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CHAPTER 1

INTRODUCTION

1.1 Introduction

Dynamic analysis is rapidly becoming a common consideration in

the design of structures, especially in determining response to earth

quake ground motions. Methods for linear dynamic analysis of complex

structures (where the material is assumed to be linearly elastic and

displacements are small) were developed during the last two decades

and are now well known. However, in many cases inelastic behavior

of structures must be taken into account in order to obtain an econ

omic and safe design. Nonlinear dynamic analysis of structures is

a rather new field, and many researchers are actively investigating

different aspects of the subject. Some of the important applications

of nonlinear analysis are found in the design of missiles, aircraft,

nuclear reactors, transportation vehicles, multi-story buildings

located in seismic regions, etc.

Dynamic analysis of complex structures by the finite element method

is performed in two major steps. The first step is to develop a finite

number of equations of motion, and the second step is to solve these

equations for the response at the nodes and the stresses within the

elements. For large problems with several hundreds (or thousands) of

degrees of freedom, the selection of an efficient algorithm for solving

the equations of motion becomes a very important factor. This is espe

cially true for nonlinear analysis, for which the cost of computations
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is an order of magnitude higher than that for linear analysis.

1.2 Ob j ectives

The objectives of this project are to determine the most efficient

techniques for linear and nonlinear dynamic analysis of structures mod

eled by finite elements. The selection of solution techniques to be

compared is based on the information available in the literature (see

Chapter 2). The accuracy, stability, and efficiency of the solution

techniques are examined by comparing the results from a plane stress

sample problem.

For linear analysis of the sample problem, results for the fol

lowing solution techniques are compared: (1) direct linear extra

polation with the trapezoidal rule, (2) central difference predictor,

(3) two-cycle iteration with the trapezoidal rule, and (4) normal

mode method.

For nonlinear analysis, both material and geometric nonlinearities

are included in the finite element formulation. Three implicit solution

techniques are investigated in this work. They are (1) Newmark-Beta

method, (2) Houbolt's method, and (3) Park's stiffly-stable method. In

addition, the following explicit methods are compared: (1) central

difference predictor, (2) two-cycle iteration wita the trapezoidal

rule, and (3) fourth-order Runge-Kutta method.

Algorithms for these solution techniques are developed and are

implemented in three computer programs. The first program is for linear

analysis, the second is for nonlinear analysis by implicit methods, and

the third is for nonlinear analysis by explicit methods.

- 2 -



CHAPTER 2

SOLUTION TECHNIQUES FOR DYNAMIC ANALYSIS OF STRUCTURES

2.1 Introduction

For the solution of linear equations of motion, one can employ

either the normal-mode method of dynamic analysis or some step-by-

step numerical integration procedure. However, for nonlinear equa-

tions of motion, the use of numerical integration procedures appears

to be mandatory. The normal-mode method is well known in the litera

ture and is described briefly in Section 4.1.5. In this chapter,

step-by-step integration procedures applied to dynamic analysis of

structures are described. Information available in the literature

is summarized, and this research consists of investigating and com-

paring the more promising methods.

In numerical integration procedures, time derivatives are usually

approximated as difference equations involving one or more increments

of time. If a given formula expresses the response in terms of pre-

viously-determined values of displacement, velocity, or acceleration,

it is called a predictor (or an explicit formula); otherwise, it is

called a corrector (or an implicit formula).

An estimate of the error (and its order) in the use of a differ-

ence formula can be obtained by comparing the formula with the expansion

of Taylor's series [47,55]. For example, if the difference formula

matches up to and including the (6t)4 term in the Taylor's series,

- 3 -



it is called a fourth-order method; and its truncation error is the

next term in the Taylor's series. Although this local truncation error

gives an estimate of the accuracy of the method, the propagated error

associated with numerical round-off has a random character and may be

much more important. The repetitive use of an app:coximation formula

causes error accumulation that may artifically magnify or attenuate

the response. Also, when the order of the difference equation is

higher than that of the differential equation, extr.aneous terms may be

introduced into the approximate solution [8]. TheBe spurious solutions,

accompanied by round-off error over a sequenc::e of time steps, may domi

nate the response and give unstable results. Whih~ the trunc::ation error

can always be estimated or bounded, numerical instability is signi

ficantly more difficult to analyze. Almost all of the existing tech

niques for examining the stability of numerical integration methods

apply only to linear systems [2,40,48,55]. 110reov(~r, stability in

linear systems does not insure stability in 110nlin(~ar systems.

For linear systems, a numerical integration procedure is called

unconditionally stable if the solution is bounded l~egardless of the

size of the time step. It is called conditionally stable if the solu

tion is bounded for any time step smaller than a so-called critical

time step. Finally, if the solution approaches zero as the number of

time steps approaches infinity, the numericaJL integration procedure is

said to be asymptotically stable (or A-stablE~).
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2.2 Central Difference Predictor

The second-order central difference formula [48] is as follows:

d. 11.- (i > 1) (2.1 )

where d. is the displacement at the end of the ith uniform· time step
1.

@f size 6t • This formula yields the predictor

d.
1.

-d. 2 + 2d. 1 + (6t)2 d. I
1.- 1.- 1.-

(2.2 )

Dahlquist [7] showed that no explicit multistep integration procedure

(including the central difference predictor) can be asymptotically

stable. Kreig [27] found that among the second-order predictors, the

central difference formula has the largest stable time step of all,

for which

(6t)cr 21mmax

where m is the highest angular frequency of the analytical model.max

Key and Beisinger [26] used this method for the linear analysis

of thin shells. In addition, Krieg and Key [28] showed that using a

diagonal mass matrix improves the accuracy and efficiency of the cen-

tral difference procedure. Successful use of this method in non-

linear analysis has also been reported by Key [25]. He used arti-

ficial viscosity to control the instability of the formula.

Weeks [56] compared the explicit central difference procedure

with the implicit Houbolt and average-acceleration methods (to be dis-

cussed in the following sections) for linear as well as geometrically
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nonlinear problems. He found the central difference procedure generally

superior. Witmer et a1 [58] searched for the optimal predictor-corrector

method for systems of second-order differenti.a1 equ.ations. They also

concluded that the central difference predictor is best. The main dis-

advantage of this method is that for a fine network of elements a very

small time step is required to obtain stable results.

2.3 Newmark-Beta Method

Newmark [39] proposed the following implicit expressions for

velocity and displacement for calculating the dynamic response of

structures:

.
d.

1

d.
1

..
d. 1 + y.6t d. + (1 - y) .6t d. 1
1- 1 1-

(2.4 )

Because of its versatility, this approach is sometimes referred to as

the generalized acceleration method. By setting y equal to 0.5 and

assigning different values to the parameter ~3 , several well-known

procedures can be obtained. They are the linear acceleration method

(when 13

(when 13

1/6 ) , the average acceleration method or trapezoidal rule

1/4 ) , and the constant acceleration method (when 13 = 1/8 )

The most widely used form of this method is the ave',rage acceleration

method, which is unconditionally stable for linear systems [40].

Dahlquist ['J] showed that the trapezoidal rule is the most accurate

of the stable second-order formulas. Nickell [41] examined several

step-by-step integration procedures and apparl:nt1y found the trape-

zoida1 rule to be the most attractive of all for both linear and
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nonlinear problems. Dunham et al [9] also reached the same conclusion.

In the Newmark-Beta method artificial damping can be provided by

the 0 control parameter, as recommended by Goudreau [15]. This parame-

ter is related to y by the equation

0.5 + 0 (0 ~ 0) (2.6 )

It is shown in Reference 15 that for unconditional stability of the

Newmark-Beta method we must choose the parameter ~ from the follow-

ing relation:

Nagarajan and Popov [37,38] have used this method because of the flexi-

bility in selecting the amount of artificial damping through the use of

the 0 parameter.

2.4 Houbolt Method

Based on a third-order interpolation of displacements, Houbolt [19],

presented the following multi-step implicit formulas for velocity and

acceleration in terms of displacements:

.
d.
~

d.
~

(-2d. 3 + 9d. 2 - 18 d. 1 + lld.) / (66t)
~- ~- ~- ~

(-d. 3 + 4d. 2 - 5d. 1 + 2d.) / (6t)2
~- ~- ~- ~

(2.8 )

Like the average-acceleration method, the Houbolt method is uncondi-

tionally stable for linear systems [22]. Stricklin et al [51] com-

pared this method against the fourth-order Runge-Kutta method and the

Newmark-Beta method with various values of parameters for geometrically
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nonlinear problems, using the pseudo-force technique. They found the

Houbolt method to be the optimum one. However, as ~Ieaver pointed out

[55], these comparisons involved the solution of siInu1taneous equa-

tions for all methods studied; and if this time-conBuming process is

avoided (for explicit methods), we may reach a different conclusion.

In Reference 51 it was also shown that the unconditional stability of

the Houbolt procedure and the average-acceleration method does not

exist in nonlinear problems. McNamara [)3] has also found the Houbolt

method to be the most suitable scheme for solving nonlinear problems.

However, in contrast with References 33 and 51, Weeks [56] concluded

that the average-acceleration procedure is more economical than the

Houbolt method.

2.5 Iteration With the Trapezoidal Rule

The trapezoidal rule for displacements and velocities are

d.
~

d.
~

d. 1 + 6t(d. 1 + d.)/2
~- ~- ~

. ....
d. 1 + 6t(d. 1 + d.)/2
~- ~- ~

(2.10 )

(2.11 )

Boggs [5] has shown that iteration with the trapezoidal rule in a

predictor-corrector form is an efficient procedure for solving non-

linear problems. Nickell [52] has also recommended use of the trape-

zoidal rule with limited iterations. Weaver [55] has carried out

numerical experiments for limited iteration with the trapezoidal rule

and reported satisfactory accuracy for this approach. He recommends

that the number of iterations be limited to two.
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2.6 Runge-Kutta Methods

Runge-Kutta methods are well-known in the classical literature on

numerical analysis [17,29,47,49]. They are designed to approximate

Taylor's series. The general fourth-order Runge-Kutta formulas for an
..

equation in the form d f(t,d) reduces to [17]

d. d. 1 +
. 6t 5

(2.12 )
1. 1- di _16t + ES (~l + ~2 + ~3) + O(6t)

d. d. 1
1 5

(2.13)
1. 1.- + 6 (~l + 2~2 + 2~3 + ~4) + O(6t)

where

~l = 6t f (t i _l , d
i

_
l

) (2.14 )

6t f (t i _l + 6t/2 d. 1
6t· ) (2.15 )~2 1.-

+ "2 di _l

6t f(t i _l + 6t/2 , d. 1 6t . 6t) (2.16 )~3 + ~ di _l + 1+ ~l1.-

6t f(t i _l + 6t , d. 1 + . 6t) (2.17)~4 1- 6t di - l + "2 ~2

This explicit single-step method is self-starting and highly accurate

(its truncation error is of the order of (6t)5). However, the four

function evaluations makes this approach rather time consuming.

Gupta [16] has used this method successfully in a nodewise manner in

solving geometrically nonlinear problems. Weaver [55] also reported

good results for this procedure, considering both speed and accuracy.

In addition, he recommended that (for the purpose of making more ex-

tensive comparisons) the two-cycle iteration with the trapezoidal rule

and the fourth-order Runge-Kutta method be implemented in a finite ele-

ment program, using a diagonal mass matrix and a nodewise solution pro-

cedure.
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2.7 Stiffly-Stable Methods

For high frequencies of vibration, the accuraey of the solution

is not as important as the stability. In order to guarantee sta-

bility, one may be forced to use a very smallL time step that will

unduly increase the cost of computations. For the purpose of pro-

ducing A-stability of higher vibrational modHs (or stiff compo-

nents), Gear [12,13] presented a new class of time integrators,

called stiffly-stable methods. Jensen [21] modifiE!d Gear is third-

order formula and presented a new formula that has a larger stable

time step. However, numerical experiments carried out by Weaver [55]

indicate that the second-order Gear method and the third-order Gear

method with Jensen's modifications do not appear to be competitive

with the other methods studied. Recently, Pa.rk [4L!<,45] has developed

an improved stiffly-stable method by combining Gear" s second-order and

third-order formulas. He obtained the following multi-step implicit

difference equation for velocity:

.
d. = (20d. - 30d . 1 + l2d. 2 - 2d. 3) I (12L.t)

1 1 1- 1- 1-
(2.18 )

He proved that this formula is unconditionally stable for linear

systems and applied it for both linear an,:d nonlinear oscillators.

He concluded that it is second best to the Ne:wmark-Beta method for

linear systems and is better than the Newmark-Beta as well as the

Houbo1t procedure for nonlinear problems. This method seems to be

promising, and it warrants more investigation by comparing it with

other good possibilities.
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A multitude of other methods have been proposed by various

investigators. However, based on the information available in the

literature, they do not appear to be as good as those already men

tioned. A literature survey of numerous solution techniques is pre

sented in Reference 55.

From the study of the literature, some contradictory results are

seen regarding the choice of the best solution technique for linear

and (especially) nonlinear analysis of structures. These apparent

contradictions are due to the interaction of many factors involved.

For certain problems some specific procedure appears to be the opti

mum technique. For example, in wave propagation problems one must

use a small time step in order to trace the response properly. Con

sequently, an explicit technique like the central difference proce

dure appears to be the most suitable one. More generally, however,

the choice should be based upon accuracy, stability, storage require

ments, and computational efficiency.

- 11 -



CHAPTER 3

FINITE-ELEMENT FORMULATION OF EQUATIONS OF MOTION

3.1 Introduction

Not very many practical problems, especially in a field such as

earthquake engineering, have so-called exact or analytical solutions. Even

for those which have analytical solutions, many simplifying assump-

tions must be introduced in order that they may be amenable to ana

lytical solution procedures like similarity solutions and Fourier

and Laplace transformations. Thus, applying some sort of numerical

or approximate solutions to many practical problems is essential.

Among the common approximate methods, perturbation methods, power

series, method of weighted residuals, the finite difference technique

and the finite element method can be mentioned. With the advent of

high speed digital computers, the finite difference method and the

finite element method appear to be the most successful of all. For

problems with complicated configurations and boundary conditions, the

finite element method has advantages over the method of finite differ

ences. In this study, the method of finite elements has been used.

There are different ways of formulating the problem by finite

elements. From a structural point of view, the finite element formu

lation can be divided into three categories:

1. Displacement formulation (stiffness or potential energy

approach).

2. Stress formulation (flexibility or c.omplementary potential

energy approach).
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3. Mixed formulation (mixed-energy principles or Reissner

principle).

Up to this time, the majority of finite element theory has been

based on the displacement formulation, and in this work a displace

ment approach has been used.

The type of element used in this study to model the plane stress

and plane strain problem is the isoparametric quadrilateral element.

The approach of isoparametric formulation has been used with great

success in many different areas [6,62]. Recently, it has been shown

that the isoparametric formulation is highly versatile and efficient

for nonlinear structural problems [1,63].

In Sections 3.2 and 3.3, equations of motion will be formulated

for an isoparametric quadrilateral element.

3.2 Linear Analysis

3.2.1 Finite Element Formulation

The principle of virtual work for an elastic structure in equili

brium and subjected to a system of virtual displacements can be stated

by the following equation [46];

aU

where aW is the virtual work of external loads and aU is the vir

tual strain energy of internal stresses. It is noted that the virtual

displacements must be a set that do not violate the constraints (geo

metric boundary conditions) of the structure.
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When we apply this principle to a typical element, the virtual work

of external loads is given by the expression

oW p' oq + f:~
A

ou dA + f :~ O~ dV - )( p U'

V V

ou dV (3.2 )

where q , u , p , Ws...., ....,
and w

v....,
are vectors defining the nodal displace-

ments, generic displacements, concentrated nodal loads, distributed sur-

face loads, and distributed body forces. In addition, A, V and p

define area, volume and mass density of the element. The prime sign

indicates the transpose of a vector.

Similarly, the virtual strain energy of the stresses is given by

the expression

oD := J0-' OE dV

V

where 0- and OE are vectors of stresses and virtual strains, respec-

tively.

Generic displacements and nodal displacem.ents are related to each

other by the matrix of displacement shape functions Tl as follows:

u

Also, the strain-displacement relationships can be written as

E B q

where T2 is a matrix containing derivatives with respect to the co-

ordinates and B is the strain-displacement IT~trix. In addition, the

following relation holds among the stresses and strains

E T....,
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where and Ep are vectors of temperature strains and prestrains,

and T
3

is the stress-strain matrix (to be derived for plane problems
'"

in the following article).

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1) and replacing

u , J, and E from Eqs. (3.4) through (3.6) (and noting that the

virtual displacement 5q is arbitrary and therefore can be cancelled

from both sides of the equation), we obtain the following equations of

motion:

m q + K q

in which

m 1p :1 :1 dV

V

K 1:1:2 ~ T
2

T
1

dV I~' ~ ~ dv
V V

Ps 1:1 w dA
s

'" '"A

PV ::= 1:1 :v dV
V

PT 1~1:2 ~ ET dV

V

Pp 1:1 T' T
3

Ep dV
2

'" '" "!
V

(3.8)

(3.9 )

It is clear that and Pp are equivalent nodal loads

due to surface loads, volume loads, temperature strains, and prestrains.
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3.2.2 Stress-Strain Relationships

Plane Stress

In the case of plane stress, by definition we have [52]

x

cr
zz

cr =cr =0xz yz

i
dx

crxy

cryy

t ----+- crxx
~fxy

Fig. 3.1 Stresses at a Point in a Two Dimensional Problem

Employing Hooke's law, one determines strains in terms of stresses

in an isotropic material as follows:

1
(crxx cryy ) (3. 15)E E - Vxx

1
(cr - vcr) (3. 16 )E Eyy yy xx

2(1 + v)
(3. 17)'1xy crE xy

- 16 -



where E and v are Young's modulus and Poisson's ratio.

Solving the above equations for stresses, one obtains the stress-

strain matrix ~. Thus,

cr

where

1 V 0
E

~ 2 V 1 0 (3. 19)
1 - V

0 0
I-v
2

and 0" = {cr , 0" , 0" } E {E , E , I XY }xx yy xy xx yy
"'"

Plane Strain

In the case of plane strain, we assume that:

E zz = o

For an isotropic material the strains in terms of the stresses are as

follows:

1
(O"xx O"z) (3.21 )E

E - V 0" - Vxx yy

1
(O"yy O"zz) (3.22 )E = E - V 0" - Vyy xx

1
(0" - - V 0" ) 0 (3·23)E E V 0"

zz zz xx yy

2(1 + v)
(3·24 )I xy E

0"xy

Solving the above equations for stresses, we obtain matrix
~
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[defined by Eq. (3.18)] as

I-V V 0

T
3

E
l··v 0 (3·25 )(1 + v) (1 - 2V) V

'" l-2V
0 ()

2

Also, from Eq. (3.23), the stress in the z-direction will be found as

rr
zz

V (rr + rr )xx yy'

3.2.3 Evaluation of Element Matrices

In this section, we formulate and derive the element matrices for

a 4-node isoparametric quadrilateral element. This element is displayed

in Fig. 3.2.

'1

'1 -+q
5

y ------------ ~

-- -- ~ 1

S
x ---.. q

ql
3

1
'1 0= -1

q2
q4

Fig. 3.2 An Isoparametric Quadrilateral Element
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For this element, the same interpolation formulas define both the

geometric and displacement shape functions, as given by the following

expressions:

and

(3.28)
or in matrix form

f l (~,11) (1-~)(1-11)/4

f2 ( ~, 11) (1+1;) (1-11)/4

(3 .30)
f
3

( 1;, 11) :::: (1+1;) (1+11) /4

f 4 (;,11) :::: (1- ;) (1+11) /l~
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Concisely,

u(~,~) = Tl(~'~) q
'"

(3.31)

Generic displacements are in terms of local natural coordinates,

whereas differentiations with respect to the global coordinates x

and y are required in the strain-displacement relationships. Thus,

we must use the chain rule for differentiation. In matrix form we

can write

M ~ ih M M
Cl1; Clg Cl1; Clx Clx

= J (3 .32 )

M ~ Qy M M
Cl1"l Cl1"l Cl1"l ClY ClY

and

M
r~

Q!l. Q! Q!
Clx Clx Clg Clg

-1
(3 ·33)J

M L~ Q!l. M M
ClY ClY Cl1"l Cli)

The array J is called the Jacobian matrix. Terms in this ma-

trix can be evaluated by differentiating Eqs. (3.27), as follows:

Clx
4

Clf.
J ll L ~

= = -x.
Cl1; Cl1;

1

i=l

ClY
4

Clf.

