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ABSTRACT

The dynamic response of single and multi-degree of
freedom systems under earthquake excitation is studied.
Some new models that include stiffness and/or strength degra-
dation are introduced, and their response is compared with
other frequently used models.

Expressions are derived relating the natural period of
simple systems (whose properties are estimated by using code
procedures) to the required ductility factors for earth-
quakes of the E1 Centro intensity. Curves are obtained re-
lating strength-motion intensity to the ductility require-
ments and are further used to obtain base shear coefficient
laws for prespecified values of the ductility factor.

A simple mathematical model, which combines shear and
bending springs in three dimensions, is deveioped and imple-
mented for studies of multi-degree of freedom systems. The
formulation has included gravity loads and soil flexibility.
Results obtained from the analysis of several buildings are
presented and compared to those cbtained by other investiga-
tors with more accurate models.
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CHAPTER 1
INTRODUCTION

1.1 Scope

The problem of inelastic response of a compiete building

which is excited by an earthquake-type loading is a complicated

one. Even if the load were completely known, the response would

still be highly uncertain, due to the many idealizations that

are made, in order to arrive at a workable mathematical model.

Some of these idealizations and uncertainties are:

Replacement of the actual structure with a set of linear
members.

Disregard of non-structural or "architectural" components
such as partitions, facades, etc.

Uncertainty about the load deformation characteristics
of the components used, especially under dynamic rever-
sals of loading.

Reduction of the actual degrees of freedom to a number
which is almost always determined by the available compu-
tational capacity and corresponding costs.

Disregard of the continuous change of stiffness and/or
strength of the structure at levels of deformation above
yielding.

Disregard of sudden changes of stiffness and strength
due to brittle failure of structural and non-structural
components.

Almost all the research done in the past few years on the

inelastic response of multistory structures has been limited to the
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study of simple muitistory plane frames {7), (8), (9). Because of
tremendous computational requirements, the frames studied were cho-
sen most of the time with one bay, a factor that imposes limitations
on the general applicability of the results obtained. Very often
results obtained by one investigator are in conflict with those ob-
tained by another, or in other cases they cannot be compared due to
different assumptions, different models or different earthquake in-
puts.

In this work we appreach the problem from a different angle.
Instead of dealing with one frame, we are trying to determine, from
experimental results available in the Titerature, simple non-linear
models, which would best reproduce the interstory behavior of dif-
ferent structural components such as: braced or unbraced steel
frames, reinforced concrete frames, shear walls, masonry partitions
and infilied frames. In this way a set of equivalent non-linear
springs can be determined for each floor, each spring corresponding
to one of the components mentioned above. This provides the flexi-
bility of using various load-deflection characteristics for the non-
Iinear springs and incorporates some of the factors listed earlier
in the analysis. On the other hand, dealing with components rather
than with single members, it is expected that the overall behavior
of a certain class of buildings {namely those for which axial shor-
tening of the columns is not important) will be reproduced at compu-
tational costs lower than those incurred in the detailed analysis of

simple plane frames. Our analysis, of course, will not yield de-
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tailed information such as maximum ductility requirements of one par-
ticular member in one particular frame, but rather average overall
ductilities for the various components in each story. The simpli-
fied model employed combines a set of close-coupled springs, arbi-
trarily arranged on a floor plan, with far-coupled shear-wall type
components. Several real buildings will be analyzed using this model.
Another objective of this study is to gain better insight and
understanding of ductility requirements of structures by studying
single degree of freedom non-linear systems. It is suspected that
the Uniform Building Code does not produce earthquake resistant
structures equally safe for all categories of buildings. We will
investigate this claim, and we will try to gain a clearer picture
of how the base-shear coefficient law influences the ductility re-

quirements of structures,

1.2 Thesis Organization

In chapter 2 results of an extensive literature survey on ex-
perimental work concerning the behavior of various structural com-
ponents are presented. Various mathematical idealizations are dis-
cussed, and some new ngn-Tinear models are introduced. Finally
approximate methods to determine the basic parameters of the various
models are suggested.

Chapter 3 contains the studies with one degree of freedom sys-
tems. First we compare responses of the systems introduced in chap-

ter 2, and then we make ductility studies for a wide range of systems
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and earthquake inputs. Curves relating the strength of the struc-
ture, the intensity of the earthquake and the ductility fTactor are
obtained for a wide range of systems and are used to derive base
shear-coefficient laws that will produce uniform ductility require-
ments over the complete spectral range. Another set of curves is
also derived, which relates ductility factors of T1-DOF systems de-
signed by the U.B.C. to their natural period of vibration.

Chapter 4 contains the mathematical formulation for the multi-
degree of freedom systems, discussion and comparisons of several
numerical methods, and some compariscns in the elastic range with
exact methods of analysis. We have also included the formulation
that accounts foy gravity Toads and a matrix formulation for the
soil flexibility. The capabilities and limitations of the computer
program are also discussed.

Chaptek 5 contains results for mu1tidégree of freedom systems
which confirm general trends and conclusions obtained in chapter 3
for 1-DOF systems. The effect of torsion on inelastic response is
also given some consideration, but not very extensive. Finally
results are presented from the analysis of 3 actual buildings: a 13-
story steel frame, an 11-story concrete frame, and a 17-story con-

crete shear wall building.

Chapter & contains a summary of the results and recommendations

for future research.
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CHAPTER 2
LOAD-DEFLECTION CHARACTERISTICS OF VARIQUS

STRUCTURAL COMPONENTS

2.1 Introduction

In this chapter we will present the results of an extensive
literature survey on the experimental work concerning the behavior
of different structural! components, we will discuss various mathe-
matical idealizations frequentiy used and we will introduce new
models that describe the behavior of some of these components.
Some of these models will be used, as was described in chapter
1, for the modeling of complete buildings that are to be pfesented
in later parts of this work. There is a large amount of experi-
mental work in countries all cver the world and different investi-
gators have tried to incorporate results of their experiments in
mathematical models, It seems, however, that many of them did
s0 based on thefr own experiments only and this has resulted
in a wide variety of models and formulas. For this particular
work, we tried to be as general as possib]e, looking at resuits
from various sources. In cases where there was a lack of suf-
ficient data we give rangeé for possible values of our parameters
and keep the models more general. In what follows we wili first
discuss the behavior of reinforced concrete frames, braced and un-
braced steel frames, block walls and infilled concrete and steel

frames, giving at the same time the different idealizations devised
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to simulate their loading and unloading paths. At the end of this
chapter we will give approximate formulas that one can use to deter-
mine the basic parameters of the various models, namely the initial
stiffness K0 and the maximum force the component can attain at yield
F .
N

2.2 Reinforced Concrete Frames

Most of the experimental work on the behavior of reinforced
concrete frames comes from three sources: Japan, University of
California at Berkeley and PCA-University of I1linois. The PCA
tests are on concrete joints which in essence are half portal frames,
so the results are directly comparable with those in Japan or Berkeley
which are on complete portal frames. Before proceeding with our dis-
cussion, we should clarify that some of the tests done were static,
some others dynamic. However, it has been found that the lcops
obtained from a dynamic test are for all practical purposes the same
as those obtained from a static test (Shiga et al, {11), Higashi and
Ohkubo {12}). So no further consideration will be given to this
point.

The behavior of portal frames under cyclic loading is much
more complicated than that of a single member. This is due to the
fact that factors such as joint details, presence of compressive or
tensile axial loads etc. alter the theoretically predicted behavior.
Bad design of the connection and inadequate shear strength of the

columns are the two main factors that reduce significantly the bending
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resistance of the frame and cause brittle failure in many cases.
Diagonal {shear) cracks due to inadequate spacing of the stirrups
can change drastically the overall behavior and reduce the strength
to a minimum, in a very small number of cycles. This was consis-
tently observed in all the cases that showed a considerable decrease
of ultimate Toad capacity with the increase of displacements and
Toading cycles.

The frames and the joints usually tested are shown below

(Fig. 2-1).

v g
. gy

T v g

P D

Figure 2-1 Test Configurations of Concrete Frames
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No difference was observed in the general shape of the loops
for the portal frames and the multistory-multibay ones. Qualitatively,
they all showed the §ame tendencies. A continuous decrease of stiff-
ness is present in all the experiments and the envelope curve of the
Toad-defiection Toops can have any of the following three shapes

(Fig. 2-2).

Y
Y

(1) (2)

——
[¥8)
[

Figure 2-2  Typical Load Defleaction Curves
for Concrete Frames

Case 1 applies to the well designed, under-reinforced frames witn
adequate shear resistance. In this case the shear capacity of any
section is at any instant greater than the applied shear. The upward
slope of the second branch varies and is a function of the excess
capacity after the reinforcement has yielded, strain hardening of the
reinforcement, etc. It can be conservatively taken as zero and then
we are in case 2 that marks the transition between 1 and 3. Case

3 is a typical case of inadequate shear strength. The negative slope
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of the second branch can become very steep and in such cases we can
have brittle failure.

It 1s suggested (Berterc and McClure (17), Shiga et al (11},
N. Hanson and Conner (19}) that the envelope curve can be well
approximated by the curve obtained from a monotonic static increase
of the load.

UTtimate strength is not affected {or very little) by the num-
ber of cycles or increased displacements, provided again that shear
strength is adequate (12}, (17), (27}, (28}).

The stiffness however decreases continuously with increased
number of cycles and displacements, ((11) + (37)).

Sketched below (Fig. 2-3) are two typical sets of hysteresis

loops for a well designed portal frame.

Figure 2-3  Hysteresis Loops for
Concrete Portal Frame
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From these loops one can observe that there is practically
no reduction in stiffness before yielding of the reinforcement has
taken place, but after this has happened, the stiffness decreases
rapidly with increased displacements and number of cycles.

Analytical models with a varying degree of sophistication
have been proposed by different authors. The simplest model that
has been used is the typical elastoplastic or bilinear hysteretic,
whose loading and unloading is always paraliel to the initial siope,
if the farce is below the yield level.

Tani et al (27), (28) prcpose a very complex model of the

form:

o]

—

b4

S
|

= A1 tan h(AZX)

and Flx) = C. (xS - 1 - ¢ tan h(Cox-C,) - €. + C,.»

1 2 3 4) 5 6

.tan h(C7x—C8) + C9

The first equation is for the envelope curve and the second
for the loading-unloading loops.
Shiga et al (11) use the virgin static curve as envelope

curve and a cubic equation for the loops (Fig. 2-4).
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Figure 2-4  Shiga's Curve

Nielsen and Imbeault (29) use a bilinear envelope curve with linear
loading and unloading branches. The slope of these branches 1is
degrading with increased displacements {Fig. 2-5). They c¢laim that
this model gives satisfactory prediction of the dynamic behavior of
reinforced concrete beam-column assemblies, but at Tow levels of
excitation, they had to assume 5% viscous damping because the system
does not account for energy absorption in the elastic range. Change
in stiffness takes.p1ace only when a prior maximum dep]aceﬁent is

exceeded.

Figure 2-5 Nielsen's Model
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Clough and Johnston (69) have also used a degrading stiffness model
which is based on the PCA tests. The envelope curve of this model
is elastoplastic and the unloading is always parallel to the initial
slope. Each reloading however is done with a reduced slope, based
on the Tast point on the envelope curve previously achieved. It

is shown schematically below (Fig. 2-6).

}

W
Y
N

P4
L

Figure 2-6 Clough's Model

This model has the advantage that each reloading tends to reach the
same point in the P-§ plane from which unloading started, which agrees
with the experimental data., Nielsen's model does not simulate this.
However, Clough's model fails to reproduce the continuously changing
slope of the unioading parts of the loops. There is a continuous
decrease of the slope of the unloading curves with increased dis-
placements, as can be seen from Figure 2-3.

A new model s proposed here, that combines the advantages of
both Clough's and Nielsen's models. This model has an elastoplastic

envelope curve, (it could have been bilinear with slope of the
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second branch same as Nielsen'’s, 1.,e. 3% of the initial stiffness);
it Toads the same way as Clough's model, i.e. with degrading stiff-
ness as determined by the maximum displacement ever reached beyond
yielding; and it unloads with a reduced slope. After analyzing

several of the reported experimental curves, it was found that the

change of slope of the unloading curves follows approximately the

8 .35
Koo (}.lL.) 2.1
K qnax

0

Taw:

The proposed model is shown below (Fig. 2-7}:
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Figure 2-7 Modification of Clough's Model

The new model approximates better than any of the other two, the
experimental loops, and is as easy to use as Clough's. The only
information needed at any point in order to find the Toading or un-

loading path is the coordinates {in the P-§ plane} of the point
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defining the maximum displacement attained up to that moment. The
envelope curve can be elasto-plastic or bilinear with positive or
negative slope for the second branch,

The slope of the first branch is the one corresponding to the
frame's stiffness. The second branch starts after the tension rein-
forcement of the beams or columns has yielded. It should be mentioned
here that different people define stiffness differently. When they
plot for example stiffness reduction vs. deflection or number of
cycles, what they call stiffness is usually the slope of the straight
line connecting the two peaks of the loop. This is different from
the average slope of the loading and unloading branches taken sepa=

rately.

2.3 Unbraced Steel Frames

The basic characteristics of the ﬁoad~def1ection curves for
steel frames or beam-column assemblies is that there is practically
no decrease of strength or stiffness as the number of loading cycles
increases. The Toops aobtained are stable even after 30 cycles, with
distortions well beyond first yielding (46), (48}, {49), (51). Local
buckling of the flanges near the panel zone however could materially
affect the shape of the loops (47), (48). No significant difference
was observed between curves obtained under static and curves obtained
under dynamic loading (39), {46). A very important characterisfic
is that a considerabie increase of lateral load capacity (up to 40%)

over that expected from a monotonic analysis is possible (47). This
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is primarily due to strain hardening, which plays a very important role
in the overall post-elastic behavior. Spreading of yielding in the
plastic hinge locations and Bauschinger effect in the material can
cause come reduction of stiffness which will affect the shape of the
nysteresis loops, but for all practical purposes this reduction can
be neglected (48).

Typical load deflection curves for frames and beam-column

assemblies are shown below (Fig. 2-8).

P “

\r

Figure 2-8 Test Configurations and
Hysteresis Loops for Steel
Frames

Ramberg-0sgood functions of the form:
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can best represent these loops. Depending on the degree of sophisti-
cation that one desires, one can use a bilinear hysteretic model which
will approximate with straight lines the observed behavior. The para-
meters of the bilinear model are the slopes of the two branches and
the yield level. The slope of the first branch (initial stiffness) is
determined as it will be discussed later in this chapter, while the
second sTope is typically taken as 3 to 5 per cent of the initial
slope. The determination of the yield level can be approximately
determined by ultimate-load theory, as it will be discussed at the
end of this chapter.

Two of the three parameters of the Ramberg-(Osgood function, i.e.
initial stiffness and yield level, can be determined in the same
way as for bilinear models. The third parameter, the exponent r, has
a typical value of 8, 9 or 10 (8), (44). The larger the exponent the
more flat the curve becomes.

Another model--triltinear in shape--that acecounts for a smoother
transition due to the gradual formation of hinges will be discussed later.

If the connections of the frame are bolted, the load deflection
Toops are of the so-called slip-type, similar to those for braced
frames (Fig. 2-9). The larger the difference between the nominal
diameter of the bolt and the hole, the larger the slip. Such a case

could possibly be treated with the model used for a braced frame.

2.4 Braced Steel Frames

Bracing in steel frames increases not only their stiffness and

strength but changes considerably the basic shape of the hysteretic
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loops. During a cycle the compression braces usually buickle, contri-
buting less or nothing (depending on the type) to the lateral stiff-
ness, Shown below (Fig. 2-9} are some typical experimental curves

taken from reference (45) and obtained for zero and one half yield axial

Toad.

u N

438

Figure 2-9 Hysteresis Loops for Braced Steel Frames

The usual mathematical model frequently used to simulate this behavior

is the so~called "slip-model” which is shown in Figure 2-10.
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fo2)

Figure 2-10 STip Model

It seems however that a degrading stiffness model like those discussed
in the paragraph for concrete frames (Clough's model) approximates
the experimental loops better. It is worth noting that the slip model

neglects the resistance of the frame completely during unloading cycles.

2.5 Walls Without Bounding Frames

Plain walls can be either brick.masonry or plain concrete walls,
- In both cases, if the wall is not reinforced, the load deflection

curve is practically a straight line up to the first crack {which occurs
at the foundation) and then we have complete failure, since the

carrying capacity drops to the frictional resistance of the wall

sliding along the foundation. Structurally speaking, this can be

neglected (52), {53), (54). This is shown below in Figure 2-11.
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Figure 2-11 Load-Deflection Curve for Plain Walls

If the wall is reinforced, the first crack will force the steel to
yield and the carrying capacity will be reduced to the load the steel
alone can carry. Reinforced concrete walls with a steel ratio of

p = 0.0025 have a shear load capacity of the steel alone, which is
about 1/3 of that required to produce first cracking. The tensile
strength of the base will usually be critical for walls with length-
height ratios of approximately 4 or less. If the ratio rises above
1 the shear stress at the center of the wall may be Targer than the
maximum tensile stress.

However tests show that brick masonry has a strength in bond
~several times greater than its direct tensile bond strength. The
practical solution of the probTem will then be found by assuming
that foundation cracks in all walls will occur as a result of normal
stresses rather than shear stresses.

Unbound walls like the ones discussed above will very rarely
be used as load carrying structural compenents, even for one gr
two story structures. They were included here for completeness and
in order to distinguish their behavior from that of the walls bound

by frames.



37

Their mathematical model is shown below (Fig. 2-12).

P
}
Pmax
A K
S oy )
max, .
. 8
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Figure 2-12 Mathematical Model for Plain Walls

Determination of Ko and Pmax will be discussed in the last paragraph

of this chapter.

2.6 Infiiled Frames

Infilled frames cannot be considered as a simple superposition
of a frame and a wall. Quite the contrary, both components act as an
integral unit, with a resulting strength much larger than the sum of
the individual strengths., Once cracking occurs, however, there is a
considerable decrease in strength and stiffness which is aggravated
with increasing number of cycles and magnitude of deformation
(52) + (57), (92), (93}. It has been proposed to idealize the infill
walls with equivalent bracing that extends from the corner where the
load acts to the opposite one (this would be a special kind of bracing,
acting in compression rather than in tension). When the horizontal
load fncreases, the bond between the wall and the infiil deteriorates
at the corners and when the tensile strength of the infill is

exceeded, diagonal cracks appear, forming a series of parallel struts.
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This is clearly shown in Figure 2-13, which was taken from reference
(52). Load deflection curves for the structure at the top part of
the figure are also shown there. It is interesting to observe that
the cracks initiated in the infill extended into the columns of the
frame. It is actually this behavior that causes the deterioration
of the complete unit, after the infill starts cracking. In the case
of steel frames, the propagation of the crack will not continue in
the columns of the frame and the unit will remain with a minimum
strength and stiffness, equal to those of the frame alone, after the
infill has completely deteriorated {50}. In any case, the stronger
the bond between the frame and infill and the stronger the infill
itself, the higher is the probability that the combination of the
two elements will act as a single unit, with very high stiffness and
strength., Figure 2-14, taken from reference (5), also indicates
the same behavior.

