (torsional moment) vs. corre­

sponding displacement (rotation) for all the duration
of the earthquake.

2. For any element and for any floor:

a) Time histories of accelerations.
b) Time histories of displacements relative to ground.
c) Time histories of interstory displacements.
d) Plot of spring force vs. deformation for all the dura­

tion of the earthquake.

The user can specify the starting and finishing time for the time

history plots.

The maximum number of points that can be plotted in one anal-

ysis is 4500. If the user specifies plots that need N points in
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total where N > 4500, the program will repeat the analYSis(4~00 + 1)

times untill it produces all the requested plots. For each earth-

quake scale that the user requests, he must specify what plots he

wants. These plots can be different from one scale to another.

4.5 Some Comparisons of Results with Exact Solutions in the Elastic
Range

The analytical model described in 4.2 approximates multistory­

multibay frames as close-coupled systems, determining their lateral

stiffness story by story, using formulas from chapter 2. It is antic-

ipated that this approximation would give good results for buildings

whose ratio of height to width is not excessively high. If this is

not the case, then axial deformations of the columns become important

and reduce significantly the lateral stiffness of the building. Under

these conditions the method used is not valid any more, and the re­

sults obtained can be erroneous. In order to see to what extent the

above is true, we determined the natural periods and modal shapes of

three different structures first with this program and then with

another one that solves the problem exactly, accounting for all the

degrees of freedom of a frame. The first structure analyzed is a

three-story building. The geometry and the properties of the struc-

ture are shown in figure 4-7. The areas of the columns were assumed

very large and similarly the moments of inertia for the girders. The

properties of the structure were so chosen in order to see the accur-

acy of the new program under "ideal conditions." The results obtained
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are shown in table 4-6. We see that the agreement is perfect, as

expected. r~odal shapes were for all practical purposes identical.

Frame 1

10--f­
I

Frame 2

150 11 -+-15011
-

Floor Plan

30000·

T

M2 = M3 = 200000

E = 30 000 kips
~ m

Moments of Inertia
o 4
ln

50000

II

600

50000

800

100000

1000

600

800

000

150 11

+
T
200'1

1

500

500

50000

500

500

500

SOD

f<,----- 300 II ~I 150 11

Frames 1, 2 Frames 3, 4

Figure 4-7 3-Story - l-Bay Building with Eccentricity
Very Stiff Girders, No Column Shortening
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Mode 1 2 3 4 5 6 7 8 9

Tapprox 3.058 1. 78 1.331 .811 .475 .459 .415 .327 .260

Texact 3.056 1. 78 1.328 .806 .473 .455 .409 .324 .256

Table 4-6 Exact and Approximate Periods in Seconds for a Three­
Story Space Structure

The second structure analyzed was a 13-story steel frame. It

is identical to the frame SPY1 whose properties are given in chapter

5, except for the first story which here is 25% stiffer. The axial

deformations of thecb1umns were taken into account for the exact

solution. Periods for the first 4 modes are given in table 4-7.

Mode 1 2 3 4

Tapprox 4.447 1.561 .931 .717

Texact 4.410 1.470 .818 .565

Table 4-7 Exact and Approximate Periods in
Seconds for SFY1 Frame

Again the agreement for the first mode at least is very good.

It is a little surprising, however, that the approximate periods are

slightly larger than the exact, while the opposite should be expected.

The explanation to this is that the particular frame analyzed has 4

spans and very flexible girders. So the effect of the axial shorten-
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ing of the columns is really negligible in this case, The above

difference is due to the other approximations involved in the formula

used to estimate the story stiffness, The effect of the column shor-

tening, however, is apparent in the next case. The frame shown in

figure 4-8, which was taken from reference (76) is a frame designed

by Clough and Benuska (7) and used for their analyses reported in

reference (7). We ran this frame first with the program developed

for this thesis, and second with an exact program that performs dy­

namic analyses of multistory frames, accounting for all the degrees

of freedom. The exact analysis was done for three cases, The only

difference between them was the axial deformations of the columns.

For the first case we assumed very large areas of the columns. For

the second case we used numbers reported in reference (70) for an

early version of this frame that assumes square columns, and in the

third we used 1/10 the areas of the columns used in the second, The

results for the first 4 modes are summarized in table 4.8.

~1ode 1 2 3 4

Approximate 1,577 0.653 0.398 0.290
f-----

Case 1 1.563 0.642 0.387 0.278
-.t

U Case 2 1.862 0.702 0.404 0.288,Q

><
L1..1 Case 3 3.521 1.018 0.528 0.362

Table 4-8 Exact and Approximate Periods in
Seconds for Clough's Frame
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It is obvious from Table 4-8 that the effect of axial defor­

mations of the columns for which the approximate method used here

doesn't account, is important in this case. Clough and Benuska (7)

and Giberson (76) report a first natural period for this frame of

2.2 seconds. Apparently then the areas of the columns used must be

somewhere between those of cases 2 and 3. These areas were not avail­

able when this thesis was written.

The conclusion from all these comparisons is that the program

gives good results in cases where the axial shortening of the columns

is not important. If this is not the case, however, the frame cannot

be properly considered as a close-coupled system.

4.6 Some Additional Considerations

A formulation that accounts for gravity loads and flexibility

of the soil will be presented here. Due to time constraints, however,

this formulation has not been implemented into the version of the pro­

gram reported in this thesis.

4.6.1 Gravity loads.

The way in which gravity loads affect the deformations of

structural members is by introducing secondary moments that are pro­

portional to the displacements at any point. Assume that member AB

in figure 4-9 is in equilibrium under the action of the lateral force

F and the gravity load Mg. Also assume that the boundary conditions

at A and B are such that the member has the general deflected shape
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Figure 4-9 Effect of Gravity Loads

as shown in the figure. Let 01 be the displacement at B due to the

action of F alone and 02 the additional displacement due to Mg. The

additional moments introduced by the gravity load Mg are proportional

to the shaded area with a maximum at A that is equal to Mgo t . A

straight line approximation to this moment diagram is also shown.
!

This can be produced by a horizontal force F = Mgot/h acting at B.

It can be immediately seen then, that the effect of gravity on the

lateral stiffness is its reduction by a factor Mg/h, i.e.:

k = k - ~t . h (4.26 )

Fwhere k = -
°1

is the lateral stiffness without including gravity
load effects.

This can seen more rigorously as follows. Let us call:
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°1f ~ -r~ flexibility without gravity loads

°tf t ~ IF ~ flexibility with gravity loads.