LJ
12

l.
= -yo

ClS i=l
Cl~ 1

Clx
4

Clf.
J 2l L ~

(Cont'd)--x.
Cl'l Cl1"l

1

i=l
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dY
)1

df.
J 22 L l

(3.34)-yo
dT) i=l

dT) l

In matrix fann,

J DL C (3 .35)
r-J '"

where

d f 1 d f2 d f
3 df4

dS dS dS dS
DL

d f 1 d f2 d f
3 df4

dT) dT) dT) (1)

-(1-T)) (1-1)) (1+T)) -(1+1))
1
..:.. (3.36)
4

-(l-s) -(l+s) (1+s) (1- s)

and

xl Y1

C
x2 Y2

(3.37)
x
3 Y3

x4 Y4

The inverse of the Jacobian matrix is:

Ja 1 322 -312. 1 2Y 2Y
dT) - d

-1 S
'" (3 ·38)J =-=-
IJ I 13 I -J21 J 11

13 I Clx dx
- dT) ~
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where

To detennine all of the derivatives required for the strain-dis-

placement matrix, we apply Eq. (3.33) repeatedly, as follows:

df. df.
l l

ex dS
-1 i 1,2,3,4J =:

df. df.
l l

dY dT)

(3 .39)

Altogether,

where

df
l df

2 df
3

df
4

ex dX dX dX

DC (3.41)
df

l
df

2
df

3
df

4

ey dY dY dy

Now, the strain-displacement matrix B(s,T)) =: T2 Tl(s,T)) can be derived
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in terms of elements of matrix DC as follows:
'"

d
0

dX

d f 1 0 f 2 0 f
3

0 f 4 0

B 0

dY
0 f 1 0 f2 0 f

3
0 f4d d

dY dX

df1 df2
0

df
3 0

df4
00

dX dX dX dX

0
df

1
0

df2
0

df
3 0

df4

dY dY dY dY

df1 df
1 df

2 df
2 df

3 ~ df4 df4

dY dX dY dX dY dX dY dX

D
Cll 0 D

C12 0 D
C13

0 DC14 0

0 DC21 0 D
C22 0 D

C23 0 DC24

DC2l
D
Cll

D
C22

D
C12

D
C23

D
C13

D
C24 DC14

Having derived the matrices Tl , T
3

and B , we can also evaluate
'" '"

the element stiffness matrix, mass matrix, and equivalent nodal loads by
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numerical integrations, as follows:

m

K (
-1

B'(~,T]) T3 B(~,'r\) [J[ dsdTl,
'" '" '"

1 1

pS == h Sf Ti(s,T]) w IJ I dsdT] (3·45 )s
'"-1 -1

Pv h {f Ti(s,T]) w IJ I dsdT] (3·46 )v
-1 -1

1 1

PT == h LL ~ , ( s , T]) ~ ~T IJ [ d~dT] (3·47)

1 1

pp == h f J ~'(',~)::) E IJ I d~,dT] (3.48)
",p

-1 -1

In these equations, h is equal to the thickness of the element for

plane stress problems; and it is taken equal to uni.ty for plane strain

problems.

Detailed formulations of the element stiffnesfles and equivalent

nodal loads are given in Appendix A. It should be pointed out that

there are two ways of calculating the element mass matrix. The ap-

proach based on Eq. (3.43) results in a non-diagonal (consistent) mass

matrix. The second way of calculating the mass matrix is based upon

physical intuition. In this case the mass of the element is assumed
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to be lumped at the nodes, resulting in a diagonal mass matrix. This

approach is more efficient because of the fact that the equations of

motion will be uncoupled in the accleration terms. In this study a

lumped mass approach has been used, and this type of mass matrix for a

quadrilateral element is derived in Appendix B.

3.3 Nonlinear Analysis

In this section, equations of motion will be derived for the very

general large dispacement and large strain type of analysis. For com

plete generality, use of a continuum approach and tensor notation is

essential for finite strain formulations. Thus, a continuum approach

with tensor notation along with matrix formulation has been employed

in this presentation. Two different approaches have been in common

use for formulating nonlinear problems. They are the Lagrangian and

the Eulerian formulations [34]. In the Lagrangian formulation, all

the variables are referred to the undeformed configuration. However,

in the Eulerian formulation, all the variables are referred to the

deformed configuration. When coordinates are introduced into the

equations, the initial coordinates for the undeformed configuration

are used in the Lagrangian formulation, while updated coordinates

for the deformed configuration are used in the Eulerian formulation.

Some applications of these formulations for nonlinear static and

dynamic problems are given in References 1, 36, and 63. But,

Zienkiewicz and Nayak [63] and Powell and Mondkar [36] have preferred

the Lagrangian formulation over the Eulerian formulation. They have

pointed out the following advantages for the Lagrangian approach:
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1. The effects of large displacements are implicit in the formu-

lation, and no transformation of element matrices i.s needed in order to

take into account updating of the nodal coorclinatef; due to the change

of geometry.

2. In the Lagrangian formulation, the i.ncrements of stress and

strain can be related simply by the equation

der

so that stresses are evaluated by simple addi.tions" However, in the

Eulerian formulation, where stresses are referred to in the deformed

configuratio?-, this cannot be accomplished because the changes may

occur due to pure rigid body rotation. In this case, introduction of

another measure of stress called Jaumann StrElSS [6;;] is necessary, and

stresses are obtained by transformation and addition.

3. For anisotropic material, the Lagrangian formulation is more

advantageous. This is due to the fact that anisotropy is referred to

the axes in the undeformed configuration.

In this section, a Lagrangian approach for nonlinear analysis will

be presented. In the Lagrangian formulation)' Green-Lagrangian strain

tensor and Piola-Kirchhoff stress tensors are used as measures of

strain and stress. These tensors w~ll first be defined briefly; then

incremental equations of motion wi~l be derived from the principle of

virtual displacements.
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3.3.1 Kinematic Definitions

Before defining the Green-Lagrangian strain tensor and the Piola-

Kirchhoff stress tensors, we need to define three other tensors. These

are the deformation gradient, the spatial deformation gradient, and the

Green deformation tensor [30,34].

Deformation Gradient

Suppose that a body has a particular configuration at the reference

time t and another configuration at time t ; and consider two neigh
o

boring points P
l

and P
2

, as shown in Fig. 3.3. Let the position of

the point P
l

before and after deformation be located by the vectors

x = {xl' x2 ' x
3

} and X = {Xl' X2 ' X
3

} , respectively. The deforma-

tion gradient is denoted by

dX

and defined as follows:

where

dX {~l ~2 dX
3

}

dx {dxl ' dX2 ' dx3}

and

~l ~l ~l

~l dX
2

dX
3

~ dX
2

dX
2 (3.51 )?

N dX
l ~2 dX

3
dX

3
dX

3 ~3

dXl dX
2

dX
3
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o
Fig. 3.3 Body Before and After Deformations

~+t
dJt ~

dA t '"

t

~

(b) Body at Time t(a) Body at Time t = 0

Fig. 3.4 Force Vectors for Definitions of Piola-Kirchhoff Stress
Tensors
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Equation (3.50) can be written in indicial-summation form as:

dX.
1

taxi
. 1 dx.
J= J

dx.
J

(i 1)2,3)

Hereafter, the summation part will be dropped and just the indicia1

(short form) notation will be used. Thus) the deformation gradient

can be written in indicial form as

dx.
1

dx.
J

It is noted that the deformation gradient ? refers to the un-

deformed configuration.

Spatial Deformation Gradient

The spatial deformation gradient tensor is similar to the de-

formation gradient tensor, but with reference to the deformed configu-

ration.
-1

We denote it by ? (the reason for this notation will be

clear later). It is defined as follows:

dx
-1

dX (3.54 ):;: ?

where

dX1
dXl dXl

dX1
dX

2
dX

3

-1 dX
2

dX2
dX

2 (3.55).?
dXl

dX
2

dX
3

~ dX3 2lx
3

dX1 dX2 dX
3
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Or in indicia1 form

and

dx.
1.

-1
1/•.

1.J

CJx.
__1. dX.

dX J
j

dx.__1.

dX.
J

Now it can easily be shown that

product of a row of // and a column

-1
!///
'" '" -1

of //

I because a typical inner

yields

dX
i

dX1----+
CJx

1
dX

j

dX
i

dX2----+
dX

2
dX

j

5 ..
J.J

where 5.. is the Kronecker delta (1 if i -- j
1.J

Green Deformation Tensor

Oif i/j).

The Green deformation tensor is denoted by E and refers to the

undeformed configuration. It gives the current squared length of the

vector at time t. In matrix notation we have

dx' E dx

In indicia1 notation this becomes

dx. E.. dx.
1. 1.J J

The Green deformation tensor E can be related to the deformation
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gradient ? as follows:

dX' dX ? dx)' (? dx) dx ' , df/ ? x

Comparing this expression with Eq. (3.58), we see that

E

Or in indicial form

E..
~J

(3.61)

3.3.2 Green-Lagrangian Strain Tensor

By definition, thE Green-Lagrangian strain tensor gives the change

in the squared length of the original vector dx as follows [34]:

In matrix notation:

2 dx' E dx (3·62 )

In indicial notation:

2 dx. E •• dx.
~ ~J J

where ds
o is the length of the vector at time t

o

From the relations (3.59) and (3.63) and noting that

dx. dx.
~ ~

dx. 0 .. dx.
~ ~J J

we find the following relationship between the Green-Lagrangian strain

tensor E and the Green deformation tensor E

2 E ••
~J

E.. - 0 ..
~J ~J
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or in matrix notation

2 E E - I

After substituting E•.
1.J

from Eq. (3.61) into Eq. (3.64), we obtain

Eo •
1.J

1 (e~ e~ _b .. )
2 Ox. Ox. 1.J

1. J

We can express the Green-Lagrangian strain tensor in terms of dis-

placements by writing out

or

E ••
1.J

and using the following relation:

x := X + U

X.
1.

x. + U.
1. 1.

(3·68 )

where u is the vector of displacements. The result is as follows:

E ••
1.J

1 (eui .eu . d~ dUk )_ __ + --l + _

2 Ox. dx. Ox. dx.
J 1. 1. J

(3·69 )

3.3.3 Piola-Kirchhoff Stress Tensors

In the Lagrangian formulation, where strains are referred to the

original position (x) rather than the current position (X) , we also

need to define the stresses with respect to the original configuration.

We now make two different definitions of strE~sses that have been used

in the Lagrangian formulation. These are the so-called first and

second Piola-Kirchhoff stress tensors [10 ,34 ']. Thl~Y can be defined in

terms of the force vectors illustrated in Fig. 3.4. The force vector

dp
t

acts on a point of the surface at time t with coordinates X
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whose unit outward normal is Furthermore, let the corresponding

unit outward normal at the reference time be ~o The first Piola-

Kirchhoff stress tensor (sometimes called the Lagrangian stress tensor)

gives the actual force dpt
at time t on the deformed area dA t .

""
However, it is computed on the basis of the undeformed area dA

o as

follows:

where ~ and T are Cauchy and first Piola-Kirchhoff stresses, re-

spectively. It should be pointed out that the Cauchy stress ~

(referring to the deformed configuration) is the true stress. On the

other hand, the Piola-Kirchhoff stress tensors are only pseudo-stress

tensors.

For the second Piola-Kirchhoff stress tensor, we first define a

pseudo-force ""t tdP that is related to the actual force dP by the

same transformation rule as that by which the vector dx for the

original coordinates x is related to the vector dX for the deformed

coordinates X Thus,

or in indicial form

dx. t
__1 dP.
dx. J

J

Now, the second Piola-Kirchhoff stress tensor rr appears within
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the following expression:

[1-1 dpt ( -+0 ) 0
= ~ • ~ dA

It can be proven that the following relations hold between the

Pio1a-Kirchhoff and Cauchy stress tensors [10,34]:

0
P -1 ([1-1) , (til),0- t [I T T

P '"
0

P -1
T t [I T

'" P

Also, in indicia1 form

po dx. dx.
I. J

0- .. -----T
I.J t dX dX mn

p m n
0

p dx.
T ••

I.
= - --,.

I.J t dX mj
P m

(3·Tr)

where o
p and t

P are mass densities in the undeformed and deformed

configurations.

Also, the expression for the Cauchy stress in terms of the second

Pio1a-Kirchhoff stress tensor is as follows:

t
P

or in indicia1 form

T

,. ..
I.J

t
P dX. dX.

I. J----0-

°dx dX ron
p m n
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It should be noted that the first Piola-Kirchhoff stress tensor is

simpler. However, from Eq. (3.77) it is seen that, in general, it is a

nonsymmetric matrix and, consequently, is cumbersome to use in conjunc-

tion with a symmetric strain tensor. On the other hand, we see from

Eq. (3.76) that the second Piola-Kirchhoff stress tensor is symmetric

whenever the Cauchy stress tensor is symmetric. As a sresult, the

second Piola-Kirchhoff stress tensor is usually preferred in finite

strain formulations.

Finally, one point should be added. While the Piola-Kirchhoff

stress tensors are only pseudo-stresses when large strains are used,

they become real stresses whenever strains are small. In such a case,

the partial derivatives of the displacements with respect to the origi-

nal coordinates are all small compared to unity

( cu.
--~

cx.
J

and the deformation gradient ff approaches the identity matrix I •

Consequently, the Piola-Kirchhoff stress tensors approach the Cauchy

stress tensor. Furthermore, the product of the partial derivatives

of the displacements will be negligible in comparison to the linear

terms in Eq. (3.69), and the Green-Lagrangian strain tensor reduces

to the well-known linear strain tensor.

3.3.4 Finite Element Formulation

In this section we first write the incremental equations of

motion by using the principle of virtual displacements and then
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discretize them by the method of finite elements. The principle of

virtual displacements in terms of the second Piola-Kirchhoff stress

tensor and the Green-Lagrangian strain tensor can be written as

follows [34]:

5W
t
+
6t

- fext
V

o
(3.80)

In this relation, which leads to dynamic equilibrium equations for the

body at time t+6t, the symbols t+6t
0-. • and
~J

t+6t
E ••
~J

represent the second

Piola-Kirchhoff stress and Green-Lagrangian strain tensors at time t+6t

The term owt +6t
ext

denotes the virtual work of external loads and is

the original volume of the body. The symbol represents the dis-

placement at time t+6t , and 6~ is the incremental displacement.

That is,

t+6t
~

t
-~ (3.81 )

We wish to obtain the equations of motion between two neighboring

positions at times t and t+6t. Therefore, the virtual displacements

in Eq. (3.80) are taken to be the variations of incremental displacements

between time t and t+6t for a compatible state of deformation,

We exploit the following decomposition of stresses and strains

t+6t t
(3.82 )0- •• 0- •• + 60· ..

~J ~J ~J

t+6t t
+ 6E .. (3.83 )E.. E..

~J ~J ~J

where superscripts refer to time and 6 indicates the increments of

stress or strain between time t and t+6t .
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From Eq. (3.83) we can write virtual strains as

Also, Eq. (3.69) can be written as

5 (,0.E. . )
~J

(3.84 )

t+L'>t
E ••
~J

where commas indicate spatial derivatives with respect to the initial

configuration. Furthermore, we can write

t+.6t
u.

1

t
u. + L'>u.
~ ~

(3·86 )

After substituting Eq. (3.86) into Eq. (3.85) and comparing the re-

sults with Eq. (3.83), we find the following relations for the incre-

mental strains:

where

L'>E ••
~J

(3.87)

and

e ..
1J 2

1 (L'>u.. + L'>u .. + u,t • L'>u, • + u,t .. L'>u, .)
1,J J,l K,l K,J K,J K,l (3·88 )

~ij

We assume that the incremental second Piola-Kirchhoff stress

tensor is linearly related to the incremental Green-Lagrangian

strain tensor. Therefore,

00..
1J

c.. L'>E
1J1tUl 1tUl

- 37 -
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where C.. is the constitutive tensor. After substituting Eqs.
~Jmn

(3.82), (3.84) and (3.90) into Eq. (3.80), we obtain

fa (cr~. + c. . 6E ) 0 (6E .. ) dV
o owt +6t -J~ ° ..t+6t

o (6~) dVop uk
~J ~Jnm nm ~J ext

V VO

(3.91 )
or

~o C. . 6E O(6E .. ) dVo + 1 t
O(6E .. dVO owt +6t

cr ••
~Jnm mn . ~J ~J ~J ext

V
O

£° ~+6t o(6.'\.) dVo (3·92 )p

V

After substituting Eq. (3.87) into Eq. (3.92), we finally obtain the

following variational fonn of the equation of motion in the La-

grangian description:

( C.. e oe .. dVo + r C.. e oS .. dVo +j' C
ijnm

S be .. dVoJvo ~Jmn mn ~J Jvo ~Jmn mn ~J VO mn ~J

I tocr.. bS .. dV
~J ~J

V
O

oWt:+6t
nxt

Now we can discretize this variational equation by finite e1e-

ments. Nodal and generic displacements are related to each other

through shape function T1

t
u
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we assume the same shape function to approximate the increments of

nodal and generic displacements between configurations at times t

and t+6t

6u T1 6q (3·95 )

where

t+6t t
(3.96 )6u u - u

and

6q t+6t t
(3.97)q - q

f'V

By using the above relations, we can transform Eq. (3.93) into the

following discretized form for a single finite element:

where the arrays and m are derived by

equating the virtual work of the continuum to the virtual work of the

equivalent discretized finite element, from the following expressions:

5(6q )' rs, 6q ;; C•• e 5e.. dV
o

1Jum um 1J
f'V f'V f'V

5(~ )' ;; 0
K1 6q := C•. e 5~>. dV1Jum ron 1J

5(~ ), K
2

6q £0 C•• Sum ce .. dV
o

f'V
1Jmn 1J

5 (6q ), K
3

6q {o 0
C•• S oS,, dV

f'V f'V
1Jron um 1J
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and

5 (L>q )' {o t
5S" dV

o
(3. 1°3 )KG L>q cr ••

~J ~J
~

5(:,q )'
ft fa t

5e .. dV
o (3. 104)cr ••

~J ~J

V

5{L>q )1 ..t+L>t {o 0 .•t+L>t
5(L>~)dVO (3. 1°5)m q p uk

~ ~

Also,
t+L>t

is the vector of external nodal forces at time t+L>tp

If we assume that loads are independent of the deformation of the

body, we can find the equivalent nodal loads due to surface and volume

loads by the same formulas we found for the linear case in Eqs. (3.10)

and (3.11) of Section 3.2.1. In this study, only these so-called con-

servative loads have been considered. One case of nonconservative

loading has been formulated in Reference 1.

From Eq. (3.88), it is seen that e ..
~J

is a linear function of

displacements at time t and the incremental displacements between

times t and t+L>t . However, Eq. (3.89) shows that Sij is a

quadratic function of the incremental displacements. As a result,

the stiffness matrix ~ is a function of di.splacements at time t

but it is not a function of the incremental displacements. In con-

trast, the stiffness matrices and are linear functions of

is athe incremental displacements, and the stiffness matrix ~

quadratic function of the incremental displacements. In other words,

the terms of the stiffness matrices K
1

and K
2

are one order of

magnitude and the terms of matrix are two orders of magnitude

smaller than the terms of stiffness matrix K
L

and consequently can

be neglected in most practical cases. In this case, Eq. (3.98) will
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reduce to the following equation:

t+6t
P

where KG is the so-called geometric stiffness matrix. In the following

section, this matrix, as well as ~, ft and m, will be evaluated.

3.3.5 Evaluation of Element Matrices

Stiffness Matrix ~

First, we note that the linear incremental strain matrix

e = is related to the increment of the generic dis-

placements by a transformation matrix T4 as follows:

'"

Substituting 6u from Eq. (3.95) into Eq. (3.107), we find

Thus,

e =

=

The matrix of shape functions T1 is given in Section 3.2.3. From Eqs.

(3.88) and (3.107) we obtain the matrix T4 for plane problems as follows:

'"

t d
1 + u I ,l dX

t d
u1 ,2 dY

u~ ,2 d~ + (1 + u~,1) d~
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Now the matrix B
L

can be obtained frowl Eq. (3.109). Noting that
,...,

necessary derivatives are available from DG [see Eq. (3.41)], we obtain
,...,

81 D
G13

82 D
G13

81 DG14 82 DG14

8
3

DG23 84 DG23 8
3

DG24 84 DG24

8
3

D
G13

+ 81 D
G23 84 DG13 + 82 DG23 8

3
DG14 + 81 DG24 84 DG14 + 82 DG24

where
(3. 111 )

1 +
t t t t t

81 u1 1 = 1 + ql DG11 + q3 DG12 + <[5 DG1~i + q7 DG14,
t t t t t

82 u2 1 = C[2 DG11 + C[4 DG12 + C[6 DG13 + C[8 DC14,
t t t t t

8
3 u1 2 C[1 DG21 + C[3 DG22 + C[5 DG23 + C[7 DC24J

t
1 +

t t t t
84 1 + u2 ,2 C[2 DG21 + C[4 DG22 + <16 DG2~i + C[8 DG24

Introducing Eq. (3.108) into Eq. (3.99) and manipulating the results,

we obtain the stiffness matrix ~ as

where ~ is the constitutive matrix (T coc C.. ).
,...,3 lJmn

For an isopara-

metric quadrilateral element, ~ can be wrItten in terms of the natural
,...,



coordinates ; and ~ as follows:

Geometric Stiffness Matrix KG

As a preliminary step in evaluating the geometric stiffness matrix

for plane stress (or plane strain) problem, we decompose the incremental

strains (6E) into linear (e) and nonlinear (s) terms

6E e + S

r 6<u1
-,

SU\or en (

6E22
e
22 + S22

6E 12J 2Sl2 Jl2
2e

12
~ J

Terms of matrices e and S can be found from Eqs. (3.88) and (3.89).

