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CHAPTER 1

INTRODUCTTYON

1.1 Introduction

Dynamic analysis is rapidly becoming a common consideration in
the design of structures, especially in determining response to earth-
quake ground motions. Methods for linear dynamic analysis of complex
structures (where the material is assumed to be linearly elastic and
displacements are small) weré developed during the last two decades
and are now well known. However, in many cases inelastic behavior
of structures must be taken into account in order to obtain an econ-—
omic and safe design. Nonlinear dynamic analysis of structures is
a rather new field, and many researchers are actively investigating
different aspects of the subject. Some of the important applications
of nonlinear analysis are found in the design of missiles, aircraft,
nuclear reactors, transportation vehicles, multi-story buildings
located in seismic regions, etc.

Dynamic analysis of complex structures by the finite element method
is performed in two major steps. The first step is to develop a finite
number of equations of motion, and the second step is to solve these
equations for the response at the nodes and the stresses within the
elements. For large problems with several hundreds (or thousands) of
degrees of freedom, the selection of an efficient algorithm for solving
the equations of motion becomes a very important factor. This is espe-~

cially true for nonlinear analysis, for which the cost of computations



is an order of magnitude higher than that for linear analysis.

1.2 Objectives

The objectives of this project are to determine the most efficient
techniques for linear and nonlinear dynamic analysis of structures mod-
eled by finite elements. The selection of solution techniques to be
compared is based on the information available in the literature (see
Chapter 2). The accuracy, stability, and efficiency of the solution
techniques are examined by comparing the results from a plane stress
sample problem.

For linear analysis of the sample problem, results for the fol-
lowing solution techniques are compared: (1) direct linear extra-
polation with the trapezoidal rule, (2) central difference predictor,
(3) two-cycle iteration with the trapezoidal rule, and (L) normal
mode method.

For nonlinear analysis, both material and geometric nonlinearities
are included in the finite element formulation. Three implicit solution
techniques are investigated in this work. They are (1) Newmark=Beta
method, (2) Houbolt's method, and (%) Park's stiffly-stable method. In
addition, the following explicit methods are compared: (1) central
difference predictor, (2) two-cycle iteration with the trapezoidal
rule, and (3) fourth-order Runge-Kutta method.

Algorithms for these solution techniques are developed and are
implemented in three computer programs. The first program is for linear
analysis, the second is for nonlinear analysis by implicit methods, and

the third is for nonlinear analysis by explicit methods,



CHAPTER 2

SOLUTION TECHNIQUES FOR DYNAMIC ANALYSIS OF STRUCTURES

2,1 Introduction

For the solution of linear equations of motion, one can employ
either the normal-mode method of dynamic analysis or some step-by-
step numerical integration procedure. However, for nonlinear equa-
tions of motion, the use of numerical integration procedures appears
to be mandatory. The normal-mode method is well known in the litera-
ture and is described briefly in Section L.1.5. 1In this chapter,
step-by-step integration procedures applied to dynamic analysis of
structures are described. Information available in the literature
is summarized, and this research consists of investigating and com-
paring the more promising methods.

In numerical integration procedures, time derivatives are usually
approximated as difference equations involving one or more increments
of time. If a given formula expresses the response in terms of pre-
viocusly-determined values of displacement, velocity, or acceleration,
it is called a predictor (or an explicit formula); otherwise, it is
called a corrector {or an implicit formula).

An estimate of the error (and its order) im the use of a differ-
ence formula can be obtained by comparing the formula with the expansion
of Taylor's series [}7,55}. For example, if the difference formula

matches up to and including the (At)LL term in the Taylor's series,



it is called a fourth-order method; and its truncation error is the
next term in the Taylor's series. Although this local truncation error
gives an estimate of the accuracy of the method, the propagated error
associated with numerical round-off has a random character and may be
much more important. The repetitive use of an approximation formula
causes error accumulation that may artifically magnify or attenuate

the response. Also, when the order of the difference equation is
higher than that of the differential equation, extraneous terms may be
introduced into the approximate solution [8]. These spurious solutioms,
accompanied by round-off error over a sequence of fiime steps, may domi-
nate the response and give unstable results. While the truncation error
can always be estimated or bounded, numerical instability is signi-
ficantly more difficult to analyze. Almost all ¢f the existing tech-
niques for examining the stability of numerical integration methods
apply only to linear systems [2,40,48,55]. Moreovaer, stability in
linear systems does not insure stability in nonlinear systems.

For linear systems, a numerical integration procedure is called
unconditionally stable if the solution is bounded regardless of the
size of the time step. It is called conditionally stable if the solu-
tion is bounded for any time step smaller than a so-called critical
time step. Finally, if the solution approaches zerc as the number of
time steps approaches infinity, the numerical integration procedure is

said to be asymptotically stable (or A-stable),



2.2 Central Difference Predictor

The second-order central difference formula [L8] is as follows:

.. 1
dig =

T (di_2 -2d, )+ di) (i>1) (2.1)

where di is the displacement at the end of the ith uniform time step

ef size At . This formula yields the predictor

Do
4 = ~d, o, ow2d g o+ (ae) d (2.2)

Dahlquist [7] showed that no explicit multistep integration procedure
(including the central difference predictor) can be asymptotically
stable. Kreig [27] found that among the second-order predictors, the
central difference formula has the largest stable time step of all,

for which

(At)cr = 2/&ﬁax (2.3)

where B s is the highest angular frequency of the analytical model.

Key and Beisinger [26] used this method for the linear analysis
of thin shells. 1In addition, Krieg and Key [28] showed that using a
diagonal mass matrix improves the accuracy and efficiency of the cen-
tral difference procedure. Successful use of this method in non-
linear analysis has also been reported by Key [25]. He used arti-
ficial viscosity to control the instability of the formula,

Weeks [56] compared Lhe explicit central difference procedure

with the implicit Houbolt and average-acceleration methods (to be dis-

cussed in the following sections) for linear as well as geometrically

_5-



nonlinear problems. He found the central difference procedure generally
superior. Witmer et al [58] searched for the optimal predictor-corrector
method for systems of second-order differential equations. They also
concluded that the central difference predictor is best, The main dis~-
advantage of this method is that for a fine network of elements a very

small time step is required to obtain stable results.

2.5 Newmark-Beta Method

Newmark [39] proposed the following implicit expressions for

velocity and displacement for calculating the dynamic response of

structures:
dy = dy_y + At d; o+ (1-y) e d, (2.4)
d, = d, . +8(ac) d, + (0.5-p)(At)® d, . + a4t d (2.5)
i i-1 i i-1 i-1

Because of its versatility, this approach is sometimes referred to as
the generalized acceleration method., By setting » equal to 0.5 and
assigning different values to the parameter f , several well-known

procedures can be obtained. They are the linear acceleration method

(when g = 1/6 ) , the average acceleration method or trapezoidal rule

1l

(when B = 1/k ) , and the constant acceleration method (when g = 1/8 ) .
The most widely used form of this method is the average acceleration
method, which is unconditionally stable for linear systems [Lojy.

Dahlquist [ 7] showed that the trapezoidal rule is the most accurate

of the stable second-order formulas. Nickell [4l] examined several
step-by-step integration procedures and apparently found the trape-

zoidal rule to be the most attractive of all for both linear and



nonlinear problems. Dunham et al {9] also reached the same conclusien,
In the Newmark-Beta method artificial damping can be provided by
the § control parameter, as recommended by Goudreau [15]. This parame-

ter is related to y by the equation
y = 0.5+ 8 (3 >0) (2.6)

It is shown in Reference 15 that for unconditional stability of the
Newmark-Beta method we must choose the parameter £ from the follow-

ing relation:
2
8 >0.25 (1+8) (2.7)

Nagarajan and Popov [37,38] have used this method because of the flexi-
bility in selecting the amount of artificial damping through the use of

the & parameter.

2.4 Houbolt Method

Based on a third-order interpolation of displacements, Houbolt [1g],
presented the following multi-step implicit'formulas for velocity and

acceleration in terms of displacements:

L.
I}

+ Od,

<“Edi- i-2

- 18 di_ + 11di} / (6nt) (2.8)

3 1

- 5d;y + 24y} / (o) (2.9)

Like the average-acceleration method, the Houbolt method is uncondi-
tionally stable for linear systems [»2]. Stricklin et al {51] com-
pared this method against the fourth-order Runge-Kutta method and the

Newmark-Beta method with various values of parameters for geometrically



nonlinear problems, using the pseudo-force technique., They found the
Houbolt method to be the optimum one. However, as Weaver pointed out
[55], these comparisons involved the solution of simultaneous equa-
tions for all methods studied; and if this time-consuming process is
avoided (for explicit methods), we may reach a different conclusion.
In Reference 51 it was also shown that the unconditional stability of
the Houbolt procedure and the average-acceleration method does not
exist in nonlinear problems, McNamara [3%] has alsec found the Houbolt
method to be the most suitable scheme for solving nonlinear problems,
However, in contrast with References 33 and 51, Weeks [56] concluded
that the average-acceleration procedutre 1s more economical than the

Houbolt method.

2.5 Iteration With the Trapezoidal Rule

The trapezoidal rule for displacements and velocities are

+oe(d, o o+ d)/e (2.10)

(=9
i
[N

i i-1

dj = d, g+ at(d, 4+ di)/2 (2.11)

[N

Boggs [5] has shown that iteration with the trapezoidal rule in a
predictor-corrector form is an efficient procedure for solving non-
linear problems, Nickell [52] has also recommended use of the trape-
zoidal rule with limited iterations. Weaver [55] has carried out
numerical experiments for limited iteration with the trapezoidal rule
and reported satisfactory accuracy for this approach. He recommends

that the number of iterations be limited to two.



2.6 Runge-Kutta Methods

Runge-Rutta methods are well-known in the classical literature on
numerical analysis [17,29,47,49]. They are designed to approximate
Taylor's series. The general fourth-order Runge-Kutta formulas for an

equation in the form d = £(t,d) reduces to [17]

: At

d; = dg g+ d; ot + 5 (\111 + o, 1115) + O(At)5 (2.12)

» . 1

d; = di-l + 7 (‘Jfl + 2y, + 2% + "fu) + O(At)5 (2.13)

where

¥ o= At f(tl 1’ ) (2.1k4)
At s

U, = Ot f(tl L taef d, 4 +5 di-l) (2.15)
Ay At

¢5 = At f(t + Atfa di g+ 54t T *1) (2.16)

¥ :Atf(t + At ,d, .+ At d +é£¢) (2.17)

L i-1 7 Ti-1 i-1 7 2 Y2 )

This explicit single-step method is self~starting and highly accurate
(its truncation error is of the order of (At)S ). However, the four
function evaluations makes this apptoach rather time consuming.

Gupta [16] has used this method successfully in a nodewise manner in
solving geometrically nonlinear problems. Weaver [55] also reported
good results for this procedure, considering both speed and accuracy.
In addition, he recommended that {(for the purpose of making more ex-
tensive comparisons) the two-cycle iteration with the trapezoidal rule
and the fourth-order Runge-Kutta method be implemented in a finite ele-
ment program, using a diagonal mass matrix and a nodewise scolution pro-

cedure,



2.7 Stiffly-Stable Methods

For high frequencies of vibration, the accuracy of the solution
is not as important as the stability. In order to guarantee sta-
bility, one may be forced to use a very small time step that will
unduly increase the cost of computations. For the purpose of pro-
ducing A-stability of higher vibrational modes (or stiff compo-
nents ), Gear [12,13] presented a new class of time integrators,
called stiffly-stable methods. Jensen [21] modified Gear's third-
order formula and presented a new formula that has a larger stable
time step. However, numerical experiments carried out by Weaver [55}
indicate that the second-order Gear method and the third-order Gear
method with Jensen's modifications do not appear to be competitive
with the other methods studied. Recently, Park [hh,45] has developed
an improved stiffly-stable method by combining Gear's second-order and
third-order formulas. He obtained the following multi-~step implicit

difference equation for velocity:

d, = (EOdi - 304, ; + l2d; -~ 2d.i_.5) / (12At) (2.18)

1

He proved that this formula is unconditionally stable for linear
systems and applied it for both linear and nonlinear oscillators,
He concluded that it is second best to the Newmark-Beta method for
linear systems and is better than the Newmark-Beta as well as the
Houbolt procedure for nonlinear problems. This method seems to be
promising, and it warrants more investigation by comparing it with

other good possibilities.

- 10 -



A multitude of other methods have been proposed by various
investigators. However, based on the information available in the
literature, they do not appear to be as good as those already men~
tioned, A literature survey of numerous solution techniques is pre-
sented in Reference 55.

From the study of the literature, some contradictory results are
seen regarding the choice of the best solution technique for linear
and (especially) nonlinear analysis of structures. These apparent
contradictions are due to the interaction of many factors involved.
For certain problems some specific procedure appears to be the opti-
mum technique. For example, in wave propagation problems one must
use a small time step in order to trace the response properly. Con-
sequently, an explicit technique like the central difference proce~
dure appears to be the most suitable one. More generally, however,
the choice should be based upon accuracy, stability, storage require-

ments, and computational efficiency.

- 11 -



CHAPTER 3
FINITE-ELEMENT FORMULATION OF EQUATIONS OF MOTION

3.1 Introduction

Not very many practical problems, especially in a field such as
earthquake engineering, have so-called exact or analytical solutions., Even
for those which have analytical solutions, many simplifying assump-
tions must be introduced in order that they may be amenable to ana-
lytical solution procedures like similarity solutions and Fourier
and Laplace transformations. Thus, applying some sort of numerical
oY approximate solutions to many practical problems is essential.
Among the_common approximate methods, perturbation methods, power
series, method of weighted residuals, the finite difference technique
and the finite element method can be mentioned. With the advent of
high speed digital computers, the finite difference method and the
finite element method appear to be the most successful of all. For
problems with complicated configurations and boundary conditions, the
finite element method has advantages over the method of finite differ-
ences. In this study, the method of finite elements has been used.

There are different ways of formulating the problem by finite
elements. From a structural point of view, the finite element formu-
lation can be divided into three categories:

1. Displacement formulation {stiffness or potential enmergy

approach).

2, Stress formulation (flexibility or complementary potential

energy approach).

- 12 =



%. Mixed formulation (mixed-energy principles or Reissner

principle).

Up to this time, the majority of finite element theory has been
based on the displacement formulation, and in this work a displace-
ment approach has been used,

The type of element used in this study to model the plane stress
and plane strain problem is the isoparametric quadrilateral element.
The approach of isoparametric formulation has been used with great
success in many different areas {6,62]. Recently, it has been shown
that the isoparametric formulation is highly versatile and efficient
for nonlinear structural problems [1,6%].

In Sections 3.2 and %.%, equations of motion will be formulated

for an isoparametric quadrilateral element.

3.2 Linear Analysis

3.2.1 Finite Element Formulation

The principle of virtual work for an eclastic structure in equili-
brium and subjected to a system of virtual displacements can be stated

by the following equation [L6]:

8 - U (3.1)

where ©®W 1is the virtual work of external loads and B&U is the vir-
tual strain energy of internal stresses. It is noted that the virtual
displacements must be a set that do not violate the constraints (geo-

metric boundary conditions) of the structure.

- 13 -



When we apply this principle to a typical element, the virtual work

of external loads is given by the expression

~ (2] ~ ~ ~ ~

A

W = PI 8 + fw; Bu dA —I—fw:’_ Bu dv - J[ ] il.l Bdu dv (5.2)
ot ol V

where q , u, p , W and w, are vectors defining the nodal displace-

~ ~ ~ ~ ~

ments, generic displacements, concentrated nodal loads, distributed sur-
face loads, and distributed body forces. In addition, A , V and o
define area, volume and mass density of the element. The prime sign
indicates the transpose of a wvector.

Similarly, the virtual strain energy of the stresses is given by

the expression

50U = fa' de dv (3.3)

~ ~

v

where o and %Hec are vectors of stresses and virtual strains, respec-

~ ~

tively.
Generic displacements and nodal displacements are related to each

other by the matrix of displacement shape functions T, as follows:

~

5 = T].E (5"‘*)

~

Also, the strain-displacement relationships can be written as

Ry Bhc R 9

~ o~ ~

where T2 is a matrix econtaining derivatives with respect to the co-

~

ordinates and B 1is the strain-displacement matrix, In addition, the

~

following relation holds among the stresses and strains

o = T (e e - ) (5.6)

~ ~ ~ ~
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where e, and €p are vectors of temperature strains and prestrains,

~ ~

and T, is the stress-strain matrix (to be derived for plane problems

5

o~

in the following article).
Substituting Eqs. (3.2) and (3.3) into Eq. (3.l) and replacing

u, o, and ¢ from Egqs. (3.%) through (3.6) (and noting that the

~S r~ ~e

virtual displacement 8&q 1is arbitrary and therefore can be cancelled

~

from both sides of the equation), we obtain the following equations of

motion:
SRR A RS A o0
in which
m = fp T{ T, @V (3.8)
v
- frgnnne - [roie o9
v v
ES = le 33 dA (3.10)
A
v
ET = ,[31 ng}fr dv (3.12)
v
o - JrEn e o
s _

It is clear that Pg s Py » Pp and pp are equivalent nodal loads

due to surface loads, volume loads, temperature strains, and prestrains.
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3.2.2 Stress-Strain Relationships

Plane Stress

In the case of plane stress, by definitien we have [52]

= = = .1
T, T, % 0 (3.14)
a
yY
y UXX dy
c}'X}{
r
Xy
dx
X ~T—
Xy
o
vy

Fig., 3.1 Stresses at a Point in a Two Dimens:ional Problem

Employing Hooke's law, one determines strains in terms of stresses

in an isotropic material as follows:

1
€ex = F Tyx =V ny) (3.15)
e = L -vo) (3.16)
yy = E ‘yy XX :
o(1
ey = o (3.17)



where E and v are Young's modulus and Poisson's ratio.
Solving the above equations for stresses, one cobtains the stress-

strain matrix T, . Thus,

7

g = T [ '}-8
a 5 € (3.18)
where
1 Y 0
E .
T, = v 1 0 (3.19)
r\j 1 - yg
o o i
2

~

and o = {UXX - S N R E ={e ,e_,9 1

Plane Strain

In the case of plane strain, we assume that:

e = y_ =y, =0 (3.20)

For an isotropic material the strains in terms of the stresses are as

follows:

1
€ = E (Uﬁx TV g, Y JZZ) (3.21)
€ - L (lo. -vo._-va..) (3.22)
yY E “yy XX zz
c = 1 (c _~vo_ _=-wvag_) = O (3.23)
zz E ZZ XX ¥y

2(L + v
Yy = = Ty (3.24)

Solving the above equations for stresses, we obtain matrix T

>
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[defined by Eq. (3.18)] as

1-v 3 0
T = £ y 1-y 0 (3.25)
3 (T +v)(1 - 2v)
1-2y
0 0 B

Also, from Eq. (3.2%), the stress in the z-direction will be found as

o, =V (GXX + G&y) (3.26)

%.2.% Evaluation of Element Matrices

In this section, we formulate and derive the element matrices for
a h-node isoparametric quadrilateral element, This element is displayed

in Fig. 3.2.

