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ABSTRACT

This report represents work that is part of a study into the seismic
behavior of masonry. The major part of the work is experimental, but
this part is devoted to developing a mathematical model for masonry which
could be used to derive the elastic stress field, in a wall or pier, when
either is subjected to seismic loads.

Because masonry is made of two materials, and because its geometry
is so complicated it is necessary, in studying stress fields that could
arise, to replace the composite material by a homogeneous one. The model
material must display the same constitutive characteristics as the proto-
type and must have the same wave dispersive properties. It is the mathe-
matical model of such a homogeneous material that is developed in this
report.

The development is made in three steps. In the first, a general
theory is constructed for two phase materials. The method employed here
uses the theory of mixtures applied to a two phase material in which the
phases reflect a periodic structure and in which each phase is linearly
elastic. Employing the fundamental equations of the theory of mixtures,
the governing equations of a linear approximate theory are established.
The theory, valid for an arbitrary direction of motion, replaces the
composite by a homogeneous, two phase, anisotropic, elastic solid. It
accommodates the dispersive nature of the composite by means of an
elastodynamic operator, which is introduced into the constitutive rela-
tions of the linear momentum interactions.

The second step is to adapt the general theory to a particular geo-
metry. The periodic material that we choose is made of alternate plane

layers. This geometry is chosen for two reasons; first, the geometry of



ii

masonry can be accommodated within it, and second, because there is a
wealth of material about the dynamic behavior of such materials, both
analytical and experimental. The choice of geometry affects both the
constitutive equations and the elastodynamic operators.

The theory for layered materials contains nineteen model constants
and equations are developed from which these constants can be derived
from the layered constants. The equations are derived partly using
micro model analysis and partly by matching specific dynamic behaviors
of the model and prototype. The ability with which the model predicts
the dynamic response of the layered material ié assessed in two ways.

Both compare spectra reflecting the behavior of infinite trains of the
principal kinds of waves. The first compares spectral lines from the
model with those derived from the exact theory for layered materials.

The second compares lines from the model with those obtained from experi-
ments. Predictions from the model prove toc be quite accurate.

In the third phase we appraise the model by comparing the responses
predicted by the model for a transient input with those observed experi-
mentally. - Experimental data allow us to make comparisons for the behavior
of dilatationdl waves travelling both parallel and perpendicular to the
layers in both plates and semi-infinite bodies. Where possible, compari-
son is also made with responses predicted by the exact theory. Responses
in the model are found using the method of characteristics. Comparison
is exhibited in a number of»figures and shows that the responses predicted
by the theory are quite accurate. The accuracy is not restricted to early

arrival times but extends to behavior far behind the head of the pulse.
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CHAPTER 1
INTRODUCTION

This report, as the title implies, is devoted to developing a
mathematical model that will predict the Tinear, dynamic response of
masonry. The study is motivated by a need to gain insight into the
stress fields developed in masonry when it is subjected to seismic
forces. This theoretical development is part of a program the major
part of which is devoted to the experimental response of masonry piers.

The experimental program has shown that there are essentially two
global modes of failure of the piers, flexural and shear. Whether
the pier fails in flexure or shear depends on a number of factors,
but in each case failure begins with the formation of cracks demon-
strating a failure of the masonry itself in tension. When the mode
is flexural the direction of tensile stress causing failure is vertical
and when the mode of failure is shear it is the principal tensile stress
that causes failure, so that the direction is at an oblique angle to the
vertical.

In order to be able to predict when the first cracking would begin
for either case of gross behavior, a knowledge of the stress field in a
pier would have to be known when it is created by the simultaneous
impositions of a vertical load and a horizontal displacement at the top,
which are the conditions imposed by experiments. As masonry consists of
two materials, brick and mortar, and because the geometric array is com-
plicated, it is virtually impossible to ascertain the stress field in
masonry without replacing the prototype by a model. The material of the
mathematical model that is developed here is homogeneous, and is designed

so that it displays both the same constitutive properties as the prototype



and its dispersive properties.

The development falls naturally into three parts which are covered
successively in Chapters 2, 3 and 4. In the first part, Chapter 2, we
call the masonry and the mortar each a "phase" and develop a mathemat-
ical model for two phase materials. We assume that both of the phases
are Tinearly elastic and perfectly bonded at their interfaces and that
the phases have a periodic structure.

In establishing the mathematical model, several approaches can be
adopted. The first is the exact treatment which includes the field
equations of elasticity for each phase and the equations of continuity
at the interfaces. As this approach makes the analysis very complicated,
it is not of practical interest, and thus the development of an approxi-
mate theory becomes a necessity.

During the last few years, a number of approximate theories have
been proposed. In the first of these, the two phase composite is
replaced by a homogeneous, anisotropic, elastic medium. As this theory,
called effective modulus theory, does not accommodate any dispersion,
it is valid only when the wave length is very large. As an example
of this type of theory, we refer to a study by Rytov [1], where an
effective modulus theory is developed for a layered composite. To com-
pensate for the shortcomings of the effective modulus theory, another
approximate theory, called effective stiffness theory, has been proposed
for layered and fiber reinforced composites in Refs. [2-4]. In this
theory the approximate governing equations are obtained by expanding the
displacements for each constituent in power series and introducing the
series into a variational functional. However, the possibility of
extending this theory to composites containing the vertical layering does

not appear to be fruitful, as the theory has rather complicated equations



even for simple composites 1ike layered and fiber reinforced materials.
Hegemier et al [5,6] proposed another approach, which they call theory
of interacting continua. The theory contains a micro-structure and is
based on asymptotic expansions of the field variables with respect to
the space variables. However, they developed the theory again for
layered and fiber reinforced composites only. For waves propagating
perpendicular to layering in a layered material, the exact spectrum
has a banded structure with passing and stopping bands, which contain
points governing harmonic waves which are propagated and attenuated
respectively. Herrman, Kaul and Delph [7,8] have developed a one-
dimensional approximate theory which they call effective dispersion
theory, for waves propagating perpendicular to layering only. Their
theory accommodates the first stopping band and approximates quite well
the two Towest spectral lines over the first two Brillouin zones.

We adopt a different approach for establishing the mathematical
model for two phase materials. In this study the material is considered
as a mixture consisting of two phases and the theory of mixtures is
used to obtain approximate equations governing its dynamic behavior.
The resulting theory is a general one which would include the geometry
of a masonry wall as a particular case. The only restrictions imposed
by the theory are that the two phases exhibit a periodic form and that
the material of each phase is linearly elastic.

The idea of treating composites as a mixture is not new. In fact,
it has previously been used in Refs. [9,10] for developing approximate
theories predicting the dynamic response of layer and fiber reinforced
composites when the motion is in the direction of the layers or fibers.
Later, Bedford [11] attempted to extend this theory to a general case

where the motion could have an arbitrary direction. However, his method



has some shortcomings as he did not take into account coupling in the
stress-strain relations which would imply that the state of stress of
one phase is affected by the deformation of the other.

The approximate theory we propose in this study for an arbitrary
direction of motion replaces the heterogenous two phase composite by
an homogeneous, anisotropic, elastic solid. In developing the theory,
we have chosen the mixture approach for several reasons. First, this
method Teads to equations simple enough to be used in the dynamic analysis
of complicated composite materials such as masonry walls. Second, since
we account for linear momentum interactions between the phases, the
resulting approximate equations not only exhibit anisotropy, but also
“accommodate dispersion. The dispersion is accounted for by a time depend-
ent operator, which we call an elastodynamic operator. It relates the
interaction forces to the difference of the average phase displacements.
The introduction of this operator, which we believe is new, not only
improves the matching of approximate fundamental spectral lines with
exact ones, but also makes it possible to match the second approximate
and exact cut-off frequencies. Thirdly, the mixture approach allows us
to write the approximate equations of all two phase composites in a
common form. The difference comes when we adapt this form to a particular
geometry. The microstructure derived from the geometry governs specific
forms of the interaction and stress constitutive equations of a given
composite.