The geometric stiffness matrix is derived from the following virtual

work equation:

t 0
iJ .. oS', dV
~J ~J

It can be shown that

+ ~ iJ~2r6u1 16u1 2 + 6U2 l6u2 2]\ ' , , ,

+ 6u2 ,1 6U2 ,2! + ~ iJ~2l (6Ul ,2)
2

+ (6U2 ,2)2]

- ! T' T' T T T
- 2 '"7 ",6 ",5 ",6 '"7



where

t t
0 00"11 0"12

t t
0 00"21 0"22

T t t (3. 117)
",5 0 0 0"11 0"12

t t
0 0 0"21 0"22

Cl
0 0 0

~

0
Cl

0 0
T6

Cly (3. 118 )
Cl

0 0 a;: 0

0 0 0
Cl

Cly

l:.u1

l:.u1
T7 = (3. 119)
'" l:.u

2

l:.u
2

We can relate T7 to incremental nodal displacements by a transforma-
'"

tion matrix T8
'"
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where

f l 0 f 2 0 f
3

0 f 4 0

f l 0 f
2 0 f

3
0 f 4 0

T
S

(3. 121 )
0 f

l 0 f
2 0 f

3
0 f 4

0 f l 0 f
2 0 f

3
0 f 4

The functions f
l

' f
2

,f
3

and f 4 are defined in Eqs. (3 .30) .

After substituting Eq. (3.120) into Eq. (3.116), we find

And taking the variation of this expression, we obtain

t
CJ •• oS',
~J ~J

Finally, by comparing Eq. (3.103) with Eq. (3.123), we see that the

formula for the geometric stiffness matrix is

And for an isoparametric quadrilateral element in terms of local co-

ordinates, we have

TST6T
5

T6 TS IJ[ dS d~
f"Jrvrv~",

Terms in the matrix W = TST6T
5

T6 TS have been derived
t""J '" f"'ooJ I"'ooJ f'J '"

explicitly in terms of stresses and the terms of matrix DC . They
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are given in Table 3.1. It is interesting to note that only ten terms

of this matrix are nonzero and unique. The use of such explicit formulas

results in efficient computer programs.

Nodal Force Vector ft

If we let

t
0- (3. 126)

and use Eq. (3.108) in Eq. (3.104), we obtain

For an isoparametric quadrilateral element in termB of local coordinates

we have

tB' <y
L

(3. 128 )

Element Mass Matrix m

From the integral expression of Eq. (3.1°5) and the relation

we obtain

m
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TABLE 3.1 Terms in Matrix W

WI 0 w2 0 w
3

0 w4 0

wI 0 w2
0 w

3
0 w4

w
5

0 w6 0 w
7

0

w5
0 w6 0 w7

W
synnnetric Ws 0 w

9
0

Ws 0 w
9

wlO 0

wlO

where

2 t t 2 t
wI = DGn CTn + 2DGll DG21 CT12 + DG21 CT

22

== DGn DG12 (J~1 + (DGll DG22 + DG21 DG12 )(J~2 + DG21 DG22
tw

2 (J22

(J~1 + (DG11 DG23 + DG21 DGI3 ) (J~2 + DG21 DG23
t

w
3

= DGll D
G13 (J22

(J~1 + (DG11 DG24 + DG14 DG21 )
t t

w
4

== DGll D
G14 (J12 + DG21 D

G24 cr22

w _ D2 t t 2 t
5 - G12 cr11 + 2 DG12 DG22 cr12 + DG22 cr22

w6 = DG12 DG13 cr~1 + ( DG12 DG23 + DG13 DG22 ) cr12

w7 == DG12 DG14 (J~1 + ( DG12 DG24 + DG14 DG22 ) cr~2

2 t t 2 t
Ws = DG13 cr11 + 2 DG13 DG23 cr12 + DG23 cr22

w9 = DG13 DG14 cr~l + (DGI3 DG24 + DG14 DG23 ) CT~2

2 t t 2 t
w10== DG14 cr11 + 2 DG14 DG24 cr12 + DG24 cr22
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In terms of local coordinates for an isoparametric element we have

m

cases.

However, as was mentioned in Section 3.2.3, there is another way

of calculating the element mass matrix (lumped mass method) resulting

in a diagonal mass matrix (see Appendix B).

3.3.6 Constitutive Equations of Plasticity

In Sections 3.3.4 and 3.3.5 finite element equations of motion

were derived for very general large displacement and large strain

No restriction was imposed on the constitutive matrix ~

and any material law can be used, as long as it relates the increment

of second Piola-Kirchhoff stress to the increment of Green-Lagrangian

strain. However, in this section we restrict ourselves to the case of

small strain plasticity. The question of proper constitutive equations

for large strain plasticity has not been quite settled and is being

actively investigated by many researchers. A great deal of additional

research is needed to formulate the constitutive law for the problem

of large strain flow [1,36].

In plasticity theory, it is usually assumed that the plastic de-

formations are independent of time and that the material is inviscid

(athermal plasticity). Time-dependent plastic deformations are studied

in the theory of creep, the theory of viscoplasticity, and the new

science of rheology. In this section we first discuss briefly the

basic principles of the theory of plasticity, after which Yamada's

plastic stress-strain matrix is presented.
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Criteria for Yielding

A yield criterion is a postulate which characterizes the limit

of elasticity under any possible combination of stresses. For an iso-

tropic material the yield condition must be a symmetric function of

the principal stresses

ill (0- •• )
~J

I(

where and are the three principal normal stresses and

K is a constant connected with the yield limit of the material. Equa-

tion (3.131) can also be written as a function of the stress invariants

as follows:

ill ill (11 ' 12 , 1
3

) K (3.132)

where

1
1 0-1 + 0-2 + 0-

3

12 - (0-10-2 + 0-10-
3

+ 0-20-
3

)

1
3

=: 0-10-20-
3

Furthermore, experiments have shown that the hydrostatic (or mean)

pressure has negligible influence on yielding. Therefore, the yield

function can be written as

=: I(

Several yield criteria have been proposed, but two of them have

shown good agreements with experiments. They are the Tresca and von

Mises yield criteria [23,35]. In the Tresca yield condition, yielding

occurs whenever the maximum shear stress reaches the maximum shear

stress in the uniaxial tension test.
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If we assume



the Tresca yield condition can be written in the form

K

1

2
0"

S

where 0" is the yield stress in the uniaxial test. The Tresca yield
s

function in the stress space is a prism whose trace on the so-called

n-plane (the plane passing through the origin with the equation

0"1 + 0"2 + 0"3 = ° ) is a right hexagon as shown in Fig. 3.5.

The von Mises criterion is postulated in terms of the second in-

variant of stresses

or

K
2

20-'
S

This function is a cylinder in the stress space, and its projection on

the n-plane is a circle that circumscribes the Tresca hexagon. The

von Mises yield criterion generally fits the experimental data rather

better than the Tresca yield condition. In addition, von Mises' cri-

terion is mathematically easier to use, and no information is needed

concerning the magnitude of principia stresses. However, it should

be noted that the von Mises and Tresca yield criteria are not consid-

erably different. The discrepancy can be further decreased if one

takes the circle which lies midway between the circumscribed and

inscribed circles to the Tresca hexagon (see Fig. 3.5).
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von Mises Circle

()2

Tresca Hexa on

Fig. 3.5 Representation of yield criteria on n-plane

()

()

y

Fig. 3.6 Effective stress-effective plastic strain curve
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Strain Hardening, Loading and Unloading

The yield conditions discussed above indicate the hypothetical

surface at which the material first starts yielding. However, many

materials (especially metals) show strain hardening, which means that

plastic deformation increases the elastic Umit of the material (for

the uniaxial test, this means a positive slope in the plastic range

of the stress-strain curve). Consequently, the yi.e1d surface changes

for continued straining beyond the initial yield. The strain hardening

of the material can be taken into account if one generalizes Eqs. (3.131),

(3.134) and (3.135) by changing the constant: K to be a strain harden-

ing parameter that varies as yielding occurs. Thus, from Eq. (3.131),

continued plastic loading and unloading froDl a plastic state to an

elastic state as well as neutral loading can be stipulated as follows:

For plastic loading <]) d<]) 0<])
dcr .. >0K , ocr ..

l.J l.J

For unloading <]) d<]) 0<])
dcr .. <0K ocr ..

l.J l.J

For neutral loading <]) d<]) 0<1'>
dcr .. 0K ocr ..

l.J l.J

The rule of isotropic hardening constitutes the simplest behavior

of this type. Under this rule it is implied that as the yield surface

expands, it preserves its initial shape without any side translations.

On the TI-p1ane, the yield surfaces for the Tresca and von Mises yield

conditions can be visualized as a series of concentric regular hexagons

and circles. This isotropic hardening rule is mathematically easy to

handle, but it ignores the Bauschinger effect. This effect refers to
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a metal that is first strained under uniform tension and is then re-

loaded in compression. It is observed that the compression yielding

occurs at a significantly reduced stress. In order to take into ac-

count the Bauschinger effect, several other hardening rules have been

proposed [18,23,35] which are more complicated, and their use in spe-

cific problems involves mathematical difficulties. In a recent inves-

tigation [50], several hardening rules including the isotropic hardening

rule and the kinematic hardening rule (in which the Bauschinger effect

is accounted for) were compared with experimental results. It was found

that among all hardening rules considered, the isotropic hardening was

in the best agreement with the experimental results.

Flow Theory of Plasticity

In the deformation theory of plasticity, equations of plastic de-

formations are constructed in the form of relations between finite stress

and strain. In contrast, in the flow theory of plasticity, increments

of stress and strain are related to each other. Equations of the de-

formation theory of plasticity are simpler to use J but they suffer from

certain basic deficiencies. Use of the deformation theory in the case

of nonproportiona1 loading can lead to unsatisfactory results. Conse-

quent1y, flow theory has been generally favored in solving plasticity

problems. In the flow theory of plasticity for isotropic material, the

total strain increment (dE .. ) is decomposed into an elastic strain
~J

increment (dE~.) and a plastic strain increment
~J

(dE~ .)
~J

dE. .
~J

e p
dE •• + dE •.

~J ~J

The elastic component of the total strain increment is related to the
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increment of stress by Hooke's law

d<J ••
J.J

Equation (3.137) canis the elastic stress-strain tensor.C
ijkl

be written in a matrix form as follows:

where

do- ~ dEe

where do- and dEe are the vectors of incremental stress and elastic

strain. Matrix for plane stress and plane strain cases are given

in Section 3.2.2.

In the flow theory, it is also assumed that the plastic strain

increment is proportional to the deviatoric stress. Thus,

o-~. dA
J.J

where dA is some scalar factor of proportionality. In this expression

0-' is the deviatoric stress, defined as
ij

,
0- ••

J.J
0- •• - 0- o..

J.J J.J

in which 1
0- = 0- •• is the mean pressure.3 J.J.

Equation (3.138), attributed

to Prandtl and Reuss, is known as the Prandtl-Reuss equation [18].

Finally, it is assumed that in the plastic range of the material

the density (and consequently the volume) does not change. Therefore,

the material can be assumed to be incompressible.

Yamada 1 s Incremental Plastic Stress-Strain Jv1atrix

By using Eq. (3.136) and linear stress-strain relationships, we

can separate the deviatoric and the volumetric strain incr~nents. Then



the Prandtl-Reuss equation, including the von Mises yield condition,

can be written as

dc< .
dE ~ . =: er~ . dA + -U.

~J ~J 2G

1 - 2y
dE .. der ..

~~

E
~~

, , 2 -2
er .. er .. -er
~J q 3

where E is Young's modulus, G is the shear modulus and y is

Poisson's ratio. A prime indicates deviatoric components of stress

or strain. The scalar multiplier dA is given by the following re-

lation [18]

3 dEP
dA

2 er

3 der

2 erH

where H =: dU/ dEP d d d::PE,an er an are the equivalent (or effective)

stress and the plastic strain increment. These terms are defined as

er

dEP

Note that H is the slope of the effective stress-effective plastic

strain curve, as indicated in Fig. 3.6.

By using Eqs. (3.141), (3.143) and (3.144) and after certain ma-

nipulations, one can obtain the following relation between incremental

stress and strain:
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do- ..
~J

2G
[

dE .. +
~J

v

1 - 2v
o..
~J

dE.. - er~.
~~ ~.J

This equation can be represented in matrix form as

do-

where do- and dE are the vectors of incremental stress and strain.

The explicit formulation of this plastic stress-strain matrix DP was

firs t introduced by Yamada, et al. [59,60].

In summary, Yamada's explicit formulation of the plastic stress-

strain matrix is based on the Prandtl-Reuss incremental equations of

plasticity with their associated differential form of the von Mises

yield criterion. In this formulation, elastic compressibility as well

as isotropic hardening of the material are taken into account, but the

Bauschinger effect is ignored. Yamada's formulation of the plastic

stress-strain matrix, specialized for plane stress and plane strain

conditions (see Table 3.2) has been used in the present investigation.

It should be noted that the plastic stress·-strain matrices given in

Table 3.2 are defined by Eq. (3.148) in which the vectors do- and dE

for plane problems are specified as

do- dE
xx xx

do- do- and dE dE
yy yy

do- d;
xy xy

Implementation of these cOl1cepts into computer programs will be dis-

cussed in the following chapter.
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TABLE 3.2

Plastic Stress-Strain Matrix for Plane Stress

and Plane Strain Conditions

A. Plane Stress

... 2 r
(Jyy + 2 1

Sym.

E
(J",2 +DP '" (J'" + 2v r

1 2r1(J

r xx yy xx
3

... +v ... (J'" +v (J'" r
2 2H ~(J (J

xx yy yy xx
(J (J + -(l-V)(J

l+v xy l+v
xy

2(1+v) 9E

2H -2
2

(J

where, r
1

== - (J + 2Y...

9E l+v

r
2

",2
+ 2V (J'" (J ... + (J

... 2
== (J

xx xx yy yy

r r
2

2 r
1== + 2 (1 - V )

3

B. Plane Strain

",2
1 - v (J

xx

1 - 2v r 4 Sym .

... ... 1
... 2

E V (J (J - V (J

DP xx yy J.Y

l+v 1 - 2v r 4 1 - 2v r 4
(J'" (J (J'" (J 1

2
(J

xx xy yy xy .25:Y.
r 4 r 4 2 r 4

where r 4
2-2

(1 + 3~ )-(J
3

- 57 -



CHAPTER 4

ALGORITHMS FOR DYNAMIC ANALYSIS

4.1 Linear Analysis

4.1.1 Introduction

In Section 3.2 of Chapter 3, equations of motion were derived

for one finite element. After assembling the elements, we can write

the undamped linear equations of motion for the whole system as

MD +SD:= A (4.1)

where M and S are the mass and stiffness matrices of the assembled

structure. D, D and A are the vectors of nodal displacements,

nodal accelerations and nodal actions, respectively. In order to

obtain the response of the structure, one must solve the set of

linear second-order differential equations represented by Eq. (4.1).

In the following sections, four different algorithms are presented

for solving these equations.

4.1.2 Direct Linear Extrapolation with Trapezoidal Rule

Two versions of the direct linear extrapolation technique with

the trapezoidal rule have been implemented for linear analysis.

They consist of solutions for total displacements and for incre

mental displacements. That for total displacements calculated with

uniform time steps 6t is developed as follows (subscripts indicate
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time stations):

The approximation formula (trapezoidal rule) for velocities is

.
D.

1.
(4.2 )

and that for displacements is

Substitution of Eq. (4.2) into Eq. (4.3) yields

The linear equations of motion [see Eq. (4.1)] can be written for the

i-th time station as

Mil. + SD.
1. 1.

f"oJ ('<oJ rv I"'W

A.
1.

'"

Solve for D. in Eq. (4.4) as follows:
1.

'"
..

- D. l.6t - ~i_l(6t)2/4] /(6t)2D. "[D. - D. 1 (4.6 )
1. 1. 1.- 1.-

'" '"

From Eq. (4·3 ) we also obtain

2[D. - D. 1 .11 (4.7)D. ~i-l.6t/2J (.6t)1. 1. 1.-

'" '" '"

Substitute Eq. (4.6) into Eq. (4.5) and arrange terms into the form

where

*S D.
1.

*A.
1.

(4.8 )

*S
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and

[ .. 2]/ 2~i + 4~ ~i-l + ~i_lLt + ~i_l(Lt) /4 (Lt) (4.10)

The symbol represents the effective stiffness matrix, and *A.
1

'"
is

the effective nodal load vector.

The set of linear algebraic equations (4.8) must be solved

simultaneously in order to obtain the displacements D.
1

In this

work, Choleskey's decomposition method [54] has been employed. For

linear analysis the stiffness matrix is constant vTith time, and only

one decomposition of the effective stiffness matri.x is needed at the

outset of calculations. Thus, we have

*S u'u (4.11)

where U is an upper triangular matrix.

The following recurrence expressions are used in each time step

for direct linear extrapolation by the trapezoidal rule with solution

for total displacements:

Q. 1 4[~i_/("t)2 + l\_l/L':,.t + ~i_/4 ] (4.l2a)
1-

*A. := A. + M Q. 1 (4 .l2b)
1 1 1-

'" '" '" '"

* *U'D. A. (forward solution) (4 .l2c)
1 1

*U D. D. (backward solution) (4 .l2d)
1 1

'" '" '"
.. 2D. - Q. 1 + 4 D./(Lt) [from Eq., (4.6)] (4.l2e)1 1- 1
'"

D.
1

'"
Di - l [from Eq. (4.7)] (4.12f)
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In a similar manner, we can develop expressions for the solution

of incremental displacements. The equations of motion in incremental

form are

M Lill. + S Lill.
1 1

M.
1

where Lill.
1

D. - D. 1
1 1-,...,

and M. = A. - A. 1
1 1 1-,...,

From Eq. (4.6) we obtain,the incremental accelerations as

..
Lill .

1
(4.14)

Also, the incremental velocities are obtained from Eq. (4.7) as

Lill.
1

D. - D. 1
1 1-,...,

2Lill. /6t - 2D. 1
1 1-

(4.15)

Substituting Eq. (4.14) into Eq. (4.13), we find

* *S L'ill. M.
1 1.

where

* 4M/(6t )2S S +

and

*
..

M. M. + 2M(D
i

_
1

+ 2D
i

_
1
/6t)

1. 1.

(4.16)

(4.17)

(4.18 )

In order to solve Eq. (4.16) for the incremental displacements, the

*effective stiffness matrix S will be decomposed as indicated by

Eq. (4.11).

The following recurrence expressions are used in each time step

for direct linear extrapolation by the trapezoidal rule with solution
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for incremental displacements:

Q. 11.-

*M.
1.

*U' 00.
1.

U LJ).
1.

..
00.

1.

.
00.

1.

M. + MQ. 1
1. 1.-

'" '"

*M. (forward sOlution)
1.

*00. (backward solution)
1.

-Q. 1 + 4 LJ). /(6.t)2 [from Eq. (4. H)]
1. - 1.

'" '"

2OO./6.t - 2D. 1 [from Eq. (4.15)]
1. 1.-

(4.l9a )

(4.l9b )

(4.l9c )

(4.19d )

(4.lge )

(4.l9f )

It should be pointed out that if the mass matrix is diagonal,

the matrix-vector multiplications in Eqs. (4.12b) and (4.l9b) simplify

to mere scaling operations. Thus, solving for diE:p1acements (either

total or incremental) is more efficient than the a.1ternative possi-

bilities of solving for velocities or accelerations.

4.1.3 Central Difference Predictor

The second central difference of displacements with respect to

time for a multi-degree-of-freedom system can be written as

(4.20)

Solving this expression for displacements at time
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By repetitive use of Eqs. (4.21) and (J+.22) in each time step, one will

obtain the response of the structure. However, the central difference

predictor [Eq. (4.21)] is not a self-starting formula and cannot be

used for the first time step. In order to start the procedure, we use

a truncated Taylor series for the first time step. That is,

(4.23 )

4.1.4 Two-Cycle Iteration with Trapezoidal Rule

Using the trapezoidal rule for velocities and displacements

[Eqs. (4.2) and (4.3)], we can develop an iterative algorithm in a

predictor-corrector form. In the prediction phase, we use Euler's

formula as a predictor for the velocities at the end of the first

time step, as follows:

(4.23a )

where D and D are the initial velocities and accelerations,
o 0

respectively. Euler's extrapolation formula could also be used to

start the iteration (as a predictor) in each subsequent time step.

However, to improve the accuracy of the results, we will use the

following formula (as a predictor for the velocities) to start the

iteration after the first time step:

D. 2 + 2D. 1 lit1.- 1.-
'"

(i2: 2 ) (4.23b )

It can be shown that this formula has less local truncation error

than Euler's formula [53]. Based on the predicted values of velo-

cities, the displacements are estimated from the trapeZOidal rule.
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For the correction step, the trapezoidal rule for the velocities

and displacements can be written as the following recurrence expres-

sions for the j-th iteration of the i-th time step

(~i ) Q. 1 + (~i) 6t/2 (j > 1) (4.24a)
1.-

j j-l

(~i ) R. 1 + (~i ) 6t/2 (4 .24b)
1.-

j j

where

Q. 1 D. 1 + D. 1 Dt/2
1.- 1.- 1.-

and

R. 1 D. 1 + D. 1 Dt/2
1.- 1.- 1.-

(4.24c)

(4.24d)

In addition, Eq. (4.22) can be written for "the j-th iteration of

the i-th time step as

(4.24e)

This iterative algorithm can be used repeatedly until the dis-

placements are calculated with the desired a.ccuracy. However, in

order to make this procedure more efficient, the number of itera-

tions should be limited. In this study, the number of iterations

is restricted to only two. In other words, a PECE: algorithm (predict-

evaluate-correct-eva1uate) has been used. It has been shown [31] that

if one uses the Euler predictor and the trapezoidal rule corrector, the

characteristic equation of the PEC algorithm (predict-eva1uate-correct)
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has one parasitic root, whereas the PECE algorithm has none. Conse-

quently, the stability of the PECE algorithm is better than that of the

PEC algorithm. Therefore, we use the PECE algorithm in this study, even

though the extra evaluation is rather time consuming.