Then with the straight line approximation mentioned above we can

write:

or

So

I Mgo t M°2 ~ f F = f -h- = f !!9.. (0 + °)h 1 2

and replacing °2 we obtain:

By definition, however:
1

k = f

So in terms of stiffnesses we have:

1 _ 1r;-
Ii[

k - h

or k = k - ~
t h

For a multidegree-of-freedom system, then, it is only necessary to

add to the inertia forces of each level a force:
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n 0.+1 n o.
F. = - I M9 _J_ + I t1,Q,g h~Jg ,Q,=j+l 9, hj +l 9,=j J

F. = Additional force at 1evel j
Jg

r~9, = r~ass of floor 9,

9 = Acceleration of gravity

h . , hj +1 = Heights of floors j, j+l
J

o. = u. - u. 1J J J-

0j+1 = uj+l - u.
J

u. , uj +1 = Displacements of floors j , j+1 relative
J

to the ground.

4.6.2 Effect of soil flexibility

Soil flexibility can be incorporated in the analysis by add-

ing appropriate springs and effective masses, whose properties will

be determined from those of the soil (see for example Whitman and

Richart (99)). In the general case we will have to consider six

springs corresponding to the six degrees of freedom of the founda-

tion. In this formulation, however, we will not consider vertical

accelerations, but only swaying, rocking and torsion. In order to

make the formulation easier to understnad, a two-degree-of-freedom

system having rocking and swaying of the foundation will first be

considered, and then we will generalize it for multidegree-of-free-

dom systems in two directions, including torsion as well. Figure

4-10 shows the system considered.
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The structural properties are described by kL, the lateral

stiffness matrix of the structure for rigid foundation, Thus the

formulation is valid for both close-coupled and far-coupled systems,

Figure 4-10 2-D,O,F, System with Flexible Foundation

The expressions for the absolute displacements of the three masses

are:

ult = ul + ug = 01 + Us + hl ~S + ug

u2t = u2 + ug = 02 + Us + h2 ~S + ug

uST = Us + ug

(4,27)

where:
Structural
deformation (4,28)

us' ~s : displacement and rotation of the foundation,

The equations of motion can then be written as follows:
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= 0

= 0

= 0

m2u2T + k2, 0, + k22 02

mB
U

BT + kxuB ~ (k" + k2,) 0, - (k'2 + k22 ) 02

IB¢B + k¢¢B - (k2, h2 + k" h,) 0, - (k22 h2 + k'2 h,) 02 = 0

and replacing 0" 02 obtained from 4.28:

m,U, + k"u, + k'2u2 - (k" + k'2)u B - (k"h, + k'2h2)¢B = - m,ug

m2U2 + k2,u, + k22u2 - (k2, + k22 )uB - (k2,h, + k22h2)¢B = - m2ug

mBUB - (k" + k'2)u, - (k'2 + k22 )u2 +

(kx + k" + k'2 + k2, + k22 )uB +

(k"h, + k2,h, + k'2h2 + k22 h2)¢B = - mBUg

rB~B - (k"h, + k2,h2)u, - (k2,h, + k22h2) u2 +

(k"h, + k2,h2 + k'2h, + k22 h2)uB +

(k"h~ + k2,h,h2 + k'2h,h2 + k22h~+~)¢B = 0

These are the differentia' equations of motion for the system of

figure 4.'0. The unknowns are defined by equations 4.27 and 4.28.

In matrix form these equations can be written as:

(4.29)
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~ 2- " I" i 'lI'"~ 1 .--1

T ul U'l
2 Kl

I -KLI -KLH
ml a

t
I I u2 m2 li----I-----j- - -- + 2

.. ITK 'k +ITK I , ITK H .. ::;

1 Us Us

+ L I x L I L m3
- -- '----1- - - -- aT "i -H KL

I HTK I I k +HTK H ¢s Is ¢s_t I L I ¢ L

where:

o

The numbers around the stiffness matrix define the dimensions of the

corresponding submatrices.

The part of the total displacements of the structure needed

for the determination of forces is computed from 4.28 after ul ' u2 '

uS' ¢S have been determined from 4.30. The generalization of the

above procedure to a system with 3n degrees of freedom is done as fol-

lows. First we write in vector notation the equations for the dis-

placements corresponding to 4,27 and 4.28, but including torsion as

well.

Ut = UtI "g = Ox + I "B t H %y - Ym SB 1
VT = V + I vg = 0y + I VB - H ¢BX + Xm8B (4,31 )

8 = 8
T
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~ere 0 = U I uB
- H ~BY + Y 8Bx m

0 = V I vB + H ~BX X 8B (4.32)y

8 = 8 I 8Bs

Figure 4-11 shows the coordinate system used.

z,8

8B

y,v

~~

Figure 4-11 Coordinate System Used

If we replace u,v,8 in equation 4.13 by the above expres­

sions for 0 , 0 ,8 and in the right-hand side we put the vector ofx y s

inertial forces, we have the equations of motion for the masses in

the structure. Since the stiffness matrix is symmetric, the equa­

tions for the foundation can be easily written. Diagonal terms are

of the form of the ones in equation 4.30. The upper part of the

stiffness matrix, the mass matrix, the displacement vector and the

load vector are given in the following pages. Also given are the

sizes of the various submatrices.
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n n n 1 1 1 1

n r\

n r~y

n I

mbx
mby

lBy

lBx

lBz

Augmented Mass Matrix

I U n r~ Ux g

V n M..yVg

8 n 0

uB 1 mb U
x 9..

vB 1 mbyvg

<P BY 1 0

<PBX 0

8B 1 0

Displacement
Vector

Load
Vector
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The stiffnesses of the soil springs are in the diagonal terms,

kx' ky for swaying, k¢x' k¢y for rocking and ke for torsion.

I is a unit vector.

H is a vector with the heights measured from the level of the

horizontal springs.

Xm, Ym, vectors containing the x and y coordinates of the cen­

ters of masses.

mbx ' mby = effective masses of the foundation.

Ibx ' I by ' IBz = effective moments of inertia of the foundation.

Thus we have (3n + 5) equations witn (3n + 5) unknowns.
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CHAPTER 5

RESPONSE OF MULTIDEGREE-OF-FREEDOM SYSTEMS

UNDER EARTHQUAKE EXCITATION

5.1 Introduction

The computer program described in the previous chapter was

used for the analysis of several buildings and the results obtained

are reported here. Three typical frames with 5~ 10 and 20 stories

were designed and analyzed in an attempt to investigate to what extent

the conclusions reached in chapter 3 for l-DOF systems apply to multi­

degree-of-freedom systems (r~-DOF) as well, Torsion was introduced in

one case by assuming eccentric masses and ductility factors are com­

pared with those when there is no torsion. Next~ results from the anal­

ysis of three different buildings are presented. The first one is a

13-story steel frame building~ the second is a 17-story concrete shear

wall building~ and the third one is an ll-story concrete frame build­

ing. They were all designed by an engineering firm according to the

Uniform Building Code (U.B.C.), Each of them was actually designed

for 5 (O~l ~2,3,4) earthquake zones (4 being an extra one added)~ so for

each building several designs were produced. Each of these designs

was analyzed for an artificial earthquake scaled to seven different

intensities. The results of these studies are intended for damage pre­

diction during an earthquake; not all of them, however~ will be re­

ported here.