Fig. 5.2 An Isoparametric Quadrilateral Element
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For this element, the same interpolation formulas define both the
geometric and displacement shape functions, as given by the following

expressions:

b
H
==

[(1-£)(mn)xy + (g) (Ton)xy + (Lhe) (Ten)ay + (1-£) (L4n)x, )

e
1l
I

[(1-5)(1n)yy + (e)(L=n)y, + (E) (Lim)y, + (1-£)(14n)y,, ]

(3.27)

and

=
Il
=

[(1-8)(1-n)ay + (1re) (T-n)ay + (146) (Temdag + (1-8)(1+)q ]

[
I
=

[(1-8) (1-1)q, + (1) (1-n)qy, + (1+&) (14n)qg + (1-8)(1+n)qg]

(3.28)

or in matrix form

where

£(6m) = (1-£)(1-1)/4
£,(8,m) = (L+e)(1-n)/4

(3.30)
£5(6,m) = (1+E) (1+n)/b

£,(6,m) = (1-8)(Len)/b
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Concisely,

Ll(é,n) = T;(6,m) ¢ (3.31)

Generic displacements are in terms of local natural coordinates,
whereas differentiations with respect to the global coordinates x
and y are required in the strain-displacement relationships. Thus,
we must use the chain rule for differentiation. In matrix form we

can write

o] [ a7 [ag] [ af |
SE Ot f 3% 3%
= = j (3.32)
of ox Qv of of
| o] B REE CJy
and
[af ] (ot a7 (e [ 3f ]
A% Ox ax ot At
= = g'l (3.33)
of 0f o1 of of
| OY_] | dy oy 4 Lon ] | N ]

The array J 1s called the Jacobian matrix, Terms in this ma-

~

trix can be evaluated by differentiating Egs. (3.27), as follows:

h
ox SE,
1
g = T Z =1
ok io1 OFf
i
3y of,
J = e— = “'—:L"y,
Y- EH ¢
b
' ox af,
le = g;‘ = E S;é'xi (Cont'd)

[
il
=t



3y 5fi
- 3
In matrix form,
J = D.C
where
— —'1
of, of, 5f5 of)
ok 513 Ok oé
D =
~ Of  3f,  dE, 3fy
| on an M an _|
-(1-7) (1-1)
1
Ty
-(1-¢) - (1+¢)
and
A |
X v
c - | 2
~ %z Y3
L ¥l Ty

L T e T
~ Qa9
~ ~ 17921 I

(14m)

(1+£)

oy

o

- 2] -

[31 1 ox

dn

(%.34)
(3.35)
- (147)
(%.36)
(1-¢)
(3.37)
dy
3t
(3.38)
x
ot



where

_ OXOY QX QY

"2 12 T OSE SN T oam ot

9] = 3y I

To determine all of the derivatives required for the strain-dis-

placement matrix, we apply Eq. (3.33) repeatedly, as follows:

» ] - ]
d% o)3
N i=1,2,%,k (3.39)
o5y A
8 Ay ] - an J
Altogether,
p = 1top (3.40)
NG ~ NL .
where

of Of Of Of

1 2 3 L
Ax ax A% Ox

EG - (E-MI)
afl afg a:a aflL

dy dy dy dy

Now, the strain-displacement matrix B(&,n) = T, Tl(g,n) can be derived

r~

- D0 =



in terms of elements of matrix D

as follows:

G
— a -
— 0
3% B
d f1 0 fg 0 f5 ¢
B = 0 -
~ dy
0 £ 0 f 0 £
3 3 = 1 2 2
L oy OX —
OE of of of
1, 2, =2 5 =
ax Ox ox 3%
of af of Sf
- 0 1 0 2 0 —2 0 —h
oY qy 3y 3y
afl afl af2 af2 af5 BfB afh ofy,
dy Ox dy Ox 3y ox oy ox
L —
[ '
DGll 0 DG12 0 DG15 0 DGlh O
- O Don1 0 Depo 0 DG23 0 Do),
L0601 Peir Peee D1z Pees Peis Dok Perk

Having derived the matrices T, , T

3

f) 0
) fh_
(3.42)

and B , we can also evaluate

~F ~

the element stiffness matrix, mass matrix, and equivalent nodal loads by
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numerical integratioms, as follows:

1 A1
m = hf ‘f T{(Eﬂ]) Tl(é;ﬂ) [JI dgdn (515)
~o —1 -1 "t ~ o~
1.1
K = h} j‘ B’(EJT]) T5 B(E)n) [J[ d¢dy (51{')4)
~ -1 -1 ~ ~ ~ ~
101
pg = h f f T7(e,n) w, (I dedn (3.45)
~ -1 1" -
1,1
py = b ! j T{(&,m) w, 1] dedq (3.L6)
11
pp = h f j B7(e,n) Iy e |3] dean (3.47)
~ _1 -1 i ~t ~
1 pl
= h r B’(g,m) T Ji ded .18
Py f141~(§n)JEPI~[ ¢ d (3.18)

In these equations, h 1is equal to the thickness of the element for
plane stress problems; and it is taken equal to unity for plane strain
problems.

Detailed formulations of the element stiffnesses and equivalent
nodal loads are given in Appendix A. 1t should be pointed out that
there are two ways of calculating the element mass matrix. The ép-
proach based on Eq. (3.43) results in a non~diagonal (consistent) mass
matrix. The second way of calculating the mass matrix is based upon

physical intuition. 1In this case the mass of the element is assumed

- o -



to be lumped at the nodes, resulting in a diagonal mass matrix; This
approach is more efficient because of the fact that the equations of
motion will be uncoupled in the accleration terms. Tn this study a
lumped mass approach has been used, and this type of mass matrix for a

guadrilateral element is derived in Appendix B.

3.% Nonlinear Analysis

In this section, equations of motion will be derived for the very
general large dispacement and large strain type of analysis. For com-
plete generality, use of a continuum approach and temsor notation is
essential for finite strain formulations. Thus, a continuum approach
with tensor notation along with matrix formulation has been employed
in this presentation. Two different approaches have been in common
use for formulating nonlinear problems., They are the Lagrangian and
the Fulerian formulations [3L4]. In the Lagrangian formulatiom, all
the variables are referred to the undeformed configuration. However,
in the Eulerian formulation, all the variables are referred to the
deformed configuration. When coordinates are introduced into the
equations, the initial coordinates for the undeformed configuration
are used in the Lagrangian formulation, while updated coordinates
for the deformed configuration are used in the Eulerian formulation.
Some applications of these formulations for nonlinear static and
dynamic problems are given in References 1, 36, and 63. But,
Zienkiewicz and Nayak [63] and\Powell and Mondkar [36] have preferred
the Lagrangian formulation over the Eulerian formulation. They have

pointed out the following advantages for the Lagrangian approach:
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1. The effects of large displacements are implicit in the formu-
lation, and no transformation of element matrices is needed in order to
take into account updating of the nodal coordinates due to the change
of geometry.

2. 1In the Lagrangian formulation, the increments of stress and

strain can be related simply by the equation
do = T, de (3.49)

so that stresses are evaluated by simple additions. However, In the
Eulerian formulation, where stresses are referred to in the deformed
configuration, this cannot be accomplished because the changes may
cccur due to pure rigid body rotation. In this case, introduction of
another measure of stress called Jaumann stress [6%] is necessary, and
stresses are obtained by transformation and addition.

3. For anisotropic material, the Lagrangian formulation is more
advantageous, This is due to the fact that anisotropy is referred to
the axes in the undeformed configuration.

In this section, a Lagrangian approach for nonlinear analysis will
be presented. In the Lagrangian formulation, Greem-Lagrangian strain
tensor and Piola-Kirchhoff stress tensors are used as measures of
strain and stress. These temsors will first be defined briefly; then
incremental equations of motion will be derived from the principle of

virtual displacements,
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3.%5.1 Kinematic Definitions

Before defining the Green-Lagrangian strain tensor and the Piola-
Kirchhoff stress tensors, we need to define three other tensors. These
are the deformation gradient, the spatial deformation gradient, and the

Green deformation tensor [30,3L].

Deformation Gradient

Suppose that a body has a particular configuration at the reference

time to and another configuration at time & ; and consider two neigh-

boring points By and P2 , as shown in Fig. %.3. Let the position of
the point P1 before and after deformation be located by the vectors
X = {xl > Xy s XB} and X - {Xl > X5 s Xﬁ} , respectively., The deforma-

~ ~

tion gradient is denoted by g and defined as follows:

dX = gdx (%.50)
where
df = fax, , &, , dX5}
dx = {dxl 5 dx2 ) dXB}
and
B B
axl axl axl
axl ax2 ax5
X 3% X
7 = 2 2 2 (3.51)
~ axl axg ox
SXB BXB X
Bx Bx aXV
i 1 2 5 ]




u(x+ dx,t)

~ ~

//:;t)
X
£)

1}

/ =t
@jéﬂ
X
aa® -
N
=0 (b) Body at Time t

Fig. 3.4 TForce Vectors for Definitions

of Piola-Kirchhoff Stress
Tensors



Equation (%.50) can be written in indicial-summation form as:

Hereafter, the summation part will be dropped and just the indicial
(short form) notation will be used. Thus, the deformation gradient

can be written in indicial form as

g, = —= (%.53)

It is noted that the deformation gradient g refers to the un~

~

deformed configuration.

Spatial Deformation Gradient

The spatial deformation gradient tensor is similar to the de-

formation gradient tensor, but with reference to the deformed configu-

1

ration. We denote it by g (the reason for this notation will be

~

clear later). It is defined as follows:

-1

where
EE 1
axl axg 8X5
aX aX a’X
-1
PR = = 2 (3.55)
~ axl éxg BX5
5x5 BXB BXB
Bxl axg 5X5
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Or in indicial form

axi
dx, = —= dX, .56
P T (3.56)
h|
and
dx,
P —
o e
h|
. . -1 . .
Now it can easily be shown that gy = 1 because a typical inner
product of a row of g and a column of ‘ynl vields

X, Ox OX, Ox OX, Ox,
i 1 + i 2 + i 5 8:?:]
axl axj &Xg BXj 6X5 an

where 6ij is the Kronecker delta (1 if i =3 ; 0 if i # j).

Green Deformation Tensor

The Green deformation tensor is denoted by E and refers to the

undeformed configuration, It gives the current squared leagth of the
vector at time t . In matrix notation we have

" 2
(ds ) = dx’ E dx (3.58)

~ ~ i~

In indicial notation this becomes
2

t
(ds ) = dxi Eij dxj {3.59)

The Creen deformation tensor E can be related to the deformation

~
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gradient ¥ as follows:

~o ~ ~ e ~ o ~ ~

Comparing this expression with Eq. (3.58), we see that

E = g ¥ (%.60)
Or in indicial form
X, X
P (5.61)
t Ox, Ox,
i ]

5.5.2 Green-lagrangian Strain Tensor

By definition, the Green-Lagrangian strain tensor gives the change
in the squared length of the original vector dx as follows [3L]:

In matrix notation:

t 2 0,2
(ds ) - (ds = 2 dx” e dx (3.62)
In indicial notation;:
" 2 o 2
(ds ) - (ds ) = 2 dxi eij dxj (3.63)

where dso is the length of the vector at time tO .

From the relations (3.59) and (3.63) and noting that
o 2
(dS) = dX, dX_ = dX. 6. dX, s
i i i
we find the following relatiomship between the Green-Lagrangian strain

tensor ¢ and the Green deformation tensor E :

-~ ~

2e,, = E ,L -8, (3.64)
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or in matrix notation

2e¢ = E-1 (3.65)

After substituting Eij from Eq. (%.61) into Eq. (3.6k4), we obtain
N R i}
.. = =|——F%-5,, (5.66)
+ 2 \ox, +
1773
We can express the Green-Lagrangian strain temsor in terms of dis-~

placements by writing out €51 and using the following relation:

¥ = X+ u (3.67)
or
Xi = Xy otu (3.68)

where u is the vector of displacements. The result is as follows:

~

1 /du, du , 3 du

€., = —'( =, —1 Tk k) (5.69)
+J > \dx. Ox. Ox. ox.
j i i j

%.%.% Piola-Kirchhoff Stress Tensors

In the Lagrangian formulation, where strains are referred to the
original position (x) rather than the current position (X) , we also
need to define the ;tresses with respect to the originalwconfiguration.
We now make two different definitions of stresses that have been used
in the Lagrangian formulation. These are the so-called first and
second Piola-Kirchhoff stress tensors {10,34]. They can be defined in

terms of the force vectors illustrated in Fig. 3.L, The force vector

t
dP~ acts on a point of the surface at time t with coordinates X

~ ~
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. t .
whose unit outward normal is n . Furthermore, let the corresponding

~

. o . .
unit outward normal at the reference time be A~ . The first Piola-

~

Kirchhoff stress tensor (sometimes called the Lagrangian stress tensor)

t
gives the actual force dP at time t on the deformed area dAt .

~

o
However, it is computed on the basis of the undeformed area dA~ as

follows:

art - (’60 . T)ciAO = (?F . T)dAt (%.70)

~ ~ ~

where + and T are Cauchy and first Piola-Kirchhoff stresses, re-

o~ ~

spectively, It should be pointed out that the Cauchy stress T

~

(referring to the deformed configuration) is the true stress. On the
other hand, the Piola-Kirchhoff stress tensors are only pseudo-stress
tensors.

For the second Piola-Kirchhoff stress tensor, we first define a
pseudo-force dB° that is related to the actual force dp" by the

~ -~

same transformation rule as that by which the vector dx for the

o~

original coordinates x is related to the vector dX for the deformed

coordinates X . Thus,
~t -1 ..t
dp” = g = dp (3.71)
or in indicial form
ox
~t i £
dp,; = —= dp, (3.72)
3X,

Now, the second Piola-Kirchhoff stress tensor ¢ appears within

~
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the following expression:

0

et o (% (5.75)

ST T L (R )dA

It can be proven that the following relations hold between the

Piola-Kirchhoff and Cauchy stress temsors [10,34]:

o
! -1,, -1,,
o= 597 () =17 (z.74)
~ p -~ ~ ~ ot
0° -1
T =~ g (3.75)
i~ p ~F ~
Also, in indicial form
(o]
p 3x, Ox,
i_7J
o, = — —=—d o (3.76)
ij pt BXm aXn mn
0° dx
R |
S 5.71)

t .
where po and 0 are mass densities in the undeformed and deformed

configurations.

Also, the expression for the Cauchy stress in terms of the second

Piola-Kirchhoff stress tensor is as follows;

t
p rd
T = —'530‘9 (3.78)
“~ p ~oN e
or in indicial form
T "iﬁﬁ% (3.719)
1] QOBX ax mn
m n
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It should be noted that the first Piola-Kirchhoff stress tensor is
simpler. However, from Eq. (3.77) it is seen that, in general, it is a
nonsymmetric matrix and, consequently, is cumbersome to use in conjunc-
tion with a symmetric strain tensor. On the other hand, we see from
Eq. (%.76) that the second Piola-Kirchhoff stress tensor is symmetric
whenever the Cauchy stress tensor is symmetric. As a sresult, the
second Piola-Kirchhoff stress tensor is usually preferred in finite
strain formulations.

Finally, one point should be added. While the Piola-Kirchhoff
stress tensors are only pscudo-stresses when large strains are used,
they become real stresses whenever strains are small. 1In such a case,
the partial derivatives of the displacements with respect to the origi-

nal coordinates are all small compared to unity

du,

— | =« 1

Ox
J

and the deformation gradient g approaches the identity matrix T .
Consequently, the Piola—Kirchh:ff stress tensors approach the Cau:hy
stress tensor., Furthermore, the product of the partial derivatives
of the displacements will be negligible in comparison to the linear

terms in Eq. (3.69), and the Green-Lagrangian strain tensor reduces

to the well-known linear strain tensor.

3.3.4 TFinite Element Formulation

In this section we first write the incremental equations of

motion by using the principle of virtual displacements and then
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discretize them by the method of finite elements. The principle of
virtual displacements in terms of the second Piola-Kirchhoff stress
tensor and the Green~Lagrangian strain tensor can be writtem as

follows [3L7:

ij ij ext

t E+AE LEAL
.ir gUHAE g BHAE gy gpttAt J/” o° uk’L‘A 8(u, ) av° (3.80)
v v° |

In this relation, which leads to dynamic equilibrium equations for the

: t
body at time t+At , the symbols UE;£¢ and ei;A¢ represent the second

Piola=-Kirchhoff stress and Green-Lagrangian strain temsors at time t+ALt .

The term SWZ;€£ denotes the virtual work of external loads and V° is
: At .
the original volume of the body., The symbol w represents the dis-

placement at time t+At , and Auk is the incremental displacement,.

That is,
poy = w B (5.81)

We wish to obtain the equations of moticn between two neighboring
positions at times t and t+At . Therefore, the virtual displacements
in Eq. (3.80) are taken to be the variations of incremental displacements
between time t and t+At £for a compatible state of deformation.

We exploit the following decomposition of stresses and strains

AL t )

oy = gyt Aﬂij (5.@2)
t+AL t

€ = eyt Aeij (3.83)

where superscripts refer to time and A indicates the increments of

stress or strain between time t and t+AL

..56..



From Eq. (%3.8%) we can write virtual strains as

t+AL
Seij = 5(ﬁ£ij) (3.84)
Also, Eq. (3.69) can be written as
t+AL 1{ t+At  ErAE AL tﬁAt)
€, = —lu, T a4 : - .
ij 2 ( i,] i,i ,1 | (5.85)

where commas indicate spatial derivatives with respect to the initial
-configuration, Furthermore, we can write

E+AL
u,
i

= uz + Aui (3.86)

After substituting Eq. (3.86) into Eq. (3.85) and comparing the re-
sults with Eq. (3.83%), we find the following relations for the incre-

mental strains;:

Degy = ey ¥ by (3.87)
where
ey = % (Aui’j s oug ui)i S uﬁjj Aukji) (3.88)
and
iy = % A g Ay g (5.89)

We assume that the incremental second Picola-Kirchhoff stress
tensor is linearly related to the incremental Green-Lagrangian

strain tensor. Therefore,

o, = C.. he (3.90)

ij ijmn T Tmn
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where Cijmn is the constitutive tensor. After substituting Eqgs.

(3.82), (%.84) and (3.90) into Eq. (3.80), we obtain

P
t o t1At o LA ( ) o
d = W - 5 lAw ) av
-/; (Uij + Cij ata )8 (Aeij) \' ext JD P uk u.k

v \"

(3.91)

or

C., Ae S(Ae. ) av® + ot B(Ae,. av® o atAt
ijmm mn ij ij ij ext
o] N O
A
o t+At )
- fp L 5(Auk) dv (3.92)

After substituting Eq. (3.87) into Eq. (3.92), we finally obtain the
following variational form of the equation of motion in the La~

grangian description:

c.. e se., W’ +f ¢, e s &+ ¢, ¢ se, aw’
40 ijm mn o ij o ijmm Tmn TRij o ijmm Smn TTij
v

Vv

o .t o t+AE
Cljmn Q gij v + f Oij agij dv B 6Wext
o

L )
do_ o ,t+ t do a7
./; oy \Y ﬁp e 8(Auk) v {3.93)

v

Now we can discretize this variational equation by finite ele~
ments., WNodal and generic displacements are related to each other

through shape function Tl

u o= TI_ q (3.94)



we assume the same shape function to approximate the increments of

nodal and generic displacements between configurations at times t

and t4AL

ziu = ElAj‘ (%.95)
where

mro= TR LS (3.96)
and

ANq _ Et+At - Et (3.97)

By using the above relations, we can transform Eq. (3.93) into the

following discretized form for a single finite element:

t+AL t LA

(KL + Ky o+ Ky o+ E5 + KG) NAg = P - f -mgqg (3.98)

o~ o ~

t
where the arrays KL » K K2 s E5 s KG , £ and m are derived by
equating the virtual work of the continuum to the virtual work of the

equivalent discretized finite element, from the following expressions:

S(Aj)' EL ANq - ‘/; C:T.jn'ln emn ij dvD (5.99)
v

a(ANq )’ Ky &g - j.o Gy ®mm 21 5 av® (3.100)
v

6(ziq)' K, 84 = fo O,y Cum 0855 OV (5.101)
v

a) 5 00 = [ g tan Pty (5.102)
v
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and
5(aq) K. Aq = ot by, . dv° (3.10%)
(Nq) ¢ 21 = J Ui “bij -
6(Aq)' £ - f oo, be, . av° (3.104)
o]

o)t m g o [0 e )an® (505
O

t+AL
p

Also, is the vector of external nodal forces at time t4At

1f we a:sume that loads are independent of the deformation of the
body, we can find the equivalent nodal loads due to surface and volume
loads by the same formulas we found for the linear case in Eqs. (3.10)
and (%.11) of Section %.2.1. 1In this study, only these so-called con-
servative loads have been considered. One case of nonconservative
loading has been formulated in Reference 1,

From Eq. (3.88), it is seen that € is a linear function of
displacements at time t and the incremental displacements between
times t and t+At . However, Eq. (3.89) shows that gij is a
quadratic funetion of the incremental displacements. As a result,
the stiffness matrix KL igs a function of displacements at time t
but it is not a functi;n of the incremental displacements. In con-
trast, the stiffness matrices K

~

the incremental displacements, and the stiffness matrix K, is a

3

quadratic function of the incremental displacements. In other words,

1 and K, are linear functions of
L
~

the terms of the stiffness matrices Kl and K2 are one order of

o~ ~

magnitude and the terms of matrix K, are two orders of magnitude

~

smaller than the terms of stiffness matrix KL and consequently can

~

be neglected in most practical cases. In this case, Eq. (3.98) will

_l{_o-



reduce to the following equation:

(KL N KG) Aq = pt+ﬁ¢ _ ft - qtﬁﬂt (3.106)

~ ~

where K.G is the so-called geometric stiffness matrix. In the following

~

t
section, this matrix, as well as KL , £ and m , will be evaluated.