In Chapter 3 the general theory is modified for a specific periodic
array, namely a 1ayeréd material in which the phases appear as alternate
plane layers. This geometry is chosen for two reasons; first, because
it is close to the geometry displayed by masonry and, second, because

there is a wealth of information about the dynamic response of such



materials, both from experiments and predicted by an exact theory.

Both the constitutive equations and the equations of linear
momentum are affected by this choice of geometry. The layered material
displays hexagonal symmetry which reduces the number of independent
constitutive constants from 78 to 15. The elastodynamic operators
appear in the general theory in symbolic form needing a specific geometry
for their formulation. These operators are constructed in Section 3.1
from a study of a micro model, or cell, of the layered material. This
analysis is similar to one used by Biot for establishing a viscodynamic
operator for a fluid-filled porous medium. The elastodynamic operators
reflect the behaviors at the interfaces. We felt that as first construc-
ted the operators would render the equations of linear momentum too
complicated for realistic dynamic problems, so the final part of Section
3.1 is devoted to replacing them by simpler approximations. To this end
the operators are expanded in power series of their argument, and the
first three terms are retained. The resulting equations of linear mo-
mentum contain four constants to accommodate dispersion. The final
theory which acts as a model for a two phase layered composite contains
19 model constants.

Section 3.3 is devoted to constructing equations re]éting these 19
model constants to the elastic constants of each of the two phases. The
constants are adjusted so that the dynamic responses of model and proto-
type will match as extensively as possible. The wealth of information
about the behavior of waves travelling in layered materials is extremely
useful in this section. The characteristics of the dynamic behavior of
layered materials are almost without Tlimit, certainly far exceeding the
19 needed to establish the unknown constants. So the constants are not

unique and will change according to which set of behaviors is chosen for



matching. We discuss the choice at some length in Section 3.3 pointing
out that the best set would be obtained using system identification in
conjunction with response obtained from experiments. The method used
here to derive the set of equations is, we think, the simplest. Some
of the equations are found using micro model analysis, the remainder

by matching properties of spectral lines which reflect the behavior of
infinite trains of the principal types of waves as predicted by the
model and the exact theory for layered materials. With the capability
of establishing the 19 model constants from the phase constants, the
model is complete.

In the final section, Section 3.4, we make a preliminary assessment
of the model material. We consider it preliminary since, in Chapter 4,
we make a much more demanding, and perhaps more realistic, appraisal of
the theory. In this chapter we compare the behaviors of transient waves
as they propagate in the model and as observed in experiments conducted
on layered materials.

The assessment in Chapter 3 is made by comparing spectral Tines
derived from the model with comparable lines from the exact theory and
from experiments. Comparison is shown in a number of figures, in which
all spectral Tines reflect the behavior of infinite trains of the princi-
pal types of waves. This preliminary assessment is valuable in that it
shows that even with the simplest procedure for establishing the model
constants the prediction of the way in which the principal waves propa-
gate in the model material matches quite well the way in which comparable
waves propagate in two phase layered materials.

In Chapter 4 we subject the theory to what seems to us to be the
most demanding test. This is comparison of the responses predicted by

the theory with experimental transient responses. We are fortunate in



having available excellent experimental data for transient waves propa-
gating both parallel and perpendicular to the layers.

The transient responses predicted by the theory are obtained using
the method- of characteristics. This method is chosen, first because the
governing equations are hyperbolic, and second because symmetry reduces
the number of independent variables to time and one space variable.
Where it seems appropriate we alsc make comparisons with responses pre-
dicted by the exact theory and by another approximate theory.

The theory for the model we havebdeve]oped is, we think, simple for
such a problem, the method of finding the constants is simple, so we
are gratified to find such extensive matching between the responses due
to the theory and to experiments. The matching is displayed in a number
of figures. Not only do the profiles match for early times after the
arrival of the first disturbance at a number of stations in the material,

they also match well at distances remote from the head of the pulse.



CHAPTER 2
A MATHEMATICAL MODEL FOR TWO PHASE COMPOSITES

In this chapter, masonry is considered as a mixture consisting of
two phases and the theory of mixtures is used to obtain approximate
equations governing its dynamic behavior. The resulting theory is a
general one which would include the geometry of masonry as a particular
case. The only restrictions imposed by the theory are that the two
phases exhibit a periodic form and that the material of each phase is
linearly elastic.

The approximate theory we propose in this study, for an arbitrary
~direction of motion, replaces the heterogenous two phase composite by an
homogeneous, anisotropic, elastic solid. In developing the theory, we
have chosen the mixture approach for several reasons. First this method
leads to equations simple enough to be used in the dynamic analysis of
complicated composite materials such as masonry walls. Second, since we
account for linear momentum interactions between the phases, the resulting
approximate equations not only exhibit anisotropy, but also accommodate
dispersion. The dispersion is accounted for by a time dependent operator,
which we call an elastodynamic operator. It relates the interaction
forces to the difference of the average phase displacements. The intro-
duction of this operator, which we believe is new, not only improves the
matching of approximate fundamental spectral lines with exact ones, but
also makes it possible to match the second approximate and exact cut-off
frequencies. Third, the mixture approach allows us to write the approx-
imate equations of all two phase composites in a common form.

This chapter 1is devoted to the derivation of this general set of

equations.



2.1 Fundamental Equations

As we adopt the theory of mixtures for developing the theory,
we first review the fundamental equations of a two phase mixture, which
have been studied extensively by many researchers (see e.g., [12-17]).
A11 the variables appearing in these equations are related to the
average values of the quantities they represent.

The local forms of the fundamental equations for a two phase
composite, which is referred to an (x1, Xos x3) Cartesian coordinate

system, are

conservation of mass

v¥) =0 (2.1)

equations of linear momentum

Duv? acqi N a
PaDE T s *oegFy My (2.2)

balance of energy

o Bq? Duea o Bv? o . 2
Pa” "3k, T Cwbt T Okiax, TV 7O (2.3)

the Clausius-Duhem inequality

(o4
p%s® s ay o
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The index o ranges from 1 to 2 and distinguishes the two phases.

The subscripts (i, j, k,..) take the values 1, 2 and 3, and are sub-

ject to indicial notation. In this notation any repeated latin index

implies summation over the range of that index. In Egs. (2.1-2.4)

partial masses of phases, measured per unit volume of
the composite

average velocity components for phases

partial stress components for phases, measured per unit
area of the composite

body force components for phases, measured per unit
volume of the composite

interaction force components, measured per unit volume
of the composite

internal energy densities for phases, measured per unit
volume of the composite

heat energy rates (due to heat sources) for phases,
measured per unit volume of the composite

heat flux components for phases, measured per unit area
of the composite

entropy densities for phases, measured per unit volume
of the composite

average absolute phase temperatures

energy interactions between phases, measured per unit
volume of the composite

entropy interactions between phases, measured per unit
volume of the composite.