Esteva (55) gives a series of experimentally obtained load-
deflection curves for square masonry diaphragms framed by reinforced

concrete members and subjected to alternating static Toading. His

main conclusions are that although the stiffness decreases significantiy

with increasing deflections and cycles of lToading, the strength de-

creases but not significantly. These conclusions however are restricted

to the cases in which the material of the infill is not excessively
brittle and diagonal tension cracking of the frame does not occur.
A11 the above discussion applies to the case of one-story

panels, in which the ratio of the applied shear to the base moment

4
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is excessively high. In a case of a multistory infill frame, this
ratio is Tow and the unit should be expected to act as a cantilever,
provided of course that there is good construction and sufficient
bond between frame and infill. That this is actually the case was
confirmed by a full scale test, performed in Johannesburg, South
Africa. Two frames were tested: one with infill and another with-
out. The cracks in the two cases and the corresponding load
deflection curves are shown below in Figure 2-15, taken from

reference (5).
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Figure 2-15 Behavior of 3-Story Infilled Frame
(Taken from Reference (5))

The Tocation of the cracks in the case A shows that the infiiled

frame behaves as a cantilever, while in case B we have a typical
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case of rigid frame action. The load capacity of the simple frame
was only 20% of the infilled one. In the right of the picture we
see that in the second cycle, the maximum capacity has been reduced
by 10-20% of the initial. Model tests in Japan show similar behavior.
Selection of an appropriate mathematical model for an in-
filled frame (steel or concrete) has to depend on the slenderness
of the frame (height to width ratio), the type of the infill and
the quality of the bond (in some cases, infills are built as floating
partitions, in order to avoid this combined action and the ensuing
degradation of strength). While more experimental work in this
area seems warranted, for most usual buildings a stiffness and strength
degrading model seems appropriate. Ohsaki et al (31) have used a
stiffness and strength degrading model, whose reduction factors
for strength and stiffness are functions of the number of loading
cycles. A new model is proposed here, that accounts not only for
the number of cycles but also for the maximum displacement.
If we call I<0 and F0 the initial stiffness and strength
and K, F the stiffness and strength at the nth cycle the new model

is described by the following Taws:

K max n
. = (] - o=t ) b 2.2
KO a oy
F 1 6max 21 n
() e
Y C ¥
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and in addition for steel frames:
Kmin K(frame alone)

min ~ F(frame alone)

Co
1

whevre : maximum absolute displacement occurred

§, = yield displacement (or displacement at cracking)
n = number of complete lpading cycles
a, b, c % péfameters
The value of the parameter a should be determined from the reduction
of strength and stiffness, in half cycle of static loading (n =0},
a 1ittle before collapse. It should always be

3

max
a> Sy ) at static .collapse
8 nax '
For example if ( 5 Yat static collapse 10

and we take a = 15, it will mean that a littTe before collapse the

strength reduction factor from displacement alone is:

2
1 -0 o 555
152
and the stiffness:
1 -0 . 333

5
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Yalues of a in the range of 10 to 40 seem reasonable., b and ¢

could have the following values:

b

75 + .90
.90 + .95

H

c
The values suggested for the above parameters are a "little mcre*

than guesses. As more experimental evidence becomes available,
different and more specific values might be more appropriate. The
proposed model implies faster degradation of stiffness than strength,
which is consistent with the existing experimental data. Figure

2-16 shows the variation of the different factors.

From computer runs which will be described in the next chap-
ter, it was found that the proposed model is sensitive mainly to b
and ¢ and not so much to a.

Williams and Benjamin (53) give detailed formulas for the
determination of Ey and KOo We will give some cruder approximations
at the end of this chapter.

Before closing this section, it is worth mentioning that a
pafticu]ar]y important (and dangerous) case is that of concrete frames
with partial infill (up to a certain height, the remaining space
being used for windows). The bottom of the frame acts then essen-
tially as an integral unit (if there is bond between the columns and
the infil1), whereas the top is Teft as a frame with very short col-
umns. If this condition is not properly accounted for in the design,

the short columns will probably fail in shear.
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2.7 Shear Walls

Shear walls properly designed should behave as cantilever
beams. If the shear resistance is not exceeded, they can be con-
sidered as a series of members between floor slabs with moment-
curvature relation for each joint {at the slab level) given by a
constant strength-stiffness degrading modei. The effect of the
rigidity of the slab could be accounted for.

The same comments essentially apply to box-type elements
such as elevator shafts. Initially they will act as a cantilevers
connected to the slab at the floor levels, with bending in both
directions and considerable torsional stiffness. However for
the element to behave as an integral unit, the corners should be
properly reinforced, because otherwise they will crack and the dif-

ferent sides will act independently of each other.

2.8 Approximate Determination of Initial Stiffness and Yield

Level

In the previous pages we described the behavior of various
structural components under alternating loading and we gave straight
line mathematical idealizations which approximate this behavior.
Here we will give approximate formulas with which the two basic
parameters of the various mbde1s, namely the initial stiffness Ko
and the yield level Fy, could be estimated. It is believed that the

confidence Tlevel of this approximation is consistent with the rest
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of the assumptions about the loading and the modelling of the building.

2.8.1

Initial Stiffness of a Story in a Multistory Frame

We can estimate the stiffness of a particular story by

making the following assumptions:

a) Column shears above and below a joint equal
b) Inflection points in co1umns above and below at
same location

¢) Rotation of all joints in a floor equal

With these assumptions and using slope~deéflection equations, we can

obtain:

where:

_ 24
© h

2 1,1

K ZKga ZKgb

E = modulus of elasticity
h = story height

4 = beam length

[ = moment of inertia

EKC =T %- for all columns in the story

kg, =1 for all beams in floor above

L
a "3
I
%

for all beams in floor below

t
3

ZKgb =
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The derivation of this formula is given in Appendix A. In the
case ¢of concrete frames one difficulty that arises is that of the
moment of inertia to be‘used. This 1s due to the following three
factors.
a) At the section level, the effective moment of inertia
is not constant but a function of the axial force and
moment.,
b} At the member level, the moment of inertia is variable
due to the variation of the moment along the member.
c) Being a function of the loading, it varies from one time
step to another.
Some people have suggested using the moment of inertia of the cracked
section, where the moment is maximum, computed from gravity lcads
only. This results in using the gross moment of inertia for the
columns and the reduced, due to cracking of thé section, for the
girders. Another approach is to use the formula suggested by the 1971
ACI code, which however does not accoﬁnt for gravity lcads. A some-
what more accurate approach is suggested here, which is based on
reference (20} by Medland and Taylor. Shown in Figure 2-17 are plots

of the ratio -E%' Vs M for various values of the ratio P

gross My Py
taken from reference (20}.
My is the ultimate moment capacity of the section for zero
axial load.
Py is the ultimate axial load capacity of the section for

zero moment,
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t

ay]
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gross

Figure 2-17 Moment of Inertia of Reinforced
Concrete Sections
(Adapted from Reference (20))
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Igross is the moment of inertia of the uncracked section.
From this figure we see that for P = 0, the ratio _%%w

" gross
is relatively constant and equal to 0,35 for 0.2 5_—M§-f_0.95.

This could be used for the moment of inertia of girders.

For columns and for 0.1 < P < 0.5 the ratio —%%—

yM” gross
varies between 0.5 and 0.9 for 0.2_5-7w935 1.4,

if we take into account the extreme complexity of the problem due
to the factors mentioned eariier and the fact that sometimes

the ¢olumns of the structure could be put in tension -due to the
earthaguake, the following simple rules for the effective moment of

inertia of concrete members seem justified.

1

eff 0.40 Igross

eff 0.80 Igr‘oss

Beams: Use I

1]

Columns: Use I

2.8.2 Stiffness of Braced Frames

For braced frames we could use:

where K is computed from 2.4 and

afr
_ AL 2
KBR =T 7~ C0s A
where A = area of bracing
% = length of bracing

2.5
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a = angle between bracing and beam

% = gummation over all the braces working in tension.
The above formula is not as accurate as in the case of the unbraced
frames and depending on the particuiar configuration (e.g. number

of bays braced) a more accurate approach might be desirable.

2.8.3 Walls and Infilled Frames
For ptain walls a formula derived from elastic theory could

be appropriate. For example one could write:

K = 2@6
0 __2_3+ h3
~AEI
h = height of the wall
A = area of the wall
I = moment of inertia of the section in bending

E, G = elasticity constants
» = parameter depending on conditions of fixity at the
ends., It could vary from 3 to 12.

The stiffness of infilled frames could be found by summing the stiff-
hessas computed from 2.4 and 2.6 for the two elements. However if
the frame has a height to width ratio which is large (tall frame,
small number of bays), this superposition will not be valid and the
unit will have to be treated as a bending element rather than as a
shear beam. The comments made in paragraph 2.6 are pertinent in

this case.
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2.8.4 Yield Levels for Frames
An upper bound of the strength of one particular story could
be estimated by assuming that this story has been transformed into
a mechanism. There are two possibilities: hinges in the girders
and hinges in the columns. In the case that we have hinges in the
girders the story is not exactly a mechanism but its additional strength

after the girders have yielded 1s very small. So we can write

= min {ZEJ%C s ZZWP} 2.7

Fymax

where h = story height

IMya = sum of plastic moment capacities for all girders in the
floor
iMyc = sum of plastic moment capacities for all columns in the

floor, reduced for the effect of axial Toad.

Again the reduction of the ultimate capacity due to the axial leads
could be accounted fTor, in an exact analysis (see for exampie reference
{9)). For the approximate model used in this thesis however, this
is not possible except in a rather crude way. This is by using the
ultimate moment capacity of the columns as modified for the effect
of gravity loads.

Another point worth mentioning is that the yield level
computed from 2.7 is an upper bound. Due to the gradual formation
of hinges, the load deflection curve will start deviating from the
straight line before the total shear reaches the value of Fymax“ The

value of the story shear when the 1st hinge forms could be as low
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as half the amount computed from 2,7 (see for example reference (38)).
To account for this phenomenon, a trilinear model was developed
as a combination of two elastoplastic ones. It is shown schematically

in Figure 2-18 and described in more detail in Appendix B.
F oA iy 8
211ineayr

4

-

Cymax T i

) Trilinear
ist Hinge

Actual Behavior

Figure 2-18 Trilinear and Bilinear Model

The value Fymax computed from 2.7 should be Tower than the shear
strength of the columns. If this is not the case it is possible to
have a shear failure before this value is ever attained. However,
frames designed by the code and well detailed should not have such a
problem.

In the case of bracing an additional tefm should be added to

the value computed from 2.7. We could write:

Fy(Braced frame) Fy(Unbraced) * Egy Abf cos @ 2.8

where z Uy= yield stress of the member

Ahr = area of bracing
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i

a = angle between bracing and beams

0

% = summation over all braces working in tension.
The second term comes from the contribution of the diagonal members

to the ultimate capacity.

2.8.5 Yield Leavels for Walls and Infilled Frames

For plain walls we can write:

- min ) . MW
Pmax min { Tmax° bt, Opax * h 2.9
where Toax = maximum shear stress the wall can stand
Gmax = maximum tensile stress the wall can stand
W = section modulus

h,b,t, = wall dimentions
For infilled frames we can assume that the wall acts as a series of

diagonal struts and then we can write:

+ P oS & 2.10

Fymax Fyframe max

where is computed from 2.7

Fyframe

Pmax is computed from 2.9
a is the angle that the diagonal forms in a bay with

the horizontal.

2.9 Comparisons of Deflections Cbtained Using the Approximate

Formulas with Exact Values
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In order to examine how accurate resuits one could obtain
using the approximate formulas for stiffness suggested in this chapter,
several frames were analyzed using these formulas and by an exact

computer program. The frames examined are shown in Figure 2-19

EI/El, EI/ET
COL GIRD QL GIRD
- y £ X7 INT [BOTH - f#; L IR 11 1R
151 12
o PARRE: 4 stz (4o
15¢ & 12!
- * - =
15¢ 12!
- fp.5]3 # N-5(4-H 3
15 6 12!
-3 p » + b (15
15! 216 124
2 |4 15! '
P i L ( R NN N B
A 20" 207 * A 104200 +
FRAME A FRAME B
FRAME C Identical to A but with Bracing

in the Left Bays
Area of Bracing per Steory = 4 1n2

EI, = 24 x 10° (kips in’)

Figure 2-19 Frames A.B,C
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Two types of loadings were used: a) uniform over the height and

b) triangular decreasing from top to bottom. Since there was almost
no difference in the comparisons of the two cases with the results
obtained from the exact analysis, we will give here only the comparison

for the uniform load. These results are tabulated in Tabie 2-1.

INTERSTORY DISPLACEMENTS

FRAME A FRAME B FRAME C
FLOOR
APPROX | EXACT APPROX EXACT APPROX EXACT
1 .875 .849 .526 .B23 5454 461
2 1.08 1.11 . 345 400 443 .523
3 .895 .943 .282 .344 . 345 452
4 .805 . 884 .258 .331 .256 .394
5 403 .494 .129 207 .128 .269
TOTAL DISPLACEMENT AT TOP
4,058 4,281 1.54 1.80 1.626 2.10
RATIO OF &%°P 5TOP
‘ exact approx
1.05 1.17 1.29

Table 2-1 Comparisons of Deflections Obtained by
Using Approximate Formula for the Stiffness

From the above table we see that the results obtained using

the approximate formula are better for the lower stories than the top
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ones. Also they are better for regular frames than for irregular or
frames with bracing. In all the cases the approximate displacements
are smaller than the exact. This is something to be expected, since
the approximate method does not account for column shortening. In

cases where this is not important, the agreement should be better.
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CHAPTER 3
STUDTES OF ONE-DEGREE-OF-FREEDOM SYSTEMS

3.1 Introduction

The inelastic dynamic response of ohe-degree-of-freedom sys-
tems (1 D.0.F.), with the spring characteristics introduced in Chap-
ter 2, will be presented here, in order to compare the effect of the
different nonlinearities. This will have first only a qualitative
character, although later in this chapter quantitative comparisons
will be made for some of the systems. The excitation used for this
part is the NS EL CENTRO 1940 accelerogram, the N69W TAFT 1952 {fac-
tored to an intensity equal to that of the EL CENTRO record) and
finally a sinusoidal motion. Extensive studies on ductility require-
ments for the nonlinear systems that best represent frame behavior
will then be presented, and the possibility of drawing conclusions
from these results for multi-degree-of-freedom systems will be dis-
cussed, Five different historical records were used for this part
of the investigation. Finally, some comments on the effect of grav-
ity loads on the dynamic behavior will be made. Housner (61), (62)
and Berg and Thomaides (63) studied the response of single elasto-
plastic systems, using energy considerations. Valetsos and Newmark
(64), Veletsos, Newmark and Chelapati (65} and Veletsos {66) have
done extensive studies on the response of a 1 D.0.F. with various
nonlinear force displacement characteristics. They have derived re-
sponse spectra for such systems, and they suggested practical rules

to derive these spectra from those of an associated elastic system.
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These rules will be discussed later in this chapter together with
their range of application. Clough and Johnston {69) compared the
response of a stiffness degrading model with that of an elastoplas-
tic system, and their main conclusion was that the ductility requive-
ments of a stiffness degrading system with natural periods greater
than 0.5 seconds are not materially different from those observed

in ordinary elastoplastic structures. Ductility requirement (or
ductility factor) is defined in general as the ratio of the maximum
deformation to the yield one. For systems with periods less than
0.5 seconds, the differences might be significant. For long period
structures, the loss of stiffness vesults in an increase of the
pericd of vibration that leads to & decrease of the response. Jen-
nings (67) studied the response of simple structures with Ramberg-
Osgood type characteristics. Kaldjian and Fan (60) derived response
spectra for elastoplastic and Ramberg-Osgood systems, and one of their
conclusions is that the maximum displacement and the maximum energy
input for the two systems are comparable. Husid {68) has studied the
effect of gravity on the response of simple, idealized structures,

and some of his conclusions will be discussed later in this chapter.

3.2 Nonlinear Response of 1 D.0.F. Systems under Earthquake Excita-

tion
The equation of motion for a 1 D.0.F. system (Fig. 3-1) subjec-
ted to a ground excitation is:

mi + cb + kF{u) = - mﬁg
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or dividing by the mass

i+ 28wl + wiF(u) = - g

where:

m = mass
u = displacement of the mass relative to ground
¢ = coefficient of viscous damping

B = ¢/2vkm percentage of critical damping

k = initial stiffness of the spring

w = vk/m
F(u) = force in the spring divided by k (Fig. 3-1)
Ug = ground acceleration

. > denotes differentiation with respect to time.

c — s w (relative to

F(u‘} A
- ground)
—— m

nonlinear

Figure 3-1 T D.0.F. System with non-

Tinear Resistance Function

(3.1)
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The function F(u) for the nonlinear spring follows any of.the laws
discussed in chapter 2 and is characteristic of the particular type
of the resisting element.

Equation 3.7 can be solved numerically for any kind of input
ground motion. The numerical method used here is the so-called "im-
pulse acceleration” or "constant velocity method," (see for example
Biggs (1), Roesset (6)), which was checked for its accuracy against
exact solutions. Because we have only one degree of freedom, the
method is almost as accurate as any other, provided that the time
step used is small enough. One tenth of the elastic natural period
of the system is usually a good guess for the time step to be used,
provided of course that it reproduces the input function well. In
all the studies reported in this chapter, the time interval used was
0.01 second.

Figures 3-2 - 3-9 give the time history of the displacement
response and the force vs. deformation in the springs for the differ-
ent nonlinear systems discussed in chapter 2. The ground motion used
was the first 10 seconds of the N-S component of the 1940 E1 Centro
record. The properties of the different systems used are summarized
in Table 3-1, according to notation introduced in chapter 2. In
general k stands for stiffness, Fy for yield force, and a, b, c are
factors for the degrading models, as defined in 2.6.