~ ~ ~

3.3.5 Evaluation of Element Matrices

Stiffness Matrix KL

~

First, we note that the linear incremental strain matrix

e = gell > Cop s 2e12£ is related to the increment of the generic dis-

placements by a transformation matrix Th as follows:

~

e = T, Au (%.107)

~ ~ o~

Substituting Au from Eq. (3.95) into Eq. (3.107), we find

~

SCnha - me 3:108)
Thus,
Bo= T, T, (3.109)

The matrix of shape functions TI is given in Section 3.2.3. From Eqgs.

r~

(3.88) and (3.107) we obtain the matrix Th for plane problems as follows:

~

B t ) t 3 7]
L yo5g Y21 Bx
t 3 t )
T), = Yo Sy 1+ Yoo Sy (3.110)
t Q 3 0 t o)
1,2 5 (1+u1,1)§§ (1+u2,2)82+“2,1 E
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Now the matrix B = can be obtained from Eq. (3.109)., Noting that

~

necessary derivatives are available from D, [see Eq. (%3.41)], we obtain

~

91 De11 % Pe11 9 De1o % Do1p

L 93 Doy % Dgo1 95 Peon O Deon
L?5DG11*‘91D021 OuDg11 79001 50610+ 9 Pgan O Dg1n 9 Peop
0. D 6. D 0. D 0. D B

1 7613 2 "Gl3 1 76ly 2 TGlh

95 Dgoz Oy Deos 95 Dgo Oy Dgoy

2]

920613+ 910005 Oy Do1z+ 9005 F5 001 v 01 D0y O Pouy 9o Uapy,

(3.111)

where

Op =1+ “;,1 =14 q; Dy + q; Pein ¥ q; De1s * q; Pa1n
O, = u;,l - q; Dot * 4 Pgrp * % Pe1s * % Deq)

65 = “5}2 - 4 Pap1 * q; Dop + q; Doz + q% Deoyy

O =L+ “2,2 =1 q; Pooy * qi Pozo * g ooz ag Doy, -

Introducing Eq. (3.108) into Eq. (3.99) and manipulating the results,

we obtain the stiffness matrix KL as

~

EL ~ ./; EL 35 EL av (3.112)
v
where T_ is the constitutive matrix (T, = C,, )} . For an isopara-
~ 0 ijm

metric quadrilateral element, K, ~can be written in terms of the natural

~
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coordinates ¢ and +n as follows:

11
K, = h ff B£ T By 13| dedn (3.113%)
~ _1 _l ~ [ard i~ ~t

Geometric Stiffness Matrix K

As a preliminary step in evaluating the geometric stiffness matrix
for plane stress (or plane strain) problem, we decompose the incremental

strains (Ac) into linear (e) and nonlinear (¢) terms

~ ~

Ne = e+t (3.114)
u - -1 B
or Aell—l et gll
A = en b+ ton (3.115)
. 125 “*12 | 2‘-ﬁe_}
L. b -

Terms of matrices e and ¢ can be found from Eqs. (3.88) and (3.89),

The geometric stiffness matrix is derived from the following virtual
work equation:
/

t 8]
B A =
(:1) K. g /; %ij Scij dv (3.103) repeated

~ ~

It can be shown that

t 1ot | 2 ( 2] 1 t[
o5 845 =2 ‘11 (Aul,l) * AUE,I) } T2 012\Au1,1Au1,2 +A“2,1A“2,2]
L O't [Au FANS] + Au Au x o‘t (Au 2 A e
2 21 71,172 2,17 o] T2 Top (P12 T ( "‘2,2)
R P (3.116)
2 7675 67 )
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where

™t t
0‘11 0'12 0 0
U;l 0';2 0 0
T5 = £ € (3'117)
~ 0 0] 011 612
t £
0 ¢ 021 0'22
L o
-y -
= 0 0 0
0 -éé o] ¢
Ty = y (3.118)
~ 0 0 E%Z o
o] 0] 0 -a%-
_—Aml
Aul
T7 = (3.119)
AMQ

We can relate T'T to incremental nodal displacements by a transforma-

o~

tion matrix T8

Y

T,.{ = Tg L9 (3.120)

-l .



where

£, 0 £, 0 f3 0 £y, 0

£, 0 £, 0 f5 0 £, 0
Ty = (3.121)
~ 0 £ 0 £, 0 f5 0 £),

C £ 0 £ 0 f5 0 £,

The functions f; , f, , f3 and f, are defined in Eqs. (3.30).
After substituting Eq. (3.120) into Eq. (3.116), we find

1 ‘ r'd rd
iy 843 ’2'(%‘}) "8 675 Tg ES(AC‘) (5.122)

~

And taking the variation of this expression, we obtain

t T e e
ohy oty - o) T rET 1T g 5-129)

~

Finally, by comparing Eq. (3.103) with Eq. (3.123), we see that the
formula for the geometric stiffness matrix is
’, ’ 8]
K, = [ 38 36 35 36 38 dv (3.124)
v
And for an isoparametric quadrilateral element in terms of local co-

ordinates, we have

E(;:hf

-1

I 1
f Eé Eé 35 EG 38 ’i{ dg dn (3.125)
-1

Terms in the matrix EJ’ = Té :Jié 35 36 38 have been derived

~

explicitly in terms of stresses and the terms of matrix D. - They

-~
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are given in Table %.1. It is interesting to note that only ten terms
of this matrix are nonzero and unique. The use of such explicit formulas

results in efficient computer programs,

Nodal Force Vector ft

~

If we let
t

11

t t

T
912

and use Eq. (3.108) in Eq. (3.104), we obtain
A f B'gt av° (3.127)

For an isoparametric quadrilateral element in terms of local coordinates

£ - hff B/ ot |3] dE dy (3.128)

Element Mass Matrix m

~

we have

From the integral expression of Eq. (3.105) and the relation

Ht+At _ T :.D.t+At
= Nl ~
we obtain
o .,.., 0
m = f po T T Qv (3.129)
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W
where
Wy = Dgll
Yo = Peny
¥z = D1
i = Pe1n
Yy = DilQ
s = a1
W = Do
Vg = D§13
Yg = Doy
107 Dg 1h

TABLE 3.1 Terms in Matrix W

~

_wl 0] s, 0 w5 0
vy 0 Wy, G w5
W5 0 Vg 0
w5 o W
) symmetric g 0
v
013 + PDgyq Dgay Tpp * D221 o2
Y12 o1y + (Dg11 Pgop * Pezn Parz )“Ez
Pe13 o1+ (Pgr Doz + Popy DG13) o1
a1y 051 + (P11 Pean * Doy Deo1 ) “Ez
511 + 2 Dgpp Degp oo + Dgea %
Pe13 Uil + (DG12 Doz + Doz Dgoo )Uﬁe
Do1r 11 * ( Dgiz Peat *+ Dot Doz )0;2
£ t 2t
“11 * 2 Pg1z Beps T12 + Doz Top
De1n Uil * (DG15 Deat * De1y Deps )Uig
3
911+ 2 Py Peal “’ie * Dgzu G;e

VL

G2l
G2l

Ge1

G222

Ga2

623

G22

Dios

Geh

DG25

Gok

Goh

oo

22

22



In terms of local coordinates for an isoparametric element we have

1

m = h ff o’ Ty T, [3] dg dn (3.1%0)
~ )

However, as was mentioned in Section %.2.3, there is another way
of calculating the element mass matrix (lumped mass method) resulting

in a diagonal mass matrix (see Appendix B).

%.3.6 Constitutive Equations of Plasticity

In Sections %.3.4 and %.%.5 finite element equations of motion
were derived for very general large displacement and large strain
cases. No restriction was imposed on the constitutive matrix 35 ;
and any material law can be used, as long as it relates the increment
of second Picla-Kirchhoff stress to the increment of Green-Lagrangian
strain, However, in this section we restrict ourselves to the case of
small strain plasticity. The question of proper constitutive equations
for large strain plasticity has not been quite settled and is being
actively investigated by many researchers. A great deal of additicnal
research is needed to formulate the constitutive law for the problem
of large strain flow [1,56].

In plasticity theory, it is usually assumed that the plastic de-
formations are independent of time and that the material is inviscid
(athermal plasticity). Time-dependent plastic deformations are studied
in the theory of creep, the theory of viscoplasticity, and the new
science of rheology. In this section we first discuss briefly the
basic principles of the theory of plasticity, after which Yamada's

plastic stress-strain matrix is presented.
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Criteria for Yielding

A yield criterion is a postulate which characterizes the limit
of elasticity under any possible combination of stresses. For an iso-
tropic material the yield condition must be a symmetric function of

the principal stresses

©(O-].._j) = ®(O-1) 6270—5) = K (5'151>

where 9 1 9 and 05 are the three principal normal stresses and
K is a constant connected with the yield limit of the material. Equa-

tion (3.131) can also be written as a function of the stress invariants

I., I and T as follows:

1 2 3
& = 01, 1, 15) - (3.132)
where
Il = Gl + Gé + 05
I, = - (6162 * 030 0265)
I5 = 016205

Furthermore, experiments have shown that the hydrostatic (or mean)
pressure has negligible influence on yielding. Therefore, the yield

function can be written as

¢ = o(1,, L) = « (3.133)

Several yield criteria have been proposed, but two of them have
shown good agreements with experiments, They are the Tresca and von
Mises yield criteria [2%,35]. 1In the Tresca yield condition, yielding
occurs whenever the maximum shear stress reaches the maximum shear

stress in the uniaxial tension test. If we assume o, >0, >0

12% 295 5



the Tresca yield condition can be written in the form

p = +—2 -k = -0 (3.13k)

where Ty is the yield stress im the uniaxial test., The Tresca yield
function in the stress space is a prism whose trace on the so-called
-plane {the plane passing through the origin with the equation

o; + 0y + 0 =0 ) is a right hexagon as shown in Fig. 3.5.

2 5

The von Mises criterion is postulated in terms of the second in-

variant of stresses
2
$ = I, = k = 20 (3.135)

or
2 2
(Ui - Gé) + <Oé - 03) + (o, - oy

This function is a cylinder in the stress space, and its projection on
the m-plane is a circle that circumscribes the Tresca hexagon. The
von Mises yield criterion generally fits the experimental data rather
better than the Tresca yield condition. 1In addition, von Mises' cri-
terion is mathematically easier to use, and no information is needed
concerning the magnitude of principla stresses, However, it should
be noted that the von Mises and Tresca yield criteria are not consid-
erably different. The discrepancy can be further decreased if one
takes the circle which lies midway between the circumscribed and

inscribed circles to the Tresca hexagon (see Fig. 3.5).
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von Mises Circle Tresca Hexagon

Fig. 3.5 Representation of yield criteria on m-plane

al

al

P

Fig. 3.6 Effective stress-effective plastic strain curve
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Strain Hardening, Loading and Unloading

The yield conditions discussed above indicate the hypothetical
surface at which the material first starts yielding. However, many
materials (especially metals) show strain hardening, which means that
plastic deformation increases the elastic limit of the material (for
the uniaxial test, this means a positive slope in the plastic range
of the stress-strain curve). Consequently, the yield surface changes
for continued straining beyond the initial yield. The strain hardening
of the material can be taken into account if one generalizes Egs. (3.131),
(3.134) and (%.135) by changing the constant k to be a strain harden-
ing parameter that varies as yielding occurs. Thus, from Eq. (3.131),
continued plastic loading and unloading from a plastic state to an

elastic state as well as neutral loading can be stipulated as follows:

For plastic loading > = kK , db = §§9~ dai. >0
ij
For unloading » = Kk , dd = S%g- dUi. <0
17 J
. . o
For neutral loading ¢ = Kk , do = py dUi, =0
ij J

The rule of isotropic hardening constitutes the simplest behavior
of this type. Under this rule it is implied that as the yield surface
expands, it preserves its initial shape without any side tramslations,
On the 7r-plane, the yield surfaces for the Tresca and von Mises yield
conditions can be visualized as a series of concentric regular hexagons
and circles. This isotropic hardening rule is mathematically easy to

handle, but it ignores the Bauschinger effect. This effect refers to
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a metal that is first strained under uniform tension and is then re-~
loaded in compression. It is observed that the compression yielding
occurs at a significantly reduced stress. In order to take into ac-
count the Bauschinger effect, several other hardening rules have been
proposed [18,23,35] which are more complicated, and their use in spe-
cific problems involves mathematical difficulties. In a recent inves-
tigation [50], several hardening rules including the isotropic hardening
rule and the kinematic hardening rule (in which the Bauschinger effect
is accounted for) were compared with experimental results. It was found
that among all hardening rules considered, the isotropic hardening was

in the best agreement with the experimental results.

Flow Theory of Plasticity

In the deformation theory of plasticity, equations of plastic de-
formations are constructed in the form of relations between finite stress
and strain. In contrast, in the flow theory of plasticity, increments
of stress and strain are related to each other. Equations of the de-
formation theory of plasticity are simpler to use, but they suffer from
certain basic deficiencies. Use of the deformation theory in the case
of nonproportional loading can lead to unsatisfactory results. Conse-
gquently, flow theory has been generally favored in solving plasticity
problems. In the flow theory of plasticity for isotropic material, the
total strain increment (deij) is decomposed into an elastic strain
increment (deij) and a plastic strain increment (deP )

1]

de = de? + de?
i i

(3.136)

| gald
L

3 i

The elastic component of the total strain increment is related to the
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increment of stress by Hooke's law

e
- .1
dogs = Sy Y% (3.137)

where C,. , is the elastic stress-strain temnsor. Equation (3.137) can
1]

be written in a matrix form as follows:

do = 33 ae® “(3.138)

where do and dee are the vectors of incremental stress and elastic

~ ~

strain. Matrix 33 for plane stress and plane strain cases are given
in Section 3.2.2.

In the flow theory, it is also assumed that the plastic strain

increment is proportional to the deviatoric stress. Thus,

P _ ’
deyy = ogy @ (3.129)

where d:» is some scalar factor of proporticnality. In this expression

o*{j is the deviatoric stress, defined as

of, = 0O,, -0 D (3.140)

in which o = is the mean pressure. Equation (3.1%8), attributed

s

3 i

to Prandtl and Reuss, is known as the Prandtl-Reuss equation [18].
Finally, it is assumed that in the plastic range of the material

the density (and consequently the volume) does not change. Therefore,

the material can be assumed to be incompressible,

Yamada's Incremental Plastic Stress-Strain Matrix

By using Eq. (3.136) and linear stress-strain relationships, we

can separate the deviatoric and the volumetric strain increments. Then
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the Prandtl-Reuss equatiocn, including the von Mises yield condition,

can be written as

do?,
de?, = ol d+ —1L (3.141)
H H ale
1 - 2v
deii = ——— dUii (3.1k2)
F
’ ’ _ _2_—'2
93 %13 T 3¢ (3.143)

where E 1is Young's modulus, G is the shear modulus and v 1is
Poisson's ratio. A prime indicates deviatoric components of stress
or strain. The scalar multiplier dA is given by the following re-
lation [18]

% do

= - - (%.14k)
2 oH

dr =

IR
atf &

where H = do/def , and o and de® are the equivalent (or effective)

stress and the plastic strain increment. These terms are defined as

g = g'gij U;j (3.145)
deP = J%— de?j dezj (3.146)

Note that H 1is the slope of the effective stress-effective plastic
strain curve, as indicated in Fig. 3.6,

By using Eqs. (%.141), (3.1L4%) and (3.144) and after certain ma-
nipulations, one can obtain the following relationlbetween incremental

stress and strain:
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vV o, de
do, , 6..d€..'(7:, (

[}
no
[}
[
®
4

ij ij 1 -2y 1] 11 1]

This equation can be represented in matrix form as

do = DP de (%.148)

~ ~ ~

where do and dc¢ are the vectors of incremental stress and strain.

~ ~

The explicit formulation of this plastic stress-strain matrix DP  was
first introduced by Yamada, et al, [59,60].

In summary, Yamada's explicit formulaticn of the plastic stress~
strain matrix is based on the Prandtl-Reuss incremental equations of
plasticity with their associated differential form of the von Mises
yield criterion. In this formulation, elastic compressibility as well
as isotropic hardening of the material are taken into account, but the
Bauschinger effect is ignored. Yamada's formulation of the plastic
stress-strain matrix, speclalized for plane stress and plane strain
conditions (see Table 3.2) has been used in the present investigation.
It should be noted that the plastic stress-strain matrices given in
Table 3.2 are defined by Eq. (3.148) in which the vectors do and de

~ ~

for plane problems are specified as

da de
X XX
do = do and de = de
~ yy ~ vy
do dy
Xy zy

Implementation of these concepts into computer programs will be dis-

cussed in the following chapter.



TABLE %.2

Plastic Stress=-Strain Matrix for Plane Stress

and Plane Strain Conditions

A. Plane Stress

gt + 2or
yy 1
E 2
pP = — -g’ 067 + P2y D g’ + o0
- T XX VY 1 XX 1
5
o’ +vy o’ o’ +vy o’
XX vy vy XX
- ‘ch B O-X.
_ 1+ Y Y 7
2H - oi
where, Pl = — g+ 2L
9E L+v
T, = G’2+2v g’ o +0’2
2 XX XX VY vy
P o= T 4 2(1-v9)T
3 o 1
B. Plane Strain
2
— l-v O
1-2v Fh
ld ’, I2
E Vv o’ o 1 -v o
0P - _ XX VY LYY
~ T4y 1-2v T, 1-2v T
o’ o o’ o
Lﬁ XX XY _ _YY XY
Ty y
2 =2 H
n = = +
where , L 56 (1 5G)

Sym.

Sym.

— =]
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CHAPTER 4

ALGORITHMS FOR DYNAMIC ANALYSIS

4.1 Linear Analysis

4,1.,1 Introduction

In Section %.2 of Chapter 3, equations of motion were derived
for one finite element. After assembling the elements, we can write
the undamped linear eguations of motion for the whole system as

MD + SD = A (4.1)

~ o~ ~ o~

where M and § are the mass and stiffness matrices of the assembled

~ ~
»

structure. D , D and A are the vectors of nodal displacements,
nodal accele:ati;ns and ;odal actions, respectively. In order to
obtain the respomnse of the structure, one must solve the set of
linear second-order differential equations represented by Eq. (L.1).

In the following sections, four different algorithms are presented

for solving these equations.