(6
In Egs. (2.1-2.4) "t" denotes time and the operator %E- is defined by
D*_ 5, o 3
ot ~ 3t t Vi ax, (2.5)

i
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We note that in writing the equation of conservation of mass, Eq. (2.1),
we neglect the mass transfer between the phases. We assume that there
is no angular momentum interaction between the phases. This implies
that the“partial stress components, O?j’ are symmetric. This assumption
is consistent with the classical mixture theory which is used in this
study. To take into account the angular momentum interaction between
phases, one needs to use the micromorphic mixture theory by which anti-
symmetric distributions of the field variables can be accommodated.
In accordance with the equations of the theory of mixtures [12-
171, the interactions M?, wa and g% satisfy the relations
2 2 2
M= 03 3 MW+ ®) = 05 z g% = o. (2.6)
a=1 ! a=1 11 a=1
If the mass densities of the phases are denoted by pg, the partial

masses Py are related to pz by

_ R
pa = napu’ (2-7)

where n, is the volume fraction of the a-phase with the property

2

ZT n, = 1 (2.8)
a:

Finally, an important comment regarding the Clausius-Duhem
inequality is in order. The form of the Clausius-Duhem inequality for
a mixture is still the subject of controversy. Even though the form,
Eq. (2.4), used in this study is physically acceptable for two phase
composites where the constituents are separate in microscale, it is

by no means universally accepted.
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2.2 Thermodynamic Analysis for Infinitesimal Deformations

In the Titerature, thermodynamic analysis is presented in
general terms for various mixtures composed of nonlinear phases (see
e.g., [15-17]). In these works a single common temperature is assumed
for all phases. Here we present thermodynamic analysis for our speci-
fic mixture, i.e., for Tinear two phase composites, by using the
Coleman-Nol1 procedure. Through this analysis, we establish the
specific form of the stress constitutive relations and heat conduction
equations for our particular material. Our analysis is based on the
fundamental equations presented in the previous section and on the
findings established in the area of the theory of mixtures. We assume
that deformations are infinitesimal and both phases are elastic.

(04
We begin the analysis by approximating the operator %f- by
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for infinitesimal theory. If internal energy and entropy densities,

and heat rates due to heat sources are redefined by

per unit volume of the composite, the energy equation, Eq. (2.3), and

the Clausius-Duhem inequality, Eq. (2.4), become

R“-Eﬁ-é"% “e* + ¥ =0 (2.9)
X i®ki ¥ F -
o
. aq ap ,
T°‘n°‘-R°‘+—87t— T'; S’T‘k”B >0, (2.10)

respectively, where the dot indicates partial differentiation with

respect to time, and the e , defined by

o 1 au? EEE
i3 "7\, T /) (2.11)
J i
represent the infinitesimal strain components for the a-phase. In

Eq. (3.3) the u? are the average phase displacement components.

With the aid of the energy equation, Eq. (2.9), the Clausius-

Duhem inequality, Eq.(2.10), takes the form

o 20

o0 =0
Tno - B+ ol * v

CX.
o —'iaL %% > 0. (2.12)
™ Xy

When we write Eq.(2.12) for o = 1 and o = 2, and add (using Egs. (2.6))

we get
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' (2.13)
_ 2) 1
i
which is the total entropy inequality written per unit volume of the
composite. In Eq. (2.13)E = 7} E® describes the total internal energy
o=1

density.

In accordance with the findings established in the theory of
mixtures [10] we assume

% = g (e}j, efj, n%y. (2.14)

Eq. (2.14) shows that the phase internal energy density E¢ depends on
the deformations of both phases. This,as it will be seen later, leads
to a coupling in the stress-strain relations implying that the state of
stress of one phase is influenced by the deformations of the other. We
believe that this coupling, which is disregarded in Ref.[11],is crucial
for an adequate description of a composite as a mixture. Using Eq. (2.14)
and the definition of the total internal energy density, the total
entropy inequality, Eq. (2.13), can be written in the form

% (1% - @Ea) oy % (O?j - _ég_) é?j (2.15)

o=1 an o=1 aeij

o,
CF Tt

2
09X i i ] )
o=1T k

- v?) + B] (T° -T1%) > 0.

Since na and e?j are independent state variables, in order to satisfy

this inequality we should have
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7@ 2 B _ 3E”
o an®
o O _ § o
ij a & o
aeiJ g=1 aeij

(2.16)

When Egs. (2.16) are taken into account the total entropy inequality

reduces to

Introducing the Helmholtz free energy density ¢a

and defining the total Helmholtz free energy density ¢

and using Eqgs. (2.14) and (2.16), we obtain the relations

and

which imply

o
& % at*
=1 T g

1,.1 2 1,+1
- Mi(vi - Vi) + B (T -T

2 o, 2 o O
=) ¢ =E- ) Tn,
o=1 a=1

a _ ol 2 o
¢ - ¢ (eij’ eij’ T )

o _ 3% _ _ 3

n T 20 o

oT T

) 2 ) 8
%j T ,_g_.= ) ~9&_

aeij B=1 Beij
na = na(E}js e1j, Ta)
o= (el e, T

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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We let the temperatures of both phases be Td in the reference
configuration of the two phase composite, which is assumed to be free
of stresses. As we are dealing with an infinitesimal theory and are
assuming small deviations from the reference temperature To’ we expand
the stresses and entropies about zero deformation and the reference
temperature T0 using Taylor's formula, and retain only linear terms.

When we use the symmetry conditions

B o 3]
b, 3. 9
CLOM A F Rl RPN (2.23)
365 . 7% aef  aed. o
ij mn ij

which are the implications of Egs. (2.21), we obtain

2 o
o _ o oB_B c L0
n =n_+ Z p..e.. + =—28
0 8=1 13713 To
(2.24)
2 2
o o B Bo..B
o:. = ) Ci% e” -} piler,
ij 8=1 ijmn"mn B=1 ij
where the coefficients C??mn have the property
af _ ~Ba
Ci3mn = Cimnij- (2.25)
In Eqs. (2.24) 6%, defined by
O _ +0
e had T - TO’

represents phase temperature deviations from the reference temperature
TO; ng denotes the value of the phase entropy density n” in the
reference configuration; c® is the specific heat at constant deformation
for the o-phase, measured pef unit volume of the composite, and is

defined by
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¢4
c” = To EHE' 1 2
oT eij = eij =0
o _
=T,
The coefficients C??mn and p?? appearing in the second of Eqs. (2.24)

denote the material constants of a linear two phase composite. The

symmetry of strain and stress components further imposes the conditions

af _ L aB

pij pji
ag  _ .oB

Cijmn = C3imn - (2.26)
aB  _ 0B

Cijmn = Cijnm

on the material constants. The conditions, Egqs. (2.25) and (2.26),
indicate that the number of independent material constants in the stress-
strain relations, the second of Eqs. (2.24), is at most 102.

12 21 ) and (p12 21

The coefficients (C1jmn’ Cijmn ii* Pi3
coupling in the stress constitutive equations, the second of Eqs. (2.24).

) describe the
These terms respectively permit the state of stress of one phase to be
affected by the deformation and temperature deviation of the other
phase.

We now turn our attention to deriving the heat conduction
equations for a two phase composite. We first notice that the energy

equation, Eq. (2.9), when Eqgs. (2.14) and (2.16) are used, reduces to

T T 4+ o%.6%, + ¢* = 0. (2.27)
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We assume that partial heat flux vectors are related to the gradients

of the average phase temperatures by the Fourier equation

B

. 2
R (2.28)
B=1 h|
where ko‘B are the coefficients of heat conduction defined per unit

area of the composite. The coefficients k1g and k21 in Eq. (2.28)

describe the thermal coupling between phases.