4.1.5 Normal Mode Method

The normal mode method of dynamic analysis is probably the most

widely used procedure for solving linear problems. One advantage of

the normal mode method is the fact that natural frequencies and mode

shapes of the structure are found as well as displacements and stresses.

This additional information about the characteristic behavior of the

structure may also be of value to the analyst. However, this method

requires solving an algebraic eigenvalue problem for free vibrations

of the structure. Even though considerable progress has been made in

developing efficient algorithms for the solution of the eigenvalue

problem, this process is still quite time consuming.

In the normal mode method of dynamic analysis, the principal

modes of vibration are used as generalized coordinates. In these

coordinates the equations of motion are uncoupled, and each equation

can be solved as a one-degree-of-freedom problem [53]. The assumption

of normal (or principal) modes may be expressed as

D(t)
N

~ z. sin(m.t + ~.)
~ ~J J J
j=l

(4.25)

The symbol

are the angular frequency and phase angle of thewhere m.
J

j-th mode.

and ~.
J

Z.
~J

denotes a column matrix of amplitudes for

the same mode.
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Equations of undamped free vibrations can be written as

MD + S D ° (4.26)

Substitution of the j-th term of Eq. (4.25) into Eq. (4.26) pro-

duces the following set of algebraic equations:

S z.
'" ",J

(4.27)

This equation represents the so-called nonstandard form of the eigen-

value problem. By solving this equation, one obtains the eigenvalues

(m.)
J

and the eigenvectors (z .) •
",J

We place all of the eigenvectors

column-wise into a modal matrix Z , as follows:

Z (4.28)

In order to transform the equations of motion [Eq. (If.l)] to

principal coordinates, we premultiply it by Z/ and insert the identity

matrix I Z z-l after M and S to obtain

Z'A

This equation can be rewritten as

o.

M D + S D
",p ",p ",p ",p

A
",p (4·30 )

where the arrays in principal coordinates are

M Z' M Z (4·31)",p

S z' S Z (If·32 )
",p
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-1
DD Z

~p

A Z; A
~p

Taking advantage of orthogonality characteristics of eigenvectors,

one can show that matrices M
Y

and S
Y

are diagonal arrays [53].

Consequently, Eq. (4.30) represents a set of uncoupled differential

equations in principal occordinates. Each equation in these coordi-

nates is solved by Duhamel's integral in order to obtain D
~p

Finally, we will find the displacements in the original coordinates

by the back-transformation

D Z D
~ ~p

Due to the high cost of finding the eigenvalues and eigenvectors,

selection of an efficient algorithm is imperative in the normal mode

method of dynamic analysis. Several procedures have been developed

and are in common use for solving the algebraic eigenvalue problem [57,61].

If all of the eigenvalues and eigenvectors ar~ desired, the Householder-QR

method generally appears to be the most efficient procedure. In this

algorithm, Householder transformations are first used to reduce the

original equations to tridiagonal form, after which the QR algorithm

is used to find the eigenvalues and eigenvectors [57]. The Householder-

QR method has been employed in this investigation.

Some investigators have attempted to extend this procedure to non-

linear analysis [9,42]. However, because of the high cost of repeti-

tive solution of the eigenvalue problem, this approach does not seem
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to be competitive with direct integration method:> in nonlinear prob

lems.

4.2 Implementation of Material and Geometric Nonlinearities into

Dynamic Algorithms

One important consideration in nonlinear analysis is that of

approximating stresses within an element. This has a great effect

on the speed of the algorithms. One approach is to take the stresses

as constant within an element, based on their values at the geometric

center. This assumption simplifies the analysis and results in con

siderable saving in the overall computation time" In the isopara

metric finite element formulation, one may evaluate the stresses at

the numerical integration points to improve the accuracy of the re

sults. However, evaluation of the stresses at the integration points

significantly increases the cost of analysis as well as the amount of

storage required. For a method to be efficient and practical, both

cost and accuracy obtained must be considered. Therefore, in this

investigation, these two different procedures for stress approxima

tion have been incorporated in all nonlinear dynamic algorithms in

order to study their effectiveness for different methods.

When both displacements and strains developed in the structure

are small, we can ignore geometric nonlinearities. In this case, we

can write the equations of motion for the original (undeformed) con

figuration. The formulation developed in Section 3.2 for linear

analysis can be used with some modifications in order to incorporate

and satisfy the constitutive law for elastoplastic analysis. When
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the stresses are assumed to be constant throughout the element, we

calculate the effective stress in each time step (or iteration cycle)

from the following relation:

er 1 I 2- (er - er ) +,[2 xx yy
2 2

(er - er ) + (er - er ) +yy zz zz xx
2 2 2] 1/26(er +er +er )xy yz zx

If er is less than ers ' the element is elastic, and the elastic

stress-strain relations derived in Section 3.2.2 are used to evaluate

the tangential stiffness matrix in Eq. (3.44). However, if er>ers

the stresses are modified by an averaging scheme, as follows:

ermodified
1

er . +-2/YJ
prev~ous

(4.37)

The next time stresses are evaluated, the plastic stress-strain

matrix DP given in Section 3.3.6 is used to calculate the incre-

mental stresses

(3. 148 )

(repeated)

In addition, DP is used instead of the elastic stress-strain matrix

~ in Eq. (3.44) to evaluate the element stiffness matrix.

When p1astification of the element continues beyond the yield

limit, we must take into account the strain hardening behavior of

the material. To do so, we save the maximum previous effective stress

for each element and compare it against the current effective stress.

In this case, if er> er ,plastic loading is indicated.max
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plastic stress-strain matrix nP must be used in the subsequent time

to evaluate both the elementstep (or iteration cycle) in place of ~

stiffness matrix and the incremental stresses. However, if (J<(J
max

elastic unloading has occurred. In this case the elastic stress-

strain matrix of Section 3.2.2 must be used to evaluate the stiff-

ness matrix and incremental stresses.

A similar procedure is adopted whenever stresses are evaluated

at the four spatial integration points. In this case, the stresses

(J , the effective stress (J, and the maximum effective stress (J
max

are calculated and saved at each of the integration points. Based

on these values, the plastic stress-strain matrix nP is also

evaluated at each of the integration points. The storage required

will increase substantially because several stress arrays must be

saved at each integration point.

In this investigation, a bilinear effective stress-effective

strain diagram has been assumed, as shown in Fig. 4.l(a). This

simple model can adequately approximate the elastoplastic behavior

of most metals and can be determined experimentally. Figure 4.1 (b)

shows the effective stress-effective plastic strain diagram. We can

find a simple relationship between the tangent modulus E
T

in Fig.

4.l(a) and the plastic modulus H in Fig. 4.1(b). From Fig. 4.1(a)

we can write

(J (J + ~ (~ 0'; ) (4·38)s

and

~+
-e

~ + 9:: (4·39)E: E:
E
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where the superscripts e and p indicate the elastic and plastic

components of strain. In a uniaxial tension test, ()
s

is equal to

the yield stress (; ~ () ). Similarly, from Fig. 4.1(b), we obtain
s s

() +H";P
s

By substituting Eq. (4.39) into Eq. (4.38) and solving for

we find

E.r ";P

() - ()

E.rs
1 -

E

(4.40)

() - ()
s

(4.41)

Substituting for () in Eq. (4.41) from Eq. (4.40), we get the fo1-

lowing relationship between the plastic modulus H and the tangent

modulus ET :

ET
H

E.r
1 -

E

The inverse relationship is

H

~ 1 H+-
E

(4.42)

In the computer program for nonlinear analysis, only the tangent

modulus ET need be given as input. The plastic modulus H, which

is required in the plastic stress-strain matrix DP (see Table 3. 2 ),

is computed from Eq. (4.42).
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As in elastic analysis, matrix multiplications have been avoided

in calculating the element stiffness matrix and the equivalent nodal

loads. This has been accomplished by the efficient formulation de-

scribed in Appendix A.

When geometric nonlinearities are to be taken into account, the

equations of motion must be written with respect to the deformed con-

figuration; and we no longer can use the linear equations derived in

Section 3.2. A more rigorous formulation of the equations of motion

is necessary (see Section3.3) for the very general large displacement

and large strain analysis. In this case, the strain-displacement

relationships are complicated, but the implementation of material

nonlinearity is no more difficult than that described for small-

displacement elastoplastic analysis in the previous paragraphs.

Matrix multiplications have been avoided in calculating the geo-

metric stiffness matrix KG by the formulation developed in Section

3.3.5. However, due to the complexity of the strain-displacement

relationships, the matrix multiplications for calculating the element

stiffness matrix ~ [see Eq. (3.111)] cannot be carried out expli

citly. Nevertheless, when the stresses are calculated only at the

geometric centers of the elements, it is possible to improve the effi-

ciency of the stiffness calculations. For this purpose, we decompose

the matrix into the product of a lower triangular matrix and an

upper triangular matrix, each of which is the transpose of the other [54],

u'u (4.44)

where U is the upper triangular matrix. Substitution of Eq. (4.44)
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into Eq. (3.111) yields

(UBJ' (UBL ) III d~dY)
,..,JroJ row", t'V

(4.45)

Thus, the matrix multiplication in Eq. (3.111) is replaced by decom-

position of matrix T ,scaling and combining rows of BL ' and
",3

calculating only the upper triangular part of the product B{ T
3

B
L

'" '" ,...,
Whenever stresses are assumed constant within the element, only one

decomposition is needed to evaluate the element stiffness matrix ~

As a result, this technique reduces the cost of stiffness computa-

tions. However, when stresses are computed at the four spatial inte-

gration points, four decompositions of matrix T
3,...,

are needed for each

element. This offsets the above savings in computations. Consequently,

this technique has been implemented only when the stresses are assumed

constant within the element. In such a case, the elastic stress-strain

matrix derived in Section 3.2.2 is decomposed and saved at the outset

of the calculations. This is expedient in order to avoid repetitive

decomposition of this matrix when the loading is elastic or when un-

loading occurs.

4.3 Nonlinear Analysis by Implicit Methods

4.3.1 Introduction

In the following sections we present three algorithms for nonlinear

analysis by implicit procedures. They are the Newmark-Beta method, the

Houbolt procedure, and Park's stiffly-stable method. The common feature

of all three algorithms is that in each time step the stiffness matrix
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must be formed, and the incremental displacements are found by solving

a set of linear algebraic equations. Therefore, an efficient method

for solving such equations is crucial for the implicit algorithms.

In this investigation, Cholesky's square root method has been used,

as described in Section 4.1.2.

In Chapter 3, the equations of motion for a single element were

derived using a superscript t to denote time. However, for analyzing

the whole structure, in this chapter we use a subscript i to denote

the time stations. From Eq. (3.106) we can write the incremental equa-

tions of motion for the structure as

S. 1 L'ill.
1.- 1.

A. - F. 1 - MD.
",,1. 1.- "" ",,1.

(4.46)

where F. 1 is the vector of internal loads for the assembled structure
1.-

(to be defined in the following paragraph) and

tangential stiffness matrix.

S'l1.-
is called the

When geometric nonlinearities are to be taken into account, the

tangential stiffness matrix and the internal force vector are evaluated

by the following relations:

S. 11.-

F. 11.-
==

n

tb + ~G)j
j:=1

(4.47)

(4.48)

where ne is the number of elements. The arrays ~,~KG and B
L

were
"" ""

defined in Section 3.3.5.
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However, when only the nonlinearities due to elasto-plastic behavior

of the material are to be considered, we use the following relations

developed in Section 3.2 for linear analysis:

S. 11-

n
e

L
j=l

(K) .
J

F. 11-
(4.50)

the constitutive matrix

where B is the linear strain-displacement matrix given in Section 3.2.3.

The matrix K is also given in Section 3.2.3 [Eq. (3.43)], but now the

elasto-plastic behavior of the materials will be accounted for through

~ , as described in Section 4.2.

The nonlinear equation (4.46) can be solved in a variety of ways, as

follows:

1) Newton-Raphson iterative procedure.

The Newton-Raphson procedure is a well-known method for the

solution of nonlinear algebraic equations [17]. In applying this method,

we form the tangential stiffness matrix in each cycle of iteration. Based

on the updated stiffness matrix, the incremental displacements are com-

puted from Eq. (4.46). They are added to the displacements at the end

of the previous time step in order to find the new displacements. This

process is repeated until the desired convergence is obtained.

2) Constant stiffness iterative procedure.

In the constant stiffness iterative procedure, the stiffness

matrix is formed only once in each time step. This may be considered

as a special case of the Newton-Raphson method.
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3) Incremental procedure with load correction

In the incremental procedure with load correction, Eq. (4.46)

is used only once in each time step, and no iterations are carried out.

4) Incremental procedure

Equation (4.46) can be written in the following form:

..
M 6D. + S. 1 6D.

1 1-,...,1
(4.51 )

In the incremental procedure, the terms inside the parentheses are

omitted. Thus, Eq. (4.51) reduces to

M6D. + S. l6D.
1 1- 1,...,

l:JI.
1

(4.52 )

Evaluation of the tangential stiffness matrix and its decomposi-

tion is the most time consuming part of the nonlinear analysis. Also,

stresses need to be updated in each cycle, which requires many compu-

tations. Because of this costly process, the Newton-Raphson iterative

procedure does not seem to be promising for multi-degree systems [6,24].

Therefore, in this study, we have utilized only the second and third

approaches discussed above.

4.3.2 Newmark-Beta Method

In the Newmark-Beta method, the velocities and displacements at the

end of each time step are obtained by the following relations (see Sec-

tion 2.3):

D.
1

D. 1 + y6t D. + (1 - y)6t D. 1
1- 1 1-

D.
1
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From Eq. (4.54), we find the incremental displacements

Lill .
~

D. - D. 1
~ ~-

Solve for D. from Eq. (4.55)
~

'"

1 1
+ (1 --~)D...

(4.56)D. Lill .- -D. 1
~ S (6.t)2 ~ ~- ~-l

'" S6.t '" ~~S fV

Substitute Eq. (4.56) into Eq. (4.46) to obtain

which can be solved for Lill.
~

(4.57)

Equation (4.57) can be written as

(4.58)

where S~~ and M:~ are given in Table 4.1. In order to find veloci
~

ties, substitute Eq. (4.56) into Eq. (4.53)

D.
~

(/ 2)· -.:L ( _ _L) D
1 - S ~i-l + S6.t ~i + 6.t 1 2S, ",i-l

By employing Eqs. (4.56), (4.58) and (4.59), we write an algorithm for

nonlinear dynamic analysis. This algorithm (with equilibrium iterations)

is presented in Table 4.1.

4.3.3 Houbolt Method

In the Houbolt method, the nodal accelerations are given by the

following expression (see Section 2.4):
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TABLE tj.l Algorithm for Newmark-Beta Method with

Equilibrium Iterations for Nonlinear Analysis

For each time step do the following:

1. Calculate the effective stiffness matrix

1
S S. 1 + 2 M

l - r'3 (6t ) '"

2. Calculate the effective incremental load vector

LA~ A. - F. 1 + M Q. 1
l l 1- l-

where Q. 1 is computed in the previous step.
1-

(For and
1 . 1

l)D )the first time step F = 0 Qo = (36t Do + (- -
0 2r'3 0

'" '"
3· Decompose the effective stiffness matrix

4. Solve for the incremental displacements

~*" ~~

(forward solution)U~ 60. LA.
1 1

~~

(backward solution)U 60. 60.
1 l

5. Compute displacements and accelerations

D. D. 1 + 60.
",1 l- l

1

6. If equilibrium iteration is not considered) go to step 12;

otherwise) set j = 0 and continue.

7. Start the jth iteration

j __ j + 1
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TABLE 4.1 (Continued)

8. Compute the vector of residual (or out-oE-ba1ance) loads

A~ A. - M D~-l _ F~-l
~ ~ ~ ~

<"J <"J <"J

9. Solve for the jth correction to the displacement increments

,~

A~u' 6(LJ). )
~ ~

<"J

U 6(LJ). )j 6(LJ). t
~ ~

'"

10. Calculate new displacements and accelerations

LJ)~ j-1 + 6(LJ). )jLJ) .
~ ~ ~

'"

D~ D. 1 + LJ)~ j-1 +6(6D.)jD.
~ ~- ~ ~ ~

<"J <"J <"J

D~
1

LJ)j
- Q. 1 +

~ ~- ~ (6t)2 i<"J

1l. Check iteration converg enc e

116(lill. ) j II
~

<"J

If
IID~ II

:5 tolerance) go to ste.p 12

~

{

j ? MNIT
Otherwise) if

j < MNIT

go to step 12

go to st.ep 7

where, MNIT = maximum number of iterations

12. Calculate velocities and the array Q
i

D.
~
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Di = (- Di -
3

+ 4Di _2 - 5Di_l + 2Di )!(Dt)2
'" '"

(4.60)

Substitute Eq. (4.60) into Eq. (4.46) and solve for the incremental dis-

placements in the resulting expression

[ Si-l +~ M] DDi
'" (Dt ) '" '"

1
A. - F. 1 + ------2 M (D. 3 - 4D. 2 + 3D. 1)
,..,1 1- (Dt),.., ,..,1- ,..,1- ~1-

(4.61)

This equation can be written in the form of Eq. (4.58), for which

and DA~ are given in Table 4.2. By repetitive use of Eqs. (4.60) and
1

(4.61) we can find the displacements in each time step (see Table 4.2).

The Houbolt method is not self-starting, so a special procedure must

be used to find the displacements for the first two time steps. For

this purpose, we use the Newmark-Beta method with ~ = 0.25 and 1 = 0.5.

4.3.4 Park's Stiffly-Stable Method

Park presented the following difference equations for velocities

(see Section 2.7):

.
D. ::=:

1,..,
(20Di - 30Di _

1
+ l2Di _2 - 2Di _

3
)!(12Dt)

,.., ~ ,..,
(4.62)

We use the same formula to find the accelerations, as follows:

..
D.

1
(20Di - 30Di _l + l2Di _

2
- 2D

i
_
3

)!(12Dt)
,..,

Equation (4.62) can also be written in terms of the incremental displace-

ments Ln. as
1

(20DDi - 10Di _l + l2Di _
2

- 2D
i

_
3

)!(12Dt)
'"
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TABLE 4.2 Algorithm for Houbo1t Method with

Equilibrium Iterations for Nonlinear Analysis

For each time step (after the first two steps), do the following:

1. Calculate the effective stiffness matrix

2
S + M

(Lt)2 '"

2. Calculate the effective incremental load vector

1

3. Decompose the effective stiffness matrix

~}

S U' U

4. Solve for incremental displacements

u'
~~ ~~

(forward solution)Ln. M.
~ ~

'"
,~

(backward solution)U Ln. Ln.
~ ~

5. Compute displacements and accelerations

D. D. 1 + Ln.
~ ~- ~

N

.. 2
D.

(Lt)2
D. + Q. 1

~ ~ ~-

where Q. 1 is computed in the previous step.
~-

6. If equilibrium iteration is not considered, go to step 12;

otherwise, set j = 0 and continue.
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TABLE ~.2 (Continued)

7. Start the jth iteration

8. Compute the vector of residual (or out-of-balance) loads

"j-l
A. - M D.

l l

j-l
F.

l
'"

9· Solve for the jth correction to the displacement increments

U' Li(L'ill. t A~
l l

'"

Li(L'ill. ) j
~~

U Li (L'ill. )
l l

10. Calculate new displacements and accelerations

D~
l

'"

"jD.
l

L'ill~-l + Li(L'ill.)j
l l

'" '"
j-lD.
l

'"
2 .

-- D~ + Q. 1
(Lit)2 ",l l-

11. Check iteration convergence

116(L'ill. ) j II
l

'"if
IID~ II

l

~ tolerance, go to step 12

C2: MNIT go to step 12
Otherwise, if

< MNIT go to step 7

12. Calculate the array Q.
l

Q. (- D. 2 + 4D. 1 - 5D.)/(Lit)2
l l- l- l
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Substitution of this expression for D.
~

into Eq. (4.63) yields

D.
1.,....,

5 1
2 (2061). - lOD. 1 + l2D. 2 - 2D. 3) + -- (- 30D. 1 + l2D. 2

36 (6t) 1. 1.- 1.- ,....,1.- l26t 1.- 1.-

(4.65)

..
Substitute D. from Eq. (4.65) into Eq. (4.46) to obtain

1.,....,

Ai - Fi-I + ~ [18(:t)2

+ 6~t (15Di _1 - GDi _2 + ~i-3)]

(l~ .66)

From this equation, the incremental displacements 61).
1.

can be found.

Equation (4.66) is of the same form as Eq. (4.58) for which and

-l~

~. are given in Table 4.3. Like the Houbolt method, this procedure
1.

is not self-starting. Therefore, we use the Newmark-Beta method for

the first two time steps.

