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Foreword

This technical report represents an immediate continuation

of the work described in "Underground Pipe Damages and Ground

Characteristics" by the present authors published as Technical

Report CU-l prepared for the National Science Foundation under

Grant No. ENV-76-09838 and pre~tedat the Lifeline Earthquake

Engineering Specialty Conference at the University of California,

Los Angeles, August 30 - 31, 1977. For the convenience of the

readers, however,an effort has been made to make this report

self-contained as much as possible. Because of this, some

duplication of the material with Technical Report No. CU-l has

occurred. When the results of these two reports are combined

in the near future for the purpose of publication in a technical

journal as a single paper, these duplications will be eliminated.

~ I

Any opinions, findings, conclusions
or recommendations expressed in this
publication are those of the author(s)
and do not necessarily reflect the views
of the National Science Foundation.
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Abstract

A quasi-two-dimensiona1 analysis method proposed in Ref. 1

has been extended to evaluate the elastic shear strains

arising from spatial variability of the soil property of a

surface layer subjected to shear waves incident vertically from

below through a semi-infinite firm ground. Applying the method,

the root mean square (RMS) values of the shear strains are

evaluated for the metropolitan Tokyo area on the basis of the

local soil conditions, and the correlation between such RMS

values and the statistics of the damage collected on the

underground water supply pipelines under the 1923 Kanto Earth

quake has been examined.



1. Introduction
'1

In a previous work , describing the spatial variability of

the soil property, particularly that of the ground predominant

frequency as a random function of space variable characterized

by mean value, variance and correlation distance, a quasi-two-

dimensional analysis was performed to determine the normal

strains in the surface layer subjected to .a shear wave incident

vertically from below through a semi-infinite firm ground as

shown in Fig. 1. The analysis was applied to the metropolitan

Tokyo area and a reasonable correlation was established between

such normal strains and the statistics collected on the damage

of the underground water supply pipelines under the 1923 Kanto

Earthquake.

The displacement in the surface layer considered in Ref. 1

is due to a shear wave So incident vertically from below in

such a way that the soil particle motions are in the direc-

tion of the x-axis producing the normal strain

EO = a.ujax

The same shear wave also gives rise to the shear strain

Yo =a.ujaz

in the x-z plane.

( 1)

(2)

One can also consider the case, however, where the surface

layer is subjected to an incident shear wave Sl at its interface

with the firm ground which again propagates vertically from

below but with the particle motion in the direction of the

y-axis. In this case, the shear strain Y
l

is produced in the
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x-y plane;

Yl = dv/3x (3)

as well as the shear strain ri
ri = dv/3z (3a)

in the y-z plane where the x-y-z axes constitute a right

handed rectangular Cartesian coordinate system with correspond

ing displacement components u,v, and w as shown in Fig. 2.

Fig. 3 shows schematically the incident shear waves So and

51 when they are sinusoidal.

The analysis developed here as well as in Ref. 1 places

an emphasis on the fact that the strain ~o and Yl are not

identically equal to zero solely because the soil property of the

surface layer is (randomly) nonhomogeneous. In fact, Ref. I

has shown that the normal strain EO resulting from the non

homogeneity can be considerably large, although at present

such nonhomogeneity is generally considered to produce a

significant effect only under extremely unusual circumstances

and is dealt with qp.,aliitatively if indeed dealt with. Also, the

following observations appear to be in order: Currently, one

usually associates, for design purposes, normal strains in the

x-direction with the plane P-wave while shear and bending

strains in the x-z or x-y plane with the plane g-wave, both

propagating either in the direction of the x-axis or in the

oblique direction with respect to the x-axis with the wave

front parallel to the y-axis. However, these modes of P-wave

and S-wave propagations are obviously not consistent with the

particle motions produced by the incident shear wave such as
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Sl and So mentioned above, which in fact is considered to be

mainly responsible for most cases of severe ground vibrations.

As a sequel to Ref. 1, this study evaluates shear

~trains in the nonhomogeneous surface layer subjected to the

incident shear waves So and Sl.

-3-



2. Shear Strain Yl

Under the quasi-two-dimensional analysis considered here

and also in Ref. 1, the normal strain EO under So and the

shear strain ylunder Sl are numerically equal if So and Sl

are identical except for the direction of the particle motion.