. When the linear entropy relation, the first of Egs. (2.24), and
the Fourier equation, Eq. (2.28), are used and when the temperature
deviation from the equilibrium state is assumed to be small, the

energy equation, Eq. (2.27), becomes

2 B 2
0. 9 ;0B 36 0,20, 0B as
R + Z ax; (5 5% - ¢9 - T, Z Pisei; * W+ g% =0, (2.29)
B=1 J B=1
where
2 o
*q, 3E B
Yo o= 0r.67. - el. . (2.30)
13713 B=1 BeEJ 1J

From the second of Egs. (2.16) and Eq. (2.30) it follows that $a satisfies
Z w . Eq. (2.30) shows that, in the absence of the coupling
1ntroduced by Eq. (2.14), w -separately vanishes for both phases. This
means that the term w in Eq. (2.29) represents the energy interaction
between the phases due to the coupling in stress constitutive
equations,
We now separate the interaction due to heat exchange between

*
the phases from the total interaction (p* + ¢*). To do this we let
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W+ 3% = 4 QY (2.31)

where Q% represents the heat exchange between the phases (defined per
unit volume of the composite) and satisfies Z Q* . When we
substitute Eq. (2.31) into Eq. (2.29) we obta1n the final form of the

heat conduction equation

2

OX.s OX.
ij j

2 aB af =q,
L )-ce+Q+R Zp -, (2.32)
= i

1J iJ

where the interaction term Ea satisfies the equation

2 .
I @+ Miv) =0 (2.33)

o=1
in view of the second of Egs. (2.6), Eq. (2.31), and the relations
2 2
) +* = 0 and y Q%=
=1

o=1

2.3 Restrictions on Model Constants

For studying the constraints imposed on model constants we use
an hypothesis which states that the strain energy function must be
positive definite. For a two phase composite the strain energy

function W per unit volume is defined by

2
29
W= L o} j0e5 (2.34)
By integrating Eq. (2.34) and using the second of Egs. (2.24), dis-
regarding thermal effects we get
2
=1 o¥ B
2 ) 2 1Jmn i3%mn (2.35)

o=1 B=1
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In the derivation of Eq. (2.35) we assumed that the strain energy is
zero at reference configuration. Eq.(2.35) indicates that the strain

energy function will be positive definite only if

2 2

oB o B
ag] BZ] Cijmnfijfmn 3_0 (2.36)

is satisfied for all symmetric f?j, where the equality holds only when

f?j = 0. Eqg. (2.36) governs all of the constraints imposed on the model
aB
constants Cijmn'

The stress contitutive equations and the positive definiteness
condition can be written alternatively in matrix form by using vector
representations of the stress and strain tensors. These forms are

presented in Appendix A.

2.4 Some Remarks on Interaction Constitutive Equations

For completing the theory we have to supply it with additional
constitutive relations for the interaction terms appearing in the
Tinear momentum and energy equations. To this end we postulate that
the force and heat interactions between the phases are, through
time dependent linear operators, related to the differences of phase

displacements and temperatures respectively, i.e.,

2 t,2 1
i i rij(uj - uy)

=
1}
1

=
il

(2.37)
= Ht(ez - 61)9

fan)
i
i

fan)
t

where ng denotes the operator for linear momentum interaction and Ht

for the heat exchange. 1In view of Ref. 16 another term involving the

gradient of phase temperatures can be added to the right-hand side of
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the first of Eq. (5.1). However, in order to keep the theory as
simple as possible, this term representing the coupling between the
linear momentum interaction and the temperature gradient is neglected.
For a given composite, the forms of the operators in Egs. (5.1) can
be determined either experimentally or by using micro-modal analysis.
For example, in a subsequent study, where we will develop the theory
for a two phase layered composite, approximate forms of these operators
will be established by using a procedure based on micro-model analysis,
which is very similar to the one used by Biot [18,19]. He introduces
a viscodynamic operator describing the friction between the fluid and
solid phases of an isotropic porous material.

We believe that the inclusion of the operator ng, which we
will call the elastodynamic operator in the theory, is important. In
fact, the presence of this operator in the theory, which accounts for
the dispersion of waves in composites, not only brings some improve-
ment to the matching of the approximate fundamental spectral lines
with the exact, but also makes it possible to match the second approxi-
mate and exact cut-off frequencies.

We have now completed the general formulation of the linear

approximate theory developed for a two phase composite. Provided that

o

the constitutive equation for @a is known, the field variables u?, e1J,

&
iJ
Eq. (2.2), strain-displacement relations, Eq.(2.11), stress constitutive

and 6% can be found by solving the Tinear momentum equations,

relations, the second of Egqs. (2.24), heat conduction equations, Eq.
(2.32), and interaction constitutive relations, Eqs.(2.37), subject to

appropriate initial and boundary conditions.
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The approximate theory, Jjust established, governs the dynamic
response of a two phase‘composite.v The theory not only accommodates
the anisotropy of the composite, but also its dispersive characteristics
caused by the interfaces separating the two phases.

When we say that the theory is complete, it must be understood
that it is complete only in the general sense. The theory applies to
all two phase materials with periodic structure and for materials in
which each of the phases is linearly elastic. The model cannot be
completed until a specific two phase material is defined, which entails
specifying the geomefry and the properties of each of the two phases.

The steps required in progressing from the general theory to a
complete model replacing a specific two phase material are significant.
They are described in detail in the chapter following this, but it seems
appropriate here to describe in a qualitative way what those steps
entail.

When the geometry of the two phase material is known, its
influence on the model constants and the elastodynamic operator must
first be explored. The geometry usually imposes symmetry restrictions
which significantly reduce the number of these unknowns. It remains
to establish the surviving unknowns.

The best set of values for the unknowns will be achieved by
using a method known as system identification. It is used in conjunc-
tion with experimental data. System identification is a systematic
method for estimating the set of unknowns that will minimize the
differences between responses predicted by the model and those from

experiments over some specified extent of the responses.
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Experimental data may not be available, and even if they are,
the method of system identification could be complex and require a
great deal of computer time.

Other methods are available which may be used separately or
together. The first employs micro-model analysis which is based on
the deformation modes assumed for the phases. When the geometry of
the two phase material is known, the micro-model can be constructed.
The second method depends on having an exact theory for the two phase
material. The product of the exact theory would be frequency spectra
relating frequencies and wave lengths for infinite trains of waves.
The unknowns could be established by matching the two sets of spectral
Tines for a specific set of properties of these Tines. In this pro-
cedure special attention should be given to avoiding the violation
of the model constraints imposed because the strain energy function
is positive definite.

The approximate theory developed here is based on the theory of
mixtures. With the object of keeping the theory as simple as possible,
we have used the average values of the field variables. It may be
that because of this simplication, an acceptable match between the
responses predicted by this theory and experimental responses, or the
responses from the exact theory, will not be possible. If such is the
case, the theory can be improved, at the expense of complication, by
employing micromorphic mixture theory. In that theory, antisymmetric
distributions of the field variables are accommodated.

A last comment regarding the application of the mathematical
model developed in this study to masonry walls is in order. We know
that taking into account nonlinear and debonding effects in the response

of masonry walls to dynamic inputs is important. The linear theory



proposed in this study will form the basis for including these effects
in the model. To explain this more explicitly, we refer to the third
chapter where a constitutive relation for the 1inear momentum inter-
action for layered composites is established through the use of micro-
model analysis. This analysis is based on displacement and stress con-
tinuity conditions at interfaces. By relaxing these continuity condi-

tions, the debonding effect can be accommodated in the theory.
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CHAPTER 3
A MIXTURE THEORY FOR ELASTIC LAMINATED COMPOSITES

In this chapter the general theory is modified for a specific
periodic array, namely a layered material in which the phases appear
as alternate plane layers. This geometry is chosen for two reasons;
first, because it is close to the geometry displayed by masonry and,
secondly, because there is a wealth of information about the dynamic
response of such materials, both from experiments and predicted by an
exact theory. In the equations which will follow, the thermal effects

contained in the previous chapter are disregarded.

