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CHAPTER 1

INTRODUCTION

On December 23, 1972, three strong earthquake tremors struck
the city of Managua. Even though of '"modcrate' magnitude, this cvent
caused thousands of deaths, many more injuries, an untold amount of
economic hardship and disruption of a way of life. It is very hard
if not impossible to translate all these losses into quantitative
economic terms. However, such a catastrophe does remind us of the
devastation and far-reaching consequences of major earthquake events.

The rebuilding efforts which follow such events bring up many
questions. Are existing design requirements adequate? What level of
future risk is acceptable? How should the acceptable risk level be
translated into acceptable design parameters? Should similar land uses
be permitted in the future for areas which suffered major damage? Thesc
and numerous other questions become especially relevant after a signif-
icant damaging event. The decision process which leads to answers for
these questions is a complex mixture of peolitical cxpediency, engineer-
ing knowhow, socioceconomic optimization and proper understanding of the
overall parameters involved in the decision making process. In times
when no significant earthquake events have taken place, the decision
making process goes on at a notably slow rate, while decisions immedi-
ately after significant events are often based on expediency and, at

times, on irrational analysis. This leads to decisions which might
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well be considered inadequate in the light of ratiomal decisions made
on the basis of long-term perspective.

This report is the result of a seismic risk study conducted at
Stanford and supported by Banco Central de‘Nicaragua and the National
Science Foundation grant GI 39122, The total seismic risk analysis of
Nicaragua is done in two parts. This report is Part I of the study.

In general, Part I is associated with the future probably seismic load-
ing determination of Nicaragua and how that loading can be used to de-
termine future damage potential and "insurance risk.'' Suggestions
regarding seismic zoning of the country are also presented in this
part, Similarly, the relationships between seismic loading information
and design provisions is discussed. Part II is a continuation of

Part 1, and in general is associated with probabilistic response
spectra analysis, probabilistic seismic exposure of different classes
of structures and the seismic ;tructural response. A decision analysis
of associated risks of loss of life, injury and economic loss will be
performed in Part II. A simplified equivalent design procedure will be
developed, based on the general concepts and findings of the more de-
tailed response spectrum methed. This simplified approach is intended
to be applicable for a majority of ordinary regular structures.

It should be emphasized that the work presented in this report
is to provide a base for planning and decision making in Nicaragua.

The project results provide professionals in Nicaragua with tools and
procedures to make seismic risk analysis. A single recommendation
today does not appear practical to fit all future circumstances.

Hence, major effort is focused on presenting methoedology and procedures



that can be used by participating organizations in decision making
processes.

Finally, it should be kept in mind that the work and results
presented here depend on the available data base and information. The
reliability of results are at best as good as the reliability of the
data on which the results are based. It is very easy to attack and
criticize any work from the point of view of data reliability. How-
ever, it is very difficult to obtain long-range reliable data. We
have used the best available information through various organizations
and researchers. The forecasts and predictions are based on those
data. llowever, if in the future more reliable data are available,
the model can easily accommodate the inclusion of new information and
update the results. Further discussion on this topic will be pre-
sented in Chapter 3. At this time, the authors of this report feel
that the results presented here represent the 'best available'" esti-
mates of the future forecasts.

The report is organized in eight chapters and six appendices.
Chapter 2 deals with the geologic setting of Nicaragua in general and
Managua in particular. In this chapter, the geologic hazards and their
implications are pointed out. Chapter 3 gives the discussion on avail-
able data. This chapter should be carefully read because it points out,
in detail, the shortcomings of the available seismic data and how those
shortcomings are treated in the present work. Chapter 4 develop: the
future forecasting models based on past data, and presents iso-
acceleration maps for the country in general and selected cities in

particular. In Chapter 5, the concept of seismic zoning is presented.



Charts relating rigk level, economic life of structures, return
period and the corresponding loading levels are presented in that
chapter. Chapter 6 deals with future damage potential prediction and
presents some thoughts on insurance risk. Chapter 7 gives the rela-
tionship between seismic zoning, group and use of structures and the
needed design provisions. Chapter 7 should be viewed as an introduc-
tion to part 1II of the current study in which further design provision
development will be presented. Chapter 8 gives summary and conclusion
for part 1 of the research project and introduces to the reader part
IT of the study.

In reading this report, a casual reader can start with Chapter
4 and see the forecasting on future seismic loading. A planner can
start with Chapter 5 to see the seismic zoning of the country. A
structural engineer should read Chapters 4, 5, 6, and 7. In conclusion,
it should be emphasized that this is a report on seismic risk analysis.
As the name implies, there are many uncertainties and there is always

a2 chance that nature will have the last say.



CHAPTER 11

REGIONAL GEOLOGIC SETTING

Relation to Plate Tectonics

Nicaragua lies on the Circumpacific "Ring of Fire" which domin-
ates the tectonics of the Pacific Ocean region. The city of Managua
lies on the western edge of the Caribbean Plate. In the parlance of
the new global plate tectonics, the Caribbean Plate is apparently being
underridden by both the Cocos Plate, to the west, and the Atlantic
Plate, to the east. Volcanic arcs and grabens, or long, linear depres-
sions in the earth's crust, arc characteristic of the intersection of
many plates. Managua lies within such a graben, the Nicaragua Depres-
sion, and also within a velcanic arc.

Another characteristic of plate intersections are ocean trenches.
In this case, such a trench is the Middle America Trench, which marks
the depression of the Cocos Plate below the Caribbean Plate. The trench
is 4-5 km deep, extends west of the Central American Coast from Mexico
to Costa Rica, and runs sub-parallel to the arc-shaped chain of andesitic
stratovolcanoes.

Marking the descent of the Cocos Plate is a zone of friction,
generally termed the Benioff Zone. This zone is marked by numerous
earthquakes, extending several hundred kilometers into the Earth's
interior. The 1972 earthquakes, however, did not occur along this

zone, as they were much shallower. They were probably related to



relatively shallow adjustment to accumulating crustal strain within

the southwest part of the Caribbean Plate.

Geology of the Nicaragua Depression

The outstanding feature of the Pacific Coastal Region of
Nicaragua is the Nicaragua Depression (also calied the Nicaragua
Graben, or Central Valley). Bounded on the northeast by a long,
straight, en echelon fault, or the Boundary Fault, the Depression ex-
tends from the Gulf of Fonseca, to the north, to near Limon, Costa
Rica, in the south (figures 2-1, 2-2, and 2-3), The western boundary
is placed by some workers beneath the Pacific Ocean, by others along
the Mateare Fault, a semi-continuous fault zone. Downfaulting, which
began at the beginning of the Quatermary, about 1,000,000 years ago,
has continued to the present.

The Boundary Fault, although at depth probably a normal (block
above the fault moves relatively downward) fault, locally suggests
right-lateral, or strike slip (opposite block moves laterally to the
right) movement. It is locally buried by volcanic rocks. This fault
is more regular than the Mateare; it is traceable along thc entire
length of the Depression. The graben floor is tilted away from the
fault, suggesting that either normal movement is minor, or that it is
less recent than on the Mateare Fault. In addition, much of the verti-
cal movement could have been taken on several, sub-parallel, en echelon
faults.

The Mateare Fault is less clearly expressed in all places.

Where prominent, it is a normal fault, displaying a scarp with a



€L61

‘pupwy-JUTBS WOIH

*B31® 9ATIOR ATTEOTUOIDDY BYl IO IPTS

OT3ueTly 92yl spunoq uaqexd ay3 3jo 3Tney Axepunoq °9Y] °uaqeay endeaedIN oyl pPaTTED ST BndRIBOIN axe pue
endeuep 9yeT SuTUTrE3lUOD ASTTRA 9yJ -°enSeusy Jo £ITUIOIA 3yl Ul 19SJJo ‘S90UBDTOA JO BUIT B ST SOTQBIIBK
3p BASTTTIPIO) @YJ °SIINIEIJ OTU0IDS8] snondTdsuod 3sow 8yl Surmoys en8exeodrN jo 3aed Jo yo3avs [-Zoand1g

\ l/ «0 A \

N ° , ©

NvY300 J1410Vd

voL ¢

- am &

CTERRICLN

@ e M TR D CR CD oD eo @D e b en §E

SOIBYNHYN SO




GO6T ‘H SSURTTTIM Pue *y fKOUITEIN I03FV

*8n3BIVIIN UIDISOM S50108 U0[}008 9130[008 pasi[vioucy) =7 Ay

s9i1squudy
80 ((aquiudy oo . puo
8)jnL PUO SOADTY £q peddod SIUOWIPRS PUL BYSOY Sjunujpes JpUOW PSS | BjUSWIPIS
Kapyiaey oippiw Py o3 . SA)0} PUD BDAD] Aspjise} Sunoh Kisvaziond 8UO003 suasedyjo auzdo))y
.

Y IYD VL YI e..‘(o OQuISIOWON *joA o107 VEONOE 9bVING
puojuby ko_:..._ulTsuo.o.m sijaquiuby n uo|sse1deQ UDNDDIBOIN - m ujpld 103300) 015190
S4030001Y
 n— ¥ ¥ ey
o 1] oz ol o

oluog [BanieN



€L6T ‘puUBWY-JUIBS WOId

*£97T7eA BY3l SSOIO® VOUSIPISGNS JO BSIB IBTNIATO LT3pna

® s35983ns £18uoca3ys uxejied muauomum 9yl 3Byl |9ION *OPIS YInos oYl UC S® JIEI2Pp SUes 9yl ur endevupy
o3e] jo SpPIsSyliou 89yl UO SITNEJF SIEBSUTTSP O3 SWIJ STYI 3B 9w 03 ITYEBTIBRAR jou ST ®igQ °SITNEJ SUWOS

Jo uorssaxdxe 9orJyans 3yl opry Leu xoy7dwo) eBLESEY 9Y3 WOXJ UOTIBTANT]E aaTsueixs ‘edeirdry oty pue lxod
-ITE 3Y3l U3aMIaq SITNEBJ JO SUTT 9yl pue endeiBOTN 08w udamieag °suoz JeUOTSUalx® ue JuoTe padueiie STau
~-UBYD WE3IJS JUBIIA]E pu®E sainjionils asdeTlod °sivizead “sitd uorsoydxe Jo aurl ® sT edelsy sp sanideag
9YJ] *OSUSS pPaUTWISIIPUN JO JUSWSAOW TBRIDIBT 2WOS YITM JTNBI TBWIOU B ST 3IB93IBK BITEBJ 23Ul °ISeayliou
8yl 03 ssTTW Q4 swos ST uaqead eyjz Jo Jyney Aiepunoq ay], °weay endrury 9yz ut Jur3l[neg [EQ0EC~Z INBTH

vAIVHYIIN | T &
Fa 09y7
VNOVNYR v
D | 3d3LHO AY
V ., .
% - ] | uaom»o@q;_.
A@? Z

OP_mwthogfu§.>Au

YNIVNYN 30 09VT /

\\\ . / ©
omxo#oxox A0

IHIDWONY

owOFZOZ

~<—Z2— ©.




maximum height of 1000 meters along the Sierras de Carazo. The uplift
is recent, as evidenced by the slight erosion of the upland surface,
despite easily eroded volcanic rocks and high rainfall. Matumoto and
Latham calculate the total vertical movement along the western edge of
the graben as 2.4 km by adding the thickness of accumulated sediments
in the graben (1.4 km) to the vertical drop (scarp) (1 km). (See
reference 11.)

The Depression contains a thick accumulation of alluvium, lake
sediments, deeply weathered volcanic ash, and some volcanic flow de-
posits, aggregating, as .stated, to a total thickness in excess of 1400
m. The basement rocks are unknown, being neither penetrated by wells
nor ejected from volcanoces. The isclated hills of Tertiary volcanics
are largely buried, although more exposed to the northeast. This sug-
gests a thicker sedimentary accumulation to the southwest, giving

further evidence of greater subsidence in this part of the graben.

Geology of Managua Region

The city of Managua sits atop a succession of volcanic rocks
and sediments aggregating at least 1000 meters in thickness. The
section is probably typical of the entire Nicaragua Depression, al-
though specific units lense out and are replaced by other units else-
where in the graben.

To a depth of at least 200 m, the section is a relatively
homogeneous and predominantly volcanic sequence of lapilli-sized,
angular scoria, or cinder deposits, with interbedded, thin ash de-

posits. These are derived either from Masaya Crater, 22 km distant,

10



or the line of volcances to the west. Firm and relatively well-
lithified {consolidated} volcanic mudflow deposits are also common.
These are thick and firm enough to be used as building stones. The
scoria is extremely porous, permeable, and features a low bulk density.
It demonstrates good stability under static loads, and stands in near-
vertical slopes if undisturbed, but is not stable under dynamic loading
(see reference 14).

Some authors emphasize sedimentary rocks, especially lake
sediments, in the sequence. A more exact determination of the nature
of the rocks would aid in predictions of seismic wave propagation,
especially the attenuation of the waves, in general, and the effect
of the rocks on accelerations, in particular.

West of Managua, relatively dense lava flows and vent debris
are associated with pyroclastics similar to those underlying the city.
Less damage occurred here during the 1972 earthquake, but this is
probably because of the greater distance from the earthquake epicenter

(see reference 14).

Volcanism

The entire Nicaragua Depression is either an active or poten-
tially active area. Managua lies atop volcanics and volcanically
derived sediments that have been deposited in the recent geologic past.
Masaya Crater, centered 22 km distant from Managua, has been active in
historic times (see reference 12}, and some of the volcanic deposits
underlying the city have been traced to this same volcanoe. Managua

lies within an apparent right-lateral offset of a line of volcanoes, the

11



Cordillera de los Marrabios. The reason for this offset is unclear.

Soils

The soils of Managua are, on the whole, relatively similar
vthroughout the city (Figures 2-4, 2-5). They "consist mainly of vol-
canic deposits of cohesionless silts, sand and gravels ranging from
loose to well-consolidated and having various degrees of cementation'
(sec reference 17). The soils occur in well-defincd layers of from a
few to several hundred centimeters thickness. However, thicknesses,
as well as degree of compaction, are somewhat variable even at indi-
vidual sites. The first "rock-1like" material occurs at variable
depths. It is called "cantera,'" or ”folcanic sandstone," but in

reality is a volcanic tuff agglomerate (see reference 17).

Water Levels

The water table is generally 10-30 m below the ground, and
19 m in the city center. Near Lago de Managua (Lake Managua) it
reaches to within 3 m of the surface. For most of the city, it is too
deep to be of significance in the design or location of foundations

{see references 17, 14).

Faulting

The faults which pass through Managua are members of a system
of faults which scar much of the Nicaragua Depression. The faults show
some normal, or vertical movement. In general, faults in the western
part of the city show movement down to the east, whereas faults to

the east demonstrate the opposite. Thus, a shallow composite graben

12
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is being formed. Movement in the 1972 earthquake is in general agree-
ment with older fault displacements.

One of the purposes of the geologic study was to describe and
interpret the pattern of faulting within the city, as an aid to seismic
zoning. The task is extremely difficult, however, because there is no
agrecment on the location of the faults in Managua. As many as 10
faults have been mapped (Figures 2-6, 2Z-7); at least 4 suffered offset
in the 1972 earthquake (Figure 2-8). One other, the poorly defined
Stadium Fault, was offset in the 1931 earthquake. Although we will ad-
dress ourselves to some general remarks in relation to these faults,
final discussions must wait until thorough trenching and mapping, cur-
rently underway, is completed and made available.

In conclusion, the Nicaragua Depression is a currently active
downfaulted block, bounded on one side by an active fault, and on the
other by a potentially active fault. The pile of sediments and vol-
canics underlying the Depression total more than 1000 m in thickness.
Active volcanics cover part of its surface.

A few important points relating to seismic zoning follow:

(1) Each of the 10 "faults" is a zone, rather than a line of
movement, Whether the 'fault' has moved in the recent past is not of
significance in Managua, as ecach zonc of fracturing could suffer
either more fracturing or actual offset in a future earthquake. Thus,
fracture zones from the 1972 earthquake should be considered in the
same light as faults where displacement actually occurred.

{2) The distance a structure should be placed from a known

15
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fault is open to considerable debate. It has been observed that
faults tend to rupture repeatedly along nearly the same line, although
many recent scarps are located within much wider fault zones, and in
alluvium, the fault rupture could easily occur outward from the pre-
viously "recognized" breakage. It is our opinion that vital structures,
such as hospitals, police and fire stations, etc., should be located
at least 100 feet from any fault zone or individual rupture. In a
major fault zone, such aé the San Andreas Fault in California, movement
can be expected to occur along the same trace as the previous movement,
but in a region such as Managua, it is our opinion that this would not
necessarily be the casc.

(3) The type of material on which the structure rests, and
the degree of saturation of the material, are extremely important.
However, in the case of Managua, these paramcters are relatively in-
significant, because of the nearness of seismic activity. The only
exceptions would be saturated fill and lake sediments. Structures
built on these materials faired especially poorly in the 1972 earth-
quake.

{4) The definition of an "active" fault is not agreed upon.
Many geologists use 40,000 years since the last movement as the cri-
terion of "active." This, of course, is often difficult to determine.
In addition, the valid argument that even 10,000 years, or less, is
economically impractical when considering structures with an antici-
pated lifetime of less than 100 years. It is our opinion that stra-
tegically important and large, public structures should not be located

over defined faults in the city of Managua, unless the most conservative
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(40,000 years) definition of "active" is used. This would apply to the
10 faults and fracture zones discussed earlier, as well as possibly
some buried faults. As a practical manner for the city of Managua,

any faults that have not displaced the "White Pumice" unit are probably
no longer active.

(5) It is unlikely that a better location for the city could
easily be found within the Nicaragua Depression, as the graben is cut
by numercus faults. On a random movement from the city, the chances
for an earthquake would be equal or greater, and the chances for actual
surface rupture would be less, the same, or greater. To find a lesser
chance for rupture would require an exhaustive and time-consuming study,
which would have to locate an almost fault-free site.

Each of the identificd surface or near-surface "faults" within
the city should be considered potentially active. As apparently only
one fault ruptured in the 1931 earthquake, and at least 4 other faults
moved in the 1972 earthquake, it is likely that still other faults
could rupture in a futurc earthquake. From a geologic hazard point of
view, where fault rupture and fault displacement are of main concern,
critical facilities should not be built within 100 feet of the fault
zone or individual rupture. Wallace (see reference 20) suggested one
zoning scheme (fig. 2-8) based on strictly geologic hazard. For re-
sistance to seismic vibrational loading, the following chapters will
develop criteria for design and zoning requirements. It should be kept
in mind that the lecation of rupturé and fault zones within Managua is
under study and the future zoning for such geologic hazards should in-
corporate results of that study.

19
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CHAPTER [11

SEISMIC DATA BASE

Introduction

In Chapter 2, we discussed general geology of Nicaragua. We
also discussed the geologic hazards that planners and builders should
consider. One major informational parameter needed in any future
planning of a facility in a seismic region is the amount of shaking
or vibration that this facility will have to undergo during its econ-
omic life. 1In other words, one has to consider the future seismic
dynamic leoads for which the structures should be designed. Such in-
formation helps in seismic zoning of a region. There are various
parameters used in the literature to represent the seismic loading.
They are:

(1) Richter Magnitude (M);

(2) Modified Mercalli Intensity {MMI};

(3) Peak ground acceleration (PGA);

{4) Spectral Intensity;

(5) Root Mean Square (RMS} acceleration, velocity, or

displacement.
However, the most commonly used loading parameters are the Richter
Magnitude, the Modified Mercalli Intensity, and the peak ground accel-
eration. As for the Richter Magnitude, the loading information is in

the form of overall energy release of a seismic event. It does not
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explicitly represent a lcading at a given site some distance away from
the source of energy release.

The Modified Mercalli Intensity scale represents the effect of
an earthquake at a given site. It is a subjective scale of damage at
a site. Thus, for a given seismic event in a region, variocus sites
experience different intensities. In general, intensity decreases with
distance. Appendix 2 gives the MM Intensity scale, Tuture fore-
casting of MM intensities for a given region help in determining the
future damage potential and hence insurance risk. However, for struc-
tural engineering and design purposes, this parameter is not as useful
as the peak ground acceleration. The most commonly and conveniently
used parameter is the peak ground acceleration. In this work, peak
ground acceleration (PGA) will be used to represent the seismic load
level. For frequency content, normalized design spectra will be de-
veloped for different parts of the country. (See Chapter 7.)

To estimate probabilistically these peak ground acceleration
levels throughout the country in some time frame, we need to get in-
formation regarding past seismic events. In particular, we need to get
the following information:

(1) BEpicentral locations of past seismic events;

(2) Time of occurrence;

(3) Magnitude associated with each otcurrence;

(4) bepth of hypocenter;

(5) Acceleration records associated with the above occurrences

at different sites;

(6) If possible, information on how energy (or peak ground
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acceleration) attenuates from source of energy release
to any site away from the scurce.

As for items 5 and ¢ above, not much data is available for
Central America in general and Nicaragua in particular. We will dis-
cuss these two items in detail in the next two chapters. As for the
information on epicentral locations, time of occurrcnce, magnitude of
occurrence and depth of hypocenter, the basic data were obtained from
the National Earthquake Information Center, U.S. Department of Com-
merce, National Oceanic § Atmospheric Agency, National Earthquake
Information Center, Boulder. The information cobtained from this source
contained all events from 1900 te 1973. Another scurce that was con-
sulted for carthquakes before 1900 was the "Catalog of Nicaraguan
Earthquakes 1520-1973" by David J. Leeds of DameS § Moore, Los
Angeles. The list of references at the end of this report gives other
sources used to develop the total data base (see references 21, 22,
23, and 24).

Before we go into the discussion on the use and analysis of
available data, certain observations should be made regarding the type,
amount and reliability of the data base used for the current research.

All the data sources have one common shortcoming. That is,
the frequency of recorded earthquakes increases with time. It is very
realistic to assume that the seismic phenomencn in Nicaragua has not
drastically changed in the past few hundred years and that it will
remain the same for a few hundred years more. However, the number of
seismic events recorded in general increases with each year. Also,

only major events were recorded in the 16th, 17th, and 18th centuries.
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This gives a bias to the data because in recent years, all events, big
and small, are recorded, whereas old records only show large events.
This nonhomogeneity in data reliability is a '"'fact of life" and we can
not get away from it. Another problem is in the events which were not
recorded as to time, place and magnitude, but only conveyed through
church records or through word-of-mouth. How can one incorporate such
information quantitatively?

Fortunately, for well-codified methods and structures, the
structural performance and consequences in general follow the pattern
shown in figure 3-1. The horizontal axis represents structural per-
formance such as, say, deformation, whereas the vertical axis repre-
sents the consequences of those performances. The performance can be
tied in with the seismic demand {or loading). Thus, a 10 percent
variation about thec mean demand value D can be reprgsented by D1 and

D2' Corresponding to this variation, the performance variations could

be 10% about the mean performance P, represented by P, and Pz. How-

1
ever, this 10 percent variation in loading estimate may result in only
a slight variation on the consequence side. This ability of a well
designed structure based on a well designed code helps in overcoming
the uncertainty in the leoading parametcr such as peak ground accelera-
tion. Further discussion on this aspect will be presented in Chapter 7
of this report. Also, inclusion or exclusion of some unrecorded his-
torical events in the past does not change the estimated values of the
loading parameters substantially, because the estimates are based on

a large collection of data to begin with.

Due to above mentioned considerations, the authors of this
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report feel that the seismic loading estimates, based on probabilistic
analysis, are realistic and representative of the future seismic load-

ings.

Pata Analysis

As mentioned previously, two main sources of information were
considered. The NEIC-NOAA data file covering the peried from January
1900 to August 1973 constituted the primary source of information and
is referred to hereafter as Source 1. The Catalogue of Nicaraguan
Earthquakes, 1520-1973, by David J. Leeds, is referred to as Source 2.
Tt was used to obtain:

. data about earthqguakes associated with volcanic activity along
the Cordillera de los Marrabios (1850-1973);

data about earthquakes not reported in the NEIC-NOAA file
(1900-1973);
additional information about events incompletely documented

in the NEIC-NOAA file (1800-1973).

The time period of data gathering is thus 73 years for the whole country
and 123 years for earthquakes associated with volcanic activity along
the Cordillera de los Marrabios.

In spite of the complementarity of the two sources, a large
number of events remained insufficiently documented to be used as such
in the analysis. Rather than disregarding these events, the missing in-
formation was generated using a Monte Carlo Process supplemented by
judgment. It is felt that the total analysis benefits more than suffers

from such an additional input,
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The following remarks are valid for both sources:

. No critical study was made regarding the validity of the infor-
mation and the reliability of the data.

. Whenever information as basic as epicentral location or magni-
tude were missing, the event was disregarded.

. Events with Richter Magnitude smaller than 3.0 were not con-

sidered,

Source 1

When complete, the information contained in this source includes
for a given event: time of occurrence, epicentral location (degrec),
depth of hypocenter (km}, and magnitude. The magnitude is in terms of
one of the following: \

{1) CGS M, average (body wave magnitude)

{2) CGS MS average (surface wave magnitude)

(3) Richter Magnitude M.
The acceleration attenuation relationships used in Chapter 4 are based on
the Richter Magnitude. Hence, when missing, this information was gener-
ated from Mb or Ms' It is known that for a given part of the world, the

Richter Magnitude and CGS M, are linearly related such that

b

M=a+b Mb 3-1

In order to determine the coefficients a and b, a regression analysis
was run for all the earthquakes of which M and Mb were known using the
total data of Central America. The Richter Magnitude was then obtained

by substituting the value of M_ in equation 3-1.

b
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Whenever data on depth of hypocenter were not available, a depth
was assigned, as will be explained later in the chapter.
From Source 1, 419 events contained complete information; they

are plotted in Chart 1 and shown as a function of depth in Table 3-1.

Source 2

When complete, the information centained in this source includes
for a given event: time of occurrence, epicenter location (degree),
depth, Richter Magnitude and sometimes a short description of the seismic
event. The depth is either expressed in km or by a letter symbol N
(0 - 60 km) or I (70 - 200 km). In the same way, the Richter Magnitude

is either expressed by its numerical -value or by a letter symbol, as

follows:
B - 7<M<7.7
c - 6 <M<6.9
D - 5.3 <M< 5.9
E - M < 5,3

Through a simulation process, all the events taken from Source 2 were
assigned a numerical Richter Magnitude from letter magnitude.

Hence, an additional 196 events were obtained (including events
from Source 1 with partial information), distributed as follows:

43  events associated with volcanic activity and with shallow
hypocenters N (0 - 60 km}.

40 events with shallow hypocenters N (0 - 60 km).
3 events with deep hypocenters I (70 - 200 km).
63 events with no data on depth.

47  events with numerical data on depth (km).
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Table 3-1
Data from Source 1, Sorted According to Depth of Hypocenter

{Total Events 421)

Number cf Depth Range

Earthquakes {kms.)
8 0- 9

9 10- 19
12 20- 29
159 30- 39
35 40- 49
32 50- 59
34 60- 69
32 70- 79
18 80- B9
14 90~ 99
13 100-109
9 110-119

3 120-129

7 130-139

3 140-149

7 150-159

3 160-169

6 170-179

3 180-189

5 190-199

9 200-215
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The 466 earthquakes with complete data (419 from Source 1 and
47 from Source 2), were plotted as a function of depth. Using thosc
plots together with cpicenter location, magnitude value, partial infor-
mation on depth and judgment, the 156 remaining events were assigned
appropriate depths. This led to a total data of 615 events ranging
from 5 to 215 km in depth and from 3.0 to 7.7 in magnitude. Appendix 3
gives the listing of those earthquakes; in Chart 2-7 they are plotted
as a function of depth.

From these charts, the general seismic pattern of Nicaragua

can be divided into the following regions:

(1) The Benioff Zone dipping North East toward the Nicaraguan
coast. This zone is marked by numerous earthquakes covering
the whole range of magnitude (larger as depth increases)
and extending several hundred kilometers into the earth's
interior. The shallow earthquakes (¥ 30 km) due to this
source are from 30 to 100 km away from the coast. As the
epicenters get closer to the coast, the hypocenters get
deeper. Hence, under Managua the hypocenters of earthquakes
situated on the Benioff Zone are very deep (100 - 200 km).