4.4 Nonlinear Analysis by Explicit Methods

4.4.1 Introduction

In the following sections, we present three algorithms for non-

linear analysis by explicit procedures. They are the central differ-

ence method, two-cycle iteration with the trapezoidal rule, and the

fourth-order Runge-Kutta method. For all of these procedures, we adopt

a nodewise solution technique. In this approach only two rows of the
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TABLE 4.3 Algorithm for Park Stiffly-Stable Method with

Equilibrium Iterations for Nonlinear Analysis

For each time step (after the first two steps), do the following:

1. Calculate the effective stiffness matrix

:+(~tM
2. Calculate the effective incremental load vector

A. - F. 1
~ ~-

+ Mr 5 2 (5D ~ -1 - 6D. 2 + D. 3)
~ l8(6t) ~ ~~- ~~-

1 (. . . 1+ 66t l5Di _l - 6D i _2 + ~i-3)

3. Decompose the effective stiffness matrix

4. Solve for the incremental displacements

~~ ,~

(forward solution)U' 60. M.
~ ~

i~

(backward solution)U 60. := 60.
~ ~

5. Compute displacements, velocities, and accelerations

D. D. 1 + 60.
~ ~- ~

~ ~ ~

D. (~) 60. + R. 1
~ ~ ~-

(~)
.

D. D. + Q. 1
~ ~ ~-

~ ~

where R. 1 and Q. 1 are computed in the previous step.
~- ~-

6. If equilibrium iteration is not considered, go to step 12;

otherwise, set j:= 0 and continue.

7. Start the jth iteration

j--j+l
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TABLE 1~.3 (Continued)

8. Compute the vector of residual (or out-of-balance) loads

Aj ooj-l j-l
A. A. - M D. F.
~ ~ ~ ~

9· Solve for the jth correction to the displacement increments

U' 6(Lill. )~~ Aj
A.

~ ~

'" '"

6(Lill. )j
1t-

U 6(Lill. )
~ ~

10. Calculate new displacements} velocities} and accelerations

D~
~

'"
D. 1 + Lill~
~- ~

'jD.
~

'"

11. Check iteration convergence

if
/lD~ II

~

< tolerance

j > MNIT

go to step 12

go to step 12

12.

Otherwise if

Calculate the arrays Q
i

'"

j < MNIT

and R.
~

'"

go to step 7

R
i

(- lOD
i

+ l2D
i

_1 - 2D
i

_
2

)/(126t)
'" '"
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tangential stiffness matrix need be generated at any stage in the analysis.

Consequently, large problems can be analyzed within the fast core of the

computer because it is not necessary to solve simultaneous equations. This

fact makes the explicit methods more attractive than the implic procedures.

In all three explicit procedures, the mass matrix must be inverted. Thus,

the use of a lumped mass matrix makes these methods more efficient. Imple-

mentation of the nodewise approach into a computer program will be dis-

cussed in Chapter 5.

4.4.2 Central Difference Predictor

The central difference formula for a multi-degree system was formu-

lated in Section 4.1.3, and an algorithm for applying it nodewise is

given in Table 4.4. At each node of the structure, two rows of the tan-

gential stiffness matrix (corresponding to two degrees of freedom at that

node) are generated. Then the incremental accelerations pertaining to

the two degrees of freedom are calculated from Eq. (4.52). This process

is repeated for all nodes.

4.4.3 Two-Cycle Iteration with Trapezoidal Rule

An algorithm for two-cycle iteration with the trapezoidal rule is

given in Table 4.5. The incremental accelerations are computed in a

nodewise manner, as described in Section 4.4.2 for the central differ-

ence method. However, in the first evaluation phase, we evaluate

S. 1 (instead pf Sl0_l) for which half of the incremental displacments
~1-2

during the time step i are used in calculation of the incremental

stresses. This will improve the accuracy of the results.
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TABLE 4.4 Algorithm for Central Difference Predictor

for Nonlinear Analysis

~~

For each time step after the first, do the following:

1. Evaluate the incremental accelerations in a nodewise manner

LD.
~

-1
M (M. - S. 1 LD. )

~ ~- ~
"" f'tJ I"J ""

2. Calculate the total accelerations

D.
~

.. ..
D. 1 + LD.

1.- 1.

3· Compute the total and incremental displacements

D. 1 2D. - D. 1 + jj. (Lit)2
~+ ~ ~- ~

'" '"

LD. 1 Di +l - D.
1.+ 1.

'" '"
,...,

~*"Displacements at the end of the first time f;tep are calculated
from the Taylor series as follows

. 1 .. 2
Do + Do Lit + 2 Do(Lit)

'"
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TABLE 4.5 Algorithm for Two-Cycle Iteration with

Trapezoidal Rule for Nonlinear Analysis

For each time step, do the following:

1. Prediction

D.
1

D.
1

D.
1

Lill.
1

where

Q. 11-

2. Evaluation

Lill.
1

D.
1

'"

3· Correction
.
D.

1

D.
1

'"
Lill.

1

where

D. 1 + D. 1 .6t1- 1-

D. 2 + 2D. 1 .6t1- 1-

Q. 1 + D. .6t/2
1- 1

D. - D. 1
1 1-

'"

-1
M (M. - S. 1 Lill.)
'" ,...,1 ,...,1-"2,.;,,1

Q. 1 + D. .6t/2
1- 1

'"
D. - D. 1

1 1-
'"

(for i = 1)

(for i > 1)

4. Evaluation
..

Lill.
1.

..
D.

1

-1
M (M. - S. Lill.)

1. 1. 1.
'".. ..
D. 1 + Lill.

1.- 1
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4.4.4 Fourth-Order Runge-Kutta Method

The fourth-order Runge-Kutta method for a single equation in the

form d = f (t, d) was given in Section 2.6 of Chapter 2. By applying

this method to the incremental equations of motion [Eq. (4.52)], we can

write an algorithm for nonlinear analysis that is given in Table 4.6.

Evaluation of the functions ~1':2' ~ and ~4 is done in a node

wise manner. In this approach the tangential stiffness matrix is revised

only once in each time step, just before the last evaluation (where

is needed).
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TABLE 4.6 Algorithm for Fourth-Order Runge-Kutta Method

For each time step, do the following:

Lill.
1.

Lill.
1.

D.
1.

D. 1 + Lill.
1. - 1.

Di = Di _l + Lilli

'"

where

-1
S. 1 Lill. 1)'Ill l',t M (LA. 1 -

1.- 1.- 1.-
'" '"

l',t M-
l [~LAi - l',t· J'f2 S. 1 (~i-l + ~ ~i-l)1.-

'" '"

l',t M- l [~ M i - S. 1 l',t· l',t ]
~ 1.- (Lilli_1 + ~ Lill i - l + "4 'Ill)

'" '" '" '" '"

'f4 l',t ~-l [ t:::i - S. (Lill. 1 + l',t t:iJ. 1 l',t ]1 + ~ 'f2 )
'"1.-2 1.- 1.-

'"
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CHAPTER 5

COMPUTER APPLICATION

5.1 Introduction

Three Computer Programs, prepared exclusively for this stud~ will be

described in this chapter. Program RESPPSQ4 is for linear analysis.

Program NODIMP is for nonlinear analysis by implicit schemes and program

NODEXP is for nonlinear analysis by explicit schemes and the nodewise

solution technique. The three programs require no auxiliary storage and

all the calculations are done within the main core of the digital

computer. All three programs were written in the FORTRAN IV language and

were run under the WATFIV and FORTRAN-H Compilers. In program RESPPSQ4,

for linear analysis, all real variables are declared single precision.

However, in programs NODIMP and NODEXP, for nonlinear analysis, all real

variables are declared long (double) precision. This is due to the fact

that round-off error for nonlinear analysis can be quite significant and

may produce erroneous results.

A description of each program, including a macroflow chart, program

notations, and required input data, is included in the following sections.

Actual program listings, with descriptive comment statements and sample

outputs are presented in Appendices.

In order to evaluate the efficiency of different methods, the library

program PCLOCK provided by Stanford University COTIlputation Center was

employed. PCLOCK computes the number of centi-seconds elapsed between two

calls. This computation time measurement was the basis for the comparisons

of efficiency of different procedures in this study.
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5.2 Program for Linear Analysis

5.2.1 Description of Program RESPPSQ4

Program RESPPSQ4 calculates the response for a plane stress (or plane

strain) problem by the following methods:

1. Central difference predictor

2. Direct extrapolation with trapezoidal rule

3. Two cycle iteration with trapezoidal rule

4. Normal mode method

For the direct linear extrapolation, two approaches have been coded:

--using total displacement, velocity and acceleration with

solution for displacement,

--Using incremental displacement, velocity and acceleration,

with solution for incremental displacement.

In this program five different kinds of loading have been considered,

namely, nodal loads, surface loads, volume loads and loads due to

temperature strain and prestrains. For nodal loading, five types of

loading can be applied through the use of LTYPE parameter as follows:

LTYPE=l Indicates a constant load, but differemt at each node,

LTYPE=2 Indicates a piecewise linear load,

LTYPE=3 Indicates an equal sinusoidal forcing function at

each node in the x direction,

LTYPE=4 Like LTYPE=3, but in the y direction.

LTYPE=5 Loads are given as data for all loaded nodes.

The program RESPPSQ4 consists of a main program that uses nineteen

subroutines. These subroutines are described briefly in the following

article.
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5.2.2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program RESPPSQ4 is given in Table 5.1.

The double boxes in the flow chart represent subroutines. A brief

description of the function of each subroutine follows:

SDATA:

LDATA:

SURLOD:

Reads and prints the structure data.

Compiles the load data and prints pertinent information.

Calculates the equivalent nodal loads due to surface loads.
Linear variation of components of surface loading between two
adjacent nodes has been considered. This is demonstrated in
Fig. 5.1. WS1, WS2, WS3, and WS4 are force per unit inclined
length.

j

WS2

WSI

WS3

VOLLOD:

TPSTRN:

PRSTRN:

Fig. 5.1

Calculates the equivalent nodal loads clue to volume load WV1
(uniform distribution in the X direction), and WV2 (uniform
distribution in the Y direction).

Calculates the equivalent nodal loads clue to uniform
temperature strain.

Computes the equivalent nodal loads due to the following
prestrains:
PSI uniform expansion in the X direction
PS2 uniform expansion in the Y direction
PS3 uniform positive shear strain
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TABLE 5.1 Macroflow Chart for RESPPSQ4

SDATA

STIFF

LDATA

LMASS

RSPCD

RSPTR

EXTRAP

EXTRAI

NORMOD
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TABLE 5.1 - continued

1

I SURL
NES i- 0

.

'"NEV i- 0 - I VOLL

~

NET 1= 0 - I TPST

..;.

~'NEP i- 0

~Ir

return to LDATA

2

I DCOMP
1

~
IT = 1 , NDT

1
I FWS I

~

II BWS

3 l
I MATPRT I
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STIFQ4: Generates the stiffness matrix for an isoparametric
quadrilateral element.

STIFF: Assembles the element stiffness matrix into the structure
stiffness matrix.

LMASS: Calculates the lumped mass matrix.

RRSPCD: Calculates the response by the central difference procedure.

RSPTR: Conducts the two cycle iteration with trapezoidal rule.

EXTRAP: Calculates the response by direct linear extrapolation with
the trapezoidal rule and solution for total displacements.

EXTRAI: Computes the response by direct linear extrapolation with
the trapezoidal rule but with solution for incremental
displacements.

NORMOD: Performs the normal mode procedure.

SDIAG: Finds the eigenvalues and eigenvectors needed in the normal
mode procedure by the Householder-QR method.

DCOMP: Decomposes a positive-definite matrix CCholesky decomposition).

FWS: Finds the forward solution in the Cholesky decomposition.

BWS: Finds the backward and final solution in the Cholesky
decomposition.

MATPRT: Prints the output.

5.2.3 Program Notation

Table 5.2 defines the important simple and subscripted variables
that are used in the program RESPPSQ4. Real and Integer variables are
designated by letters R and I accordingly.

5.2.4 Preparation of Data

Required input data for RESPPSQ4 are summarized in Table 5.3. Two

standard FORTRAN number fields have been used and are identified for each

card by F for real variables and I for integer variables.
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TABLE 5.2 Notations for Program RESPPSQ4

I. Simple Variables

Variable(s) Type

ALPHA R

DELTAT R

DT R

EI,E2,E3 R

ETA R

IPS I

LTYPE I

MAXT R

NDF I

NDISP I

NDT I

NE I

NEP I

NES I

NET I

NEV I

NLN I

NN I

NRN I

NSEG I

PSI R

Definition

Thermal expansion coefficient

Temperature strain

Incremental time step

Stress-strain constants

Variable of spatial integrals

Indicator for plane stress or plane strain
IPS 0 for plane stress
IPS = I for plane strain

Type of nodal loading

Last time for response calculation

Number of degrees of freedom

Number of possible displacements

Number of time steps

Number of elements

Number of elements with prestrain

Number of elementE: with surface load

Number of elementE; with temperature strain

Number of elements with volume load

Number of loaded nodes

Number of nodes

Number of restrained nodes

Number of loading segments

Prestrain in x direction
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TABLE 5.2 - continued

Variable(s) Type Definition

PS2 R Prestrain in y direction

PS3 R Shear prestrain

WSl,WS2,WS3,WS4 R Intensities of surface load

HVl,WV2 R Intensities of volume load

XI R Variable of spatial integrals

II. Subscripted Variables

A. Vectors

Variable(s) Type

A( ) R

AO( ) R

DO( ) R

DON,DD,DQ,DOLD( ) R

EIG( ) R

EE( ) R

FO( ) R

Fl,FON,FlN( ) R

GAUSS ( ) R

H( ) R

ID,IR( ) I

Jl,J2,J3,J4( ) I

M( ) R

HI( ) R

Definition

Acceleration

Initial acceleration

Initial displacements

Nodal displacements (any time step)

Eigenvalues

Eigenvectors

Initial loads

Nodal force (any time step)

Coordinates of Gaussian quadrature

Young modulus

Rearrangement index

Element node numbers

Lumped mass matrix

Scaled mass matrix
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TABLE 5.2 - continued

Variable(s) Type Definition

NCRL( ) I Cumulative restraint list

PRe ) R Poisson ratio

RHO( ) R Mass per unit volume

RL( ) I Restrained code

THe) R Thickness of the elements

VO( ) R Initial velocities

VI ,VOO ,VON ,VOLD ( ) R Nodal velocity (any time step)

x( ) R Nodal X-coordinatE~s

Y( ) R Nodal Y-coordinates

B. Doubly-Subscripted Variables

Variable Type Definition

C( , ) R Matrix of nodal coordinates for an element

D( , ) R Array of nodal displacements

F( , ) R Applied nodal forces

G( , ) R Elements of strain-displacement matrix

SEC , ) R Element stiffness matrix

SN( , ) R Structure stiffness matrix

STM( , ) R Scaled stiffness matrix

XX( , ) R Eigenvectors
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TABLE 5.3 Input Data for RESPPSQ4

I. Structure data and control parameter

Variables

1. NE,NN,NRN

2. IPS

3. J,X(J),Y(J)

4. I,J1(I) ,J2(1) ,J3(I) ,J4(I),
TH(I),H(I),PR(I),RHO(I)

5. K,RL(2K-l),RL(2K)

II. Load Data

Variables

1. LTYPE,NLN,NES,NEV,
NET,NEP,NDT,DT

2. K,FO(2K-l),FO(2K),DO(2K-l),
DO(2K),VO(2K-l),VO(2K)

3. NSEG
(if LTYPE = 2,3 or 4)

4. K (number of loaded node)
CX,TX1,CY,TYl
SLOPEX,TX2,SLOPEY,TY2
(if LTYPE = 2, repeat
this NLN times)

5. AMP,OMEGA,C,Tl,T2
(if LTYPE = 3 or 4)

6. K,F(IT,2K-l),F(IT,2K)
(if LTYPE "" 5)

7. IS,JS,WSl,WS2,WS3,WS4
(if NES not equal to zero)

8. K,WVI,WV2
(if NEV not equal to zero)

9. K,DELTAT,ALPHA
(if NET not equal to zero)

10. K,PSI,PS2,PS3
(if NEP not equal to zero)

Fields

313

13

13,2FIO.

S13,4FIO.

312

Fields

7I5,FlO.

IS,6FIO.

15

15
4FIO.
4FIO.

SFIO.

IS,2FlO.

2I5,4FIO.

15,2FIO.

Is,2FIO.

IS ,3FlO.

No. of cards

I

I

NN

NE

NRN

No. of cards

1

NLN

1

I
I
I

NSEG

NLN times NDT

NES

NEV

NET

NEP
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5.3 Program for Nonlinear Analysis by Implicit Methods

5.3.1 Description of program NODIMP

NODIMP is a program for nonlinear dynamic analysis of plane stress

(or plane strain) problems by three implicit procedures as follows:

1. Newmark-Beta method

2. Houbolt procedure

3. Park stiffly-stable method

Both material and geometric nonlinearities have been implemented.

They can be controlled by a parameter named IGN. ~llien geometric

nonlinearity is ignored, IGN must be set equal to zero. If geometric

nonlinearity is to be taken into account, IGN must be set equal to one.

Two different types of stress approximation have been incorporated

in the program. Parameter ISTRES controls the stress approximation. It

takes a value of zero when the stresses are taken constant within the

element based on their values at the geometric center. It is assigned a

value of one when the stresses are evaluated at the four element

integration points. In addition, equilibrium iterations for implicit

schemes have been implemented. In this case, when stresses are assumed

constant throughout the element based on their values at the geometric

center of the element, the internal force vector is calculated by adding

the incremental internal force changes based on the stiffness matrix.

However, when stresses are calculated at the integration points, in order

to obtain more accurate results, the internal force vector is calculated

directly from the stresses.

- 102 -



In this program three different types of loadings have been

considered, namely, nodal loads, surface loads, and volume loads. For

nodal loads two types of loading can be applied through the use of

the parameter LTYPE. When LTYPE is assigned a value of one, a constant

nodal load is applied. If LTYPE is assigned a value of two, a piecewise-

linear nodal load is applied. In this case, the time and the value of

load at the beginning and end of each segment are given as input data;

and the piecewise-linear load is approximated by constant average values,

as is shown in Fig. 5.2. It should be noted that nodal loads are given

only for a selected number of degrees of freedom through an array of load

indexes. Similarly, the output, that is, the displacements and stresses

are printed only for a selected number of nodal degrees of freedom

through arrays of response and stress indexes. Furthermore, the output

F
piecewise-linear load segments approxi
mated by constant-average values

F
l I,.,,

J
I
I
I

0 t
l

6t t. t 2
t

l

Fig. 5.2
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need not be saved and printed for every time step, but it can be stored

and printed for every chosen interval of time. The interval for printing

the output is given as data by parameter NIOUT that indicates the number

of time steps for which the output is to be stored and printed. These

features are essential for saving storage, espeeially when the nodal

loading and output are to be plotted.

The program NODIMP consists of a main program that uses twenty eight

subroutines. These subroutines are described briefly in the following

article.

5.3.2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program NODIMP is given in Table 5.4.

Subroutines SURLOD, VOLLOD, LMASS, FWS, BWS and MATPRT are the same as

described for the program RESPPSQ4 in Art. 5.2.2. Moreover, subroutines

SDATA, LDATA and STIFF perform the same functions as in the program

RESPPSQ4, but they are modified for the nonlinear analysis. Subroutines

DCOMP and DCOMPO decompose a positive-definite Dlatrix by Cholesky

decomposition. However, in DCOMP, the reciprocals of diagonal elements

are stored in the diagonal positions. This is expedient whenever solution

of a linear system of equations by forward and backward sweeps is desired

[54]. Concise descriptions of functions of the remaining subroutines are

given in the following paragraphs:

ELAST:

CLEAR:

PLAST:

STIFQ4:

Creates the elastic stress-strain matrix.

Clears and initializes the required values for each method at
the outset of computations.

Creates the incremental plastic stress-strain matrix at the
geometric center of the element or at four spatial integration
points.

Generates the stiffness matrix for an element when geometric
nonlinearity is not taken into account.
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TABLE 5.4 Macroflow chart for NODIMP

3

11-+----11>-1 IGN =f 0 and ISTRES
I..!::::==;::::=:=::!!

o DCOMPO

set index ISP for the first
solution rocedure desired

lr.========:=:;'l

IT 1) NDT

DLENB

4

'>---;;....11 PASTIF

>-------~_ll HOBOLT

2

IFPE = 0 and IT > 1

save the desired
displacements and stresses

for printing
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OUTPUT

TABLE 5.4 - continued

MATPRT

set index ISP for I .("';'\
>---~,--_th_e_n_e_x_t~p_r._o_c_ed_u_r_e __...J~

4
N:=:l,NE

VOLLOD

IGN 0 or IT 1 >-------...,....1 STIFQ4 (N) 11----8
'--__I_GN_t_O-.,a,n-d_IT_>_l_~ '>--'!IO-Il STFEGN(~
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TABLE 5.4 - continued

6

IPLAS (N J ISTEV) = 0

ISTEV = 1

7r-- ..L- ......,

calculate stiffnesses
explicitly
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TABLE 5.4 - continued

J = 1 J 2

BMATQ4(XI J ETA) I

,--_I_S_T_RE_S_=_O--._a_nd__I_S_>_l_./ ">-----{0
r------:1~~

'----""T'""--,

'--__;-..;...;,.--/~----!~[ PLAST (N J IS)

~ = ~ + or * JD- + ~) * DJ * TH (N )

only upper triangular part

o
/
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TABLE 5.4 - continued

10

11

SE = SE + (Bl'" * Bl +W) * DJ * TH(N)
r-J r..I "" I"J""

only upper triangular part

12

IFPE = ° and IT > 1 >---~13

13

14
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TABLE 5.4 - continued

INFORl

calculate new displacements,
velocities and accelerations

----~c_o_n_v_e_r_g_e_n_c_e_t_o_l_eTr-a-n-c-e-i-s-s-a-t_i_s_f_i_e_d",,-'__---:)~@

IIo >---....:.,,..[ INFORI'__ .rINFOR4
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15

TABLE 5.11 - continued

I 1 , NE

II=I,2

IGN t 0 and IT > 1

o
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STFEGN: Generates the stiffness matrix for an element when geometric
nonlinearity is taken into account.