3.1 Homogeneous Model for a Two Layer Material

In this section we choose a specific two-phase material; that is we
choose a particular periodic geometry for our medium. We trace the influ-
ences that this specified geometry has on the general two phase theory,
and modify the theory to this geometry. We will find that changes are
required in both the constitutive equations and the equations of linear
momentun.

The material which we study is one in which the two materials alter-
nate in plane layers. The materials are called phases and each is identi-
fied by so called "phase constants". Each phase is isotropically elastic,

R

so Laffie's constants My, and Aa (oo = 1 or 2) and the mass densities P, are

the phase constants. The two layers have thicknesses Zh] and 2h2 respectively.
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In what follows the laminated composite is referred to a Cartesian
coordinate system (x], X s x3) in which the Xo axis is perpendicular to
the planes of layering (see Fig. 1). With respect to this reference
frame the tomposite displays hexagoha1 symmetry, in which Xo is the axis

of symmetry. We first study the constitutive equations.

(a) Constitutive Equations

The hexagonal symmetry resulting from layered periodically results
in a reduction in the number of model constants appearing in the constitu-

tive equations. The stiffness matrices defined in Eq. (A.1) have the forms,

of af af ]
¢y ¢ ¢ o o o
o8 0B aB
¢, Gy 3 0 0 0
8 @B B 9 o 0
o8 - 13 12 11 (For o = 8). (3.1)
0 0 0 cjﬁ 0 o0
o8
0 0 0 0 ¥ 0
0.8
0 0 0 0 0 Cp
— p
a _ 1 ,~aB _ ~oB
where C55 5 (C]] - C]3), and
i 12 12 ]
dx ¢ c}f 0o 0 0
12 : :
1 G G 0 0 0
12 12 12
RIS C,5 C)5 C7 0 0 0 (3.2)
i 12
0 0 0 Cpq O 0
0 0 0 0 0 0
0 0 12
i 0 0 0 Cpg
]
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FIG. 1. A LAYERED COMPOSITE MATERIAL
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Examination of Eqs. (3,1) and (3.2) shows that the number of in-
dependent constants has been reduced to fifteen. This reduction results
from symmetry and also from recognizing that Céé = 0. The latter is ob-
tained by integrating the constitutive relation 31% = 2“a 313 (where
g]g and §1g are the actual shear stress and strain distributions for

the o phase) over the thickness of the o phase.

(b) Equations of Linear Momentum

First we write the linear momentum equations, Eq. (2.2), for each
phase separately. They are

86.!

ji 1 t .2 1y L .1
5%, oo Ry Ty (U - ug) S
(3.3)
303? 2 t, 1 2 .2
%, ey F Iy (uy -ug) = ey vy

In formulating the linear momemtum equations for the general two
phase theory, interaction between the phases was accounted for by the
term r§j, which we called an elastodynamic operator. With the hexagonal

symmetry of the layered material, the operator has the form

r.by = o t o (3.4)



29

The physical meaning of the components is derived from a study of
Egs. (3.3). The first, rf s describes the linear momentum interaction
parallel to layering caused by the shear stresses at the interfaces, FS
accounts for interaction normal to layering caused by the normal, inter-
face stresses. To gain insight into the forms of these two operators we
analyze a micro model of the layered material. The analysis, which is
based on assumed deformation modes for the phases, was previously used
by Biot [8,9] for constructing a viscodynamic operator for fluid fi]]ed
porous media.

Micro model analysis consists of a study of a unit cell of the
composite material. The unit cell consists of one layer of the first
constituent bounded by two half layers of the second (see Fig. 2). We
refer the cell to a Cartesian coordinate system (x], Xos x3) so that the
X1=X3 plane coincides with the mid-plane of the first constituent and
the X, axis is perpendicular to the layers. The analysis is approximate
in that a number of simplifying assumptions are made pertaining to the
state variables involved. First, the variables are assumed to depend
only on the thickness variable and time, so that the displacement, for
example, ﬁ? = E?(xz,t). where the asterisk is used to denote actual
distributions. 1In the general micro model theory, the same quantities
are assumed to be distributed symmetrically about the midplane of each
layer. If this simple theory proves to be inadequate; we would have to
employ micromorphic mixture theory which accommodates antisymmetric
distributions. The results of the theory are expressed in terms of the
average values of the variables over the thickness. The average value
of the variable ﬁ? is denoted by u? (no asterisk).

The derivation of expressions for F? and~F§ begins by substituting

the displacements
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FIG. 2. A UNIT CELL
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* *
= ud(x

i 55t) (3.5)

into the field equations of elasticity. The restricted space dependency

leads to the equations

*
azua %0, R *
+ = p uOL
Ho I 1 o U1
2
2*a
o u
2 * _ R *o
(2ua + Ka) axz + F2 = oy Uy (3.6)
2
2%0,
U3, ka _ R
U 3x2 3 Po U3z
2

where o = 1, 2 represents quantities in layers 1 and 2 respectively; and
F? are the components of the body force.

In what follows, we develop an expression for P%; the method is the
same for F; . The form of F? is governed by the interface shear stresses.
For the assumed displacement field, these stresses are related only to

the displacement parallel to the layers and the relationships are

3 Uy e
*0 Uy Lo Uz
21 T Vo TEx, t %23 T “as‘(z"' (3.7)

In our study of P% » We may pursue either ﬁ? or ﬁg as both will lead to
the same expression. We choose the first, which is governed by the
first of Eqs. (3.6), and continue by taking the Laplace transform of
each side of this equation. The result of this operation is the
equation

d2 kol

*
O
U-l 2 *(XL 'F]

- m u s (3.8)
o 1

Q

dx2
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where the superscript L denotes the Laplace transform of the quantity

and

3

]
t"o
Q IR ;o

=

in which p is the Laplace transform parameter.

* *
In the integration of Eg. (3.8) we exploit the symmetry of u? and F?,

already discussed, and further we make the same assumption as made by

*
Biot [13], that F? depends on time only. Integration leads to the equation

*ol  _ A
uy” = A, sinh m X, + B coshmx, + G (3.9)

where
FaL
6, - 1 . (3.10)

Uam

Q

The four integration constants, Aa and Ba, appearing in Eq. (3.9),can be

determined by using the continuity condition at the interface Xy = h1,

* _ *2 . *] - *2

(U]) - (u]) s (021) (02]) s (3.1])
and the conditions at the mid-planes x, = 0 and x, = A = h, +h,

*1

(290
21 Xo 0

*2

O5)y -
21 xZ—A

= 0 ( = 0 (3.12)

After some manipulation, the

*
which are imposed by the symmetry of u?.