Indeed, one can show as in Ref. 1 that if the incident Sl wave

is assumed to be of the form
n

Vo =12.r Aoicos(wit - k2iz + ~i ) (4)
~=l

then, the displacement at the ground surface can be written as

cos k1iH

v(H,t)

where

n
= 12 2::

i=1 Icos2kliH+a2sin2kliH

asin kItH
~ = tan- I
ui

COS(Wit-Oi+~i)

(5)

(6)

(7)

(8)

with H = thickness of surface layer, Pi = mass density and

Vi = shear wave velocity (i = 1 for surface layer and 2 for the

firm ground).

It is important to note that Eq. 4 represents, in ·,the limit
2

as n ~ 00, a. stationary Gaussian random process with zero mean

and a one-sided spectral density So(w) if

Aoi = ISo (Wi) 6.w

-4-
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and ¢i are the random phase angles independently and uniformly

distributed between 0 and 2TI. In Egs. 5, 6 and 9,

W. = i~w (10)
1.

and

(II)

is the upper cut-off frequency beyond which the spectral density

is assumed to be zero.

In the present study, the incident "acceleration" wave is

assumed to have the one-sided spectral density of the following

form.
25w2/289

SA(W} = (1-w2/242}2 + w2/289 559
(12)

T.his is the same analytical form as suggested in Ref. 3.

However, the parameter values are so adjusted that the spectral

density will produce the standard deviation of 100 gal. Fig. 4

plots SA(w) in the range w = 0 to 200 rad/sec.' The spectral

density So(w} of the displacement corresponding to Eg. l~ is

obtained as So(w)= SA(W}/w 4 with a truncation for the values of

w less than 0.6 rad/sec to make the standard deviation of the

displacement process a finite value (in this case 2.1 cm). When

the spectral density So(w} is used in Eq. 5, the displacement

v(H,t} at the ground surface becomes a stationary Gaussian process

with zero mean and the variance equal to

n
4 E So(Wi)~W/(cos2kliH + a2sin2kliH).

i=l
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A sample function of the incident displacement wave given in

Eg. 4 (with z = 0) is plotted over a stretch of 6.3 seconds

in Fig. 5. For this purpose, Egs. 4, 10, and 11 are used with

= 76.8 rad/sec and hence n = 128.Aw = 0.6 rad/sec, w
n

Following the same reasoning as given in Ref. I, the

predominant frequency f p is defined as

f p = Vl /(4H) (13)

and as mentioned earlier, it is assumed to be a random function

of Xi f p = fp(x). Because of Eq. 13, this implies that the

shear velocity VI of the surface layer is also a random function

of Xi VI = Vl(X). As a first approximation, it is assumed that

the predominant frequency is a stationary Gaussian process with

and

E[fp(x)] = llf (14)

_ 2 2
E[fp(x)fp(x + ~)] = af ~(~) + llf (15)

where ~ is the separation distance, af is the standard deviation,

and~(~) is the normalized autocovariance function of the process.

In the present study, the following form is used for ~(~) i

2 2
~ (~) = (1-2 I~/L I ) exp {... I ~ /L I } (16)

(17)

The Wiener-Khintchine transform of Eq. 15 with ~(~) given in

Eq. 16 results in the one-sided spectral density G{k) of fp(x).

232
cr L k

G(k) = ~f exp{-k2L2/4} + 211~O(k)
2fi

where o{k) is the Dirac delta function. Equation 16 has been

chosen for its simplicity, analytical tractability and possible

compatibility with the reality, but mainly for the reason that
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the derivative of fp(x) with respect to x exists at least in the

mean square sense. Other significant characteristics that can

be derived from Eqa. 16 and 17 are wa = apparent frequency

(expected rate of positive zero crossing x 2'IT), v = expected rate

of local maxima x 2'IT, and £ = wa/v = irregularity factor such

that

Wa =(6/L, v =/lO/L and £ = 0.77 (18)

The normalized autocovariance function ¢(~) is plotted in

Fig. 6 while the spectral density G(k) with L = 100m in Fig. 7.

The physical significance of L in Eqs. 16 and 17 is quite

important; L has the dimension of length with a smaller value

implying a shorter distance in which the correlation disappears.