GESTIF: Calculates the contribution of geometriG stiffness matrix to
tangential stiffness matrix.

DLENB: Computes the response by Newmark-Beta method.

HOBOLT: Calculates the response by Houbolt method.

PASTIF: Performs Park stiffly-stable procedure.

EFSTIF: Calculates the effective stiffness matrix.

STRESS: Finds the stresses at the geometric center of the element or
four integration points.

NISTRN: Computes the nonlinear components of incremental strains and
adds them to linear incremental strains"

INFORC: Calculates the vector of internal nodal point forces.

LOAD: Calculates the vector of external nodal point loads.

EFLOAD: Evaluates the effective loads.

BMATQ4: Creates the strain-displacement matrix for a quadrilateral
isoparametric element in a local point.

OUTPUT: Prints the heading and desired output for each method.

5.3.3 Program Notations

Table 5.5 defines the important simple and subscripted variables

that are used in program NODIMP. Variables which begin with the letters

I to N inclusive are declared as integer variables. Otherwise, they are

declared long (double) precision real variables.

5.3.4 Preparation of Data

Required input data for NODIMP are summarized in Table 5.6. Two

standard FORTRAN number fields have been used and are identified for

each card by F for long precision real variables and I for integer

variables.
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TABLE 5.5 Notations for Program NODIMP

I. Simple Variables

Variable

BETA

DELTA

DT

E

ET

ETA

Fl

F2

GAMA

H

IFPE

IGN

IPS

IPU

ISP

ISTOUT

Definition

Parameter of Newmark-Beta method

Parameter of Newmark-Beta method

Incremental time step

Young Modulus

Tangent modulus

Variable of spatial integrals

Value of load at the beginning of a loading segment

Value of load at the end of a loading segment

Parameter of Newmark-Beta method

Plastic modulus

Indicater for first plastic element
IFPE=O no plastic element
IFPE=l at least one element is plastified

Index for geometric nonlinearity
IGN=O geometric nonlinearity is ignored
IGN=l geometric nonlinearity is to be taken into
account

Indicator for plane stress or plane strain
IPS=O for plane stress
IPS=l for plane strain

Indicator for printing plastification and unloading
If plastification and unloading are to be printed
out. IPU=l. otherwise IPU=O

Index for solution procedure
ISP=l for Newmark-Beta method
ISP=2 for Houbolt method
ISP=3 for Park stiffly-stable mrthod

Indicator for printing (ISTOUT=l) or not printing
(ISTOUT=O) the stresses
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Variable

ISTRES

ITPRO

LTYPE

~TOOI

METOD2

METOD3

MNIT

NDI

ND2

ND3

NDF

NDISP

NDT

NE

NEI

NES

NEV

NIOUT

NN

NSEG

TABLE 5.5 - continued

Definition

Control parameter for stress evaluation
ISTRES=l stresses are evaluated at the four
integration points
ISTRES=O stresses are evaluated only at the geometric
center of the elements

Control parameter for equiblirium iterations
ITPRO=O no iterations
ITPRO=l Constant stiffness iterations

Type of nodal loading

Indicator for Newmark-Beta method (METODl=l)

Indicator for Houbolt method (METOD2=2)

Indicator for Park method (METOD3=3)

Maximum number of iterations

Number of displacements with nonzero initial
displacements or velocities

Number of displacements with nonzero loads

Number of displacements where response is desired

Number of degrees of freedom

'Number of possible displacements

Number of time steps

Number of elements

Number of elements with stresses desired

Number of elements with surface load

Number of elements with volume load

Interval for printing the output

Number of nodes

Number of restrained nodes

Number of loading segments
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Variable

NTPO

PR

SIGH

Tl

T2

TOL

WSl,WS2,WS3,WS4

WVl, WV2

XI

YS

TABLE 5.5 - continued

Definition

Number of time steps for printing the output

Poisson ratio

Hydrostatic stress value

Time at the biginning of a loading segment

Time at the end of a loading segment

Convergence tolerance

Intensities of surface load

Intensities of volume load

Variable of spatial integrals

Yield stress

II. Subscripted Variables

A. Vectors

Variables

A( )

AO( )

CDr ( )

DI( )

DN( )

DNl,DN2,DN3( )

DO( )

FE( )

FI ( )

Definition

Accelerations

Initial accelerations

Correction to incremental displacements

Incremental displacements(at any time)

Nodal displacements(at any time)

Displacements at the end of previous time steps
(for Park method)

Initial displacements

Equivalent nodal loads due to surface or volume load

Internal nodal forces
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Variable

FN( )

FO( )

GAUSS ( )

ID,IR( )

Jl,J2,J3,J4( )

LL( )

LR( )

LS ( )

NCRL( )

NRL( )

RHO ( )

RM( )

STRAIN ( )

TH( )

VO( )

VNl,VN2,VN3( )

X( )

Y( )

TABLE 5.5 - continued

Definition

External nodal forces

Initial loads

Coordinates of Gaussian quadrature

Rearrangement index

Element node numbers

List of indexes for displacements with nonzero loads

List of indexes for response-time histories

List of indexes for stresses in elements

Cumulative restraint list

Restraint list

Mass per unit volume

Lumped mass matrix

Strains

Thickness of the elements

Initial velocities

Velocities at the end of previous time steps
(for Park method)

Nodal X-coordinates

Nodal Y-coordinates

B. Doubly-Subscripted Variables

Variable

B( , )

C( , )

D ( , )

DD( , )

Definition

Strain-displacement matrix

Matrix of nodal coordinates for an element

Array of nodal displacements for printing

Incremental plastic stress-strain matix
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Variable

DE( , )

DIE( , )

El ( , )

E2( , )

ESN( , )

F ( , )

G( , )

IPLAS ( , )

SEC , )

SIGDX( , )

SIGDY( , )

SIGEM( , )

SIGET( , )

SN( , )

SX( , )

SXY ( , )

SY( , )

V( , )

W( , )

TABLE 5.5 - continued

Definition

Nodal displacements for an element

Nodal incremental displacements for an element

Elastic stress-strain matrix for plane stress

Elastic stress-strain matrix for plane strain

Effective stiffness matrix

Applied nodal forces

Elements of strain-displacement matrix

Indicator for plastification(=l) and unloading(=O)

Element stiffness matrix

X-component of deviatoric stress

Y-component of deviatoric stress

Maximum effective stress

Effective stress

Structure stiffness matrix

Normal stresses in the X direction to be printed

Shear stresses to be printed

Normal stresses in the Y direction to be printed

Decomposed of elastic stress-strain matrix

Contribution of geometric stiffnesses to tangent
stiffness matrix

Note: For variables SIGDX, SIGDY, SIGET, SIGEM and IPLAS the first
subscript refers to the element number and second subscript indicates
either the integration points(when ISTRES=l) or geometric center of the
element(when ISTRES=O). In the latter case only one column of these
arrays is needed. For variables SX, SY, and SXY, first subscript refers
to time increment while the second subscript refers to the elements
with stresses desired.
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TABLE 5.5 - continued

c. Multiply-Subscripted Variables

Variable

SIGT( , , )

SIGTl( , , )

Definition

Total stresses

Total stresses at the end of previous time step

Note: The first subscript of these variables refers to the element
number. Second subscript indicates type of the stress and can take a
value of one to four indicating normal stresses in the X and Y
directions, shear stress in the XY plane and normal stress in the Z
direction. Finally, third subscript indicates either the integration
points (when ISTRES=}) or geometric center of the element(when ISTRES=O).
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TABLE 5.6 Input Data for NODIMP

I. Structure data and control parameters

Variables Fields No. of cards

1. METODl,METOD2,METOD3 3I3 1

2. ISTOUT,IPU,IGN 3I3 1

3. ITPRO,ISTRES,NIOUT,NTPO,MNIT, SI3,F10. 1
TOL

4. NE,NN,NRN 3I3 1

5. IPS 13 1

6. J ,X(J), Y(J) IJ,2FIO. NN

7. E,PR,ET,YS 4F12. 1

8. I,J1(I) ,J2(I) ,J3(I) ,J4(I), SI3,2F10. NE
TH(I),RHO(I)

9. K,NRL(2K-l),NRL(2K) 312 NRN

II. Load and Output Data

Variables Fields No. of cards

1. LTYPE,NDl,ND2,ND3,NEl, 8I5,FIO. 1
NES,NEV,NDT,DT

2. J,DO(J),VO(J) 15,2FIO. NDI
(if NDl not equal to zero)

3. J ,LL(J) 215 ND2
(if ND2 not equal to zero)

4. J,FO(J) 15,FIO. ND2
(if ND2 not equal to zero

and LTYPE=l)
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TABLE 5.6 - continued

Variables Fields No. of cards

5. J,NSEG 215 1
Tl,Fl.T2,F2 4FIO. NSEG
(if LTYPE=2, repeat this

ND2 times)

6. IS,JS,WSI,WS2,WS3,WS4 215,4FIO. NES
(if NE8 not equal to zero )

7. K,WVI,WV2 15,2FIO. NEV
(if NEV not equal to zero )

8. J ,LR(J) 215 ND3
(if ND3 not equal to zero)

9. J ,L8 (J) 215 NE1
(if NEI not equal to zero )

III. Parameter of Newmark-Beta Method

Variable Fields No. of cards

l. DELTA FlO. 1
(if METOD1=l)
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5.4 Program for Nonlinear Analysis by Explicit Methods

5.4.1 Description of Program NODEXP

NODEXP is a program for nonlinear dynamic analysis of plane stress

(or plane strain) problems by the nodewise solution technique and three

explicit methods as follows:

1. Central difference predictor

2. Two-cycle iteration with the trapezoidal rule

3. Fourth-order Runge-Kutta method

Material nonlinearity as well as geometric nonlinearity have been

implemented; and two types of stress approximations have been incorporated

in the program NODEXP, as described in Art. 5.3.1 for program NODIMP. In

addition, the same types of loadings and limitations on the number of

loaded nodes and the number of response histories have been considered as

for the program NODIMP.

In the nodewise solution technique, in addition to the arrays Jl,

J2, J3, and J4 that contain node numbers for each element, we also need

another array containing element numbers associated with each node. In

order to save only nonzero terms and consequently to save storage, it is

expedient to save the latter array in vector form. However, another array

is also necessary to store the number of elements connected at each

node. These two arrays are called NIE (node identification by the

elements) and NEN (number of elements at each node). In the program

NODEXP, only the arrays Jl, J2, J3, and J4 are given as data and the

arrays NEN and NIE are computed from them automatically by subroutine

NIBE.

The program NODEXP consists of a main program that uses twenty six

subroutines. These subroutines are described concisely in the following

article.
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5.4.2 Subroutine Synopsis and Macroflow Chart

A macroflow chart of the program NODEXP is given in Table 5.7. In

this flow chart, for the sake of brevity, details of the load, stress and

stiffness calculations have been omitted. These steps are done in the

same way as for the program NODIMP. However, it should be noted that in

this program only two rows of the stiffness matrices are generated at

each stage of the computations. Subroutines LDATA, SURLOD, VOLLOD, LMASS,

ELAST, PLAST, BMATQ4, NISTRN, DCOMPO, OUTPUT, and MATPRT are the same as

described for the program NODIMP in Art. 5.3.2. Furthermore, subroutines

SDATA, CLEAR and STRESS perform the same functions as in the program

NODIMP, but they are modified for the nodewise solution technique and

explicit methods. Brief descriptions of functions of the remaining

subroutines follow:

NIBE:

CDP:

ITERTR:

EVAL(IA) :

RUNKUT:

EVALON:

INCLOD:

STIF(N) :

Generates the arrays NIE (node identification by the
elements) and NEN (number of elements at each node).

Calculates the response by central difference predictor.

Computes the response by two-cycle iteration average
acceleration method or trapezoidal rule.

Performs the evaluation required in the central'difference
predictor and two-cycle iteration with trapezoidal rule.
IA is set equal to zero for the first time step and is
greater than zero after the first time step.

Calculates the response by the fourth-order Runge-Kutta
method.

Performs the four evaluations required in the fourth-order
Runge-Kutta method.

Computes the incremental nodal loads.

Creates two rows of the structure stiffness matrix
corresponding to node N.
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TABLE 5.7 Macroflow chart for NODEXP

16---l~ IGN I 0 and ISTRES

set index to the first
solution rocedure desired

o DCOMPO

2

1

IT

">-----...llo,o{4

~-----~3

save the desired
displacements and stresses

for printing

1

solution by another method
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set index ISP for
the next procedure



TABLE 5.7 - continued

3

I EVAL (~ t
~ K = 1, N

'I\.
J,

I STRESS I I STIF(K)

K = 1,NN

[ STIF(K)

L = 1, 2

ITERTR

4
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TABLE 5.7 - continued

5

RUNKUT

L 1 ) 4

2

~--....1Joo41 STRESS
L-_-r__J'

6

L 1 ) NEN (K)

IGN = 0 or IT = 1

IGN f 0 and IT > 1 ESTFGN I I GEOSTF
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ST1FQ4(N,M): Creates two rows of the stiffness matrix for an element N
corresponding to node M, when geometric nonlinearity is
ignored.

STEL: Calculates stiffnesses explicitly for each element
integration point, to be used by subroutine ST1FQ4.

ESTFGN(N,M): Creates two rows of the stiffness m~brix for an element N
and corresponding to node M, when geometric nonlinearity is
taken into account.

GEOSTF: Computes the contribution of the geolnetric stiffness matrix
to the tangential stiffness matrix corresponding to a node.

5.4.3 Program Notations

Most of the notations for program NODEXP are chosen the same way as

those for program NODIMP. Table 5.8 defines the ilnportant additional and

renamed variables that are used in the program NODEXP. Similar to the

program NOD1MP, variables which begin with the letters I to N inclusive

are declared as integer variables. Otherwise, they are declared long

(double) precision real variables.

5.4.4 Preparation of Data

Required input data for NODEXP are almost the same as those for the

program NOD1MP that are summarized in Table 5.6, but with three

exceptions. The differences are as follows:

--On the second card the variables 1STRES, NIOUT, NTPO, ISTOUT

and 1PU are read with the format 513.

--On the third card the variable 1GN is read with the format

13.

--The last card must be omitted.
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TABLE 5.8 Additional Notations List for Program NODEXP

I. Simple Variables

Variable

ISP

METODI

METOD2

METOD3

Definition

Index for solution procedures
ISP=l for central difference predictor
ISP=2 for two-cycle iteration with trapezoidal rule
ISP=3 for fourth-order Runge-Kutta method

Indicator for central difference predictor (METODl=l)

Indicator for two-cycle iteration with trapezoidal
rule (METOD2=2)

Indicator for fourth-order Runge-Kutta method
(HETOD3=3)

II. Subscripted Variables

A. Vectors

Variables

DF ( )

DIl( )

Fl,F2,F3,F4(

NEN(

NIE(

VIl(

Definition

Nodal force increments

Incremental displacements at the end of previous time
step

Functions of fourth-order Runge-Kutta method

Number of elements at each node

Node element numbers

Incremental velocities at the end of previous time
step

B. Doubly-Subscripted Variables

Variables Definition

SE( , ) Two rows of the element stiffness matrix

SN( , ) Two rows of the structure stiffness matrix
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5.5 Example Problem

Many complex practical structures with compLicated loadings can

be idealized as plane stress or plane strain problems that can be

solved by the methods and computer programs developed in this study.

For example, the plane stress problem can be used to analyze stif

fened sheet construction, box beams and arches. :Practical appli

cations of the plane strain problem occur in the stress analysis of

soil systems, dams, tunnels, concrete walls and other long solid

structures whose geometry and loading are constant in the long di

rection [11,20,62]. However, owing to the high cost of extensive

comparisons of numerous solution techniques studied in this work

(and in order to keep the cost of computer time at a minimum), a

rather simple example was used to compare the accuracy, stability

and efficiency of different procedures. The example problem is

illustrated in Figs. 5.4 through 5.8. In this problem, which is a

plane stress problem, a square plate 10" X 10" X 0.1" is loaded

suddenly with a uniform line load at the middle line of the plate

as shown in Fig. 5.4. The distributed loading on the plate is assumed

to be replaced with equivalent forces at the nodes. In this case, they

will be step loads as indicated in Fig. 5.3. The plate has two free

edges and is restrained at the other edges as shown in the figures.

Obviously, the cost of response calculations increases with the num

ber of degrees of freedom or size of the problem. For efficiency

comparisons, the plate is divided into four, nine, sixteen, twenty

five and thirty-six finite elements as shown in Figs. 5.4 through

5.8, and the response is calculated for a selected number of nodal
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displacements. In addition, the time step for response calculations

is varied from 10-6 seconds to 5 X 10- 5 seconds. The following mate-

rial constants are used throughout this study:

Elastic modulus 30 X 10
6 psi

Poisson ratio 0·3

Tangent modulus 12 X 10
6 psi

Yield stress 36000 psi

The numbering system employed is shown for the l6-element plate

in Fig. 5.9. In Figs. 5.4 through 5.8, NDF refers to the number of

degrees of freedom.

load

kF r --------------

o~------------------time

Fig. 5.3 Step Loading at the Nodes
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CHAPTER 6

NUMERICAL EXPERIMENTS AND RESULTS

6.1 Linear Dynamic Analysis

6.1.1 Introduction

In the following sections the four solution techniques presented

in Section 4.1 are compared for efficiency, accuracy, and stability.

Load F for the example is taken equal to 10 1b, and all results

for linear analysis were obtained under the WATFIV compiler. Figure

6.1 shows a typical response plot of the plate in the direction of

loading for the l6-element case. On this plot, where a time step of

10-6 seconds is used, results of all methods are indistinguishable

from each other. Figure 6.2 shows the response for the normal mode

method for the same case but with a larger time step of 5 X 10-6 sec.

For this size of time step, the other three methods give similar re-

suIts that are practically the same.

6.1.2 Efficiency

Table 6.1 shows the efficiency comparisons for the four finite

element networks shown in Section 5.5 (Figs. 5.4 through 5.7), using

-6
one hundred equal time steps of 10 sec. These results are plotted

in Fig. 6.3 as computation time versus number of degrees of freedom.

Direct extrapolation methods and the central difference procedure
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require approximately the same amount of computation time. As expected,

the normal mode procedure is the slowest of all methods studied here.

Laswell (32] compared the same solution techniques for linear problems

using a plate bending example. He found the central difference procedure

to be the most efficient of all methods. However, in the present study

the direct linear extrapolation methods are seen to be slightly more effi-

cient than the central difference procedure. This discrepancy is probably

due to improved coding in the present work.

6.1.3 Accuracy

For the example problem, the normal mode method provides a reliable

solution against which other solutions can be compared. Table 6.2 shows

the value of maximum deflection in the direction of loading at the center

of the plate for different methods. These results are for 4-element and

-616-element meshes. They are based on a time step of 10 sec and for a

-4time range from zero to 10 sec. By examining the maximum deflection

for different methods, we observe that for a small number of degrees of

freedom all methods are of comparable accuracy. However, as the number

of degrees of freedom increases, direct linear extrapolation is less

accurate. One would suspect that this is due to round-off error. In

order to investigate this problem, the program for linear analysis

(RESPPSQ4) was changed from single precision to dow)le precision arith-

metic. Table 6.3 contains results for the l6-element mesh, using double

precision arithmetic. It can be seen that the direct linear extrapolation

procedure is more sensitive to round-off error than the other methods

studied.



TABLE 6.2 Maximum Deflections (10-6 in.)