Clough and Benuska (7), Gael (8), and Anderson (9) have done

the most systematic studies on inelastic response. Clough's studies
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are the most reliable source of information on inelastic response

of plane frames, The basic frame that he used is the one shown in

figure 4-8 and his main conclusion is that yielding occurs mainly

in the girders, while the columns remain elastic except for the ones

of the top few floors. For the E1 Centro earthquake, ductility fac­

tors up to 5 should be expected in the girders, He has used bilin­

ear moment curvature relations and has neglected the effect of axial

loads on the plastic moment capacity of the members. He also stud­

ied buildings consisting of shear walls and moment-resisting frames.

Goe1 's main frame has 1 bay, 25 stories, and he analyzed it for

three different records, all scaled to the same intensity (1.5 x E1

Centro). He has used moment-curvature relationships of the Ramberg­

Osgood type, and he assumed that the columns remain elastic, The

rest of his assumptions are the same as Clough's, His conclusions

are in general similar to Clough's, except that the ductility factors

he obtained are always much smaller, He also concludes that the ef­

fect of gravity loads on the ductility requirements is insignificant,

while the frequency contents of the accelerogram are very important.

Anderson used a 1-bay lO-story and a l-bay 20-story frame to compare

the effect of the design philosophy on the inelastic seismic response,

He compared minimum weight design, allowable stress, and strong col­

umn-weak girder design, He used bilinear moment-curvature laws, he

included gravity loads, and he allowed for hinge formation in the span

of the girders, He also included the reduction of the plastic moment

capacity of the columns due to the axial loads. His main findings are
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that minimum weight design produces frames unacceptable for effec­

tive seismic resistance and that strong-column weak~girder frames

are superior to those produced by the allowable stress method. The

ductility factors he obtains are about similar to those of Clough,

except for the columns of the frame that were designed according to

allowable stresses, where he obtains much larger numbers, This is

due to the reduction in effective yield moment caused by axial-

flexural interaction,

While the above conclusions are valid for the particular

frames and models used, extrapolation of these conclusions to other

cases is questionable, The main reason for this is due to the geome-

try of the frames analyzed, It was pointed out in chapter 4 that

axial shortening of the columns of Clough's frame produces an in­

crease in the period of vibration from 1,577 sec. to 2,2 sec. This

effect is even more pronounced for the frames in references (8) and

(9), since these frames have only 1 bay and 10 to 40 stories, Results

for 20-story, l-bay frames may not be applicable to cases where

axial shortening of the columns is negligible,

5.2 Effect of Natural Period on Ductility Requirements of MDOF­
Close-Coupled Systems

One of the conclusions from the studies in chapter 3 of this

thesis was that the ductility requirements of l-DOF non-linear systems,

whose strength was based on base shears computed by code procedures,

depend on the natural period of the system, increasing as the natural
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period decreases, In order to see whether the same conclusions can

be extended to MDOF-systems as well, three basic frames with 5, 10

and 20 stories were analyzed, The 20-story frames are variations

of the basic frame used in references (7) ahd (76). The properties

of the frames analyzed and the ductility factors obtained are shown

in figures 5-1 through 5-5. The stiffness variation with height

for all the cases is linear, with a slope similar to that of the

basic frame in reference (7), but the numerical values were adjusted

to give periods of 0.5, 1.0 and 2.2 seconds. The frames were de­

signed according to the U.B.C. for gravity loads and zone-3 earth­

quakes. The plastic moments were then assumed to be twice the de­

sign moments for the girders and six times for the columns. Ultimate

strength was then estimated as described in chapter 2, The force

deflection model used was trilinear with first breaking point at one­

half the ultimate strength and ductility factors were computed with

yield displacements corresponding to this point. The excitation was

the first 10 seconds of the NS component of the El Centro 1940 record.

10% of viscous damping was assumed in all the cases,

Two 5-story frames were analyzed (Figure 5-1), the difference

between them being that B has its 1st story 12% stronger than A and

also has stronger strength taper. This was achieved by varying the

relative stiffnesses of columns and girders. We see that frame A has

a very large ductility factor (~ 10.3) at the bottom story, while for

B it is the second story that has the biggest. In both frames, how­

ever, the ductility factors are largest at the lower stories, decreas-
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ing continuously from bottom to top. The average ductility for all

stories is 4.8 for frame A and 4.7 for B. The same behavior is ob­

served in Figure 5-2 for the 10-story frames. The maximum ductility

for A is about 5 and for B about 6, while the average for all stor­

ies is 3.2 and 3.35 respectively.

Figure 5-3 shows the properties of the three 20-story frames

analyzed. The only significant difference between A and B is the

strength of the first story, which for B was again made larger. Both

frames have a natural period of 2.2 sec. Frame C is identical to

that of Figure 4-8 and has a natural period of 1.577 sec. All three

frames have the same masses and the same variation of stiffness from

top to bottom. The numerical values for the stiffnesses of A, B were

chosen so as to match the natural period of the frame reported in

references (7) and (76). Strengths for these two frames were com­

puted as described above, while for frame C the properties of Figure

4-8 were used. At this point it must be recalled from the previous

chapter that the difference between the natural period 2.2 reported

for frame C and 1.577 obtained here is due to the axial shortening

of the columns which is not accounted for in our model. Ductility

factors for frames A and B are very similar except from the first

story, the difference being due to the strength increase of this

story for frame B. The behavior of frame C (Figure 5-5) is very simi­

lar to that of A, except that its ductility factors are slightly

higher. The average ductility for all the 20 stories are 1.94, 1.9

and 2 for A, Band C respectively. It is interesting to observe
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that the variation of the ductility factors with height is similar

to that reported for the girders of the same frame in reference (7),

except for the lower stories. The explanation for this is that for

this particular frame most of the inelastic action takes place in

the girders, while the columns remain elastic. On the other hand,

since our model cannot account for axial deformations of the columns,

it is bound to have a first modal shape close to that of a shear

beam, which has the largest interstory distortions at the lower stor­

ies. This is very clearly shown in Figure 5-6, in which the maxi­

mum relative displacements for frame A are compared to those from

reference (7). We see that our model predicts larger displacements

at the lower stories, while for the rest there is reasonable agree­

ment. Concentration of yielding in one story creates "soft story"

action which reduces the response of the stories above. It is

partly for this reason that the average ductility for all stories

here is slightly less than that of Clough as reported in chapter 3.