(2) In contrast, for the local seismic sources, such as the
ones identified under Managua {Figures 2-3 and 2-6, Chapter
2), the hypocenters are shallow (5 - 30 km). In magnitude
scale, these sources do not generate major earthquakes such
as those on the Benioff Zone. However, due to their shal-
lowness and nearness to populated areas, they have caused

extensive damage and loss of life in past histery. The

31



December 23, 1972 event was due to the local source undex
Managua. Appendix I gives details regarding this source of
seismic activity.

(3) The line of volcanoes from Northwest to Southeast (Cordillera
de los Marrabios) represents sources of future seismic activ-
ities. Volcanic erxuptions are seldom by themselves sources
of seismic activity, and in the past varilous earthquakes have
been recorded preceding volcanic eruptions. For this reason
earthquakes "assoclated" with volcanic activity were treated
in the model (Chapter 4} as shallow tectonic earthquakes.

(4} Two shallow {* 30 km} seismic regions, one more or less co-
inciding with the Pacific seashore between Lake Managua and
the Costa Rica border, the other one in the Gulf of Fonseca,

(5) The Atlantic coast of low seismicity.

Source Location and Scismicity

Based on the above observations, the total number of events was
divided into 13 seismic sources: Ten of these are line sources and three
are area sources. Table 3-2 shows these 13 sources, the number of cvents
and the depth range of each source.

Appendix 3 gives a listing of the earthquakes included in each
source. Line sources were located by fitting a line through the data
using regressicn analysis. For area sources, the centroid was obtained
from the data and the radius taken as the distance from the centreid to
the most distant epicenter in the source.

The depth of each source was computed as an average hypocentral
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Table 3-2

Seismic Sources for Nicaragua

Number of Name of Depth
Source EBvents Source (kms.)
1 Line 159 Benioff 5 - 39
2 Line 186 Benioff § Costa Rica 40 - 79
3 Line 72 Benioff 80 - 109
4 Line 31 Benioff 110 - 159
5 Line 41 Benioff 160 - 215
6 Line 23 "Costa Rica" 5 - 39
7 Line 11 Atlantic All Depths
8 Line 12 Pacific Coast Line 33
9 Line 57 Line of Veclcanoes 33
10 Line 57 Line of Volcanoes 33
11 Area 5 Managua Area 5
12 Area 8 Gulf of Fonseca 33
13 Area 10 Costa Rica Area 80 - 109
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depth of all the earthquakes included in the source. Earthquakes with
no or limited depth information were not included in this averaging pro-
cess. Howcver, they were considered in determining the location and the
seismicity of the source. Charts Z through 7 show the source locations
and depths. The recurrence relationship for each individual source was

obtained by fitting a regression linc of the following form:

In, NM) = o+ @M 3-2
N(M) = Number of events above magnitude M
M = Richter Magnitude

o and B are regression constants.

o is a measure of the number of events above magnitude 0 for a given
source and B is a measure of the seismic scverity for a given source.
The larger the negative value of 8, the smaller the seismic scverity.
For many sources, a single regression line gave erronsous results be-
cause the interpolation of the line beyond the range of data indicated
unreasonably high magnitude occurrences. For such cases, two regres-
sion lines were fitted to the data, and a geologically consistent upper
magnitude value was used for cuteff. (Sce Figures 3-Z2 through 3-13.)
Table 3-3 gives a summary of o' and B values for each source and the

magnitude cutoff point corresponding to In N(M) = 0.1.

Let N'(M)}) = §£¥l for area source
3-3
= ﬁEMl for line source
LT
where L = length of the line source
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A = Area of the area source
T = time for which data was obtained

N' (M) Normalized mean number of events above magnitude M

i)

for unit-time (1 year) and unit-area or unit length.

Then

InN'M) = a' + BM 3-4

il

where Q! o - In{AT) for area source

o - In(LT) for line source.

Table 3-3 shows values of o', B and the upper cutoff magnitude as de-
scribed previously. The table gives values of @' and .B in terms of
degrees of latitude and longitude. These relationships will be used to

develop the forecasting model in Chapter 4.

Limitations

In conclusion, it can be said that there are ]imitafions to
the use of available data for the Nicaragua region. These limitations
are given below.

1. 24% of the data contain incomplete information regarding
the depth. This information was added from either judg-
ment or by correlating the event with other data where
the depth information was available.

2. 32% of the data have magnitude defined by a symbol.
Numerical value of magnitude for these cases was obtained

through simulation.
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Table 3-3

Source al' Bl o, 62 Cutoff
1. 2.58 -1.09 24.00 -4.55 6.8
2. 1.49 -0.74 62.80 -9.21 7.8
3. -0.38 -0.42 3.60 -5.75 7.7
4. -0,39 -0.65 26,50 -4.55 7.5
5. 0.33 -0.72 36.20 -5.27 8.5
6 0.42 -0.77 46.50 -7.82 6.9
7. -2.13 ~0.33 18.60 -3.53 7.5
3. -0.89 -0.37 43.10 -7.57 6.8
9. -4.71 -0.24 34.20 -5.43 7.8

10, -4,71 ~-0.24 34,20 -5.43 7.8
11. 3.17 ~0,74 79.15 -12.4 6.7
12. 0.14 -0.07 79.90 -13.04 6.5
13. -0.66 -0.59 34.60 - 5.54 7.5
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3. The reliability of the total data base was not evaluated.
(1) Some information was from church and historical
records,

(ii) Distribution of information over the country is
biased. Populated arcas have better records than
sparsely populated areas. (No population + no
records.,)

(i11) Epicentral location could be in.error due to lack of
a good grid of recording system. It is hoped that
the recording network presently installed by the
Nicaraguan authorities, the U.$5.G.S. and private
organizations in Nicaragua will help in increasing the
understanding of attenuation relationships and the
accuracy of epicentral locations in the future. Such
calibration may help in relocating the past events.
(See reference 4 by Dewey.)

It is felt that the work done by Dewey (see reference 4) and
others in calibrating the epicentral locations through the ESS0 refinery
record does not have sufficient cxperimental evidence as yet. Hence, no
hypocenters are moved based on Dewey's work. (One exception is the 1931
earthquake-stadium fault.) It should be emphasized that as additional
data become available to give more reliable information on epicentral
locations, the methodology presented in this research project will be

able to modify the results accordingly.
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CHAPTER IV

PROBABILISTIC SEISMIC LOADING -- TSO-ACCELERATION MAPPING

OF NICARAGUA

Introduction

In Chapter 3, we discussed the data base, the limitations of
the available information and the approximations made in using the
seismic data of Nicaragua. We also presented the recurrence relation-
ship associated with all the seismic sources for the region. These
recurrence relationships give us the mean number of events of magni-
tude greater than M due to a given source and time period. If the
mean number of events above a specified magnitude M is normalized
with respect to time and length of the source for line source or area
of the source for area source, we get the normalized recurrence rela-
tionship. This normalized relationship gives the guantitative sta-
tistical seismic recurrence formula for each source. This, however,
represents the past seismic history of the region. In developing
understanding on the seismic risk for Nicarapua, we need the future
forecasting of events. Based on the past data, the future forecasting
can be done by means of two widely used statistical models. These
models are:

(1) Poisson Model.
{(2) Markov Model.
The Poisson Model assumes that major seismic events are
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spatially and temporally independent. This has been observed to be true
for the southern California region. (See reference 25.)} The Markov
Model assumes memory in two. successive seismic events. Thus, occurrence
or non-occurrence of an earthquake this year effects the occurrence or
nen-occurrence of an event next year. Even though this model conforms
with the so-called elastic rebound theory, it has been observed that for
events with interarrival times of more than 10 years, the Markov Model
gives similar results to the Poisson Model., References 26 and 27 are
two good examples of using Poisson and Markov Chain Models. 1In this
study, the Poisson Mopdel is used because of its simplicity, its wide-
spread use in literature, and because the results it gives are very
similar to results arising from more complex models such as the Markov

Chain Model.

Poisson Model of Seismic Occurrences

As mentioned in the previous paragraph, earthquake occurrences
can be modeled using the Poisson probability law. For earthquake
events to follow the Poisson Model, the following assumptions must be
valid:

(1) Earthquakes are spatially independent;

(2) Earthgquakes are temporally independent;

(3) Probability that two seismic events will take place at the

same place and at the same instant of time approaches
ZETro.
These assumptions are necessary for the formulation of the Poisson

Model. The first assumption implies that occurrence or nonoccurrence

51



of a seismic event at one site does not affect the occurrence or non-
occurrence of another seismic event at some other site. The second
assumption implies that the seismic events do not have memory in time,
A Markovian assumption of one-step memory in time may be a better as-
sumption, but as mentioned previously, this assumption for large
events does not introduce major errors {see reference 25). The third
assumption implies that for a small time interval, At, more than one
seismic event cannot occur. This is a very realistic and good assump-
tion which fits the physical phenomenon.

In its most general form, the Poisson law can be written as

e—Rt (At)n 41

pn(t) nl

i

where Pn(t) Probability of having n events in time period t.

i

n Number of events.

A

i

Mean rate of occurrence per unit of time.

In Chapter 3, we have seen how, using recurrence relatienships,
we can obtain the mean number of occurrences above Magnitude M for a

given source. This relationship in its general form can be written as

N(M) = ¢ (M, A, T) 4 .2
where N(M) = Number of occurrences above Richter Magnitude M.
M = Richter Magnitude.
A = Source characteristic (area for area source, length
for line source).
T = Time period of data base.
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As mentioned in Chapter 3, a log-linear recurrence relationship is
assumed for all sources. Also, for each source, the relationship 1is
bi-linear (two lines described by o Bl and % 62). (See Table 3-3

of Chapter 3.} Thus, for a given source, the two lines describing the

recurrence relationship are given by:

In N'(M)

af + B M 0 <M<M

u

In N' (M) o, + By M M. <M <M

2

where Ml is the magnitude at which the two recurrence lines inter-
sect (see, for example, fig. 3-2)
M2 is the upper cutoff magnitude for a given source (see

Table 3-3, Chapter 3).

Thus, depending on the source and the value of M, the mean number of
events above Magnitude M for a unit area for area source, a unit-

length for line source, and a unit-time is given by:
N'(M) = exp [ai' + Bi M] 4-4

Thus, from equation 4-1

P (t) = exp [- exp (o' + B, Mt] [exp (a' + 8, We]” 4-5
n!

Note that in equation 4.5 above, A is replaced by N'(M). Equation 4-5
gives the probability of observing n cvents above magnitude M in time

period t, based on the seismic history of a given source.
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Source Mechanisms

Three different types of sources can be used to represent the
scismicity of any location. They are point, line, and area sources,
All three source mechanisms will be discussed for generality and com~
pleteness, although only the line and area sources were considered for

the Nicaragua region.

a. Point Source

For this type of source, all occurrences (past and future) take
place at one point. The recurrence relationship can be normalized with

respect to time T as follows:

N = MM 1-6
and In N'(M) = o' + BM --- 4-3 repeated.

Substituting the value of N'(M) in the Poisson law of equation 4-1, we

get:

exp [-N'(m) t] IN'(m) t]"

n!

Pn M>m, t)

where the notation

Pn (M > m, t) gives the probability that there will be n events
of Richter magnitude greater than m in time period t.

For engineering purposes, we arc usually interested in de-
termining the probability of at least one event greater than m in time

period t. This probability is given by
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P (at least one event of Richter Magnitude M > m in time
period t)
= 1 - P (no earthquake of magnitude M > m in time t).
Hence, from equation 4 -7,
P {at least one event of Magnitude M > m in time t)

= 1 - exp [-N'(m)t]. 4-8

b. Linec Source

For a line source, it is assumed that epicenters lie along a
linear fault. For a line source of length L (fault length L) and the
data basc for a time perioed T, the recurrence relationship of Chapter 3
and equation 3-2 can be normalized to:

N(M)

NTOD = Ty

--- Equation 3-3 repeated

and

In N*(M) = o' + BM --- Equation 3-4 repeated.
Thus, the Poisson law of equation 4-1 can be written as

exp [-N'(m)t] [N'(m)t]"
n!

Pn(M >m, t)

where N'{(m)} for line source is normalized with respect to length of
the fault and time period T. Again, for determining the probability
of at least one event of magnitude greater than m for a future time

period t is given by,

P {at least one earthquake of M > m in time t)

= l - >
PO (M>m, t)
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=1 - exp [-N'(m)t]
which is a similar expression to equation 4-8 except that the interpre-

tation of N'(m) is different.

¢. Area Source

When the past earthquake epicenters do not lie on a line (i.e.
2long a given fault line) but are scattered over a region, the seismic
source should be considered as an area scurce. The area source could be
a full circle or any section of a circle where epicenters are scattered.
‘n this case, the recurrence relationship is normalized with respect to

area A and the time of data base T.

N
N'(M) = Ny Eq. 3-3 repeated
AT
and In N'(M) = a' + BM --- Eq. 3-4 repeated,

Thus, the probability of at least one event due to this area source
above magnitude m in time peried t is given by:

P (at least one M > m in time t) = 1 - exp [-N'(m)t}].
Again, this expression is similar to equation 4 8 for a point source,
and also for a line source. However, in cach case tHe normalized

N'(M)} has a different interpretation.

Peak Ground Acceleration at a Site

As we mentioned in Chapter 3, the most commonly used parameter
to describe the seismic loading at a given site is the peak ground
acceleration {(PGA, usually denoted by A). In the previous section,

we obtained the probability of exceeding a magnitude level in time t by
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using a Poisson odel. (The probability distribution represented by
Eq. 4 8 gives information only on Richter magnitude.) For design
purposes, we wish to know the loading at a site, away from the epi-
center. Modified Mercalli Intensity (MMI, see Appendix 2) peak ground
acceleration, spectral acceleration, and several other parameters
have been used to represent the loading at a giﬁen site. To obtain
probabilistic information about peak ground acceleration at a site,
we have to know the following parameters:
1. Probabilistic information on Richter Magnitude for a
source as a function of future time t.
2. Distance of the site from the source.
3. Attenuation of peak ground acceleration.from source to
site.
We have already determined the first parameter in the previous sec-
tion. Various attenuation formulae are available which give rela-
tionship between the Richter Magnitude M, the epicentral distance or
the hypocentral distance, and the peak ground acceleration, The most

commonly used relationship is of the form given by

bl exp (b2 M)

A = b3 4-9
(Rh + b4J
where A = Peak Ground Acceleration (PGA) in cm/secz.
Rh = Hypocentral distance from source to site (in kms.).
M = Richter Magnitude,.

bl’ b2, bS’ and b4 are constants depending on the region,
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Since there is not a close grid of seismographs in Nicaragua,
not much information is available on attenuation of accelerations in

that part of the world, However, various values of bl’ b b3 and b4

2’
are available for other parts of the world. One such relationship that
has been adopted for this work is the one¢ developed by Esteva. The

attenuation constants are given by

o
i

5,000; b, = 2.0;

b, = 0.8; b, = 40
Thus, the attenuation relationship becomes

5,000 exp (0.8 M)
(Ry, + 40)°

4 -10

Figure 4-1 shows the behavior of Eq. 4-10 for different Richter
magnitudes and hypocentral distances. This equation was correlated
with the ESSO Refinery data for the 1972 December earthquake and also
with the aftershocks. The correlation of the curve of Bq. 4-10 with
the data is quite reasonable; consequently, the attenuation relation-
ship given by Eq. 4-10 is used in this study. It should be pointed
out that the installation of many new instruments will help in cali-
brating the attenuation relationship for Nicaragua in the future.

When that is done, the results presented in this study can be readily
modified.

We have seen that three types of seismic sources are possible.
Due to each of these seismic sources, the peak ground acceleration at

a site in a probabilistic sense can be determined.
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a. Point Source

For a point source shown in Figure 4-2, we can derive the fol-

lowing expressions:

P (M> m, t) = Probability of at least one event greater than
m in time t.
=1 - exp [-N'"(m)t].
but N' (M) = exp Ja' + BM].
Thus,
PMM>m, t) =1 - exp [-exp (o' + Bm)t] 4-11

To determine the probability distribution on peak ground ac-

celeration A, we have

b, exp (b2 M)

PA>a] = p [t o >a ]
3
a b3 %
= P [M> 1n {B- (Ry, + b ) } 2] 4-12
1 4
Using equation 4-11 in 4-12, we get
| B/b.
B/b, 5,
. !
PIA>a]l = 1-exp {-&¢ () (R, + b,) t} 4-13
- bl h 4
u!
Denoting Yy o= e
§ = B/b2
B b
and p = B;— = Gb3
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we get

P[A>a] = 1-exp {-v cﬁL) (R, + b,) t} 4-14

4
b. Line Source

Most of the earthquake epicenters around the world are gencrally
located around the major fault systems. Thus, the usual case of epi-
centers falling along a line gives rise to the so-called line source.
the line source can be divided into K small segments of length dl.
Each one of these segments can be treated as a point source. Summing
the effects of all such segments, as dl » o, gives the probability of
a peak ground acceleration A exceeding a value a due to a fault line
source of length L.

For a point source, we have seen that

3 P

PIA>al = leexp -y (G0 Ry v by t)
1

it

then P [A < a]

it

36 P
exp {-y(G") Ry +b) ]
1

Thus, for an element i of the line source, we have

6 P
Pi [A <a]l = exp {-v (giﬁ Ry, + b4) dﬁi t }
1 i

From Fig. 4-3,

1/2
R (@« 2% wH

where 2 is the distance of element under consideration from the
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perpendicular on the line source.
Thus, 5

1/2
P [A<al = exp (- Y [(a% «+ sz,jz o IR L CRES
1

From the basic assumption of spatial independence of occur-

rences, we get

i<
P [A<a]l= lim 1T P, [A<al.
=1t
df .o
i
K > oo
= lim
68 2 2.21/2
a P
dﬁi+o exp {- Y(E~J‘Z [(d™+ Qi +h™) +b4] dRit}
1 i=1
K+ o
3
§ 2 1/2
2 4-15
p [A < a] = exp {[— Y(Ea—) t [ [[d2+,'?, +h2) + b4]p dse?
1
21
Alternatively,
[
2.’ 2 2 2 2. 1/7 P
PJA>al =1-cexp {-v q;% t djf[(d +£°+h") + b4] de}  4-16
1 i
21

Expressions 4-15 and 4-16 provide the probabilities of peak ground
acceleration A due to a line source located some distance away and
whose seismicity is available in terms of o' and f and also for which

the attenuation relationship of the form of Eq. 4-9 is available.
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c. Area Source

Peak ground acceleration due to an area source at a site can
be obtained in a manner similar to that for line source. In many
parts of the world, including Nicaragua, there are regions where the
epicenters are not only located along a line but are scattered all over
the region. This may be due to the existence of numerous faults criss-
crossing the region or due to errors in estiméting epicentral locations.
In any case, there are places where point or line sources may not fit
the scatter of epicentral locations. For such cases, area source should
be used to determine probabilistic loadings at a site. Figure 4-4 shows
schematically the area source geémetry.

Consider an elemental areca dAi = RidRidei' With this e¢lemental
area as a source, the probability that the Richter Magnitude M will be

less than m in time t is given by

il

Pi M <m, t] = exp [-N'"{(m) dAit]

i}

exp [-exp (o' + Bm) tRidRid@i]

or

1

- Bb
8/b 3
PIA < a,t] exp [-2 (9 2 /RZ+n%+b) b, tR.dR.dO.]
i b1 i 4 2 i1 71

Summing the effect of all clemental arcas, we get

P JA <a, t] = lim Pi A < a, t)
dR.~0
i
de.-0
i

Hence,
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Bbg
b

2 RdR}

Go R2
B/b
P [A < a, t] exp {-ew' (E"fl—) 2 tf do f(¢R2+h2 + b4J
1 R
o) 1

Bb
3
o a. B/b, pe 33 b,
- exp (e G- t?/f (R%n% + b)) % Rar)
1
Ry
'
Let v = ed
5= B/b,
o B3
B b2 as before
and
77
Ry, = vR™+h
Then 5 R2 .
_ TR , P
P A <a, t] = exp { y(bl) t@[ (R, +b)P RR T 4.17
Ry
and
Ry

a‘S p
P[A>a, t] =1-exp { -y (E—) t0 (Rh + b4) RdR} 4.18
1

*1

Equations 4-17 and 4-18 provide the probability distribution of peak
ground acceleration A at a site due to a generalized area source shown
in Figure 4-4.

In general, a site is usually surrounded by any or all of the
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above three sources discussed in this section. The probabilistic load-

ing due to such a case can be obtained by the following expression.

Let there be NP point sources
NL 1line sources
NA arca sources
The probability distribution of peak ground acceleration at a site 1s

then given by

S
NP L1 Pi
PIA>a, t]j=1-exp{- ¥ ¥. (9 t(R +b,)
. i b h. 4
. i=1 1 i
8 b2 y
NL J 1/2 0.
) tf [(d.%+2%n. % " +n,1 Jar
‘21 j b1 J j 4
= 2
1j
R
2k
- ];:JA Y (f:..)(gk pk
=1 k b, t 9 (th+b4) RAR} 4-19
Rik

In equation 4-19, summation over i is for all point sources, that over
j is fqr all line sources, and over k is for all area sources.

As we have seen in Chapter 3, there are ten line sources and
three area sources that we have formulated for the Nicaragua region,

based on past data. Any part of the country is affected by these

sources, depending upon the proximity of the site to the source location.
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Iso~Acceleration Maps for Nicaragua

Equation 4-19 can be used to determine the probability distri-
bution function of pecak ground acceleration as a function of time and
space. For example, at a given site, the probability of A > a increases
with time. In other words, the longer the '"exposure time," the greater
the probability that the peak ground acceleration will exceed some
level a. If we take the country as a whole and determine accelerations
at different locations for a specific time period t (exposure time) and
specific probability of A < a, we can obtain lines of equal accelera-
tions. These lines of equal accelerationsfor a specific probability
of non-exceed ence and exposure time are called "Iso~Acceleration
lines. The maps representing iso-acceleration lines are called the
iso-acceleration maps. These iso-acceleration maps are a form of
scismic zoning maps. From these maps, for a given reliability or
risk, one can determine the loading parameter (peak ground accelera-
tion) for the seismic design of a structure. Detailed methodology
describing the use of these maps for structural design will be pre-
sented in Chapter 7 of this report and alsc in the Part IT report of
the total study.

Charts 8 through 13 show the iso-acceleration maps for Nicaragua
for a time period of 50 years and 20 years. For each time period the
iso-acceleration maps are drawn for three risk levels. The risk level
is defined as the probability that the peak ground acceleration will
be exceeded during the exposure time (or economic lifetime) of the
tacility under consideration.

In addition to the iso-acceleration maps for the whole country,
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the followiﬁg cities are studied in detail.

1. Managua

2. Leon

3. Granada

4. Masaya

5. Chinandega

6. Matagalpa

7. Esteli

8. San Carlos

9. Rivas

10. Juigalpa

11. Bluefields.
Figures 4-5 through 4-26 show the cumulative distribution function of
the peak ground acceleration for each of the cities. Again, results
are presented for the exposure time of 20 years and 50 years. Thus,
as an example, for Leon, there is approximately 53% chance that the
peak ground acceleration in 20 years of exposure time will not exceed
- 0.20 g (see Figure 4-8). The corresponding value for a 50 year ex-
posure time for the same city is 21%. Thus, the probability of ex-
ceeding 0.20 g in 20 years is 47%, whereas it goes up to 79% in 50
years. The implications of these probability values and the corres-
ponding acceleration values will be discussed in Chapters 5, 6, and 7.

When we compare the cumulative distribution plots for different
cities, we can see the relative seismicity in terms of peak ground ac-
celeration for each city. In conclusion, it can be said that one

method of representing seismic risk is by means of the isoc-acceleration
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maps and the other method of representing seismic risk is by means of
cumulative distribution function plots of Figures 4-5 through 4-26.
The engineering interpretation of these results will be pre-
sented in the next three chapters. It should also be pointed out that
the iso-acceleration maps and any zoning based on such maps only
represent macro characteristics. The macrozoning of the country
should be modified with site-specific micro characteristics to micro-
zone a given region. In that case, the local geotechnical and geo-
logical features (such as those discussed in Chapter 2} should be

incorporated together with the macre characteristics presented in

this chapter.
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CHAPTER V

SEISMIC RISK ZONING

Concept of Return Period and Accelération
Zone Graphs (AZG)

In deriving the probabilistic loading at a given site as a
function of time, we have assumed that the forecasting process 1is
Poisson. This process implies that the events are independent in
time and space. Using this assumption and an appropriate attenuation
relationship, we developed the iso-acceleration maps for the country.
For a given city, we also developed the cumulative distribution func-
tion of the peak ground acceleration A, as mentioned in Chapter 4.
Consider the cumulative distribution . of peak ground acceleration in
Managua for an exposure time of 20 years. (Sec Figure 4-5.)

Then P,y (A>0.20g) = "0.73 5-1

Equation 5-1 can be interprected in the following way:
"For Managua, there is a 73% chance that during the next 20 years, the
peak ground acceleration of 0.20g will be exceeded at least once.”

Thus, there is a 27% chance that for Managua, 0.20g peak ground
acceleration will not be exceeded a single time.
Hence,

P (Zero exceedence ©Of (0.20¢ in 20 years) = 0.27.

From the Binomial Probability Law, we know that for independent trials

with probability of success p at each trial, the probability of r

93



successes in n trials is given by

p, = ) ph AT 5-2
where
r=0,11, , . .n; n=r7r1, T+l, T+2, , .
and
@ - T

Let each trial be a one-year duration for which we are observing
the level of peak ground acceleration. Let us define success as that
event when the peak ground acceleration for a given trial (year) exceeds
0.2g. Thus, the probability of zero exceedence gf level 0.2g in 20

years is the same as the probability of O successes in 20 trials. Hence,

from Eq. 5-2:
_ 20 0 20
Py (0) g p 0-p)
20
However,
pZO(O) = 0.27
1-p)%0 = o0.27
or p = 0.063.

Thus, for Managua, there is a 6.3% chance that in any given year, a peak
ground acceleration of 0.20g will be exceeded.

However, the return period is defined as
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Return Period = RP = 5-3

1
P
Thus, the return period RP in Managua for a peak ground acceleration of

0.20g is 1 ~ 16 years.
0.063

It should be pointed out that this return period of 16 years
corresponding to 0.2g, obtained by using the cumulative distribution
function (CDF) of PGA A at Managua for a 20 year exposure time does not
change if we use the CDF corresponding to 50 year exposure time. For

example, for a 50 year exposure time, (see Figure 4-27),

Peg (A > 0.20g) = 0.963 : 5-4
Hence, PSO (A < 0.20g) = 0.037
- 50 _
Or Peo (6) = (1-p) = 037
which gives p = 0.063 5-5
and Return period RP ® 16 years.

Thus, using the CDFs for all the c¢ities in Nicaragua considecred
in Chapter 4, we can develop a table of peak grouﬁd acceleration and
return period. Table 5-1 is a general table giving this relationship
for the cities considered. The following statements should be understood
in using the concept of return period:

(1) A return period is the mean (or average waiting time for

an cvent of interest. Thus, the average (waiting) time
between 2 events producing 0.20g in Managua is approximately

16 years.
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(2) The probability that an event corresponding to a return
period RP will occur in any given year is given by p = gﬁ .
Thus, probability of exceeding 0.20g in Managua in any
given year is i%—* 0.063 (same as Eq. 5-5).

(3) The probability that not a single event of the RP type will

occur 1n RP years is given by é—where e = 2.718, the
Naperian base. Thus, probability that in 16 years, there
will not be a single event producing a pcak ground acccler-
ation of 0.20g in Managua is given by-é * 0.36.