. *al .
final form of u] is found to be

- L. ;
u = 5 (G] GZ) cosh X, + G] (3.13)

1 .
5—(61-62)(cosh MyXy = tanh M, Sjnh m2x2) + GZ’

o
—
|
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where
oMo -
C = T STTh m]h] {sinh mzh] - tanh mZA cosh m, h )
D = (F-C) cosh myh, (3.14)
_ 1 - :
F = ——— (cosh mzh] tanh m,A sinh mzh]).

cosh m1h]

To determine the interface shear stress we substitute Egs. (3.13) into

gs. (3.7), and obtain

s *2|
(059) Xy=hy d1)

. C :
x=hy = 0 M1 MGy - Gp) sinhmphy. o (3.15)

Our objective is to relate the interface shear stress to the difference

of the average horizontal displacements. We formulate the averages

h

1w _ 1 1 *1L 2L _ 1 *2L
1 2

0 h]

*
using u?L from Eq. (3.13) and obtain an expression for their difference

2L 1L _ ¢ MM 1 :
upT - up = -(G1—Gz) [5-(m2u2 m2h2 + m1h]) sinh m]h1 + 1](3.17)

By eliminating the factor (6;-G,) between Egs. (3.15) and (3.17),after

some manipulation, we get

3r.r
*1L _ 12 2L 1L
(02] )X2=h] - (O )X -h'l rA L (K]9K2)(u )a (3-]8)
where 11 : .
’ (e 1 ] r K1K,s1nhK, sinhk,
1 2 3 1 1

1.1 1. 1 1. .1 K1 Koy o v 1. 1
T]K1$1nhKFOSW%+T2K2COShK]STHhKZ'(T];zj+ rzgj)s1nhK]s1nhK2
. 1

(3.19)
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and the arguments K} and K; are defined by
1 _ fu
Ka = A P P, (3.20)
[0
and
M, 2
r = — 3 r = X r , (3.21)
& Mo o=1 ¢

where n, = ha/A.
Even though Eq. (3.18) is written in the Laplace transform domain it can
be interpreted from operational calculus as given in the real time domain
provided that the Laplace transform parameter p is replaced by the
operator-%f . In our analysis we adopt this interpretation and accordingly
drop the superscript L in Eq. (3.18). In this case L1(K}, K;) in
Eq. (3.19) becomes an operator relating the relative average horizontal
disp]écement to the interface shear stress. It should be noted the
operator Ll(K},K;) is normalized so that L](0,0) = 1.

We now turn our attention to relating the elastodynamic operator
P% to the operator L]. We first note that the Xy component of the linear

momentum interaction M} acting on the first constituent and defined per

unit volume of composite is related to the interface shear stress by

*1
1 (021)x2=h
M = ——r’l . (3.22)
On the other hand, we see from Eqs. (3.3) and (3.4) that in our general

formulation the same interaction is given by

1

M

ot 2 1
= Fl(u] - u1). (3.23)

Considering Eq. (3.18), and comparing Eqs. (3.22) and (3.23) we finally

obtain the form of the horizontal component of the elastodynamic
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operator as

t _ 1 1
I'] = K-l L-l (K]’ Kz) s (3.24‘)
where the constant K] is given by
3r,r
Ky = —52 (3.25)
A°r

The operator Pg, which governs the vertical linear momentum interaction,

can be obtained in a similar way. In the derivation of this operator, the
% *,

terms u? and 0%1 appearing in Eqs. (3.10) and (3.11) must be replaced

*, %
by u% and 0%2 » respectively. The result is

t
Ta

2 2
= K2 LZ(K] s Kz) (3.26)
where the constant K2 and the operator LZ(K?,KS) can again be defined by
Egs. (3.25) and (3.19), respectively, if the terms (r],rz,r,x},mg) in

these equations are replaced by (E],EZ,E,Kf,Kg), respectively, where

2u_ + A 2
E=J‘n—-&;E=ZE, (3.27)
@ a o=1 ¢
and
2 _ "pa
KOL = A E P- (3.28)

[0
We recognize at this point in the development that the elastodynamic
operators will make the equations of linear momentum too complicated for
practical use. Accordingly, we replace each of the operators by an approx-
imation derived by expanding the operators L](K}, K;) and L2(K$, Kg),
defined by Eq. (3.19), in power series expansions of their arguments, and

retain the first three terms. This procedure yields
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2
t 3

ri' = Ky +9q, —»

1 1 1 8t2
(3.29)

Ft = K, +q 93—

2 2 2 3t2

where
2 2 2 2
o = 2 ten o P1Ez * ppk, (3.30)
1 5r2 2 5E2

Here we first note that Eq. (3.29) is valid when the Laplace transform
-parameter is small. This means that Eq. (3.29) represents an asymptotic

form for the operators valid for large times. Secondly, we note that
Eq. (3.29) implies that the linear momentum interaction involves the con-
stituent relative acceleration. This violates the principle of material
indifference because the constituent relative acceleration is not an
objective quantity. This point is discussed in[20]where the author
states that this violation can be disregarded in linear theories.

t

When the expressions for Pf and F2 are introduced into the equations

for linear momentum, Eqs. (2.1), we obtain the approximate form of these

equations,
301
ji 1 2 1, _ 1.1 a2
Tl Kigug - uz) = mygvy - a4V
(3.3])
302 2
ji 2 . 120 2 .
T A Ki(uj - ug) %G5V oMYy
where
K] 0 0 9 0 0
(Kij) =10 K O ; (qij) =10 g, O ; (3.32)
0 0 K 0 0 q1
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(pa+q]) 0 0
(m?j) = 0 (p,*ap) 0 : (3.32)
0 0 (pa+q])

Eqs. (3.31) along with the constitutive equation Egs. (A.1), (3.1),
(3.2) make up the model theory governing the homogeneous material which
replaces the two layer material. It remains to establish the nineteen
model constants of the theory in terms of the mechanical properties Uy

ka, and pz of each of the two constituents.
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3.2 Comments on the Theory

Before establishing equations giving the model constants in terms of
the phase constants, some comments on the theory are in order. There
has a]ready been work towards developing the same kind of theory. For
example, Bedford and Stern [9] using a quasi-static analysis, found the
same expression for K1, Eq. (3.25). They proposed a special mixture
theory for a layered composite valid only for dilatational waves
propagating parallel to the layers. Their theory takes into account
only the first term in the expansion of P? and neglects the coupling in
the stress-strain relations.

In the development of the equations of linear momentum in Section (3.1),
the components of the elastodynamic operator ng, derived using a micro
model analysis, are replaced by approximate forms. One might suspect
that this step could make the resulting theory valid only when the
relative phase displacements vary slowly with changes in time. This
restriction would not be real if the frequency range of the theory
accommodates the first nonzero cut-off frequencies in spectra
representing the behavior of dilatational and shear waves propagating
in the principal directions. Fortunately, this is the case for the
present theory. In fact the operators contain model constants that can
be adjusted to make these cut-off frequencies from the exact and model
theories match. In the section which follows, the constants are used
for this purpose. In the last section on the assessment of the theory
we show convincingly that the approximations used for the elastodynamic

operator are appropriate.
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We end this section with two general remarks on the theory developed
in Section (3.1). The first is that we feel the equations of linear momen-
tum, Egs.(3.31), even though they were developed for a layered two phase
materia],"are appropriate for all periodic, two phase materials. We will
use these same equations, for example, when developing a theory to
represent a homogeneous model for masonry walls, which have vertical
layers in addition to horizontal. The difference between the masonry
model and that in which vertical layering is neglected will be reflected
in the forms for Kij and qij and the values of the constants in the
matrices.

The last comment has to do with the model constants K], KZ’ 9 and
q,- We have already found these in terms of the phase constants as
given by equations (3.25) and (3.30). These equations are found by
using micro model analysis which is.based on assumed deformation modes
for the phases. It might well be that in producina a model that will
behave like its prototype it is more appropriate to assign other values
to the constants. It seems sensible when starting the process of
establishing the set of model constants, to abandon the values of K1, K2,
dy and a, established by Egs. (3.25) and (3.30) and have them unassigned
as are the remaining fifteen. Thus the two steps, the derivation of the
forms of the equations of the model and the establishment of the model

constants, are clearly separated.
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3.3 Evaluation of the Constants

The theory just completed describes a homogeneous, dispersive
material with hexagonal symmetry, that will be used to act as a model or
replacement of a two phase material composed of alternating plane layers,
each made up of an isotropically elastic material. The effectiveness of
the model can be judged only when it has been decided what behavior of
the prototype it is that we wish to mimic. In this study we will use
the new material to predict the dynamic behavior of the layered material.
We have at our disposal nineteen constants that we can use to this end.