All the above suggest that ductility requirements for frames

designed by the U.B.C. increase as the period of the structure de­

creases. This is in agreement with the conclusions reached in chap­

ter 3 for l-DOF systems. They also suggest that for buildings which

deflect essentially like a shear beam (axial shortening of the col­

umns negligible), the first story should be made either stronger

than what usual design practice produces, or more ductile. In cases,

however, where axial deformation of the columns is important, the

simplified model of this thesis will overestimate ductilities at the
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lower stories and underestimate them at the top.

5.3 Effect of Torsion on Ductility Requirements

Almost all of the studies on inelastic response of ~DOF­

systems are for planar frames, the main reason for this heing the

rapid increase of computational requirements for increasing numbers

of degrees of freedom. With our model, however, in which we have

reduced the total number of degrees of freedom to three per floor,

it is possible to study non-symmetric structures with mass eccentric­

ities and to investigate the effect of torsion on the inelastic re­

sponse. Torsion is always undesirable in earthquake resistant de­

sign, because it introduces additional shears and moments to the

various structural components. When the structure starts going in­

elastic, torsional effects may be aggravated due to possible unsym­

metric yielding and shift of the original torsional center.

In order to illustrate the capability of the computer pro­

gram to deal with unsymmetric situations in space and at the same

time see the effect of torsion on the ductility requirements, two

5-story structures (Figure 5-7) were analyzed for 10 sec. of the

NS El Centro 1940 record. All the frames are identical to frame A

of Figure 5-1 and for case A the mass eccentricity is zero, while

for B it is constant for all the floors and equal to d/6. The masses,

mass-moments of inertia, and natural periods for cases A and Bare

summarized on the following page (Table 5-1). 10% of viscous damping

was assumed for all the modes.
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CASE A CASE B
,

Floor f1ass Inertia iilode Period f1ass Inertia r'1ode Period

1 .380 20500 . 1 .646 .380 20500, 1 ,690

2 .380 20500. 2 .501 .380 20500 . 2 .469
3 .334 18000 . 3 .250 .334 18000 . 3 .267
4 .334 18000 . 4 .193 .334 18000. 4 . 181
5 .272 14700, 5 . 161 .272 14700. 5 .172

Table 5-1 Properties for Torsion

The first mode of both structures is torsional and the second trans-

lational. The translational period in case A is identical to that

of the 5-story frame alone, while in case B it has been reduced to

.469 due to the coupling with torsion, The results are presented

in terms of the ratio of the maximum interstory displacements for

case B (eccentric masses), to the maximum interstory displacements

for case A (no eccentricity). For the inelastic case, this ratio is

equal to the ratio of the ductility factors for the two cases. The

top part of Figure 5-7 is for elastic behavior which was achieved

by setting very high strengths so that yielding never took place.

In the elastic case we see that frame 1 has reduced distortions, while

for frame 2 they have increased. The increase is larger for the lower

stories and becomes less for the top ones. In the inelastic case,

however, the behavior becomes irregular, and for both frames there

are stories where the ductility requirements have increased. For

case B the maximum increase is 26% and occurs at the 3rd floor, while

for A it is 16% and occurs at the 1st . This increase of ductility
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requirements, when torsion is introduced into the structure, can be

explained with the reasoning given at the beginning of this para­

graph. At this point it seems that more cases should be investiga-

ted by varying the amount and the distribution of mass eccentrici-

ties at the different levels and by using a wider range of struc­

tures (to include also shear walls), before quantitative suggestions

can be made.

5.4 Response of 3 Symmetric Buildings to an Artificial Earthquake

The three buildings for which results will be presented here

were designed by an engineering firm for gravity and earthquake loads,

according to standard design procedures. They were selected so as

to represent typical apartment or office buildings in the Boston area,

as part of ongoing research for optimum seismic protection. Although

they have been claimed as typical, they are somewhat flexible, es-

pecially the steel building.

The motion for which these buildings were analyzed is an arti-

ficial earthquake with duration of 10 seconds. The input modulating

time function has a rise time of 2 seconds, is constant between 2

and 7 seconds, and decreases linearly to zero between 7 and 10 sec-

onds. The response spectra of this particular motion for u = .11g
gmax

and for several values of viscous damping are shown in Figure 5-8.

This motion was scaled to several peak ground accelerations with a
..

maximum u = .27g and all the results presented here are for this
gmax

value.
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5.4.1 13-Story Steel-Frame Building

The steel-frame building has the layout shown in Figure 5-9,

with 3 moment resisting frames in the X-direction and 4 in the Y.

The elevations of these frames are shown in Figures 5-10 and 5-11.

Between the ground and the 1st floor there is another story, which

does not extend over the whole area, but leaves a large portion open.

This story was eliminated from the mathematical model, by increasing

the stiffness and strength of the 1st story appropriately. The vari­

ous frames are almost identical in each direction, except for the

first story, which, however, was made identical by uniform distribu­

tion of the additional stiffness and strength of the mezzanine level

that was eliminated. Three different designs, for earthquake zones

2, 3 and 4, were analyzed. The Z factor for zone 4 was taken as 2.

The notation used is SFX1, SFYl for zone 2, SFX2, SFY2 for zone 3,

and SFX3, SFY3 for zone 4, X being for the X-direction and Y for

the Y. The properties of SFX2, SFY2 are tabulated in Table 5-2,

while the masses and the natural periods of the structural frame

alone have been included in Figure 5-9. The lightweight partitions

of this building have been detailed so as not to interfere with the

response of the structural frame. On the other hand, a set of block­

masonry walls that forms the elevator area was included in the analy­

sis, as a limited-elastic model--i .e., with resistance varying lin­

early up to a certain interstory distortion and then dropping to zero

when this distortion is exceeded. The properties of these walls were

estimated from the architectural plans, and the limiting distortions
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t ./ ./ S200. 336 00. 2£130. ~r;oo.

2 ·1 -/ /9.30. /3300. 12g0. Sgoo.
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4 · / ./ / f?/ O. /22.00. II I{

5 · / ./ /1 II /2.9 0 . 58 0 0

G · / ./ / /,J 70 10030. II "
7 ./ {I II {I II· /

8 · / - / /330. :J /40. 1050. S2S0

:3 ./ . / II II 1?3G. 4250

/0 · / ./ 930. '4Bo 'I II

/I ./ ./ II II I{ II

12
• I . / 745. S:2.za 89/ 4040

13 ./ ./ II I I 37.1,- 1950.