.1,2 Direct Linear Extrapolation with Trapezoidal Rule

Two versions of the direct linear extrapolation technique with
the trapezoidal rule have been implemented for linear analysis.
They consist of solutions for total displacements and for incre-
mental displacements. That for total displacements calculated with

uniform time steps At 1is developed as follows (subscripts indicate
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time stations):

The approximation formula (trapezoidal rule) for velocities is

i1t (5i~1 + ﬁi) At /2 (4.2)

-~

)
li
! e

and that for displacements is

Ei = Ei-l + (Ei-l + Ei) nefo (L.3)

Substitution of Eq. (4.2) into Eq. (4.3) vields

. e 2
D = Ei-l + Dy _jAt +-(Di_1 + Di)(ét) /h (h.4)

~ ~ ~ ~

The linear equations of motion [see Eq. (4.1)] can be written for the
i-th time station as

MB, + 8D, = A, (4.5)

~ o~ ~ o~

Solve for ﬁi in Eq. (4.4) as follows:

i i-1

~ ~ ~

b, = 1.[[1), - b, - B, A - i)'i_l(m:)g/u] /(m.)2 (1.6)

D, = 2 [Di - D, - ﬁi_lﬁm/é} /(At) . 7)

~ ~ ~

Substitute Eq. (4.6) into Eq. (14.5) and arrange terms into the form

* *
Sho- )
where
Y R A P (4.9)



and

* . .
Ay = A+l [Di-l R Ei_l(ﬁt)g/u} /(£¢)2 (k.10)

~ ~ ~ |~ ~

The symbol S% represents the effective stiffness matrix, and A: is
the effectivz nodal load vector. )

The set of linear algebraic equations (4.8) must be solved
simultaneously in order to obtain the displacements Di . In this
work, Choleskey's decomposition method [54] has been employed. For
linear analysis the stiffness matrix is constant with time, and only
one decomposition of the effective stiffness matrix is needed at the
outset of calculations. Thus, we have

s* - v (k.11)

~ ~

where U dis an upper triangular matrix.
The following recurrence expressions are used in each time step

for direct linear extrapolation by the trapezoidal rule with solution

for total displacements:

2 . .
Si“l = k Ei_l/(ac) + Eidl/ﬁt + Ei~1/” (h.12a)
il = ﬂl + f Si-l (4.12b)
, * *
U'D; = A; (forward solution) (h.l2c)
*
ubD, = D (backward solution) (h.l2d)
s 2
Ei = - Q4+ b Di/(At) [from Eq. (L4.6)] (h.1ze)
Ei = ?(Bi - 21_1)/A¢ - Ei-l [from Eq. (4.7)] (k.12f)
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In a similar manner, we can develop expressions for the solution
The equations of motion in incremental

of incremental displacements,

form are
M 4D, + i %?i = éfi (4.1%)
From Eq. (4.6) we obtain the incremental accelerations as
.+ 2 g *
AD, = b ZiDi/(/\t) - Q(Ei_l + 231—1//\‘:) (4.14)
Also, the incremental velocities are obtained from Eq. (L.7) as
D = i - ) = L - ) .
£Dy i B 5 1 EﬁDi/‘A 2Pio1 (k.15)
Substituting Eq. (L4.1h4) into Eq. (4.1%), we find
* *
S AD, = DA, (4.16)
where
*
s¥ - s 4 l/(at)” (5.17)
and
* - -
Phy = A 2%(21_1 + egi_l/m:) (1.18)

In order to solve Eq. (L4.16) for the incremental displacements, the
*
S will be decomposed as indicated by

~

effective stiffness matrix

Eq. (L.11).
The following recurrence expressions are used in each time step

for direct linear extrapolation by the trapezoidal rule with solution
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for incremental displacements:

_ s L] )”
Si-l = 2 (Ei'l + EBi_l/At) (h.19a)
N MQ (4.19b)
* *
U’ ADi = AAi (forward solution) {L.19c)
U AD, = AD: {backward solution) (4.19d)
Aﬁi = =Q_q + L ADi/(A£)2 [from Eq. (h.1L)] (k.19e)

i

; [from Eq. (L.15)1 (k.19f)

D, /at - 2D,
2By = @, /o - by
It should be pointed out that if the mass matrix is diagomnal,
the matrix-vector multiplications in Eqs. (L.12b) and (4.19b) simplify
to mere scaling operations. Thus, solving for displacements (either

total or incremental) is more efficient than the alternative possi-

bilities of solving for velocities or acceleratioms.

I4.1.% Central Difference Predictor

The second central difference of displacements with respect to

time for a multi-degree-of~freedom system can be written as

~ ~

;D:i-l = (Di-2 meDy gt B:L)/(At)2 (L.20)

Solving this expression for displacements at time ti , one obtains

. 2
Dy = by, w2 Dy B (k.21)
From Eq. (4.5) we have
5. = Mt -s0D) (4.22)



By repetitive use of Egs. {4.21) and (4.22) in each time step, one will
obtain the response of the structure. However, the central difference
predictor [Eq. (4.21)] is not a self-starting formula and cannot be

used for the first time step. In order to start the procedure, we use

a truncated Taylor series for the first time step, That is,

1 2

~ ~

. l .. 2
D, = EO + DAL + 3 BO(At) (4.2%3)

4.,1.,4% Two-Cycle Iteration with Trapezoidal Rule

Using the trapezoidal rule for velocities and displacements
[Egs. (4.2) and (4.3)], we can develop an iterative algorithm in a
predictor-corrector form. In the prediction phase, we use Euler's
formula as a predictor for the velocities at the end of the first

time step, as follows:

(131)1 = D+ D at (h.23a)

where ﬁo and ﬁo are the initial velocities and accelerations,
respethvely. Euler's extrapolation formula could also be used to
start the iterationm (as a predictor) in each subsequent time step.
However, to improve the accuracy of the results, we will use the
following formula (as a predictor for the velocities) to start the
iteration after the first time step:

(Di) - By, weD, o (1> 2) (k.23b)

~

It can be shown that this formula has less local truncation error
than Euler's formula [5%]. Based on the predicted values of velo-

cities, the displacements are estimated from the trapezoidal rule.
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For the correction step, the trapezoidal rule for the velocities
and displacements can be written as the following recurrence expres-

sions for the j-th iteration of the i-th time step

(Ei) - 31_1 *+ (El) a2 (1>1) (L.2ha)
3 j-1
(0) = B v (By) e o
1 j
where
Ui - 51-1 + ﬁi-l ot/2 (4.2he)
and
Byt Dig + D5 ot f2 (h.2hd)

In addition, Eq. (4.22) can be written for the j-th iteration of

the di-th time step as

(b’i ) = iff A -E(Bi) (h.2ke)

This iterative algorithm can be used repeatedly until the dis-
placements are calculated with the desired accuracy. However, in
order to make this procedure more efficient, the number of itera-
tions should be limited. In this study, the number of iterations
is restricted to only two. In other words, a PECE algorithm {predict-
evaluate-correct-evaluate) has been used. It has been shown {317 that
if one uses the Ruler predictor and the trapezoidal rule corrector, the

characteristic equation of the PEC algorithm (predict-evaluate-correct)
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has one parasitic root, whereas the PECE algorithm has none. Conse-
quently, the stability of the PECE algorithm is better than that of the
PEC algorithm. Therefore, we use the PECE algorithm in this study, even

though the extra evaluation is rather time consuming.

4.1.5 Normal Mode Method

The normal mode method of dynamic analysis is probably the most
widely used procedure for solving linear problems. One advantage of
the normal mode method is the fact that natural frequencies and mode
shapes of the structure are found as well as displacements and stresses.
This additional information about the characteristic behavior of the
structure may also be of value to the analyst. However, this method
requires solving an algebraic eigenvalue problem for free vibratiouns
of the structure., FEven though considerable progress has been made in
developing efficient algorithms for the solution of the eigenvalue
problem, this process is still quite time consuming.

In the normal mode method of dynamic analysis, the principal
modes of vibration are used as generalized coordinatés. In these
coordinates the equations of motion are uncoupled, and each equation
can be solved as a one-degree~of~freedom problem [553]., The assumption

of normal {or principal) modes may be expressed as

N
D(t) = Z zj sin(oojt + cpj) (k.25)

~

j=1

where wj and @j are the angular frequency and phase angle of the
j-th mode. The symbol Z, denotes a column matrix of amplitudes for

the same mode.



Equations of undamped free vibrations can be written as

MD + 8D = O (L.26)

~ o~ ~

Substitution of the j-th term of Eq. (}4.25) into Eq. (4.26) pro-

duces the following set of algebraic equations:

S 7. = m?sz (k.27)

~ o~ L~ A

This equation represents the so~called nonstandard form of the eigen-
value problem. By solving this equation, one obtains the eigenvalues

<&ﬁ) and the eigenvectors (Zj) . We place all of the eigenvectors

~

column-wise into a modal matrix Z , as follows:

~

7 - [31,52, zN] (4.28)

~

In order to transform the equations of motion [Eq. (4.1)} to

principal coordinates, we premultiply it by 2~ and insert the identity

~

-

matrix I = 2Z Z after M and S to obtain
s rr'l" ’ -1 ’
Z°MZ7Z "D+ 27822 "D = Z7A (L.29)

This equation can be rewritten as
M D_+S_D = A k.20
P P ( )

where the arrays in principal coordinates are

Mp = Z'MZ (h.31)
Sp = 7°S8%Z (L.722)
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D - 770D (h.%3)

A = Z7A {(4.34)

Taking advantage of orthogonality characteristics of eigenvectors,
one can show that matrices M_ and Sp are diagonal arrays [53].
Consequently, Eq. (4.30) rep:esents a set of uncoupled differential
equations in principal occcordinates. Each equation in these coordi-
nates is solved by Duhamel's integral in order to obtain Dp .

Finally, we will find the displacements in the original coordinates

by the back-transformation

2 -~z (4.35)

~

Due to the high cost of finding the eigenvalues and eigenvectors,
selection of an efficient algorithm is imperative in the normal mode
method of dynamic analysis, Several procedures have been developed
and are in common use for solving the algebraic eigenvalue problem [57,617.
Lf all of the eigenvalues and eigenvectors are desired, the Householder-QR
method generally appears to be the most efficient procedure, In this

algorithm, Houscholder transformations are first used to reduce the

2
original equations to tridiagonal form, after which the QR algorithm
is used to find the eigenvalues and eigenvectors [57]. The Householder-
QR method has been empleyed in this investigation,

Some investigators have attempted to extend this procedure to non-

linear analysis [g ,Ln]. However, because of the high cost of repeti-

tive solution of the eigenvalue problem, this approach does not seem
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to be competitive with direct integration methods in nonlinear prob-

lems.

L., TImplementation of Material and Geometric Nonlinearities into

Dynamic Algorithms

One important consideration in nonlinear analysis is that of
approximating stresses within an element. This has a great effect
on the speed of the algorithms. One approach is to take the stresses
as constant within an element, based on their values at the geometric
center. This assumption simplifies the analysis and results in con-
siderable saving in the overall computation time. In the isopara-
metric finite element formulation, one may evaluate the stresses at
the numerical integration points to improve the zccuracy of the re-
sults. However, evaluation of the stresses at the integration points
significantly increases the cost of analysis as well as the amount of
storage required. For a method to be efficient and practical, both
cost and accuracy obtained must be considered. Therefore, in this
investigation, these two different procedureé for stress approxima-
tion have been incorporated in all nonlinear dynamic algorithms in
order to study their effectiveness for different methods.

When both displacements and strains developed in the structure
are small, we can ignore geometric nonlinearities. In this case, we
can write the equations of motion for the original {undeformed) con-
figuration, The formulation developed in Section 3.2 for linear
analysis can be used with some modifications in order to incorporate

and satisfy the constitutive law for elastoplastic analysis. When
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the stresses are assumed to be constant throughout the element, we
calculate the effective stress in each time step {or iteration cycle)

from the following relation:

- )2+(cr -0 + (¢ -o )2+6((r2 r oo +02)

o - o
vy vy ZZ 2z XX Xy Yz zZX

o
75 {0k
(h.36)

If o is less than Ty s the element is elastic, and the elastic
stress-strain relations derived in Section %.2.2 are used to evaluate
the tangential stiffness matrix in Eq. (3.4k4). However, if o > oy

the stresses are modified by an averaging scheme, as follows:

o)

1
modified ~ Uprevious + 5 A (4.37)

The next time stresses are evaluated, the plastic stress-strain

matrix DY given in Section 3.3.6 is used to calculate the incre-

~

mental stresses

Arr = PP Ac (3.148)

(repeated)

In addition, D’ is used instead of the elastic stress-strain matrix

~

35 in Eq. (3.44) to evaluate the element stiffness matrix.

When plastification of the element continues beyond the yield
limit, we must take into account the strain hardening behavior of

the material. To do so, we save the maximum previous effective stress

for each element and compare it against the current effective stress.

>'&max , plastic loading is indicated. An updated

al

In this case, if



lastic stress-strain matrix Dp must be used in the subsequent time
p q

~

step (or iteration cycle) in place of T, to evaluate both the element

~

stiffness matrix and the incremental stresses. However, if T < gmax P
elastic unloading has occurred. In this case the elastic stress-
strain matrix of Section 3.2.2 must be used to evaluate the stiff-
ness matrix and incremental stresses.

A similar procedure is adopted whenever stresses are evaluated
at the four gpatjal integration points. 1In this case, the stresses

g , the effective stress o , and the maximum effective stress O s

~

are calculated and saved at each of the integration points. BRased
on these values, the plastic stress-strain matrix pP is also
evaluated at each of the integration points. The sZorage required
will increase gubstantially because several stregs arrays must be
saved at each integration point.

In this investigation, a bilinear effective stress-effective
strain diagram has been assumed, as shown in Fig. 4.l(a). This
simple model can adequately approximate the elastoplastic behavior
of most metals and can be determined experimentally. Figure /.1(b)
shows the effective stress-effective plastic strain diagram., We can
find a simple relationship between the tangent modulus ET in Fig.

h.1(a) and the plastic modulus H in Fig, L.1(b), From Fig. L.l(a)

we can write

ql

¢ = o+ I E-—lf (h.38)
and
P :?+% (4.39)

-’TO-.
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where the superscripts e and p indicate the elastic and plastic

components of strain. 1In a uniaxial tension test, g is equal to

the yield stress (ES = GS) . Similarly, from Fig. L.1(b), we obtain

T = o, + H < (4.50)

By substituting Eq. (4.39) into Eq. (4.38) and solving for o - ES ,

we find

B e?
s E
N

(4.41)
1 -

Substituting for o in Eq. (4.41) from Eq. (L4.40), we get the fol-
lowing relationship between the plastic modulus H and the tangent

modulus E

T H
ET
H = —-——-—~E—; (4.42)
1 - —
E
The inverse relationship is
H
- g (4.43)
TE

In the computer program for nonlinear analysis, only the tangent

modulus ET need be given as input. The plastic modulus H , which

is required in the plastic stress-strain matrix DP (see Table 3.2),

~

is computed from Eq, (k.h2).
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As in elastic analysis, matrix multiplications have been avoided
in calculating the element stiffness matrix and the equivalent nodal
loads. This has been accomplished by the efficient formulation de-
scribed in Appendix A.

When geometric nonlinearities are to be taken into account, the
equations of motion must be written with respect to the deformed con-
figuration; and we no longer can use the linear equations derived in
Section 3.2. A more rigorous formulation of the equations of motion
is necessary (see Section 3.3) for the very general large displacement
and large strain analysis. 1In this case, the strain-displacement
relationships are complicated, but the implementation of material
nonlinearity is no more difficult than that described for small-
displacement elastoplastic analysis in the previous paragraphs.
Matrix multiplications have been aveided in calculating the geo-
metric stiffness matrix KG by the formulation developed in Section
3.%.5. However, due to t;e complexity of the strain-displacement
relationships, the matrix multiplications for calculating the element
stiffness matrix K [see Eq. {3.111)] cannot be carried out expli-

~

citly. Nevertheless, when the stresses are calculated only at the
geometric centers of the elements, it is possible to improve the effi-
ciency of the stiffness calculations. For this purpose, we decompose

the matrix T intc the product of a lower triangular matrix and an

5

~

upper triangular matrix, each of which is the transpose of the other [5&],

T, = U'U (4 .14)

where U 1is the upper triangular matrix. Substitution of Eq. (l.LL)

~
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into Eq. (%.111) yields

11
_ . Jo.d
K, = hf (HEI) (EEL) iil dgdn (r.h5)
-17-1

Thus, the matrix multiplication in Eq. (3.111) is replaced by decom-
position of matrix T5 , scaling and combining rows of BL , and

~ ~

calculating only the upper triangular part of the product Bi T5 B
Whenever stresses are assumed constant within the element, only one
decomposition is needed to evaluate the element stiffness matrix Ko
As a result, this technique reduces the cost of stiffness COmputa-N
tions. However, when stresses are computed at the four. spatial inte-

gration points, four decompositions of matrix T, are needed for each

5

~

element. This offsets the above savings in computatioms. Consequently,
this technique has been implemented only when the stresses are assumed
constant within the element. In such a case, the elastic stress-strain
matrix derived in Section %.2.2 is decomposed and saved at the outset
of the calculations. This is expedient in order to avoid repetitive
decompogition of this matrix when the loading is.elastic or when un-

loading occurs,

.3 Nomlinear Analysis by Implicit Methods

I.,2.1 Introduction

In the following sections we present three algorithms for nonlinear
analysis by implicit procedures. They are the Newmark-Beta method, the
Houbolt procedure, and Park's stiffly-stable method. The common feature

of all three algorithms is that in each time step the stiffness matrix
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must be formed, and the incremental displacements are found by solving
a set of linear algebraic equations. Therefore, an efficient method
for solving such equations is crucial for the implicit algorithms.

In this investigation, Cholesky's square root method has been used,

as described in Section L.1.2.

In Chapter %, the equations of motion for a single element were
derived using a superscript ¢ to denote time. However, for analyzing
the whole structure, in this chapter we use a subscript i to denote
the time stations. From Eq. (3.106) we can write the incremental equa-

tions of motion for the structure as

Ay = Ay mFyq - MD (5.16)

~ ~ ~ o~

Si-l

~

where Fi-l is the wvector of internal loads for the assembled structure

~

{to be defined in the following paragraph) and Si-l is called the
tangential stiffness matrix.

When geometric nenlinearities are to be taken into account, the
tangential stiffness matrix and the internal force vector are evaluated

by the following relations:

I
e
Si-1 = (KL+KG)j (L.47)
n
e
Fo, = (—[BI: o»i_ldv"). (L.48)
~ =1 v°T T J

where n_ is the number of elements. The arrays KL,JKG and B, were

~

defined in Section %.3%.5.



However, when only the nonlinearities due to elasto-plastic behavior
of the material are to be considered, we use the following relations

developed in Section 3.2 for linear analysis:

n
e
Si0- D, ) (1.19)
j=1
n
e
P, - Z(fs’zi_ldv) (4.50)
~ =1 ‘v " i

where B is the linear strain-displacement matrix given in Section 3.2.3.

~

The matrix K is also given in Section 3.2.3 [Eq. (3.43)], but now the
elasto-plastzc behavior of the materials will be accounted for through
the constitutive matrix 33 , as described in Section k.2,
The nonlinear equation (}.46) can be solved in a variety of ways, as
follows:
1) Newton-Raphson iterative procedure.

The Newton-Raphson procedure is a well-known method for the
solution of nonlinear algebraic equations [17]. 1In applying this method,
we form the tangential stiffness matrix in each cycle of iteration, Based
on the updated stiffness matrix, the incremental displacements are com~
puted from Eq. (L4.46). They are added to the displacements at the end
of the previous time step in order to find the new displacements. This
process is repeated until the desired convergence is obtained.

2) Constant stiffness iterative procedure,

in the constant stiffness iterative procedure, the stiffness

matrix is formed only once in each time step. This may be considered

as a special case of the Newton-Raphson method.
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%) Incremental procedure with load correction
In the incremental procedure with load correction, Eq. (L.46)
is used only once in each time step, and no iterations are carried out,
4) Incremental procedure

Equation (4.46) can be written in the following form:

e i (Ai-l T o M Di—l) (h.51)

~ ~ o~ ~ o~

M Aﬁ. + 5,
i i-

~ oy

In the incremental procedure, the terms inside the parentheses are
omitted. Thus, Eq. (4.51) reduces to

M AD, + S,
1 i-

~ o~ ~

M, = M (k.52)

1 i

Evaluation of the tangential stiffness matrix and its decomposi-
tion is the most time consuming part of the nonlinear analysis. Also,
stresses need to be updated in each cycle, which requires many compu-
tations. Because of this costly process, the Newton~Raphson iterative
procedure does not seem to be promising for multi-degree systems [6,24].
Therefore, in this study, we have utilized only the second and third

approaches discussed above.

4.%.2 Newmark-Beta Method

In the Newmark-Beta method, the velocities and displacements at the

end of each time step are obtained by the following relations (see Sec-

tion 2.%):
Ei = Ei~1 + YAt Ei + (1- 9yt Ei~1 (h.53)
D, = D, o +B(t)D, + (0.5-8)(At)D, . + At D (4.54)
! “i-1 i ’ i-1 i-1 '

_"('_(..



From Eq, (4.5h), we find the incremental displacements

2-- ;2.3 .
f?i = Ei ~ Dy = B(ae)™d; + (0.5-p)(At) Einl + At Ei—l (L.55)

~ ~

Solve for Dl from Eq. (4.55)

~

. 1 1 ( 1 )
D, = =———= D ~-—D, . +|1--—]0D._ (4.56)
! B(At)2 i 8AL -1 o8 i-1

Substitute Eq. (k.56) into Eq. (4.h46) to obtain

1 1 ( 1 )
+ MIAD, = A, -F, , +M|——D, , +| —=-1]D
Nl 1 S(At)g ~ Nl‘ Nl rul 1 o BAt .-;1 1 EB i-1
(L.57)
which can be solved for AD, . Fquation (L.57) can be written as
o B8

1

% %
where § and AAi are given in Table 4.1. In order to find veloci-

~r o~

ties, substitute Eq. (4.56) into Eq. (4.5%)

3y, = / VAR i v\
1T (1 B)Ei-ﬂamﬁni*“(l QB)DH (4.59)

Y]

By employing Eqs. (L.56), (4.58) and {}I.59), we write an algorithm for
nonlinear dynamic amalysis, This algorithm (with equilibrium iterations)

is presented in Table L.1.