METHOD
4 Elements 16 Elements

NDF = 10 NDF = 38

Direct Extrapolation 6·32501 6.24371

Direct Extrapolation
With Incremental 6.32390 6.23772
Displacements

Central Difference 6·32937 6.27483

Iteration with
6.32846 6.27099Trapezoidal Rule

Normal Mode 6.32863 6.27391

NDF Number of Degrees of Freedom
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TABLE 6.3 Maximum Deflection and Execution Time for l6-Element Mesh

Using Double Precision Arithmettc

Maximum Deflection Computation Time
Method (10-6 in.) (sec)

Direct Extrapolation 6.27106 22.77

Direct Extrapolation
with Incremental 6.27106 23·26
Displacements

Central Difference 6.27517 23·72

Iteration with 6.27101 47.43Trapezoidal Rule

Normal Mode 6.27381 95.89

TABLE 6.4 Stability Results for 4-Element Model

Size of Time Step (sec)

Method
0.000001 0.00001 0.00003 0.00005 0.0001

Direct STABLE STABLE STABLE STABLE STABLEExtrapolation

Central STABLE STABLE STABLE UNSTABLE UNSTABLEDifference

Iteration with
Trapezoidal STABLE STABLE UNSTABLE UNSTABLE UNSTABLE
Rule
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6.1.4 Stability

Because of limitations of available computer time, the stability

check was done only for the 4-element mesh, and the results appear in

Table 6.4. The size of the time step was increased gradually from

10-6 sec to 10-4 sec for each numerical integration method in order to

determine its stability limit. It is seen that the stability limit for

two-cycle iteration with the trapezoidal rule is the smallest of all

methods studied. Because no approximation formula is used in the normal

mode method, a stability check is not applicable to this procedure.

6.2 Nonlinear Dynamic Analysis

6.2.1 Introduction

Due to the fact that the cost of nonlinear dynamic analysis is sig-

nificantly higher than that of linear analysis, a prudent strategy for

numerical experimentation was adopted in order not to exceed the limited

computer time available. Accordingly, we first compare the performance

of explicit and implicit methods separately (in Sections 6.2.2 and 6.2.3,

respectively). These comparisons are based on a 4-element mesh (see

Fig. 5.4) with elastoplastic material properties, neglecting geometric

nonlinearity.

In Section 6.2.4, the best of the explicit methods is compared with

the best of the implicit methods for larger problems (Figs. 5.5 through

5.8). Furthermore, geometric nonlinearities are also taken into account

in this stage.

All of the results in Sections 6.2.2 and 6.2.3 were obtained under

the WATFIV compiler. However, the FORTRAN-IVH compiler was used for the

- 141 -



results in Section 6.2.4 because of its much faster execution time. In

the diagrams on the following pages, computation ti.mes under the WATFIV

and FORTRAN-IVH compilers are denoted by CTW and CTF, respectively. In

order to reduce round-off error, double precision arithmetic was used

throughout.

In the following sections, the load F (see Figs. 5.4 to 5.8) is

taken equal to 100,000 lbs. This load is high enough to produce a con-

siderab1e amount of inelastic strain. All plots are responses of the

center of the plate in the direction of loading.

6.2.2 Comparison of Explicit Methods

The best method will be defined as that for which the ratio of the

time step to the computation time is maximum for a given time range,

while producing reasonably accurate results. At first we assume the

stresses to be constant over each element, based OIL their values at

the geometric center of the element. This approximation results in

considerable saving in the overall computation time.

Figure 6.4 shows the response at the center of the plate by the

central difference predictor with a time step equal. to 10-6 seconds.

For this small time step, two-cycle iteration with the trapezoidal

rule and the fourth-order Runge-Kutta method produce similar results

that practically coincide with the diagram in Fig. 6.4

displacement in this figure is equal to 0.137 in.)

(The maximum

Figure 6.5 shows comparable results for three explicit methods

-5 -4for a time step of 10 sec and a time range of 3 )( 10 sec. The

first peak values for the central difference predietor, the trape-

zoida1 rule, and the Runge-Kutta method are equal 1:0 0.138, 0.139,
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and 0.131 in., respectively. The computation times for these methods

in the above order are approximately 22, 45, and 83 seconds. The cen

tral difference predictor apparently gives the best results in terms

of accuracy and efficiency. Figure 6.6 shows the response by the

central difference procedure with a time step of 10-5 sec. This is

considered as the base case against which the results in the remainder

of this section will be compared.

In order to study these methods further, we increased the time

increment to 2 X 10-5 and 3 X 10-5 sec. For the first of these time

steps, the response for the central difference predictor (see Fig. 6.7)

becomes unstable, while the other two methods give inaccurate results.

With the time increment of 3 X 10- 5 sec (see Fig. 6.8), both the cen

tral difference procedure and the trapezoidal rule give unstable re

sults, whereas the response for the Runge-Kutta method is suppressed.

It is interesting to see that as we increase the time step to 4 X 10-5

and 5 X 10-5 sec, the response for the Runge-Kutta method becomes

drastically suppressed (see Fig. 6.9).

Figures 6.10 and 6.11 show responses for the three explicit me

thods (DT = 2 X 10-5 and 3 X 10- 5 sec, respectively) with the stresses

evaluated at the four integration points instead of at the geometric

center of each element. This change was expected to result in greater

accuracy. However, it does not seem to improve the performance of

either the trapezoidal rule or the Runge-Kutta method. In addition,

it tends to make the results for the central difference procedure even

more unstable.

From these comparisons, we conclude that among the explicit methods

studied the central difference procedure is the best. With this method,

- 145 -



1
\

1
"\

f\
r~

(\
I\

f\
/\

I

\
/

\
I

\
I

'
I

\
\

I
"-

J
J

"./

\/
IV

~
I

,
~

...o
r...

..
t.

l'
H

'..
=

'+

D
T

=
1

0
-5

se
c

N
D

T
=

10
0

IS
T

R
E

S
==

0

~
CT

W
=

7
2

.3
2

se
c

0
.1

6

0
.1

4

0
.1

2

0
.1

0

----
--. s:: ""'-"

.....
0

.0
8

+=
"'

.
0

\
Q

.
fJ:

I
•.-

1
A

0
.0

6

0
.0

4

0
.0

2

o
1

2
3

4
5

6
7

8
9

10
,

-4
T

im
e

(1
0

se
c
)

F
ig

.
6.

6
R

es
p

o
n

se
b

y
C

e
n

tr
a
l

D
if

fe
re

n
c
e

P
re

d
ic

to
r



0
.1

(;

0
.1

2

0
.1

0
-
, . p

.
~

~

t-
'

0
.0

8
-
~

Po
<

-
J

{/
J

.
~ 0

0
.0

6

0
.0

4
I
'

I
I

I
I

!
I

I
!

I
I

C
en

tr
al

D
if

fe
re

n
c
e

(C
TW

=
3

6
.5

1
se

c)

_
.-

._
.

T
ra

p
ez

o
id

al
R

u
le

(C
TW

=
7

7
.0

4
se

c)

_
_

_
_

R
u

n
g

e-
K

u
tt

a
(C

TW
=

1
3

7
.2

2
se

c)
-5

NE
=

4
,

DT
=

2
X

10
se

c
,

ND
T

=
50

,
IS

T
R

E
S

0
.0

2

a
1

2
3

4
5

6
7

8
9

10

T
im

e
(1

0
-4

se
c
)

F
ig

.
6

.7
R

es
po

ns
e

b
y

T
~
r
e
e

E
x

p
li

ci
t

M
et

ho
ds



8
9

1
0

-h
T

im
e

(1
0

'
se

c)
7

6
5

4
3

2
1

A
I

!

/
~
"

"
V

/
"

',.t
A

!'.
..

./

t \
(

/
~

I!I
.

//;
\\

~
J

!,
/-

/
"

.....
.\

'I
I

~
I

\
,I

\
I

\
/.

.....
\

,,
\\

/
\
/

I
\

I
\

I
1\

L'
\

•I !,
\

I
,

\

~
\

J
.

I
\

\
I

J' I
\

/
~
_
I

\
/

\_
1

.i
',

,/
\

-
'/

"

'1 ,I . rl ;. 'g • ; . I .
C

e
n

tr
a
l

D
if

fe
re

n
c
e

(C
TW

=
2

5
.6

1
se

c
)

t
_

.
_

.
_

T
ra

p
ez

o
id

al
R

u
le

(C
TW

=
52

.4
2

se
c
)

J
_

_
_

_
R

u
n

g
e-

K
u

tt
a

(C
TW

=
90

.8
2

se
c
)

N
E

=
4,

DT
=

3
X

1
0

-5
se

c
,

ND
T

=
33

,
IS

T
R

E
S

=
0

I
-

o

0
.0

2

0
.0

4

0
.1

0

0
.1

4

0
.1

2

0
.1

6

0.
06

. ~ .... '-
" .

0
.0

8
l:l

.
CI

l
..-

I
Q

I-
'

..;
: co

F
ig

.
6

.8
R

es
p

o
n

se
b

y
T

h
re

e
E

x
p

li
c
it

M
et

ho
ds



0
.1

6

o
.1

4
I

I
I

I
I

I
I

-
-

0
.1

2

DT
=

:
4

X
1

0
-5

ND
T

=
:

25

DT
=

:
5

X
1

0
-5

N
D

T
=

2
0

N
E

=
:

4
IS

T
R

E
S

=
0

se
c
,

se
c
,

0
.1

0
I

o.
0

8
,
,
-
-
-
r
-
T
-
-
t
t
-
-
T
~
~
f
-
-
-
~
:
-
-
~
-
+
-
~
~
-
:
:
?
-
~
~
~
l
C
-
-
~

t-
'

+
:

'-
0

. Q 'M P
 m 'M Q

0
.0

6
I

~

/
~

,\
A

o.
Ol
~

\
I

\
I

\
I

\
I

I
\

I
\

I
I
"

I
\

\
I

I
\

I
\

"
.
"
"
'
"

I
/

/'
0

.0
2

I
/

\I

\
I

\
I

\1

o
1

2
3

4
5

6
7

8
9

10

T
im

e
(1

0
-4

se
c
)

F
ig

.
6

.9
R

es
p

o
n

se
b

y
R

u
n

g
e-

K
u

tt
a

M
et

ho
d



t-
'

'-.
-'1 o

. r:: ..
-l . p.
.

ti
l

..
-l
~

r
-
-
-
-
-
r
-
-
.
-
-
-
-
/
-
-
-
.
\
-
-
-
-
.
-
-
-
-
-
;
~
-
_
+
r
_
-
-
-
:
:
.
.
-
_
r
~
f
T
-
I
-


0
.1

6

L
-
-
i
l
+
-
\
-
-
L
-
-
+
-
-
l
+
~
-
~
~
+
-
J
~
~
:
t
_
-
r
\
l
-
!
1

0
.1

4

~
~
-
+
-
%
-
+
-
J
-
+
-
A
~
-
f
-
H
1
-
!
-
t
-
+
T
-
~
_
;
_
I
T
_
_
r
_
_
_
_
!
l
i
-
'
:
J
J
T
\
l

0
.1

2

~
~
~
~
~
-
+
-
\
-
-
f
r
-
-
-
-
t
r
-
-
-
j
-
_
t
_
_
_
_
_
r
_
_
_
_
h
-
I
'
\
~
f
j
~

0
.1

0

o.
08
L
-
!
-
-
+
-
-
-
-
-
I
-
-
-
+
-
~
r
I
-
+
_
-
_
t
-
-
_
+
-
-
-
-
-
!
~
-
-
I
-
-
I
-
-

0
.0

6
I

I
I

I
I

I
I

I
I

I
I

4
I

I
I

I
I

I
I

I
I

I
I

0
.0

C
e
n

tr
a
l

D
if

fe
re

n
c
e

(
C
l
~

~
51

.9
6

se
c
)

T
ra

p
ez

o
id

al
R

u
le

(C
TW

=
1

0
0

.9
9

se
c
)

-5
N

E
=

4
,

DT
~

2
X

10
se

c
,

ND
T

=
5

0
,

IS
T

R
E

S
=

1
,

I
I

I
I

l

2
3

4
5

6
7

8
9

10
-4

T
im

e
(1

0
.

se
c
)

J o
1

R
u

n
g

e-
K

u
tt

a
(C

TW
=

1
6

8
.3

3
se

c
)

F
ig

.
6

.1
0

R
es

p
o

n
se

by
T

h
re

e
E

x
p

li
c
it

M
et

ho
ds



I
H

I
f-

·-
·-

-

i,.
_1

1
~

'/
\

\

/-
\

I
\

\ \
I

\
1

_
I

\

-
-
-
-

R
u

n
g

e-
K

u
tt

a

I
C

e
n

tr
a
l

D
if

fe
re

n
c
e

(C
TW

~
36

.3
5

se
c
)

T
ra

p
ez

o
id

al
R

u
le

(C
TW

~
76

.5
7

se
c
)

(C
TW

~
10

9.
39

se
c
)

-5
N

E
~

4,
DT

~
3

X
10

se
c
,

ND
T

~
33

,
IS

T
R

E
S

~
1

I

7
r
\

/
\

I
,1-\

I
.;".~'

\
1,1

r,
I

\
I

\
I

(f
\

w
\
-
-
-
-
~
I
\
-
-
-
-
f

\{·
7

\[
'

)
\

/
\

I
1

\
I

,
\

\
I

\
/

,
/

.;"
I

-
\1

rr
r-

--
I

I
v

, .1 , , ., !I {/ I ~

0
.1

6

0
.1

2

0.
1'

+

0
.0

2

0.
04

0.
10

----
--. l:: '.-
1

~

0.
08

V
I

t-
'

0.
.

UJ o
,.

j

Q

0.
06

o
1

2
3

4
5

6
7

8
9

10
-4

T
im

e
(1

0
se

c
)

F
ig

.
6.

11
R

es
p

o
n

se
by

T
h

re
e

E
x

p
li

c
it

M
et

ho
ds



we should calculate the stresses only at the geometric center of the

element and take them to be constant over the element.

6.2.3 Comparison of Implicit Methods

Turning now to implicit methods, we first assume the stresses to

be constant throughout each element. The results for the Newmark-Beta

method (with ~ = 0.25 and r = 0.5), the Houbolt procedure, and Park's

stiffly-stable method are plotted in Fig. 6.12. The time step selected

is 10-5 sec, and the range is from zero to 10-3 sec. Comparing these

results with those of the central difference procedure in Figs. 6.4 and

6.5, we observe that the responses are significantly suppressed for all

three implicit methods. In order to improve the accuracy of the response,

the time step was reduced to the value of 10-6 sec. In this case, the

responses of all three methods coincide with each other, as shown in

Fig. 6.13. This diagram corresponds to that for the central difference

procedure in Fig. 6.4. However, the maximum displacement in Fig. 6.13

is 0.133 in., compared with 0.137 in. in Fig. 6.4. It is likely that the

inaccuracy in Fig. 6.13 is due to the way the stresses are approximated

within each element. To investigate this matter, the stresses were evalu-

ated at the four integration points (parameter ISTRES = 1) instead of be-

ing evaluated only at the geometric center of the element. In this case,

with a time step of 10-6 sec, the results of the three implicit methods

coincide identically with that for the central difference procedure in

Fig. 6.4.

Figure 6.14 shows the response curves with a time step of 10-5 sec

and ISTRES = 1 . These plots are comparable to that for the central dif-

ference predictor in Fig. 6.6. The first maximum for the Newmark (with
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~ = 0.25 and r = 0.5), Houbolt, and Park methods are 0.137, 0.138., and

0.137 in., respectively. Consequently, it is concluded that for the

implicit procedures, the stresses should be evaluated at the spatial inte

gration points. Otherwise, extremely small time steps must be used in

order to obtain accurate results. Therefore, in the remainder of this

work (for implicit methods) we evaluate the streSSE!S at the integration

points.

Computation times for the Newmark (with ~ = 0.25 and r = 0.5 ),

Houbolt, and Park methods in Fig. 6.14 are 106, 107, and 105 sec, respec

tively, which are close to each other. However, some damping is observed

in the response for the Houbolt procedure, and the Newmark average accel

eration method tends to be unstable. Compared with the central differ-

ence procedure, all three methods apparently show an increased time in

terval between successive peaks. This increase is largest for the Houbolt

procedure, and smallest for the Newmark method. When the time step is

increased, these characteristics are magnified. Figure 6.15 shows the

responses for the three implicit methods with a time step of 3 X 10·'5 sec,

for which the Park method appears to give tlltlJrginally better results.

As discussed in Section 2.3, artificial damping can be introduced in

the Newmark-Beta method by the a control parameter. The dashed curves

in Figs. 6.16 and 6.17 show the results by the Newmark method with a = 0.05

(~ = 0.276 and r = 0.55). It is seen that the stability is improved at

the expense of some loss of accuracy due to damping (or suppression) of

the response. The first maximum in Fig. 6.16 for the Newmark method with

~ = 0.276 and r = 0.55 is 0.135 in. compared with 0.137 in. for the

previous solution in Fig. 6.4.
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Figures 6.18 and 6.19 show the results for the three implicit

methods with equilibrium iterations for a time step of 2 X 10-5 sec.

The maximum number of iterations is limited to five, and a conver-

gence tolerance is taken equal to 0.001. By inspecting these plots,

we observe that Park's method gives somewhat better results. The

Newmark method with 5 = 0 (~ 0.25 and 7 = 0.5) is barely stable

(see Fig. 6.18). The result is improved by choosing a value of 5

equal to 0.05 (~= 0.276 and y = 0.55). However, the computation

time is increased by approximately a factor of two (see Fig. 6.19)

in order to satisfy the tolerance of 0.001.

Evidently, for large time steps, the process of constant stiff-

ness iterations does not improve the results drastically. In such

cases, one may modify the stiffnesses in each cycle of iteration

(Newton-Ralphson method). This would probably improve the results

to some extent, but the computation time would increase significantly.

Based on the above comparisons, we can conclude that the perfor-

mance of Park's stiffly-stable method is the best of the three impli.cit

methods studied in this investigation. In the following section, Park's

method will be compared with the explicit central difference procedure.

6.2.4 Comparison of the Best Explicit Method with the Best Implici~

Method

Table 6.5 shows the computation times for the four finite element

networks shown previously in Figs. 5.4, 5.5, 5.6 ,and 5.8 using fort:y

equal time steps of 10-5 sec. These times are plotted in Fig. 6.20.

It is seen that when geometric nonlinearities are neglected, the compu-

tation time for the central difference procedure is considerably less
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TABLE 6.5 Computation time for FORTRAN IVH Compiler (sec)

Method 4 Elements 9 Elements 16 Elements 36 Elements

NDF = 10 NDF = 20 NDF = 38 NDF = 82

Central IGN= 0 5·26 13·06 28.71 87.85

Difference
IGN = 1 20.11 47.55 101.80 250.96

IGN= 0 8.69 22.42 56.42 261.04

Park

IGN= 1 17.72 42.62 93·94 344.25

NDF Number of Degrees of Freedom

(

0 Geometric non1inearities are neglected
IGN

1 Geometric non1inearities are taken into account
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than that of the Park method. However, as observed in Section 6.2.2,

the central difference procedure is prone to unstable behavior.

Solid curves in Figs. 6.21 and 6.22 show the responses of the two

methods for the 16-element mesh. The Park method produces relatively

good results, .but the response for the central difference procedure

is unstable. The computation times for these two cases (when IGN = 0)

are 56 and 29 sec for the Park and central difference methods, respec

tively. The time step was reduced to 0.667 X 10-5 sec for the central

difference procedure. Computation time was increased to 44 sec, but

poor results were still obtained, as shown by the dot-dash line in

Fig. 6.22. When the time step was further decreased to 0.5 X 10-5 sec,

the response (see Fig. 6.23) is comparable to that of the Park method

with DT = 10-5 sec (see Fig. 6.21). However, the computation time

was increased to 57 sec (for IGN = 0). Therefore, we observe that for

the 16-e1ement mesh and e1astoplastic analysis the performance of each

method is about the same.

When geometric nonlinearities are taken into account, the computa

tion times for the Park method with DT = 10-5 sec (see dashed curve in

Fig. 6.21) and central difference procedure with -5DT = 0.5 X 10 sec

(see dashed curve in Fig. 6.23) are 94 and 204 sec, respectively. In

this case, Park's method is more efficient than the central difference

method.

For the 36-e1ement mesh, the results are plotted in Figs. 6.24 and

6.25. In this case, with DT = 10-5 sec (solid curves), Park's method

produces good results, but the central difference procedure is unstable.

The time increment was then reduced to 0.333 X 10- 5 sec for the central

difference method (dot-dash curve in Fig. 6.25). The result is not as
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good as that for the Park method with -5DT = 10 sec, whereas their

computation times for e1astop1astic analysis (IGN = 0) are close to

each other. Consequently, for the 36-e1ement mesh and when IGN = 0 ,

the Park method is marginally better than the central difference pro-

cedure. The advantage of the Park method becomes more distinct when

geometric non1inearities are taken into account. This is due to the

fact that incorporation of geometric nonlinearities increases the

computation cost more drastically for the central difference procedure

than for the Park method (see Fig. 6.20).
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CHAPTER 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary and Conclusions

Several competitive solution techniques for linear and nonlinear

dynamic analysis of structures by the finite element method were studied.

The accuracy, stability, and efficiency of the solution procedures 'were

examined by comparing the results from a plane stress sample problem.

The type of element used is the isoparametric quadrilateral. An effi

cient operational procedure was developed for this element in order to

avoid matrix multiplications wherever possible. A lumped mass approach

has been used, which results in a diagonal mass matrix. This approach

is more efficient than the consistent (non-diagonal) mass formulation

because the equations of motion are uncoupled in the acceleration terms.

7.1.1 Linear Analysis

For linear analysis four solution techniques were compared. They

are direct linear extrapolation with the trapezoidal rule, the central

difference predictor, two cycle iteration with the trapezoidal rule,

and the normal mode method.