PP. oPt=RTI€'S of SFYZ (I""~J K;';e$. /.",)

/ /f?/o 12200 9£(50 ,4f2Soo 327<!J 10000

2 /030 7130 s4~0 26$00 11.80 7400

..3 II II II II II /1

4 930 '480 4910 24'2SC II II

5 1/ II II II II II

6 7.,30 5540 3910 /9850 If II

7 II " 13'0 "rooI{ II

8 I{ 1/ 3530 Igloo I{ I{

.J II II II II 10$0 5250
10

4 !lit 070 3 21,00 12800 II /1

/I I{ III{ II I{ II

12 .528 3930 Igoo 10300 IflSo f/I&O

13
{I 1/ (I I{ 1?3l> Lr2 'i 0

Table 5-2
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were found to be .02 11 in the X direction and .033 11 in the Y. The

main effect of these walls is to increase the stiffness of the

building considerably without affecting the ultimate strength, since

at high levels of excitations the walls break. After including

these block walls the natural periods of vibration were computed

and the results are tabulated below, together with measured values

from ambient vibrations (Table 5-3).

NATURAL PERIODS

X Y

COMPUTED
(walls included)

CQt,1PUTED

(walls not inclUded)

r'lEASURED

1.53 sec. 1.95 sec.

5.27 sec. 4.50 sec.

1.70 sec. 2.00 sec.

Table 5-3

Computed and Measured Periods of Steel Building

The agreement is more than satisfactory, given the complex arrange­

ment of the walls and the uncertainty about their properties.

The force-displacement model used for the analysis is a tri­

linear one with ultimate strength twice that at first yielding. The

slope of the second branch was taken as 20% of the initial and duc­

tility factors were computed based on first yielding. 2% of vis­

cous damping was assumed in all the modes. Results of the analysis

are shown in Figures 5-12, 13, 14, 15 in terms of maximum ductility
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factors, maximum relative displacements and maximum interstory dis­

placements. There is a considerable decrease of ductil-ity from

case 1 to case 2, but no improvement seems to occur for case 3,

which was designed for a Z factor equal to 2. On the contrary, this

design seems to have slightly higher ductility requirement than the

second one that was designed for zone 3 (Z = 1). For the first de­

sign a maximum ductility factor of 5.2 occurs at the 11 th story,

while for the others it occurs at the first being 2.5 in the X-direc­

tion and 3.5 in the Y. The behavior in the two directions is very

similar as expected, because the variation of strength and stiffness

across the height is similar. In the same figures the required duc­

tilities when the block walls were included in the analysis have been

plotted. The effect is really negligible as expected, since the walls

break and are assumed not working at an early stage of the excitation.

It should be realized, however, that the ductility factors computed

are some kind of average numbers for the whole floor, while local

ductilities corresponding to individual members may be higher.

In Figures 5-14, 5-15, maximum elastic and inelastic displace-

ments have been plotted. Again we see that the block walls have a

negligible effect. Several other interesting observations can also

be made here. It is a little surprising that the maximum relative

displacement of the top story increases as the earthquake design

zone increases. This is consistently observed in both X and Y direc­

tions. This behavior can be explained if one looks at the spectrum

of the particular input motion (Figure 5-8). The first design with
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a natural period 5.27 sec. in the X direction lies at the very ex~

treme of the spectrum (line of constant displacement), so when we

increase the earthquake design zone, we produce a stiffer structure,

shifting it to the left. The design for zone 3 lies still on the

same line, while that for zone 4 is at the very peak (junction of

the constant velocity with the constant displacement line). The

slope of the right branch of the spectrum is different from 45°, so

this line is not a "constant displacement ll line. The amount of

change is indicated below (Table 5-4), in which the spectral dis­

placements for the three designs have been tabulated, They are

given for the first mode only since this is the only significant one

for the displacement at the top,

SPECTRAL DISPLACEMENTS

Zone 2 Zone 3 Zone 4

X 2,35 3.26 5.65

Y 3.15 5,25 5.90

Table 5-4 Spectral Displacements

It is this increase of the spectral displacement as we move to

shorter peri ods, withi n the long peri od range of the spectrum, that

creates the rather strange behavior, Another interesting observa­

tion is the difference between elastic and inelastic displacements.

It has been claimed (based mainly on studies for l-DOF systems) that

within the long period range of the spectrum (constant displacement
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region) the maximum inelastic displacement is approximately equal

to the maximum elastic. This does not seem to be the case in

Figures 5-14 and 5-15 except for SFX1. The reason for this is

partly what was mentioneq above (when a structure starts yielding~

its period increases)~ but mainly the yielding that takes place in

the first story 0 If we look at the ductility curves of the previ-

ous figures~ we see that when the difference between the two re­

sponses is big~ we always have large amounts of plastic deformations

in the fi rst story ~ whi ch acts then essenti ally as a "soft story"

and absorbs a considerable amount of energy. The result for the

upper part of the structure~ then, is a considerable decrease of

the response. Similar behavior was observed when the El Centro

record was used. Figures 5-16, 17, 18~ 19 are time histories of

accelerations and displacements for the top story for ug = 0.007g

(elastic behavior) and Ug = .27g (inelastic). From 5-16 and 5-17

we can clearly see the effect of the block walls and the time at

which they break.

5.4.2 ll-Story Concrete-Frame Building

The second building that was designed and analyzed is an 11-

story concrete building with moment resisting frames in both direc­

tions. The building was designed for gravity loads and a zone 3

earthquake according to the U.B.C. In the X direction only the two

exterior frames were designed to carry the lateral forces, but we

also included in the analysis the two interior lines of columns, by
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using part of the slab as an effective girder. In the Y direction

all the 11 frames are moment resisting frames, designed as such.

The framing plan and the notation for the frames is shown in Figure

20, while the frame elevations are shown in Figure 5-21. Table 5-5

contains the properties of the frames and also the first natural

periods. The moments of inertia given in this table were computed

using the approximations discussed in chapter 2 of this thesis, so

it should not be surprising that the periods of Table 5-5 are some­

what high, compared to those that would be obtained if un cracked

sections had been used. The force-deformation model used for the

analysis is a stiffness degradation with slope of the unloading

branch equal to the initial one. The ductility factors were compu­

ted by using yield displacements corresponding to the maximum strength

of each story as estimated by procedures described in chapter 2. It

should be made clear here that this yield displacement is twice that

used for the steel frame, which was based on the trilinear model.

If this gradual hinge formation was to be accounted for and yield

displacements to be computed as for the trilinear model, then the

ductility factors reported here would be about twice as much. The

amount of viscous damping was taken as 5% in all the modes. Parti­

tions were assumed to be detailed so as not to interfere with the

frame response.