4.3.% Houbolt Method

In the Houbolt method, the nodal accelerations are given by the

following expression (see Section 2.L4):
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TABLE h.1 Algorithm for Newmark-Beta Method with

Equilibrium Iterations for Nonlinear Analysis
For each time step do the following:

1. Calculate the effective stiffness matrix

1
+ —N

S = 5
~ ST ey ~

i-1

2. Calculate the effective incremental load vector

Phy = Ay m i P M,
where Qi-l is computed in the previous step.
- . . 1 . 1 .
(For the first time step EO = S and So = BAt EO + (25 - 1)30)

%. Decompose the effective stiffness matrix

S = U’ U

4, Solve for the incremental displacements

\ >
st %

U’ LD, = DAL (forward solution)
U D = AD; (backward solution)

5., Compute displacements and accelerations

D, = D, + D,
Nl Nl-l ~1
- 1
D, = ——= AD, - Q,
i 2 i i-1
) S~

6. 1If equilibrium iteration is not considered, go to step 12;
otherwise, set j = O and continue.

7. Start the jth iteration

j~—i+1
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TABLE L.1 (Continued)

8. Compute the vector of residual {or out-of-balance) loads

.. . .
A - oA -upittogit

9. Solve for the jth correction to the displacement increments

¥* A g
U7 AlaD,)" = AJ
U A(AD )j = A(AD )%
i i

~ ~ ~

10. Calculate new displacements and accelerations

md - @Ity A, )
pJ - b,  +od - DTty A(AD, )T
A ~1—1 it A i
o 1 j
Dy = - Q, 4 = /D3
i i-1 2

11. Check iteration convergence

la(an )|

] < tolerance, go to step 12
Ind|
j > MNIT , go to step 12

Otherwise, if
j < MNIT , go to step 7

where, MNIT = maximum number of iterations

12, Calculate velocities and the array Q

o
1l
——
.—I
1
B2
'\_/
v
,—-\
+
&
————
]—l
1
o
Bk
=T
[N
]
'—I
-~
gl.—l



2
+ hEi—z = 5D, 1+ 231)/(A¢) (4.60)

~

Substitute Eq. (4.60) into Eq. {(4.46) and solve for the incremental dis-

placements in the resulting expression

(L.61)

This equation can be written in the form of Eq. (4.58), for which s

and AA? are given in Table 4.2, By repetitive use of Egs. (h.éO)Nand

(h.6l;dwe can find the displacements in each time step (see Table 4.2).
The Houbolt method is not self-starting, so a special procedure must

be used to find the displacements for the first two time steps. For

this purpose, we use the Newmark-Beta method with f = 0.25 and ¥ = 0.5,

L.3.} Park's Stiffly-Stable Method

Park presented the following difference equations for velocities

(see Section 2.7):

2 i-3

~ ~

D, = (20D, - 30D,y + 12D, - 2D )/ (1eat) (h.62)

Iy ~

We use the same formula to find the accelerations, as follows:

~ ~

b, = (20D, - 3031_1 + 1231_2 - eéw)/(mm) (4.63)

Equation (L4.62) can also be written in terms of the incremental displace-

ments ADi as

~

éi = (z0aD, - 10~Di_1 + 1231_2 - 2Di_5}/(12&t) (.6k)

~ ~
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TABLE 4.2 Algorithm for Houbolt Method with

Equilibrium Iterations for Nonlinear Analysis

For each time step (after the first two steps), do the following:

1. Calculate the effective stiffness matrix

2

M

S = S +
~ (ALY ~

2

2., (Calculate the effective incremental load vector

1
*
M, = A, -F, . 4+ ——=M (D, , -~ UD,  + 3D, ,)
i i il (At)grv -3 i-2 -1

%. Decompose the effective stiffness matrix

3

w

= U°U

i, 8olve for incremental displacements

UTAD, = MA (forward solution)
3
U 4D, = 4D, (backward soluiion)

5. Compute displacements and accelerations

b= Dig
. 2
D, = = D, + Q. _

i (A¢)L i i 1

+ D,
i

~

e

where Qi-l is computed in the previous step.

6. If equilibrium iteration is not considered, go to step 12;

otherwise, set j = 0 and continue,
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TABLE 4.2 {Continued)

7. Start the jth iteration
_]-—_'[-1—1
8. Compute the vector of residual (or out-of-balance) loads

Al L o4 owpitt gt
L 1 1 1

~ ~ ~ ~

9, Solve for the jth correction to the displacement increments

, 3= Aj
U’ A(AD,) = A
j 3 +*
U A(AD:.L) = A(ADi)

~ ~ ~

10. Calculate new displacements and accelerations

TSN RN YL
pd - b, sand - It A
i i-1 i g i
3 2 j
Dy = D + Q. _
11. Check iteration convergence
NS

if ——:J——'—““ < tolerance, go to step 12

/s |
i

j > MNIT , go to step 12
Otherwise, if
j <MNIT , go to step T

12. Calculate the array Qi



Substitution of this expression

. P
D, = ~————— (20AD,- 10D, . +

Substitute 5i from Eq., (L4.65)

for ﬁi into Eq. (li.63) yields

~

1
12D, , - 2D, ) + (- 30D, , + 12D,
A 2 A 3 15AE A 1 A
- 2D, ) (4.65)

into Eq. {(4.46) to obtain

5
+ M 6D + Db, .)
1 1 ~ 18(At)2 Nl"'l —~ _2 ~1-5
+ o= (15D, . - €D D. )
ene \Pia1 T OBy Dy
(4.66)

From this equation, the incremental displacements ADi can be found.

~

Equation (4.66) is of the same form as Eq. (4.58) for which s*  and

v}
oy

~

AAi are given in Table 4.3. Like the Houbolt method, this procedure

~

is not self-starting. Therefore, we use the Newmark-Beta method for

the first twe time steps.

4.i Nonlinear Analysis by Explicit Methods

4., h.1 Introduction

In the fellowing sections, we present three algorithms for non-

linear analysis by explicit procedures. They are the central differ-

ence method, two-cycle iteration with the trapezoidal rule, and the

fourth-order Runge-Kutta method.

a nodewise solution technique.

For all of these procedures, we adopt

In this approach only two rows of the
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TABLE 4.3 Algorithm for Park Stiffly-Stable Method with

Equilibrium Iterations for Nonlinear Analysis

For each time step (after the first two steps), do the following:

1. Calculate the effective stiffness matrix

>
w 5
s = E+(5At M

~

2, Calculate the effective incremental load vector

ac 5
M, = A, ~F, +M|=————= (5D, . - 6D, _ +D, _)
i I S T _18(At)2 i-1 -2 i-3
1 . . .
* At (152i-1 - 631-2 * Bi-—})

%. Decompose the effective stiffness matrix
3
S = U'U

i, Solve for the incremental displacements

b

e
e

u’ A - (forward solution)
U ADi = AD; {(backward solution)

5. Compute displacements, velocities, and accelerations

Di = Dyy + 8Dy

S

Dy = (5At i+ Ry
. [ 5\

Dy (BAt Py

whetre Ri-l and Qi—l are computed in the previous step.

~ ~

6. If equilibrium iteration is not considered, go to step 12;

>

otherwise, set j = 0 and continue,

T. Start the jth diteration

j=3+1
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TABLE 4.% (Continued)
8. Compute the vector of residual {or out-of-balance) loads

AV oA - it logd-
1 1 i 1

~ -~ ~ ~

9. Solve for the jth correction to the digplacement increments

v alep,) = AJ
i %
U A(ADi) = A(ADi)

~ ~ ~

10. Calculate new displacements, velocities, and accelerations

il = a3t e afen, )
' 1
pJ = b, . +a0d = DI 4 AsD )
i ~1-1 ~ i i
N I 3
D= Sar Pg)T Ry
L 25
31 YN 31 * 31-1

11. Check iteration convergence

N

if ST < tolerance , go to step 12
InJ]
j > MNIT , go to step 12

Otherwise if
j<MNIT , go to step 7

12. Calculate the arrays Q; and Ri

~ ~

gi = (- 20 D, + 1221"1 - 231_2)/(12&)

o~

R, ~ (- 10D, + 120,y - 2D, )/ (1208)

~ ]
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tangential stiffness matrix need be generated at any stage in the analysis.
Consequently, large problems can be analyzed within the fast core of the
computer because it is not necessary to solve simultaneous equations, This
fact makes the explicit methods more attractive than the implic procedures.
In all three explicit procedures, the mass matrix must be inverted. Thus,
the use of a2 lumped mass matrix makes these methods more efficient, Imple-
mentation of the nodewise approach into a computer program will be dis-

cussed in Chapter 5.

L.h.2 Central Difference Predictor

The central difference formula for a multi-degree system was formu=
lated in Section %4.1.3, and an algorithm for applying it nodewise is
given in Table L.l. At each node of the structure, two rows of the tan-
gential stiffness matrix (corresponding to two degrees of freedom at that
node) are generated. Then the incremental accelerations pertaining to
the two degrees of freedom are calculated from Eq. (L.52). This process

is repeated for all nodes.

L.4.3 Two-Cycle Iteration with Trapezoidal Rule

An algorithm for two-cycle iteration with the trapezoidal rule is
given in Table 4.5. The incremental accelerations are computed in a
nodewise manner, as described in Section 4.4.2 for the central differ-
ence method, However, in the first evaluation phase, we evaluate

8,1 (instead of 8, 1) for which half of the incremental displacments
-3 "i-

~

during the time step i are used in calculation of the incremental

stresses. This will improve the accuracy of the results.



TABLE L.L Algorithm for Central Difference Predictor

for Nonlinear Analysis

For each time step after the first,% do the following:

1. Evaluate the incremental accelerations in a nodewise manner

1
(A, -8y 5 AD)

~ ~ o~

A, = M
Nl ~

2. Calculate the total accelerations

+ AD,
1

~

1

D, = D,
1 ~l-

~

3. Compute the total and incremental displacements

1l

i+l

2

. o
231 ' Ei-l + Bi(At)

i+l

#*
Displacements at the end of the first time step are calculated
from the Taylor series as follows

0 2

~ 7 ~

Dy = D+ D At + =D (At)g
0 0
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TABLE 4.5 Algorithm for Two-Cycle Iteration with

Trapezoidal Rule for Nonlinear Anmalysis

For each time step, do the following:

1., Prediction

El = B gt Ei—l At {(for 1 =1)
Ei = Bi_g + EEi_l At (for i >1)
Dy = Qg + Dy Ae/
Ay o= Dy =05
where
Qg = Dyq + Dy 0L/2
2., Evaluation
. -1
M, = M (M, - 1 AD,)
i - i i-z i
D, = 5 + AD,
A -1 i
3. Correction
Bi = R+ Ei At f2
]3,1 = Si L+ Ei A2
e T S O
where
Ei-l = E"l + D, _; At/2

4. FEvaluation

D, - M A, - s, AD )
El . -1 * %?1



h.4.% Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method for a single equation in the
form d = £(t,d) was given in Section 2.6 of Chapter 2. By applying
this method to the incremental equations of motion [Eg. {4.52)], we can
write an algorithm for nonlinear analysis that is given in Table L.6,
Evaluation of the functions fl 5 22 B 35 and Eﬁ is done in a node-
wise manner. 1In this approach the tangential stiffness matrix is revised

only once in each time step, just before the last evaluation (where 8, 1
-2

~

is needed).
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TABLE k.6 Algorithm for Fourth-Order Runge-Kutta Method

For each time step, do the following:

At

ADy = ADyy + Ay g AE 4 TR+, 4 L)

AD, = AD, .+ = (Y. 4 0¥ 42V 4 )

s St O B R Wy~ Bt

b

Ei = 21—1 + %—‘J)i

where

v~ oAt ML (A -5 )

~1 ~ rvi-l r-ui-l Nl-l
B 101 i At

o o= oM [2 Py - By Wy v Nl-l)]
. ST ot ot

E} N Atlf [2 ‘i'Al i-1 (Ni-l * ﬁDl-l * El)]
VRN U s LA

By o= ook [’f}f‘l i-3 (/iDl e 15 Ez)]
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CHAPTER 5

COMPUTER APPLICATION

5.1 Introduction

Three Computer Programs, prepared exclusively for this study;will be
described in this chapter. Program RESPPSQ4 is for linear analysis,
Program NODIMP is for nonlinear analysis by implicit schemes and program
NODEXP is for nonlinear analysis by explicit schemes and the nodewise
solution technique. The three programs require no auxiliary storage and
all the calculations are done within the main core of the digital
computer. All three programs were written in the FORTRAN IV language and
were run under the WATFIV and FORTRAN-H Compilers. In program RESPPSNG,
for linear analysis, all real variables are declared single precision.
However, in programs NODIMP and NODEXP, for nonlinear analysis, all real
variables are declared long (double) precision. This is due to the fact
that round-off error for nonlinear analysis can be quite significant and
may produce erroneous results.

A description of each program, including a macroflow éhart, program
notations, and required input data, is included in the following sections.
Actual program listings, with descriptive comment statements and sample
outputs are presented in Appendices.

In order to evaluate the efficiency of different methods, the library
program PCLOCK provided by Stanford University Computation Center was
employed. PCLOCK computes the number of centi-seconds elapsed between two
calls, This computation time measurement was the basis for the comparisons

of efficiency of different procedures in this study.



5.2 Program for Linear Analysis

5.2.1 Description of Program RESPPSQ4
Program RESPPSQ4 calculates the response for a plane stress (or plane
strain) problem by the following methods:

1. Central difference predictor

2. Direct extrapolation with trapezoidal rule

3. Two cycle iteration with trapezoidal rule

4. Normal mode method

For the direct linear extrapolation, two approaches have been coded:

—using total displacement, velocity and acceleration with
solution for displacement,

--Using incremental displacement, velocity and acceleration,
with sclution for incremental displacement,

In this program five different kinds of loading have been considered,
namely, nodal loads, surface loads, volume loads and loads due to
temperature strain and prestrains. For nodal loading, five types of
loading can be applied through the use of LIYPE parameter as follows:

LTYPE=1 Indicates a constant load, but differemt at each node,

LTYPE=2 Indicates a plecewise linear load,

LTYPE=3 Indicates an equal sinusoidal foreing function at
each node in the x direction,

LTYPE=4 Like LTYPE=3, but in the y direction.

LTYPE=5 LlLoads are given as data for all loaded nodes.

The program RESPPSQ4 consists of a main program that uses nineteen
subroutines. These subroutines are described briefly in the following

article.
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5.2,2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program RESPPSQ4 is given in Table 5.1.

The double boxes in the flow chart represent subroutines. A brief

description of the function of each subroutine follows:

SDATA:

LDATA:

SURLOD:

Reads and prints the structure data.

Compiles the load data and prints pertinent information.
Calculates the equivalent nodal loads due to surface loads.
Linear variation of components of surface loading between two

adjacent nodes has been considered. This is demonstrated in
Fig. 5.1, WS1, WS2, WS3, and WS4 are force per unit inclined

length.

wsa2 wsh

WS3

VOLLOD:

TPSTRN:

PRSTRN:

Fig., 5.1

Calculates the equivalent nodal loads due to volume load WVl
(uniform distribution in the X direction), and WV2 (uniform
distribution in the Y direction).

Calculates the equivalent nodal loads due to uniform
temperature strain.

Computes the equivalent nodal loads due to the following
prestrains:

PS1 = uniform expansion in the X direciion

PS2 = uniform expansion in the Y direction

PS3 uniform positive shear strain

i



TARLE 5.1 Macroflow Chart for RESPPSQ4

SDATA

STIFF

LDATA

:

STIFQ4

LMASS

EXTRAP

EXTRAT

)
NE—ey
N—ey
ey

NORMOD SDTIAG




TABLE 5.1 - continued

- SURLOD

NES # 0 o
,/’

|

NEV # O >——-—'—" VOLLOD

NET # 0>———w TPSTRN
-3

NFEP # O PRSTRN

return to LDATA e

BWS




STIFQ4: Generates the stiffness matrix for an isoparametric
quadrilateral element.

STIFF: Assembles the element stiffness matrix into the structure
stiffness matrix.

TMASS: Calculates the lumped mass matrix,

RRSPCD: Calculates the response by the central difference procedure,
RSPTR: Conducts the two cycle iteration with trapezoidal rule.
EXTRA?P: Calculates the response by direct linear extrapolation with

the trapezoidal rule and soclution for total displacements.

EXTRAL: Computes the response by direct linear extrapolation with
the trapezoidal rule but with solution for incremental
displacements.

NORMOD : Performs the normal mode procedure.

SDIAG: Finds the eigenvalues and eigenvectors needed in the normal
mode procedure by the Householder-QR method.

DCOMP : Decomposes a positive-definite matrix (Cholesky decomposition).

FWS: Finds the forward solution in the Cholesky decomposition,

BWS: Finds the backward and final solution in the Cholesky
decomposition.

MATPRT: Prints the output.

5.2.3 Program Notation
Table 5.2 defines the important simple and subscripted variables

that are used in the program RESPPSQ4. Real and Integer variables are
designated by letters R and I accordingly.

5.2.4 Preparation of Data

Required input data for RESPPSQ4 are summarized in Table 5.3. Two
standard FORTRAN number fields have been used and are identified for each

card by F for real variables and I for integer variables.
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TABLE 5.2 Notations for Program RESPPSQ4

I. Simple Variables

Variable(s) Type Definition

ALPHA R Thermal expansion coefficient

DELTAT R Temperature strain

DY R Incremental time step

El,E2,E3 R Stress—-strain constants

ETA R Variable of spatial integrals

IP§ I Indicator for plane stress or plane strain

IPS = 0 for plane stress

IPS = 1 for plane strain
LTYPE I Type of nodal loading
MAXT R Last time for response calculation
NDF I Number of degrees of freedom
NDISP I Number of possible displacements
NDT I Number of time steps
NE I Number of elements
NEP I Number of elements with prestrain
NES I Number of elements with surface load
NET I Number of elements with temperature strain
NEV I Number of elements with volume load
NLN I Number of loaded nodes
NN T Number of nodes
NRN I Number of restrained nodes
NSEG I Number of loading segments
Ps1 R Prestrain in x direction
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TABLE 5.2 - continued

Variable(s) Type Definition

PS2 R Prestrain in y direction

PS3 R Shear prestrain

W51 ,WS2,Ws3,Wss4 R Intensities of surface load
Wvl,wv2 R Intensities of volume load

X1 R Variable of spatial integrals

II. Subscripted Variables

A. Vectors

Variable(s) Type Definition

A( ) R Acceleration

AO( ) R Initial acceleration

DO( ) R Initial displacements
DON,DD,DQ,DOLD( ) R Nodal displacements (any time step)
EIG( ) R Eigenvalues

EE( ) R Eigenvectors

FO({ ) R Initial loads

F1,FON,FIN( ) R Nodal force (any time step)

GAUSS( ) R Coordinates of Gaussian quadrature
H( ) R Young modulus

ID,IR( ) I Rearrangement index

J1,J32,33,J4( ) I Element node mumbers

M({ ) R Lumped mass matrix

MI( ) R Scaled mass matrix
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TABLE 5.2 - continued

Variable(s) Type Definition

NCRL( ) I Cumulative restraint list

PR({ ) R Poisson ratio

RHO( ) R Mass per unit volume

RL( ) I Restrained code

TH( ) R Thickness of the elements
vo( ) R Initial velocities
V1,V00,VON,VOLD( ) R ’ Nodal velocity (any time step)
X() R Nodal X-coordinates

Y() R Nodal Y-coordinates

B. Doubly-Subscripted Variables

Variable Type Definition

cC , ) R Matrix of nodal coordinates for an element
D( , ) R Array of nodal displacements

F(C, ) R Applied nodal forces

G(, ) R Elements of strain-displacement matrix

SE( , ) R Element.stiffness matrix

SN( , ) R Structure stiffness matrix

STM( , ) R Scaled stiffness matrix

XX( , ) R Eigenvectors

- 100 -



TABLE 5.3 Input Data for RESPPSQ4

I. Structure data and control parameter
Variables Fields

1. NE,NN,NRN 313

2. IPS 13

3. I,X(1),Y (D) 13,2F10.

4, 1,71(1),32(1),J3(1),J4(1), 513,4F10.
TH(L) ,H(T),PR(I),RHO(I)