Among the methods studied, direct linear extrapolation with the

trapezoidal rule appears to be the best technique for linear dynamic

analysis. Its unconditional stability for linear systems is an impor

tant feature of this method. The central difference procedure should

be rated second, and two-cycle iteration with the trapezoidal rule is

third.
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We also found that numerical integration methods are somewhat

sensitive to round-off error, especially for large problems. Con

sequently, the use of double precision arithmetic is recommended as

a standard procedure.

The normal mode method is competitive with the other methods

studied only if modal truncation is used. In problems where the

frequencies and mode shapes are desired, use of the normal mode

procedure is mandatory.

7.1.2 Nonlinear Analysis

For nonlinear analysis, both material and geometric nonlineari

ties were included in the finite element formulation. Elastoplastic

behavior was incorporated through a bilinear effective stress-effective

strain curve, for which strain hardening of the material is taken into

account; but the Bauschinger effect is neglected.

Three explicit methods were investigated. They are the central

difference predictor, two-cycle iteration with the trapezoidal rule,

and the fourth-order Runge-Kutta method. For these methods, a nodewise

solution technique has been developed for which only two rows of the

tangential stiffness matrix are generated at any stage in the analysis.

Consequently, large problems with several thousand degrees of freedom

can be analyzed within the fast core of the computer, which is advan

tageous.

Three implicit methods were also studied. They are the Newmark

Beta approach, the Houbolt procedure, and Park's stiffly-stable method.

For small time steps, all six methods studied in this investigation gave
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results that are very close to each other.

Among the three explicit methods, it was concluded that the central

difference procedure is the best, whereas the performances of the other

two methods are about equal. For large time steps the central dif

ference procedure and two-cycle iteration with the trapezoidal rule pro

duce unstable results, but the response for the fourth-order Runge-Kutta

method is unduly suppressed. We also found that for explicit methods the

stresses should be evaluated only at the geometric center of the element.

Regarding the three implicit approaches, Parkvs stiffly-stable me

thod was found to be somewhat better than the Newmark-Beta method; and

Houbo1t's procedure must be rated third. For large time steps, the re

sults for the Newmark-Beta method with ~ = 0.25 and ! = 0.5 tends to

be unstable, while the response by the Houbo1t method is overdamped. It

was also shown that for the implicit methods studied, the stresses should

be evaluated at the spatial integration points.

Upon comparing the best explicit method against the best implicit

method, we found that Park's formula is marginally better than the cen

tral difference predictor for elastop1astic analysis (when geometric non

linearities are ignored). The advantage of the Park method becomes more

distinct when geometric non1inearities are taken into account. However,

for large problems it may become necessary to use the explicit central

difference method in order to obtain solutions in a reasonable amount

of time.

7.2 Recommendations

Park's method should be compared against the central difference

approach for large problems having hundreds or thousands of degrees
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of freedom. The problems studied should be highly nonlinear with re

gard to geometric as well as material properties. An appropriate

example could be a plate or a shell in bending.

Use of a lumped mass approach is expedient for explicit methods

and has a substantial effect on their efficiency. However, for implicit

methods a consistent mass approach can be employed without much addi

tional computational effort. This technique could be compared with

the lumped mass approach for the implicit procedures.

Damping was neglected in the present study. One may include and

study the effects of damping for different solution techniques. How

ever, the nature of damping is poorly understood, and its incorpora

tion into algorithms might tend to obscure the comparisons.

In Section 6.2, we observed that with large time steps the response

for the central difference procedure was substantially magnified. On

the contrary, the response for the fourth-order Runge-Kutta method is

highly suppressed. As a result, the combination of these two methods

into one algorithm might result in a more efficient procedure. This

matter is worthy of further study.
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APPENDIX A

FORMULATIONS OF STIFFNESS MATRIX AND EQUIVALENT NODAL LOADS

FOR AN ISOPARAMETRIC QUADRILATERAL ELEMENT

We wish to develop an efficient operational procedure for calcu-

lating the stiffnesses and equivalent nodal loads. Using Eqs. (3.36)

and (3.37) we can express the Jacobian matrix as

J (A. 1 )

where

Xl - xl - x2 + x3 + x4

Yl - YI - Y2 + Y3 + Y4

X
3 xl - x2 - x3 + x4

Y
3 Yl - Y2 - Y3 + Y4

X
2 xl - x2 + x

3
- x4

Y2 Yl - Y2 + Y3 - Y4
(A.2 )

X4 - xl + x2 - x
3

+ x4

Y4 - Yl + Y2 - Y3 + Y4

Determinant of Jacobian matrix:

IJ I 1 !(xl - x
3

) (Y2 - Y4) + (x4 - x2 ) (Y l - Y )8 3

+ 11 [ (x4 - xl )(Y2 - Y ) + (x2 - x3) (Y l - Y4)] (A·3 )
3

+ S [ (x2 - xl )(Y3 - Y4) + (x
3

- x4) (Yl - Y2 )JI

- 181 -



Inverse of Jacobian matrix:

-1
J

1
(A.4 )

For simplicity replace DG by G
,..,

(3.40 )
repeated

Terms in matrix G are as follows:

1
Gn

161JI
[(1) - 1)(Y1 + ~ Y2 ) + (~ - 1)(Y

3
+ 1) Y4)]

1
G12

161JI
[(1 - T))(Y1 + ~ Y2) - (1 + ~)(Y3 + T) Y4)]

1
G

13
:=: [(1 + T))(Y1 + ~ Y2) + (1 + ~)(Y3 + 1) Y4)]

161JI

1
G14

161JI
[- (1 + T))(Y1 + S Y2 ) + (1 - ~)(Y3 + 1) Y4)]

(.6,.5 )
1

G21
:=: [(1) - 1)(- Xl + ~ X4) + (; - l)(- ~ + 1) X2 )]

16/JI

1
G22

161JI
[ (1 - 11) (- Xl + ~ X4) + (~ + 1) (~ - 1) X2 )]

1
G

23 161JI
[(1 + 11)(- Xl + S X4) + (1 + s)(- ~ + 1) X2 )]

1
G24

161JI
[(1 + T))(X1 - ~ X4) + (1 - ~)(- ~ + 1) X2)]
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Element Stiffness Matrix

In Chapter 3 we derived the element stiffness matrix as

K B'(S,ll) T
3

B(S,T) IJI dt;dT)
'" '" ,...,

(3·44 )
repeated

for bothIn the linear elastic case, the stress-strain matrix ~3

plane stress and plane strain can be written in the following form

(see Section 3.2.2):

o

o (A .6)

where El , E
2

and E
3

are constants. Table A.l shows terms of the

matrix SE = B'(s,T) T
3

B(s,ll) given explicitly in terms of the ele-
f'O<J""'" ,...." I"-.J

ments of ma~rix G and the stress-strain constants. In the elasto-

plastic case, ~ must be replaced by the incremental elasto-plastic

matrix DP , which can be written for both plane stress and plane strain

problems as follows (see Section 3.3.6):

Dl D
2

D
3

DP D
4

D
5sym.

D6

where D
l

, ... ,D6 are functions of stresses. Terms of the matrix

SE for this case are given in Table A.2. In addition, terms of the
,..,

matrices ~3

in Chapter 3.

and for both plane stress and plane strain appear
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Table A.l

Terms of matrix SE = B' (1;,1')) .:3 ~ (1;,Tl) (elastic case)

(1,1)
2 2

SE = El Gn + E
3

G2l

SE (1,2) = (E2 + E
3

) GIl G2l

SE (1,3 ) = El GllG12 + E
3

G2l G22

SE (1,4) = E2 GIl G22 + E
3

G12 G2l

SE (1,5) = E1 GIl G13 + E
3

G2l G23

SE (1,6) E2 GIl G23 + E
3

Gl3 G21

SE (1,7) = El GIl Gl4 + E
3

G2l G24

SE (1,8) = E2 Gn G24 + E
3

G14 G2l

SE (2,2) 2 2
= El G2l + E

3
Gn

SE (2,3) E2 G12 G2l + E
3

G22 GIl

SE (2,4) = El G22 G2l + E
3

G12 Gn

SE (2,5) = E2 G13 G2l + E
3

G23 GIl

SE (2,6) El G
23

G2l + E
3

G
13

Gn

SE (2,7) E2 G14 G21 + E
3

G24 GIl

SE (2,8) El G24 G2l + E
3

Gl4 GIl

SE (3,3 )
2 2

= E1 G12 + E
3

G22

SE (3,4) (E2 + E
3

) G12 G22
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Table A.I - Continued

SE (3,5) ~l Gl3 Gl2 + E3 G
23

G22

SE (3,6) := E2 G23 Gl2 + E
3

Gl3 G22

SE (3,7) E1 G14 G12 + E
3

G24 G22

SE (3,8) := E2 G24 G12 + E
3

G14 G22

(4,4) 2 2
SE := E1 G22 + E

3
G12

SE (4,5) E2 G13 G22 + E
3

G
23

G12

SE (4,6) E1 G23 G22 + E
3

G13 G12

SE (4,7) E2 G14 G22 + E
3

G24 G12

SE (4,8) := E1 G24 G22 + E
3

G14 G12

(5,5) 2 2
SE := E1 G13 + E

3
G

23

SE (5,6) (E2 + E
3

) G23 G13

SE (5,7) E1 G14 G13 + E
3

G24 G23

SE (5,8) E2 G24 G13 + E
3

G14 G23

(6,6) 2 2
SE E1 G23 + E

3
G13

SE (6,7) E2 G14 G23 + E
3

G24 G13

SE (6,8) E1 G24 G23 + E
3

G14 G13

(7,7) 2 2
SE E1 G14 + E

3
G24

SE (7,8) (E2 + E
3

) G14 G24

(8,8) 2 2
SE E1 G24 + E) G14
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Table A.2

Terms of matrix SE = B' (s,~) DP B' (s,~)

'" '"
(e1astop1astic case)

SE (1,1) = Gll
(D

1
G
ll

+ D
3

G21 ) + G21
(D

3
G

U
+ D6G

21
)

SE (1,2) = Gn (D
2

G
21

+ D
3

Gn ) + G21
(D

5
G

21
+ D6Gu )

SE (1,3 ) = Gn (D
1
G

12
+ D

3
G

22
) + G21 (D3G1~1 + D6G22 )

SE (1,4) Gll
(D

2
G

22
+ D

3
G12) + G21 (D5G2~~ + D6G12)

SE (1,5) = G
U

(D
1
G

13
+ D

3
G

23
) + G21 (D

3
G

13
+ D6G

23
)

SE (1,6) Gn (D
2
G

23
+ D

3
G

13
) + G21

(D
5
G

23
+ D6G

13
)

SE (1,7) Gn (D
1

G
14

+ D
3

G24) + G21 (D
3

G1!f + D6G24 )

SE (1,8) Gn (D
2

G
24

+ D
3

G
14

) + G
21 (D

5
G2!f + D6G14 )

SE (2,2) G
21

(D4G
21

+ D
5
Gn ) +Gn (D

5
G

21
+ D6G

U
)

SE (2,3 ) = G21
(D

2
G

12
+ D

5
G22) + Gll (D3G1~~ + D6G22 )

SE (2,4) = G
21

(D4G
22

+ D
5
G

12
) + G

ll (D5G2;~ + D6G12)

SE (2,5) = G21
(D

2
G

13
+ D

5
G

23
) +Gn (D

3
G1:5 + D6G

23
)

SE (2,6) = G21
(D4G

23
+ D

5
G

13
) +Gn (D

5
G2:5 + D6G

13
)

SE (2,7) = G21
(D

2
G

14
+ D

5
G24 ) + Gn (D

3
G1)+ + D6G24 )

SE (2,8) = G21 (D4G24 + D
5
G14 ) + Gn (D

5
G2 4 + D6G14)

SE (3,3 ) =: G12 (D
1
G

12
+ D

3
G22) + G22

(D
3

G
12

+ D6G
22

)

SE (3,4) =: G
12

(D
2

G
22

+ D
3

G
12

) + G
22

(D
5
G

22
+ D6G

12
)
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Table A.2 - Continued

SE (3,5) := G12
(D

I
G

13
+ D

3
G

23
) + G

22
(D

3
G

13
+ D6G

23
)

SE (3,6) := G
12

(D
2

G
23

+ D
3

G
13

) + G
22

(D
5
G

23
+ D6G

13
)

SE (3,7) G12
(D

1
G14 + D

3
G24 ) + G

22 (D
3

G14 + D6G24 )

SE (3,8) G12
(D

2
G24 + D

3
G14 ) + G

22 (D
5
G24 + D6G14 )

SE (4,4) := G22
(D4G

22
+ D

5
G

12
) + G

12
(D

5
G22 + D6G

12
)

SE (4,5) ::: G
22

(D
2

G
13

+ D
5
G

23
) + G

12
(D

3
G

13
+ D6G

23
)

SE (4,6) := G22
(D4G

23
+ D

5
G

13
) + G

12
(D

5
G

23
+ D

6
G

13
)

SE (4,7) ::= G
22

(D
2

G14 + D
5
G

24
) + G

12
(D

3
G14 + D

6
G24 )

SE (4,8) ::= G22
(D4G

24
+ D

5
G

14
) + G

12
(D

5
G24 + D

6
G14 )

SE (5,5) ::= G
13

(D
1
G

13
+ D

3
G

23
) + G

23
(D

3
G

13
+ D6G

23
)

SE (5,6) ::= G
13

(D
2

G
23

+ D
3

G
13

) + G
23

(D
5
G

23
+ D

6
G

13
)

SE (5,7) := G
13

(D
1
G

14
+ D

3
G

24
) + G

23
(D

3
G14 + D6G24 )

SE (5,8) := G
13

(D
2

G
24

+ D
3

G
14

) + G
23

(D
5
G24 + D6G14 )

SE (6,6) G
23

(D4G
23

+ D
5
G

13
) + G

13
(D

5
G

23
+ D

6
G

13
)

SE (6,7) := G
23

(D
2

G
14

+ D
5
G

24
) + G

13
(D

3
G14 + D6G24 )

SE (6,8) ::= G
23

(D4G24 + D
5
G14 ) + G

13
(D

5
G24 + D6G14 )

SE (7,7) G14 (D1G14 + D
3

G24 ) + G24 (D3G14 + D6G24)

SE (7,8) G14 (D
2

G
24

+ D
3

G
14

) + G24 (D
5

G24 + D6G14 )

SE (8,8) G24 (D4G24 + D
5
G

14
) + G14 (D

5
G24 + D6G14 )
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Eguivalent Nodal Loads Due to Surface Loads

y 4

x T) = -1

Figure A.1

s=l

Consider surface loads in the x and y directions on the edge

2-3, where s = 1 (see Fig. A.l).

p
....,S

(3.10 )
repeated

We assume ws1 ' ws2 ,w
s3

and ws4 to be the force per unit in

clined length (see Section 5.2.2). Consider a point M on the edge 2-3

at the distance u from the point 0, where ~ = 0 • From Eg. (3.27)

we have

and

1
2 [(1 - T)) x2 + (1 + T)) X

j
]
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If we let

(A.lO )

It can be shown that

V(~ 2 2 ll.u OM - XO) + (YM - YO) =:
2 £

where 2. length of edge 2-3 and is given by the equation

~(x3 2 2
1

£ =: - x) + (Y
3

- Y2 )2

(A.11 )

(A .12)

Therefore, the infinitesimal area dA in Eq. (3.10) is obtained from

the relation

dA hdu 1'2 hEdTj

The vector of surface loads at the edge 2-3 can be written as

(A .14)

where

(A.15)

and

(A .16)

After substituting Eqs. (A.13) to (A.16) in Eq. (3.10) and integrating

along the edge 2-3, we find the terms of equivalent nodal loads Ps
'"

explicitly as follows:
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PS(l) Ps (2) == PS(7) == pS(8) == 0

2w
s1

+ w
s2 ~+w4

PS(3) 2 Ps (4) ==
s __s_ £

(A.17)
6 6

w
sl + 2w

s2 ~2w4
PS(5) 2 Ps (6)

s __s_ £

6 6

Equivalent Nodal Loads Due to Volume Loads

Let:

where

1 1

h f f ~l:v ':1 d~dTj
-1 -1

(3 .~6)

repeated

(A .18)

and

w
v1

uniform distribution in positive x direction

w
v2

== uniform distribution in positive y direction.

Note that w
v1

and w
v2

are loads per unit vo1umE\. The product T1W
v

"" '"
required for numerical integration over the area of the element is as follows:

w
v1

(1 - s)(l - Tj)

w
v2 (1 - s) (1 - 1'\)

w
v1

(1 + s)(1 - Tj)

1 w
v2

(1 + s)(l - Tj)
Ti Wv

== 4" (A .19)
'" '"" (1 + s)(1 + Tj)w

v1

w
v2

(1 + s)(1 + Tj)

w
v1

(1 - s)(1 + 1'))

w
v2

(1 - s)(1 + 1'))
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Equivalent Nodal Loads due to Temperature Strain

(3.47)
repeated

For uniform di1ational expansion 6T and for plane stress:

1

1

o

(A .20)

where a is the coefficient of thermal expansion. For plane strain,

a must be replaced by a(l + v) , in which V is Poisson's ratio.

The product B' T
3

ET required in numerical integration in Eq. (3.47)
'" '" rv

simplifies to the following:

Gn
G21
G12
G

22
G13
G

23
G14
G24

(A .21)

Equivalent Nodal Loads Due to Prestrains

1 1

h f f B' (~,Tj) ~ ~P IJI di;dTj

-1 -1
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Let:

PSI

PS2

PS3

where

PSI ::= Uniform expansion in x direction

PS2 ::= Uniform expansion in y direction

PS3 ::= Uniform positive shear strain

(A .22)

The product of ~'(~,~) ~ ~P after simplification is as follows:

Gll (EI PSI + E2 PS2) + G21 E
3

PS3

G21
(E2 PSI + EI PS2) + Gn E

3
PS3

Gl2 (El PSI + E2 PS2) + G22 :E:
3

PS3

B~

G22 (E2 PSI + EI PS2) + Gl2 E:
3

PS3

~
Ep ==
'" (El PSI + E2 PS2) + G

23
E
3

PS3G
l3

G
23

(E
2

PSI + EI PS2) + G
l3

E
3

PS3

Gl~· (E l PSl + E2 PS2) + G24 E
3

PS3

G24 (E2 PSl + El PS2) + Gl4 E
3

PS3
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APPENDIX B

LUMPED MASS MATRIX FOR ISOPARAMETRIC QUADRILATERAL

2

Figure B.l

The area of the quadrilateral can be determined from the following

relation:

1 1

A =ff dxdy = f fiJI dt::dT)

-1 -1

(B .1)

Using the determinant of the Jacobian matrix, IJI from Appendix A

[Eq. (A.2)], integrating, and simplifying the results, we obtain

A (B .2)

In Fig. A-l, c is the geometric center and c l ' c
2

' c
3

' and

c4 are at the midpoints of the sides of the quadrilateral. Thus,
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Xl + x2 + x
3

+ x4
Yc

Yl +Y2 +Y3+ Y4
(B.3 )Xc

if 4

xl +x2 YI +Y2
(B.4 )X Ycc

1 2 1 2

x
2

+x
3 Yc

Y2 +Y
3 (B.5)X

c
2 2 2 2

X
x

3
+x

4
Yc

Y3 +Y4
(B.6 )

c
3 2 3 2

x
4

+x
l Y4 +Yl (B.7)X Ycc4 2 4 2

Four subsidiary quadrilaterals are labeled in Fig. B-1 as Al ' A2 '

A
3

, and A
4

• From Eq. (B.2), we can write

A - l[(x -x )(y -y )+ (x -x ) (Y.Y)] (B.8)1 - 2 1 C c
1

c
4

c
4

c
l

1 c

Substitute from relations (B.3), (B.4), and (B.7) into Eq. (B.8) and

simplify the results to obtain

Al = 116 [(3Xl - x2 - x
3

- x4 )(Y2 - Y4) + (x4 - x2 )(3Yl - Y2 - Y
3

- Y4) ]

(B .9)

Similarly, we find the expressions for A2 ' A
3

' and A4
as follows:

A
2

1
[(3x2-xl-x3-x4)(Y3-Yl) (xl - X

3
)(3Y2 - Yl - Y

3
- Y4) ] (B .10)= 16 +

A
3

1
[(3x

3 - xl - x2 - x4)(Y4 - Y2 ) (x2 - x4 ) (3Y
3

- Yl - Y2 - Y4)] (B.ll )= 16 +

Masses at the four nodes are assigned in proportion to the above

areas. Thus, the nonzero terms of the diagonal lumped mass matrix are
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as follows:

m( 1,1) m(2,2 ) p 11. 1 h (B .13)

m(3,3 ) m(4,4) p 11.
2 h (B .14)

m(5,5) m(6,6) p A
3

h (B .15)

m(7,7) = m(8,8 ) p A
4

h (B .16)

where p is the mass density and h is the thickness of the quadri

lateral.
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APPENDIX C

PROGRAM RESPPSQ4

(Pages 196 - 234, inclusive, consist of the program listing and

sample computer output for RESPPSQ4 and are not reproduced in this

report.)
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APPENDIX D

PROGRAM NODIMP

(Pages 235 - 282, inclusive, consist of the program listing and

sample computer output for NODIMP and are not reproduced in this

report.)
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APPENDIX E

PROGRAM NODEXP

(Pages 283 -335, inclusive, consist of the program listing and

sample computer output for NODEXP and are not reproduced in this

report. )
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