Figure 5-22 shows the maximum ductility factors plotted for

the different stories and corresponding to a peak ground acceleration

equal to .27g. In the X direction we see that the moment resisting
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frame has a maximum ductility of about 2 in the 9th floor, while

the interior frame remains almost elastic. The reason for this is

that the exterior frame is much stiffer than the interior one, so

it takes a bigger portion of the force. On the other hand, the

interior frame has considerable strength and hence it behaves elas­

tically. In the Y direction the ductility factors for the two types

of frames are very similar, the maximum occurring at the bottom

story. In Figure 5-23 maximum elastic and inelastic displacements

relative to the ground were plotted, as well as interstory displace­

ments. Again we observe that in the Y direction, in which a sub­

stantial amount of yielding takes place in the 1st story, the elas­

tic displacements in the top portion of the building are larger,

while in the X direction they are about equal to the inelastic.

Various time histories are shown for the top story in Figures 5-24,

25,26,27, in which the influence of the higher modes on the accel­

eration response is apparent. Figure 5-28 gives the loading and

unloading loops for the 1st story of the exterior frame in the X

direction, and one can see the behavior of the stiffness degrading

model there.

5.4.3 17-Story Concrete Shear Wall Building

The last building that was analyzed has the layout shown in

Figure 5-29. It was also designed for gravity and zone 3 earthquake

loads. The lateral force resisting elements are the two exterior

frames in the X direction and the six shear walls in the Y direction.



245

x - C>/R 6e. ;/ON

II .,,,
10

\
!J '.

8
I

T
,
i

>.. 6 \,
It I

0 S I
l- I

\4 4 I
1

J !
2

0

0 t 2 3 4 5 (; T 8 ..9

c£,~)( ( ...)

Y- D IRE e. T/ ON

II

/
\

(0 \

i
J '.,
8

,

7

>.. G
It
<::> 5
I-

'" 4

3

2

/

0

0 / 2 3 .(, S 6 7 8 .9

cl"""a>< (/..,)

------ !"IF/X/MIA''''' (IYr€: ~S TO~ Y D,S PL RC~ "1 flY r,S

JMl9xfmlA'l'? /1Yc, L,I1S TIC 0/ S Pt.. nC-6''''1e /Vrs ~=.27J
0 Cl 0 /"I?,<9)('U ...., It1 El!9Ii'TIC. DISPl nCE""'~n'T5



.....
246

ABSOLUTE ACCELERATION X f'LOOR 1
.

'jl STORY8WL/J.

i ..-·oo~ fI

- ------. C" ~--- .

j~
, ;

--
-Ar~--I

_.. ,..

aAf
i

IA
:1 !
:1

... v· W

Vf I~t\ I

V V
- - ..----~----- ~--- .....

I
,

'-- -.--------- . --

+ .- +- +

. + ... .1 __ J

W
f-
.:)

-'o
C/l
en
<

z
o

f­

<
0::
W
-'
W
U
U
<

N

U .­
W
C/l
"­....... ..

J.' '.J

TIME SECONDS

RELATIVE DISPLACEMENT
---,-------,------

X FLOOR 1 1

n·sroHT 8U/u>'

LI, .00073,_.
I--------t------+-------.--- -+----

f­
Z
W
L
W
U
<
..J
0. '0
C/l

n

l­
I»
W...

'LJ
>

"'Y

.IIS..I- ---j- -r-_

.0s.I-- ---+--/-+

I

- ....1
• '.J

• ; MF. SF COI\1OS

Figure 5...24 Elastic Response



247
ABSOLUTE ACCELERATION Y FLOOR 1 1

.•-r------,-i-------r--~---r-~-------~~- .."..

~'''7J:
·-1-----+----+------1-----+--------1

--I....

~ '1
~

-----i

--J

__.---l-..
t ••

. -----+---...-----+-------------t+------. --..j

I
Ii,

---}.'7.•---~-- ----f.o------_&_

-.•-t------+_i+t---..,-If--------tt-+--+--it+t+----
W
t-

3 -.-1---- ----I---*-----l------.--~----___l+t__­
a
(/)
CD
<: - .....

z
a

C\i

U
W
(/)

"­
t­....

TIME SECONDS

RELATIVE DISPLACEMENT Y FLOOR 1
.-r-------r----,.---- 'P... ,M, MVri~

........,...,...

.....
ww...

t-
Z
W ..:r:
w
u
-<
...J -.-n.
(/)

0 -.-
w
>
r
-<

J
W
rY

-.IlI,••.

.-~---__+----+-----t_--

.-I-----+-++---+------1fT--- -H---+-----

'IME SECONDS

Figure 5",25 Elastic Response



248
ABSOLUTE ACCELERATION X FLOOR 1 1

.......I.'...t.1

-- --"---'.'-. -"._- 71cST1T1fT l11T1llJ!

i !
~_. ,..273

I I
----- .

,

I ;

I
_._ .. __.--_.. _--;

I
I

h ~

'".. A 1M
WI

~
~v W 'v I\ A J

\
I~

V

! V ,

~-

I
L,-

______~.....L_ -L _____ . ...J

,.-

1.-

......
•

z
a

t-- •<
(}:
W
..-l -t._
W
U
U
< -....
W
t--

::3 -1.­
a
(/)
CD
-< -t ....

N

U
W(J) a._
"-
I-
a...

TIME SECONDS

RELATIVE DISPLACEMENT X FLOOR 1 1

I--------++---+--+---++-+----t+-----t-- -1t-­
Z
W
:I:
W
U ..
<
...J
Q.
(/)

o
w
>

.-'I------+----+-----+----+---+

~
w
~ .-.I------+-+---1,---+-------+++----+-t-

.-'1------+-1-+----1-----+--- ---1~-+

I.' 1... "I.t I'.•
T I ME SECONDS

Figure 5",26 Inelastic Response



249
ABSOLUTE ACC~Lt~ATION Y FLOOR 1 1

1.11.1'.11.1

I

-~-~ lff--s7'l7m' 1Ilm~.
,'L.• .:173

I -j

I~ ~I

AA
~

AI

VV V
~

N

\ ft
I~

--~-1

\

I
I

--L__ ~~.____J I

I -J

I.M

'.M

•

-.....
•

W
r
::::)

--I
o
CIl
CD - •••
<

z
o
r
<
a::
w
--I
lJ..J - •••
u
u
<

N

U
W
CIl
"­
I­
u...



250
DISTORTION X FLOOR J SPRING

..l._I.'

7/-57'0," 5UflD.·

~_.=.2~

.L
1.1

1
'.1

I
i

...----_._-+--_. --------+ ... _.~-+-

!