Thus, there is 64% chance that in RP years there will be at
least one event of RP type. For Managua, there is a 64% chance that in
16 years, 0.20g peak ground acceleration will be exceeded. Consider
again Table 5-1. For seismic zoning purposes, the following statements
can be made:

The return period corresponding to a peak ground acceleration
of 0.20g in Managua is 16 years, in Leon is 32 years, in Granada is
35 years, in Masaya is 20 years, in Chinandega is 106 years and in
Rivas is 81 years. Thus, for each city, a graph relating the peak
ground acceleration and return period can be plotted. Figures 5-1
through 5-12 show thesc graphs. We will refer to these graphs as
Acceleration Zones. Figure 5-1 shows return period vs. peak ground
acceleration for all the cities. It can be seen that for a given
return period event (say, 100 years), Bluefields has the lowest value
of peak ground acceleration (®.05g) and Managua has the highest value
of peak ground acceleration (.34g). The values for other cities lie

between these two limits. Qualitatively, it can be said that for a
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facility requiring a design loading corresponding to a 200 year recturn
period, Bluefields has the lowest seismic zoning requirement; San
Carlos, Matagalpa, Esteli and Juigalpa have similar zoning require-
ments but above the Bluefields level; Rivas, Cranada, Chinandega,
Masaya and Leon, having similar zoning requirements, come next; and
finally, the highest level is for Managua. This type of graph can
help in macrozoning a country for a given class and use of a structure

or facility. (See Chapter 7.)

Seismic Risk Zoning

In the previous section, we have seen the relationship between
the peak ground acceleration and the corresponding return period for
different major cities of Nicaragua. However, these relationships by
themselves do not help in selecting a return period for a given accept-
able level of risk. The next step, in any seismic zoning procedure,
is to obtain a relationship between the economic (or exposure) life
of a structure, the level of risk one is willing to take, and the
return period consistent with the risk and economic life. Consider
again the Binomial distribution. The probability of r successes in n
independent Bernoulli trials, with probability p of success at each

trial, is given by

p(x) = () P a-p)” " Eq. 5-2 repeated

Thus

It

1
P (0 = O @ a-p*?

(l—p)lo = probability of zero success in
ten trials (years).
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Let p(0) = (l—p)lo be equal to 0.90. Then the probability of
no occurrence {(or success) of a certain level of lcading in ten years

is given by 0.9%0.

or (1-p) Y 0.90

I

.010438

Hence P
or return period RP = 95 years.
Thus, for a structure whose economic life is ten years, 1f the accept-
able risk level is 90% of not exceeding the specified loading level
(i.e., 10% of excceding), then the structure should be designed for a
return period of 95 years. Table 5-2 gives the relationship between
acceptable risk level, economic life and return period. 1If, for
example, the acceptable risk level is 80% for a structure whose econ-
omic life is 50 years, then the loading level should correspond to a
return period of 225 years. [f this structure is in Managua, the
corresponding peak ground acceleration level is approximately 0.39g.
If the same facility for the same risk level is to be built in
Matagalpa, the corresponding peak ground acceleration level should be
approximately 0.12g. Thus, for a given class and use of structure,
having thersame economic life (50 years} and same acceptable risk
(80%), the two consistent values of peak ground accelerations in
Managua and Matagalpa are 0.39g and 0.12g. This is the concept of
consistent risk design from one seismic region to another region of
different seismicity. Figure 5-13 shows the graph relating the risk
level, economic life and the return period. This particular graph is

independent of any region and gives return periods only as functions
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Table 5-2

Return Period as a Function of Economic Life and
Probability of Non-exceedence

Economic Life
Years
Probability of 10 20 30 40 50 100
not e;ceeding
80 95 190 285 390 475 950
80 45 g0 135 180 225 449
70 29 57 84 113 140 281
60 | 20 40 59 79 98 196
50 15 29 44 58 72 145
40 11 22 33 44 55 110
30 9 17 25 34 42 84
20 7 i3 19 25 31 63
10 5 9 14 18 22 44
5 4 7 11 14 18 34
1 3 5 7 9 11 22
0.5 2 4 6 8 10 19
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of risk and economic life. Such graphs can easily be codified, Once
the acceptable risk level for a given cconomic life is selected for a
given class and use of a structure, the corresponding return period is
immediately obtained from Figure 5-13. Then, based on the graph of
return period vs. peak ground acceleration (similar to Figures 5-1 to
5-12), the loading at a site can be determined. Let us describe this
concept of risk, economic life, return period and Acceleration Zone
Graphs (AZG).

As an example, consider a design of a hospital facility.
Assume that the exposure time or economic life of the system is 50
years. We are to determine the peak ground acceleration level for
which this facility should be designed for each of three different
cities. The cities are Managua, Leon, and Esteli. Assume that for
the hospifal, which is a critical facility that must remain functional
after a seismic event, the acceptable level of risk corresponding to
damage is 20% (see Chapter 7 for details). Thus, whether the planned
facility is in Esteli, Managua, or Leon, we will accept a 20% chance
of damage during the 50 years economic life of the structure. Then,
from Figure 5-13, the return period corresponding to the 50 year
economic life and 20% risk is 225 years.

Now let us refer to the AZG corresponding to Managua (sece
Figure 5-2). The peak ground acceleration for a 225 year return period
in Managua is 0.39g. Similarly, referring to the AZG for Esteli and
Leon, the peak ground acceleration values corresponding to the 225
year return period are 0.11g and 0.27g. Thus, these three values of
peak ground acceleration in the three different cities are consistent

114



with the given acceptable risk.

As an alternatc situation, consider two separate classes of
structures to be built in Managua. Let a school building with an
economic life of 30 years have an acceptable risk level of 20%, and a
warehouse with a ten year economic life have a 40% acceptable risk
level. Referring to Figure 5-13, the return period for which the
scheol should be designed is 135 years, and the return period for which
the warechouse should be designed is 20 years. Again from the Managua
AZG (Figure 5-2}, the corresponding peak ground acceleration values
are 0.36g and 0.21g for the school and warehouse, respectively. If
the same two facilities were to be located in Juigalpa, the correspond-
ing peak ground acceleration values would be 0.1lg and 0.07g. The
major advantage of this method of zoning is that one can keep a con-
sistent risk level from onc region to another. Variations in the
economic life and acceptable risk levels can be accounted for in
arriving at a loading level through the return period transformation.
Further application of the AZG to structural design will be precsented

in Chapter 7 of this report and in Part II of the total study.
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CHAPTER VI

PROBABILISTIC INTENSITY FORECASTING -- DAMAGE ESTIMATION

MMI Forecasting

Seismic zoning or seismic risk can be presented, as shown in
the previous section, in the form of iso-acceleraticn maps or cumula-
tive distribution functions (CDF) of pecak ground accelerations for dif-
ferent cities or by acceleration zone graphs (AZG). Another very
informative and useful parameter for representing future seismic risk
is in the form of Modified Mercalli Intensity Scale MMI (scc Appendix 2
for definition). This intensity scale describes the behavior of dif-
ferent types and classes of masonary and frame structures at a site
due a seismic event. Recently, there has been a considerable amount
of work in correlating the damage obsefved due to a selsmic event. (See
references 35, 36, and 37.) This damage correlation is usually with
the MMI level for a given region. In previous chapters, we have al-
ready obtained the probabilistic loading level in the form of peak
ground acceleration. Various empirical relationships are available
to convert peak ground acceleration to the MMI Scale.

The MMI Scale is discrete, whereas the acceleration scale is con-
tinuous. To obtain this discrete probability mass function of the MM
intensity at different parts of the country for 20 years and 50 years,
a Monte Carlo simulation process was used. The procedure can be

described as follows:
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(1) Obtain the CDF for peak ground acceleration A for the
region under study. (See Figures 4-5 to 4-26.)
(2) Select an empirical equation to convert peak ground ac-

celeration to MMI . The relationship used in

this report (see reference 38} is

R;cglo(a) = % - 0.5 61

where a is the acceleration in cm/sec;2
I is the MM intensity.
Thus, for example, the peak ground acceleration at a site

is 0.10g, then

10

a = 0.10g = 55 X 981.46
= 98.146.
fog.  98.146 = + - 0.5
819 7% -3 :
or
1 = 7.5,

Since I has to be VII or VITI, we pick I = VIII.

(3) Through random number generation, pick a value of the peak
ground acceleration by using CDF for the PGA. Substitute
this generated value of PGA in equation 6-1 and obtain I,

(4) Repeat step (3) n times and draw a histogram of frequency
chart for I. As n» , the frequency of I will approach the

probability mass function of I.

This process was repeated for all eleven cities mentioned in
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Chapter 5. A time period of 20 years and 50 years was selected for
convenienée. Figures 6-1 through 6-11 show the probability mass func-
tions for all the cities. The interpretation of these graphs can be
explained by means of an example.

For Managua, during the next 20 years, probability that the
maximum Modified Mercalli Intensity I will be VIII is given by (.38
(see Figure 6-1}.

Thus,

P [Maximum MMI in 20 years will be VIII] = 0.39.

Similar statements can be made for other parts of the country.
Iso~seismél maps based on such forecasting can be generated for the
whole country. It should be pointed out that intensity of shaking is
very much a function of local geologic and soil conditions. For proper
evaluation of these parameters, a detailed site-specific study and
micro <characterization of the site are needed. The values presented

here are based on macro study.

"Insurance Risk" or Damage Potential

We have not correlated the damage data for Nicaragua with the
observed past intensities. This study will be presented in part II of
the current study. Such correlation can be made by observing the per-
centage damage in a given class of structures due to an observed past
seismic event. From the 1972 earthquake in Managua, the information on
such Intensity-Damage correlation can be obtained. However, we will
present a methodology of using such information to estimate the "in-
surance risk'" for a given region.
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A study of MM intensity and dollar damage was conducted after
the Long Beach, the Kern County, and the San Fernando earthguakes.
Figure 6-12 shows a gfaph of Median Loss in percent as a function of
MMI for different types of structures. Even though we realize that
these values arc not applicable to Nicaragua, behavior of structures
in Nicaragua built similar to those in the Southern California region
will exhibit relationships similar to Figure 6-12. The purpose of pre-
senting numerical ecxamples with damage data from California and in-
tensity forecast for Nicaragua is to show the methodology. No
conclusions regarding insurance risk or damage potential should be
made by using these numerical values. The purpose,vto repeat once
again, is strictly to demonstrate methodology. However, appropriate
and applicable numcrical values will be used in Part I1 of this
study. If, on the other hand, residential houses or light industrial
buildings are constructed similar tc those in Southern California,
such as wood frame dwellings and tilt-up structures, then the numer-
ical values presented here can be used with some caution.

The three classes of structures considered in the example
are:

(1) All one- and two-story wooden frame residential houses;

(2) Pre-1940 residential homes; and

(3} Light industrial buildings.

Using Figure 6-12, Table 6-1 can be constructed. The losses corres-
ponding to any MM  intensity level are in percentages. Thus, for
example, due to MMI of V, damage to a wood frame dwelling would be

0.1%. The corresponding loss to pre-1940 design dwellings would be
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Table 6-1

Median Losses Due to Different MMI Levels

All Pre-1940 Light Industrial
Intensity Dwellings Construction Buildings
1% 0.1 0.2 0.75
VI 0.2 0.4 1.5
VII 0.6 0.9 3.3
VITI 1.4 2.1 7.2
X 3.3 5.0 16.0
X 7.7 12.0 36.0
XI 18.0 29.0 80.0
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0.2%, and to light industrial buildings, it would be 0.75%. To de-
termine the expected loss to any class of structure, the probability
of any MMI level must be multiplied by the corresponding loss due to
that level. The summation over all intensities will give the expected
loss in percentage for that class of structure.

Consider, for example, the probability mass function of MMI

for a twenty year period at Masaya (see Figure 6-4):

Intensity VIT VIIT IX X
Probability .01 47 .51 .01
Damage %

All Dwellings 0.6 1.4 3.3 7.7

The expected median damage in 20 yecars for "all dwellings"™ is given by

i}

E [Damage] (.01) (.6) + (.47) (1.4) + (.51) (3.3) + (.01) (7.7)

2.424%

1l

Thus, for a $1,000 valuation, the expected damage in 20 years is given

by

2.424
100

Expected Damage 1,000

$24.24 per $1,000 valuation in 20 years.

il

Similar calculations can be carried out for all eleven cities
considered for 20 and 50 years. Table 6-2 shows these loss calculation
results. Table 6-3 shows similar expected loss calculations for a 20%
chance of exceedance. Thus, in Managua, there is a 20% chance that in

twenty years a light industrial building will have an expected loss of
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$321.00. However, the median (expected) loss for the same time period
in Managua for the same class of structure will be $128.,40. Tigure
6-13 shows the behavior of expected losses as a function of time and
the class of structure. It can be seen that the expected loss or
economic (or insurance) risk for the Managua region in one year is
$5.84 per thousand-dollar valuation. However, over a 20 year life of
the structure, the expected median loss is $26.20 per $1,000 valuation.
It can be seen from this example that expected loss averaged over a
twenty year time period gives less mean rate of loss $26.2/20 = $1.31
per $1,000 valuation per year compared to $5.84 per $1,000 valuation
when only one year was considered. This is the concept of risk averag-
ing over time. Thus, if it were possible to insure a given facility
for a 20 year economic life (say, a light industrial building), then
it would be cheaper to buy that insurance for all twenty years at the
same time as opposed to buying it year-by-year. In thé long range,
buying of insurance, for our numerical problem, the cost would be
$128.4 per $1,000 valuation for a twenty year economic life. For a
vear-to-year buying, it would cost $31.84 per $1,000 valuation per year,
or $638.8 per $1,000 valuation over a twenty-year span. Of course,
in these simple calculations the valuc of money and the interest rate
are not taken into account. From Tables 6-2 and 6-3 it can be seen
that the "insurance risk'" in decreasing order of magnitude in different
cities is:

1. Managua

2. Masaya

3. Granada
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4, Leon

5. Chinandega

6. Rivas
7. Julgalpa
8. Esteli

9. San Carlos
10. Matagalpa

11. Bluefields.

Granada and Leon have almost ecqual expected economic¢ or in-
surance risks. Similarly, Juigalpa, Esteli, San Carlos and Matagalpa
have very similar insurance risks. The seismic insurance risk at
Bluefields is very small. It should be pointed out that even though
the damage data used in the numerical problem were from Southern
California earthquakes, the order of these cities in their seismic
and economic risks is valid. 1If proper data from Nicaragua are con-
sidered with appropriate economic conditions in Nicaragua, the ordering
of the citics in their risks will not change substantially.

In conclusion, it can be said that the methodology presented
here for determining the probable intensity levels and their use in
determining expected damages needs a closer look and further investi-
gation. Part Il of the current study will go decper into that

question,






CHAPTER VII

THE RELATIONSHIP OF ISO-ACCELERATION AND ACCELERATION ZONE

GRAPHS (AZG) TO SEISMIC DESICN PROVISIONS

Introduction

From the information as developed in the preceding chapter,
ground acceleration values Ag may he established for a given structure
location. These values have selected probabilities P of not being ex-
ceeded during a given economic structure life L. The purpose of this
chapter is to show how these acceleration values are to be incorporated
into load criteria for seismic design provisions. Basically, accelera-
tion values must be converted to seismic load information, such that
structures, as designed for these load levels, will have a desired re-
liability Ry of damage protection and a much higher reliability RC
against total building condemnation or incipient collapse during the
economic structure life.

While at first thought a building owner may desire full pro-
tection against both the hazards of damage and condemnation, a con-
sideration of the complete set of his objectives will show the necessity
for acceptance of some level of risk. For a given site location,
structure life, and Use Group or Function, these objectives of the

building owner are:
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Low construction cost
Low operating cost
Functional configuration

. Attractive configuration
Damage protection

. Condemnation protection.

Perfect and certain fulfillment of all of these objectives is
not possible due to the uncertainties in earthquake demands and in
structural capacities and behavior. Practical fulfillment of the first
four objectives requires the acceptance of a moderate probability of
damage PD {equal to l—RD) and a small probability of structural con-
demnation P, during the building's economic life, L. Owners, therefore,

C

must agree to a definite set of values for P L for the given

D’ PC’
value, and Use Group of the building. Graphs presented in Chapter 6
can help the owner decide on the level of risk and hence can result in
the determination of the appropriate probability values.

For these given values of P and L, the Acceleration Zone

D’ PC’
Graphs (AZG) provide the Peak Ground Acceleration values AD and AC which
have the moderate PD and small PC probabilities of exceedence during the
structure lifc L at a given site location.

For example, the use or function of structures may be organized
into the following groups which depend on the desired reliabilities of
operation and damage protection in the event of a large earthquake,

Group A: Critical facilities necessary for life care and safety;

hospitals; penal and mental institutions; gas, water, electric, and waste
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water treatment facilities; communications facilities; police and fire
departments; and disaster control centers,

Group B: Multi-family residences; hotels; recreational and
entertainment structures; churches and schools; commercial and in-
dustrial structures necessary for normal commerce.

Group C: Facilities which are relatively non-essential for
normal commerce and where damage will not create a life safety hazard.
An example of such facilities would be warehouses.

Example values of the peak ground accelerations AD and AC’ at
sites in Managua and Leon, are given in the following Tables: 7-1,
7-2, 7-3%3, and 7-4. These are based on structure lives of 20 and 50
years, and on reasonable values for PD and PC corresponding to the
structure Use Group. The values given in these tables are strictly
for demonstrating the concepts, and are not meant to be used by
engineers at this time. As can be seen from these four tables, the
same facility and risk in Leon and Managua requires different A and

D

Ac values. Obviously, Leon has a lower seismic demand than Managua.

With thesec known values of AD and A, at the structure site,

‘ C
the primary objectives of the structural designer are to:

. Provide a structure with sufficient rigidity such that no
significant non-structural damage will occur due to earth-
quake ground motions of a level represented by AD‘

Provide a structure with sufficient strength capacity such
that no significant structural damage will occur due to

deformation demands caused by earthquake ground motions of

a level represented by A



Table 7-1

20 Year Economic Life, Managua Region

Group PD RPD AD PC RPC AC
A 20% 90 .33g 10% 190 .38g
B 50% 30 .24g 20% 90 . 33g
C 70% 17 ,20g 50% 30 .24g
Table 7-2
20 Year Economic Life, Leon Region
Group PD RPD AD PC RPC AC
A 20% S0 0.24g 10% 196 0.26g
B 50% 30 0.20g 20% 20 0.24¢g
C 70% 17 0.17g 50% 30 0.17g
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Table 7-3

50 Year Economic Life, Managua Region

Group PD RPD AD PC RPC AC
A 20% 225 0.40g 10% 475 0.44¢
B 50% 72 0.32¢g 20% 225 0.40¢g
C 705% 42 0.27g 50% 72 0.32g

Table 7-4
50 Year Economic Life, Leon Region

Group PD RPD AD PC RPC AC
A 20% 225 0.26g 10% 475 0.30g
B 50% 72 0.23g 20% 225 0.26g
C 70% 42 0.21g 50% 72 0.23g
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. Provide a structure with sufficient strength, stability, and
deformation capacity such that condemnation of the structure
will not result from the effects of earthquake ground motions
of a level represented by AC.

. While the possibility of significant damage is admissible
with the moderate probability PD, and the possibility of
building condemnation is admissible with the small prob-
ability PC, every prudent effort is to be made to prevent
serious injury or death of the building occupants. This life
safety objective requires that the details of both the struc-
tural and non-structural elements, and the complete struc-
tural system are such that neither injurious system failures,
injurious falling debris, nor structural collapse will result

from ground motions of a level represented by AC.

The practical consequence of this last objective is that only
those types of structural systems which are capable of retaining their
integrity and stability at deformations at and beyond the AC level are
to be used.

Within these systems, tﬁe details of the connections between
structural elements must tie the structure together, and the elements
themselves must not have brittle or sudden buckling modes of failure.
Multiple systems of frames, or back-up systems in the form of shear
wall or vertical bracing must provide a series of lateral force resist-
ing systems such that vertical load capacity is maintained for earth-

quake deformation demands at and reasonably beyond the AC level.
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The complete set of structural design objectives is shown in
Figure 7-1. Since the demands of earthquake ground motions create non-
linear structural behavior, this figure indicates the critical design
thresholds of damage AD and condemmation AC in terms of structure
deformation A rather than forces. The solid line coordinate system
represents the probability density function £ ({4) of Earthquake De-

formation Demands ADEM which may occur on a given structure during a

life L, The dotted line system indicates the load V versus deforma-

tion capacity 4 curve of a given structure which satisfies the

CAP

stated design objectives. OSpecifically, the structure has been de-
signed such that its deformation capacities are equal to or greater
than the earthquake demands at the damage'and condemnation threshold

levels. The earthquake of level A, with probability of exceedence P

D D

does not exceed the damage capacity level ADAM’ and the earthquake

having the condemnation level A, with probability P., does not exceed

C e

the condemnation capacity level ACO Further, the structure load-

N
deformation curve maintains a reasonably constant level for even those
highly improbable deformations which might reasonably exceed the con-
demnation level. This latter characteristic insures the stability of
the structure against collapse.

Tﬁe purpcse of this chapter is two-fold. Tirst, the response

spectrum method of analysis will be described as the means of relating

the AZG values AD and A. to their corresponding earthquake demands AD

C

and AC on a given structure. Second, the complete design procedure
will be developed such that the resulting structure will have the

necessary design requirements of AD In addition,

ap 2 bp #nd Aggy 2 8

Ce
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QUAKE

Apam

Deformation Capacity
Shear Capacity
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the types of structural systems and details necessary for the life
safety requirement of collapse prevention will be defined. The
analysis and design procedures will follow the general concepts as set
forth in reference 28. The order of the subjects to be trcated are as

follows:

Basic Response Spectra:

Definition of an earthquake response spectrum for
an ideal elastic singlc-degree-of-freedom system;
Effective ground acceleration as a working measure
of spectral size or level; Spectral shape in terms of
the dynamic amplification factor {DAF), its mean and
standard deviation (o) value; the effect of the damp-
ing ratio {R); the effect of inelastic behavior as
represented by the ductility ratio (u); site or soil-
column response effects on the average ground motion
values.

Response Spectrum Analysis:

Response of multi-degree of freedom systems as
the square root of the sum of the squared response of
each mode to a given spectrum (SRSS response); use of
the SRSS response to an inelastic response spectrum
as an approximation of inelastic system response.

. Types and Characteristics of Lateral
Force-Resisting Systems in Buildings:

Ductile frames; shear walls; walls and ductile
frames; walls and ordinary frames; the effect of the
choice of system type on the accomplishment of the
design objectives.

Design Spectra:

Definition and purpose of design spectra for the
damage and collapse threshold earthquakes; spectral
level established by the effective ground acceleration
A for a given structure use group and life L; spectral
confidence limits ko for structural system types;
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structure-foundation interaction effects; subjective

assignment of u, B, and ko for given structural system

types; formulation of a set of example design spectra.

. Proposed Design Method:

Earthquake loading as provided by the SRSS response

to the Design Spectra; structure modeling for dynamic

modal analysis; Dead, Live, and earthquake Load combina-

tion; design on an ultimate strength basis; calculation

of inelastic deformation-demands and comparison with

allowable ductility limits, and stability limits.

It is important to emphasize that the responsc spectrum analysis
and corresponding design procedures are to be presented in a general
descriptive form in this report. The current practice of seismic
design is such that these methods are still in a state of development
within the design profession. They represent, however, the most ef-

fective practical means of achieving the design objectives and are to

be developed in detail in the proposed Part IT of this study.

Basic Response Spectra

The earthquake response spectrum is to provide the analytical
model by which the AZG values of AD and AC are to be related to struc-
tural load values. These load values, in turn, are to be employed
within an appropriate design procedure to provide the necessary sizes
and proportions of structural elements required to satisfy the design
objectives. Before going into the method of formulating what may be
termed as structural design spectra, it is necessary to describe the
basic spectral characteristics and parameters. These include: size
or level, shape, confidence limit, damping, and ductility. (A typical
basic response spectrum is shown in Figure 7-2.)
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Definition of an Earthquake Response Spectrum:

For a given accelerogram or time history of earthquake ground
motion, the ordinate Sa(B, T) of the acceleration response spectrum
{(shown in Figure 7-2) is the maximum effective acceleration response
felt by an elastic single-degree-of-freedom system, having a damping

ratio f and natural period of vibration T.

Basic Response Spectra:

Figures 7-3 and 7-4 show response spectra plotted on special
three-way logrithmic paper. They represent the type of basic spectral
shape as proposed by Newmark in reference 29, and as extracted in
Appendix 5 of this report. The Newmark method of spectrum construc-
tion is representative of current practice and is employed for the

purpose of this report. Basically, it consists of the fellowing steps:

. Three straight lines representing constant acceleration,
velocity, and displacement are used for the ground motion
base line. The acceleration leg Ag is the peak effective

D C

values set the level of the spectrum; and the ground velocity

ground acceleration from the AZG, either A, or A.. These Ag

Vg and displacement Dg are proportional to this given A

value,

. The basic response spectrum for a given damping value B
is formed by multiplying the Ag’ Vg’ Dg curve values by
DAF values. In the Newmark method these DAF values are at

about two standard deviations (2 o) from the mean DAF shape.
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Inelastic Response Spectra:
When the inelastic deformation response of ideal elasto-
plastic system is known in terms of the ductility facter u, then the

inelastic force and ineclastic deformation spectra may be obtained by

the rules given in the method and these are represented in Figure 7-5.

If the ideal system (with period T) were to have its yield strength
level cqual to the Force at the Inelastic-Acceleration line, then the
total inelastic deformation of the system is given by the Non-Elastic
Displacement line.

Some improvements and modifications to this Newmark method
which are to be introduced in this Part I report, and subsequently

developed in the Part II report, are as follows:

. The ground motion base line values and the resulting shape
may need to be modified to represent the envelope of pos-
sible effects from the three principal sources of major
carthquakes: Local Fault Systems, Volcanic Activity, and

the Benioff Zone.

. The DAF in.terms of its statistical mean value and standard
deviation ¢ must be evaluated for a macro-region which is
representative of Nicaragua; see, for example, reference 30
for this type of study. A similar study as reference 30
will be prescribed for the Nicaragua region in part II of

this report.

. The rules for forming the inelastic acceleration and
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inelastic displacement spectra must be modified to represent
the actual inelastic behavior of structures rather than the

given ideal elastic-plastic system behavior. In particular,
the low period regicn of the inelastic displacement spectrum
might be better represented by a curve equal to or close to

the elastic response spectrum; this is because a real struc-
ture must be designed for the Inelastic acceleration forces,
but in this low period region these forces are equal to the

elastic acceleration forces and hence the structure remains

clastic with the corresponding elastic (rather than the up

magnified inelastic) displacement value.

Depending on the local site conditions, the response of the
underlying soil column may be significantly different from
average base line ground motion values. Therefore, soil-
column adjustment factors must be evaluated to modify the
basic Ag’ Vg, Dg lines of the spectrum. These factors would

be applied for either shallow-stiff sites or for deep-soft

sites.

Response Spectrum Analysis

Referring back to Figure 7-1, it is necessary for the designer

to have some analytical method of computing the earthquake demands of

The method to be employed is modal analysis as described in

reference 31. Briefly, this consists of the following steps:

. A linear elastic dynamic model of the structurc is formu-
lated, and the characteristic mode shapes and frequencies
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are evaluated.

. For any given Response Spectrum, the force and displacement
response of the linear model are assumed to be given by the
square root of the sum of the squared response of each mode.

This is termed as SRSS respomnse.

. Design spectra are to be formulated (in a following section)
such that: the SRSS response to the Damage Threshold Spectrum
provides the demand AD’ and the SRSS response to the condemna-
tion Threshold Spectrum provides the demand AC. Since both
AD and AC may be inelastic deformations, it is necessary to
employ the assumption that inelastic structure deformations
may be predicted by the elastic dynamic model response to
the specially formulated inelastic design spectra. A
detailed study of the validity of this assumption will be
presented in part II of this report.

Types of Structures in Terms of Their
Lateral Force-Resisting Systems

Before proceeding to formulate the Design Spectra, it is neces-
sary to define and consider the inelastic behavior of the following

structural systems:

. Ductile Moment Resisting Frames: (the K=0.67 system of the

Uniform Building Code).