In the present study, the parameter L is called the "correlation

distance" for convenience. If the degree of uniformity or

homogeneity of the surface layer is termed "smoothness" as some

researchers prefer, then the larger the correlation distance,

the smoother the layer. To visulaize this point, simulated

sample functions of f p ex)

f (x) = 12
p

in the form
n
~ B .cos(kix

i=l o~

(19')

with L = 100m and 500m and of a length 1,OOOm are respectively

shown in Figs::o.8.(a) and 9 (a) ,With l-lf = 3.0 Hz and<J~ = 0.5 Hz 2 • Also,

note that these figures have the VI scale corresponding to the

f p scale (H = 20 m). As expected, a more rapid variation of

f p is observed in case of L = 100 m than in case of L = 500 m.

In Eq. 19,

(20)
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with k i = i~k. The cut-off wave number kn = n~k has the same

significance as wn in Eq. 11, and ¢i are the random phase angles.

Although the correlation distance L does indicate the extent

of the soil property variability as seen above, it is neither

a direct nor familiar measure with which the degree of

earthquake-induced damage of the underground pipelines can be

associated. In the present study, the intensity of shear strain Yl

that strictly results from the property variability of the

surface layer is used as the measure of such variability to

be correlated to the damage statistics :

Introducing the variability £p into Eq. 5, one can write

the displacement at the ground surface under the incident wave

n
v(H,t,fp ) = 12 E

i=l
where Aoi is as given by

-1/2
2Aoiqi cos{wit + ei}

Eq. 9,

(21)

It is to be noted

W· . 4Hfp 2 w·
qi = cos2 (..-2) + (--) sin2 ( __1.)

4£ V2 4£p
and

p

-1 4Hfp w· w·1. 1.
e· = - tan {-- sin -- Icos }+

1.
V2 4£p 4fp

with ¢i bej.ng random phase angles as before.

¢.
1.

(23 )

that Eq. 21 is now a function of t and f p . Since f p is a

function of x, this means that V(H,t,fp ) is also a function

of x.

The shear strain Yl can then be written as

3v 3V
= . r

-8-
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where

r = dfp/dx

and

(25)

~fV = 12 ~ 2A ./E~ +
a p i=l o~ ~

F~
~

sintw,t + e.
~ ~

+ o.'}
~

(26)

with
2H2 1
(- -~) -
V2 8£2 p

(27)

and

F· =
~

(2 sin ~ _ ~)/q. 3/2
2fp f p ~

(28)

01 = tan -l(Ei/F i )

Then, it can be shown that

(29 )

n
E

i=l

(30)

where a super bar indicates the temporal average. Since r

is not a function of time, one can easily show that the

temporal root mean square of the strain becomes

. I r I·I dV' 2
(ax-)

Figures 8(b) and

/
dVf 2

= (ar)
p

9{b) show spatial distributions of the

(3l)

temporal root mean square strain corresponding to the vari-

ation of f p as indicated in Figs. 8(a) and 9(a}, respectively,

assuming that V2 = 600 m/sec. Then, the expectation of the

temporal root mean square of the shear

written as

-9-
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~Erl (~) ] =ax
00

f
_00

(32)

where g(fppr) is the joint density function of f p and r. The

expectation of Eg. 31 is equivalent to the spatial average

of the temporal root mean square of the shear strain theoreti-

cally considered over the infinite domain -eoo < X < 00 where

the random variation of the predominant frequency is given

by the stationary Gaussian process fp(x). Hereafter, the

expectation indicated in Eq. 32 will be referred to as the

"root mean square (RMS) shear strain" for simplicity.

Since the process is stationary and Gaussian, the joint

density function g(fp,r) is
I

-'=-~exp {-
27fO'fO'r

given by
(f -11 )2p f _

2CT f 2
} (33)

where 11f and O'f are as defined in Eqs. 14 and 15, and

11r = E[dfp/dx] = 0

-2 -2 2
O'r = Var[dfp/dxl = 6 O'f/L

(34)

(35)

( 36)

The last equation is obtained by making use of the following

well known relationship; ~

cr-2¢ (~) = - O'f2 d2¢(~)/d~2
r r

in which ¢r(~) is the normalized autocovariance of dfp/dx.

SUbstituting Eqs. 31 and 33 into Eq. 32 and carrying out

the integration with respect to r, one obtains

~ Vb (X)

E[ J <ti) ] = 1TL f_oo

-10-



To remove the difficulty associated with the assumption that

fp(x) is a Gaussian process and therefore can take zero or

any negative values, truncate the Gaussian density function

at fp = f min . This reflects the fact that the shear velocity

VI of the surface layer physically cannot be too small. writing

Vmin for the smallest shear velocity value one can expect of

the surface layer,

fmin = Vmin/ (4H),'

the root mean square value given in Eq. 37 is modified as

(38)

E [j (av) 2 ]
ax

(39)

where ~(.) indicate the standardized Gaussian distribution

function.