Since this part of the study was aimed mainly at a qualitative
evaluation of the behavior of the different systems, it was consid-

ered appropriate not to include any viscous damping. The stiffness
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Tinit AT | Tve 1Y Iy
TYPE (sec)] "2 l{kips)|(kips} {in)| a b |c min| Ymin

ELASTIC 56 | — a —_ B33 — _ = _
ELASTOPLASTIC |.56 | — 8 — LBH33F — | — |— ——
BILINEAR .56 .O3k-I 8 —_ 5331 — — | — |— _
TRILINEAR .56 .2k1 4 8 267 — —f— |— —
STIFF.DEGR.1 G | — 8 — B33 — _ | — |— _
STIFF.DEGR.Z .56 — 8 — .5331.35 — |— |— —
STREN.& STIFF,

DEGRAD. 1 1561 — | 66 | — |.29 {40} 9.8 |— | —
STREN.& STIFF, _

DEGRAD. 2 156§ — | 66 .29 | 40.} .9 1.8 |22.5| 28.

Table 3-1 Properties of 1 D.0.F. Systems Analyzed

of the last two models, which are for infiiled frames, was chosen
much larger than the stiffrness of the others, so their initial period
of vibration is much smaller. Yield levels for the first six systems
were chosen so that the ductility factor would be in the ordeyr of

3 - 6 (except for the trilinear model whose ductility is with respect
to the first yielding Tevel). For the Tast two, yield levels were
chosen by assuming certain properties for the frame and the infill
and using formulas from chapter 2.

Figure 3-2 is the response of an undamped elastic system with
period .56 seconds. The force-deformation function is a straight
line as shown in the bottom part. The maximum displacement is 6.52 in.

Figure 3-3 and 3-4 are the responses of the elastoplastic and
bilinear systems, respectively. They are quite similar except that

the elastoplastic has a bigger permanent set than the bilinear. Their
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ductility factors are 3.95 and 3.68 respectively. The irregulari-
ties in their response are of course due to yielding.

The response of a trilinear model is shown in Figure 3-5, and
one can observe that it is controiled more from the second slope.
Figure 3-10 shows the envelopes of the elastoplastic and the trilinear

system. This effect makes the system softer and is probably the rea-

7 elastoplastic

[
n 0 I

trilinear
I

!
}
l
[
|

207,533 1.5

Figure 3-10  Trilinear Model

th second.

son for the initiation of scme plastic drift after the 8
The maximum displacement here is 2.43 in. (larger than that of the
elastoplastic and bilinear) and the ductility factor with respect

to ]st nd

yield level is 9.12, while with respect to the 27, is only
1.51.

The next two figures, 3-6 and 3-7, correspond to the two
stiffness degrading models. As it was.mentioned in chapter 2, their

only difference is in the slope of their unloading branches. For
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all practical purposes, however, their responses can be considered
identical, as one can cbserve from the top parts of the figures,
Their ductility factors are 5.26 and 5.73, respectively: i.e.,, 33%
and 45% larger than that of the elastoplastic. This is in agreement
with Clough's results discussed in the introduction. The increase
in the period of vibration is due to the continuous decrease in stiff-
ness after 15t yielding. The increase of the period alters the re-
spons2 sigrificantly only if the system has a period either very
small or very large. If the initial period of the system is near the
beginning of the horizontal plateau of the spectrum, (plotted against
period), then no significant changes in the response should be expec-
ted. Due to the close similarity of the response of the two stiff-
ness degrading models, the conclusion that the second model is insen-
sitive to the values of a at Teast in the range 0 - 35, is evident.
Figure 3-8 cbrresponds to the stiffness and strength degrading
model that is proposed for an infilled concrete frame. Before first
yielding occurs, the response is insignificant, but after that it
deteriorates very fast, in contrast to Figure 3-9, which corresponds
to an infilled steel frame, in which there is a minimum of stiffness
and strength, that of the bare frame alone. The following should be
made clear, however. Several computer runs were perforied, in which
the three basic parameters of the model were varied. It was found
that fhe model is rather insensitive to the value of a, but the same
is nct true for b and ¢ (the parameters that associate degradation

to the number of cycles of loading). Appropriate adjustment of these
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two parameters could produce any desired behavior. Due to the lim-
ited amount of experimental data, the numbers used are only a "little
more" than guesses. As new experimental evidence becomes available,
more realistic values for these two parameters could be determined.
The bottom part of all the previous plots give the force vs. deforma-
tion curves for the system considered. They are interesting in the
sense that one can ssze the effect of load reversals, the amount of
yielding taking place in each cycle; and they also serve as a check
of the analysis.

Figures 3-11, 12, and 13 show the response of the degrading
models to the first 10 seconds of the Taft 1952 N6E9W earthquake
scaled to an intensity equal to that of E1 Centro, 1940, Figure 3-14
shows the response of the strength and stiffness degrading model 1 to
a sinusoidal motion with period .5 seconds and maximum acceleration
320 in/secz. These additional plots were included to see whether any
significant difference in the shape of the loops from those for El
Centro would be observed. It is only for the sinusoidal motion that
the shape of the loop is different, but this comes from the regular-
ity of the excitation which makes the system stay in the plastic

range longer.
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3.3 Studies on Ductility Requirements of Simple Systems

3.3.1 Importance of Ductility

It has been Tong recognized that ductility is a highly de-
sired property for a structure, to resist strong earthquakes and to
avoid possible collapse. A structure that possesses ductility has
the abiiity to accommodate large inelastic deformations and to ab-
sorb a substantial amount of energy through inelastic action. But
use of a ductile material is not sufficient to guarantee this behav-
ior. Other factors such as the complexity of the structure, the
degrez of indeterminacy, detailing of the joints and connections,
speed of Toading and temperature are also important for the overall
ductile behavior. Structural steel and reinforced concrete designed
in accordance with the code can behave as ductile materials, so for
usual structures it is the other reasons that influence the ductility.
Simple members usually possess more ductility than entire structures.
Usual structures consisting of frames from ductile materials designed
and detailed according to the codes can exhibit ductility factors
between 3 and 8 (5). Experience from structural failures, however,
indicates that very often the construction is very poor, especially
at those locations (namely structural joints) that more than any
others need good and careful detailing to ensure the overall ductility.

From the point of view of the designer the first question is
to determine the amount of ductility required by the structure to en-
dure safely (and with a minimum of damage) a strong earthquake.

And if this ductility is excessive, how can it be reduced.
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Ideally a building should have enough stiffness to resist wind loads
and small or moderate earthquakes with 1ittle or no damage. Under

a very strong earthquake it should be ductile enough to avoid collapse.

3.3.2 Inelastic Response Spectra

The idea of the elastic response spectra has been extended
to nonlinear systems. Although they cannot be readily used for multi-
degree-of-freedom systems through a modal analysis, they are useful
in that trends can be observed and some general conclusions can be
drawn. Veletsos (66) has obtained spectra for several types of non-
linear models, and Kaldjian {60) has ccmpared the responses of elasto-
plastic and Ramberg-0Osgood systems. The trends in all of them are
more or Tess the same, so we will Timit ourselves in this part to the
elastoplastic springs {which are the ones most widely used.) Inelas-
tic spectra are drawn for constant values of the ductility factor u
(being defined as the ratio of the maximum deformation to the yield
deformation} and having continuously decreasing ordinates for increas-
ing values of u over the whole frequency range (Figure 3—15)D This
does not mean, however, that the maximum displacement of the elasto-
plastic system is smaller than the elastic. It may or it may not be.
To find the maximum displacement from the response spectra, the spec-
tral value must be multiplied by the corresponding ductility factor v.
What the decreasing ordinates actually say is that the smaller the

yield Tevel Fy, the more yielding will take place.
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Figure 3-15 Response Spectra for Elastoplastic Systems

Veletsos, Newmark and Chelapati (65) derived elastoplastic
response spectra for several inputs and came to the following con-
clusions: In the long period range of the spectrum, the maximum
deformation of the elastoplastic system is approximately equal to
that of the elastic. In the short period range, it is the maximum
acceleration that is approximately equal and in the medium range
it is energy that is preserved. These conclusions are closely re-
lated to the basic properties of the elastic spectra in the corre-
sponding regions (i.e., spectral disp1acemehts clase to ground dis-
placements for long periods, spectral accelerations close to ground
acceleration for short periods, and conservation of energy for inter-

mediate range). Following the above conclusions, detailed rules for
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deriving elastoplastic spectra from corresponding elastic spectra

are suggested in the same reference. Here we will give a simpiified
version of these rules: For long periods, obtain ordinates of elasto-
plastic spectra from those of the elastic, dividing the second by

the desired ductility factor. (In other words, assume the same maxi-
mum displacement for both systems.) In the short period range,

assume the acceleration of the two systems to be the same, and in the
intermediate, divide the elastic spectra by the quantity vZu - 1.

This quantity can be easily derived, as shown below, by equating the

maximum strain energies of the two systems. (Figure 3-16).

u, = yield displacement for
” Y elastoplastic system
i
v = maximum displacement for

elastic system

maximun displacement for
elastoplastic system

Figure 3-16 derivation of Factor +2u-1

We want to express U in terms of u, by equating the corresponding

energies. This means that the two shaded areas should be equal. Then:

A=Ay
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One useful observation that can be made, based on the above
conclusions, is that for Tong period structures one could get reason-
able values of the reqdired ductility by dividing the forces obtained
from an elastic dynamic analysis by the design forces.

The above conclusions, Tooked upon from a different point of
view, suggest that structures in the short or even in the intermedi-
ate period range may require excessive ductiiities if they are not pro-
vided with adequate strength. Newmark, in a discussion of a paper by
Clough, Benuska and Wilson (70), notes that presently (1965) avail-
able codes do not provide the same amount of ductility over the whole
range of building periods that the designer might encounter. This is

a serious problem for strong earthquakes, because the factor of safety



83

against collapse is very closely related to the amount of ductility
built into the structure. We address this problem in the following

paragraph.

3.3.3 Ductility Requirements of Structures Designed by Code Proced-
ures,

In this paragraph Qe will try to answer the question posed
in 3.3.1: i.e., "What will the ductility requirements of a structure
be, for a strong earthquake?™ To do this, we chose a set of struc-
tures in the range of .1 to 4. seconds natural period. The masses
were varied proportional to the natural periods in an attempt to
simuiate multistory buildings. This was done by assuming a mass of
0.1 kips—secz/in. per floor and a variation of periods in proportion
to the number of floors. The corresponding stiffnesses were then
computed from the natural periods and the masses. The design shears
were computed according to the Uniform Building Code provisions for
az=1and k = .67 (we will comment later on the possibility of
varying k). The code states that "for all one~ and two-story build-
ings, the value of ¢ shall be considered as 0.1." In the case of
the .1 period, we chose the most conservative value of ¢ = 0.108, as
determined from the formula. Finally, the ultimate shear was assumed
to be twice the design shear. This assumption was based on the fol-
Towing facts: a) We designed according to the code several columns
as 1-D.0.F, with different periods, for gravity loads coming from

the corresponding masses and earthquake Toads as determined by the
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U.B.C. Sections were selected from the steel manual and ultimate
capacities were computed using the interaction formulas. In the
cases examined, the ratio of the ultimate to the design shear was
2.04, 1,96, 1.86. b} It is recognized that in a column of a multi-
story frame this number will vary with height, being a function of
the ratio of the design moment to the design axial load. For girders
that carry very 1ittle axial Toad, this number js about constant and
very closely equal to 2. Given then that the desired behavior is to
have the columns elastic by forcing yielding into the girders, this
assumption looked reasonable. c¢) Clough (69), in his studies for
inelastic dynamic response, used the same number for the 1-0.0.F.,
and also the same number for the girders of his multistory frame (7).
The properties of the systems are given in Table 3-2. The units are

kips, inches and seconds.

T m W k ke Vdes Fy Fy/w
0.10 | 0.10 38.6 | 395.00 1 .0722 2.7¢% 5.60 | .145
0.25 {1 0.25 96.5 | 158.00 1 ,0532 5.14 110.28 | .106
0.50 { 0.50 193.0 79.00 ) .0422 8.15 | 16.30 | .085
1.00 [ 1.00 386.0 39,50 | .0335 [ 12.92 | 25.84 | .067
2,00 1 2.00 882.0 19.75 | .0266 | 20.50 | 41.00 § .D53
3.00 | 3.00 [1160.0 13.20 | .0232 {26.90 |53.80 F .046
4.00 | 4.00 |1540.0 9.88 | .0211 | 32.50 |65.00 } .p42

Tabie 3-2  Properties of 1 D.0.F, for Ductility Studies

The notation is: k = stiffness
T = pericd kc = U.B.C. coefficient for design shear
m = mass Vdes = earthquake design shear
w = weight Fy = ultimate capacity (2 Vdes)
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Results were obtained for five different accelerograms which wers

brought to an intensity equal to that of the 1940 NS E1 Centro earth-
quake. The definition of intensity used is that given by Arias (71).
It is defined as

p(B) - arc cos JO i (t) df (3.3)

91-82 0

and has the advantage that its variation with respect to 8, the per-
centage of critical damping, is very small. For 8 = 0.20, results
were also obtained by using Housner's definition of intensity and
were quite similar. For two cases the peak ground acceleration was
used as a measure for intensity and the results presented a bigger
scatter than using Arias' intensity. Table 3-3 gives the different

earthquakes and the corresponding scaling factors.

uG(E1 Cen) pHousn., errias scale | Scale Scale
E1 Cen. E1 Cen. Fact Fact Fact
EQ. |4 gq | rHousn. ,\)IArias cor a1t 1 e
u 0
G EQ EQ G Ariac Housner
{EL CERTRO 1 ] 1 386, 386, 386.
(NS)
EL CENTRO 1.46 1.15 1,21 562. 466 . 445,
(EW)
ILYMPIA .97 1.48 1.24 386, 480, 572.
(S80W)
TAFT 2,00 1.85 1.87 772. | 720, | 715,
(S69E) :
TAFT 1.77 1.97 1.90 685, 735. 760.
l(NZ]E

Table 3-3  Factors to Multiply Accelerograms
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The duration of the earthguakes in Table 3-3 is as follows:

E1 Centro NS First 10 sec. Taft S69E First 19.20 sec.
E1 Centro EW First 19.2 sec, Taft N2TE First 19.36 sec.
Olympia S80W First 19.60 sec.

Before presenting the results obtained, it is interesting to
write the equation of motion (3.1) in a nondimensional form, in terms
of a new variable z = u/uy {note that for u > uy, Zax =) and draw
some conclusions from it:

If we define a function f(z) such that f(z) = 1/uy Flu)

(where F{u) has been defined in paragraph 3.2), then F(u) = uyf(z),
i.e., the new function f(z) is obtained from F{u) by dividing its
ordinates by uy, This function is sketched in Fig. 3.17 for an elasto-

plastic system:

f@h

—h
——
N
f—
i

for z » 1

z } for z <1

[ e

NY

Figure 3-17 Resistance Function in Nondimensional Form
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Introducing z in 3.7 we obtain:

. .2 .
+ = -
Uy, z + 2 Bw u, £+ v uyf(z) lg
0 u
or 428w it f(z) = -2
J
U
or £+ 26w 7+ uf(2) = - k(D) (3.4)
Y

From this equation we see that the dimensionless response
Z= u/uy of a nonlinear system depends on the amount of viscous
damping, the natural period of the system and the ratio of the maxi-
mum acceleration of the motion to the yield level. This means that
if we have a noniinear system and we want to study the effect of
the yield level or of the earthquake intensity, we only need to vary
one of them. Note also that the above is true for any of the non-
Tinear models introduced in chapter 2, since the loading and unload-
ing Taws governing these models do not affect the validity of equa-
tion 3.4,

From the same equation we can make the observation that if we
multiply the mass, the stiffness and the yield level of a nonlinear
system by some factor a, and use the same earthquake motion, the non-
dimensional response z remains unchanged. This is because in the
left side w is left unchanged and in the right side the ratio k/Fy
remains also unchanged.

In the next pages the results of our investigation are presen-
ted in a graphical form. They are for three different systems: elasto-

plastic, bilinear and stiffrness degrading. For the bilinear, the
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slope of the second branch was chosen as 3% of the first. The degrad-
ing stiffness model is the simplified one that unloads parallel to the
initial slope. The two other models that include strength degradation
as well were not included in this study because ductility cannot be de-
fined for the complete unit: i.e., the frame and the infill, which the
model is designed to simulate. Four different values of viscous damp-
ing weré selected corresponding to: 2 =0, 0.05, 0.10 and 0.20. We
will not elaborate on which of these values is a more realistic one,
but we will mention that for a ductility analysis that is done for a
strong earthquake, nonstructural elements might have cracked; and sub-
stantial damage might have occurred, which suggests that the viscous
damping present at that stage of the response (in addition to the hys-
teretic damping of the yielding structure) could be significant.
Figures 3-18 through 3-23 show the variation of the required duc-
tility factor u as a function of the natural period of the system.
Under each figure the Taw that describes the appropriate straight
1ines that best fitted the data is written. The solid Tine is the
"average" 1ine, and the dotted is an "upper-bound" line. In almost
all the cases the solid 1{nes are a little conservative for the Tong
period range, and a little unconservative for the intermediate. This
of course could be eliminated by a more elaborate curve fitting. From
the expressions at the bottom of the figures, the decrease of the re-
sponse with increase of the viscous damping becomes apparent. No
significant difference appears between the undamped response of the

elastoplastic and the bilinear model. For all the damped cases, how-
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ever, the bilinear has smaller ductility requirements in the low
period regions, while it is almost identical to the elastoplastic

in the Tong periods. This confirms the observations of Veletsos and
Newmark in their comparisons of elastic and inelastic response in

the same period ranges (see paragraph 3.3.2). The stiffness degrad-
ing model, compared to the elastoplastic, has slightly less ductility
requirements in the Tong period region and slightly higher in the
short period region. Again this is as expected and in agreement with
comments made in paragraph 3.2 about the behavior of such a model in
the different frequency ranges.

The most important conclusions, however, independent of the
particular system, is that the ductility requirements for these struc-
tures are not uniform and increase as we go from long periods to
short ones. MWhile it can be argued that it is hard to find buildings
designed as ductile frames (as this analysis has assumed with k = .67),
in the period range, where the curves indicate extremely high duc-
tility reguirements, a three- to ten-story frame could very well lie
in the region of .3 to 1 seconds, for which case the plots indicate
an average value of ductility requirements from 5 to 10, even with
10% viscous damping. MWe consider this range of ductility to be high
and difficult to attain, even for well designed and constructed struc-
tures.