We can establish the constants by matching the dynamic behaviors of
the model and prototype but the possible matching phenomena are almost
without 1imit, certainly far beyond nineteen, so that there is no unique
set of constants or no unique material to be established. By the dynamic
behavior of the layered material we could mean dilatational waves parallel
to the layers, or shear waves normal to the layers or other variations;
we could be referring to infinite trains of waves or transient wave
behavior of each type; and the behavior we are considering could be that
predicted by exact theories of layered materials, behavior of the
model, or behavior observed from experiments.

Our choice of a layered material as a special case of a two phase,
periodic material was made partly because a layered material is close to
masonry but, equally important, the choice was made because there is
a rich supply of information about the dynamic behavior of layered
materials. We have at hand spectra developed from the exact theory
for various types of trains of waves, which can be adapted to any
layer properties; experimental data describing the behavior of both

trains of waves and transient waves in several different two layer materials.
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We can say unequivocally that the best set of constants would be
those found using system identification to match some experimental behavior,
either steady state or transient. If we used system identification we would
have to decide at the beginning what few among the variety of
experimental behaviors it is that we choose to match. If it is the
behavior of infinite trains of waves in a variety of directions as
reflected in spectral Tines representing phase velocity vs. wave number
then a criterion function would be chosen which would represent the
accumulation of least squared errors between experimental points and
model points on the spectra over whatever length of spectral lines we
choose. An optimization algorithm would then be constructed from which
the nineteen constants are established that would minimize the criterion
function. We have had considerable experience with system identification,
enough to know, that with nineteen parameters involved, the problem in
using this method would be formidable. Accordingly, we leave this to a
future study.

The method we use here to establish the nineteen constants in terms
of the layer properties, (which turns out to be successful) is a mixture
of micro model analysis and matching of specific properties of spectra
from the exact theory reflecting the behavior of infinite trains of
particular types of waves. The method described in what follows is, we
think, the simplest.

As we will be matching spectra for infinite trains of waves, we
require the velocity equation, and subsequently the frequency equation,
which govern infinite trains of waves travelling in our model material.

To this end we adopt the trial solution



in which A? are the amplitudes, e is the unit normal denoting the
direction of propagation, k is the wave number and ¢ the phase velocity.
When we substitute (3.33) into the constitutive relations, Eqs. (A.1),
and the eqﬁations of linear momentum, Eqs.(3.31), and use the strain-
displacement relations,Eq.(2.11), the condition for which a nontrivial

solution will exist gives the equation
2+.4 2 2
Lloyo,tea)kTIc” - [(0gS,, + 05817 + aS)K™ + oK]c

2 _
+ [(511522 - 512512)k +SK] = 0 (3.34)

for waves propagating in the xj and xo directions.
Equation (3.34) relates the phase velocity ¢ to the wave number k and

it should be noted that for each k there are two phase velocities leading
to two spectral lines on the k-c plane. Equation(3.34) will be used in
the next section to trace out the spectral lines for a variety of types
of waves, but in this section we are primarily interested in the case
where k is zero or approaches zero. Study of Eq.(3.34) shows that as k
approaches zero, one value of c approaches infinity, and the other

approaches the cut-off velocity

2 S
c = =2
5 (3.35)

2 2 2
where p= Zp 3 S = I r S, °
a=1 @ o=1 B8=1 B

The values of Sa K and g appearing in Eqgs.(3.34) and (3.35) differ for each

B’
type of principal wave. They are

for dilatational waves in the X1 direction

S,e = €173 K=K 5 q=q (3.36)
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for Sv waves in the x]'direction
- 9B . = . =
SaB = C44 s K K2 3 q q2 (3.37)
for SH waves in the x] direction

s, = €5 k= K

a8 55 15 9=q (3.38)

for dilatational waves in the Xs direction

_ 0B . - ) -
Sas = 022 3y K = K2 3 4=, (3.39)
for shear waves in the Xy direction
- 0B, - . -
Sas = C44 s K K] 3 Q=0 . (3.40)

The phase velocity of the second branch goes to infinity as the wave
number approaches zero, so additional insight can be gained by studying
the frequency equation. This is easily obtained from Eq.(3.34) when we
recognize that the circular frequency w is related to k and ¢ according

to w = kc. The frequency equation becomes

2 2
[(p10, + 0@)I0" - [(pyS,p * 0,577 + )K" + oKlw
4 24 _
+ [(S1955p = S19819)k" + SKk"] = 0 (3.41)

When k = 0, the equation becomes

(pqp, + pa)u’ - ok w? = 0 (3.42)

so that the lowest spectral line emanates from the origin of the w - k

plane, and the second has the cut-off frequency

2 pKa

(A)a = W . (3».43)
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The frequency o is the cut-off for P and SH waves propagating in the
X1 direction, and SV waves propagating in the Xy direction; W, for SV waves
in the x4 direction and P waves in the Xy direction.

We now are in a position to begin the process of establishing
equations that relate the model constants to the properties of each of

the two layers in the prototype.

Determination of K and q
o o)

We first establish equations from which K], K2’ 9, and 95> the
constanfs appearing in the equations of linear momentum, can be found.
In the previous section while developing the form for the elasto-dynamic
operator using micro-model analysis, we found values for K1 and K2. These
values were temporarily abandoned to leave all constants free for
evaluation by other matching, but now we again adopt these equations.
Accordingly, we establish K, and K, from Eq. (3.25).

On the other hand, we do not use our previous equations to establish
qy and q- These constants determine directly the cut-off frequencies
of infinite trains of waves, so we adjust them so that the cut-off
frequencies of P and SV waves in the Xo direétion predicted by the model
are the same as those predicted by the exact theory.

The cut-off frequencies &] and &2 from the exact theory are the lowest
nonzero roots respectively of the equations

2

cos &y cos &, - l%%%— sin g, sin g, =

i
—

(3.44)
1+p§
“2p,

cos i cos Ny - sin N sin Ny = 1



45

In Egs. (3.44)

- = 00 - a
Ea Zha w]/CT 3N, = 2h wz/CL
2
u Uy C
CT =‘/—§ R (3.45)
Py, 2 CT
2
< = ‘/%a+2ua . p Moy EL
L o 2 Rty

The constants dy and q, are obtained by equating the wg in Eq. (3.43) to
the &2 obtained from Eqs. (3.44).

caB o 8

Determination of 11° 412 and 13

A1l of the equations establishing these constants are derived using micro
model analysis. We present the derivation of the equations from which the
C?? are found, and then state the comparable equations for the C?g and C?g.

We assume a quasi-longitudinal deformation state parallel to layering,
see Fig. 2, so that distance between the mid-planes of layers remain unchanged.
If the lateral expansion (or contraction) of the first constituent is &,
that of the second will be (-8).
When we average the constitutive relations for g?] and ;%2

*a

_ *o *o
oy = (g *2u) e+ ep
(3.46)
*OL _ *(x *0.' .
Opp = O+ 2u) epy + X, ey

over the thickness of the oth constituent by using the formulas



we obtain

and

h
N
T 7 J o7 4%,
-hy (3.47)
A+h
2 1 2 *2 ,
o]] = 2h2 f 011 dx2 ; etc.
h .