The method by which Eq. 39 has been derived is exactly

the same as that used in Ref. 1: Replacing u by v in the

corresponding equations leads to the RMS value indicated in

Eq. 39.
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3. Shear Strain Yo

As mentioned in the Introduction, the incident wave So

gives rise to the shear strain Yo in the x-z plane in the

surface layer. It is important to note that, unlike

EO = au/ax or Yl = av/ax, Yo is not identically equal to

zero even when the surface layer is perfectly homogeneous

although it always vanishes at the ground surface or at z = H

because of the boundary conditions.

With a slight modification, the analysis in Ref. 1 can

be extended to show that, under the incident wave So' the

displacement u = U(H-zo,t, f p ) in the randomly nonhomogeneous

surface layer at a depth Zo below the ground surface is

=fl

(40)

where Aoi f qi and ei are respectively given by Eqs. 9, 22 and

23. Therefore, the shear strain Yo at z = H-zo is

n
= -12 ,L 2Aoi(wi/Vl)sin(wizo/V1)

~=l

(41)

From Eq. 41, it follows that the temporal root mean square of

(42)
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Finally, the expectation of the temporal root mean square can

be derived as

(43)

where go(fp ) is the distribution function of f p (at any value

of x). If go{fp ) is assumed to be Gaussian with mean ~f and

standard deviation a f truncated at fmin = Vmin!{4H) as before,

then

1 / l Y~(Zo)
v'21T a f fmin

fmin-llf
[l-<P( - )]

0"£
(44)

It is to be noted that Yo{zo) does not depend on the correla-

tion distance L, and that Yo (zo) and yi (zo) = av!az I- arez=H-zo
numerically identical, as Eo and Yl are, if the incident

waves So and Sl are identical except for the direction of

their particle motions.

-13-



4. Correlation Between the Shear Strain and the Damage Statistics

In one of the recent Japanese studies4 , the ground pre

dominant frequencies are evaluated at the nodal points of a

grid of meridians and parallels (both at intervals of I km)

covering the Tokyo metropolitan area. The evaluation is made based

on the soil conditions at the nodes under the shear beam

assumption, and for each area element of 1 km2 , the average

f* and the standard deviation 0* of the predominant frequency
f

are computed using the frequencies evaluated at its four

corners.
4The study then examines the (old but still valid ) statistics

taken on the underground water supply pipeline system which

was in service at the time of the 1923 Kanto Earthquake and

counts the number of pipe breaks and leakages in each area

element resulting from the same earthquake. These numbers are

divided by the length (in km) of the pipelines in each area to

obtain the "break damage index" D or the "leakage damage index".

Furthermore, the study correlates f* and o! to D by dividing

the f* and cr~ space into the following four regions as shown

in Table 1.

Table 1. Break Damage Index for Four Regions

f* crf D

I 1.5- 3.5 o < 5.1

II 3.5 - 4.5 o - 1.15 2.6

III 3.5 - 4.5 1.15 < 13.3

IV 4.5 - 5.5 o < 2.8



The quantity D in Table 1 indicates the average value of D

in each region. Table 1 shows that region III produces the

worst damage statistics while region I is the second worst.

The damage indices associated with regions II and IV are much

smaller than that with region III.

These Japanese data implicitly assume that the variation

of the predominant frequency is two-dimensional, i.e., f p =
fp{x,y). Although it is not extremely difficult to deal with

such two-dimensional random processes, as done in Ref. 5, the

amount of numerical effort required to do so would be inconsistent

with the quality and quantity of the'available field data. There-

iore, as seen in the preceding se~tions, the present investi-

gation deals with the case where the predominant frequency

f p varies

where f p is

1 km. This

only in the x direction, i . e., ! p = f p (x) and

evaluated along the x axis at equal intervals of

is a one-dimensiona~ equivalent of the Japanese

study such that the predominant frequency in each interval of

1 km varies as a random process fp(x) characterized by Eqs. 14

17, with a value L common to all the intervals but with a set

of values of ~f and crf unique to that interval. Under these

circumstances, it is considered as a first approximation that

~f and crf to be used for an interval are equal respectively to

the sample mean and the sample standard deviation obtained on

the basis of the predominant frequencies evaluated at both ends

of that interval.