A desirable situation would be to have a rather uniform dis-
tribution of ductility requirements oveyr the compiete range of natural

periods in which framed buildings could be. In that case the lines
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of the previous figures would tend to be horizontal or at least
with a slope smaller than that in the figures. Given that the duc-
tility requirements decrease with an increase of strength (as it
will be seen in the following set of curves}, it would seem that
the design shear should be increased for stiff structures. In

other words the coefficient 1/3 in the expression:

[a0e)
(]
(€3]

[g]
I

|
par
aat
(%

should increase to a value a, where a > 1/3.

The value of a could easily be determined, as it will be sug-
gested later, given that an acceptable level of ductility has been
established. In a more general sense the ideal kind of a relation-

ship for the design shear coefficient should have the form of:

¢ = f(u,B) ° (3.5)

T8 u,B

where T is the natural period of the struéture and f, a are func-
tions of the desired ductility factor p and the percentage of criti-
cal damping B. The functions f and a could also be obtained either
through some reasonable idealization of inelastic response spectra,
or through random vibration theory.

At this point it seems that additional studies should be made
to obtain similar curves for other values of the U.B.C. coefficient
k" (e.g. for k = 0.80, 1.00, 1.33 etc.) in order to include cases

of buildings that include shear walls and if possible to use a closer
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interval of natural periods examined, and maybe more earthquake
records. The cost of computer runs for these studies is small,
because we have only a one-degree-of-freedom system, and the aumer-
ical method used is very efficient and fast.

As a final remark before closing this section, figures 3-24
and 3-25 show the same curves for 20% viscous damping, determined
by using Housner's definition of intensity, and are almost identi-
cal with the corresponding ones using Arias' definition. Figure
3-26 shows similar curves obtained by equating peak ground accelera-
tions rather than intensities. The scatter here is bigger than in

the other cases.

3.3.4 Ductility Variation as a Function of Strength

The most important factor that influences the ductility re-
quirements of a structure for a given earthquake motion is the
strength, defining as such the maximum force it can sustain at yield-
ing. Here we will try to answer the second question posed in 3.3.7:
i.e., "What is the required strength for a structure, so that the
ductility factor will be within a specified range?" To do this, we
computed again the time history response through a step-by-step
numerical integraticn of the systems examined in the previous sec-
tion, but this time for several values of the yield Tevel Fy. So
we obtained the maximum deformations and through them the correspond-
ing ductility factors dividing by the deformation at yielding. This

analysis waé performed again for the same earthquakes as before, and
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the same systems. The results are plotted in dimensionless form
for the different values of natural periods, viscous damping, and
for the three systems: elastoplastic, bilinear and stiffness degrad-
ing. The ordinate is the ductiiity factor p and the abscissa is
the dimensionless quantity (mﬁg/Fy). (Figures 3-27 - 3.68).

If we recall equation 3.4, p is only a function of the ratio
Ug/Fy. The earthquake records were multiplied again by the factors
given in Table 3-3 and the Hg used was that of ET1 Centro: i.e.,
0.32g. The complete set of curves is aimed to be a design aid. For
values of period between those in the charts one cou]ﬁ interpolate
lTinearly.

One possible use for these curves could be the determination
of appropriate laws for base shear coefficients so that we could

have uniform ductility requirements for the complete range of the

spectrum. This could be done as follows:

Write:
Vdes = kcmg
Fy =3 Vdes
Then:
ooy Y
¢~ 3Kmg (hug)' akyg (3.6)
For the curves in this chapter Ug = .32g.
So 3.6 becomes:
2,y Ty
cC == (nﬂ ) = - (mu ) {3.7)
9 g
32

where A= K
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Table 34 gives a range of values for A for various combina-

tions of a and k.

!

! A= .32/ak

r ; ] .

i k ¢ a=1.5] a=2 | a=3 j a=h
i 5 N b -

| 67 | .320 | .24 .60 | .09
.80 | 267 | .20 |.133 . .080
1 .

1.00 214 | .16 | .108 064
1,33 | 160 | .12 1.080 . .048

Table 3-4  Values of X
Selecting values of viscous damping 8 and ductility values u,
we can enter figures 3-27 - 3-68 and determine corresponding values
of ng/Ft for any set of natural periods. Then by using 3.7 with
some appropriate A, we can compute c and plot it as a function of T.
This was done for the case that a = 2, k = .67, .80, 1, 1.33, g = 5%
and an elastoplastic system. Values of Fyﬂnﬂg are tabulated in

Table 3-5 for 5 values of u and 7 values of T.

g = 5%
i Fy/TP | |

T | u=1 u=2 ; p=3 i p=4 ; u=6
0 1.470| 1.18 | 1.000 & .930 & .860
.25 2,000 1.300 : 1.000 | .860 | .770
50 2.000 1.000 | .625 = .475 | .400
1.00 1.040] .59  .417 @ .333 | .270
2.00  .5000 222 . .150 | .18} .100
3.00  .285| .167 i .11 | .083 | .068
4,00,  .167! .095 | 067 | .053 1 .044

Table 3-5 Yalues of Fy/mﬁg
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The results are plotted on log-Tog paper in figures 3-69, 70,
71. In all the cases the code formula has aiso been plotted. In the
case of k = .67 (ductile frames), straight-line fits were performed

and the appropriate laws are summarized here:

uo= c = ?%?f' . Coax = b5 for T <.b sec.
u=2 c = l%l- R Crax = .28 for T < .4 sec.
Wo=3 c = L%ZQ- . Coax = .24 for T < .3 sec.
uo=4 ¢ = i%E-  Cpax = -21 for T < .28 sec.
p=5 c = ;%é. , Crax .2 for T < .25 sec.

As 1t was expected, the numbers show that for one-degree-of-
freedom systems with a = 2, the U.B.C. would be unconservative in the
short period range and conservative for Tong periods,

All the above shows one way by which one could obtain reason-
able values of the base shear coefficient for prespecified ductility
tevels. This kind of study could be used to determine laws of the
form 3.5, which would allow the designer for more combinations of
strength and ductilities. Of course, before one adopts such a law
to include it in a code, he should perform more studies: namely, for
all possible values of | and percentages of critical damping. The
effect of gravity should also be investigated mainiy in the Tlong
period range where the new coefficients become smaller than the ones

currently in use. It is believed, however, that this is not a prob-

Tem, as the following thinking suggests. As it was mentioned earlier,
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the maximum deformationsof a system in the long period range remain
relatively constant (approximately equal to the elastic) independent
of the amount of yielding. Then even if we reduce the base shear
coefficient and the structure becomes relatively weaker, the effect
of gravity forces which is a function of the displacements will not
change significantly.

As a final point in this paragraph, comparisons will be made
between ductility factors obtained for multistory frames and numbers
obtained by using the curves of the previous pages. Clough and
Benuska (7) obtained ductility factors for frames of different peri-
ods. They have designed these frames following a code approach simi-
lar to the one used to derive the curves of the previous pages. One
of their conclusions is that the columns remain elastic except for
the ones in the top one or two stories. The girders yield and their
ductility factors vary with the height. The variation is irregular

and has a shape as shown below {figure 3-72).

\ Lo
20y R
-4 |
lu [ !
b |
y
~ f
N T
Uy 1
Q |
~ f
%] |
14 | !
L
' >
/Ud e Fmax M cirper

Figure 3-72  Ductility in Story Level
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A

Tines as shown in figure 3-72.
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were estimated by drawing two vertical

These two values are compared with

values obtained from figures 3-18 through 3-23 of this chapter.

The comparisons are summarized below.

g = 0%
. Present _,
Clough (7} Fig. 2-22 Work  Fig. 3-20
T Have. Ymax. - Have. Pmax.
1.6 4 7 4 6
2.2 3 6 3 4.8
2.8 2.5 5.5 2.4 3.7
B1=.TD,82=‘041,83=.025 B = .10 g= .05 Average for the
: : — -1 Two Values Of
Clough(7) Fig. 2-78 1Fig. 3-21 Fig. 3-20 Damping
Th Mave.| Mmax. “ave.| "max.| Mave.| Vmax. “ave. | Mmax.
.61 7-8 [11.0 6,8 10,0 7.5 | 11.5 7.15 10,75
1.0f~ 5.0 7.5 4.5 6.5[ 5.0 7.7 4.75 7.10
1.6~ 3.0 5.6 3.0 4.4 3.5 5.5 3.25 5.00
2.2 2.4 5.0 2.2 3.5 2.8 4.4 2.50 4,00
2.8] 2.0 4.0 1.8 2.7 ] 3.3 3.5 2.05 3.10

*
These are the values of damping in the first three modes.

with a period of 2.3 seconds to be about 2.

Newmark (72) estimated the required ductility for a building

give 2.1,

Qur figures for g = 10%

A 13-story building, whose analysis will be described in

Chapter 5, had for B = 0.02: Have, ~ 1.3 and Frax, = 2.87. The
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natural period of the building is 4.2 sec. The corresponding num-

bers from the curves are: p

ave., REE Mmax. © 2.85.

As a final comparison we take figure 2.47 from (7), where
{lough studies the effect of intensity on ductility. To obtain cor-
responding numbers we must make use of both sets of curves given in

this chapter.

Clough pg = .10 Present Work T = 2.2
= _ Average
T=2.2 =05 |g=.10|g "%,
Intens. uave. Have. Fave. Have.
g 1.8 2.0 1.6 1.8
1.0 2.4 2.8 2.3 2.5
1.3 3.2 3.8 3.2 3.5
From Fig. 3-20: B = b% T=2.2 - Have, = 2.8
From Fig. 3.21: B = 10% T=2.2 Have. = 2.3
M
Fig. 3-53 T =2 up =2.8+=—4=6¢6.6 Interpolate
ave F _
= o N for T = 2.2
R = 5% d .
Mii and get:
i -— = = —g..'“— T
| Fig. 3-59 T =3 Have. 2.8 > ¢ 8.6 Mug i
y =7
¥
{ My .
7 (=9)=4.9 > U = 2.1 u = 1.55[| Inter-
) EY - ave, ave polate
e =10% My T=3 for
' = N . _ T=2.2
1.3 (Fy 1=9.2 Have. 4.0 Have. 3.00
and find for T = 2.2 and R = 5% and Intensity<;: 7+ Have. =
= 3.8

1.3~ udve.



M
Fig. 3-54 T=2 Yave, = 2.3 +-?—9~= 5.5] Interpolate
N for T = 2.2
3 = 10% and get:
My Mu
Fig. 3-60 T =3 u =2.3+=3 =85 —1=6.10
ave. F F
Y Y
=) = 4.3 +u - =1,70 U = 1.2 |, Inter-
Fy 1 ave, ave. polate
B = 10%s T=2 T=3 for
ﬁﬁg T=2.2
1 3(F ) =8 T Mave.” 3.5 Have.” 2.2
Y
7> Mave. ~ 1.6
and find for T = 2.2, B = 10% and intensity
1.3 » Have. = 3.20

The above comparisons indicate very good agreement between the
numbers obtained from inelastic analysis of actual multistory frames
and the curves derived in this chapter for 1 D.0.F. systems. This
suggests that the curves could possibly be used for multistory frames
to give average and maximum levels of required ductility. More stud-
ies and comparisons are needed, however, to substantiate this claim.
As a final comment, it should always be kept in mind that the nature
of the problem is such that one should be satisfied with levels of
ductilities and average numbers, rather than with exact values carry-

ing several digits after the decimal,

3.4 Effect of Gravity Loads

As of this time, our studies on the effect of gravity Toads were

inconclusive. As far as simple structures that can be modelled as
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1 D.0.F. systems are concerned, one will have to assume natural
periods between say 0.5 and 0.1 seconds. In this regicon it was found
that even for ductility factors of the order of 10, gravity loads
presented no problem. If we try, however, to extrapolate conclu-
sions to more complicated actual structures, the main problem that
we encounter is the problem of height: i.e., what is an appropriate
height to use for the 1 D.0.F. In a multistory frame, the way
gravity load acts is by introducing additional shears at each story
Tevel. In that respect it is the interstory height that becomes
important. As far as overturning moments are concerned, however,
these additional shears are multiplied with their distances from

the ground. While Husid {68) makes it clear that his studies are
not aimed towards actual 1 B.0.F. structures, it is not apparent

to what kind of structure the heights of 5, 10, 20 and 30 feet he
selected may correspond. If his studies were for 1 D.0.F. actual
systems, then his parameter ay should have been much greater than
the one he used. It is our feeling that the effect of gravity loads
should be studied only with an exact analysis of the multi-degree-

of-freedom system rather than with the simpler 1 D.O.F.
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CHAPTER 4
ANALYSIS CF MULTIDEGREE-OF~FREEDOM SYSTEMS

4.1 Introduction

One of the main purposes of this work was to develop a con-
venient mathematical model for the inelastic dynamic analysis of a
certain class of buildings. On one hand, it was desired to include
such effects as torsion, noﬁstructura] elements y stiffness and/or
strength degradation, etc., while on the other, considering mainly
computational costs, it was decided to avoid the sophistication of
treating each member in the structure individually as it is done in
a regular stiffness analysis.

Clough and Benuska (7), Goel (8), Anderson {9), Latona (10)
and Hanson and Fan (81) describe formulations for the inelastic
dynamic analysis of plain frames. Vitielo (78) gives a formulation
for the in-plane combination of bending elements (shear walls) with
shear elements (frames). Velcov (79) performed inelastic analysis
of a shear-type, symmetric building using elastoplastic and biiinear
models for the resistances between floors. Jurukovski and Bickovski
(80) give a formulation for the elastic dynamic response of shear
buildings, accounting for torsion. Odaka et al. (84) have included
rocking and swaying of the foundation in their formulation for the
dynamics of shear buildings. HNigam and Housner {83) studied the
elastic and inelastic response of simple structures for directions
of the motion other than the principal ones, Shiga (97) dealt with

elastic torsional vibrations, and Tadaki et al. (96) considered the
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problem of inelastic torsional response.

In this chapter we wiil present the mathematical model, we
will discuss the underlying assumptions and the method of selution,
and we will describe the capabilities of the computer program devel-
oped for the analysis. Faced with the problem of choosing an appro-
priate numerical method for the step-by-step solution of the equa-
tions of motion, we compared several numerical methods and results
of these comparisons will be given here, Finally, we will present
a general formulation of the problem, extending it for the cases
where gravity loads and soil flexibility are to be inciuded in the

analysis.

4.2 The Mathematita] Model

The mathematical model used for this investigation is a com-
bination of shear and bending springs, in any of the x, y directions,
with masses lumped at the floor levels. The shear springs are in-
tended for frames, in which axia1-deformation of the columns is not
important (shear behavior) and the bending springs are intended for
shear walls., We can have any number of shear and bending springs
linked together in any direction on the floor plan.

The force—deformation characteristics of the shear springs
could be any of those discussed in chapter 2, depending on the par-
ticular characteristics of the structure (elastoplastic, bilinear,
trilinear, stiffness, and/or strength degrading). The bending

snrings {shear walls) are treated as an assembly of simple members
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between floor slabs, with moment-curvature relation for each joint
(at the slab Tevel) given by a bilinear or stiffness degrading model.
The fioor slabs are considered rigid in their planes, so we have
three degrees of freedom per floor: two translations and one rota-

tion (Figure 4-1).

:

P U
FOR 5.5,
Bs 58
M
Bs 55, v
f— . (%MJ_ o 9( U, .
f - -5
h B 55
e Ka=rk,

§.5. = Shear Spring

B.S.

Bending Spring

Figure 4-1 Mathematical Model for the
Muiti-Degree of Freedom System



157
Since we consider motion along three directions simultaneously,
symmetry in the layout is not a problem, so we can deal with unsym-

metric and eccentric-mass situations (Figure 4-2).

\

DS SRNERSRSON

Flevator

Box Shear Wall

[ Center of Mass

! (ij"ij)

o

b4 ;
A v [ ¥ 77F {1’ F
(t;.ys)  Frame i Lotk
: Slab of 1 Floor
b
0

Figure 4-2 Flooy Plan

The basic assumptions for our analysis are:
1. Slabs are rigid in their planes.
2. There are 3 degrees of freedom per floor.
3. Height-to-width ratio for frames such that effect of
axtal shortening of columns is insignificant.
4. Frames act as shear springs with properties computed as
described 1in chapter 2.

5. Walls have a bilinear moment curvature relation.
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6. If at any time during the analysis the shear capacity
of an element is exceeded, a shear failure is assumed,
and the element is eliminated. In the case of shear
walls, the wall in the floors below the level in which
failure occurred is still active, while in the floors
above it is considered as block-partition type element.

Assumptions number 3 and 4 mean that in cases of tall slender frames
the method would not give good results.

As a first step in the analysis we compute the dynamic char-
acteristics of the structure in the elastic range (small vibrations),
i.e., natural frequencies and modal shapes. The formulation used
ié outlined below and is given in terms of lateral stiffness matri-
ces, so in this sense it is general, and it could be applied to cases
where all the degrees of freedom of a frame had been considered.

Consider the dynamic equilibrium of slab j (Figure 4-3):

slab j

Figure 4-3  Notation for Slab j
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Let A be a point in the slab with coordinates x, y and displace-
ments u, v, 9(6 rotation). Since the slab is assumed rigid in its

plane, we can write:

u = u‘].0 -y Bjo
VR Vs, + X ejo (4.1)
b =6,

jo

The differential inertial forces at A are given from:

df, = - pdAi
df, = - pdAl (4.2)
df = + pdAyl - pdAxy

where p is the density of the slab at A.
To find the total inertia forces of the slab, we must inte-

grate 4.2. Doing so and utilizing 4.1, we obtain:

fx = -m u:|0 + ejo Sy
f,=- 1 ejo * Uso Sy B ojo Sy
where: m = total mass, 1 = moment of inertia

wy
]

X JJ pxdA, Sy = JJ pydA

If we choose 0 as the center of mass, then SX = Sy = 0, and hence

fo= - mi;

X Jo Inertia forces

fy = - vjo applied to sTab (j) (4.4)
fZ:—Iejo
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The forces that resist the inertia forces come from the different
elements (frames, shear walls, etc), Let i be such an element whose
lateral stiffness matrix is K. Then the force exerted by element i

on slab j is given by:

i
foo= ] ki,9
1§ 5 T3re
and its x component:
i
fijx = cos o QZ] kjg 62 (4.5)
where: n = number of stories
k}g = element of the jth row of K

th

Cn
Pl
tl

£
vector {relative to the ground)

component of the displacement

for element 1.