5. K,RL(2K-1) ,RL{2K) 312

IT. Load Data
Variables Fields

1. LTYPE,NLN,NES,NEV, 715,F10.
NET,NEP,NDT,DT

2. K,FO(2K-1),FO(2K),DO(2K-1), 1I5,6F10.
DO (2K) , VO (2K-1) ,V0 (2K)

3. NSEG I5
(if LTYPE = 2,3 or 4)

4. K {number of loaded node) 15
CX,TX1,CY,TY1 4710,
SLOPEX,TX2,SLOPEY,TY2 4F10.
(if LTYPE = 2, repeat

this NLN times)

5. AMP,OMEGA,C,T1,T2 5110,
(if LTYPE = 3 or 4)

6. K,F(IT,2K-1),F(IT,2K) 15,2F10,
(if LTYPE = 5) :

7. IS,JS,WS1,WS2,WS3,WS4 215,4F10,
(if NES mot equal to zero)

8. K,WV1,Wv2 15,2F10,
(if NEV not equal to zero)

9. K,DELTAT,ALPHA 15,2F10.
(if NET not equal to zero)

10. K,PS1,PS2,PS3 15,3F10.

(if NEP not equal to zera)
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5.3 Program for Nonlinear Analysis by Implicit Methods

5.3.1 Description of program NODIMP
NODIMP is a program for nonlinear dynamic analysis of plane stress
(or plane strain) problems by three implicit procedures as follows:
1. Newmark-Beta method
2, Houbolt procedure
3. Park stiffly-stable method
Both material and geometric nonlinearities have been implemented.
They can be controlled by a parameter named IGN. When geometric
nonlinearity is ignored, IGN must be set equal to zero. If geometric
nonlinearity is to be taken into account, IGN must be set equal to one.
Two different types of stress approximation have been incorporated
in the program. Parameter ISTRES controls the stress approximation. It
takes a value of zero when the stresses are taken constant within the
element based on their values at the geometric center. It is assigned a
value of one when the stresses are evaluated at the four element
integration points. In addition, equilibrium iterations for implicit
schemes have been implemented. In this case, when stresses are assumed
lconstant throughout the element based on their values at the geometric
center of the element, the internal force vector is calculated by adding
the incremental internal force changes based on the stiffness matrix.
However, when stresses are calculated at the integration points, in corder
to cbtain more accurate results, the internal force vector is caleculated

directly from the stresses.
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In this program three different types of loadings have been
considered, namely, nodal loads, surface loads, and volume loads. For
nodal loads two types of loading can be applied through the use of
the parameter ITYPE. When LTYPE is assigned a value of one, a constant
nodal load is applied. If LTYPE is assigned a value of two, & plecewise-
linear nodal load is applied. In this case, the time and the value of
load at the beginning and end of each segment are given as input data;
and the piecewise-linear leoad is approximated by constant average values,
as is shown in Mig. 5.2. It should be noted that nodal loads are given
only for a selected number of degrees of freedom through an array of load
indexes. Similarly, the output, that is, the displacements and stresses
are printed only for & selected number of ncdal degrees of freedom

through arrays of response and stress indexes. Furthermore, the output

F pliecewise~linear load segments approxi-
mated by constant-average values
F2 —————————————
]
|
T
i
Lo
! : 1 .
T
1 ! i | |
! | { )
| I~ | | | :}
T ooy
¥ 1 1
i | (
oo oo | i !
| | | ! \ I
FAN
G t1 t ti t2 t
Fig. 5.2
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need not be saved and printed for every time step, but it can be stored
and printed for every chosen interval of time. The interval for printing
the output is given as data by parameter NIOUT fhat indicates the number
of time steps for which the output is to be stored and printed. These
features are essential for saving storage, especially when the nodal
loading and output are to be plotted,

The program NODIMP consists of a main program that uses twenty eight
subroutines. These subroutines are described briefly in the following
article,

5.3.2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program NODIMP is given in Table 5.4.
Subroutines SURLOD, VOLLOD, LMASS, FWS, BWS and MATPRT are the same as
described for the program RESPPSQ4 in Art. 5.2.2. Moreover, subroutines
SDATA, LDATA and STIFF perform the same functions as in the program
RESPPSQ4, but they are modified for the nonlinear analysis. Subroutines
DCOMP and DCOMPO decompose a positive—definite matrixz by Cholesky
decomposition., However, in DCOMP, the reciprocals of diagonal elements
are stored in the diagonal positions. This is expedient whenever solution
of a linear system cf equations by forward and backward sweeps is desired
[541, Concise descriptions of funections of the remaining subroutines are
given in the following paragraphs:

ELAST: Creates the elastic stress-strain matrix.

CLEAR: Clears and initializes the required values for each method at
the outset of computations.

PLAST: Creates the incremental plastic stress-strain matrix at the
geometric center of the element or at four spatial integration
points.

STIFQ4: GCenerates the stiffness matrix for an element when geometric

nonlinearity is mot taken into account.
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TABLE 5.4 Macroflow chart for NODIMP

f
! SDATA
1

LDATA < ’;@
ELAST +—3IGN £ 0 and ISTRES = o::>—*ﬂ DCOMPO

IMASS

Y

set index ISP for the first
solution procedure desired

| !

CLEAR

Y

'L/\,IT = 1,NDT>

IFPE = ( and 11‘>1>——-—’@

STIFF

N
A

DLENB 1z
> HOBOLT "..»@

N~
e
~
/
ISP = 3 >-—>- PASTIF ->®

save the desired
displacements and stresses [
for printing

A
4
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TABLE 5,4 - continued

NES £ 0

o

MATERT

solution by set index ISP for
another method the next procedure

| SURLOD

4

-

NEV # 0 >'—"—"“ VOLLOD

return to LDATA

L4

-————><N:1,NE>

IGN = 0 oxr IT

Il
l._l

| STIFQL(N)

—

IGN # 0 and IT > 1

Y

/

~
~
>—7l STFEC-;-IL(E\IA——@
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TABLE 5.4 - continued

ISTEV = O

ISTRES = O ::>-——,. ISTEV = 1

ISTEV =
ISTEV + 1

calculate stiffnesses
explicitly
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TABLE 5.4 ~ continued

!

XT=GAUSS (1)

v
><J=1,2 >
o

ETA=GAUSS (J)

BMATQL (XTI ,

ETA) Il

3

IS =18 + 1

GESTIF

ﬁ

ISTRES = 0 and IS > 1 >—————>@

PLAST(N, IS)

ISTRES = o> ;(10
TPLAS (N,IS) ?éo>——7E
IPS = 1 >_"
¥ ,
0D ] DD - B2
Bl = DD¥E |4 <
r

SE

SE+ (B” *BL+W)*DJ* TH(N)

only upper triangular part

o}
7
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TABLE 5.4 - continued

10

IPLAS (N, IS) A}—-» DD « ¥

\i‘

| PLAST(N , IS) ’
DCOMP __“

11 Y
Bl = DD*B K

~

@

SE = SE+ (BL” ¥Bl+W) *DJ * TH(N)

only upper triangular part

IFPE = ¢ and IT > 1 }——»@

LJ T A—




TABLE 5.4 - continued

L4

I

Y\/

‘?
ISTRES Q | INFORL l

INFORL

!

calculate new displacements,
velocities and accelerations

¢

convergence tolerance is satisfied::>________><::)

1k

STRESS

" INFORL ISTRES = O >—§-|:INFOR1 I[
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TABLE 5.4 - continued

15
?<:::7 I=1,NE ::>
Y
—————%V<:ir IIT=1,2 ::>
v
E—— JJg=1,2 ::>
Y
BMATQL
A
"
IGN £ 0 and IT >1
L4
Y
ISTRES = 0
16
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STFEGN:

GESTIF:

DLENB:

HOBOLT:
PASTIF:
EFSTIF:

STRESS:

NISTRN:

INFORC:
LOAD:
EFLOAD:

BMATQ4 :

CUTPUT:

Generates the stiffness matrix for an element when geometric
nonlinearity is taken into account.

Calculates the contribution of geometric stiffness matrix to
tangential stiffness matrix.

Computes the response by Newmark-Beta method.
Calculates the response by Houbolt method.
Performs Park stiffly-stable procedure.
Calculates the effective stiffness matrix.

Finds the stresses at the geometric center of the element or
four integration points.

Computes the nonlinear components of incremental strains and
adds them to linear incremental strains.

Calculates the vector of internal nodal point forces.
Calculates the vector of external nodal point loads.
Evaluates the effective loads.

Creates the strain-displacement matrix for a quadrilateral
isoparametric element in a local point.

Prints the heading and desired output for each method.

5.3.3 Program Notations

Table 5.5 defines the important simple and subscripted variables

that are used in program NODIMP. Variables which begin with the letters

I to N inclusive are declared as integer variables. Otherwise, they are

declared long (double) precision real variables.

5.3.4 Preparation of Data

Required input data for NODIMP are summarized in Table 5.6. Two

standard FORTRAN number fields have been used and are identified for

each card by F for long precision real variables and T for integer

variables,
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TABLE 5.5 Notations for Program NODIMP

I. Simple Variables

Variable Definition

BETA Parameter of Newmark-Beta method

DELTA Parameter of Newmark-Beta method

DT Incremental time step

E Young Modulus

ET Tangent modulus

ETA Variable of spatial integrals

¥l Value of load at the beginning of a loading segment
F2 Value of load at the end of a loading segment
GAMA Parameter of Newmark-Beta method

H Plastic modulus

1FPE Indicater for first plastic element

IFPE=0 no plastic element
IFPE=1 at least one element is plastified

IGN Index for geometric nonlinearity
IGN=0 geometric nonlinearity is ignored
IGN=1 geometric nonlinearity is to be taken into
account

1PS Indicator for plane stress or plane strain
IPS=0 for plane stress
IPS=1 for plane strain

IPU Indicator for printing plastification and unloading
If plastification and unloading are to be printed
out, IPU=1, otherwise IPU=0

Isp Index for solution procedure
I1SP=1 for Newmark-Beta method
ISP=2 for Houbolt method
ISP=3 for Park stiffly-stable mrthod

ISTOUT Indicator for printing (ISTOUT=1) or not printing
(ISTOUT=0) the stresses
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TABLE 5.5 - continued

Variable Definition

ISTRES Control parameter for stress evaluation
ISTRES=1 stresses are evaluated at the four
integration points
ISTRES=0 stresses are evaluated only at the geometric
center of the elements

ITPRO Control parameter for equiblirium iterations
ITPRO=0 no iterations
ITPRO=1 Constant stiffness iterations

LTYPE Type of nodal loading

METOD1 Indicator for Newmark-Beta method (METOD1=1)
METOD2 Indicator for Houbolt method (MET0OD2=2)
METOD3 Indicator for Park method (METOD3=3)

MNIT Maximum number of iterations

ND1 Number of displacements with nonzero initial

displacements or velocities

ND2 Number of displacements with nonzero loads
ND3 Number of displacements where fesponse is desired
NDF Number of degrees of freedom

NDISP ‘Number of poésible displacements

NDT Number of time steps

NE Number of elements

NE1 Number of elements with stresses desired
NES Number of elements with surface load

NEV Number of elements with volume load

NIOUT Interval for printing the output

NN Number of nodes

NRN Number of restrained nodes

NSEG Number of loading segments
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TABLE 5.5 - continued

Variable Definition

NTPO Number of time steps for printing the output
PR Poisson ratio

SIGH Hydrostatic stress value

T1 Time at the biginning of a loading segment
T2 Time at the end of a loading segment

TOL Convergence tolerance

WS1,Ws2,WS3,Ws4 Intensities of surface load

WVl,Wv2 Intensities of volume load

X1 Variable of spatial integrals

¥S Yield stress

TT. Subscripted Variables

A. Vectors

Variables Definition

Al ) Accelerations

AO( ) Initial accelerations

CDI( ) Correction to incremental displacements

DI( ) Incremental displacements{at any time)

DN( ) Nodal displacements(at any time)

DN1,DN2,DN3( ) Displacements at the end of previous time steps

(for Park method)

po( ) Initial displacements
FE( ) Equivalent nodal loads due to surface or volume load
FI( ) Internal nodal forces
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TARLE 5.5 - continued

Variable Definition

FN( ) External nodal forces

FO( ) Initial loads

GAUSS( ) Coordinates of Caussian quadrature

ID,IR( ) Rearrangement index

J1,32,33,34( ) Element node numbers

LE(C ) List of indexes for displacements with nonzero loads
LR( ) List of indexes for response-time histories
LS( ) List of indexes for stresses in elements
NCRL( ) Cumulative restraint list

NRL( ) Restraint list

RHO( ) Mass per unit volume

RM( ) Lumped mass matrix

STRAIN( ) Strains

TE( ) Thickness of the elements

vo( ) Initial velocities

VN1,VN2,VN3( ) Velocities at the end of previous time steps

(for Park method)
X( ) Nodal X-coordinates

Y() Nodal Y-coordinates

B. Doubly-Subscripted Variables

Variable Definition

BC , ) Strain-displacement matrix

cC , ) Matrix of nodal coordinates for an element
D( ., ) | Array of nodal displacements for printing
DD , ) Incremental plastic stresg-strain matix
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TARLE 5.5 -~ continued

Variable Definition

DE( , ) Nodal displacements for an element

DIE( , ) Nodal incremental displacements for an element
E1( , ) Elastic stress—strain matrix for plane stress
E2( , ) Elastic stress-strain matrix for plane strain
ESN(C , ) Effective stiffness matrix

F{C, ) Applied nodal forces

G{ , ) Elements of strain-displacement matrix

IPLAS( , ) Indicator for plastification(=1) and unloading(=0)
SE(C , ) Element stiffness matrix

SIGDX( , ) X-component of deviatoric stress

SIGDY( , ) Y~component of deviatoric stress

SIGEM{ , ) Maximum effective stress

SIGET( , ) Effective stress

SN( , ) Structure stiffness matrix

sX( , ) -Normal stresses in the X direction to be printed
SXY( , ) Shear stresses to be printed

SY( , ) Normal stresses in the Y direction to be printed
v{ , ) Decomposed of elastic stress-strain matrix

w( , ) Contribution of geometric stiffnesses to tangent

stiffness matrix

Note: For variables SIGDX, SIGDY, SIGET, SIGEM and TIPLAS the first
subscript refers to the element number and second subscript indicates
either the integration points(when ISTRES=1) or geometric center of the
element (when ISTRES=0). In the latter case only one column of these
arrays is needed. For variables SX, SY, and SXY, first subscript refers
to time increment while the second subscript refers to the slements
with stresses desired,
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TABLE 5.5 ~ continued

C. Multiply~Subscripted Variables

Variable Definition
SIGT( , , ) Total stresses
SIGTI( , , ) Total stresses at the end of previous time step

Neote: The first subscript of these variables refers to the element
number, Second subscript indicates type of the stress and can take a
value of one to four indicating necrmal stresses in the X and Y
directions, shear stress in the XY plane and normal stress in the Z
direction. Finally, third subscript indicates either the integration
points (when ISTRES=1) or geometric center of the element(when ISTRES=0).

- 118 -



TABLE 5.6 Input Data for NODIMP

I. Structure data and control parameters

Variables Fields No. of cards
1. METOD1,METOD2 ,METOD3 313 1
2. ISTOUT,IPU,IGN 313 1
3. ITPRO,ISTRES,NIOUT,NTPO,MNIT, 5I3,F10. 1
TOL
4. NE,NN,NRN 313 1
5. IPS I3 1
6. J,X(I),Y(T) 13,2F10. NN
7. E,PR,ET,YS 4F12. 1
8. I,J1{(1),J2(1),I3(1),F4(1), 513,2F10. NE

TH(I) ,RHO(I)

9. K,NRL(2K-1),NRL (2K} 312 NRN

II. Load and Output Data

Variables Fields No. of cards
1. LTYPE,ND1,ND2,ND3,NEI, 815,F10. 1
NES,NEV,NDT,DT
2. J,D0(J),V0(J) 15,2F10. ND1

(if ND1 not equal to zero)

3. J,LL{J) 215 ND2
(if ND2 not equal to zero)

4, J,F0(T) I5,F10. ND2

(if ND2 not equal to zero
and LTYPE=1)
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TABLE 5.6 - continued

Variables Fields No. of cards
5. J,NSEC ' 215 1
T1,F1,T2,F2 4F10. NSEG
(if LTYPE=2, repeat this
ND2 times)
6. I8,J5,WS1,WS2,WS3,WS4 215,4F10. NES

(if NES not equal to zero )

7. K,WV1,Wv2 I5,2F10. NEV
(if NEV not equal to zero )

8. J,LR(I) 215 ND3
(if ND3 not equal to zero)

9. J,LS(J) 215 NE1
(if NEI not equal to zero )
ITITI. Parameter of Newmark-Beta Method
Variable Fields No. of cards

1. DELTA F10. 1
(if METOD1=1)

- 120 -



5.4 Progrem for Nonlinear Analysis by Explicit Methods

5.0.1 Description of Program NODEXP
NODEXP is a program for nonlinear dynamic analysis of plane stress
(or plane strain) problems by the nodewise solution technique and three
explicit methods as follows:
1. Central difference predictor
2. Two-cycle iteration with the trapezoidal rule
3. Fourth-order Runge-Kutta method
Material nonlinearity as well as geometric nonlinearity have been
implemented; and two types of stress approximations have been incorporated
in the program NODEXP, as described in Art. 5.3.1 for pfogram NODIMP. In
addition, the same types of loadings and limitations on the nwber of
lcaded nodes and the number of response histories have been considered as
for the program NODIMP,
In the nodewise solution technigue, in addition to the arrays J1,
J2, J3, and J4 that contain node numbers for each element, we also need
another array containing element numbers associated with each node, Tn
order to save only nonzero terms and consequently to save storage, 1t is
expedient to save the latter array in vector form. However, another array
is also necessary to store the number of elements connected at each
node, These two arrays are called NIE (node identification by the
elements) and NEN (number of elements at each node). In the program
NODEXP, only the arrays J1, J2, J3, and Jh4 are given as data and the
arrays NEN and NIE are computed from them automatically by subroutine
NIBE.
The program NCDEXP consists of a main program that uses twenty six
subroutines. These subroutines are described concisely in the following

article.
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5.4.2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program NODEXP is given in Table 5.7. In
this flow chart, for the sake of brevity, details of the load, stress and
stiffness calculations have been omitted. These steps are done in the
same way as for the program NODIMP. However, it should be noted that in
this program only iwe rows of the stiffness matrices are generated at
each stage of the computations. Subroutines LDATA, SURLOD, VOLLOD, IMASS,
ELAST, PLAST, BMATQM; NISTRN, DCOMPO, OUTPUT, and MATPRT are the same as
described for the program NODIMP in Art. 5.3.2. Furthermore, subroutines
SDATA, CLEAR and STRESS perform the same functicns as in the program
NODIMP, but they are modified for the nodewise solution technique and
explicit methods., Brief descriptions of functions of the remaining
subroutines follow:

NIBE: Generates the arrays NIE (node identification by the
elements) and NEN (number of elements at each node).

CDP: Calculates the response by central difference predicter.

ITERTR: Computes the response by two-cycle iteration average
acceleration method or trapezoidal rule.

EVAL(TA): Performs the evaluation required in the central difference
predictor and two-cycle iteration with trapezoidal rule.
IA is set equal to zero for the first time step and is
greater than zero after the first time step.

RUNKUT : Caleulates the response by the fourth-order Runge-Kutta
method.
EVALON: Performs the four evaluations required in the fourth-order

Runge-Kutta method.
INCLOD: Computes the incremental nodal loads.

STIF(N): Creates two rows of the structure stiffness matrix
corresponding to node N,
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TABLE 5.7 Macroflow chart for NODEXP

SDATA - > NIBE

ELAST —>| IGN # 0 and ISTRES = O >—> DCOMPO "

set index to the first
sclution procedure desired

ro

ISP > 1 ::> 7(23)

save the desired
displacements and stresses
for printing

1Sp = 1 > >  1NCLOD

A

OUTPUT

T

o

solution by another method Aj:>“———">

set index ISP for
the next procedure
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TABLE 5.7 -~ continued
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TABLE 5.7 - continued
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STIFQU(N,M): Creates two rows of the stiffness matrix for an element N
corresponding to node M, when geometric nonlinearity is
ignored.

STEL: Calculates stiffnesses explicitly for each element
integraticn point, to be used by subroutine STIFQL.

ESTFGN(N,M): Creates two rows of the stiffness matrix for an element N
and corresponding to node M, when geometric nonlinearity is
taken into acecount.