156



Symbol

0.67M

0.67P

. Shear and Bearing Walls:

1.33B

1.33P

1.33C

1.338

Description

Complete Ductile Frames for each Bay
Width of the building plan.

Ductile Frames around the plan
perimeter, with non-ductile columns

in the plan interior areas.

(the K=1.33 System of the UBC).

A box system of walls with few

openings.

A box system of walls with many open-
ings that form an equivalent frame

system of piers and spandrels.
Cantilever walls or towers with few
openings.

Cantilever walls or towers with
vertical alignment of openings which

form sets of coupling spandrels.

. Ductile Frames and Shear Waills: {the K=0.80 System of the UBC}.

. 080M

.080P

Same as 0.67M, but with several shear

walls,

Same as 0.67P, but with few shear

walls or towers.

. Ordinary Frames with Semi-Ductile Details and Shear Walls:

(the K=1.00 System of the UBC).

1.00M

Same as 0.80M, but with ordinary

frames.
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i.00P Same as 0.80P, but with ordinary

frames.

1.00MX Same as 1.00M, but with vertical

bracing in place of walls.

1.00MP Same as 1.00P, but with vertical

bracing.

All systems are to have the necessary details required to in-
sure the ductility and integrity of the system; these include: steel
and reinforced concrete details for ductile and semi-ductile frames;
chord, grid, and collector reinforcing for shear walls; details for
vertical bracing systems; horizontal diaphram chords, drag, and shear
connection to walls or bracing; and load transfer through construction
joints. These details are best exemplified in references 32 and 33.

For a given constant strength level the general inelastic be-
havior of the various general classes of systems is shown in Figure
7-6, and for a given stiffness or rigidity the behavior is as in
Figure 7-7.

Clearly, from Figures 7-6 and 7-7 the K=0.67 systems have the
advantage of.large ductility, but -for some cases they may not have the
required rigidity for damage control; and, alternatively, the K=1.33
systems have the desired rigidity, but suffer from a lack of ductility.
In addition to these properties, each system has its particular struc-
tural damping ratio BS, and subjective reputation of dependable per-

formance. All of these characteristics--rigidity, ductility, damping,
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and dependability--must enter into the formulation of design spectra
as given in the next section. However, before going into this formu-
lation, it is well to treat a very important aspect of seismic design.
This is the adoption of the appropriate structural system for the
given structure configuration and earthquake demand conditions. Con-

sider the following cases:

Insufficient Rigidity of a K=0.67M Frame with ADAM < AD

(see Figure 7-8).
The adoption of the K=0.80M system is preferable to the in-

crease of section sizes in the original frame.

Insufficient Ductility of a K=1.33 Box System with ACON < AC

(see Figure 7-9}.

The formation of a K.=1.00M system is preferable toc the general

1
increase of scction sizes in the original design. Even more dramatic
in this case would be the consideration of a type of brittle pre-cast

system (1.33 PC) of wall structure, where a strong back-up frame would

be most essential for collapse safety.

Design Spectra

In the section on Basic Response Spectra, two groups of
spectral characteristics were discussed: those dealing mainly with
ground motion such as the Ag’ Vg, Dg base lines and the site soil-
column response factor; and those dealing with the elastic system such
as the mean and standard deviation of the DAY, damping, and ductility,
The Use Group of a structure has already been related to Ag’ and the

purpose of this section is to relate the actual structural character-
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istics to spectral characteristics which deal with the ideal elastic

system. OSpecifically,

. The confidence level or number of standard deviations Ko
above the mean DAF is to be related to the structure Use
Group and the reputation or dependability of the tybe of

structural system.

. Damping is to be related to structural damping and struc-

ture-foundation interaction.

. Ductility is to be related to the member ductility, con-
nection details, and number of back-up frames or indetermine-

acies contained in the type of structural system.

Confidence Limit for the DAF:

The choice of spectral DAF levels based on the reputation or
performance record of a structural system may he best explained in
terms of the reliability levels or confidence limits of the amplified
response spectrum (or DAF). It should be realized that the DAF values
are random variables which can be described in terms of their average
value and standard deviation (c) as shown in Figure 7-10. In the
Newmark-Hall paper (Appendix 5), it is stated that the DAF values in
Table 2 are such that there is only a 10 percent chance of being ex-
ceeded. This level would coincide roughly with the upper (two-0)
confidence level. Tt is proposed here, that the appropriate DAF
confidence level may be different for different types of structural

systems. If a system has proven to be reliable from past experience,
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and can tolerate a fairly wide range of displacements before showing
significant damage, and has back-up systems to prevent cellapse--then
it should merit a low confidence level {say the (one-o) level) for
its design spectrum. This is because the system can be depended upon
to resist chance exceedences of the design level without failure.

On the other hand, if a system is new and untried, if it is
brittle or not well connected, or has no reliable back-up system,
then there is a need for that protection against chance excess demands
as would be provided by the 20 exceedence level.

Therefore, for each type of structural system, an appropriate

component K. of the confidence level will be assigned according to the

T
system performanhce record.

Also, for the purpose of providing a desired level of protec-
tion for critical facilities, an additional component KG of the con-
fidence level will be assigned according to the structure Use Group.
The total confidence level for a given group and type is (KG+KT)G
above the mean DAF. It should be recalled that in addition to this
confidence limit, the ground acceleration base line Ag for the spectrum

has also been assigned from the AZG according to the accepted prob-

ability of exceedance as governed by the building use group.

Damping:

Damping due to the type of structural system is termed as BS’
and will be assigned according to the general paterial behavior. A
new and additional component of damping occurs due to the effects of
structure foundation interaction. This will be termed as BF and
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will be evaluated in accordance with the methods in reference 34.

Total damping for a design spectrum is therefore B' = BS + BF.

Ductility:

Ductility varies with the type of structural system according
to the material, member and connection details, and the number of
statistical indeterminacies or back-up systems within the structure,
Each structural type will be assigned a ductility value u{according to

its particular description.

Progerties

The complete set of spectral properties for the different
types of structural systems may be organized as shown in Table 7-5.
The values are given for some example systems with a Use Group B. In
general, the values are assigned by professional judgment to provide
agreement with past experience, reported behavior, and a reasonable
level for the final design load values.

Definition and Formulation of Design Spectra
in Terms of Modified Inelastic Spectra

While it is generally recognized that the condemnation or
collapse threshold level of earthquake motions must be resisted by
structural behavior in the inelastic range, this report advances the
concept that some inelastic behavior may be tolerated while resisting
motions representative of the damage threshold earthquake. This con-
cept is based on the fact that the structural damage threshold occurs
at story deformations somewhat greater than the deformation at the

attainment of first yield or design strength at the member section
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Given Use Group B, K

Table 7-5

G

1

.0

Type Damage Threshold Collapse Threshold

1 T

Kp Bg H Ky Bg U
0.67M 1.00 0.05 1.5 1.00 0.05 4.00
1.00M 1.20 0.05 1.5 1.10 0.07 3.00
1.33C 1.50 0.05 1.5 1.20 0.07 2.00
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having the highest stress ratio. Figure 7-11 shows the states of
strength design, damage threshold, and condemnation threshold.

The following discussion presents the definitions, methods,
and reasoning employed for the formation of modified inelastic design

spe ctra:

the Damage Threshold Spectrum for strength determination

{DTSS), for setting the design strength of members, and

the Damage Threshold Spectrum for Deformation determination
(DTSD), for the evaluation of P-Delta effects on design

strength.

the Condemnation Threshold Spectrum for Deformation de-
termination (CTSD), for the evaluation of member ductility
demand, and detection of instability problems due to P-Delta

effects.

The modified, inelastic response, design spectra are formed
by the use of what may be termed as spectral modification factors u'
and B8'. These factors are used as ductility and damping factor values
to obtain the inelastic spectra. They are selected by judgment, con-
sistent with the respective ductility and damping capabilities of the
particular type of lateral force-resisting system of a given structure;
where these capabilities are as evidenced by test results and past
performance of similar systems having undergone strong earthquake ground
motions. Referring to Figure 7-12, the objectives are:

1) For the Damage Threshold Earthquake (DTEQ) the factors
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2)

Uﬁ, Bé are to produce an inelastic acéeleration spectrum (see
Figure 7-13) (DTSS} such that when members are designed on
the ultimate strength basis for forces due to: (this is in
accordance with the design procedure given in the next section)
. dead load
. code specified (non-load factored) live load

DTSS Acceleration

. Extra story shear due to P-Delta effect at DTSD
deformation

then it is assumed that the structural damage threshold de-
formation capacity will be egual or larger, with an accept-
able level of reliability, than the deformation demands AD
of the damage threshold earthquake (DTEQ). If it is further
assﬁmed that the damage threshold demand is provided by the
DTSD deformation, then it is important that the magnitude or
size measure, the shape, and the uB and BB values be
selected to provide DTSD values having the acceptable level
of reliability (corresponding to an upper confidence limit}.
This damage threshold deformation demand assumption would
allow study and formulation of drift limitations for control

of non-structural damage.

For the Condemnation Threshold Earthquake (CTEQ) the factors
ué, B& are to produce an inelastic deformation spectrum (see
Figure 7-14) (CTSD) that will provide deformation values

reliably greater or equal to the deformation demand A of the

CTEQ. Local member ductility demands and story stability
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checks (involving P-Delta effects) evaluated for CTSD de-
formations will therefore be upper confidence limits for

the CTEQ demands.

For this repo%t, the purpose of the ué value is to produce a reason-
able, but reliably large estimate of CTEQ deformations. For the forma-
tion of an inelastic deformation spectrum, a large value of ué provides
conservative (large)} values of deformation demand. If it were desired
to employ an inelastic acceleration spectrum (CTSS) for the strength
design of members, then a large ué value would of course provide non-
conservative (low) force demand values. A proposed change to the
Newmark method for construction of the CISD is indicated in Figure 7-14.
This may provide a more realistic estimate of actual structure deforma-
tion.

It is assumed in this report that the DISS is larger than the
CTSS and therefore controls the strength design of members. Examples
of the design spectra DTSS and CTSD will be constructed later in this
chapter, after the presentation of the complete proposed Design Pro-

cedure in the next section.

Proposed Design Procedure

The DTSS and CTSD design spectra are to be employed in the
following design procedure:

. Given Use Group, Life, and Site:

Obtain AD’ AC, KG’ and site soil-column response factor.
The mean DAF and o values are known. (These will be avail-

able from Part II of this study.)
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. Given Structure Type and Foundation:

Obtain BS’ BF’ U, KT at both Damage D and condemnation C

levels.

. Construct Design Spectra:

DTSS for Member Section Design, with uf, Bﬁ = BS + BF’

(KG + KT)O.

CTSD for Ductibility Evaluation and Stability Analysis,

with b, Br = Bg + By, Ky + Kp)o.

. Formulate a Linear Elastic Model of the Structure

and Find SRSS Value of:

1) Member Force Response to the DTSS;

2) Member Deformation Response to the CTSD.

Design Members for Load Combinations on an
Ultimate Strength Basis for:

1) Load Factored Vertical Dead and Live Load;

2) DTSS Force plus Vertical Dead and Live Load, and
Seismic P-Delta Effects;

3) DTS8S Force plus two-thirds Dead Load (fer vertical ac-
celeration effects). (See Appendix 6 for vertical

acceleration effects,)

. Perform Deformation Analysis due to CTSD Response:

1) Evaluate local member ductility demands and compare with
established allowable values (to be determined in

Part II of this report).
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2) Investigate the stability of structural system.

Construction of Example Design Spectra

Given the structure use group, life L, and structural system
type, such thét the spectral values (A, Ko, B', and u') can be de-
termined for both the Damage and Condemnation Level Earthquakes. The
basic elastic spectra may be constructed with these known A, Ko, and
B' values. (Examples are shown in Figures 7-3 and 7-4,} Then, with
the given Hp and Mo ductility values, the inelastic design spectra
DTSS and CTSD are constructed according to the Newmark method in
Appendix 5. The complete procedure is given in the following example
for a structure in the Managua region.

. Structure Use Group: B.

. Region: Managua.

. Type of Structural System: 0.67M.

. Economic Life L = 20 vyears.

. Site soil-column conditions are average such that the site

factor § = 1.00.
. Structure-Foundation Interaction Damping BF = 0.05.
. The ground acceleration base lines are found from Table 7-1.
A, = 0.24g, A. = 0.33g

D C

. The structural system properties are found from Table 7-5.

KG = 1.0,
For DTSS
KT = 1.00, Bs = 0.05, “D = 1.5
For CTSD
= 4,00

Ky = 1.00, Bg = 0.05, u. =
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. The Spectral Properties arec:

ForIDTSS
B}‘J = BF + BS = 0.10, u[') = 1.5
K=K, + K = 2.0, Ko = 20

For LTSD
Bé = BF + BS = 0.10, u& = 4.00

. The Basic Elastic Response Spectra for these properties are
constructed and are as shown in Figures 7-3 and 7-4.
. The modified inelastic Design Spectra DTSS and CTSD are

constructed and shown in Figure 7-15.

It is interesting to see how design load values from this
spectrum compare with loads from the Uniform Building Code. Let us
consider a 10 story, Type 0.67M steel frame building with first mode
period of 1 second. From Figure 7-15, the acceleration Sa = (.1l4g,

and the resulting base shear value would be about

Vl = (0.14) (0.8) W = 0,112 W

where the 0.8 factor allows for the multi-mode response participation
factors {or equivalent weights), and W is the structure weight.
Member forces from Vl would be combined with Dead and un-factored Live

Load forces for ultimate strength design. The corresponding UBC base

shear is

1.4 (0.67) (2—'95) W

/1

<
1
c
-
(]
=
N

-
1

0.047 W
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Member forces from V2 would be combined with a load-factored value of
1.4 times the Dead and Live Load forces, for ultimate strength design.
Therefore, although the V1 is 2.4 times the V2 value, the resulting Vl
member designs will not differ from the V1 designs by as much as this
amount because of the different method of factoring the Dead and Live
Load effects.
It should be realized that these resulting spectra are for

example only. The assigned spectral property values are very approxi-
mate. Thsese values are to be refined in Part II of this study in

order to provide consistent Dcsign Spectra for all Use Groups and

Structural Types.
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CHAPTER VITI

SUMMARY, CONCLUSIOQONS AND FURTHER RESEARCH

Summary

In Part T of the seismic risk study for Nicaragua, the following

topics are presented:

1. Geological setting for the country in general and the
Managua area in particular.

2. Data base for past seismic events was extensively studied.
Limitations of the data and approximations were discussed.
Seismic recurrence for ten line sources and three area
sources was developed.

3. Based on the assumption of the Poisson occurrence of
seismic events, probabilities of exceeding different magni-
tude levels as functions of time for different regions was
derived. Using Esteva's attenuation relationship, iso-
acceleration maps for the country were constructed, Eleven
cities in Nicaragua were considered in this mapping pro-
cess. Cumulative distribution functions of peak ground
accelerations for 20 and 50 years were established. This
was shown to be one way of presenting seismic risk for
Nicaragua.

4. Based on iso-acceleration maps, the Acceleration Zone
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Graphs (AZG) were developed for the eleven cities. A
method of determining load levels for consistent risk for
the whole country was discussed and suggested., It was
proposed that charts such as AZG be used for seismic
zoning of Nicaragua.

5. Another parameter, the MMI scale, in understanding seismic
risk was presented in probabilistic sense. Based on the
damage data in the U.S.A., a method of determining insur-
ance risk was presented.

6. Ground acceleration values from AZG were employed to set
the level of the design spectra for structural damage
prevention and condemnation control. A design method-
ology was proposed based on ultimate strength and loads

resulting from the above inelastic designh spectra.

Conclusions

It can be concluded that there are sufficient data and ana-
lytical methods to provide adequate seismic zoning information on an
acceptable risk criterion. The methods presented here are simple,
casy to use and transferable to structural design procedures, The
zoning of the country can be interpreted from iso-acceleration maps
or from cumulative distribution plots of peak ground accelerations or
from AZG. The method of zoning presented here is general an@_is com-
pletely amenable to availability of additional future data. ~From the
current study, it can be clearly seen that the seismicity of Nicaragua

varies significantly from region to region. The Managua region and
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the region surrounding the line of volcanoes is much more seismic than
the central or the eastern region. For example, Bluefields has the
lowest probable loading level and the Managua region has the highest
probable loading level. Looking at the iso-acceleration maps and
AZGs, this information becomes obvious.

It is also obvious that methodologies as presented in this
report can be used to convert the loading information based on accept-
able risk and economic life of the facility to the structural design
process., Further insight can be obtained regarding insurance and
economic risk in different parts of the country based on the method
presented in this report. Agaln, it can be seen that for a given
region, it is cheaper to buy long-range seismic insurance than to
purchase short-term coverage. Based on this insurance risk concept,
various parts of the country can be compared for future probable

economic impact due to a seismic event.

Further Research

In order to implement and use the procedures presented in
their general form in this report, the following tasks are to be ac-
complished in Part IT:

Refined seismic zoning of the country based on acceptable
risk levels for different classes and uses of structures.
A detailed look at the acceptable probability levels and

" their effect on cost and general economy -

. The concept of microzoning a given region in the country.
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. Mapping information in the form of effective ground velocity
values Vg as predicted in terms of historical data and
geological characteristics.

Inclusion of the site (or soil-column) response factor in
the evaluation of Ag’ Vg’ Dg at a given structure location.
Representation of foundation-structure interaction in the
form of an additive component of structural damping BF and
change in the structure period of vibration.

. Evaluation of the standard deviation values o and the mean
values of the spectral DAF for a given region, with recog-
nition of either the averaging or the predominance of the
possiblé earthquake sources (Benioff Zone, Volcanic, and
Local Faulting) as they affect the Ag’ Vg’ Dg values.
Formuiation of a more precise listing of the Structure Use
Groups ranging from critical to non-essential facilities;
and establishment of the corresponding acceptable exceed-
ance probability values P for typical structure life

times L. |

. Assignment of the use Group contribution K, to the spectrum

G
DAF confidence level.

Elastic structure modeling techniques to allow reliable
prediction by response spectrum analysis of structural
element forces and inelastic deformations.
Improvements‘in the method of forming the inelastic force

and displacement response spectra.

. Categorization of the types of structural lateral force-
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resisting systems and the assignment of the corresponding
ductility p, damping BS, and structure type contribution KT
to the spectrum DAF confidence level, for both the damage
and condemnation threshold spectra.

. Formulation of appropriate ultimate strength member design
equations for all acceptable materials; specification of
essential detalls necessary for the ductility and stability
against collapse; and establishment of allowable ductility
demand limits for all acceptable materials and systems.
Simplification of the design spectrum, the dynamic analysis,
and the deformation and stability analysis, to a procedure
similar to that employed by the Uniform Building Code. This
simplified design procedure would be applicable to the
majority of structures. The detailed response spectrum
analysis would be required only for those structures which
are extremely critical, costly, and/or unique in their con-
figuration and structural systems.

. With damage and economic data from Nicaragua, an insurance
and economic risk analysis is to be accomplished. Risk to

life and limb will be treated in Part II of this study.
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APPENDIX 1

THE DECEMBER 23, 1972 EARTHQUAKE

Introduction

The Managua Earthquake actually consisted of three tremors.
The major shock, which registered a surface wave magnitude (Ms, NOAA)
of 6.2 and a body wave magnitude (Mb, NOAA) of 5.6, was followed by
two major aftershocks within one hour, with Mb=5.0 and 5.2, respect-
ively. The quakes were relatively moderate in size, compared to other
major earthquakes (e.g. San Francisco, 1906, M=8.3}), but caused ex-
tensive damage because (1) the epicenters were shallow, (2) surface
rupture occurred, and (3) many buildings were constructed with an

adobe or taquezal type of construction.

Intensity

The maximum intensity of shaking (Figures Al-1, Al-2), employ-
ing the Modified Mercalli Scale, was X along the lakeshore, with VII-IX
common throughout most.of the city center. (An intensity IX is defined
as follows: ''Damage considerable in specially designed structures;
well-designed frame structures thrown out of plumb. ., . . Buildings
shifted off foundations. Ground cracked conspicuously. Underground
pipes broken.'" (Reference 7, p. 59.)

The intensity decreased radially outward from the city center

(reference 15, p. 18). Near the epicenter, however, intensity contours
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parallel the active faults, whereas southwest of the city they cross
the faults. This suggests release of energy near the city center,

rather than to the southwest (reference 4, p. 70).

Shaking

"Duration of the earthquake in its destructive phase was about
7 seconds'" (reference 3, p. 143). The shaking was described as "a
series of vertical shakes, followed by horizontal motion, then a
vertical "drop.'"™ (Reference 15, p. 18.) Peak.ground acceleration,

recorded 7 km west of the city center, was 0.39 g (reference 15, p. 18},

Damage

Damage occurred as ". . . two broad lanes of heavily damaged
buildings of high density, separated by a stretch wherein heavy damage
was expressed in a loose, random pattern.” (Reference 2, p. 267.) The
western lane was bordered by the 1931 fault trace; the eastern was
situated between the Tiscapa Fault and the "secondary trace 400 m to the

cast" (Chico Pelon Fault) (reference 2, p. 267).

Hypocenter Location

The original hypocenter calculation, based on P-wave arrivals,
was by NOAA. The location, 27 km northeast of the city center, was
erroneous for two reasons: (1) a poor seismic net exists for Central
America, and (2) the standard P-wave trend-time tables are incorrect
for this area. The ''correct' determination, based on an accelerogram
recorded at a nearby refinery, placed the hypocenter beneath the

center of the city, at a depth no greater than 8 km. This placement
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has led to a better lccation of the Benioff Zone in Central America by
relocating previous carthquake hypocenters, based on the erroneous
velocity data, to the south (reference 4, pp. 66, 70, 75). Aftershock
data substantiate the accelerogram hypocentral location, although the
depth indicated is 8-10 km, and show three zones of activity. The
zones are shown in Figures Al-3 to Al-5.

P-wave first motions, recorded at telescismic distances, are
consistent with fault plane movement parallel to the mapped surface
fault traces within the city. It is probable that the major seismic
zone, striking N 30-40° E and dipping from 74° W to 82° E, with a 1 km
width, bifurcates near the surface into 2 fault traces, the Tiscapa
and Chico Pelon Faults. This is supported by the observations that
the two faults are at the most only a few hundred meters apart, they
trend towards an intersection, and they display roughly equal amounts
of displacement from the 1872 tremors. The zone passes through Laguna
Tiscapa and the Customs House, and is within 1500 m of nearly all of
the severely damaged part of Managua. Aftershock data also suggest
left-lateral movgment, the same as that observed on the ground. The
fault zone responsible for the major portion of the seismic energy
was about 15 km long (reference 4, pp. 66, 71; reference 11, p. 97;

reference 18, p. 95; reference 14, pp. 115, 127).

Nature and Amount of Fault Movement

Movement was predeminantly sinistral, or left-lateral, al-
though local dextral (right-lateral) and normal, or vertical slip, did

occur. The faults are manifested in unconsolidated sediments and
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volcanics by en echelon, rather than continuous fractures. The strike
of these fractures is generally more northerly than that of the fault
zones themselves. The faults’die out within 1.6 - 5.9 km of Lago de
Managua.

The maximum horizontal displacement, determined by triangula-
tion, was 40 cm. Maximum vertical movement measured was 10.2 cm.

According to Plafker and Brown, a geometric reconstruction of
Tiscapa Crater and the lakefront suggest 10 m sinistral and 30 m vert-
ical displacement. Noting that 1972 movement was predominantly
sinistral, they suggest that there has been a late Holocene (past
1,000-2,000 years) change in the tectonic deformation style (reference
14, p. 134). ;Their geometric reconstruction is open to interpretation,
however. In addition, it is possible for an individual seismic trend

to be in apparent conflict with the overall, iong-term trend.

Cause of the Earthquake

A number of hypotheses have been advanced to explain the earth-
quake mechanism. They relate to various interpretations of the tectonic
setting of Nicaragua.

The 1972 earthquake'hypocenter was much too shallow to be
related to the underlying Benioff Zone. It was probably caused by
tectonic forces associated with the Nicaragua Depression and/or with
the chain of voléanoes. This earthquake was typical of numerous Central
American tremors, which, although responsible for only a small fraction
of the total seismic energy released in the region, and which are of

small or moderate magnitude, nevertheless produce intense ground
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shaking in small, often densely populated areas (reference 4, p. 67).

One explanation of the earthquake relates the tremblors to
isostatic and gravity conditions. There is a correlation of earth-
quakes in the Managua area with years of drought, which is reflected
in surface levels of Lago de Managua falling as much as 3.77 m. It
is suggested that the low lake level leads to a decrease in weight from
the lake onto the earth's crust below. Resisting forces, in years of
low lake levels, are thus in excess of equilibrium, strains build up,
and earthquakes result. In addition, there is a correlation of earth
tide maximums with the 1931, 1968, and 1972 quakes (reference 16, pp.
56-60}. One problem with this theory is that it postulates upward
movement of the block, whereas slight subsidence, in addition to hori-
zontal movements, in fact occurred. However, earthquakes have been
recorded during the loading and unloading of reservoirs, and the de-
creases in water levels could have been the triggering force needed to
initiate rupture along faults already at maximum stress.

A second theory "explains' both the left—lateral.offset within
Managua and the right-lateral offset of the Cordillera de Marrabios.
Tt suggests that the chain of volcanoes is a secondary spreading
center, analogous to the East Pacific Rise or Mid Atlantic Ridge. The
rift is thus a zone of crustal extension, a fact suggested by the
general structure of the Nicaragua Depression. The entire rift is
being pulled apart in the fashién shown in Figure A1-6, but with ir-
regular breaks, known as transform faults. Movement on such a trans-
form fault would show left-lateral displacement within Managua,

located within the zone of extension between offsets of the ridge, or
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volcanics, yet beyvond the immediate area of the city both sides of the
fault would show movement in the same direction (reference 4, pp. 82-
84). This theory is attractive because it suggests an explanation for
several geologic phenomena. It is especially useful because it predicts
sarthquakes for two other parts of the Nicaragua Depression, where the
Cordillera de Marrabios is offset.

A third theory ascribes the concentration of seismic activity
near the Nicaragua volcanics to an unusually thin, rigid lithosphere,
resulting in the crust being subjected to unusually high tectonic
stresses. Although both north-south compression or east-west tension
could produce the observed pattern, geologic evidence favors the
latter (reference 4, pp. 84-85). This explanation fits with the
apparent tensional nature of the Nicaragua Depression, as well as
regional plate movements, and also the observed left-lateral movement
of the faults in Managua, but does not explain the line of volcanoce
offset. Such a stress system could be caused by movement of the
Caribbean Plate (Eastern Nicaragua) eastward, while the Cocos Plate
(Pacific Ocean) travels north and plunges under Central America
(reference 11, p. 102).

The final theory is that right-lateral offset is occurring
along the Cordillera de Marrabios (Figure Al-7). Extension occurs at
a kink, and left-lateral obligue faults, members of the conjugate
shear set, form (reference 15, p. 12). This explanation is similar to
the preceding one, but fails to explain the cause of the kinking, ex-

tension, or the origin of the volcanics. Although volcanoes do occur

along fault zones, we are not aware of any cases where the line of
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FigureAl-PMechanism for Diastrophism in the Managua Area.
placement of the Pacific coastal block tends to produce a gap if a fracture,
kinked to the right is slipped in a right handed sense. 4
(B) In the Managua area, a series of normal left-lateral oblique faults are mem-
bers of the conjugate shear set produced by extension and by a shear resulting
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volcanics is so straight or so long.

It is not possible to conclude the cause of the tectonic pat-
tern around Managua. The transform fault explanation seems to be the
most reasonable, because it explains all of the observed phenomena.
However, it presupposes an interpretation of Plate Tectonics which has
not, for this region, at least, becen proven. Further detailed work is
neceded. The explanation will aid in interpretations of the entire

Nicaragua Depression.
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THE MODIFIED MERCALLI
INTENSITY SCALE

Mercalli's (1902) improved intensity scale served as a basis for the scale
advanced by Wood and Neumann (1931), known as the modified Mercalli
scale and commonly abbreviated MM. The modified version is described below
with some improvements by Richter (1958). The following remarks are taken
almost verbatim from Elementary Seismology, Charles F. Richter (W. H. Free-
man and Company, San Francisco, copyright ©) 1958).