To simplify notation, we dropthe index i, but we still refer to

element i. It is:

&,
J

U, cosa + v. sino
J J

and from assumption 1:

U, = u,_ -
i 7 Y0 Y5 Y50
(4.6)
= . +
VJ VJO X Jo
§. = (U, -y. 0. + (v, + x, 6. )si )
j (UJO yJ @JO)COS& (V30 xJ GJO)s1na (4.7)

and replacing to 4.5, we obtain {dropping the index i)
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n n
- 2 .
fjx = cos“u Z kjﬁ Uy, T cOSG STnuZ kjg Yoo
£=1 £=1
where: dj = Xj sina - yj Cosa
SimiTarly:
.0 L2 0
ij = cosa s1na££]kj2 Ug, * sina ££1k3g 7
and writing:
f.. = - f, .+ T, . we obtain:
jz jx yJ ny xJ e obtain
n n
sz = djcosu Rzlka Uy, + djs1na£Z1 kjg Voo
for equilibrium: f, = ; fjx
=) f Q
fy= b Ty g
fz - Z sz
i
; ij + ujo =0
; fig + ng = 0
; sz + 18, = 0

Equations 4.12 describe the dynamic equilibrium of floor j.

n
+ djcosagz]kjg P (4.8)

(4.9)

n
‘ djs1nagzlkj£ego (£.10)

n
+ d2 k., 8

p . 4.1
J = Je 1o ( 1)

(4.12)

For

each floor we have three such equations, so for n floors the number

of equations is 3 x n.

become:

Written in matrix form these equations
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Kyx

ZX

Ky Ko | |0 m
K +

Yy Kz v

S 8 0
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M
Yy

0

<z
n

D2

(4.13)

The submatrices of the stiffness matrix are given by the following

expressions:

m > m m
K = ) Kicosoy, ny = E K,cos a;sina,, K '2 DK,cos o
XX . = i=1
i=1
T m 0 m
K.o=KkK , K = K.s5in"o, K. = D.K, sin o
¥X Xy Yy 121 i j N 121 i
Y - _
Kox = Kz sz Kyz’ K22 Z1D1K1D1
- — _m ]
m Y
Xy 1
m m
) Y2
Mx = ' . My = )
m m
*n Yn
_ - -
L ds1
d.
12 12
I = Di = -
In din
In the above expressions the summations are over the resisting

elements.
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Ki = lateral stiffness matrix of element i

a. = angle that the centerline of element i forms with the

X axis

D. = diagonal matrix for element i, containing dj (eq. 4.9)
which are the distances of the element's centerline
from the centroids of the slabs at the different levels

i M = diagonal mass matrices in x, y directions

I = diagonal matrix containing the moments of inertias of
the different slabs about a perpendicular axis through
their centroid

u, v, 8 = vectors containing the x, y translations and the rota-
tions of the centreids of the slabs with respect to the
ground

T -~ stands for "transposed"

- indicates differentiation with respect to time

It should be noted here that Mx may be different from My because in
some cases where the byilding has several similar frames in both
directions we may want to model only part of it.

Equation 4.13 can be written in a more compact form as:

Ku + M = 0 (4.14)

This is the general eigenvalue problem, which when solved will give
the natural frequencies and modal shapes.

For the system sketched in figure 4-1, the eigenvalue prob-
lem is somewhat easier, because we can form the lateral stiffnass
matrix of the shear springs {which in this case is tridiagonal)

directly from the spring constants. For the bending springs, how-
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ever, we must perform a condensation on the total stiffness matrix
to obtain the lateral one by eliminating the rotational degrees of
freedom at the joints. This is done by treating the bending springs
as a beam with supports at the floor levels and accounting for the
shear deformation.

The contribution of each frame or wall can be assembled
directly into the total stiffness matrix as soon as its lateral
stiffness matrix is computed. Note also that this procedure is
general and is not restricted to the assumption of shear behavior
for the frames (that assumption was made for the nonlinear part of
the analysis). It only requires a computer routine that will read
the properties of the frame, form its total stiffness matrix and
condense it to obtain the Tateral one.

This formulation is not accurate for tall buildings designed
to act as a tube. In that case it is necessary to consider all the
& degrees of freedom per joint of the space frame, form the total
stiffness matrix {which in this case will be of a much bigger size)
and then condense it using the assumption of the rigid diaphragms
for the slabs.

For the solution of the eigenvalue problem, we used the stan-
dard IBM routine,with a slight modification which utilizes Jacobi's
method. This routine is efficient for the size of problems this
program was designed to handle.

After having computed the dynamic properties of the building

in the elastic range; we proceed with the time-history analysis.
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If we call: Ug, Vg the time histories of the ground accelerztion

in the xand y directions and set:

Uoips ~ ujO + ug
Vabs © Vjo + vg (4.15)
E)abs - ejo
equation 4.14 becomes:
Ku + MU = R
where:
deg
= - M4
R v’
0

If we are to include viscous damping which is described by a damp-

ing matrix C, then these equations take the form:

Mi + CO + Ku = R (4.16)

These are the differential equations of motion in matrix form, for
the multidegree of freedom system described earlier, excited by a
ground acceleration in the x and y directions. These equétions,
however, are only good for the elastic range. When the structure
starts yielding, its stiffness matrix changes. In other words, the
coefficients of the displacements in the above equations, which in
the elastic case are constant, in the inelastic are nct, but depend

on the displacements. Hence it is appropriate to write 4.16 as:

M + Co + F(u) = R (4.17)
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where now F{u) is a vector of forces, function of the displacement
vector u. Before describing the numerical procedure used for the
solution of 4.17, we will discuss briefly the selection of the damp-
ing matrix €. There are several ways by which the damping matrix

can be selected. The most commonly used are the following:

(i) C = aM
(i) € = bK a, b constants
(i11) C = aM + bK

In the first case the C matrix is proportional to the mass
matrix, and the modal damping decreases continuously for increasing
number of modes. The parameter a can be selected such that we have
a prespecified percentage of critical damping in one particular
mode (usually the first).

In the second case, where C is proportional to the stiffness
matrix, the modal damping increases for increasing number of modes.
Again b can be selected so as to have a prespecified percentage of
critical damping in ane particular mode.

Case (iii) is a combination of the first two, and the result-
ing viscous damping is sometimes called "Raleigh damping." In this
case we can have more flexibility in the variation of modal damping
over the system's modes, but ultimately the damping will start in-
creasing for high frequencies, since the term all will give modal
dampings tending to zero. In this work we used a method known as

Kuzak's method (6), which produces a C matrix that gives any desired
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percentage of critical damping in any mode. This matrix is given

as the product:

C = MQBQ'M

mass matrix

4

whevre: M
B = diagonal matrix with elements ZBimi

th mode

P. = percentage of critical damping in the 1
w, = circular frequency of the ith mode
Q = matrix whose columns are the eigenvectors of the
system (normalized with respect to M)

Since in our work we solve first the eigenvalue problem,
Kuzak's method is as easy to use as any of the others described
earlier and in addition gives us the flexibility of having any
desired amount of viscous damping in any of the modes. In all our
studies we used constant percentage of critical damping for all the
modes.

Equation 4.17 was solved numerically using a step-by-step
integration procedure. This procedure, sometimes called "constant
velocity method," assumes that the velocities of the system are
constant within the time step. {See for example (1)). Under this
assumption the recurrence formulas for velocities and accelerations
are:

) L
by = zxp (Wpap = Yyop!

(4.18)
Un = ~l§- (un+] - 2un +u_ q)

At n-1
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Replacing these two expressions in 4,17, we obtain:

1 _

z;?-M(u $1-2u ot ]) 2At C(un+] - un_]) +Fo= R or
[—]—ZM+—2—}EC]u+]-R—F +—%Mu—(——l-2-M -2-115-{_‘«:}111

At n n At At n-
and:

ﬁ‘](
1 1 2 1 1 )
L ~F o+ S MU o« (—5M-gz=Clu_,| (4.19)

Un+1™ [ t? 2ht } L no'n At2 n Ata 20t n-1J

Matrix equation 4.19 can be used for the calculation of the displace-
ment vector at time step ntl, in terms of the displacement vectors
at steps n and n-1, and the force vector Fn at n.

The force vector at time step n is computed easily for the

shear springs. From the displacements of the center of mass u ., Vo

n
en’ using the geometrical relation 4.7, we can compute the distortions
of the various shear springs at time step n. Having the distortions
and the forces in these springs at time step n-1, it is simple to
compute the incremental forces and hence the total forces. The com-
putation of the incremental forces depends on the particular type of
force-deflection curve assumed for each spring, and special routines
were written for each type of spring used. These forces then are

used to form the total force vector Fn' Fn consists of three sub-

vectors:
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F_ is the summation of all resisting forces on the x direc-
tion

F s the summation of all resisting forces on the y direc-
tian

F_ 1s the summation of all resisting torsional moments about
the centroids of the slabs.

The determination of the contribution of the bending springs
in the force vector Fn is a more difficult task. For this case we
must work with increments of displacements and rotations rather than
with total values. Since the numerical procedure produces total
displacements, the incremental ones are found by subtracting the
values of two consecutive steps. The equilibrium equations for the

shear wall are in this case:

)
Keso 1 Kras By, 0
A = (4.20)
|
Reso 1 Kess Ay B
! n-1
| 7 . .
K K Tangent stiffness matrix
|
where : _Ff?__J___E?E_ - . - for the wall, partitioned
' ! for the bending rotations
Kt6¢ b Kigs and the displacements(fig-
! n-1 ure 4-4), at time step n-1.
A¢n = ¢n - ¢n~1 =IVector of incremental joint rotations at
sten n
A&n = Gn - 5n—1 = yector of incremental joint displacements

at step n
Aan = an - Fb,n—] = vector of incremental joint forces at step
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2
Story n ; - gn
|
4
Story i ZF¥“* 5
!
!
|
Story 2 ¢§%_+ &,
| GS'
Story 1 Yo 16
/7

Figure 4-4  Degreesof Freedom for the Bending
Springs (Shear Walls)

Again the &'s can be computed Trom the displacements Upys Vo 8 of
the center of mass at each story Tevel, using equation 4.7. From

equation 4.20 we have:

_ (,_'[ b
A = - [Kt¢¢ Kt¢5J a8
n-1

and

K- K K

&F tss ~ Koo Keos Kt¢6] A,
n-1

I

bn (4.21)

™

and

F F + AF

(4.22)

bn b,n-1 bn

This is the contribution of the bending springs {shear walls) to the

total force vector Fn’ reguired for the determination of Uy from 4.19.

+1
The bending momehts in the shear walls are computed from the

incremental shears obtained from 4.21, by multiplying them with the
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appropriate heights. These bending moments are checked at each time
step against the ultimate moments of the section and if larger, a
plastic hinge is assumed with moment at that section equal to the
plastic moment. The total tangent stiffness matrix for the wall is
assembled then, by using the appropriate stiffness matrices for each
segment, as determined by the conditions of its end. The stiffness
matrices for the various states of a segment and for the degrees of
freedom shown in figure 4-5 are given below., {(Axial deformations

have been neglected.)

¢ , |
Y, . |
[ oL R e
! t |
l , Ksg | Kag
and)
- T
M, | 2
2
B o
Foe |- o= b2
A Sa
Fg 8g

2| -
1]
=)

urvature , s = j-7r

Figure 4-5  Stiffress Notation for Bending
Spring (Shear Wall Segment)
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Mo hinges
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Hinge at bottom

Hinges at both ends
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The factor r which is the ratio of the two slopes of the mom-
ent-curvature diagram was chosen for most of our studies as 0.03.

From equation 4.19 we see that at any particular time step we
need the displacements of the two previous steps. This means that
in order to start using the method we must have the displacements of
the system at the end of the first step. This was done by using a
4th order Runge-Kutta method which is self sufficient. After comput-
ing the displacements, velocities and accelerations can be computed
from 4.18.

Ductility factors are computed for the shear springs by divid-
ing the maximum deformation induced in the spring by the yield de-
formation and for the bending springs by dividing the maximum mom-
ent at the joints by the yield moment.

For all our analyses we used: At = 0.07 sec. The numerical
method just described was selected, among others, because it is very
simple and hence less time consuming, and because its accuracy for
the size of problems considered here compares well with that obtained
by using more sophisticated methods. In the next section we will
present vesults obtained from comparisons of different anumerical

methods.

4.3 Comparisons of Numerical Methods

For a multidegree-of-freedom system most numerical integration
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schemes require a time step in the order of 1/5 to 1/10 of the smali-
est natural period, provided that this step reproduces well the Toad-
ing. In some cases, where the higher modes correspond to very stiff
configurations, this implies an extremely small At if the method is
to be stable, The purpose of this comparison was two-fold. First
we wanted to check whether & method described by Farhoomand and Wilson
(98}, which filters out higher frequencies, was really stable and
accurate for the situations mentioned above. If that was the case,
it was anticipated that the size of At could be determined only from
the smallest significant period. Second we wanted to see whether

the rule of choosing 4t as 1/5 to 1/10 of the smallest natural period
would give equally good results for the simple and fast "constant

h order

velocity" method, as for a more sophisticated one like the 4t
Runga-Kutta or Wilson's.

In all our comparisons we used 4 different numerical methods:
1) The 4th order Runge-Kutta, 2) Wilson's method, 3) "Constant
velocity method," 4) "Modified constant velocity" method. We also
programmed the exact solution (using modal analysis) for all the
cases. The modified "constant velocity" method is essentially the
same as the one described earlier (eq. 4.19), except for the fact
that it works with incremental displacements and forces rather than
with total values. Since the results obtained from it were almost
identical to those obtained from the "constant velocity," it will not

be discussed any further.

The basic idea of Wilson's method is the following: The accel-
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eration of each point of the system is assumed to vary linearly with-
in a smail time interval 2At. With this assumption the accelera-
tions at time steps t - At and t + At can be computed. The average
of these two values then, is taken as the acceleration at time step t.

Using this and equation 4.17, the following recurrence formulas were

derived:
3 -1 3 1
i =~ AP -5 U 2 -5l )
n 4At2 2At “n-1 2 n-1
U= u + l-At(u + 4 )
h n-1 2 n-1 n
— * ) l 2u ]_ 2 . F (4;23)
Uy = Upop FATU 3 AT+ AT U
3 3
A=K ¥ C+ M
t,n-1 = 2At 2At2
- 3 ° A\
P = Rn+] - Fn—1 + {2C + EE—M) Uy + (AtC + 2M) dn_] J
where: M = mass matrix
C = damping matrix
Kt = tangent stiffness matrix
R = 1oad vector
F = force vector

The case selected to test Wilson's method is shown in figure 4.6. It
is a portal frame whose dynamic degrees of freedom are the lateral
displacements of the two joints, 1.,2. It has two modes of vibration,
one corresponding to the simultaneous motian of the two Jjoints in
the same direction (influenced mainly by the bending stiffness of the

members) and the other corresponding to the motion of the two joints
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in opposite directions (influenced mainly by the axial stiffness of
the girder). The stiffness matrix, masses, natural periods and exci-

tation are shown in the same figure.

EY 52 6774.46  -6650.54
- s K -
~6650.54 6774.46J
M, =M, =0.126
Ve 1 2
T] = 0.2 sec
F = 80 sin(nat) T, = 0.0192 sec.

Figure 4-6 Portal Frame to Test Wilson's Method

Results for three different cases are tabulated in table 4-1, 4-2.
From the results in the upper part of table 4.1 we see that a time
step At = 0.01, which is 20 times less than the significant wode, is
inadequate for the Runge-Kutta and constant velocity methods. Wilson's
method, on the other hand, is stable, but it gives results that are
not correct or at least are far away from the exact answers. When a
value of At = 0.002 was used, which is approximately one-tenth of the
smallest period of the system, all methods gave good resulfs. The
numbers from Wilson's method are slightly smaller than the correct ones.
Table 4.2 gives results for At = 0.002, but @ = 10w. Again the same

conclusions are valid. A more careful Took at the numbers obtained
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of the Methods. Y

20m

Q= 207 &t = 0.01 sec
EXACT RUNGE-KUTTA WILSON CONST. VELOCITY
Time 4 Time Tine | Tine
Step Tl ,max Step ] Step 1 ,max Step 1
7 .034 6 .0360
P13 -.034 14 -. 0260
£ 107 035 108 .0230
113 -.033 122 ~.0270
307 037 Blows up 306 .0019 Blows up
314 ~.032 312 -.0168
507 .038 507 .0130
514 -.030 513 -,0050
707 -039 707 .0060
714 -.028 72 -.0100
907 .039 907 .0100
914 -.026 N2 -.0080
£ = 20m At = 0.002 sec
34 .0340 34 0340 33 .0348 32 .0346
66 -.0340 66 -,0340 67 -.0344 66  -.0346
533 0350 | 533 0350 | 534 .0362 £33 .0353
566 -.0330 | 566 -.0336 | 568 -.0325 566 - 0339
766 -.0329 | 766 -.0333 | 768 -.0317 766 - 0337
233 .0358 | 833 0357 | B34 .0369 233 .0356
866 -.0326 t 866 -.0332 | 8268 -.0313 866 -.0334
933 L0358 | 933 .0359 | 934 0371 G333 .0358
966 -.0326 | 966 -.033] 968 -.0390 E 966  -.0335
Table 4-1 Results for Portal Frame to Check Stability
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by Wilson's method will reveal that they keep decreasing constantly

as the time increases.

introduces artificial damping into the system which confirms the

same observation made in reference {98).

This leads to the conclusion that the method

Q= 10% At = 0.002 sec
EXACT RUNGE-KUTTA WILSON CONST. VELQCITY
Time Time 5 Time 5
Step 1,max Step 1, max Step 1,max
49 L0637 50 .0635 49 .0638
99 -. 1276 100 -.1269 99 -.1276
199 -, 2550 200 -.2530 199 -. 2550
Was not 249 .3190 250 .3170 249 .3190
Computed | 344 4460 351 5530 | 349 L4470
399 ~-.5100 401 -.5070 399 -.5110
750 . 056 751 .9470 750 L9570
800 -.1020 802 -1.010 800 ~1.0200
950 1.211 952 1.198 950 1.2120
999 -1.273 999 -1.240 999 -1.2740
Table 4-2  Results for Portal Frame to Check Stability

of the Methods. Q = 107

For the case at hand, however, when only the lateral displace-
ments of the floors of a building are maintained as dynamic degrees of

freedom {(with girders assumed infinitely rigid in axial deformations)
the smallest natural period is essentially constant independent of the

height of the building.