GEOSTF: Computes the contribution of the geometric stiffness matrix
to the tangential stiffness matrix corresponding to a node,

5.4.3 Program Notations

Most of the notations for program NODEXP are chosen the same way as
those for program NODIMP, Table 5.8 defines the important additional and
renamed variables that are used in the program NODEXP. Similar to the
program NODIMP, variables which begin with the letters I to N inclusive

are declared ag integer variables. Otherwise, they are declared long

(double) precision real variables.

5.4.4 Preparation of Data
Required input data for NODEXP are almost the same as those for the
program NODIMP that are summarized in Table 5.6, but with three
exceptions. The differences are as follows:
—0n the second card the varisgbles ISTRES, NIOUT, NTPO, ISTOUT
and TPU are read with the format 5I3.
——0On the third card the variable IGN is read with the format
13.

~~The last card must be omitted.
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TABLE 5.8 Additional Notaticns List for Program NODEXP

I. BSimple Variables

Variable Definition

I8P Index for solution procedures
I8P=1 for central difference predictor
ISP=2 for two-cycle lteration with trapezoidal rule
15P=3 for fourth-order Runge-Kutta method

METOD1 Indicator for central difference predictor (METOD1=1)

METOD2 Indicator for two-cycle iteration with trapezoidal
rule (METOD2=2)

METOD3 Indicator for fourth-order Runge-Kutta method
(METOD3=3)

II. BSubscripted Variables

A. Vectors

Variables Definiticon

DF( ) Nodal forece increments

pI1( ) Incremental displacements at the end of previous time
step

F1,F2,F3,FL( ) Functions of fourth-order Runge-Kutta method

NEN{ ) Number of elements at each node

NIE{ ) Node element numbers

vIi( ) Incremental velocities at the end of previous time
step

B. Doubly-Subscripted Variables

Varigbles Definition
SE( , ) Two rows of the element stiffness matrix
SN( ) ) Two rows of the structure stiffness matrix
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5.5 Example Problem

Many complex practical structures with complicated loadings can
be idealized as plane stress or plane strain problems that can be
solved by the methods and computer programs developed in this study.
For example, the plane stress problem can be used to analyze stif-
fened sheet construction, box beams and arches. Practical appli-
cations of the plane strain problem occur in the stress analysis of
soil systems, dams, tunnels, concrete walls and other long solid
structures whose geometry and loading are constant in the long di-
rection [11,20,62]. However, owing to the high cost of extensive
comparisons of numerous solution techniques studied in this work
{and in order to keep the cost of computer time at a minimum), a
rather simple example was used to compare fthe accuracy, stability
and efficiency of different procedures. The example problem is
illustrated in Figs. 5.4 through 5.8, In this problem, which is a
plane stress problem, & square plate 10" x 10" X 0.1l is loaded
suddenly with.a uniform line load at the middle line of the plate
as shown in Fig. 5.4. The distributed loading on the plate is assumed
to be replaced with equivalent forces at the nodes. 1In this case, they
will be step loads as indicated in Fig. 5.3. The plate has two free
edges and is restrained at the other edges as shown in the figures.
Obviously, the cost of response calculations increases with the num-
ber of degrees of freedom or size of the problem. For efficiency
comparisons, the plate is divided into four, nine, sixteen, twenty-
five and thirty-six finite elements as shown in Figs. 5.h through

5.8, and the response is calculated for a selected number of nodal
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displacements. In addition, the time step for response calculations

5

is varied from.10-6 seconds to 5 X 10 7 seconds. The following mate-

rial constants are used throughout this study:

Elastic modulus : 30 X 1O6 psi
Poisson ratio : 0.3

Tangent modulus : 12 X 106 psi
Yield stress : 36000 psi

The numbering system employed is shown for the l6-element plate
in Fig. 5.9. 1In Figs. 5.4 through 5.8, NDF refers to the number of

degrees of freedom.

load

time

Fig. 5.3 Step Loading at the Nodes
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CHAPTER 6

NUMERICAL. EXPERIMENTS AND RESULTS

6.1 Linear Dynamic Analysis

€.1.1 Introduction

In the following sections the four sclution techniques presented
in Section L.l are compared for efficiency, accuracy, and stability.
Load F for the example is taken equal to 10 1b, and all results
for linear analysis were obtained under the WATFIV compiler. Figure
6.1 shows a typical response plot of the plate in the direction of
loading for the l6-element case. On this plot, where a time step of
10-6 seconds is used, results of all methods are indistinguishable
from each other. Figure 6.2 shows the response for the normal mode
method for the same case but with a larger time step of 5 ¥ 1O-6 sec.
For this size of time step, the other three methods give similar re-

sults that are practically the same.

6.1.2 Efficiency

Table 6.1 shows the efficiency comparisons for the four finite
element networks shown in Section 5.5 (Figs. 5.4 through 5.7), using
one hundred equal time steps of 10—6 sec, These results are plotted
in Fig. 6.3 as computation time versus number of degrees of freedom.

Direct extrapolation methods and the central difference procedure



NE = 16

DT - 10-6 gec

NDT = 100

Disp. (10'6 in.)

2 oA 6 8 10
Time (10”5 sec)
Fig. 6.1 Response of Center of the Plate in the Direction of Loading

..151},_



PoOY3ISsK °9poW TwwaoN A£q Burpeo] Jo UOTIORIT] Syl UT 93B[d @Yl JO 19jus) Jo osuodsey 2'9
(oes :nOav QW]
17 ¢ 0
41
N A\ m
\ / /..
-vm
\ q
| G
\\ G
A R4 J
$ L
8
00T = IaN (rut m..od
%98 0T X § = 1@
91 = AN

* 314

*dstQ



wopedag Jo seexale(g Jo iequnN = AN

91" g6 00 e 0¢'9 9pOW TeuLxoN
. . . 91Ny 1eprozedea]
8" L L€t oL & Y3TM uoTjeas3l
90* 2§ 69°¢2 GL*9 81 90ULIBIITQ TBIIUDD
sausweoeTdsI(
82" 8 9¢- 22 A OIS 1E3USWSIUT 43 Tn
uoraelodeilxXy 399I11(Q
L6°6h gL 22 98' 9 91°2 uotyeTodealxy 399110
96 = IaN Q¢ = AaN 0C = 4aN 01 = daN
sjuswe I 43 sjuewe Ty 97 sjuswe Iy 6 SJUSWRTH 7 onbTuyse] uoIInjos

swylTao81y IBOUTIT 103 (098) SOWTI]

uvorzegndwod 1°9 HTGVL

- 156 -



Computation Time (sec)

100 i

80 1

o
O
1

L0 1

20 1

IT

DE

DI

Ch

-

Normal Mode

Iteration with

Trapezoidal Rule

Direct Extrapolation
(Total Displacements)

Direct Extrapolation
{Incremental Displacements)

Central Difference

Figure 6.3

- 137 =

AN

O

50

NDF



require approximately the same amount of computation time. As expected,

the normal mode procedure is the slowest of all methods studied here.
Laswell [32] compared the same solution techniques for linear problems

using a plate bending example. He found the central difference procedure

to be the most efficient of all methods. However, in the present study

the direct linear extrapolation methods are seen to be slightly more effi-

cient than the central difference procedure. This discrepancy is probably

due to improved coding in the present work.

6.1.3 Accuracy

For the example problem, the normal mode method provides a reliable
solution apainst which other solutions can be compared. Table 6.2 shows
the value of maximum deflection in the direction of loading at the center
of the plate for different methods. These results are for l~element and
16-element meshes. They are based on a time step of 10-6 sec and for a
time range from zero to 10-h sec, By examining the maximum deflection
for different methods, we observe that for a small number of degrees of
freedom all methods are of comparable accuracy. However, as the number
of degrees of freedom increases, direct linear extrapolation is less
accurate, One would suspect that this is due to round-off error. In
order to investigate this problem, the program for linear analysis
(RESPPSQL ) was changed from single precision to double precision arith-
metic. Table 6.3 contains results for the l6-element mesh, using double
precision arithmetic, It can be seen that the direct linear extrapolation
procedure is more semsitive to round-off error than the other methods

studied,
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TABLE 6.2 Maximum Deflections (10-6 in.)
4 Elements 16 Elements

METHOD NDF = 10 NDF = 58
Direct Extrapolation 6.32501 6.24371
Direct Extrapolation
With Incremental 6.32%90 6.23772
Displacements
Central Difference 6.32937 6.27483
Iteration with
Trapezoidal Rule 652846 6.27099
Normal Mode 6.32863 6.27391

NDF = Number of Degrees of Freedom
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TABLE 6.3 Maximum Deflection and Execution Time for l6~Element Mesh

Using Double Precision Arithmetic

Maximum Deflection

Computation Time

Method (10"6 in.) (sec)
Direct Extrapolation £.27L06 22.77
Direct Extrapolation
with Incremental 6.27106 2% .26
Displacements
Central Difference 6.27517 2%.72
Iteration with
Trapezoidal Rule 6.27101 K03
Normal Mode 6.27381 95.89

TABLE 6.4 Stability Results for }-Element Model
Size of Time Step (sec)
Method
0.000001 | 0.0000L | 0.00003 | 0.00005 !0.0001

Direct STABLE STABLE | STABLE STABLE | STABLE
Extrapolation
Central STABLE STABLE | STABLE | UNSTABLE | UNSTABLE
bifference
Iteration with
Trapezoidal STABLE STABLE | UNSTABLE | UNSTABLE | UNSTABLE
Rule

- 1ho -




6.1.4 Stability

Because of limitations of available computer time, the stability
check was done only for the 4-element mesh, and the results appear in
Table 6.4. The size of the time step was increased gradually from
10_6 sec to 10'4 sec for each numerical integration method in order to
determine its stability limit, It is seen that the stability limit for
two~cycle iteration with the trapezoidal rule is the smallest of all

methods studied. Because mo approximation formula is used in the normal

mode method, a stability check is not applicable to this procedure.

6.2 Nonlinear Dynamic Analysis

6.2.1 TIntroduction

Due to the fact that the cost of nonlinear dynamic analysis is sig-
nificantly higher than that of linear analysis, a prudent strategy for
numerical experimentation was adopted in order not to exceed the limited
computer time available. Accordingly, we first compare the performance
of explicit and implicit methods separately (in Sectioms 6.2.2 and 6.2.3,
respectively). These comparisons are based on a L-element mesh (see
Fig. 5.4) with elastoplastic material properties, neglecting geometric
nonlinearity.

In Section 6.2.4, the best of the explicit methods is compared with
the best of the implicit methods for larger problems (Figs., 5.5 through
5.8). Furthermore, geometric nonlinearities are also taken into account
in this stage.

All of the results in Sectiomns 6.2.2 and 6.2.% were obtained under

the WATFIV compiler. However, the FORTRAN-IVH compiler was used for the
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results in Section 6.2.4 because of its much faster execution time. 1In
the diagrams on the following pages, computation times under the WATFIV
and FORTRAN-IVH compilers are denoted by CIW and CIF, respectively. In
order to reduce round-off error, double precision arithmetic was used
throughout.

In the following sections, the load F (see Figs. 5.4 to 5.8) is
taken equal to 100,000 1lbs. This load is high enough to produce a con-
siderable amount of inelastic strain, All plots are responses of the

center of the plate in the direction of loading.

6.2.2 Comparison of Explicit Methods

The best method will be defined as that for which the ratio of the
time step to the computation time is maximum for a given time range,
while producing reasonably accurate results. At first we assume the
stresses to be constant over each element, based on their values at
the geometric center of the element. This approximation results in
considerable saving in the overall computation time.

Figure 6,4 shows the respomse at the center of the plate by the
central difference predictor with a time step equal to 10-6 seconds.
For this small time step, two-cycle iteration with the trapezoidal
rule and the fourth-order Runge-Kutta method produce similar results
that practically coincide with the diagram in Fig. 6.k (The maximum
displacement in this figure is equal to 0.1%37 in.)

Figure 6.5 shows comparable results for three explicit methods
for a time step of 10-5 sec and a time range of 3 ¥ 10-LL sec. The
first peak values for the central difference predictor, the trape-

zoidal rule, and the Runge-Kutta method are equal to 0.138, 0.139,
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and 0.131 in., respectively. The computation times for these methods
in the above order are approximately 22, L5, and 8% seconds., The cen-
tral difference predictor apparently gives the best results in terms
of accuracy and efficiency. Figure 6.6 shows the response by the
central difference procedure with a time step of 10_5 sec, This is
considered as the base case against which the results in the remainder
of this section will be compared.

In order to study these methods further, we increased the time
increment to 2 ¥ 1O“5 and 3 X% 10_5 sec, For the first of these time
steps, the response for the central difference predictor (see Fig. 6.7)
becomes unstable, while the other two methods give inaccurate results.

With the time increment of 3 X 10-5

sec (see Fig., 6.8), both the cen-
tral difference procedure and the trapezoidal rule give unstable re-
sults, whereas the response for the Runge-Kutta method is suppressed.
It is interesting to see that as we increase the time step to L x 10_5
and 5 X 10“5 sec, the response for the Runge-Kutta method becomes
drastically suppressed (see Fig. 6.9).

Figures 6.10 and 6.11 show responses for the three explicit me-

> and % X 10-5

thods (DT = 2 X 10 sec, respectively) with the stresses
evaluated at the four integration points instead of at the geometric
center of each element. This change was expected to result in greater
accuracy. However, it does not seem to improve the performance of
either the trapezoidal rule or the Runge-Kutta method. In addition,
it tends to make the results for the central difference procedure even
more unstable.

From these comparisons, we conclude that among the explicit methods

studied the central difference procedure is the best. With this method,
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we should calculate the stresses only at the geometric center of the

element and take them to be constant over the element.

€.2.% Comparison of Implicit Methods

Turning now to implicit methods, we first assume the stresses to
be constant throughout each element. The results for the Newmark-Beta
method (with B8 = 0.25 and y = 0.5), the Houbolt procedure, and Park's
stiffly-stable method are plotted in Fig. 6.12, The time step selected
is 10-5 sec, and the range is from zero to lO-5 sec, Comparing these
results with those of the central difference procedure in Figs. 6.4 and
6.5, we observe that the responses are significantly suppressed for all
three implicit methoeds. In order to improve the accuracy of the respomse,
the time step was reduced to the value of 10-6 sec. In this case, the
responses of all three methods coincide with each other, as shown in
Fig. 6.13, This diagram corresponds to that for the central difference
procedure in Fig. 6.4. However, the maximum displacement in Fig. 6.1%
is 0.1%3 in., compared with 0.137 in. in Fig. 6.L. It is likely that the
inaccuracy in Fig. 6.1%3 is due to the way the stresses are approximated
within each element. To investigate this matter, the stresses were evalu-
ated at the four integration‘points (parameter ISTRES = 1) instead of be-
ing evaluated only at the geometric center of the element. 1In this case,
with a time step of 10-6 sec, the results of the three implicit methods
coincide identically with that for the central difference procedure in
Fig. 6.h.

Figure 6.14 shows the response curves with a time step of 1()“5 sec

and ISTRES = 1 . These plots are comparable to that for the central dif-

ference predictor in Fig., 6.6. The first maximum for the Newmark (with
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B = 0.25 and ¥ = 0.5), Houbolt, and Park methods are 0.137, 0.138, and
0.137 in., respectively, Consequently, it is concluded that for the
implicit procedures, the stresses should be evaluated at the spatial inte~
gration points. Otherwise, extremely small time steps must be used in
order to obtain accurate results. Therefore, in the remainder of this
work (for implicit methods) we evaluate the stresses at the integration
points,

Computation times for the Newmark (with 8 = 0.25 and y = 0.5 ),
Houbolt, and Park methods in Fig. 6.1k are 106, 107, and 105 sec, respec-
tively, which are close to each other. However, some damping is observed
in the response for the Houbolt procedure, and the Newmark average accel-
eration method tends to be unstable. Compared with the central differ-
ence procedure, all three methods apparently show an increased time in-
terval between successive peaks. This increase is largest for the Houbolt
procedure, and smallest for the Newmark method. When the time step is
increased, these characteristics are magnified. Figure 6.15 shows the
responses for the three implicit methods with a time step of 3 X 10.'5 sec,
for which the Park method appears to give warginally better results.

As discussed in Section 2.3, artificial damping can be introduced in
the Newmark-Beta method by the & control parameter. The dashed curves
in Figs. 6.16 and 6.17 show the results by the Newmark method with & = 0.05
(p = 0.276 and ¥ = 0.55). 1t is seen that the stability is improved at
the expense of some loss of accuracy due to damping (or suppression) of
the response. The first maximum in Fig. 6.16 for the Newmark method with
B =0.276 and vy = 0.55 is 0.135 in. compared with 0.137 in. for the

previous solution in Fig. 6.4,
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Figures 6.18 and 6.19 show the results for the three implicit
methods with equilibrium iterations for a time step of 2 X 10“5 sec,
The maximum number of iterations is limited to five, and a conver-
gence tolerance is taken equal to 0.00l1. By inspecting these plots,
we observe that Park's method gives somewhat better results. The
Newmark method with & = 0O (B = 0.25 and ¥y = 0.5) is barely stable
(see Fig. 6.18). The result is improved by choosing a value of &
equal to 0.05 (B = 0.276 and y = 0.55). However, the computation
time is increased by approximately a factor of two (see Fig. 6.19)
in order to satisfy the tolerance of 0.0CLl.

Evidently, for large time steps, the process of constant stiff-
ness iterations does not improve the results drastically. Im such
cases, one may modify the stiffmnesses in each cycle of iteration
(Newton-Ralphson method). This would probably improve the results
to some extent, but the computation time would increase significantly.

Based on the above comparisons, we can conclude that the perfor-
mance of Park's stiffly-stable method is the best of the three implicit
methods studied in this investigation. In the following section, Park's

method will be compared with the explicit central difference procedure,

6.2.4 Comparison of the Best Explicit Method with the Best Tmplicit

Method

Table £.5 shows the computation times for the four finite element
networks shown previously in Figs. 5.4, 5.5, 5.6, and 5.8 using forty
equal time steps of 1OM5 sec, These times are plotted in Fig., 6.20.

It is seen that when geometric nonlinearities are neglected, the compu-

tation time for the central difference procedure is considerably less
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TABLE 6.5 Computation time for FORTRAN IVH Compiler (sec)

Method I Elements W 9 Elements 16 Elements | 36 Elements
NDF = 10 NDF = 20 NDF = 38 NDF = 82
Central IGN =0 5.26 1%.06 58,71 87.85
bifference | ron_1 | 20.11 17.55 101.80 £50.9
IGN=0 8.69 20 . hp 56 .42 261.04
Park
IGN=1 17.72 k2,62 9% .94 344 .05
NDF = Number of Degrees of Freedom
0 Geometric nonlinearities are neglected
IGN =

1 Geometric nonlinearities are taken into account
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than that of the Park method. However, as observed in Section 6.2.2,
the central difference procedure is prone to unstable behavior.

Solid curves in Figs. 6.21 and 6.22 show the responses of the two
methods for the 16-element mesh, The Park method produces relatively
good results, but the response for the central difference procedure
is unstable, The computation times for these two cases (when IGN = O)
are 56 and 29 sec for the Park and central difference methods, respec-
tively. The time step was reduced to 0.667 x 10-5 sec for the central
difference procedure. Computation time was increased to Lh sec, but
poor results were still obtained, as shown by the dot-dash line in
Fig. 6.22, When the time step was further decreased to 0.5 ¥ 10“5 sec,
the response (see Fig. 6.23) is comparable to that of the Park method
with DT = 1077 sec (see Fig. 6.21). However, the computation time
was increased to 57 sec {for IGN = 0). Therefore, we observe that for
the 16-element mesh and elastoplastic analysis the performance of each
method is about the same,

When geometric nonlinearities are taken into account, the computa-

5

tion times for the Park method with DT = 10 ° sec (see dashed curve in
Fig. 6.21) and central difference procedure with DT = 0.5 X 10_5 sec
(see dashed curve in Fig. 6.23) are Ok and 204 sec, respectively. In
this case, Park's method is more efficient than the central difference
method.