To eliminate many verbal repetitions in the original scale, the following
convention has been adopted. Each effect is named at that level of infensity at
which it first appears frequently and characteristically. Each effect may be
found less strongly, or in fewer instances, at the next lower grade of intensity;

~ more strongly or more often at the next higher grade. A few effects are named
at two successive levels to indicate a more gradual increase.

Masonry A, B, C, D. To avoid ambiguity of language, the quality of masonry,
brick or otherwise, is specified by the following lettering (which has no connec-
tion with the conventional Class 4, B, C construction). 4

Masonry A. Good workmanship, mortar, and design; reinforced, especially
lateraily, and bound together by using steel, concrete, etc.; designed to resist
lateral forces. .

Masonry B. Good workmanship and mortar; reinforced, but not designed
in detail to resist lateral forces.

Masonry C. Ordinary workmanship and mortar; no extreme weaknesses like
failing to tie in at corners, but neither reinforced nor designed against horizontal
forces,

Masonry D. Weak materials, such as adobe; poor mortar; low standards of
workmanship; weak horizontally.

Modified Mercalli Intensity Scale of 1931 (Abridged and Rewritten by C. F.
Richter.)

1. Not felt. Marginal and long-period of large earthquakes.

Taken From "Fundamentals Of Farthquake Engineering”

N.M.Newmark and E.Rosenblueth. Prentice Hall.
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2. Felt by persons at rest, on upper floors, or favorably placed.

10.

it

. Felt indoors. Hanging objects swing, Vibration like passing of light

trucks. Duration estimated. May not be recognized as an earthquake.

. Hanging objects swing. Vibration like passing of heavy trucks; or sensa-

tion of a jolt like a heavy ball striking the walls, Standing motor cars
rock. Windows, dishes, doors rattle. Glasses clink. Crockery clashes,
In the upper range of 4, wooden walls and frames crack.

Felt outdoors; direction estimated. Sleepers wakened, Liquids disturbed,
some spilled. Small unstable objects displaced or upset. Doors swing,

close, open. Shutters, pictures move. Pendulum clocks stop, start, change
rate.

. Felt by all. Many frightened and run outdoors. Persons watk unsteadily,

Windows, dishes, glassware broken. Knickknacks, books, and so on,
off shelves. Pictures off walls. Furniture moved or overturned. Weak
plaster and masonry D cracked. Small bells ring (church, school). Trees,
bushes shaken visibly, or heard to rustle.

. Difficult to stand. Noticed by drivers of motor cars. Hanging objects

quiver. Furniture broken. Damage to masonry D including cracks,
Weak chimneys broken at roof line. Fall of plaster, loose bricks, stones,
tiles, cornices, unbraced parapets, and architectural ornaments. Some
cracks in masonry C. Waves on ponds; water turbid with mud. Small
slides and caving in along sand or gravel banks. Large bells ring. Con-
crete irrigation ditches damaged.

Steering of motor cars affected. Damage to masonry C; partial collapse.
Some damage to masonry B; none 10 masonry A. Fall of stucco and
some masonry walls, Twisting, fall of chimneys, factory stacks, monu-
ments, towers, elevated tanks. Frame houses moved on foundations if
not bolted down; loose panel walls thrown out. Decayed piling broken
off. Branches broken from trees. Changes in flow or temperature of
springs and walls. Cracks in wet ground and on steep slopes.

. General panic. Masonry D destroyed; masonry C heavily damaged,

sometimes with complete collapse; masonry B seriously damaged.
General damage to foundations. Frame structures, if not bolted, shifted
off foundations. Frames racked. Conspicuous cracks in ground. In
alluviated areas sand and mud ejected, earthquake fountains, sand craters.

Most masonry and frame structures destroyed with their foundations.
Some well-built wooden structures and bridges destroyed, Serious damage
to dams, dikes, embankments. Large landstid 's. Water thrown on banks
of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches
and flat land. Rails bent slightly.

Rails bent greatly. Underground pipelines completely out of service.
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12. Damage nearly total. Large rock masses displaced. Lines of sight and
Jevel distorted. Objects tirown into the air.

Other commonly used intensity scales include those of Rossi~Forel {Rossi,
1883; Forel 1884); Cancani (1904), Sicberg, (1923), and Medvedev (1953).
The latter is known as the Soviet scale and roughly coincides with the MM
intensity scale. Also roughly equivalent is the MSK scale (Medvedev and
Sponheuer, 1969). The other scales are falling slowly into disuse. The same is
true of the Japanese, Chilean, and other systems of intensity grading that have
enjoyed some degree of popularity at national or regional levels.

A now classical piece of work on earthquake intensity and its relation with
magnitude is found in a paper by Gutenberg and Richter (1942 and 1956).
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EART KQUAKES SORTED BY SOURCES
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DS P M Y H M S {THE FIRST DIGIT DF MAGNITUDES MB,MS

A0 A O E 0 1 E OR RICHTER CORRESPOND TO UNIT )
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CGS 15 25 02 69 07 39 00 15.,231N €7.4686W 15 540M8 072 50M5 F 0 Gd72 500
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FRL T4 25 12 72 00 26 28 15.215N 88.943W 3% 4GOM8 g2 Q [ G20 412
CGSPDE 04 10 67 00 12 12 15.700N 88, 600W 33 440VM8 072 0 0 00 379
LG S-8B 13 03 66 21 46 23 14.200N 88,4008 346 420M8 gr2 o 0 L7 345
CG5-8 09 01 64 18 38 10 14.900N 87.900W 33 4270M8 072 QO Q 005 428
€65 16 GQF 02 69 04 56 59 13.624N 88.2TIW 33 430MB 4 073 0 F 0 NOQ6& 362
CGsS-8 29 10 64 12 21 52 13,200N 88,500W 33 400M8 073 0 0 008 312
CGS=8 24 04 66 15 %1 03 13,700N 88.3004 33 390MB ar3 o o Qa9 300
CGSPCE 06 11 &7 18 49 26 13,500N B§.000W 33 430MB 073 0 ¢ 010 362
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CGSPDE 03 04 68 00 06 00 12.200N 88,.300W 33 430M3 0716 0 0 011 3s82
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CGS-8 08 05 67 14 40 08 12.974N 8€.073W 33 460MB 73 0 F 0 NO30 412
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ERL 47 04 08 73 11 54 16 12.140N 88,983W 33 440HM8B ot 0 0 NOO8® 3719
CGs~-8 30 07 65 06 33 30 12.000N 88.5004 33 420M& ar6 0O [ 009 345
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CGS-8 16 12 63 06 23 20 12.200N B88.400W 24 430M8 076 0 0 010 362
CGS-8 21 L1 65 02 19 12 12.1)0N B3.900W 33 430M8 076 0O [¢} 008 362
CGS 41 23 06 69 20 46 40 L2.410N B3.052W 323 470KE 076 O Q ND33 428
CG5~8 iZ2 04 66 17 30 49 12.600N 88.000W 33 440MB 076 O 0 oLg  3are
LG58 12 04 67 G4 56 25 12,.217N 88.102w 33 480MB Q16 0 Q NO25 445
Ce5~8 U3 12 6% 14 51 10 12.300N 68.500W 32 410MB 076 0 0 oLD 329
2658 23 03 65 02 58 39 12.300N 88.200W 33 410MB 076 0O 0 008 329



CGSPOE
CGS-D
CHS-B
ead;}
£Gs~-8
C5 =B
CGS-8
CG5-5
ERL 30
ERL 5¢
CGS 38
LG S~B
GS8
155

€5 &8
C5G5~8
C6GS 48
GS 51
LGS-B
CGS-B
CGS-8B
CGS=-B
NOS 45
CGS—-B
ERL 66
CGSPDE
C65-B
26 -8
L65-8
CG5-8
CGS-8B
CeS-8
CGSPDE
CGh-B
£658-8
CG5-8
CGSPDE
NGS 8C
NQS S
LG8 3
I6S 3
LG5-8
CG5-B
cGs-8
CGS-8
LG S8
CGS-5B
C65-8
CGS 92
CGs ¢
CGSPDE
CGS-B
CcsS 89
CLGS~B
CL S8
CGS 94
CGS 2¢
LGS 94
LGS 55
CGS 37

12 .50 0N
12.2004
12.200N
12.743N
12.-000N
1Z.900N
12.4D0N
12.320N
122344
12 4231N
124 447N
12.600N
12.50 0N
12. 1008
12. 000N
12.60N
12.56 IN
12.415N
12,70 ON
11. 600N
11.8J0N
11.41 9N
11.722N
11.630N
11 .83 9N
11.820N
11.953K
11,9008
11,00 0N
11.8G0N
11.400N
11.830N
11,6008
11.900N
11.600N
12.300N
11.800N
11,7450
11.T14N
11.410M
11 444 0N
11.100N
11.400M
11.400N
11. 0004
11.700N
11.653N
11.020N
11082N
11 .61 4N
11.700N
L1.200N8
11.203N
11.000%
11.200N
11 .33 6N
10 428N
10.366N
10.867N
10. 738N

88,500w
88, 000N
88, TGOW
88.163W
884 600W
88, 400W
81,3004
87.9004
87,9494
87,412H
87,6304
87,900W
87.800W
8 1. 500w
87.200W
€7, 7000
87, 4586W
BT, 40 TH
82.000%W
€8, 000W
88, 200u
88, 4154
B8, 2224
B88. 200W
88.884W
85.8000W
86,9234
88, 140w
€ 7. Q00W
87. 500%
87,4004
87, 500W
87. 200N
87.900W
B87.3004W
87.400W
B7.300%
87.920W
B87. 79 44
87,2324
BT,2654
B7.200W
87,3004
B7.2004
87, 500w
87.8004
Eb. 714K
88, 800K
86,911W
86, 92 N
86 ,B00W
86.9004
86.89L4K
8 &, £00W
B6. 700w
86. 7144
B7.364HW
67 400W
B87.229%
Bé, 93 9W

33
37
33
33
33
33
33
3L
i3
37
33
23
32
33
33
32
33
33
33
30
33
33
33
33
33

33
33
33
33
kL
33
a3
a3
33
a3
3
36
33
33
33
33
33
33
33
33
33
33
33
33
39
33
33
33
33
33
3%
a3
33
33

440M8
4L0MB
410M8
430MB
430MB
420M8
420M€
&1 0M8
43018
4#60MB
420MB
410MB
420MB
[
410M8
45048
450MB
450 B
4401 B
49048
42 OMB
400MB
45048
430MB
500ME
490M8
450 m3
%3008
460MB
450MB
420148
410MB
420M8
430M8
L£80M8
420MD
400MB
480ME
480MB
430 1B
430MB
4b0MB
420MB
420M6
420068
430M8
420me
4TOMB
460 HB
480M8
4£70M8
4TONE
450MB
480M3
430M8
460M D
440M8
460 M8
45018
4B80MB

076
076
oTs
016
076
076
074
04
074
0%
074
ats
0714
0T4
074
076
074
074
0%
076
016
076
078
076
076
016
076
076
074
074
074
074
074
074
04
074
074
074
074
074
074
074
0%
014
o074
074
04
074
074
04
074
074
0 4
O T4
074
0%
017
077
017
art

A3-3

ool o

£0MS
38MS

w
°‘3O<3°c:¢=>o53ﬁCBO!J;C=°¢=O‘acc:°‘39‘3013C>OGH30‘DOCDQ<30<:O<3QC3Q
wy

z
[%]

41M5
43MS

[~
%)

VOO0 0

OO0 OLROLOACROLLONOLOCRLOLOrCARLLOORULILLOO8O000

013
oL0
010
NOO &%
o011
007
011
008
NO13
0l6«
NOOT »
007
009

008
019
NO31
ND1 7%
009
022
Goe
NQO T*
NOL2%
a7
ND4 1
039
NOL 8
013
oLQ
o7
009
007
oL0
oo7
016
Q07
OLs
814
NO1 4%
01l
NO 26
005
005
00%
008
oLé
NG 1 2%
e]i14
NO18
NOQB*
025
D14
NOl6
014
00s
NO22
013®
NOLS %
NOO9*
NO1 G

379
329
329
362
362
345
345
329
400
380
345
329
345
625

329
395
395
395
379
462
345
3tz
395
362
380
%462
395
362

412

395

345
329
345
362
455
345
312
445
445
362
430
%12
345
345
34%

362

345
428
390
445
428
428
395

%45

362

410
%30
412

395
445



CGS 62 02 09
CGS 39 13 05
ERL LC 06 02
CGSPDE 2% 04
CGSPDE 04 07
CG+8 28 07
CGS~-8 a7 07
LG58 17 a1
CGSPOE (€4 10
ERL 81 14 1<
CGS8-8B 13 01
CGS-B 30 07
€ 65-8 28 09
CGSPDE 03 10
658 14 12
£65-8 C2 ¢8
ERL 18 9 02
CGs5-8 C7 Gs
CGS 4¢ 11 C7
265-8 16 01
UGS 46 11 OF
ERL 36 14 04
CGS-B 15 45
ERL 71 13 09
ERL 7% 28 09
CG $-8 15 02
CGS-B 31 08
CG5~8 23 02
CG5-B 15 0%
£Gs-8 (9 09
CGS 20 02
CGS 15 G2
GUTE 22 12
GUTE 12 01
DeM 228 13 8
DEM 2239 3 9
DEF¥ 302 28 9
D&M 335 16 9
GUTE 68 10
1SS 1111
DEM 248 21 2
DEM 248 2 4
DLF 164 28 12
DEM 18¢€ 11 1
D&M 203 16 8
DEM 259 11 &
O&M 307 15 1
DEM 317 30 6
D&M 218 19 5
DEM 306 15 1
DEM 298 17T 7
* BENIGFF AND
C65 11 31 01
CG5-B 10 11
CGsS-B 2% 05
C6S=8 08 o7
CG5-B 24 01
CGS 40 06 06
CGS 9C 28 11

17
14
10
22
06
ol
09
04
06

02

=
3

05
19
01

i9
G7
07
15
05
a9
12
i%
05

02

1?7
[0}

¢h
12

Qo
14
01

0%
12

51

13
10

RICA

23
1

10
22
%6
L&
44

7
o7
9
L3
s7
1
33

10.432N 86,0194 33
LG.8L 7N 86,338W 33
10.592N 36,4000 35
10.7008 8&,0004 33
10.860N 86.400W 33
10.800N 86,200W 33
10, 800N 8¢, 6008 33
1 0.100N 86.5%00W 33
10.7D0N 86.0004 23
10.824N 86.2684 33
10,1008 85,300W 33
LG.600N B6,500W 33
10. 230N E6, 0000 33
L C.%00N 86.200W 33
10.600N 86,8006 33
10.930N 8&,3004 32
10.574N B6,085% 133
10 .400N 86,000W 323
1034 2N 85,369 33
10,66 1N 85.920W 33
10.189N £5.484W 30
10, 260N 85,0154 33
10.500N 85,700% 33
09.973N B7.361W 33
09.821N 8£.26TW 23
09,900K 86.500W 32
09 600N 85,4004 33
09,TOON 8%.800W 35
09.800N 85,5004 33
09.600 B85.300W 33
11. 500N 87.5008 N
11.530N B87.500W N
11.500N 87,000W N
11.000N B7.000H N
1170 £7,20 N
11.70 87.20 N
11.60 87.20 N
11.80 E7.40 N
1 G.500N 86,2508 ©
10.400N 85,7008 O
Ll.72 BT, 20
11.70 B7, 20
11.50 47.50
11,02 86 .50
11,00 67,00
12.00. 87,50
12.00 87. 50 20
11 .40 B87.230 33
12.14 £7.24 2%
12,00 87.5% 33
11.60 87, 10 25
40 TO TG KK {1866
15. 727N 88.750M 46
12.900N 88.3500W 45
12,100N 88,500%W 42
12.400N 88,500 43
12.300N 88,4006 46
L2.46TN 88.000W 43
12.650LN 28.006MW 49

43 0MB
450 ¥8
440ME
400MB
410M8
420MB
490MB
430M8B
530M8
47048
480 ¥8
4TONB
410MB
450m8
430MB
470ME
4T70MB
470M8
500MB
47048
470M8
430MB
450M8
440 MB
50018
550M8
420ME
400M8
42008
450M8

>
¢
MOMMNOMIMMMoIDOOMMmMMOOOoO

500M8
420K8B
440 ¥B
430M8
450M8
500M8
4%0MB

a17
oT7
077
o717
077
077
oT7
ore
017
077
077
077
07TV
oy
077
oT7
07
o7
078
078
078
078
Q78
077
077
o7
oF7
07
o7
017
GT74&
0%
074
07

o7
078

072
076
076
Q76
Q6
076
(13 1.1

7

Y
4
w

F

F

F
F

o= NN lel e R Ee RN eR =W N+ N N RN NN e R e R NN ol egel, Yoo geNa'

COOLOROOLDOCORCOOO0O

450BRK

OO0 oConol

S8TPAS
663PAS
6 50PAS
560PAS

STSPAS
575PAS

CoLoe oo

NDO9®
NOOB*
068x%
Qo7
aie
006
010
006
066
NG2Z o=
009
037
008
019
aos8
012
NOl&*
Qar
NO&9Q
NOL 9=
025
NOO&*
Q24
NOQ 7
NO3 6%
011
006
01111

060
007
012
013
018
051
621

362
395
379
3t2
329
345
462
362
528
400
45
428
329
395
362
428
428
428
450
428
428
362
385
379
478
56l
345
312
349
395
567
663
650
560
538
351
457
518
375
575
582
571
515
498
464%
513
582
402
413
589
410

£50
345
379

. 362

395
%50
262



ERL B9
CG5-8
Ch S8
CG S8
CGS 12
FRL 16
£65-8
C6G5-8
68 52
ERL 3%
ERL 4%
c6s 7
€G58
EPL 9
C5 SPDE
C65-8
ERL 7
CGS 36
ERL &1
SYKES
CGS 55
TGS 59
ERL 51
CG SPDE
LG 5-B
TGS-8
CGS~B
C6 S8
CGSPDE
C65-8
CGS-B
CGS-B
CG5~D
€6 5-8
CGS-8
CG6S~B
€55 54
NGS 21
C6S-8
ERL 41
LGS 32
ERL 40
€G5-B
ERL G
LGS 23
]
CG5-B
CGS~8B
LGS
LGS 80
CGS-8
CGS-8
CGS-8
CGS~B
C65-8
ERL 49
ERL 14
ERL L5
CG 58
ERL 81

06 38

43 20
19 13
22 1l
4T 26
08 46
11 53
55 (8
19 00
08 av
27 48
20 06
25 03
42 33
16 03
10 o7
38 28
00 351
29 10
17 16
25 28
24 09
23 11
58 43
30 18
41 24
31 36
40 38
20 50
43 20
20 58
G3 43
59 46
40 13
39 10
03 1%
15 41
25 09
D7 85
29 406
21 49
59 54
07 43
17 57
L7 45
05 08
46 27
44 28
42 01
28 31
oL 59
30 12

25 41
17 49
04 23
00 45
11 55
26 16

12.148N
12. TI0N
12.500N
12+400N
120 139N
L1-971N
11.920N
11.530N
t1.637N
11.474N
11.9 494
11.%82N
11.200N
11.082N
L1.000N
11.100N
11.261N
11.784N
41 .01 5N
15. 970N
13.3¢2N
13.21 6N
13. 27T 2N
13.0Z 1N
12.300N
12.130N
12.600N
12 .400N
12. 500N
12.,600N
12 .B800N
12. 630N
12, 400N
12.200N
12.221N
12.500N
12.325N
12.159N
12.000N
11.842N
11 .53 9N
11.962N
11.600N
11.213N
10.98 4N
10.800N
10.749N
13.030N
13.000N
13.208N
13.200N
13. 120N
13,.300N
12.500N
12.830N
12.651N
1 2.933N
12.70 5N
12.200N
12. 472N

87.6264%
87. 50
87, TO00¥
87,4004
8 6o 61 6W
879 14W
&7 COOW
87.000W
87.291W
87.266W
£T.541M
86.353 W
864200HW
B&, 150U
86.600W
86.200%
6. 7730
56e LTOH
86,330
88,11 OW
88. 342w
88.429%
88,53
87.T34W
88,2004
88.100W
88.300K
88,1004
88, 600W
88, 5008
B8. TQOW
E7.0000
87« 3004
87. 71 2%
87.300W
B87.79 1w
BT 4894
87.900W
87.76 1W
B7.0224
£T7.5884
86, 900W
86,891 W
8 . 01 oW
B86.TR0W
BOTTTH
88.000W
38.500W
88.24 T4
88, 000W
88, 40 0W
87, 600W
88. 000w
88.200wW
38.507 W
88,7434
88,02
88.300W
88,1654

440MB
0
43088
390M8
440M8
460M6
490Me
500MB
490 ¥8
460MB
430MB
540 MB
510M8
450M8
450M3
STOMB
460MB
430 N8
420H8
0
430MB
260MB
540M8
L60MB
410M8
430MB
41098
400M8
490MB
460MB
410MB
530MB
550MB
44 OMB
420M8
450M8
450MB
5230M8
4L20M8
430M8
440MB
480MB
450MB
480M8
490M€
490 MB
480M8
410M8

0
4T0M8
430M8
4TONB
390MB
440MB

o
510M8
4TOMR
460M
#10M8
490M8

& p

074
074
074
074
075
074
04
074
0T4
074
074
074
074
074
074
614
074
074
074
093
073
073
073
0712
ate
076
aTe
0T6
076
076
ote
074
074
074
074
074
074
074
0714
074
o4
074
074
074
074
077
o7
073
073
013
073
073
072
676
076
676
a7e
ote
076
07e

38Ms
)

Q
44M5
5 2MS

[}

0

0

(44
48 MS

SUC0OPOOC0OODOPOOODOCOoORODOCOCOOOORUOR

1]
F 488PAL

F

400BRK

OO0 OICQO0

Y

4 00PAL

OO LIMOloaldogoCdowo

DFS00PAS

QQOOO%QQOOO

>
-

013
049
02
007
013
020%
018
029
024
014+
0%
063
054
GL7
022
022
027
042
go6x
008
o1 o
020
058
DO24*
029
009
007
o1t
019
a1s
007
973
047
o3
019
024
oteé
075
006
oL5
022
023
oLs
019
037
009
041
006

017
005

005
0is

0233
024
G13%
g13
031

379
488
362
300
3re
412
462
478
440
400
362
54%
495
380
395
594
440
520
345
400
362
412
480
412
329
362
329
312
462
412
329
528
561
319
345
395
395
528
345
3162
379
445
395
445
462
462
445
329
600
428
362
428
300
379
463
495
428
%12
329
462



CGSPDE
£GS-B
CGS-B
CGS=~8
CGS 20
CG5-8
ERL 85
£G5B
ERL 8
GUTE
CG5-8
CGs 38
NOS 44
NOS 30
LGS-8
CGS-8
CGs-8
CGS 18
GUTE
C65-B
{GS-B
CGS5-B
ERL &6
£Gs-B
CGS 33
CGS 25
CGS 26
ErlL 32
LGS 62
LGS 3¢
ERL 47
tGs-8
LGS 7L
CG5-8
CGs-8
LG58
CGSPOE
C5%8
CGSPDE
LGS 38
2GS 28
CGS 34
C6Gs 4
LGS 8
TGS
GUTE
CGS
i8S

18S

D64 113
J&V 114
D&M 255
DiM 313
D&V 326
D&M 327
DEM 33}
DEM 332
0EM 457
DEM 111
peEX 196

26
31
0%
08
10
21
25
18
16
08
Q0
14
10
26
02
o]
08
09
28
09

27
19
ig¢
03
qal
Q8
30
as
21
28
22
23
20
25
25
28
31
24
L3
13
13
15
i5
1%°)
28
25
24
24

23
12
26
13
é3
11
29
13
27

30

[s2]

10
i9
18
13
41:]
a7

22

08
23
09
06
13
13
13
22
23
15
07
it
22
0
21
0%
14
03
2L
12
10
20
(L]
20
09
22
23
o7
[}
08
14
17
L&
i4
13
£
16
21
o7
0%
1%
09

12.720N
12.400M
12 .500M
12, 50 0N
12.343N
12,80 0N
12 759N
LLe73 LN
11.505N
117500
11.300M
11.51 ON
11. 101N
11,4228
10,5000
15 .10 N
13.069N
13.101N
13,250N
13,13 8N
12.200N
13.300N
1227 3N
12-400N
F2.98 TN
L2.67 7N
12, 670N
12.896M
12.783N
12,94 N
12333
12,6524
12.021LN
12,530
12 406N
12.100N
12.6304
12.400N
12,5000
11.428N
1E.469N
11,5230
11.308N
1151 2N
12,500N
12. 500N
12 . G0O0N
11 730N
11.480N
11.00

11 .00

11,50

12,40

12,50

12.00

12.50

12.30

10.53

11.00

12,00

88,800K
88, 100U
87.700K
£7.800W
B7, 4554
A7, 900W
874584
87,307
87.,582%
£6.500K
86, S00W
B6. 1544
6o TOOH
B6, THOW
86, 3004
88, 7824
88. 1274
88,5280
EE.250H
88.98 1LH
88.625H
88. 8004
88, 52 40
84, 300
B8, 44 W
880 233
88,34 QW
08, 668
B8, 595HW

37, 8RO

87,08 44
87, 823H
87.4454
87,3004
87.876W
87,700
87, 900y
87.900%W
BhH. 500K
8o 369U
86, 35540
E6.509W
86 .81 3
86.T334W
€7.500H
87 5600
B7.000W
85,4604
86,4004
85, 50
85.50
86.00
87.40
87,10
E1.20
87 10
£7. 40
85, 50
85,50
8%7. 00

ZERBEEZEZLAEEIZZEZZ 2 E

& &
s

390M8
42049
51048
580M8
330HB
390m8
4$90H B
460MB
460HMB

0

G
4B0OMB
£90M8B
% TOMB
450M8
420M8
290MB
SAH0M8

[¢]
&L 0MB
% 1oM8
560M3
560M8
400M8
£50M8
4£I0MB
480HMB

440MB -

450M8
52048
540M3
440 V8
450M 8
540M8
%00MB
LO0MB
44 0M3
430DMB
5 10M8
£80MB
560 M8
4£60MB
%£%0M8
S10MB

COAO=poNoMOoODooQO

0?8
076
074
074
074
074
074
074
04
03
of4e
074
074
074
av?
072
073
Q13
073
073
a3
073
073
Q76
073
o7
076
ove
078
074
074
074
QT4
074
074
07
074
074
a7s
o074
074
0
074
074
074
074
07%
0%
014

A3-6

OO ROROOCDOPLoROoROoROOLRLORORLCLROEROCRORLLOELRLCRLOD

007
032
63¢
032
059
007
024
eza
0L%

o

[~
oooogoooo

x

e

500PAS
F 613PAS
045
0 15%
040
010
006%
005
021
PAS AAA
o08
010
090
065
006
032
038
0623
oL9
017
045
pogTt
025
029
0613
005%
00s
Q22
114
043
037
F 5708BRK 104
0 a37
Q aro
F ST5BRK 048
F &663PAS &
T30PA% L]
F 637PAS *
DFT730PAS *
638PAS *

&
=]

A
CO0O0OAL0oL LU LRTOoDLOLOLROO

A
#th
2k
o
He R
HEH
x&%

300
355
%95
61l
600
300
%462
412
bl2
600
al3
&45
462
428
395
345
300
379
&00
329
329
545
578
312
395
462
445
379
395
511
543
379
395
545
312
312
374
362
495
%45
570
412
395%
573
663
730
637
T30
638
547
560
547
505
535
605
540
519
607
650
6.0



NEM
D&M
IEM
DEM
DEM
DaEM
DEN
06M
oEw
DEM
DEM
D&M

D&M
DE¥
DE ¥
DemMm
DEw
D&M
D &M
DLW
DEM

CGS-
C6 &
CG5-
G s-

2ClL
206
258
144
139
141
141
157
158
172
179
182
2C4
208
247
249
252
262
264
322
34589
154
260
263
2¢7
289
311
34
180
241
B8
B
8
B

LG5-B
CG5-8
65-8
CGS5-8

CGS=
LGS
CGS
CGS~
i8S

8
31
53
B

LG S8

CGS-
CGS~

3]
8

CG5-B

CGS~
GUTE

B

cGs-8

GUTE
GUTE
GUTE
GUTE
155
GUTE
GUTE
£G s
GUTE

16
05
i5

i3

13
27
02
13
21
18
o1
26
21

22
09
05
27
19

-

-
NMPN R == NENE O, DR A0 MND O

o et

OROP O W, OOQOLOrRONNOn OO0 O OO0 M -
W OOOYONNOMPIPNAP VN WDOODINWOIr I RND ~

55
55
59
40
38

44
51
51
52
54
54
55
56
59
59
59
60
60
63
68
49
59
60

61
63
63
54
58
63
66
&%
66

66
65
66
66
10
70

52
63
&6
63
67
&3
39
66
16

41
39
52
40
40
56
24

10
18
19

05
02
L4
Q0
Q0
05
13
21
19
05
23
18
12
a3
16
22
o2
20
(V3
0%
i2
14
[¢}]
23
10

30
35
53
42
02

22
33
14
04
22
09
31
10
12
05
48
32
46
28
21
54
25

54
38
35
26
a7

i1
15
10
11

37
23
55

30
03
41

as
02
45
12
49
33
00
41

45
30
48
01
00
42
43
37
25

12.50
12.00
12.20
12.50
12.22
11.10
12.5)
12.00
11.00
11.00
11.30
12.00
12.00
i2.07
13.00
11.50
11.060
12.00
12.00
12.90
12.50
11.00
12.90
13.00
12.5)
11.%0
11 .60
12.23
12.50
12.36
10. 200N
10.2008
09. 500N
093.5I0N
D9.200N
D9 .40 0N
0%.0J0N
09.500N
09 , 200N
09.632N
09.86 1N
09.600N
10.300N
09.800N
89.800N
09.,030N
09,24 TN
10, 700N
10.000N
09.600N
10,0300
1 0. 000N
10,5000
10.00 0N
09. 200N
09,.500N
9. 750N
09.530N
DIT50N

£8.00
87.00
87.30
£7.50
86, 30
86420
87.50
87.00
85.50
86,00
a7.00
87,00
67.00
87.33
87,00
B86. 50
86, 00
87.25
87.00
87,40
86.50
85. 50
87.00
87.50
86,00
85,50
87.50
87.30
87,00
86.37
B4, SO0W
84, TOOW
B84.500M
84, 100W
Bie 400W
B4. 2000
8 2. 500W
83, 100W
82.300m
B4, 260M
B4.317W
84,0000
85,300W
B84, 100W
83,300W
83.000W
B2, 395W
85. 800w
83.000M
83.900W
85.000MW
85, 00O
85.250W
84,500
B4, 200w
B844250M
84+ 5004
84.500u
84.000W

o
-
MMM mocmMemMMMMOmOMmMMmMmMMmOAacMm

&
.