For a shear beam the natural fregquencies are:
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_(n -1
Y T AR (4.24)
H = total height
p = density
If we take n stories and n modes and write: H = nh, then:
_ 1, 7 G
w = (- 52 & D
and for relatively large n
i G
(.Lln n~ F E (4¢25)

which is twice the frequency of one story. A time step At of 0.01
seconds {used to reproduce the earthquake) should then be adequate

for all buildings that behave in a shear manner, independently of the
number of stories. To check this and at the same time compare the
accuracy of the various methods, a 30-degree-of-freedom close-coupled
system was analyzed for various inputs. The first three natural peri-
ods of the system are 3 sec, 1 sec, .6 sec, and the smallest 0.078 sec.
The system was with uniform mass and stiffness over the height. Re-
sults for various loading cases and various At are shown in tables

4-3, 4-4, and 4.5.

From tables 4-3 and 4-4 we can see that the time step chosen
was inadequate for Runge-Kutta and constant velocity methods. Wilson's
method, although stable, gave erroneous results. From both these
tables we can see that the response is predominantly 15t mode response
and the response obtained from the first three modes (table 4-4) is

for all practical purposes identical to the exact. The time step
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for this case is 0.05 sec, more than ten times smallevr than the third
natural period, which is 0.6 secs. When the time step, however, was
decreased to &t = 0.01 sec, all methods gave good results for both

sinusoidal and earthquake motion.

SINUSOIDAL GROUND MOTION i@ = 100 sinm(nit), At = 0.12 sec

EXACT (30 modes) Tst MODE SOLUTION WILSON

Time 5 Time 5 Time

Step top,max Step top.,mas Step top ,max
12 -34.62 12 -33.15 12 -34.81
24 54.44 24 53.82 24 h2.48
36 -54.81 36 -54.,01 36 -48.86
48 35.11 Runge-Kutta 48 33.65 48 24.13
72 -34.31 ﬁg?ogg?g;ta”t 72 -32.85 73 -39.36
84 54.27 blow up 84 53,70 85 52.19
96 -54.93 96 -54.12 97 -43.06
108 35.40 108 33.94 121 17.6GC
132 -34.04 132 -32.55 133 -43.36
144 54.13 144 53.58 145 50.71
156 -65.04 156 -54.,22 157 -36.76
168 35.69 168 34.23 182 24.47
192 -33.78 192 -32.25 194 -45.,71
204 53.98 204 53.45 206 47 .66
216 -b5.16 216 -5£.32 218 -29.64

Table 4-3  Comparison of Wilson's !lethod for At = .1 sec.
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SINUSOIDAL GROUND MOTION Ug = 100 sinr{nat), At = 0.05 sec.
EXACT (30 modes. 3 Modes 2 Modes 1 Mode WILSON
Time 5 5 5 Time
Step top,max top ,max top,max top,max| Step “top.nax
24 -35.27 -35.26 -35.40 -33.86 24 -35.12
48 55,60 55.52 55.77 54.85 48 54.85
72 =55.76 -55.68 -55.91 -54.,98 72 -54.66
06 35.60 35.57 35.74 34.19 96 32.60
144 -34.97 -34.96 -35.09 -33.55 145 -36.00
168 55.43 55.38 55.64 54.73 168 55.65
192  -55.89 -55.81 -56.,03 ~55.09 192. -53.,73
216 35.89 35.86 36.04 34.49 216 29.98
264 -34.66 -34.65 -34.78 -33.24 266  -37.60
288 55,27 55.23 55.51 54.61 289 56.23
312 -56.01 -55.93 | -56.14 | -55.19 | 313 -52.21
336 36.19 36.15 36.33 34.78 336 28.08
384 -34.38 -34.35 -34.46 -32.93 385 -39.47
408 55.12 55.08 55,37 54.48 409 56.30
432 -56,13 -56.05 -56.25 -55.29 433 -51.02
456 36.47 36.44 36.64 35.08 457 26.16
504 -34.09 -34.05 -34.15 -32.62 505  -40.87
528 54,97 54,95 556.23 54.34 529 56.27
Runge-Kutta and Constant Velocity blow up. B
Table 4.4  Comparison of Wilson's Method for At = .05 sec.
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SINUSOIDAL GROUND MOTION Ug = 100 sinw{nat), at = .01
EXACT (30 modes) RUNGE-KUTTA WILSOH CONST. VELOCITY
Time Time Time Time .
Step top,max | Step top,max | Step “top,max| Step  “top,max
120 -35.49 120 -35.51 121 -35.49 120 —35.49
241 55.99 241 56.00 242 55.91 241 56.00
357 -56.13 357 -56.09 358  -56.05 357 -56.15
477 35.80 477 35.70 479 35.58 | 477 35.81
720 -35.18 720 -35.31 721 -35.37 720 -35.17
840 55.81 840 55.87 841 55.72 840 55.83
957 -56,23 957 -56.19 958  -56.13 957 -56.27
SAME SYSTEM FOR 10 sec. OF EL CENTRO, At = 0.01 sec.
177 7.29 177 7.29 178 7.28 177 7.30
329 -17.51 329 -17.51 330 -17.61 329 -17.51
489 25.10 489 25.12 488 25.29 489 25.12
622 -28.44 622 -28.44 616  -28.49 622 -28.54
770 29.09 771 29.10 768 29.30 773 £29.10
925 -31.16 925 -31.18 921 -31.37 925 -31.19
Table 4-5  Comparisons of A1l Methods for At = 0.01 sec.

For all the above cases the value of viscous damping was zero.

To test our routines with damping a 10-degree-of-freedom system was

analyzed for the first 10 seconds of E1 Centro.

period was 1.42 sec, and its smallest 0.111 sec.

Its largest natural

The time step used

At = 0.01 sec and the percentage of critical damping B = 3%.
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The results obtained are Jisted here:

-_ n =
EXACT 6top,max 6.2644 at t = 6.13 sec.
B I = |
RUNGE-KUTTA Gtop,max 6.2649 at t = 6.12 sec.
CONSTANT VELOCITY & = 6.2570 at t = 6.12 sec.

top ,max

From all these comparisons, and others that are not reported here,

the following conclusions were reached:

1.

A time step At = 0.07 is sufficient for all the methods exam-
ined here and for the range of structures to be considered
in this thesis.

The accuracy of the resuylts obtained by the constant velocity
method were comparable with those obtained from the 4th order
Runge-Kutta and slightly better from those obtained by Wilson's.

Wilson's method was always stable for all the At's examined
in contrast to the other two.

Results obtained by Wilson's method are not correct if the

“time step is not sufficiently small.

It is not enough for Wilson's method to select the appropriate
At from the natural period corresponding to the last signifi-
cant mode. It is very probably the smallest natural period
that determines the size of At (for the results to be correct),
as ih the other methods.

Wilson's method introduces damping into the system.

Based on the above, the constant velocity method, being the simplest

and the fastest of all, was selected with a At = 0.01 sec., for all

our analyses.
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4.4 Brief Description of the Computer Program

A computer program was develaped for this analysis, written
in FORTRAN IV, that uses 350k of primary memory on an I.B.M. 370/155
computer., No secondary storage is required. The program is designed
for buildings having a maximum of 30 stories, 30 different structural
elements (in plan) and 3000 points of ground acceleration in each
direction.

Since it was intended primarily for research, no special ef-
fort was put into adding special features, desirable in a program for
commercial use (such as free input, problem-oriented language, unit
conversion, etc.). The geometry of the building is specified through
the number of stories, the heights, the number of elements, and a plan.
The information given for a plan is the coordinates of some point
along the centerline of each element and the orientation of this cen-
terline with respect to the x axis. The masses are given for each
fioor level separately, together with the coordinates of the centroid
and the corresponding moments of inertia. For bending springs (shear
walls) the required properties are given floor by floor. For shear
springs there is the option of either specifying the spring charac-
teristics (and spring type) floor by floor directly or in the case
of frames to specify its geometry and the member properties at each
Tevel, and then the program will compute the spring properties by
using the approximate formulas presented in chapter 2. Information
for identical elements or floors need not be repeated. A single num-

ber is required for the viscous damping,the percentage of critical to
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be used in each mode. The user has the option to specify the num-
ber of modes he wants for the elastic part of the analysis, together
with the coordinates of a "geometrical center" with respect to which
the modal shapes will be computed. The next set of information
needed by the program is about the earthquake ground motions. It
can read and store two different 2arthquake records {(up to 3000
points each), one for the x and the other for the y direction, and
it can combine them with appropriate direction cosines, so that direc-
tions of the motion other than x and y can be considered. The user
can also specify a number of scales by which the originally read
accelerograms will be multiplied and new analyses will be performed.
The information given with each earthquake record is a scale factor,
a time interval At and the values of the acceleration. Finally, the
Tast piece of information required concerns plotting of various time-
histories for relative displacements, absolute accelerations, inter-
story displacements and force versus deformation, at any level and
for any direction. If the required number of plots exceeds the capac-
ity of the program, the analysis will automatically be repeated until
all the requested plots have been produced. This particular feature
was a product of trade-off between increasing core requirements, pos-
sibility of using secondary storage and computational costs, arising
from the fact that at each step of the numerical analysis previous
information is lost, unless stored.

The program will print the following results:

1. Natural periods and modal shapes. (two for x and y and one
for torsion).
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For each element and for each floor it will print maximum
interstory displacements, maximum ductility factors and
permanent sets.

For each fioor level:

a} Maximum floor acceleration, direction and time of occur-
rence,

b) Maximum floor displacement (with respect to the ground)
direction and time of occurrence.

¢) Maximum interstory displacement (of the centroids), direc-
tion and time of occurrence.

d) Maximum x acceleration, displacement and interstory dis-
placement, corresponding y and rotational values and
times of occurrence.

e) Maximum y acceleration, displacement and interstory dis-
placement, corresponding x and rotational values and
times of occurrence.

f) Maximum torsional acceleration, rotation and interstory
rotation, corresponding x and y values and times of
geceurrence.,

for each floor level:

Root mean squére of the maximum accelerations and inter-
story displacements of all the elements for the x and y
directions.

For each floor level:

Root mean Square of the time histories of the global accel-
erations and interstory displacemtns for the x and y directions
and for the torsion.

For each floor level:

Average root mean square of accelerations and interstory



188

dispiacements for the x and y directions computed from
time nistories of each of the elements.

/. Maximum base shears and overturning moments in the x and vy
directions.

Qutput 4, 5, 6 is intended for Tater use of the program to estim-
ate economic damage to the building due to earthquakes of differ-
ent intensities. The program has also the capability of producing
plots on an SC4020 plotter. The user can request and obtain any

number of plots for the following:

1. For any floor Tevel and for any of the three directions:

a) Time histories of absolute accelerations.

b) Time histories of displacements (and rotation} relative
to ground.

c) Time histories of interstory displacements (and rota-
tions}.

d) Plot of total floor shear (torsional moment) vs. corre-
sponding displacement (rotation) for all the duration
of the earthquake.

2. For any element and for any floor:

Time histories of accelerations.

)
) Time histories of displacements relative to ground.
) Time histories of interstory displacements.

)

Plot of spring force vs. deformation for all the dura-
tion of the earthquake.

The user can specify the starting and finishing time for the time
history plots.
The maximum number of points that can be plotted in one anal-

ysis is 4500. If the user specifies plots that need N points in
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total where N > 4500, the program will repeat the ana1y5i5(1%56-+ 1)
times untill it produces all the reguested plots. For each earth-
guake scale that the user requests, he must specify what plots he

wants. These plots can be different from one scale to another.

4.5 Some Comparisons of Resuits with Exact Solutions in the Elastic
Range

The analytical model described in 4.2 approximates muitistory-
multibay frames as close-coupled systems, determining their lateral
stiffness story by story, using formulas from chapter 2. It is antic-
ipated that this approximation would give good results for buildings
whose ratio of height to width is not excessively high. If this is
not the case, then axial deformations of the columns become important
and reduce significantiy the Tateral stiffness of the building. Under
these conditions the method used is not valid any more, and the re-
sults obtained can be erroneous. In order to see to what extent the
above is true, we determined the natural periods and modal shapes of
three different structures first with this program and then with
another one that solves the problem exactly, accounting for all the
degrees of freedom of a frame. The first structure analyzed is a
three-story building. The geometry and the properties of the struc-
ture are shown in figure 4-7. The areas of the columns were assumed
very large and similarly the moments of inertia for the girders. The
properties of the structure were so chosen in order to see the accur-

acy of the new program under "ideal conditions." The results obtained
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are shown in table 4-6. We see that the agreement is perfect, as

expected. HModal shapes were for all practical purposes identical.

Frame 1 ) 5
= : ! &l i, = 50,000 »'fiﬂfﬁ——s-?-;‘i
H
T oo 0o g M, = M, = 200000 "
150 g L g e = M3
|
R *Jlro' ! E = 30,000 5%25—
L Frame 2 _;f
Moments of Inertia
LL 150" —>l<"4150"# in®
Floor Plan
30000 | T 50000
600 500 150" 500 | 500
50000 | 50000
y
800 800 1607 500 500
100000 J'_ | 50000
1000 1000 200" 500 500
T 77 7 y7/78
< 300" ] 1500 —
Frames 1, 2 ‘ Frames 3, 4

Figure 4-7  3-Story - 1-Bay Building with Eccentricity
Very Stiff Girders, No Column Shortening
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Mode 1 2 3 & 5 6 7 g 9
Tapprox 3.058 | 1.78 | 1.331 {.811 | .475 1 .459 | .415 | .327 | .260
Texact 3.056 | 1.78 | 1.328 | .806 | 473 | .455 | .409 }.324 1 .256

Table 4-6  Exact and Approximate Periods in Seconds for a Three-
Story Space Structure

The second structure analyzed was a 13-story steel frame. It
is identical to the frame Si°Y1 whose properties are given in chapter
5, except for the first story which here is 25% stiffer. The axial
deformatibns of the columns were taken into account for the exact

solution. Periods for the first 4 modes are given in table 4-7.

Mode 1 2 3 4
Tapprox 4 447 1 1.561 L9371 17
Texact 4.410 1.470 .818 .565

Table 4-7  Exact and Approximate Periods in
Seconds for SFY1 Frame

Again the agreement for the first mode at least is very good.
It is a little surprising, however, that the approximate periods are
s1ightly larger than the exact, while the opposite should be expected.
The expianation to this is that the particular frame analyzed has 4

spans and very flexible girders. So the effect of the axial shorten-
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ing of the columns is really negligibie in this case. The above
difference is due to the other approximations involved in the formula
used to estimate the story stiffrness. The effect of the column shor-
tening, however, is anvarent in the next case. The frame shown in
figure 4-8, which was taken from reference (76) is a frame designed
by Clough and Benuska (7) and used for their analyses reported in
reference (7). We ran this frame first with the program developed
for this thesis, and second with an exact program that pserforms dy-
namic analyses of muitistory frames, accounting for all the degrees
of freedom. The exact analysis was done for three cases. The cnly
difference between them was the axial deformations of the columns.
For the first case we assumed very large arveas of the columns. For
the second case we used numbers reported in reference {(70) for ah
early version of this frame that assumes square columns, and in the
third we used 1/10 the areas of the columns used in the second. The

resuylts for the first 4 modes are summarized in table 4.8.

Mode ] 2 3 4

Approximate | 1.577 | 0.653 | 0.398 { 0.250

Case 11 1.563 ) 0.642 | 0.387 | 0.278

—
o |Case 2| 1.862 | 0.702 | 0.404 | 0.288
X

ul | Case 3 | 3.521 | 1.018 | 0.528 | 0.362

Table 4-8  Exact and Approximate Periods in

Seconds for Clough's Frame
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It is obvious from Table 4-8 that the effect of axial defor-
mations of the columns for which the approximate method used haye
doesn't account, is important in this case. Clough and Benuska (7}
and Giberson (76) repart a first natural period for this frame of
2.2 seconds. Apparently then the areas of the columns used must be
somewhere between those of cases 2 and 3. These areas were not avail-
able when this thesis was written.

The conclusion from all these comparisons is that the program
gives good results in cases where the axial shortening of the columns
is not important. If this is not the case, however; the frame cannot

be properly considered as a close-coupled system.

4.6 Some Additional Considerations

A formulation that accounts for gravity loads and flexibility
of the soil will be presented here. Due to time constraints, however,
this formulation has not been implemented into the version of the pro-

gram reported in this thesis.

4.6.1 Gravity loads.

The way in which gravity lcads affect the deformations of
structural members is by introducing secondary moments that are pro-
portional to the displacements at any point. Assume that member ADB
in figure 4-9 is in equiTlibrium under the action of the Tateral force
F and the gravity load Mg. Also assume that the boundary conditions

at A and B are such that the member has the general deflected shape
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Figure 4-9 Effect of Gravity Loads

as shown in the figure. Let 6] be the displacement at B due to the
action of F alone and 62 the additional displacement due to Mg. The
additional moments introduced by the gravity load Mg are broportiona1
to the shaded area with a maximum at A that is equal to Mgét. A
straight 1ine approximation to this moment diagram is also shown.
This can be produced by a horizontal force Fl = Mgﬁt/h acting at B.
It can he immediately seen then, that the effect of gravity on the

lateral stiffness is its reducticn by a factor Mg/h, i.e.:

g T k- (4.26)

where k = %—- is the Tateral stiffness without including gravity
! load effects.

This can seen more rigorously as follows. Let us call:
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§
f= —%~= flexibility without gravity loads

§
f, :._E = flexibility with gravity loads.

Then with the straight 1ine approximation mentioned above we can

write: | Mgd
- -t _ Mg
2
or Hgs
_ hF
%2 7 TTHGE
V-5
So T B
t = F F

and replacing 62 we obtain:

t - T_ Mg
f h
By definition, however:
- L
k=¥
50 in terms of stiffnesses we have:
. ]
k
t g
k -3
-k - Mg
or kt k h

For a multidegree-of-freedom system, then, it is only necessary to

add to the inertia forces of each level a force:
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n 8. n 8.
+1 ]
Fo o= - Mg - + M,g =L
19 Q,z;zjﬂ QU JLZJ' oy
where: Fjg = Additional force at level j
MQ = Mass of floor &

g = Acceleration of gravity
hj’ hj+] = Heights of floors j, j+1
6J = uj - uj—]
1 T Y Y
Ugs Ugpp = Dispiacements of floors j, j+1 relative

to the ground.

4.6.2 Effect of soil flexibility

Soil flexibility can be incorporated in the analysis by add-
ing appropriate springs and effective masses, whose properties will
be determined from those of the soil (see for example Whitman and
Richart (99)). In the general case we will have to consider six
springs corresponding to the six degrees of freedom of the founda-
tion. In this formulation, however, we will not consider vertical
accelerations, but only swaying, rocking and torsion. In arder to
make the formulation easier to understnad, a two-degree-of-freedom
system having rocking and swaying of the foundation will first be
considered, and then we will generalize it for multidegree-of-free-
dom systems in two directions, including torsion as weli. Figure

4-10 shows the system considered.