For the 3H-element mesh, the results are plotted in Figs. 6.2} and
6.25. 1In this case, with DT = 1077 sec {solid curves), Park's method
produces good results, but the central difference procedure is unstable.

g

The time increment was then reduced to 0.333 x 10 7 sec for the central

difference method {dot-dash curve in Fig. 6.25). The result is not as
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good as that for the Park method with DT = 1077

sec , whereas their
computation times for elastoplastic analysis (ICN = Q) are close to
each other. Consequently, for the 36-element mesh and when ICN = O ,
the Park method is marginally better than the central difference pro-
cedure. The advantage of the Park method becomes more distinct when
geometric nonlinearities are taken into account. This is due to the
fact that incorporation of geometric nonlinearities increases the

computation cost more drastically for the central difference procedure

than for the Park method (see Fig. 6.20).
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CHAPTER 7

SUMMARY , CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary and Conclusions

Several competitive solution techniques for linear and nonlinear
dynamic analysis of structures by the finite elemeat method were studied.
The accuracy, stability, and efficiency of the solution procedures were
examined by comparing the results from a plane stress sample problem.

The type of element used is the isoparametric quadrilateral. An effi-
cient operational procedure was developed for this element in order to
avoid matrix multiplications wherever possible. A lumped mass approach
has been used, which results in a diagonal mass matrix. This approach
is more efficient than the consistent (non-diagonal) mass formulation

because the equations of motion are uncoupled in the acceleration terms.

7.1.1 Linear Analysis

For linear analysis four solution techniques were compared. They
are direct linear extrapolation with the trapezoidal rule, the central
difference predictor, two cycle iteration with the trapezoidal rule,
and the normal mode method,

Among the methods studied, direct linear extrapolation with the
trapezoidal rule appears to be the best technique for linear dynamic
analysis. 1Its unconditional stability fér linear systems is an impor-
tant feature of this method. The central difference procedure should
be rated second, and two-cycle iteration with the trapezoidal rule is

third.
- 170 -



We also found that numerical integration methods are somewhat
sensitive to round-off error, especially for large problems. Con-
sequently, the use of double precision arithmetic is recommended as
a standard procedure.

The normal mode method is competitive with the other methods
studied only if modal truncation is used. In problems where the
frequencies and mode shapes are desired, use of the normal mode

procedure is mandatory.

T.1.2 Nonlinear Analysis

For nonlinear analysis, both material and geometric nonlineari-
ties were included in the finite element formulation. Elastoplastic
behavior was incorporated through a bilinear effective stress-effective
strain curve, for which strain hardening of the material is taken into
account; but the Bauschinger effect is neglected.

Three explicit methods were investigated. They are the central
difference predictor, two-cycle iteration with the trapezoidal rule,
and the fourth-order Runge-Kutta method. For these methods, a nodewise
solution technique has been developed for which only two rows of the
tangential stiffness matrix are generated at any stage in the analysis.
Consequently, large problems with several thousand degrees of freedom
can be analyzed within the fast core of the computer, which is advan-
tageous.

Three implicit methods were also studied, They are the Newmark-
Beta approach, the Houbolt procedure, and Park's stiffly-stable method.

For small time steps, all six methods studied in this investigation gave
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results that are very close to each other.

Among the three explicit methods, it was concluded that the central
difference procedure is the best, whereas the performancesg of the other
two methods are about equal. For large time steps the central dif-
ference procedure and two-cycle iteration with the trapezoidal rule pro-
duce unstable results, but the respomnse for the fourth-order Runge-Kutta
method ié unduly suppressed. We also found that for explicit methods the
stresses should be evaluated only at the geometric center of the element,

Regarding the three implicit approaches, Park's stiffly-stable me-
thod was found to be somewhat better than the Newmark-Beta method; and
Houbolt's procedure must be rated third. For large time steps, the re-
sults for the Newmark-Beta method with B = 0.25 and ¥ = 0.5 tends to
be unstable, while the response by the Houbolt method is overdamped., It
was also shown that for the implicit methods studied, the stresses should
be evaluated at the spatial integration points.

Upon comparing the best explicit method against the best implicit
method, we found that Park’'s formula is marginally better than the cen-
tral difference predictor for elastoplastic analysis (when geometric non-
linearities are ignored). The advantage of the Park method becomes more
distinct when geometric nonlinearities are taken into account. However,
for large problems it may become necessary to use the explicit central
difference method in order to obtain solutions in a reasonable amount

of time.

7.2 Recommendations

Park's method should be compared against the central difference

approach for large problems having hundreds or thousands of degrees
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of freedom. The problems studied should be highly nonlinear with re-
gard to geometric as well as material properties. An appropriate
example could be a plate or a shell in bending.

Use of a lumped mass approach is expedient for explicit methods
and has a substantial effect on their efficiency, However, for implicit
methods a consistent mass approach can be employed without much addi-
tional computational effort, This technique could be compared with
the lumped mass approach for the implicit procedures.

Damping was neglected in the present study, One may include and
study the effects of damping for different solution techniques. How;
ever, the nature of damping is poorly understood, and its incorpora-
tion into algorithms might tend to obscure the comparisoms.

In Section 6.2, we observed that with large time steps the response
for the central difference procedure was substantially magnified. On
the contrary, the response for the fourth-order Runge-Kutta method is
highly suppressed. As a result, the combination of these two methods
into one algorithm might result in a more efficient procedure. This

matter is worthy of further study.
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APPENDIX A
FORMULATIONS OF STIFFNESS MATRIX AND EQUIVALENT NODAL LOADS

FOR AN ISOPARAMETRIC QUADRILATERAL ELEMENT

We wish to develop an efficient operational procedure for calcu-
lating the stiffnesses and equivalent nodal loads. Using Egs. (3.36)

and (%.37) we can express the Jacobian matrix as

L -X5 + 17 X2 - Y5 -1 Yh
Jo= 3 (A.1)
X1 - ¢ Xh Yl + & Y2
where
Xl = T X X, + x5 + X, 5 X2 = X - x2 + x5 - xh
Yp = =¥y "V Vst 3 Y, = Yy " Yo t ¥y 7Y,
(a.2)
X = X, = X. - X, + X 3 X = = %X, + X, = X, + X
3 1 2 3 L L 1 2 3 L
Y5 = Yy T ¥ T Y5ty 3 Yy = = y;+y, - Vg * Yy
Determinant of Jacobian matrix:
1
31 = 5 0y s )0, - )+ ey - m) (g - )
o Ly = x )y, = yg) + (g = xg)(yy - y)] (8.3)

+o8 L0 = x)yg = yy) + (g = 1) (g - ¥p)]
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Inverse of Jacobian matrix:

o 1 Y1 + & Y2 Y3 + 1 Yu
J = m (A.h—)
~ J
N - Xl + £ Xk - X5 + 1 X2
For simplicity replace DG by G
- -1
G = D, = J D (3.50)
G L
~ ~ o~ ~ repeated

Terms in matrix G are as follows:

~

1

611 = 16/J] [ = 1) (y + £ + (8- 1){Y, + 1Y)l
1
G, = e [ =)y +ev,) - (1+ E)(Y5 + MY )]
J
1
G5 = ol L+ m) (Y +ey,) + (1+ E)(Y5 + MY )]
P .
1
G, = . [ @)y + £Y) + (1~ &) + 1Y)l
1” (8.5)
Gy = o f(n - 1)(- X, + € Kh) + (& - 1)(- X5 + 1 Xe)]
1
Gpy = e [ - )%+ £ %)« (6+ 1)(X - X))
1
Gy = " LA m (=% + EX) + (1+8)(- X5 + 1 X))
1
Gy, - oy (A& - ex)+ (1 -6 X +0X)]
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Element Stiffness Matrix

In Chapter % we derived the element stiffness matrix as

1 1
K = hff B’ {&,n) T, B(¢,n) 13| dedq (3.hk)
~ J _1 o~ o~ ~ ~

repeated

In the linear elastic case, the stress~strain matrix T, for both

b,

o~

plane stress and plane strain can be written in the following form

(see Section %.2.2):

E, E, 0
T, = |E B 0 (A.6)
0 0 E
3

where E1 P E2 and E, are constants. Table A,l1 shows terms of the

5
matrix S, = B“(¢,n) T, B(&,n) given explicitly in terms of the ele-

~ ~

ments of matrix G and the stress-strain constants. 1In the elasto-

~

plastic case, 35 must be replaced by the incremental elasto-plastic

matrix DF , which can be written for both plane stress and plane strain

~

problems as follows (see Section 3.3.6):

1 o %

p_

E - sym. D) D, (A7)
Dg

where Dl,...,D6 are functions of stresses. Terms of the matrix

SE for this case are given in Table A.2. 1In addition, terms of the

ot

matrices T5 and DF for both plane stress and plane strain appear

~ r~

in Chapter 3.



Table A.1

Terms of matrix S; = B (&,m) 35 B (&,m) (elastic case)

~ ~

Sg (1,1) = E, Gil + E3 Ggl

Sg (1,2) = (E2 + E5) 611 6oy

S (1,3) = By G136, + By Gy G
Sg (LB} = B, Gy Gop + By Gy Gy
55 (1,5) = By 6yq Gl5 + E3 6oy G25
5. (1,6) = E, G Gog * Eg G5 G
g (L7) = By Gy Gy, + By Gyy Gpy
8p (1,8) = E, Gy Gy, + By Gy Gy
sg (2,2) = E Ggl + B G?l

Sp (2,3) = Ey 6y, 6y + By Gy Gy
Sg (2,4} = B Gy G21 + E5 612 Gyq
S5 (2,5) = E, G15 Gyy + E5 G2§ Gy
S5 (2,6) = Ey G25 Gy E5 915 Gy q
Sy (2,7) = E, Gpy Gy + E5 Goy G1q
Sg (2,8) = B, Gy Gyp E5 Gy 61q
S5 (3,3) = B Gfg + E5 GSQ

Sp (3,4) = (E2 + E5) G Gon
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(3,5)
(3,6)
(3,7)

(3,8)

(4, 1)

(5,8)
(6,6)
(6,7)
(6,8)
(7,7)
(7,8)

(8,8)

Table A.

1

]

i

If

i

' G1s G
o Cpz G1p *

B Gy G5

Es

Es

G,, + E

3

By Goy Cpp + By

2
El G22 + E5 G

o G153 Gpp *
1 Gpx Gpp ¥
By Gyy Gpp F
By Gpy Gpp
o

E. G/, +

| Gp5 By G

12

Es

Bz
Bz

£y

2
25

1 =~ Continued

G
23

615
Goy

Gy

G25

G15
G2h

Gy

(By + Eg) G5 Gz

El Gl)—L GlB + B GELL

3
E2 Ggh G15 + E3 Glh
E1 G§5 + E5 G§3
E, Gy G25 + E5 Gyl
E; Gy, G25 + E3 Gy
£ Giu + Ey Ggu

(Ee " EB) Gy o
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00

22

12
12
12

12



Table A.2

Terms of matrix S

(1,5)
(1,6)
(1,7)
(1,8)
(2,2)
(2,3)
(2,1)
(2,5)
(2,6)
,7)
(2,8)
(353)

(3,4)

11

11

11

11

11

i1

11

11

21

21

21

21

21

21

21

12

12

~

E

= B” (&,n) DF B’

~

~

(elastoplastic case)

(D,G,4
(D_Gpy
(0,64,
(0,6,
(DG
(DG
(D,Gyy,
(D.Gy,
(D,Gpy
(DG,

(DyG,,

(DG,
(D,6,

(D65,

DyCoy) *

D;Cqq) *
D5G22) +

+

D5G15)
D5G25) +
D5G15) +
Gyy) +

D5G11) +

Debpp) +

DGyp) +

DGps) *

D5G13) +

DsGop) +

DsByp) +
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~

(D3G11

(D6

D6y,

371k
5%
(DgGpy
D610
(DeG
(D26
(DG,
(DG
(DG,
(0,6,

(1)5(;22

(&,m)

DeCo )

Dby
DgGop)
D6G12)
D6G25)

Dgly3)

Dgbpy,)
PgGyiy)
Dglqy)
DgGpp)

D6G12),
D6G25)
DG
DgGpy,)
D€y
DgGop)

Dgby,)



(355)
(3,6)
(3,7)
(3,8)
(k1)
(%,5)
(%,6)
(4,7)
(4,8)
(5,5)
(5,6)
(5,7)
(5,8)
(6,6)
(6,7)
(6,8)
(7,7)
(7,8)

(8,8)

12
12
12
12
oo
o2
20
oo
20
13
13
13
13
23
23
23

C1y

C1u

Coly

Table A,

1°13
(D36
(DyCyy,
(DgcglJr +
(DuGgg +
(DG,
(Dthj +
(D56, +
(Dthh N
(0165

2023
(D1Gy), +
(D,Cp), +
(Db{G23 +
(D,Cyy, *
(D,Gp, +
(chlh +
(DEGEM +

(DG, +

D
D5G15) +
DBGEM) +
D3G1h) +
D5G12) +
D5G25) +
D5G1§) +
DSGEh) +
D5G1h) +
D5G25) +
D5G15) +
D5G2A) +
D5G1h) +
D5G15) +
DSGQh) +

DBGlh) +
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GEE

GEE

GEE

G0

Gz

€12

Gio

€12

Gy

Gys

Gog

[}

25

G15

G13

G5

(%]
o
=

56o3) * Cpp (D565

(1)5c;23

(DG,

(D6,

(D5G22

(1)5(;15
(D5G25
(G,
(D5G2h
(D3G1§
(D563
(DBG1h
(D G

52k

(D5G25

(D,Cy),
(D56,
(D56,
(DBGEh

(DSGQM

- D6G

D6G25)

DgC15)
DeCpy,)
DeCqyy)

DgCy,)

25)
D6G1§)
D6G2u)
Dglyy)

DgG )

23
D6G15)
D6G24)
DgG11)
D¢Cy5)
Deou)
Dgb1u)
DgGoy)
Dg14)

DeCyy)



Equivalent Nodal Loads Due to Surface Loads

M

sl

Figure A.1l

Consider surface loads in the x and y directions on the adge

2»3. where ¢ = 1 (see Fig. A.1).

P = fT{W dA (3.10)
~8 S d
A repeate

We assume LA and LN to be the force per unit in-

s2 ? ws§
clined length (see Section 5.2.2). Consider a point M on the edge 2-3

at the distance u from the point 0 , where 7 = O . From Eq. (3.27)

we have

Xy = % [(1 - 1) X, + (L +n) %] (4.8)

and

Yy = % (L -m) vy + (1 +n)y.] (4.9)
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If we let

X, + X Yo + ¥

=3 (A.10)

It can be shown that

H

u = O0M = V(XM - XO)E + (yy - y0)2 = o (A.11)

where (¢ = length of edge 2-3 and is given by the equation

- 1
R (a.12)

Therefore, the infinitesimal area dA in Eq. (3.10) is obtained from

the relation

dA = hdu = %hﬂdn (A.13)

The vector of surface loads at the edge 2-3 can be written as

w, o = iwl , Wé} (A.1h)
where
Wl = -é:!-[‘-l. [(l - T]) WS]. + (1 + T]) WSE] (A']“S)
and
1
= o [ =) wg + (Len) vyl (8.16)

After substituting Eqs, (A.13) to (A.16) in Eq. (%.10) and integrating
along the edge 2-%, we find the terms of equivalent nodal loads Pg

explicitly as follows:
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pg(l) = pgl2) = pg(7) = pg(8) = ©
2w .+ W 2w .+ W
p(3) = ——E1 5 () - =y Gan)
o]
W, + 2w W + 2w
pg(5) = "S—l—é—ﬁi i pgl6) = _Ei_é t

Equivalent Nodal Loads Due to Volume Loads

1 1
by = B f f 7w, |3] dedn (3.46)
~ fy Ly M repeated
Let:
ZV = {W§1 s WVE} (A.18)
whete
LA uniform distribution in positive x direction
and
LAV uniform distribution in positive y direction.
Note that Vi1 and v, are loads per unit volume, The product Ti W

~ ™

required for numerical integration over the area of the element is as follows:

- -
wo (-6 -n)

W, (1-£)(1-m)

(L+e)(1-m)

Wvl

W (L E)(L =)

(4.19)
wy (14 )1+ )

v, (L4 E)(L+)

wo, (1= 81+ )

Voo (1 -¢e)(1+ 1)

L -
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Equivalent Nodal Loads due to Temperature Strain

P = hff B’ T, ¢ |J| dedn (3.47)
~T ~ ~5 NT -~ repeated

For uniform dilational expansion AT and for plane stress:

e, = afaT) |1 (a.20)

where ¢ 1is the coefficient of thermal expansion. For plane strain,
o must be replaced by a{l + v) , in which v is Poisson's ratio.

The product B’ T required in numerical integration in Eq. (3.47)

3 1

simplifies to the following:

11

12
e (A.21)
13
25
1k

i om

= (AE)(El + E2>

N
QO a0 60 6 0

Equivalent Nodal Loads Due to Prestrains

1

1
p = b [ [ 3w o] sz (5.48)
~ T ~ B repeated
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Let;

€, = PS2 (A.22)

- where
PS1 = OUniform expansion in x direction
PS2 = TUniform expansion in y direction
PS% = TUniform positive shear strain

The product of B“(¢,n) T, e, after simplification is as follows:

o P

G,, (E, PS1 + E., PS2) + G., &

11 BS3

G., (E. PS1L + E, PS2) + G, B

21 PS5

Gy, (B, PSL + E, PS2) + G, E, PS3

G22 (E, PS1 + E, PS2) + G, E_ PS3

Gl5 (E, PS1 + E_ PS2) + G, E_ PS3

Gy (E. PS1 + E, PS2) + G,, E_ PS3

Gy, (E, PS1 + E, PS2) + Gy, E5 PS3

Gy, (E,, PSL + E, PS2) + Gy, E; BS3
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APPENDIX B

LUMPED MASS MATRIX FOR ISOPARAMETRIC QUADRILATERAL

(Xjfy3)
E

(%q,5,)

Figure B.1l

The area of the quadrilateral can be determined from the following

relation:

1 1

A »_ffdxdy = ff |i{ dedn (B.1)

-1 -1

Using the determinant of the Jacobian matrix, ‘J] from Appendix A

~

[Eq. (A.2)], integrating, and simplifying the results, we obtain

ja
n
P

l(xl-xi)(y?.-yh) + <XM-X2)(y1—y5>} (B-2>

In Fig. A-1, ¢ 1is the geometric center and c. , ¢ and

17 %

. are at the midpoints of the sides of the quadrilateral. Thus,



X = H y = B.3
o ) c 3 (B.3)
X, + % V. +y
Xc = L E 3 yC = 1 = (Bh>
1 2 1 2
. - =5 Rt (B.5)
c ’ c !
2 2 2 2
X +X Vo ty
% . 37y ; v L 37k (8.6)
c3 2 c3 5
X, +X ; Yy, Yy
x, - L1 ; v, = S 1 (3.7)
il 2 I 2

Four subsidiary quadrilaterals are labeled in Fig. B-l as Al 3 A2 B

A5 , and Ay . From Eq. (B.?), we can write

1
A1 - 57[(X1 -Xc)(yc iR ) * (Xc "% ) (yl'-yc)J (8.8)
Substitute from relations (8.3), (8.Lk), and (B.7) into Eq. (B.8) and
simplify the results to obtain
by = 1z [(BXI-XE-Xth)(yg-yu) + (xu-xg)(Byl-yg-yfyu)]

(3.9)

Similarly, we find the expressions for A2 s A5 , and AlL as follows:

A, - = [(5x2-x1-x5--xh)(y5 "yy) o+ (xg o %) By, oy -y5-y}+)] (B.10)
A = TS [(5"3"‘1"‘2'Xu>(yu‘ye} * ("2"‘&)(5"3"’1'3’2"’“)} (B-11)
Ay = ilg [(BXLt xy o %y m 1) (yy ya) (kg -3 ) Gy -y -yg-y5)] (8.12)

Masses at the four nodes are assigned in proportion to the above

areas, Thus, the nonzero terms of the diagonal lumped mass matrix are
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as follows:

m(1,1) - m(2,2) - pA kb O (3.13)
n(3,3) - m(lk) = o4y n (5.10)
m(S:S) = m(6:6) = pAih (3-15)

n(7,7) = m(8,8)

P Ay h (B.16)

where p is the mass density and h is the thickness of the quadri-

lateral.
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APPENDIX C

PROGRAM RESPPSQ4

(Pages 196 - 234, inclusive, consist of the program listing and

sample computer output for RESPPSQ4 and are not reproduced in this

report.)
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APPENDIX D
PROGRAM NODIMP
(Pages 235 - 282, inclusive, consist of the program listing and

sample computer output for NODIMP and are not reproduced in this

report.)
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APPENDIX E
PROGRAM NODEXP
(Pages 283 -335, inclusive, consist of the program listing and

sample computer output for NODEXP and are not reproduced in this

report.)

, ; 7
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