-T--. ---+

.-f-------+-4-----t-+t--

.-

.-

..
t--
LoJ
LoJ -.....
u..

z
0

c-
O:::
0
c-
(f)

r:l ·.1'"

-.'r"
•

TIME SECONDS

+

J SPRINGSHEAR FORCE X FLOOR

_.Ii-'------j--+------+--+--------I-~L4_+_____.t::~-

4•••1----..---_~-+_----+--.-+--

OTr.CC'7'Il......_lJ
'i.:.'z~

' ..·..i~_~_-+-_--+ -+--__+

,....

(f)
Q.

-I••••_..

:x:

w
u
0::
0
u.'~,

IY
..:
uJ::r
(f) -uo.•

-,00011.

-.0" -,0"
, .

-.!HI - ••••
1

-,II. .. ,.... ....
P1STORTION FEET

Figure 5...28 Stiffness Degradation Model for
Concrete Frame



251
~.. --I" -, ... -/

/
Oc /Oc /Oc

..J
----- ---- -..J

I ItI I ~I
.... 1

I II \(

_._[}---Q-. u:
~ I ~I I

IlJ
~

It. I I ~I'l q:-.

~ : ~I I 'l)

~. -{]- --[]-. h.
'l)

I I t( t:::'-l

< \J

I
IuC)
~'" ......

~
~

I 0:: ~
~ <,

I I
.... C) It)

1
\II

C)
.....

C) - --0-·-0---
" ~ IUl\J I I I ............ ~

'\ I
1')1 It V\

1\1

I I 0)
~ I I t\l ~~~l\l I et c)---0---0--- l()

I I ~ ~

Qj ~

~ ~ ~~

:3
~ "

I I I .~ ....., ....

~ ll. Q... ~ ....
~ ""

I;t
---0-·-0-- ... ~

I I
~ "~ I
~ \A

I ...
~ I'l, .....

'"~

I I
t ..,

, Q: l't
~
~

....
I I I) -ct11H5 : ~

I
'lI

">1 I It t-
I

c) C)

I I I () ~

'-0-·-0-·- "l.".
I I \!l

" ~
~ "-

I I
~ ~
"- '>l
~ ...

'-0- --0-·_· )... ~

I A-b':;f"J I " Q;)



252

Again the interior columns were assumed to form additional frames,

having as girders an effective portion of the slab. The properties

of the frames and walls are tabulated in Tables 5-6 and 5-7. Moments

of inertias for the girders and columns were computed as for the

ll-story concrete frame, while for the shear-walls they were taken

as one-half the gross moment of inertia. An average ultimate shear

capacity was also estimated for the shear walls. This capacity is

in general a function of the wall properties and the applied moments

and axial forces, but it does not change significantly with height,

so it was assumed constant and is given in the last column of Table

5-7. The computer program checks at each step and for each story

whether this capacity has been exceeded. If that is the case, then

it assumes that the wall has a shear crack there and starts treating

the portion of the wall in the floors above as partitions (limited

elastic-close coupled), while for the floors below the crack the

wall is still acting. Such a case was observed when we analyzed

the design of this building for zone 0 (wind loads only) for the

same earthquake. Again the stiffness degrading model was used for

the frames and a bilinear moment-curvature diagram for the walls.

Viscous damping was assumed 5% in all the modes. The comments of

the previous paragraph for the frame ductilities apply to the

frames here also.

Before presenting the results we will comment on the defini­

tion of ductility factor for the shear walls, since it is different

from what has been used until now. So far, ductility has been de-
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fined as the ratio of the maximum displacement to the yield dis-

placement for an element. This was possible because of the assump­

tion of close-coupled systems. The wall, however, is a far-coupled

system, and the above definition is meaningless. Since it does not

deform symmetrically, the end conditions of the member are not

known, so we cannot use a definition based on angles of rotation.

The definition we have adopted is similar to that of reference (9)

and is based on curvature. Figure 5-30 shows the bilinear model

used for the moment vs. curvature of a shear wall section.

M

Figure 5-30

¢max
_ 1

ep - R

Ductility Definition for Shear Walls
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_ ¢max _ ¢max - ¢y
].l - ~ - 1 + ¢y

M
¢ ==..1­
Y Kl

Mmax == rqy + (¢max - ¢y)~K2

(5.1)

Replacing ¢y and ¢max - ¢y in 5-1 we finally get:

where: K - EI1 -

K2 == rKl (r == 0.03)

My == Plastic moment of the section that
includes the effect of gravity loads.

M == Maximum moment at the section com-max
puted by the program.

Ductility factors for the interior and exterior walls have

been plotted in Figure 5-31. In both cases the walls remain elas­

tic in all floors except the lOth, 11 th , 12th and 13th . Maximum

ductilities occur in both cases at the 12th floor and their value

is extremely high (about 10). Since walls are not usually rein­

forced for such high ductility levels, failure of the walls should

be expected in that area. Clough (7) has obtained similar results
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for the shear wall buildings he analyzed. It is interesting that

these high ductilities occur in the 12th floor and not at the bottom.

The reason for this is the interaction of the walls with the inter­

ior frames CFR-Y, that were included in the analysis. Due to the

different deformation patterns of the two elements, large forces

are acting on the walls at the top levels, becoming minimum around

mid-height and changing sign at the lower stories. Although the

maximum moments occur at the bottom, the ratio of the applied mom­

ents to the yield moments becomes maximum a little above mid-height

and hence the observed behavior. The exterior wall experienced a

maximum shear of 727 kips at the bottom story and the interior 973

kips, both below the corresponding ultimate shear capacities. The

shear-wall-frame interaction can also be observed in the lower part

of Figure 5-32, where the ductility factors for the frames in the

Y direction were plotted. These factors being minimum at the lower

stories keep increasing towards the top, reaching a maximum of 4.5

at the top. The actual local ductilities will probably be twice as

big if we take into account that yielding starts occurring at a story

shear about half the ultimate. The same is true for the frames in

the X direction. The interior frame, which was not designed as mom­

ent resisting, is controlled by the strength of the slab, which is

very low (in comparison with the girder strength of the exterior

frame), so its ductility factors are very large. On the other hand,

the ductility factors of the moment resisting frame are relatively

small, with a maximum of 2.7 at the bottom story. This 'indicates
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that a strong earthquake in the X direction will cause considerable

damage to the interior columns and slabs, but probably not collapse.

Maximum displacements were plotted in Figure 5-33. We see that in

the Y direction the elastic displacements are very close to the in­

elastic ones, while in the X they are larger. The explanation to

this, given earlier, applies here too.

Time histories for elastic and inelastic top story displace­

ments and accelerations are given in Figures 5-34,35,36,37. The

difference between the responses in the two directions is first due

to the different fundamental periods and second due to the different

participation of the higher modes. Various other time histories have

been included in Appendix C.