198

The structural properties are described by kL’ the Tateral
stiffness matrix of the structure for rigid foundation. Thus the

formulation is valid for both close-coupled and far-coupled systems.

L 7
$ L K1y SP
m, @ — - K =
2 T hy L=, )
. l 21 22
i
o
I

Figure 4-10 2-D.0.F. System with Flexible Foundation

The expressions for the absolute displacements of the three masses

are:
Upp = Up ug =& +up*thydg+ ug
Upy = Uy ¥ ug = 62 tug t h2 ¢B + ug (4.27)
Ugr = UYp * Yy
where: _
§p = up - ug -yt
Structural (4.28)
S.= Uy - Up - hy o deformation ’
2 2 B 2 "B

Ugs ¢p * displacement and rotation of the foundation.

The equations of motion can then be written as follows:
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m]fj1T * Ky 61 * kyy 5 = 0 )
Mpligy *+ kg1 85 + kyp 8y =0

Mgl * kg = (kyp # kpp)d 8y = (kg + kyp) 6 =0 |
Iptg * kodg = (kyy hy + kgq ) & = (kyy hy + kg ) 8y =0

and replacing 61 62 obtained from 4.28:

Myly + Kyquy + kqpup = (kyq + kydup = (kqphy + kyoho)eg = - myl

Maliy + koquy + kootly - (kpp + koo dup = (Kpghy + koohy ) = - myli

g
Mgl = (kqp + kyplup = (kqp + kppluy
(ky + kyp + kyp + kyp + Koo Jup +
 }(4.29)
(kqqhy + kgyhy + kyphy + koohyJdg = = mpil,

Ig¥g = (kyqhy + kgphpdup - (kpphy + koohs) Uy +

(kyphy + kophy + Kpohy + kyohsJug +

2 . h2 -

(k 12M2 T Koohotks

11

These are the differential equations of motion for the system of
figure 4.1C. The unknowns are defined by equations 4.27 and 4.28.

In matrix form these equations can be written as:



T ] T.:]_ ~ - TJ]“
2 O B T m; 0
1 | L | L U m {
Fl-m—H——m 4= = 2, 2 2
) T | T T . =
11K ; k1K T ! 'K H U i, i
o Ta : .
[ my
= - | my i (4.30)
Mg
_ .
[1 ‘“h1
where : I= . H =
1 h,

The numbers around the stiffness matrix define the dimensions of the
corresponding submatrices.

The part of the total displacements of the structure needed
for the determination of forces is computed from 4.28 after Ugs Ups
Up s ¢B have been determined from 4.30. The generalization of the
above procedure to a system with 3n degrees of freedom is done as fol-
lows. First we write in vectoyr notation the equations for the dis-

placements corresponding to 4.27 and 4.28, but including torsion as

well.

—
1]

" U+ 1 ug 6X + 1 Ug + H ¢BY -Y 0

m B

==
1

Y

8. = 0 =6 +18

\i
. [%
T V+Ivg ) +IvB-H¢BX+xmeBJ (4.31)
T 5 B
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where 6X =U-1 Up ~ H ¢BY + Ym 88
dy =V ~1 vg t H ¢BX - X 85 (4.32)
SS=B-ISB

Figure 4-11 shows the coordinate system used.

7,0

\

Figure 4-11  Coordinate System Used

If we replace u,v,8 1in equation 4.13 by the above expres-
sions for éx, Sy, BS and in the right-hand side we put the vector of
inertial forces, we have the equations of motion for the masses in
the structure. Since the stiffness matrix is symmetric, the equa-
tions for the foundation can be easily written. Diagonal terms are
of the form of the ones in equation 4.30. The upper part of the
stiffness matrix, the mass matrix, the displacement vector and the

load vector are given in the following pages. Also given are the

sizes of the various submatrices.



202

MX
M
Y
1
M x
IBy
IBx
IBz
L -
Augmented Mass Matrix
~ = ~ T
| U n qu’g ,
V M"
" v'q
g n 0
Ug 1 mbxug
Vg 1 mbyvg
gy ! 0
By 1 0
BB 1 0
Displacement : l.oad

VYector Vector
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The stiffnesses of the soil springs are in the diagonal terms,

kx’ ky for swaying, k¢x’ k¢y for rocking and ke for torsion.

I is a unit vector.

H is a vector with the heights measured from the level of the

harizontal springs.

Xm’ Ym’ vectors containing the x and y coordinates of the cen-

ters of masses.

Mpy s mby = gffective masses of the foundation.

| P

bx* by’ IBz = effective moments of inertia of the foundation.

Thus we have (3n + 5) equations witn (3n + 5) unknowns.
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CHAPTER 5
RESPONSE OF MULTIDEGREE-OF-FREEDOM SYSTEMS

UNDER EARTHQUAKE EXCITATION

5.1 Introduction

The computer program described in the previous chapter was
used for the analysis of several buildings and the results obtained
are reported here. Three typical frames with 5, 10 and 20 stories
were designed and analyzed in an attempt to investigate to what extent
the conclusions reached in chapter 3 for 1-DOF systems apply to multi-
degree-of-freedom systems (M-DOF) as well. Torsion was introduced in
one case by assuming eccentric masses and ductility factors are com-
pared with those when there is no torsion. HNext, results from the anal-
ysis of three different buildings are presented. The first one is a
13-story steel frame building, the second is a 17-story concrete shear
wall building, and the third one is an 11-story concrete frame build-
ing. They were all designad by an engineering firm according to the
Uniform Building Code (U.B.C.}. FEach of them was actually designed
for 5 {0,1,2,3,4) earthquake zones (4 being an extra one added), so for
each building several designs were produced. Each of these designs
was analyzed for an artificial earthquake scaled to seven different
intensities. The results of these studies are intended for damage pre-
diction during an earthquake; not all of them, however, will be re-
ported here.

Clough and Benuska {7), Goel {8), and Anderson (9} have done

the most systematic studies on inelastic response. Clough's studies
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are the most reliable source of information on inelastic response

of plane frames. The basic frame that he used is the ohe shown in
figure 4-8 and his main conclusion is that yielding occurs mainly

in the girders, while the columns remain elastic except for the ones
of the top few floors. For the E1 Centro earthquake, ductility fac-
tors up to 5 should be expected in the girders. He has used bilin-
ear moment curvature relations and has neglected the effect of axial
Toads on the plastic moment capacity of the members. He also stud-
ied buildings consisting of shear walls and moment-resisting frames.
Goel's main frame has ! bay, 25 stories, and he analyzed it for

three different records, all scaled to the same intensity (1.5 x El
Centro). He has used moment-curvature relationships of the Ramberg-
Osgood type, and he assumed that the columns remain elastic. The
rest of his assumptions are the same as Clough's. His conclusions
are in general similar to Clough's, except that the ductility factors
he obtained are always much smaller. He also concludes that the ef-
fect of gravity Toads on the ductility requirements is insignificant,
while the freguency contents of the accé1erogram are very important.
Anderson used a T-bay 10-story and a 1-bay 20-story frame to compare
the effect of the design philosophy on the inelastic seismic response.
He compared minimum weight design, allowable stress, and strong col-
umn-weak girder design. He used bilinear moment-curvature laws, he
included gravity loads, and he allowed for hinge formation in the span
of the girders. He also included the reduction of the plastic moment

capacity of the columns due to the axjal loads. His main findings are
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that minimum weight design produces frames unacceptable for effec-
tive seismic resistance and that strong-column weak-girder frames
are superior to those produced by the allowable stress method. The
ductility factors he obtains are about similar to those of Clough,
except for the columns of the frame that were designed according to
allowable stresses, where he obtains much Targer numbers. This is
due to the reduction in effective yield moment caused by axial-
flexural interaction.

While the above conclusions are valid for the particular
frames and models used, extrapolation of these conclusions to other
cases is questionable. The main reason for this is due to the geome-
try of the frames analyzed. It was pointed out in chapter 4 that
axial shortening of the columns of Clough's- frame produces an in-
crease in the period of vibration from 1.577 sec. to 2.2 sec. This
effect is even more pronounced for the frames in references (8) and
(9), since these frames have only 1 bay and 10 to 40 stories. Results
for 20-story, 1-bay frames may not be appiicable to cases wheré

axial shortening of the columns is negligible.

5.2 Effect of Natural Period on Ductility Reguirements of MDOF-
Close-Coupnled Systems

One of the conclusions from the studies in chapter 3 of this
thesis was that the ductility requirements of 1-DOF non-linear systems,
whose strength was based on base shears computed by code procedures,

depend on the natural period of the system, increasing as the natural
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period decreases. In order to see whether the same conclusions can
be extended to MDOF-systems as well, three basic frames with 5, 10
and 20 stories were analyzed. The 20-story frames are variations

of the basic frame used in references (7) and (76). The properties
of the frames analyzed and the ductility factors obtained are shown
in figures 5-1 through 5-5. The stiffness variation with height

for all the cases is linear, with a slope similar to that of the
basic frame in reference {7), but the numerical values were adjusted
to give periods of 0.5, 1.0 and 2.2 seconds. The frames were de-
signed according to the U.B.C. for gravity loads and zone-3 earth-
quakes. The plastic moments were then assumed to be twice the de-
sign moments for the girders and six times for the columns. Ultimate
strength was then estimated as described in chapter 2. The force
deflection model used was trilinear with first breaking point at one-
half the ultimate strength and ductility factors were computed with
yield displacements corresponding to this point. The excitation was
the first 10 seconds of the NS component of the E1 {entro 1940 record.
10% of viscous damping was assumed in all the cases.

Two 5-story frames were analyzed (Figure 5-1), the difference
between them being that B has its 1St story 12% stronger than A and
also has stronger strength taper. This was achieved by varying the
relative stiffnesses of columns and girders. e see that frame A has
a very large ductility factor (~ 10.3) at the bottom story, while for
B it is the second story that has the biggest. In both frames, how-

ever, the ductility factors are largest at the lower stories, decreas-
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ing continuously from bottom to top. The average ductility for ail

stories is 4.8 for frame A and 4.7 for B. The same behavior is ob-

served in Figure 5-2 for the 10-story frames. The maximum ductility
for A is about 5 and for B about 6, whiie the average for all stor-

ies is 3.2 and 3.35 respectively.

Figure 5-3 shows the properties of the three 20-story frames
analyzed. The only significant difference between A and B is the
strength of the first story, which for B was again made larger. Both
frames have a natural period of 2.2 sec. Frame L is identical to
that of Figure 4-8 and has a natural period of 1.577 sec. All three
frames have the same masses and the same variation of stiffness from
top to bottom. The numerical values for the stiffﬁesses of A, B were
chosen so as to match the natural period of the frame reported in
references (7) and (76). Strengths for these two frames were com-
puted as described above, while for frame C the properties of Figure
4-8 were used. At this point it must be recalled from the previous
chapter that the difference between the natural period 2.2 reported
for frame C and 1.577 obtained here is due to the axial shortening
of the columns which is not accounted for in our model. Ductility
factors for frames A and B are very similar except from the first
story, the difference being due to the strength increase of this
story for frame B. The behavior of frame C (Figure 5-5) is very simi-
lar to that of A, except that its ductility factors are slightly
higher. The average ductility for all the 20 stories are 1.94, 1.9

and 2 for A, B and C respectively. It is interesting to observe
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that the variation of the ductility factors with height is similar
to that reported for the girders of the same frame in reference (7),
except for the lower stories. The explanation for this is that for
this particular frame most of the inelastic action takes place in
the givrders, while the columns remain elastic. On the other hand,
since our model cannot account for axial deformations of the columns,
it is bound to have a first modal shape close to that of a shear
beam, which has the largest interstory distortions at the lower stor-
ies. This is very clearly shown in Figure 5-6, in which the maxi-
mum relative displacements for frame A are compared to those from
reference (7). We see that our model predicts larger displacements
at the lower stories, while for the rest there is reasonable agree-
ment. Concentration of yielding in cne story creates "soft story"
action which reduces the response of the stories above. It is
partly for this reason that the average ductility for all stories
here is slightly Tess than that of Clough as reported in chapter 3.
A1l the above suggest that ductility requirements for frames
designed by the U.B.C. increase as the péfiod of the structure de-
creases. This is in agreement with the conclusions reached in chap-
ter 3 for 1-DOF systems. They alsc suggest that for buildings which
deflect essentially like a shear beam {axial shortening of the col-
umns negligible}, the first story should be made either stronger
than what usual design practice produces, or more ductile. In cases,
however, where axial deformation of the columns is important, the

simplified model of this thesis will overestimate ductilities at the
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lower stories and underestimate them at the top.

5.3 Effect of Torsion on Ductitity Requirements

Almost all of the studies on inelastic response of MDOF-
systems are for planar frames, the main reason for this heing the
rapid increase of computational requirements for increasing numbers
of degrees of freedom. With our model, however, in which we have
reduced the total number of degrees of freedom to three per floor,
it 1s possible to study non-symmetric structures with mass eccentric-
ities and to investigate the effect of torsion on thé inelastic re-
sponse. Torsion is always undesirable in earthquake resistant de-
sign, because it introduces additional shears and moments to the
various structural components. When the structure starts going in-
elastic, torsional effects may be aggravated due fo possible unsym-
metric yielding and shift of the original torsional center.

In order to illustrate the capability of the computer pro-
gram to deal with unsymmetric situations in space and at the same
time see the effect of torsion on the ductility requirements, two
b-story structures (Figure 5-7) were analyzed for 10 sec. of the
NS E1 Centro 1940 record. All the frames are identical to frame A
of Figure 5-1 and for case A the mass eccentricity is zero, while
for B it is constant for all the floors and egqual to d/6. The masses,
mass-moments of inertia, and natural periods for cases A and B are
summarized on the following page (Table 5-1). 10% of viscous damping

was assumed for all the modes.
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CASE A CASE B
Floor| Mass |Inertial Mode| Period Mass { Inertia| Mode | Period
1 .380 t 20500, 1 .646 L380 | 20500, 1 .590
2 .380 t 20500, 2 .501 .380 1 20500. 2 LA469
3 .334 | 18000, 3 .250 L334 | 18000, 3 .267
4 .334 | 18000, 4 .193 .334 | 18000.1 4 .181
5 272 | 14700. 5 .16 272 1 14700.1 5 172

Table 5-1 Properties for Torsion

The first mode of both structures is torsional and the second trans-
lational. The translational period in case A is identical to that

of the 5-story frame alone, while in case B it has been reduced to
469 due to the coupling with torsion. The results are presented

in terms of the ratio of the maximum interstory displacements for

case B (eccentric masses), to the maximum interstory displacements

for case A (no eccentricity). For the inelastic case, this ratio is
equal to the ratio of the ductility factors for the two cases. The
top part of Figure 5-7 is for elastic behavior which was achieved

by setting very high strengths so that yielding never took place.

In the elastic case we see that frame 1 has reduced distortions, while
for frame 2 they have increased. The increase is larger for the lower
stories and becomes less for the top ones. In the inelastic case,
however, the behavior becomes irregular, and for both frames there

are stories where the ductility requirements have increased. For

case B the maximum increase is 26% and occurs at the 3rd floor, while

for A it is 16% and occurs at the ISt. This increase of ductility
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requirements, when torsion is introduced into the structure, can be
explained with the reasoning given at the beginning of this para-
graph. At this point it seems that more cases should be investiga-
ted by varying the amount and the distribution of mass eccentrici-
ties at the different Tevels and by using a wider range of struc-
tures (to include also shear walls), before quantitative suggestions

can be made.

5.4 Response of 3 Symmetric Buildings to an Artificial Earthquake

The three buildings for which results will be presented here
were designed by an engineering firm for gravity and earthquake loads,
according to standard design procedures. They were selected so as
to represent typical apartment or office buildings in the Boston area,
as part of ongoing research for optimum seismic protection. Although
they have been claimed as typical, they are somewhat flexible, es-
pecially the steel building.

The motion for which these buildings were analyzed is an arti-
ficial earthquake with duration of 10 seconds. The input modulating
time function has a rise time of 2 seconds, is constant between 2
and 7 seconds, and decreases linearly to zero between 7 and 10 sec-
onds. The response spectra of this particular motion for u = .11g
and for several values of viscous damping are shown in Figur2a§~8,
This motion was scaled to several peak ground accelerations with a
maximum U = .27qg and all the results presented here are for this

max
value.
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5.4.1 13-Story Steel-Frame Building

The steel-frame building has the layout shown in Figure 5-9,
with 3 moment resisting frames in the X-direction and 4 in the Y.
The elevations of these frames are shown in Figures 5-10 and 5-11.
Between the ground and the 1St floor there is another story, which
does not extend over the whole area, but leaves a large portion open.
This story was eliminated from the mathematical model, by increasing
the stiffness and strength of the 1St story appropriately. The vari-
ous frames are almost identical in each direction, except for the
first story, which, however, was made identical by uniform distribu-
tion of the additional stiffness and strength of the mezzanine Tevel
that was eliminated. Three different designs, for earthquake zones
2, 3 and 4, were analyzed. The Z factor for zone 4 was taken as 2.
The notation used is SFXT, SFY1 for zone 2, SFX2, SFYZ2 for zone 3,
and SFX3, SFY3 for zone 4, X being for the X-direction and Y for
the Y. The properties of SFX2, SFYZ2 are tabulated in Table 5-2,
while the masses and the natural periods of the structural frame
alone have been included in Figure 5-%2. The lightweight partitions
of this building have been detailed so as not to interfere with the
response of the structural frame. On the other hand, a set of block-
masonry walls that forms the elevator area was included in the analy-
sis, as a limited-elastic model—i.e., with resistance varying lin-
early up to a certain interstory distortien and then dropping to zero
when this distortion is exceeded. The properties of these walls were

estimated from the architectural plans, and the Timiting distortions
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were found to be .02" in the X direction and ,033" in the Y. The
main effect of these walls is to increase the stiffness of the
building considerably without affecting the ultimate strength, since
at high levels of excitations the walls break. After including
these block walls the natural periods of vibration were computed

and the results are tabulated below, together with measured values

from ambient vibrations (Table 5-3).

NATURAL PERIODS

| X Y
COMPUTED 1.53 sec. 1.95 sec.
{walls included)
| COMPUTED .~ 5.27 sec. 4.50 sec.
3(wa1ls not included)
MEASURED ~ 1.70 sec.  2.00 sec.
Table 5-3

Computed and Measured Periods of Steel Building

The agreement is more than satisfactory, given the complex arrange-
ment of the walls and the uncertainty about their properties.