46088
440 M8
430ME
570MB
43018
530M8
5108
“00Me
400M€
430M8
460M8
42088

%440 MB
420MB
42 0M8
430MB
500M@

430M8

OO OROD

0718
078
078
Q78
a8
018
078
078
080
078
078
078
078
a78
078
078
080
078
0718
078
078
078
e18
078
078
078
078
0718
g78

0COCO0DCSOoReDtooConlodlaRtond

OO0 O0OODabo

>
¥}
j=R -]
a
]
7]

OO0

650PAS
Q
T30PAS
T30PAS
&00PAS
679PAS
688PAS
6 25PAS
6T5PAS
600BR K
TOCPAS

R EE AT S RS ER

- »
8
EE R RN RN

8
~

615
007
079
087
HERY
053
208
013
GOl4®
023
007

012
018
0oLl
oG e
022

o018

9 EERERNy

515
358
557
681
676
446
425
419
353
389
480
a7
458
58t
482
591
448
420
390
EY.x)
5.1
384
97
580
6.0
393
496
415
%20
670
412
379
362
594
382
528
495
312
312
362
412
345
690
179
345
345
312
418
650
362
730
730
640G
67%
6838
625
675
600
700



A3-8
* BENIGFF 80 TO 10% KM {72}

GUTE 16 1t 41 09 39 46 13.250N 88.500W 80 ¢ a3 0 5TS5PAS AAA 575
CG5~-8 20 09 66 03 53 324 13,100N 88,2000 8L 40Q0MB 073 0 0 008 312
Cts~8 13 11 &4 08 02 38 13.000N 88.800W 86 490HB 013 o 0 024 462
FRL 1L 17 02 72 09 19 06 13.269N 88.691W 80 47048 5 073 © F i} 03F 428
CGs-B 24 02 64 02 29 12 13.000N 87.2004 &3 390M& 072 0 0 00 300
CG Ss-8 05 07 63 14 40 54 12.800N 88.900% 85 410M8 076 0 0 o1l 329
CGs-8 23 12 66 02 02 19 12.900N 88.600W 88 450M8 Q76 O 0 023 395
CGSPODE 06 12 67 02 53 06 12,.530M 87.200W 87 530MB [ty SN (] 0 057 528
LGS 48 26 07 &% 07 21 00 12.6258 87.79BW 84 480rB 074 O s} 039 445
CG s-B 18 04 67 13 05 15 12.765N 87.943H 84 3I90ME 074 0 g o0 Te 300
CGs-8 0l 08 64 08 55 49 11.800N E€7.000W 88 430MB 074 0 0 008 362
CGS5-B 23 04 67 14 44 10 11.525N 86.480W B2 440MB 0T4 ¢ 0 0il4s 379
GUTE 07 a3 31 00 41 56 11.500N 85,5004 B8O 0 ars o 600PAS ACB 600
CG5-8B 10 12 66 01 09 39 10.300N 8%5.10C4 B7 430M8 0?8 Q 0 011 362
C65~-8 19 07 65 22 14 2% 10.600N 85.300W 80 460MD 078 0 Q 019 412
NOS 31 Q1 05 71 14 32 12 13.259N 88,499k 93 S540M8 5 [ T ] F o} 053 545
£G6s5-8 16 43 64 06 06 51 13.510N B8.300¢ 92 390MB 0¥ o ¢} ooe 300
1SS 06 05 51 23 03 32 13.000N 8T7.800W 96 0 0tz o 625TAL 625
GUTE 08 07 39 21 31 4% 12.500N 88.000W 90 o 076 0 550PAS CCC 550
CGS-B 09 02 66 06 22 4% 12.700N £7.800W 98 440MB 074 © 0 021 379
CGs-8 20 30 65 23 54 51 12.7TI0M 87.0004W SL 560MB 0f4 0 0 632 578
GUTE 21 05 32 10 10 OF 12.000N 87.500W SO 0 074 0 690PAE  AAA 490
CGs~B 23 05 64 056 45 21 11.700N BE. 6004 S3 460MEB 74 O 0 037 412
18s 26 02 52 1% 39 28 11.900N 86.300W 96 4] [+ L) F 600PAS 600
HO] 27 10 56 15 23 02 11.880N 86.460W 90 Q 074 ¢ 58TPAS 587
CGS5-8 C4 C7 64 02 36 54 11.300N 86,5006 SO 410MB 04 0 .0 00T 329
TAC 13 01 54 00 26 30 14.000N 86.416%W 100 4 072 o 575TAC 515
CGS 31 04 04 69 08 63 056 13.534N 88.981W 105 430M8B 013 o 0 008x 3562
GUTE 07 02 31 03 30 35 13.000N E£7.00CW 100 0 672 ¢ 575PAS CCC 575
CG5-B 06 03 64 02 55 11 12.400N B7.600W 100 390MB 0742 0 0 008 300
CG&8 12 04 66 03 34 22 12.600N 87.5600W LO4 390MB 074 0 0 009 300
C65-8 €3 09 64 01 55 32 12. 200N 87.00(H 1B 400M8B 074 0O o 005 312
C6s 03 05 59 04 41 24 12.500N 87.500W 100 0 5 074 0 F 560TAC 560
ERL 4C 27 06 72 14 45 32 12.182N 86.588W 104 460ME Q715 0 0 D14k 412
CGsS-8 Cl1 C7 64 00 42 55 12.000N 86.700W 108 430MB 075 0 0 608 362
NOS 75 03 11 70 08 39 12 11.644N 86, 112W 100 460M8 ota O ] D023 412
ERL 73 14 12 72 03 55 41 11.858N B6.574W 104 560M8 0714 ¢ 0 0019% 412
CGS 42 24 D6 69 00 35 09 1l.661N B85.717W 100 530MB 075 ¢ 500PAL G085 S00
CGS 10 L1 56 00 @8 27 10.500N 86,0004 100 Q [ 600PAS 600
£Gs 04 04 55 19 24 04 13,000N 87, 000W N 4 072 0 6 25PAS ® 625
DEM 31C 16 L 63 13.00 8¢. 10 N E wxk 367
D&M 328 21 12 63 13.50 87.20 N D LA 51Q
DEM 2CT 24 1 56 12,22 86,70 i 7.3 # Te3
DE¥ 137 12 1 37 12.58 B7.16 D *® 59G
DEM 243 27 12 B8 12,80 87,320 1] * 593
DEM 135 1 9 35 12.58 87.16 E & 465
D&M 138 25 9 37 11.00 85.00 E * 544
D&M 152 25 1 49 i1.00 86, 00 E * 429
DM 190 10 3 5% 12.50 87,00 E & 486
DEM 195 30 4 55 1250 87.00 D & 597
D&M 216 28 1 57 12.00 86450 £ ® 486
DEK 235 & & 58 12.00 86.50 £ & 352
DEM 148 5 10 &5 13.02 871.00 100 E ¥ 365
DEM 153 11 & 49 12,50 B87.00 100 E % 3197
DEF 159 11 5 51 13.00 87.50 100 E & 467
DEM 16% 17 12 51 11.52 86,30 96 E * 375
C&M 170 2 3 52 11.50 86. 30 100 D * 572
D&V 183 2 12 54 12.00 36.50 100 E * 497
D&M 226 26 L1 57 11.50 B6e 50 100 E ® 512



DEM 2¢2 4
DeM 290 8
Dgm 292 17
DEM 302 27
1SS 16
ISS [
IS5 07
GUTE Q7
GUTE 29
DEM 130 21
DEM 334 11
BEM 413 26
% BENI(FF
55-8 28
LG S-B 17
CG5-B 30
C65-8 02
CGs-8 28
CGS-8 12
CGS~8 o7
CG5-8 o1
cGSPRE QT
CG5-8 23
CG -8 21
GUTE cS
GUTE (%)
CGS-8 o7
26s-8 12
CGSPOE 14
CGS=-8 17
NOS &5 11
CGS-8 24
CGSPDE 20
C6S-8 16
CGS-8 [¢1
CGS 03
CG SPOE 28
GUTE 22
O6EM 209 9
JEM 300 16
DEM 246 15
DEM 393 28
D&M 231 23
DaEN 2€8 3
* BENIGFF
CGS 74 15
ERL 22 09
CGSPDE 15
CGS-8 02
NOS L6 19
C6S 51 17
CGs-8 01
GUTE 26
265 21 14
€65 22 21
CGSPDE 27
CGS-8B 30
LGS 68 06

12
1
i

10

02

05

05

03

06
5
L
%

il0 1

o8
08
(¢
11
07
04
08
09
or
0§
01
10
11
08
o8
07
09
06
04
13-
12
a3
05
ol
o7
8
8
3
12
12
S

58
62
62
62
59
51
51
34
19
33
63
69

63
64
67
64
6%
61
&6
63
68
61
65
25
26
64
6%
&7
63
71
64
68
65
67
54
68
19
56
62
59
68
57
61

17
23
20
22
23

54
08
22
41
i4

15
01
21
47
23

159 KM

a5
19
03
¢7
02
22
04
22
i3
16
20
04
o7
a8
12
18
03
i1
14
6o
05
23
i7
18
22

5%
0s
10
a7
53
20
11

57
49
%4
43
09
55
21
47
02
48
51
40
34
23
EXY
13
20
al

51
4%
49
57
26
33
30
3%
36
59
55
o7
38

160 TQ 215 KM

09
04
10
a7
a2
07
07
ol
Q3
03
08
06
10

68
73
87
63
71
69
65
47
69
10
67
66
70

o4
03
08
22
16
13
1%
10
08
18
i3
10
15

32
17
Q0
00
59
24
57
06
47
39
08
39
13

04
48
S0
48
40
22
30
46
16
18
55
09
54

11.50
12.20
11.90
k160
13.11 0N
13.000N
13.000N
13.250N
13.500N
12.00
11 .40
11.66

{31)
12.600N
12 .400N
12.632N
11.800N
11.500N
13.,200N
11.030N
11.300N
14.678N
12.700M
12.300N
12, 250N
12.300N
11.800N
11 4400N
13.500N
12 .600N
17 . 647N
13. 300N
13.105N
12,600N
12.339N
12.000N
12.100N
12.000N
12.8)
12.60
12.00
12.10
12.50
12.20

(41)

13. 45 8N
12.26TN
L1.900N
13.700N
13.5582N
12.590N
12.1J0N
12.500N8
12.91 6N
12.63 1IN
12.300N
11.900N
13.561N

86,50
85,40
86.30
86,40
87.340wW
E7.800K
B87.800W
87. 7504
B€. 500w
87,50
87.50
87.71

87,200
86.800¥%
86.052%
86. 900N
86.400W
8849000
856 .,200W
BS,. 500K
88,939
87.3000
86, 700K
85.250W
85, 800w
86,900W
86.100W
88 .800W
87, 100w
86.967H
88. 800W
87.833 W
88, BOOW
87.127W
86, 000N
86, 900W
85, Q0w
86,00

85.60

85. 00

86,90

86. 50

86.90

Bla243W
B6. 553N
864000
88. 9500w
8B.795W
6 7. QO6W
87. 500w
864 250W
86,755W
86,8234
86.200W
85.900k
§84312M

100
103

115
116
115
117
11L
122
125

136
138
138
135
135
130
135
147
14%
148
158
157
152
159
150
152
150

132
150
124

166
167
162
173
176
175
176
170
178
182
183
187
192

[-
.

o
.
o8O0 OoDOoOMMMS

OFL
OFL
5.3 OFL

42048
450#MB
4208
460M8
42048

0 6
410MB
440M8
450M8

) 3
440MB

[+

0
4TOMS
410M8
460MB
390MB
450M8
5108
430M8
440MB
41 ONB

0
44048

mMaerMoOQ

390MB
4TOMB
620MB
410M8
520M8 3
440M8
430MB

560M8 4
510M8
520M8
400MB
460MB

a2
072
072
o72
Qs

074
075
075
074
074
073
074
075
o2
074
075
075
075
074
074
073
074
074
073
072
08
0T4
075
075
o5

072
075
04
073
073
04
074
075
015
075
ors
075
073

A3-9

oQOo L

D000 OO0 ooa

A000 o0t

540TAC
CD650TAL
600TALC
6 25PAS
6TSFAS

Qococa

D 588PAS
0
0
4]
OF 650PAS
0
6T5PAS
T00PAS

COVOQCOQOO

600PAS
0
650PAS

coCooGa

T 20PAS
F 580PAS
0

Q
0
0

TR RR oG RN

acc
k22 2
PTE
*xx

006
oos
009
009
006

309
0io
Q17+

olLé
BBA
BEA
0to
007
014
007
024%
044
0l4
019
0g8*

015

CcC
ax
g

ek

g09*
03%
083

D042

Gol2
007
BBA

0109
031
060
021
0la*

5.0
3so
389
360
540
650
600
625
675
6.9
542
5.3

345
395
349
412
345
588
329
379
395
650
373
675
T00
428
329
812
300
395
495
362
3719
329
600
379
650
571
562
386
G2t
368
381

300
428
6717
329
511
379
362
720
580
495
511
312
412



CGSPDE
ERL 49
CGSPOE
CGS &1
CGs-8
Cos-B
ERL 45
CGS5-8
ERL 60
€G58
SUTE
GUTE
€GeS il
GUTE
GUTE
D&M 301
D&M 121
peM 162
DEM 189
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DEM S0 29 & %3 11.95
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PROCEDURES AND CRITERIA FOR LARTHQUAKE RESISTANT DESIGN
by
N. M. Newmark and ¥. J. Hall

Urbana, IT1inois

I. Introduction

When a building or other structure is subjected to earthquake motion,
its base or support moves with the ground. Since this motion is relatively
rapid, it causes stresses and deformaticns throughout the structure. If
we neglect temporarily the interaction between the base of the structure and
its foundation, when the structure is quite rigid, its motion is nearly the
same as that of the ground and the dynamic forces acting on it are very
nearly equal to those associated with the ground accelerations applied to
the structure as a rigid body. [If the structure is quite flexible, large
relative motions or strains can be induced in the structure because of the
differential movements between the supports and the masses cf the structure.
In order to survive the earthquake motions the structure must be either
strong encugh or ductile enough to resist the forces generated by these
deformations; the combination of the required strength and ductility is a
function of the stiffness or flexibility of the structure,

Seismic effects on a structure, component or element, depend not only
on the earthquake motion but also on the properties of the structure, com-
ponent or element itself. Among these properties, the most important are
the energy absorption within it or at interfaces between the item under
consideration and its support, either due to damping or inelastic behavior,
tts period of vibration, and its strength or resistance,

It is the purpose of this paper to describe the general nature of the
principles upon which earthquake resistant design is bhased, and to consider
the development of design procedures for the design of structures, facilities
cr components.

Examples of struyctures that did not have sufficient strength and
ductility to resist the earthquakes to which they were subjected are well
known. Fajlures occurred in the columns and frames of buildings in Caracas,
for example, when inadequate strength and energy absorbing capacity were
available for the earthquake of 1967. Other failures in earthguakes are
clearly due to lack of adequate support details, or lack of adequate continu-
ity between individual elements,

Emphasis is placed herein on design as contrasted with analysis, and
essentialily on preliminary design or the selection of the general outline,
type of framing, and first estimate of requirements, This choice of emphasis
is made because methods suitable for such purposes generaily can assure
adequate performance and serve as a check on designs made by more sophisti-
cated methods.

The general concepts presented in this paper have been adapted from
those given in References [1], [21, [3], and [4].

The design of a structure, as either a complete system in itself, or as
part of the system of which the structure is only a component, can be a
highly complex matter involving a number of input data of various types and
a host of special requirements. Once the structure has been dimensioned,
that is, laid out in plan and the size and strength of its variocus elements
selected, then the analysis of the structure for given conditions of loading
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and foundation motion can be made by relatively well understood methaods,
even though the analysis can be a tedious and lengthy cne for a complex
system. However, unless the designer uses a so-called "direct design” pro-
cedure, he is faced with a problem of the preliminary selection of the
structural layout, framing, element strength, and the 1ike, before he has
a structure which he can analyze. ©Even with direct design procedures, for
important structures he will want to have some handy approximation that can
be used for his preliminary studies.

The steps which the designer must take are generally as follows:
{1} Select the earthquake hazard.

(2) Select the safety factor, or the allowable limits of deformation,
or the allowable probability of damage or failure. This may
depend on step (3).

{(3) Select the type or layout of the structure, and estimate its
dynamic (and static) parameters. These include a) dynamic
resistance, b) natural frequency or period of vibration, c) damping
or energy absorption, d) ductility that can be counted on before
failure. These may be assigned in a direct-design procedure, or
are subject to successive revision in more traditionail procedures.

(4) Verify the adequacy of the structure selected, and make any
necessary changes in strength or other parameters, or in the
complete Tayout or plan.

(5) Repeat steps (3) and (4) until a satisfactory design is achieved.

(6) HMake a more accurate analysis of the final design, and make further
changes that may be necessary. If these are not minor, steps (3)
to (6) may need repeating. In some cases revisions in steps (1)
and {2) may be desirable. In other cases an-upper bound direct
procedure may be used involving essentially only steps (1), (2),
and (3). Most so-called “"static desigh codes" are intended to be
of this type.

1I. Earthquake Hazard

Earthquakes are relatively rare occurrences, but in many regions of the
worid one can count on a high probability of at least a small earthquake
occurring once in the lifetime of a building. However, the stronger or more
intense the earthquake the smaller is the probability of its occurrence. An
earthquake that has a relatively high probability of occurrence is appropri-
ately considered as a loading for which the design must provide in such a way
that the cost of the minor repairs required is not excessive. Major strength-
ening of a structure to resist intense forces is expensive, and the cost of
such design provisions must be weighed against the possible cost of repairs
in order to design whether the additional design strength or ductility is
economically justified.

It is generally agreed that structural collapse of such a nature that
it might endanger a great many tives should be prevented by the design, even
for the maximum credible earthquake. But it would be unreasonable and un-
economical te provide for resistance to an extreme earthquake with the same
factor of safety or wmargin of safety that one normally uses. The selection
of the factor of safety for the maximum credible earthguake is in part
dependent on the nature and importance of the structure, and on the conse-
quences should the structure faii

Unfortunately the earthquake hazard for which designs should be made is
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subject to a high degree of uncertainty. In only a few areas of the country
are there relatively long periods of observation of strong earthquake motions.
By correlating the available strong motion records with the mcre cocmmon
records available from the sensitive recording instruments used by seismo-
logists, and by use of qualitative reports of the effects of earthquakes

where motion records are not available, some measure canh be obtained of the
maximum intensities which have occurred in various geological regions, and
predictions can be made of thoseé which might accur in the future. In other
regions of the country, where records are scarcer, estimates of a similar
nature can be inferred but are much maore uncertain.

However, the maximum historical earthquake determined by such 'a proce-~
dure is not a proper measure of the possible intensity of an earthquake which
might occur in the future nor of the earthquake for which the design sheuld
provide. At some sites, maximum or extreme earthquakes might never have
occurred in the past; it is almost certain that they did not occur within the
period of recorded history.

In order to specify adequately the earthquake intensity for either the
historical or the extreme earthquake, one must do more than determine the
possible or probable acceleration of the ground. The character of the
earthquake motions must also be described in a way that is representative
of the geologic conditions, taking into account the local soil conditions
including overburden depths and characteristics, presence of water, depth
to basement rock, and the 1ike. A better measure of the free-field earth-
quake motions is a description which includes not only the maximum ground
acceleration, but also the maximum ground velocity and the maximum ground
displacement, with some measure of the number of pulses or the duration of
the strong motions that should be considered. All of these quantities are
dependent on the geologic and soil characteristics, and are in part dependent
on the soil-structure interaction of the structure supported on the soil or
rock. ' :

Earthquakes in different parts of the world on different types of
foundations and rock or soil strata have greatly different characteristics.
The Niigata Earthquake of 1964 was characterized by the phenomenon of Tique-
faction of the soil and foundation failures causing tilt and overturning of
a number of buildings that otherwise would not have been badly damaged. The
earthquakes in Mexico City are affected by the natural frequency of the huge
bowl of soft jellylike soil which underlies most of the central part of the
city, and which emphasizes and amplifies motions in the range of periods of
vibration of 2 to 2.5 sec. and diminishes those of very low period, of less
than 0.5 sec. :

The Tow buildings, the old churches and the cathedral in Mexico, many
of which have been in existence several hundred years during which time
Mexico has been subjected to serious shaking from earthquakes, generally
have not been severely damaged by earthguakes, but modern tall buildings
were seriously damaged, especiatly in the earthquake of 1957. Nevertheless,
one building, construction of which was completed during the early 1850's,
the Latino Americana Tower, survived this earthquake and, subsequently, the
several slightly Tess intense earthquakes of the past decade with no damage,
not even cracking of window panes. This is due to the fact that the expected
nature of the earthquake motions was taken into account in its design. The
building is of interest because it was the first building which was designed
in accordance with modern analytical methods that was actually subjected to
an earthquake approaching the intensity of the earthquake for which it was
designed.

With the increased knowledge of the characteristics of earthquakes from
the records obtained of strong motions in earthquakes in various parts of
the world, we now have the basis for a much more detailed description of the
type and intensity of earthquake motions that should be considered for design
of structures of various types in various regions, taking into account the
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geologic conditions as well as the foundation materials under the buildings.

[1I. Gereral Design Concepts

General Principles

The designer's freedom of choice in selecting methods of resisting
earthquake motions is restricted by the necessity that he comply with the
architectural form selected for the building. If the form follows the
function, the constraints are generalily minimal. However, it is not neces-
sarily true that an efficient earthquake resisting capability can be put into
any arbitrary form of envelope for the structure., The designer must, there-
fore, have Tatitude in his selection of the resisting elements of the struc-
ture. He may choose a flexural framework; or a structure having resistance
primarily in the outer walls as a monccoque assembiy; or a structure strength-
ened by shear walls ¢r by bracing; or a structure with a resisting core from
which the Tower parts of the building are hung; or various modifications and
combinations of these. The methods of achieving strength and ductility in
these various forms are necessarily different and the design criteria have to
take this into account.

The permissible level of response of a structure, element or component,
must be associated with a loading criteria. The response criteria should
properly be dependent on the type of structure, the relative cost of repairs
for minor damage, and the hazard in terms cof possible Toss of life shoulid the
item fail or reach extreme deformation limits. The seismic resistance of an
element is a function primarily of its yield strength, its natural freguency
of vibration, its damping and energy absorption in the elastic range, and its
ductility and energy absorption capacity in the range before unacceptable
damage occurs.

Dynamic Resistance

Detailed descriptions of the response of simple elastic systems, or
more complex structure and elements, subjected to dynamic loading and
especially to seismic loading, are given in References [2], [31, and [4].
In general, it can be shown that the response of a simple damped oscillator
to a dynamic motion of its base can be represented graphically in a simple
fashion by a logarithmic plot as shown in Figure 1. In this figure, there
are shown on the one plot, using four jogarithmic scales, the following three
guantities:

D = Maximum relative displacement between the mass of the oscillator
and its base

¥ = Maximum pseudo relative velocity = wD
R = Maximum pseudo acceleration of the mass of the oscillator = 2uwD
In these refations, w is the circujar natural frequency of the oscillator.

. The effective maximum ground wotions for the earthquake disturbance for
which Fig. 1 is drawn are maximum ground displacement dy = 10 in., maximum
ground velocity vy = 15 in. per sec., maximum ground accejeration ayp = 0.3g,
where g is the acceleration of gravity. The curve shown is a smooth curve
rather than the actual jagged curve that one obtains from a precise calcula-
tioq. The symbois 1, 2 and 2 on the curve represent oscillateors, item 1
having a freguency of 20 cps, item 2 of 2.5 cps, and itam 3 of 9.25 eps. It
can be seen that for item 1 the maximum relative displacement is extremely
small, but for item 3 it is quite large. On the other hand, the pseudo
acceleration for item 3 is relatively small compared with that for item 2.
The pseudo relative velocities for items 2 and 3 are substantially larger
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than that for item 1.

The advantage of using the tripartite Togarithmic plot, with frequency
plotted alsoc logarithmically, is that one curve can be drawn to represent
the three guantities D, V and A. The pseudo relative velocity is nearly the
same as the maximum relative velocity for higher frequencies, but differs
substantially for very low frequencies. It is, however, a measure of the
energy absorbed in the spring. The maximum energy in the spring, neglecting
that inveolved in the damper of the oscillator, is MV?/2, where M is the mass
of the oscillatoer. '

The pseudo acceleration is practically the same as the maximum accel-
eration, and the quantity MA is precisely the maximum force in the spring.
Therefore, the pseudo acceleration is exactly the same as the maximum
acceleration when there is no damping,.

In the discussion and figures which follow, the terms "velocity" will
be -used for V and "acceleration" for A without the explanatory words maximum,
pseudo, relative or absolute.

There are many strong motion earthquake records available. One that
has been used for a number of years is that for the E1 Centro earthquake of
May 18, 1940. The response spectra computed for the earthquake for several
different amounts of damping are shown in Figure 2. The osciltlatory nature
of the response spectra, espscially for low amounts of damping., is typical
of the nature of response spectra for earthquake motions in general. A
replot of Fig. 2 is given in Fig. 3 in a dimensionless form where the scales
are given fn terms of the maximum ground motion components. In this figure,
the ground displacement is given by the symbol y, and the subscript m
designates a maximum value. Dots over the y indicate differentiation with
respect to time.