For L = 300m, H = 20 m, V2 = 600m/sec and Vmin = SOm/sec,

Fig. 10 is obtained which indicates the root mean square (RMS)

-15-



shear strains (Eq. 39) for various combinations of ~f and of;

~f = .75, 1.25, 1.75, ••• ,6.75 Hz and of = .125, .375, .625, ••• ,

3.125 Hz. purely for the purpose of establishing the trend,

it is assumed that a particular combination of f* and 0* under
f

the assumption of two-dimensional variation of f p will

produce the same RMS surface strain as those obtained in

Fig. 10. Fig. 10 is then used in conjunction with the Japan

ese data4, particularly with those.given in Fig. 11 showi,ng the

numbers of the area elements of 1 km square associated with

indicated combinations of f* and of with blanks implying zero;

f* = .75, 1.25, 1.75, .•• , 6.75 Hz and a, ~.125, .375, .625, •.• ,

3.125 Hz (these values are the same as for ~f and crf ). Thus,

the Uf(f*) - Of(O*f) plane in Fig. 10 can be divided into four

regions, I, II, III, and IV as defined in Table 1.

The weighted averages of the RMS shear strains Yl within

regions I-IV are then computed with the numbers shown in Fig. 11

as weight. These averages, which will be referred to as the

"regional RMS shear strains" are also Slhown in Fig. 10. The

same computations are repeated for L = 500 m, 800 m, 1,000 m

and 2,000 m resulting in five sets of four regional RMS strain

values as indicated in Fig. l2(a) in terms of a bar graph. Fig.12(a)

shows that the regional RMS shear strains Yl are larger for

smaller values of L within individual regions as expected~ and

that the largest value is observed in region III, the second

largest in region I, the third in region IV and the smallest

in region II for the same value of L. The latter result

-16-



exhibits the Same trend observed in the Japanese data
4

in

Table 1 and Fig. 12(b) demonstrating how the break damage

index depends on the region. The trend is even more similar

if one considers the following: assuming a larger value, of ,

L for region I than for other regions may be more appropriate

since the soil conditions of region I are generally those of

,alluvium and are expected to be more homogeneous than in other

regions where the loam generally combined with the river

valley humic soil : dominates. For example, take the RMS values

associated with L = 500 m for region 1 while the RMS values with

L = 300 m for other regions, and observe how closely the

results compare with that of Fig. l2(b).

Similar computations are made for the RMS value of shear

strain Yo (Eq. 43) at Zo = O.Sm, 1.Om and 2.0m for the same

combinations of ~f and af as for Y
1

and are shown in Figs. 13,

14, and 15, respectively. As mentioned earlier, Yo is indepen

dent of the correlation distance L and Figs. 13-15 indicate

that the influence of the random nonnomogeneity on Yo is much

less than in the case of Yl0

The r.egional RMS strain valu~s are also computed for Yo

in the same way as for Yl and shown in terms of a bar diagram

in Fig. 16. The diagram shows that for the incident shear wave

So considered here, the RMS values are larger for larger values

of Zo or at deeper locations and more importantly that the

largest RMS value is observed for Region I followed by those

in III, II and IV in that order. This last observation in

dicates that the correlation between the damage statistics as

-17-



shown in Fig. 12(b) and the RMS shear strain values for yareo
not as significant as for Yl or ~o.

Finally, it is pointed out that, because of the numerical

identity between Yo and Yi as mentioned earlier, the bargraph

for the regional RMS values in Fig. 16 serves for yi as well

as for Yo'



5. Conclusion

The shear strains in the surface layer of randomly non

homogeneous property are evaluated under the quasi-two-dimen

sional assumptions. The shear strain Yo in the x-z plane due

to the incident shear wave So with the particle motion in the

direction of the x-axis and the shear strain ~l in the x-y

plane due to the incident shear wave Sl with the particle

motion in the direction of the y-axis are considered. The

RMS values of these strains are compared with the statistics of

earthquake-induced damage based on a field study on the

underground water supply pipelines in Tokyo. The comparison

indicates that a good correlation exists between the RMS values

for Yl and the degree of the damage, while the correlation

is not as good for Yo.
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Fig. 3 Incident shear waves
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