The force-displacement model used for the analysis is a tri-
lineay one with ultimate strength twice that at first yielding. The
slope of the second branch was taken as 20% of the initial and duc-
tility factors were computed based on first yielding. 2% of vié—
cous damping was assumed in all the modes. Results of the analysis

are shown in Figures 5-12, 13, 14, 15 in terms of maximum ductility
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factors, maximum relative displacements and maximum interstory dis-
placements. There is a considerable decrease of ductility from
case 1 to case 2, but no improvement seems to occur for case 3,
which was designed for a Z factor equal to 2. On the contrary, this
design seems to have slightly higher ductility reguirement than the
second one that was designed for zone 3 (Z = 1). For the first de-
sign a maximum ductility factor of 5.2 occurs at the 11th story,
while for the others it occurs at the first being 2.5 in the X-direc-
tion and 3.5 in the Y. The behavior in the two directions is very
similar as expected, because the variation of strength and stiffness
across the height is similar. In the same figures the required duc-
tilities when the block walls were included in the analysis have been
plotted. The effect is really negligible as expected, since the walls
break and are assumed not working at an early stace of the excitation.
It should be realized, however, that the ductility factors computed
are some kind of average numbers for the whole floor, while local
ductilities corresponding to individual members may be higher,

In Figures 5-14, 5-15, maximum elastic and inelastic displace-
ments have been plotted. Again we see that the block walls have a
negligible effect. Several other interesting observations can also
be made here. It is a little surprising that the maximum relative
displacement of the top story increases as the earthguake design
zone increases. This is consistently observed in both X and Y direc-
tions. This behavior can be explained if one Tooks at the spectrum

of the particular input motion (Figure 5-8}. The first design with
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a natural period 5.27 sec. in the X direction lies at the very ex-
treme of the spectrum (line of constant displacement), so when we
increase the earthquake design zone, we produce a stiffer structure,
shifting it to the left. The design for zone 3 lies still on the
same 1ine, while that for zone 4 is at the very peak (junction of
the constant velocity with the constant displacement line). The
slope of the right branch of the spectrum is different from 45°, so
this 1ine is not a '"constant displacement™ 1ine. The amount of
change is indicated below (Table 5-4), in which the spectral dis-
placements for the three designs have been tabulated. They are
given for the first mode only since this is the only significant one

for the displacement at the top.

SPECTRAL DISPLACEMENTS

Zone 2 | Zone 3 { Zone 4

2.35 3.26 5.65
3.15 5.25 5.90

Table 5-4  Spectral Displacements

It is this increase of the spectral displacement as we move to
shorter periods, within the long period range of the spectrum, that
creates the rather strange behavior. Another interesting observa-
tion is the difference between elastic and inelastic displacements.
It has been claimed (based mainly on studies for 1-DOF systems) that

within the long period range of the spectrum (constant displacement
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region) the maximum inelastic displacement is approximately equal
to the maximum elastic. This does not seem to be the case in
Figures 5-14 and 5-15 except for SFX1. The reason for this is
partly what was mentioned above (when a structure starts yielding,
its period increases), but mainly the yielding that takes place in
the first story. If we look at the ductility curves of the previ-
ous figures, we see that when the difference between the two re-
sponses is big, we always have large amounts of plastic deformations
in the first story, which acts then essentially as a "soft story"
and absorbs a considerable amount of energy. The result for the
upper part of the structure, then, is a considerable decrease of
the response. Similar behavior was observed when the E1 Centro
record was used. Figures 5-16, 17, 18, 19 are time histories of
accelerations and displacements for the top story for Ug = 0.007¢
(elastic behavior) and Ug = ,27g (inelastic). From 5-16 and 5-17

we can clearly see the effect of the block walls and the time at

which they break.

5.4,2 11-Story Concrete-Frame Building

The second building that was designed and analyzed is an 11-
story concrete building with moment resisting frames in both direc-
tions, The building was designed for gravity loads and a zone 3
earthguake according to the U.B.C. In the X direction only the two
exterior frames were designed to carry the lateral forces, but we

also included in the analysis the two interior Tines of columns, by
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using part of the slab as an effective girder. In the Y direction
all the 11 frames are moment resisting frames, designed as such.
The framing plan and the notation for the frames is shown in Figure
20, while the frame elevations are shown in Figure 5-21. Table 5-5
contains the properties of the frames and also the first natural
periods. The moments of inertia given in this table were computed
using the approximations discussed in chapter 2 of this thesis, so
it should not be surprising that the periods of Table 5-5 are some-
what high, compared to those that would be obtained if uncracked
sections had been used. The force-deformation modei used for the
analysis is a stiffness degradation with slope of the unloading
branch equal to the initial one. The ductility factors were compu-
ted by using yield displacements corresponding to the maximum strength
of each story as estimated by procedures described in chapter 2. It
should be made clear here that this yield displacement is twice that
used for the steel frame, which was based on the trilinear model.
If this gradual hinge formation was to be accounted for and yield
displacements to be computed as for the trilinear model, then the
ductility factors reported here would be about twice as much. The
amount of viscous damping was taken as 5% in all the modes. Parti-
tions were assumed to be detailed so as not to interfere with the
frame response.

Figure 5-22 shows the maximum ductility factors plotted for
the different stories and corvesponding to a peak ground acceleration

equal to .27g. In the X direction we see that the moment resisting
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th floor, while

frame has a maximum ductility of about 2 in the 9
the interior frame remains almost elastic. The reason for this is
that the exterior frame is much stiffer than the interior one, so

it takes a bigger portion of the force. On the other hand, the
interior frame has considerable strength and hence it behaves elas-
tically. In the Y direction the ductility factors for the two types
of frames are very similar, the maximum occurring at the bottom
story. In Figure 5-23 maximum elastic and inelastic displacements
relative to the ground were plotted, as weil as interstory displace-
ments. Again we observe that in the Y direction, 1n‘wh1ch a sub-
stantial amount of yielding takes place in the 1St story, the elas-
tic displacements in the top portion of the building are larger,
while in the X direction they are about equal to the inelastic.
Various time histories are shown for the top story in Figures 5-24,
2b, 26, 27, in which the influence of the higher modes on the accel-
eration response is apparent, Figure 5-28 gives the loading and
unloading loops for the ISt story of the exterior frame in the X

direction, and one can see the behavior of the stiffness degrading

model there.

5.4.3 17-5tory Concrete Shear Wall Building

The last building that was analyzed has the layout shown in
Figure 5-29, It was also designed for gravity and zone 3 earthquake
loads. The Tateral force resisting elements are the two exterior

frames in the X direction and the six shear walls in the Y direction.
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Again the interior columns were assumed to form additional frames,
having as girders an effective portion of the slab. The properties
of the frames and walls are tabulated in Tables 5-6 and 5-7. Moments
of inertias for the girders and columns were computed as for the
11-story concrete frame, while for the shear-walls they were taken
as one-half the gross moment of inertia. An average ultimate shear
capacity was also estimated for the shear walls. This capacity is
in general a function of the wall properties and the applied moments
and axial forces, but it does not change significantly with height,
so it was assumed constant and is given in the last cb]umn of Table
5-7. The computer program checks at each step and for each story
whether this capacity has been exceeded. If that is the case, then
it assumes that the wall has a shear crack there and starts treating
the portion of the wall in the floors above as partitions (limited
elastic-close coupled), while for the floors below the crack the
wall is still acting. Such a case was observed when we analyzed
the design of this building for zone 0 {wind loads only} for the
same earthquake. Again the stiffness degrading model was used for
the frames and a bilinear moment-curvature diagram for the walls.
Viscous damping was assumed 5% in all the modes. The comments of
the previous paragraph for the frame ductilities apply to the
frames here also.

Before presenting the results we will comment on the defini-
tion of ductility factor for the shear walls, since it is different

from what has been used until now. So far, ductility has been de-
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fined as the ratio of the maximum displacement to the yield dis-
placement for an element, This was possibie because of the assump-
tion of close-coupled systems. The wall, however, is a far-coupled
system, and the above definition is meaningless. Since it does not
deform symmetrically, the end conditions of the member are not
known, so we cannot use a definition based on angles of rotation.
The definition we have adopted is similar to that of reference (9)
and is based on curvature. Figure 5-30 shows the bilinear model

used for the moment vs. curvature of a shear wall section.

Moy

1
max ¢ =3

Figure 5-30

Ductility Definition for Shear Walls
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We define: e gax =1+ maxq) (5.1)
¥ Y

My
It is ¢y = K]
and Mnax = My * (¢max B qJy)'KZ

Moax = ¥

50 Omax ~ ¢y - Ky

Replacing ¢y and ¢max - ¢y in 5-1 we finally get:

K] Mmax

w=1+ U -1) (5.2)
2 N

where: K-l = EI
K2 = rK] {r = 0.03)
My = Plastic moment of the section that
includes the effect of gravity loads.
Mmax = Maximum moment at the section com-

puted by the program.

Ductility factors for the interior and exterior walls have

been plotted in Figure 5-31. In both cases the walls remain elas-

th th th h

tic in all floors except the 107, 1177, 12° and 13t . Maximum

ductilities occur in both cases at the 12th

floor and their value
is extremely high (about 10). Since walls are not usually rein-
forced for such high ductility levels, failure of the walls should

be expected in that area. Clough (7) has obtained similar results
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for the shear wall buildings he analyzed. It is interesting that
these high ductilities occur in the 12th floor and not at the bottom.
The reason for this is the interaction of the walls with the inter-
ior frames CFR-Y, that were included in the analysis. Due to the
different deformation patterns of the two elements, large forces

are acting on the walls at the top levels, becoming minfmum around
mid-height and changing sign at the Tower stories. Although the
maximum moments occur at the bottom, the ratio of the applied mom-
ents to the yield moments becomes maximum a 1ittle above mid-height
and hence the observed behavior. The exterior wail experienced a
maximum shear of 727 kips at the bottom story and the interior 973
kips, both below the corresponding ultimate shear capacities. The
shear-wall-frame interaction can also be observed in the Tower part
of Figure 5-32, where the ductility factors for the frames in the

Y direction were plotted. These factors being minimum at the lower
stories keep increasing towards the top, reaching a maximum of 4.5
at the top. The actual local ductilities will probably be twice as
big if we take into account that yielding starts occurring at a story
shear about half the ultimate. The same is true for the frames in
the X direction. The interior frame, which was not designed as mom-
ent resisting, is controlled by the strength of the slab, which is
very Tow {in comparison with the girder strength of the exterior
frame), so its ductility factors are very large. On the other hand,
the ductility factors of the moment resisting frame are relatively

small, with a maximum of 2.7 at the bottom story. This indicates
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that a strong earthquake in the X direction will cause considerable
damage to the interior columns and slabs, but probably not collapse.
Maximum displacements were plotted in Figure 5-33. We see that in
the Y direction the elastic displacements are very close to the in-
elastic ones, while in the X they are Targer. The explanation to
this, given earlier, applies here too.

Time histories for elastic and inelastic top story displace-
ments and accelerations are given in Figures 5-34, 35, 36, 37. The
difference between the responses in the two directions is first due
to the different fundamental periods and second due to the different
participation of the higher modes. Various other time histories have
been included in Appendix C.

As a final point before closing the chapter, it is worth men-
tioning that the time step used for the analysis of the shear wall
building was 0.005 se¢, half of that used for all other cases. The
discussion in chapter 4 was only for the case of shear-type build-
ings, for which it was pointed out that the smallest natural period
does not change significantly with increasing number of stories. For
cantilever type structures, however, this is not true any more, and
the smallest period of a shear wall is much smaller than that of an
equaily stiff frame. It was for this reason that a time step
At = 0,01 sec was causing numerical instability. The At = 0.005 sec

used is about 1/3 of the smallest period.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

The results and conclusions reached in this study have been
discussed in detail in chapters 2, 3, 4, 5. A summary of the most
important ones will be given here, together with recommendations

for future research.

6.2 Conclusions
The main conclusions of this work are the following:

1. It is possible to create mathematical models that simulate the
behavior of a big variety of structural elements (braced frames,
infilled frames, etc.) and to include such factors as stiff-
ness and/or strength degradation.

2. Three new models are proposed here:

{a} A stiffness and strength degradation model for infilled
concrete frames. .

(b} A stiffness and strength degradation model for infilled
steel frames,

{c) A trilinear model

3. The stiffness degrading model with varying slope of the un-
Toading branches gives very similar results with the standard
degrading model.

4. Based on studies with 1-DOF systems, which were confirmed by
studies on M-DOF close-coupled systems, it was concluded that
the Uniform Building Code does not provide uniform safety (ex-
pressed in terms of ductilities} over the entire spectral
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range, but it is unconservative for short period structures
and rather conservative for flexible Tong period buildings.

It was shown that it is possible to derive base shear-coeffi-
cient Taws that will provide uniform ductilities over the
entire frequency range. Several such Taws were derived for
various prespecified values of the required ductility factor.

It is possible to predict the overall inelastic behavior of

a building by using a simplified mathematical model and includ-
ing additional effects that are normally neglected in a more
accurate analysis.

The model gives good results for shear type buiidings or for
combination of frames and shear walls.

[t predicts average story ductilities, but not Tocal values,
and it fails to reproduce the behavior of frames in which the
axial shortening of the columns is significant.

The method used to estimate the strength of a story in a frame
probably underestimates the strength of the first story.

Shear walls should be designed to remain elastic under the
strongest earthquake, since if the yield moment is slightly
exceeded, large ductilities will be required.

Frames that have a first mode similar to that of a shear beam
should have either increased strength of the bottom story or
increased ductility.

Torsional effects increase the ductility requirements.
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6.3 Recommendations for Future Research

At this point it seems appropriate that further research is

needed in the following areas:

1. In the area of modelling behavior of structural components
more experimental work is needed for infilled frames.

2. Least sguare fits of the curves obtained in chapter 3 and
additional computer runs with artificial earthquakes that
produce smooth response spectra seem desirable.

3. For 1-DOF systems additional studies for various values of
the parameter A, defined in chapter 3, should be done, and
base-shear-coefficient laws that include the ductility fac-
tor and the percentage of viscous damping should be sought.

4. For moment resisting frames, a more accurate method to pre-
dict the ultimate strength and the first yield level of a
story should be scught.

5. More studies on the effect of gravity for 1-DOF are desirable.
6. More studies on the effect of torsion seem appropriate.

7. Implementation of the formulation for gravity leoads and soil
flexibility for M-DOF systems.

8. More research is needed to correlate ductilities for M-DOF
systems to those of equivalent 1-D0F's.
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APPENDIX A
DERIVATION OF APPROXIMATE FORMULA FOR STORY STIFFNESS

Approximate determination of the stery stiffness in a multi-

story frame (taken from course lectures by Professor J.M. Biggs).

e c
——-—‘>-q> - \
] C n i M 10 NI h
PRt A B M | _ & h om j tn
7
Qe o - - -
H.
Hg = Total shear at level aa
Assume: al Column shears above and below joint O both Hca

b} Inflection points in columns above and below at
same location.
c) Rotation of all joints in floor = 8.
Then,

6 E KOrn 0

om " 2E Kom (2e0 + em)

13

6 EX 8

M = 2F Kon (2e0 + en) on

on
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Mom + Mon = 6 E6Z Kgo = Hb'h

where  Kgo = sum of girder stiffnesses at "o"

Adding a1l joints, we have for the whole floor:

F‘
12 EB ZKg = ZHC,h = HB'h
Ha . h
and § = —— Average joint rotation in
12E . E " the floor
g
F
wherea EKg = sum of all girder stiffnesses in floor
HB = total story shear.

Now consider one column:

Mr = 2EK (26, + 6, - 30) X
MB = ZEKC{Zeb + ea - 3u) 1

¥
~Hooh = Mp + My = 2EK, (3ea + 38 - )

Assuming all 8's equal in each floor we obtain, for all columns:

Z(MT + MB) = mHB.h
or 2E(ZKC) (Sea +-30, - 6y) = ~Hg.h
HB°h ea eb zK_ = sum of column

or P T + + o :
12EZKC 2 2 stiffness
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Substituting the values of 6 obtained above

H h
i.e, ea = B
12E%Kga
- Hyh
P 12F TKgb we obtain
Hgh

i 2 ] 1
b= e et ke L

Noting that 6= yh and K = —2— we obtain

o
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APPENDIX B

THE TRILINEAR SYSTEM

F? B o IAI e kil . I’[‘:‘_/‘_]7 52
e R

F1 = "I 2 ‘|<—f a2 o j‘t

|

| ]

Rﬂ ‘ )

I. — F)/] i F}Z

(1) (2)

We assume that we have the properties of the trilinear spring (could

be computed as described in reference (38)) and we want to find its
loading and unloading laws. This could be done by considering a physical
model like the one shown in the picture and determining the properties
of the two elastoplastic springs so that the P vs 62 curve is the
trilinear on the left.

Using geometry and equilibrium we have:

4
8, = —— §
1 a2 2
Poax ~ 32 = Fy13y * Fpp 3 = By



and Fy = o For * Fyp (1)
4
For P < F] Pa2 = Poa, t P1aT = K2§2 a, * K1 ) SFLE
d, \2
P 1
and ——— = R, = ( ) Ko + K (2)
62 1 a5 1 2
F a f
Assume that spring K2 yields first i.e. Ky] > (a] ) %2
1 2 2

Then: F F
e =.._l_.=_.i_2.,. and
i R K2
a] 2
TNt (G, ) - K8y
a 2 F
=F2+(a]) GK].——X-Z—
Y 2 K,
a1 ¢ K]
or Fp = ( 5, )- % + -Fy2 (3)

When we are in the second branch of the trilinear:
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We want Il RZ -
ds
R = lK
2 1 (4)
2
4
Calling ara A ( 0 <x< 1) we can solve (1}, (2), (3),
2 =z
(4) and obtain
1 R, =R
Ky = —=—R - 1, 12
T2 = o F - )
R: R
_ _ [-"2
Ky =Ry = Ry ye TP TR

These relations allow us to compute the properties of the two elasto-
plastic springs. in terms of properties of the trilinear one and the
parameter A. A can have any arbitrary value between O and 1. For
different values of A we will have different elastoplastic springs

but their combination will always give the trilinear. Computationally

it is advantageous to choose » = 1 and then:

-
1

y1 = Fo = Fy (Ry = Ry)/Ry

-Ti
]

= Fp (Ry = Ry/R,

and Pepit = P1 + P



Fo1 3, Foo
Test of the assumption —Ex” > ( ) . %

If we replace in this inequality values of Fy], Fy29 K], K2 taken
a
from (5) and set —El—- = i =1, after some algebraic manipulations,

2
we gbtain

F2 > F.l which is obviously true.
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APPENDIX C
VARIOUS TIME HISTORIES
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