It can be seen from Fig. 3 that for relatively low frequencies, below
something of the order of about 0.05 cps, the maximum displacement response
D is practically equal to the maximum ground displacement. For intermediate
frequencies, however, greater than about 0.1 cps, up to about 0.3 cps, there
is an amplified displacement response, with amplification factors running up
to about three or more for low values of the damping factor B.

For high frequencies, over about 20 to 30 c¢ps or so, the maximum
acceleration is practically equal to the maximum ground acceieration. How-
ever, for frequencies below about 6§ cps, ranging down to about 2 cps, there
is nearly a constant amplification of acceleration, with the higher amplifi-
cation corresponding to the lower values of damping. In the intermediate
range between about 0.3 to 2 c¢ps, there is nearly a constant velocity response,
with an amplification over the maximum ground velocity. The amplifications
also are greater for the smaller values of the damping factor.

The results shown in Fig. 3 are typical for other inputs, either for
other earthguake motions or for simple types of dynamic motion in general.
The data from which Fig. 3 was drawn, as well as other similar figures, are
taken from Reference [2].

Natural Freguency

The dynamic response of a structure is a function, among other things,
of its natural frequencies of vibration in its various modes. Natural
fregquencies can be computed from the mass and stiffness distributions of the
structure but such calculations involve an idealization of the structure for
the purpose of the analysis. The influence of nonstructural components on
natural frequencies can be of particular-importance. Also the natural
frequencies may be affected to a large degree by the foundation-structure
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interaction.

Design specifications which involve naturdl frequencies have the dis-
advantage that the structure must be designed, at Jeast in a preliminary way,
before the freguencies can be determined, or else the frequencies must be
estimated from factors involving judgment and overall dimensions, Hence,
such methods may involve relatively large errors in the response or eise the
method of design must be one of continuing approximations and revisions.

Damping

Energy absorption in a structure arises in various ways including
damping or energy absorption of various types within the structure itself,
friction or viscous damping, or other types of damping in the structure as
well as in the parts of the structure interfering with each other or moving
against one another. These can all be generally approximated by use of a
damping coefficient. The damping is a function of the intensity of motion
and of the stress levels induced within the structural components, and it is
highly dependent on the makeup of the structure and the energy absorption
mechanisms within it and at its interfaces with the foundation or with other
structures. The importance of damping is indicated by the fact that the
dynamic response of a structure in an earthquake may be affected to as great
& degree by damping as by almost any other parameter. This is especially
trye in those instances when long sustained nearly harmonic motions are
involved., It is because of this reason that the greatest difficulties are
found with design specifications other than of the performance type in which
the design forces dc not properly reflect the differences in damping asso-
ciated with different materials, different types of framing, and different
levels of allowable deformation and stress.

Inejastic Behavior and Ductility

Let us now consider the situation in which the simple oscillator has a
spring which can deform inelastically during the response. The simple
resistance-displacement relationship for the spring is shown by the Tight
line in Fig. 4, where the yield point is indicated, with a curved relationship
showing a rise to a maximum resistance and then a decay to a point of maximum
usefuil limit or faiiure at & displacement up. An equivalent elasto-plastic
resistance curve is shown by the heavy line in the figure, rising on a straight
line toc a point where the yield displacement is u, and the resistance r,, and
then extending without appreciable increase in reSistance to the maximum
displacement uy. The effective resistance curve is drawn so as top have the
same area between the origin and uy as the actual curve, and again the same
area to the maximum displacement point. The ductility facter u is defined as
the ratio between the maximum permissible or useful displacement to the yield
displacement, for the effective curve.

It is convenient to use an elasto-plastic resistance-displacement
relation because one can draw response spectra for such a relation in
generally the same way as the spectra were drawn for elastic conditions in
Fig. 2 and 3. In Fig. 5 there are shown acceleration spectra for elasto-
plastic systems having 2% of critical damping for the E1 Centro 1940 earth-
quake. Here, the symbol D, represents the elastic component of the response
displacement, but is not t%e total displacement. Hence, the curves also give
the elastic component ¢f maximum displacement as well as the maximum accelera-
tion, A, but they do not give the proper value of maximum velocity. This is
designated by the use of the symbol V' for the pseudo velocity drawn in the
figure, The figure is drawn for ductility factors ranging from 1 te 10, It
is typical of other acceleration spectre for elasto-plastic systems, as
indicated by the acceleration spectra shown in Fig. 6 for the step displace-
ment pulse sketched in the figure. .
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Fiqure & is drawn for a step displacement pulse corresponding to the
two triangular pulses of acceleration shown, where the total length of time
required to reach the maximum ground or base displacement is 1 second. The
frequency scale shown in Fig. 6 will be changed for any other length of time,
t, to reach the maximum displacement by dividing the freguencies f by t. 1In
other words, for a step displacement pulse that takes 0.2 sec., the abscissa
for a freguency of 1 c¢ps would be changed to 5 cps, and that for 3 cps in the
figure would be changed to 15 cps, etc. The general nature of the similtarity
between Figs. 5 and 6 is important.

One can also draw a response spectrum for total displacement, as shown
in Fig. 7. This is drawn for the same conditions as Fig. 5, and is obtained
from Fig. 5 by multiplying each curve's ordinates by the value of ductility
factor p shown on that curve. It can be seen that the maximum total dis-
placement is virtually the same for all ductility factors, actually perhaps
decreasing even slightly for the larger ductility factors in the low fre-
guency region, for freguencies below about 2 cps. Horeover, it appears from
Fig. 5 that the maximum acceleration is very nearly the same for frequencies
greater than about 20 to 30 c¢ps for all ductility factors. In between, there
is a transition. These remarks are applicable to the spectra for other
earthquakes alsoc. One can generalize about them in the following way for
general noniinear relations between resistance and displacement, for single
degree of freedeom structures.

For low frequencies, corresponding to something of the order of about
0.3 cps as an upper limit, displacements are preserved. As a matter of
fact, the inelastic systems have perhaps even a smaller displacement than
elastic systems. For frequencies beitween about 0.3 to about 2 cps, the
displacements are very nearly the same for all ductility factors. For
frequencies between about 2 up to about 6 cps, the best reiationship appears
to be to egquate the energy in the various curves, or to say that energy is
preserved, with a corresponding relationship between deflections and accel-
erations ar forces. There is a transition region between & and 20 to 30 cps,
depending on the damping ratio. Above 20 to 30 c¢cps, the fcrce or acceleration
is nearly the same for all ductility ratiocs.

Structure~Foundation Interaction

Earthquake motions are transmitted through the ground to the foundation
of a structure and then to the structure itself. The interaction between the
foundation components of the structure and the earth upon which it rests are
of particular importance in defining-the nature-of the fTorces and motions
transmitted to the structure. Energy absorption can take place at the inter-
faces between the structure and the foundation, and between the foundation
and the supporting medium, Under certain conditions amplifications of motion
may even occur. The interaction between the foundation medium and the
foundation structure can be particularly complicated when the building is
sat into the soil or rock vather than resting upon it.

Design specifications either of the cookbook type, the intermediate
type, or the type solely concerned with environmental and performance
¢riteria fall short of their requirements if they do not consider the inter-
action between the structure and its supports, and especialily the type of
supports, wnether it is pile or calsson foundatlons, isolated footings, or a
mat, or some combination of these.

Nonstructural Components

In buildings, particularly, it is nacessary to make a distinction
between those components which ave essential parts of the structure in its
resistance tc loads and deformations, and nonstructural compenents which are
those parts nesded ts perform the proper function of the struciure but which
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are not added primarily for resistance to lateral forces. Partitions in a
building may be structural or nonstructural depending upon whether they are
designed to act as part of the load-carrying framing. However, whatever the
designer's intent may be, all the elements of the structure, whether func-
tional or otherwise, have an effect on the behavior of the buiiding under
dyramic excitation, and must be considered in terms of dynamic response,
strength, and the damage which may be caused by exceeding allowable stress
or deformation limits. Even nonfunctional ornamentation on a buiiding that
can be dislodged because of Tateral motion can cause hazard to life as well
as property. )

IV. Design Procedures

General Approach

The designer has considerable freedom of choice, in general, as to the
type of resisting structure he will use in the design. He may choose a
flexible, energy-absorbing structure which can comply with the ground motion
readily, or he can use a rigid structure to limit the relative deformation
within the structure itself. 1In one case the strafns in the structure are
determined primarily by the maximum transient ground displacement or velocity,
and in the other they are determined primarily by the maximum transient ground
acceleratian.

If the structure is in an intermediate range of stiffness, then its
energy absarbing capacity is of the greatest importance, which involves both
its strength and ductility in some balanced manner. Under these conditions,
one may reduce the strength and increase the ductility, or increase the
strength and reduce the ductility, in both cases arriving at a satisfactory
design. Although the designer must be careful in the determination of these
balances, and must Took into the strength and ductility of eiements or com-
ponents as well as those of the completed assemblage, he can make up for
deficiency in one by an overdesign in the other, in many instances. Can-
straining the designer to use always highly ductile elements may be unrea-
sonably restrictive since it appears possible to design a structure with as
much margin to resist failure by making it less ductile but stronger, in an
appropriate fashion. It appears unwise to establish design criteria solely
on preconceived notions as to either strength or ductility without considering
the combination of both of these that is required for adequate performance.

Theoretically and to a considerable extent practically, it is possible
to use any material in almost any fashion one chooses to use it, by providing
the proper combination of strength and ductility assocfated with the parti-
cular structural configuration and dimensions, thereby to insure that the
completed structure will be able to perform adequately under the appropriate
Toading or motion environmental canditions.

It has already been noted that in many structures it is desirable, and
in fact quite proper and reasonable, for the structure to go well into the
inelastic range of behavior, especially for the maximum or extreme environ-
mental seismic conditions. Different types of framing and different materials
pose a variety of problems for an adequate specification of performance
involving deformations and stresses beyond yield. This has been taken into
account in existing codes in various ways, usually by specifying the relative
intensity of loading to be considered for different types of framing. Each
material must be studied from the point of view of its particular character-
istics of strength and ductility, when fabricated into structural members or
elements, or when connected together to form a structure. The performance
criteria must be prepared in such a way as to avoid wnusual handicaps to any
one type of framing or material, or to give unusual advantages to any other
type.
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Selection of Parameters

In the tight of the preceding discussion, we can now develop a basis
for design of structures, etements or components, where these are subjected
directly to the ground or base motion for which we have maximum values of
displacement, velocity and acceleration. We first proceed with sejection of

~values of damping. Table 1 is reproduced with some changes from References
[5] and [6], and gives the percentage of critical damping for various types
and conditions of structures or elements, as a function of stress level., It
represents the bast information available at the present time, but certainly
involves a great deal of judgment and interpretation.

The damping in structural elements and components and in supports and
foundations of the equipment is a function of the intensity of motion and of
the stress levels introduced within the structural component or structure, as
well as being highly dependent on the makeup of the structure and the energy
absorotion mechanisms within it. For example, a structure with riveted or
bolted joints that can undergo relative motion during deformation will absorbd
a great deal of energy in friction in these joints. A reinforced concrete
beam that is cracked, where the elements on the two sides of the crack can
move relative to one another with the absorption of energy at the faying
surface, will also absorb considerable energy. On the other hand, a homo-
geneous solid structure or a welded steel structure has relatively small
amounts of lost energy because of play in the joints, and a concrete beam
before cracking has a relatively small amount of eneragy losses except those
within the material itself., Hence, the degree of damping depends on the
framing and makeup of the structure or elements, and on the material used
and the stress Jevel within the material for the degra2e of excitation which
it experiences in the shaking motion. For low stiress Jevels and for homo-
geneous sfructures, steel or reinforced concrete below cracking Tevels, the
damping may be no greater than in the range of one-half to one percent, For
styresses at the level of working siresses or at about half the level of yijeld
point valyes, the damping may range from about 2 percent for welded steel
structures, for well reinforced concrete structures with only small amounts
of cracking or fov prestressed concrete structures, to 3 percent to 5 percent
for ordinary reinfarced concrete structures with considerable ¢racking, and
possibly above 5 percent for riveted or bolted connections, or for wood
structures with nailed joints and the like. At or near yield point valtues of
stress, the damping may be in the range of about 5 percent for steel struc-
tures and prestressed concrete structuvres that have not completely lost their
prestress, ranging to 7 to 10 percent for ordinary reinforced concrete, and as
high as 10 to 15 percent for structures with play in the joints, or for
masonry structures. '

The fundamental frequency of vibration, or its reciprocal, the funda-
mental period, V5 best estimated Hy 2 simple calculation by use of standavrd
methods of analysis such as are described in Reference {3]. For buildings
simple rules, also given in [3], are often used fto approximate the fundamental
freaquency, buf are generally not reliable for unusual types of framing or for
extremely heavy or extremely light construction.

.The ductility factors for various types of construction are more diffi-
cult to characterize. They depend on the use of the building, the hazard
involved in its fatlure, the matertal used, and the framing or layocut of the
structure, and above all on the method of const{ruction and the details of
fabrication of joints and connections. A discussion of these topics is given
in Reference [3] also.

Desjgn Spectrum - Etastic

In either analysis or design for earthquake resistance it s convenient
to use the concept of the response spectrum. A response spectrum developed
to give design coefficients is called a "Oesign Spectrum”,
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Stress Level

Working streﬁs, no
more than about 1/2
yield point

At or just below yield
point

Table 1

RECOMMENDED DAMPING VALUES

Type and Condition of

Structure

Vital piping -

. Welded steel, prestressed

concrete, well reinforced
concrete (only slight
cracking)

Reinforced concrete with
considerable cracking

Bolted and/or riveted steel,

wood structures with nailed
or bolted joints

Vital piping

. Welded steel, prestressed

concrete (without complete
loss in prestress)

Prestressed concrete with
no prestress left

Reinforced concrete

Bolted and/or riveted steel,
wood structures, with bolted
joints

Wood structures with nailed
joints

A5-18

Percentage of
Critical Damping

0.5 to 1.0
2

3 to 5

5 to 7

2

5

7

7 to 10

10 to 15
15 to 20



In general, for any given area or site, estimates might be made of the
maximum ground acceleration, maximum ground velocity, and maximum ground
displacement, The lines representing these values can be drawn on the
tripartite logarithmic chart-of which Fig. 8 is an example. The lines show-
ing the ground motion maxima in Fig. & are drawn for a maximum ground accel-
~eration of 1.0¢, velocity of 48 in/sec., and displacement of 36 in., These
.data represent motions more intense than those generally considered for any
postulated design earthquake hazard. They are, hywever, approximately in
correct proportion for a number of areas of the world, where earthquakes
occur either on firm ground, soft rock, or competent sediments of various
kinds. For relatively soft sediments, the velocities and displacements
might require increases above the values corresponding to the given accelera-
tion as scaled from Fig. 8. However, it is not likely that maximum ground
velocities in excess of 4 to 5 ft per second are obtainable under any
circumstances.

Amplification factors for the various ranges in the response spectrum
were considered in References [5] and {6]. The values determined therein
for a number of earthquakes, with some smoothing and reduction of peaks to
present a reasonably consistent probability of failure (of the order of about
10 percent or less), are given in Table 2. The amplification factors given
in that table are used in connection with Fig. 8, as explained below.

For each of the amounts of damping sheown in Fig. 8 or tabulated in
Table 2, the amplified displacements are shown en the left, the amplified
velocities at the top, and the amplified acceleraticns in that part of the
right-hand side of the figure for which the lines are parallel to the maximum
ground accelevration line, but lie above it. We shall identify these portions
of the Tine as the amplified displacement region, the amplified velocity
region, and the amplified acceleration region, respectively.

At a frequency of about 6 cps, the amplified acceleration region line
intersects a line sloping down toward the maximum ground acceleration value,
and intersecting that line at various frequencies, depending on the damping.
The intersection is at a frequency of about 30 cps for 2% damping, and the
other Tines are paraliel to the Tine for 2% damping. These lines are
designated as the acceleration transition region of the spectra. Finally,
beyond the intersection with the maximum ground acceleration Jine, the
response spectrum continues with the maximum ground acceleration value for
higher freguencies.

The spectra so determined can be used as design spectra for elastic
responses. The spectra are completely described when the maximum ground
motion vaiues are given for the three components of ground motion, and the
damping fs known. When only the maximum ground acceleration is given, the
values ysed for maximum ground velocity and displacement are taken as
proportional to those in the figure, or as scaled by the same scale factor
retative to the maximum ground acceleration compared with 1 g.

The amptification factors given in Table 2 and shown in Fig. 8 are

stiil under study, but it is not expected that major revisions in them will
be required.

Design Spectrum - Inelastic

To use the design spectrum to approximate inelastic behavior, the
following suggestions are made. In the amplified displacement region of the
spectra, the left-hand side, and in the amplified velocity region, at the
top, the spectrum remains unchanged for total displacement, and is divided
by the ductility factor to obtain yieid displacement or acceleratian. The
upper right-hand portion slioping down at 45", or the ampiified acceleration
region of the spectrum, is relocated for an elasto-plastic resistance curve,
or for any other resistance curve for actual structural materials, by choosing
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Table 2

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

Amplification Factor for
Percent of Critical

Damping Displacement Velocity Acceleration
Q 2.5 4.0 6.4
0.5 2.2 3.6 5.8
1 2.0 3.2 5,2
2 1.8 2.8 4.3
5 1.4 1.9 2.6
7 , 1.2 1.5 1.9
10 - BRI SERCOU O 1.5
20 o 1.1 1.2
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it at a level which corresponds to the same energy abscorption for the elasto-
plastic curve as for an elastic curve shown for the same period of vibration.
The extreme right-hand portion of the spectrum, where the response is governed
by the maximum ground acceleratioh, remains at the same acceleration level as
for the elastic case, and therefore at a corresponding increased total dis-
placement level. The freguencies at the corners are kept at the same values
as in the elastic spectrum. The acceleration transition region of the
response spectrum is now drawn alse as a straight line transition from the
newly located amplified acceleration line and the ground acceleration line,
using the same freguency points of intersection as in the elastic response
spectrum.

In a1l cases the "inelastic maximum acceleration” spectrum and the
"inelastic maximum displacement" spectrum differ by the factor u at the same
frequencies. The design spectrum so obtained is shown in Fig. 9.

An earlier procedure for the definition of inelastic response spectra
for design was presented in Reference [2]. In that presentation, the dis-
placement bound, the velocity bound, and the acceleration bound were
getermined, respectively, by keeping the displacement constant, the energy
constant, and the force in the spring constant, and drawing the corresponding
maximum response displacement limits.

The reyised procedure presented in this report is shown in Fig. 9 for
2% damping, for an elasto-plastic system with a ductility factor of 5. Both
the maximum displacement and maximum acceleration bounds are shown, for com-
parison with the elastic response spectrum.

The solid 1ine DVAA_ shows the elastic response spectrum. The heavy
circles at the intersectfons of the various branches show the frequencies
which remain constant in the construction of the inelastic design spectrum.

The dashed tine D'V'A'Ap shows the inelastic acceieration, and the lines
DVA"A", shows the inelastic displacement. These two differ by a constant
factor -u = 5 for the construction shown, but A and A' differ by the factor

¥2u - Y = 3, since this is the factor that corresponds to constant energy, as
indicated in Reference [2].

Of course, the elasto-plastic or other inelastic response spectra can be
used enly as an approximation for multi-degree-of-freedom systems.

In the development of a design spectrum one may choose to use an
"effective” value of maximum ground acceleration rather than an actual value,
particutarly in cases where the higher spikes of acceleration are associated
with very short durations and correspond to velocity changes much smaller
than the maximum ground velocity, or where the duration of the earthquake
motion is extremely short and the influence on failure or inelastic behavior
is thereby lessened. .

Vertical and Horizontal Excitation

Since the ground moves in all three directions in an earthquake, and
even tilts and rotates, consideration of the combined effects of all these
motions must be included in the design of important structures, When the
respenses in the various directions may be considered to be uncoupled, then
consideration can be given separately to the various components of base
motion, and individual response spectra can be determined for each component
or direction of transient base displacement. Calculations have been made for
the elastic response spectra in all directions for a number of earthquakes.
The complete results for the three components of motion for these are not yet
available, but the trends are summarized below.
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There are several interesting features of the response spectra. For
example, the frequencies at which spikes and valleys occur are generally not
the sane for the different directions of any earthquake nor for the same
directions at the same site for different earthguakes. The responses for the
two horizontal directions show cross-overs and significant differences in some
ranges of frequency. The vertical response is often equal to or greater than
the maximum horizontal response in tne high frequency region, but is somewhat
to a great deal less in the intermediate and Jow freguency regions.

It is suggested that until further information becomes available the
follovwing design criteria be used:

(a) The design spectrum for vertical response be considered equal to
that for horizontal response for freguencies in the amplified
acceleration range or higher frequencies, In other words, the
acceleration bounds are the same for both horizontal and vertical
response.

{b) The design spectrum for vertical response be considered equal %o

two-thirds that for horizontal response for fregquencies in the
ampiified velocity or displacement ranges.

Lombined Effects of Earthquake Motions

Since the responses for moticons in the various directions (horizontal
and vertical) may not occur at the same time, it is considered reasonable to
combine the effects of the several components of motion in a probabilistic
manner, by taking the maximum stress, deflection, or other specific response
as the square root of the sums of the squares of the corresponding responses
to the individual components of motion. :

"The effects of transient tipping, tilting, and rotation of the ground
during an earthquake have not been studied extensively. An elementary treat-
ment of seme aspects of these movements has been given in Section 7.7 of
Reference [3], and the effects of rotation of the ground about a vertical
axis on the accidental torsion in symmetrical buildings, for example, is
given in Section 15.6 of the same reference.

When the responses of the structure or component are coupled, the
analysis becomes much more complex and a three-dimensional (or at least two-
dimensional) response analysis must be considered. However, data regarding
the simyltaneous input motions must be used in such an analysis, and little
guidance is available on this topic.

The motions due to an earthquake occur in both horizontal and vertical
directions in a complex manner. It is necessary to consider the interactions
between the responses in the various directions, and especially impertant to
consider the interaction between the vertical and the maximum horizontal
response. Vertical loads, and eccentricities of the vertical lcads caused
by horizontal displacements, must often be taken into accouni with especially
heavy structures that carry large masses at or near thé points which may
deflect a great deal. Some of the resisting capacity for horizontal motions
may be used up by the secondary effects of the eccentricities of the gravity
ioads.

Quite often, the vertical motions may produce vertical stresses in the
structure or element that exceed by a large amount those stresses due to the
inertial forces corresponding teo the vertical acceleration multiplied by the
mass of the element. This is true when the frequencies of vibration in the
vertical direction of the element or component are in the range where major
amplification of response can occur.
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Special Considerations and Quality Control

A numbeyr of points are often overlooked in the design of structures or
compaonents to resist dynamic motions. A summary of some of the more important
factors, but by no means a compiete listing of all of them, is contained here-
in.

One of the factors that is commonly overlgoked is the matter of relative
motions between the parts or elements of a system having supports at differ-
ent points, because the suppert motions may not occur simyltaneouysly., Hence,
there may be transient relative motions which produce stirains in the struc-
ture,.in addition to the strains produced by the dynamic effects of the over-
all motign. This is especiaily important in piping, electric wiring, or other
elements connecting parts of a facility.

Finaliy, there are a group of items which do not lend themselves readily
to analytical consideration. These concern the details and material proper-
ties of the element or component, and the inspection and controi of guality
in the construction procedure. The details of connections of the structure
to its support or foundations, as well as the various elements or items
within the structure or component, are of major importance. Failures often
occur at the connections and joints because of inadeguacy of these Lo carry
the forces to which they are subjected under dynamic conditions. Inadequacy
in properties of the materials can often be encountered, leading to brittile
fracture where sufficient energy cannot be absorbed even though such energy
absorption may have been counted on -in the design.

In order to insure that the intent of the designer is achieved, control
of construction procedures and appropriate inspection practices are necessary.
It is important that the practical aspects of seismic design be emphasized
and that both designers and constructors be fully aware of their importance.

V. Desirable Features of Design Codes

Relation Between Analysis and Design

When the configuration of a structure is fixed by architectural or other
requirements, the designer has a restricted choice in the developmeni of the
strength and ductility required to insure adeguate seismic behavior, It is
not always passible to say that some design layouts are better thamn others for
dynamic resistance, although it is fairly clear that different choices of
framing can lead to vastly different requirements of strength and ductility.
For example, a framed structure is generally less stiff and usuaily Jlower 1in
frequency than a shear wall structure with nearly solid walls providing
lateral resistance. Hence the design forces may be smaller for the framed
structure than for the shear wall structure, although the required-ductility
may be larger. HMethods of design for the dynamic loadiangs arising from
earthquakes are in general simpler and better understood for structures for
whizh there is a2 great deal of experience. However, unless methods are
developed and specifications are devised to take accecunt of new structural
types or of new imaginative avchitectural designs, such designs will be placed
at a disadvantage relative to more standard designs because of the necessity
for providing greater margins of safety for those designs for which experience
is unavailable,

The metheds of analysis, and also the details of the design specifica-
tions, have implications on the cost and the performance capability of the
design. If the specifications are unduly conservative the design will not
anly be unduly conservative, but may alsc be forced intc a type that is
stronger and less ductile than is desirable. It is difficult to avoid
differences in the degree of conservatism among different types of structures,
and in some cases it is undesirable to do sc. Some materials by their nature,
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including their variability or lack of adequate control of properties, may
reguire a greater factar of safety than other materials the properties of
which are more accurately determinable and controllable. The margin between
incipient failure and complete collapse may differ for different materials
and may therefore involve a difference in the factor of safety required in
the design.

Basic Function of Design Codes

The designer, as well as anyone else who has a responsibility for the ,
final structure, has to have some general method of knowing that gross errors
have been avoided, and must have some basis of comparison to insure that the
design is adequate in an overall sense. It is the purpose of building codes
and specifications to perform these functions. However, it is not yet esta-
biished that building codes can do this kind of job without introducing
constraints and controls that may be a severe handicap on the development of
new design concepts and procedures, Where building codes are used to insure,
by rule-of-thumb methods, that a design is adeguate, they embody the result
of experience and judgment and must therefore deal implicitiy, if not explic-
itly, with particular structural types anc configurations.

- The most desirable type of design code or specification is one which
puts the least restrictions on the fnitiative, imagination and innovation of
the designer. Such a code might invoive only criteria for: (1) the loading
or environment; and {2) the level of response, the stresses and deformation,
or the performance of the structure under the specified loading or environ-
mental conditions. Such an approach need not, and preferabiy should not,
indicate how the designer is to reach his objective, provided he can show
that he has achieved a structural capabiiity to resist the specified environ-
mental conditions. This approach is generally the one that is now used for
the design of nuclear reactor power stations. Experience over the past
several years in approaching seismic design criteria in this way has indicated
a number cf problems, but has also been reasonably successful in avoiding con-
straints due solely to the specifications themselves, although there have been
constraints based on the environmental! conditions and the stress and deforma-
tion levels allowed.

Seismic Response Criteria

The permissible level of response of a structure must, of course, be
associated with the loading criteria, One cannot be specified independently
of the other. This impliies, for example, that different response criteria
are to be associated with the probable earthquake or the historical earth-
quake from those used for the maximum credible or extreme earthquake. More-
over, for either of these, the response criteria should properly be a function
of the type of structure, the relative cost of repairs for minor damage, and
the hazard in terms of possible loss of 1ife should the structure or any of
its elements fail. Hence, the response criteria could be greatly different
for individual homes than for multistory buildings housing hundreds or even
thousands of people, and certainly different even from these for high dams
above large centers of pooulation oy for nuclear reactor power stations.