As a final point before closing the chapter, it is worth men­

tioning that the time step used for the analysis of the shear wall

building was 0.005 sec, half of that used for all other cases. The

discussion in chapter 4 was only for the case of shear-type build­

ings, for which it was pointed out that the smallest natural period

does not change significantly with increasing number of stories. For

cantilever type structures, however, this is not true any more, and

the smallest period of a shear wall is much smaller than that of an

equally stiff frame. It was for this reason that a time step

~t = 0.01 sec was causing numerical instability. The ~t = 0.005 sec

used is about 1/3 of the smallest period.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

The results and conclusions reached in this study have been

discussed in detail in chapters 2, 3, 4, 5. A summary of the most

important ones will be given here, together with recommendations

for future research.

6.2 Conclusions

The main conclusions of this work are the following:

1. It is possible to create mathematical models that simulate the
behavior of a big variety of structural elements (braced frames,
infilled frames, etc.) and to include such factors as stiff­
ness and/or strength degradation.

2. Three new models are proposed here:

(a) A stiffness and strength degradation model for i nfi 11 ed
concrete frames.

(b) A stiffness and strength degradation model for infilled
steel frames,

(c) A trilinear model

3. The stiffness degrading model with varying slope of the un­
loading branches gives very similar results with the standard
degradi ng mode1.

4. Based on studies with l-DOF systems, which were confirmed by
studies on M-DOF close-coupled systems, it was concluded that
the Uniform BUilding Code does not provide uniform safety (ex­
pressed in terms of ductilities) over the entire spectral
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range, but it is unconservative for short period structures
and rather conservative for flexible long period buildings.

5. It was shown that it is possible to derive base shear-coeffi­
cient laws that will provide uniform ductilities over the
entire frequency range. Several such laws were derived for
various prespecified values of the required ductility factor.

6. It is possible to predict the overall inelastic behavior of
a building by using a simplified mathematical model and includ­
ing additional effects that are normally neglected in a more
accurate analysis.

7. The model gives good results for shear type buildings or for
combination of frames and shear walls.

8. It predicts average story ductilities, but not local values,
and it fails to reproduce the behavior of frames in which the
axial shortening of the columns is significant.

9. The method used to estimate the strength of a story in a frame

probably underestimates the strength of the first story.

10. Shear walls should be designed to remain elastic under the
strongest earthquake, since if the yield moment is slightly
exceeded, 1arge ducti 1i ti es wi 11 be requi red.

11. Frames that have a first mode similar to that of a shear beam
should have either increased strength of the bottom story or
increased ductility.

12. Torsional effects increase the ductility requirements.
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6.3 Recommendations for Future Research

At this point it seems appropriate that further research is

needed in the following areas:

,. In the area of modelling behavior of structural components

more experimental work is needed for infilled frames.

2. Least square fits of the curves obtained in chapter 3 and
additional computer runs with artificial earthquakes that
produce smooth response spectra seem desirable.

3. For l-DOF systems additional studies for various values of
the parameter A, defined in chapter 3, should be done, and
base-shear-coefficient laws that include the ductility fac­
tor and the percentage of viscous damping should be sought.

4. For moment resisting frames, a more accurate method to pre­
dict the ultimate strength and the first yield level of a
story should be sought.

5. More studies on the effect of gravity for l-DOF are desirable.

6. More studies on the effect of torsion seem appropriate,

7. Implementation of the formulation for gravity loads and soil
flexibility for M-DOF systems.

8. More research is needed to correlate ductilities for M-DOF
systems to those of equivalent l-DOF's.
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APPENDIX A

DERIVATION OF APPROXIMATE FORMULA FOR STORY STIFFNESS

Approximate determination of the story stiffness in a multi­

story frame (taken from course lectures by Professor J,M, Biggs).

a

-+
I

~

m () n

-J - -- - - - - __ J - - --

1
-'

- - - - '-

---1-
- o. h

T-

H·C

HB = Total shear at level aa

Assume:

Then,

a) Column shears above and below joint 0 both Hc'

b) Inflection points in columns above and below at

same 1oca ti on.

c) Rotation of all joints in floor = e,

6 EKeon
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M + M "" 6 Eel: K '" H, ,hom on go c

where Kgo:; sum of gi rder s tiffnesses at "0 il

Adding all joints, we have for the whole floor:

F
12 Ee l:Kg "" l:Hc.h = Hs,h

F
where l:K = sum of all girder stiffnesses in floor

g

HB = total story shear,

and Average joint rotation in
the floor

Now consider one column:

T
h

1

Assuming all els equal in each floor we obtain, for all columns:

or

or l:K = sum of column
c stiffness
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Substituting the values of e obtained above

i.e. e =
HBh

a 12EL:Kga

e =
HBh

b 12E L:Kgb we obtain

HBNoting that 0= \jJh and K = -- we obtain
o 0

K = 24L-.{ 1 }
o h2 2 1 1

-+--+
L:Kc L:Kga L:Kgb
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APPENDIX B

THE TRILINEAR SYSTEM

D

Rigid

f----~- af~------>j °1
F--~-~ a

2
------ ---'1

K2

F~~===~~j °2- - - - -.r----

F1

F ­
2

F

(1) (2)

We assume that we have the properties of the trilinear spring (could

be computed as described in reference (38)) and we want to find its

loading and unloading laws. This could be done by considering a physical

model like the one shown in the picture and determining the properties

of the two elastoplastic springs so that the P vs °2 curve is the

trilinear on the left.

Using geometry and equilibrium we have:
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(1)

For P < Fl

Assume that spring K2 yields first i .e. ~ >f:l ). f~~

(2)

Then:

or

Fl F 2
el = R'l =~ and

F] = FY2 + t:l r· Kle 1

= Fy2 + ( :~ ) 2. K] • F;:

(3 )

When we are in the second branch of the trilinear:
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We want dP = R2
~ -'>-

do

R2 = (:: rKl (4)

alCalling = Aa2
(4) and obtain

( a < A2 1) we can solve (1), (2), (3),

1 Rl ~R2Fyl = --A--(F2 - Flo----
Rl

--)

Rl _R2
Fy2 =Fl · ~

These relations allow us to compute the properties of the two elasto~

plastic springs~ in terms of properties of the trilinear one and the

parameter A0 A can have any arbitrary value between a and 10 For

different values of A we will have different elastoplastic springs

but their combination will always give the trilinear, Computationally

it is advantageous to choose A = 1 and then:

(5)

and
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1
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> (:~).

I f we replace in

from (5) and set

we obtain

this inequality values of Fyl ' Fy2 ' Kl , K2 taken
al

= A = 1, after some algebraic manipulations,a2

which is obviously true,
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APPENDIX C

VARIOUS TIME HISTORIES
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