It appears reascnable to estabiish such criteria in terms of the
consequences of failure, and in relative terms associated with yield points
or buckling loads of similar dynamic limit loads for the particular materfal
or structural elements used. The aim of the criteria should be consistent
with the basic seismic design philosophy stated earlier. Appropriate per-
formance c¢riteria may well be stated most rationally in terms of probabilities
of failure or collapse associated with varieuys levels of the probability of
the hazard considered.
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Performance Criteria

It is essential that the response levels or maximum stresses and
deformations be limited, for structures, components, and details such as
joints and connections, in order to insure adequate strength and ductility
of a structure as well as of its various component parts. However, it is
desirable, in the development of the basis for a performance criterion, that
the designer's approach not be toc greatly constrained., For example, it may
be unwise to prescribe limits for both strength and ductility in such a way
that the balance between the two cannot be adjusted to take account of new
material properties or new structural types as they are developed. A trade-
of f between ductility and strength should be available in the methods that
are permitted, so as to achieve economy without the sacrifice of safety. But
whether gne is interested in achieving strength or ductility, or both, the
materials have tc be used in an appropriate fashion, and adequate methods of
inspection and control of construction are needed to insure that their use
is proper,

Methods of Analysis

A variety of methods of analysis are now available, ranging from simple
upper-bound static coefficient methods to modal response combinations,
including time history analyses either in the elastic or inelastic range,
and extending te probabilistic methods or methods invelving consideration of
random vibrations. It should be possible to use any of these that are
sufficiently justified by either general acceptance or by demonstrated
mathematical and physical validity, with requiring that any one particular
method be used. Of course, it is desirable always to allow the use of simple
methods that are adeguately conservative. Properly stated criteria, used
with appropriate methods of approximate analysis and design, may make it
unnecessary in many cases to perform detailed and costly analyses, particu-
Tarly in those instances where the simpler approximate methods insure adequate
margins of safety. :

To push these concepts to the 1imit involves generally the idea of
approximate methods that give reasonably accurate results or, at Teast,
results that are consistent with those obtained from more precise analyses.
bDepending on the degree and extent of the approximation, it may be necessary,
from the point of view of achieving a reasonable degree of precision, to have
special modifications of a general procedure for various unusual structural
classifications. Methods may be used that do not require knowledge of the
period of vibration of the structure, for example, or the methods may involve
an approximate determination of the natural period. Approximate damping
factor determinations may be involved as well.

For the complete development of this type of approach it may be desirable
to explore the possibility of a hierarchy of methods ranging from the crudest
approximation, for very simple structures and structural elements, to more
accurate approximate methods, for structures of intermediate complexity, and
te relatively precise and accurate calculations, for extremely complex
structures.

Special Structures

Although many of the problems associated with the design of special
structures such as nuclear rcactors, high dams, schools and hospitals, are
similar to those involved in other more ordinary types of structures, there
are some implications of failure of these special structures that require
special consideration in selecting margins of safety and the development of
design procedures and criteria governing them.

Many structures or parts of structures and many items of equipment can
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be severely damaged without any implication of loss of 1ife or even of major
property damage in an earthquake. For such items and structures it is un-
necessary and certainiy uneconomical to provide great margins of safety for
unlikely earthguakes. The margin of safety of the provision made for an
earthquake of a reasonable degree of probability of occurrence within the
lifetime of a structure need only be great enough to offset the cost of
repairs or reconstruction.

However, structures whose loss of function might cause hazard to life,
or structures which are important to prevent damage to major services, have
to be designed on an entirely different basis. For such structures, an
earthquake even of relatively low probability of occurrence, but one that
possibly could occur, should not cause collapse or damage of such a nature
that endangers the health or 1ife of large numbers of the population.

Hence, for such structures, much greater accuracy in procedures and
-assumptions is required, and the type of design specification must be more
carefully framed and more clearly stated to give an assuredly adequate margin
of safety against failure even for unusual types of structure and framing.

The type of design specification used for major nuclear reactor power
plants has emphasized loading or environmental criteria, and performance
criteria in terms of stress and deformation levels of response. The experi-
ence that has been gained with criteria of these types indicates that benefits
are possible for other types of special structures with similar kinds of
design specifications. The advantages are in the encouragement of the de-
signer to explore various types of structures, to consider the use of a
variety of materials., and te look for economical ways of achieving the desired
levels of safety and performance.

Detailed prescriptions of methods and procedures were necessary when the
majority of practicing engineers had neither the sophistication nor the com-
putational aids to take account of the more accurate methods of analysis and
design that are now available. However, this situation has changed and is
continuing to change at a rapid rate. With the increase in numbers of more
highly trained engineers, and with a greater store of knowledge available,~
together with more eff1c1ent ways of using that knowledge which have become
possible with thE general availability of and accessibility to high speed
digital computers, it appears that it {s now possible to make a major change
in our methods qQf, specifying or codifying seismic design.

General Comments and Conclusions

The field of earthguake engineering is relatively new, not much more
than three decades old, and advances in knowledge are progressing at a rapid
rate, net only because of a greater emphasis on analytical and experimental
work in the laberatory, but alsc because of the availability of more defini-
tive information on earthquake motions, the accumulation of strong-motion
records, and recent accelerated expenditures on research. It is important
that the discoveries from observations, and studies from the research labora-
tory and the analyst, find their way into practice as soon as possible. But
this is difficult because engineers are traditionally unwilling to take
chances on things that they have not proved cut. Too little attention has
been given to methods of demonstrating adequate performance capability for
major structures and structural elements. Although this is not necessarily
a part of our cpasideration in design specifications, it might well be
desirable to look for ways of determining the capability of completed struc-
tures or for ways cf proving the performance capability in the design stage
by appropriate methods, so as to encourage the development of more economical
designs and methods.

In order. te«insure that the intent of the designer is achieved, control
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of construction procedures and appropriate inspection practices are necessary.
This point cannot be overemphasized. [t is difficuit to synthesize and dis-
ti11 the collective experience and judgment of the engineering profession

into a set of rules, especially when they cannot be put into a mathematical
“formulation. This is a difficulty, however, not only with performance and
environmental c¢riteria but also with more standard types of design specifica-
tions of the current and past eras. Nevertheless, it is important that the
practical aspects of seismic design be emphasized and that engineers and
constructors be fully aware of their importance.

It is the intent of this discussion to focus attentien on the aims and
objectives of seismic design in such a way as to encourage the development
of methods and practices suitable for structural design of the future; methods
that will permit more freedom and latitude to the architectural and engineer-
ing innovator,

VI. References

1. N. 1. Newmark, "Design Specifications for Earthquake Resistance"
p. 101-113 in Civil Engineering Frontiers in Environmental Technology,
Dept, of Civil Engineering, University of California, Berkeley, 1971,

2. N. M. Newmark, "Current Trends in the Seismic Analysis and Design of
High Rise Structures", Chapter 16, in Earthquake Engineering, Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1970, pp. 403-424,

3. N. M. Newmark and E. Rosenblueth, Fundamentals of Earthquake Engineering,
Prentice-Hall, Inc., Englewocod Cliffs, N. J., 1877,

4, N, M. Newmark, "Earthguake Response Analysis of Reactor Structures",
Nuclear Engineering and Design, Vol. 20, No, 2, 1972.

3. M. M. Newmark, "Design Criteria for Nuclear Reactors Subjected to
Earthquake Hazards"”, Proceedings of IAEA Panel on Aseismic Design and
Testing of Nuclear Facilities, Japan Earthquake Engineering Promotion
Society, Tokyo, 1969, pp. 90-1313.

6. N. M. Newmark and W. J. Hall, "Seismic Design Criteria for Nuclear
Reactor Facilities", Proceedings Fourth World Conference on Earthquake
Engineering, Santiage, Chile, 1969, Vol. 11, pp. B4-37 to -50.

National Bureau of Standards Building Science Series 46,
Building Practices for Disaster Mitigation, Proceedings

of a Workshop Sponsored by the National Science Foundation
and the National Bureau of Standards, August 28- September 1,
1872, Boulder, Colorado (Issued February 1973).

A5-29



APPENDIX 6

VERTICAL GROUND MOTION TN EARTHQUAKES--
ITS NATURE AND ITS EFFECTS ON THE

RESPONSE OF BUILDINGS

AB-1



APPENDIX ¢

VERTICAL GROUND MOTION IN EARTHQUAKES--ITS NATURE

AND ITS EFFECTS ON THE RESPONSE OF BUILDINGS

by

Helmut Krawinkler
Stanford University

Introduction

Vertical ground motions currently are given surprisingly little
consideration in the earthquake resistant design of structures. 'This
disregard is mainly based on the assumption that structures are almost
"rigid" in the vertical direction, and hence the effects of vertical
ground motions can be neglected. However, the few investigations car-
ried out on this subject show that the vertical periods of many standard
structures and important structural components are in the range of
amplifications of response spectra developed from vertical acceleration
components. The amplification of the vertical acceleration at the top
of multistory steel structures may be in the order of four times the
ground acceleration {references 45, 47). Such accelerations could
contribute to the compression failure of columns, increase the ductil-
ity requirements in beams, reduce the factor of safety against over-
turning, or cause a critical condition in a prestressed beam by reducing
the effective dead load on the bheam (references 42, 46}. More research
on this subject is therefore urgently needed.

The following summary of information available on vertical
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ground motions and its effects on the response of structures and
structural components is based on the investigations reported in
References 42 to 51. The summary is by no means complete, since it
only includes work carried ocut in the United States and disregards re-

search done in Japan and other countries.

Nature of Vertical Ground Motion

A large number of records are available on vertical accelerations
in past carthquakes from accelerographs recording horizontal and
vertical components. All accelerogram records were digitized by and
are available through the Earthquake Engineering Research Laboratory
of the California Institute of Technology. Response spectra for single
degree of freedom damped oscillators derived from these records are
presented in references 46 and 48, and are also available through U.S.
Coast and Geodetic Survey. A typical accelerogram for vertical ac-
celerations is shown in Figure A6-1, and a comparison of horizontal
vs. vertical spectral responses of SDF oscillators (reference 48) is
presented in Figures A6-2 and A6-3.
The following general observations can be made from the data
presented in the available references:
1. The peak vertical accelerations may not occur at exactly
the same time as the peak horizontal accelerations; how-
ever, major vertical accelerations do occur within the
same general time as the major horizental ones. Thus the
vertical and horizontal accelerations could be conservatively

assumed to act simultaneously. (See Reference 46). Iyengar
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and Shinozuka (reference44) point out that there is no
reason to believe that the horizontal and vertical com-
ponents are uncorrelated, and they propose to represent the
two components by a bivariate stationary Gaussian process
with a cross spectrum between horizontal and vertical ac-
ccleration.

An examination of the available response spectra indicates
that for most cases the response spectra for vertical
ground motion are flatter (broader) than those for hori-
zontal motions (reference 48). The spectra for vertical
motion show significant amplification in the high frequency
range (4 to 20 cps), and most of them also indicate an
attenuation of the low period components (reference 46).
1t can also be seen that the response spectra for vertical
motion approach the ground acceleration at higher fre-
guencies than is the case for horizontal motion (reference
48). This phenomenon is due mainly to the presence of
higher frequencies in vertical components of ground

motion (rcference 47). This will be reflected in the con-
struction of design spectra, where the vertical ground ac-
celeration is amplified over a larger frequency domain
than the horizontal acceleration,

Vertical accelerations increase rapidiy as the distance
from the fault decreases, more so than horizontal accel-
erations, This is confirmed with experience from under-

ground nuclear explosions, where vertical accelerations
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close to the point of detonation in scome cases exceed the

horizontal accelerations (see reference 46).

ad/v2 Ratio

The nondimensional quant;ty ad/v2 can be taken as a basic index
for monitoring the shape, and especially the breadth of the response
spectra. The discussion of this parameter and others neccssary to
characterize the vertical ground motion is extracted from reference 48.
A summary of the maximum values of the ground motion data studied in
reference 48 is presented in Table A6-1.

Recognizing that the maximum ground displacements have to be
obtained from the recorded accelerations through double integration
and that these values are very sensitive to the base line adjustment
procedure, it can be stated that the accelerations, the veclocities, and
the ad/v2 ratio are the most important parameters characterizing a ground
motion, It alsc is established that the ad/v2 ratio is a function of
the focal distance of the earthquake and the attenuation of motion in
the ground. This ratioc is therefore of foremost importance for the
construction of design spectra and needs to be carefully studied.

The values of ad/v2 range from 1.84 to 30.58, but disregarding
the El1 Centro earthquake of 5-18-40, most values fall in the range from
about 5 to 15. In gcneral it will be noted that the ad/v2 values arc
higher for vertical motion, as would be expected in part because the
high frequency components in the vertical direction are more pronounced
than in the horizontal direction.

2 . . s
The average values of ad/v™ for different site conditions are
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summarized in Table A6-2. The average value for horizontal motions
was about 5.6, and differs little from rock sites to alluvial sites.
For vertical motions, the average value for alluvial sites was equal
to 10.0 and that for rock sites was 13.0. Since only three sets of
data were available for rock sites, more confidence can be placed in
the values obtained for alluvial sites, Based on the available data,
it was concluded that ad/v2 ratios of 6 and 10 may be representative

for horizontal and vertical ground motions, respectively.

Peak Horizontal vs. Vertical Accelerations

Newmark and Hall state in Reference 49 that the vertical com-
ponents of motion may be somewhat less, or in some circumstances equal
to or slightly greater than the horizontal motions, depending upon
whether thc associated fault motions in the earthquake are primarily
horizontal (strike-slip motions) or primarily vertical (thrust fault
or dip-slip motions). This general statement was confirmed by the
study of particular éarthquakes that show a range of ratios of vert-
ical to horizontal pcak acceleration from (.27 for the Ferndale earth-
quake (12-21-54} to 1.29 for the lloliday Inn record of the San Fernando
carthquake. It is clear that this ratio is a function of the fault
motion, the distance from the fault, the ground motion intensity and
the geological site conditions, Average values of these ratios for
different site characteristics are presented in Table A6-3. The
values range from 0.40 to 0.72, depending on thc acceleration level
included and the geological conditions. On the basis of these data,

and recalizing that only a few samples existed for the rock site, it
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was decided in reference 48 to take the ground acceleration for a given
site for the vertical spectrum to be equal to two-thirds of that for

the horizontal motion.

Response Amplifications
Studies of the response amplification in various ranges of
freguencies were carried out in reference 7. The input ground motion

was normalized to the following values:

Maximum ground displacement 1.0 inch
Maximum ground velocity 10.0 in/sec
Maximum ground acceleration 1.0 g

The results for mean response amplification for 5 percent critical
damping is shown in Figure A6-4 for the horizontal and the vertical
ground motion,

The following observations were made regarding the vertical

response amplification:

1. The amplification factors for accelerations are virtually
constant for the range of frequencies from about 3 to 10
hertz, and then decrease fairly uniformly to intersect the
ground motion accelerations at frequencies of about 50
hertz for all values of damping.

2. For the intermediate range of frequencies (0.3 to 3.0
hertz), a slight drop in the velocity amplification factor
is evident as the frequency increases. llowever, the drop
is only of the order of about 10 percent over the fre-
quency range for which velocity amplification is valid, and
it therefore appears reasonable to use a constant
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amplification for the velocity range as well as for the
acceleration and displacement range.

3. In the low frequency range of the spectrum the displace-
ments are amplified by a constant factor for all values
above the 0.05 hertz level,

The statistical values of response amplifications for hori-
zontal and vertical motion obtained from a normal distribution curve
for 0.5, 2, 5, and 10 percent of critical damping are presented in
Tabie A6-4. 1t is recommended that these amplification factors for

vertical ground motion be applied to the following frequency ranges:

Displacement amplification 0.1 to 0.3 hertz
Velocity amplification 0.3 to 3.0 hertz
Acceleration amplification 3.0 to 10.0 hertz

Design Spectra for Vertical Motion

It has to be emphasized that it is difficult to generalize as
to the shape of the vertical spectra versus the shape of the horizontal
spectra. This shape will be a function of the distance to the fault,
the site characteristics, the ground motion intensity, etc. In part
such a generalization has been attempted in reference 48, where some
of the parameters required in constructing the vertical design spectra
are expressed as fractions of the parameters used for horizontal de-
sign spectra., ‘the procedure utilized in reference 48 for the con-
struction of design spectra for vertical ground motion can be briefly
summarized as follows:

1. The peak vertical ground acceleration is taken to bc two-

thirds of the peak horizontal acceleration, regardless
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of site.

[\

The ratio of v/a for the vertical motion to that of the
horizontal motion is 0.890, rogardléss of site.

3. The ad/v2 for vertical motion is taken to be 10.0, re-

gardless of site.

4. These three parameters define the ground motion bounds.

The design spectra are obtained by multiplying these
ground motion values by the amplification factors given in
Table A6-4. The frequency ranges applicable for the
amplification of acceleration, velocity, and displacement
are listed previously. The faring fregquency in the high
frequency region was taken to he 50 hertz for all values
of damping.

It should be noted that the above parameters wecre computed from
a statistical study including only strong motion data, i.e., disregard-
ing all traces that had accclerations less than 0.1g in the case of
horizontal meotion and 0.05g in the case of vertical motion.

The values of ground motion bounds of acceleration, velocity
and displacement for horizontal and vertical ground motions are pre-
sented in Table A6-5. The values are normalized with respect to a
horizontal ground acceleration of 1.0g. The displacement valuecs were
calculated on the basis of the a, v, and ad/v2 values, and were then
rounded off to a representative number. The actual response spectra
bounds, obtained through multiplication with the appropriate amplifica-
tion factors, are tabulated in Table A6-6 for horizontal and vertical

motion. A typical vertical response spectrum is shown in Figure As-5.
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Effects of Vertical Ground Motion
on the Response of Buildings

The types of structures and structural components that may
experience significant effects from vertical ground motions arec high
rise buildings, cantilevered structurcs such as grandstand roofs, air-
craft hangars and marquces, cable suspended structures, slabs, and
long span elements, particularly of prestressed concrete (see references
46, 47},

Various opinions are expressed in the literature regarding
the importance of the effects of vertical accelerations. Larson (ref-
erence 47} states that studies of the behavior of structures in the
Anchorage, Caracas, and Santa Rose earthquakes disclosed many cffects
which could be ascribed to vertical components of seismic excitation.
Jennings (reference 45), to the contrary, concluded from a damage study
of the San Fernando carthquake: "There were no instances where it
appeared to the writers that vertical accelerations had been major
contributors to the damage sustained by building structures, and it is
not recommended at this time that vertical accelerations be included
in normal seismic design procedures for typical buildings. There are
special structures, however, which could be more sensitive to vertical
accelerations and vertical motions should be cansidered in such cases.!
Rosenblueth (reference 50) reports the appearance of vertical tensions
during ncarby earthquakes. These, as well as large compressions, also
caused by vertical accelerations, can combine with the effects of over-
turning moments. e also states that we may have to expect appreciably

pecrmanent deformations in flcor systems after several nearby strong
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earthquakes.

Regardless of the wide range of opinions expressed in the
literature, it is well established that vertical accelerations are
greatly amplified from the ground floor to the top of multistory
buildings. This can be seen from the records of the San Fernando
earthquake presented in Table A6-7 (see reference 45), which show an
amplification of vertical acccleration ranging froﬁ 1.4 to 4.5. This
is also evident from analytical investigations that show that the
vertical period of many typical structures lies in the range of accel-
eration amplification,

Dynamic Properties of Structures
in the Vertical Directicn

Building structures can be modeled through a lumped mass-
spring systeh, with each point mass representing the total weight at
the floor level, and cach spring representing the axial deformation
of the columns between floors (see reference 46). The effects of
intcrconnecting girders on the columns could be included, but is not
considered to be significant. The vertical period of buildings depends
on the height of the structure and on the level of stresses in the
column. FPor multistory steel structures thc vertical period can be

estimated from Figurc A6-6, takcen from reference 46.

Results of Analytical Investigations
A series of steel structures, ranging from 5 to 51 stories,
was studied in reference 46. The response spectra for the Taft and

Golden Gate Park earthquakes were used as input in the analysis.
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Elastic behavior was assumed in the analysis. 7This is a reasonable
approximation for studies of structures in the vertical direction
because of the current design philosophy to avoid plastic hinges in
the columns. The findings of this study are briefly summarized below.

1. The vertical pecriods of steel structures lie in the range

of acceleration amplification of the spectra developed for
vertical motion,

2. The amplification of the vertical acceleration at the

top of steel structures may be in the order of four times
the ground acceleration. Similar results should be ex-
pected for buildings of other materials. This amplifica-
tion could increase or decrease column dead loads by 20
percent or more,

3. Vertical accelerations may contribute to the overstress

or compression failure of columns and may reduce the factox
of safety against overturning.

A study of a ten story unbraced steel frame subjected to gravity
loads and a combination of horizontal and vertical ground motion com-
ponents is reported in reference 42, An inelastic dynamic analysis
of this structure was carried out, using the Pacoima Dam and the Taft
earthquake records as an input. Both records were normalized to a
maximum vertical ground acceleration of 0.31lg. For comparison, a
second analysis was carried out with the structure subjected only to
gravity loads and horizontal accclerations. The maximum vertical ac-
celerations of the selected nodal points in the structure are shown

in Figure A6-7, for the Pacoima Dam reccrd. The following conclusions
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were drawn {from a study of the response of the structure that was de-
signed for seismic loads specified in the Uniform Building Code and
following the allowable stress design procedure.

1. Thé inclusion of vertical components of ground motion in-
creases the ductility requirements in both the columns and
girders of the upper stories. Vertical motion is particu-
larly significant in causing inelastic action at the mid-
span of the girders. Ineclastic action in the columns is
increased by the amplification of the vertical motion in
these members and by the amplified vertical response of
the girders.

2. The reclative importance of the vertical motions is depend-
ent on the main characteristics of the complete time
histories of both the horizontal and vertical components
cf the earthquake. The duration and frequency content as
well as the maximum acceleration of the ground motion need
to be considered in determining the cffccts of earthquakes
on structures.

3. Ductility requirements at the critical regions of individuzl
members cannot be evaluated with accuracy from just analyz-
ing maximum lateral displacements and maximum relative story
drifts.

Iyengar and Shinozuka (reference 44) used statistical models

for the horizontal and vertical components of ground motion to study
the effect of self-weight and vertical acceleration on the tip deflec-

tion, base bending moment, and base shear force of cantilever type
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structures. As expected, the effects were of more significance in
taller structurcs than in shorter ones, but in either case the differ-
ences caused by including self-weight and vertical acceleration seem to
be considerable.

Tn conclusion, it has to be stated that no evaluation of the
effects of vertical ground motion for structures older than steel
structures and for important structural components could be found in
the literature. Further research in this area seems to be urgently

needed.
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Sﬁtg' . pirection §:éo€§s | ad/v2
alluvium & rock , " horizontal 28 ' 5.6
alluvium A - " horizontal 22 5.7
rock R horizontal 6 5.4
alfuvium & rock, a0.1g | horizontal 20 5.7
alluvium, 20.1g . horizental 14 5.9

' rock, @&0.1g (same as above) horizontéi_ : 6 5.4
atluvium, a<0.1g ‘ hor i zontal 8 5.3
o ' < ‘ o
. alluvium & rock " vertical 14 10.7
: _é?iuv[ym 3 }oék* : . vertical | lé_ 9.1
. aliuvium ‘_‘ o . yertical no 10.9
alluvium® o vertical 10 7.9
rock . o i‘A' _ 'vérticéiv 3 - 13.0
'éiiuvium‘& rock, a>0.05¢g .i,'vertica] ” .8 ;12.4
“alluvium, 2>0.05g " vertical 5. 12.0
é?luvium, £0.05q" " yertical L4 7.3
rock, a>0.559 (same as above) vertical 3 113.0
alluvium, a<0.05g ‘ . yertical 6

8.4

( A

- % Discarding the extreme value, El Centro, 5-18-40, 2037 PST, ad/vZ = 30.58

Summary of Average ad/v2 Values

Table A6~2. (reference 48)
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5ite . No. of a - vertical

records Average a - horizontal

alluvium &‘ rock 28 0.53 _
alluvium | .22 | _0.53
rock ) 6 - 0.54
alluvium & rock, 8>0.1g, a >0.05g 15 - 0.65
alluvium, 2,>0.1g, a >0.05g ' .‘ 9 0.72
alluvium & rock, ah<o.1§, a <0.05g 13 0.40
alluvium, ah<0.lg, a§<0..059 , | .

(same as above) 13 |  0.40

Summary of Vertical to Horizontal Acceleration Ratios

Table A6-3. (reference 48)
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All Records (28) Records with a > 0.1g (20)

Percentile  Damping - -
' D v A D v A

0.5 1.9 2.8  4.00 .97 2.58 3.7

| 2.0 169 2.23 2,91 . 168 206 - 2.76
2 5.0 133 L7h - 2.20 N N 166 2.1) |

'[o.o' L3 138 L L 15 Lk 1.6

0.5 "2.66.‘v 3.81  5.02 7 2.86 341 465

- 2.6 2.23 2.83  3.52 C2ah 2,68 3.36

» - 5.0 1.80 2.9 2.59 | . 1.83 2,10 2.48

~ 10,0 143 e 197 1y 1.66 1.89

0.5  3.27 L7 - 5.% 3.28 . 4.16  5.53

L 2.0 2.7 348 406 ©o2.7% 3.23 0 3.90

* 5.0 g,i7 2.60 2,93 ":”2.21 251 - 282

0.0 L7 L 2.20 o um tgh 2.1

0:5  3.65  5.19  6.50 3.65  L.60  6.05

_ 2.0 3.02 3.84 4,39 3.0k * 3.57 k.22

* 5.0 239 2.8% 3.4 2.0 2.7 3.03

0.0 1.87  2.15  2.33 .ol 2.1 2.2k

Statistical Value of Response Amplifications
(Normal Distribution ~ Horizontal Components)

Table A6-4. {(reference 48)
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; A1l Records (14) 7 Records with a > 0.05g (8)
Percentile pamping et :

DLV A D v A
0.5 - 1.77 2.7 . L4.22 1.86 2.52 4,02
2.0 1.57 2.10 2.86 1.65  1.97 2.80
0 :
? 5,0 1.33 1.56 2.08 1.40 }.51 2.05
10.0 1.09 1.22 1.62 - 1.16 1.17 1.59
0.5 2.33 3.67 5.47 2.8 3.39 5.46
2.0 2.04 2.77  3.60 2.17 2.61  3.70
) - . . » )
3 5.0 1].70 2.06 2.52 1.81 1.97 2.57
10.0 1.38 1.55 1.91 147 1bg 1.92
0.5 2.83 4,51 6.59 3.0  L.17 6.76
2.0 246 3.37 427 2.63  3.18 4.5l
%20 ' - - i '
5.0 2.04 2.47 2.92 2,18 2.37 3.04
10.0  1.63 .84  2.17 L LB 2.22
- 0.5 3.13 5.02 7.26 3.37 L.6h4 7.53
2.0 2.71 ' 3.73 - h4.67 2.9! 3.52 L. 99
% .
5-0 2.24 2'73 30]6 ) 2.1{’0 2.62 3032
10.0 1.79 2.0  2.32 .92 1.95 2.40

Statistical Values of Response Amplifications
(Normal Distribution - Vertical Components)

Table A6-4. (continued) (Ref. 48)
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g . . Acceleration Velocity Displacement 2
Site Direction a, g v, in/sec d, in ad/v
ailuvium  horizontal 1.0 48 36 6.0k
rock . horizontal 1.0 28 12 4 5.92
alluvium  vertical 2/3 29 33 10,10
rock ve ﬁ't ical 2/3 9.80

17 -~

Horizontal and Vertical Design Ground Motions

Table A6-5.

A6-22

(reference 48)
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Fundamental Period. Sec

1

51-8Story Actual Building-—————;;b

Periods of
Theoretical Buildings

Ave col. stress, ksi;7

20,

15

10

24-5Story Actual Building

Number of Stories

Steel Buildings Vertical Periods

10 20 30 40 50

Fig. A6-6. (reference 46)
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0.98 2.63 2. %
2 z%¥ 104
2% 2.7 297
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.66 + 74 -4
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Fig. A6-7, Maximum Vertical Accelerations
for Pacoima Dam Record (ref. 42)
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