1

1 _1 5
O1p = MEy &yt Zh;
(3.48)
2 _2 8
o1 = Moy gy - Ay Zh,)
-1 _ =1 S
Opp = Mepp t M Zh,
(3.49)

Ogp = AgByy ~ Mok, op-

At the interfaces of layers "332 should be continuous. In the micro

model we assume that this continuity is approximately satisfied by that of

- *
the average G, . By using Eqs. (3.49) and the continuity of oY, , the
22 22

term § appearing in Egs. (3.48) can be eliminated. This yields

2
A A-2
1 M 12 =2
o7 = (mEp - n]E)e11 * mE N
) (3.50)
Aok A
2 Mg 2\ =2
T onE et ("E, - ﬁ;ﬁ’ ey
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When we use the equation o?] =n, 5?] which relates the partial stress

o?] to the average stress 6?] and note that e?] = é?], we finally obtain

2
A A
1,2 1 "2 2
93 (mMEy - g ey v &y
(3.51)
2
AL A A
2 Mg 2 2 2
o1 = eyt (ngE, - ) ey

To obtain the constants C?? in terms of the properties of the layers
we compare the expressions for U}] and ng given by Egs. {3.51) with

those from the constitutive relations Eqs. (A.1). The comparable stresses

are equal when

2 2
A A A\
n_ 2 1. 22 _ 20t 2 _ 21 M
Ci1= MmEy -3 Gy = b -5 Oy ‘11 - (3.52)

The relations, Egqs. (3.52), were obtained previously in [10], where a
mixture theory, valid only for dilatational waves propagating parallel
to layering, was proposed.

Here we also note that a similar procedure to that described above
was previously used by Stern and Bedford [21] to establish all of the
constants of a model which they proposed by using the theory of mixtures.
In that work Stern and Bedford did not take into account the coupling in
the stress-strain relations which would imply that the state of stress
of one phase is affected by the deformation of the other.

Using the same method as for C??, we find

n o E, 22 Ey o2 E,

Ciz = MY F 3 G = mhy g5 G = iy ¢
(3.53)

E
21 12 1
Ciz = 1 = M ¢
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and
2 2
A A
n M 22 2
C13 = MMy -5 Gy = mhy - - (3.54)

We note from Ref. 1 that the constants found using Egs.(3.52-3.54)
are identical with those that will allow the cut-off phase velocities of
P and SH waves in the X direction from the model to match those given
by the exact theory. The Tlast analysis also gives C}g = C?é = i%;g, but
each of these is equal to C}%, already established, so these equalities
do not provide independent information.

It only remains to establish C%g and Cii, and we choose to find these
sets of constants by adjusting the cut-off and asymptotic phase velocities

of infinite trains of waves of two specific types.

aB and COLB

Determination of C22 A4

. . 11 .22 12 ,_ .21
We find three independent constants C22, 022 and 622 (= C22) by

matching three properties of the spectral lines representing the rela-
tionship between phase velocity and wave numbers for dilatational waves
traveling perpendicular to layering. A similar procedure was previously
used by Mindlin and McNiven [22] who matched cut-off frequencies to estab-
Tish adjustment factors as part of an approximate theory governing the
vibrations of rods. We first match the cut-off velocity of the Towest
branch. We already have the velocity for the model from Eqs. (3.35) and

(3.39). The same velocity from the exact theory is

E.E
=2 _ 172
C - QE . (3.55)
Matching gives the eqguation
E.E
11 22 . 12 _ "172
Cyp + C55 + 2055 = —= . (3.56)
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The other two equations are obtained by matching the asymptotic phase
velocities for the lowest and second lines, respectively.

We know from the exact theory that the asymptotic phase velocity of
the lowest branch is zero. When we derive this same velocity for the

model from Eq. (3.34) and set it equal to zero, we get

11 .22 12 .12 _
Cyp €55 = Co5 Crp = 0. (3.57)

Finally, from the exact theory we have the expression for the fastest

transmitted wave velocity.

il 2

_ P 2

® E E
‘/_1_+_2_
P1 P2

When the velocity is equated to the second asymptotic phase velocity for

c (3.58)

the model derived from Eq. (5.2), we get a third independent equation

E,E
22 1 2 251
01055 * 0oCop = o0y + pap)c, - qy —F— (3.59)

Comparable equations are obtained by matching the same quantities,

this time for Sv waves propagating in the Xy direction. The equations

are
i 2 - (3.60)
Caa Cag = Cag Cag = O (3.61
p]CiZ + ozczu = (pyoy # oq1)Ci - G r]:z (3.62)



In Eq. (3.62)

il

\/iz_

o

c, = ! 2
"1 42
°1 P2

With the set of equations established in this section, one is able

e

(3.63)

to calculate the nineteen model constants for a particular layered material
for which the phase constants are specified. This completes the

formulation of the theory governing the model material.
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3.4 Assessment of the Model

The final step in completing a theory is to ascertain how well it
works. Here, we have available a wealth of material describing three types
of dynamié behavior of various layered materials. The first is theoretical
and consists of phase velocity and frequency spectra that predict the
behavior of infinite trains of waves from the exact theory. The second
displays the same behavior from experimental observations, and the third
describes transient wave behavior from experiments.

The use of this transient wave behavior to assess the approximate
theory is probably the most demanding and the most satisfying,
but since it requires additional theoretical development this assessment
is left to the next chapter.

We compare spectra derived from the model theory with the exact
theory spectra of Sun et al. [2] which they.used to assess a first order
effective stiffness theory for a layered composite. The phase constants
assumed by Sun and the comparable model constants are shown in Table 1.
The experimental results used here are due to Whittier et al [23]. They
established spectral lines representing the relationship between phase
velocity and frequency for waves propagating parallel to layering. The
spectral lines are for two different layered materials; thornel
reinforced carbon phenolic and boron reinforced carbon phenolic. The
elastic properties of each of these materials are shown in Tables 2
and 3, along with their respective model constants that are needed.

Comparisons with the exact theory are displayed in Figures (3-9). In
these Figures, the dimensionless wave number &, the phase velocity B and
the normalized frequency Q are given by

1 1
£ = 20k 3 8 = o/ (uy/op)Z 5 0 = 2w/ (uy/oy)2 (3.64)
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TABLE 1.

SPECIFIED LAYER PROPERTIES o
_R _R _ _ - -
n n A A
1 2 /°, P2 /“'1 /-"2 | 2
0.8 0.2 3 { 100 { 150 2.333
COMPUTED MODEL CONSTANTS
Rl k-2 q, q,
36.923 [158.550| 0.041 0.040
11 — 22 —12 ~ 11 — 22 ~12 —12
Cyy Cyy Cy Ciz Ciz Ciz C,,
230998 | 0.855 0.762 | 5.663 | 0.445 1.416 1.778
—11 — 22 - 11 - 22 — 12 -1 - 22 — 12
Cis Cis Caz Caoz Caz Caq Cas Caq
70.998 | 0.455 144076 | 4.389 [-13.908|10.686 | 1.158 |-3.517

THE DIMENSIONLESS QUANTITIES APPEARING IN THIS
TABLE ARE DEFINED BY

R

-R 3

pa =’c<)z/’02 d sz’u'a/’u'z 1 )\a=)\a/,u.2

_ (2h)%Ke _ r  -aB _aPB
KazT ; qa=qa/p2 J Cij =Cij

R _

//.1,2.
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TABLE 2.
PROPERTIES OF THORNEL REINFORCED CARBON PHENOLIC

SPECIFIED LAYER PROPERTIES
R R
hl h2 pl IDZ lu'l 'u'2 >\| >\2
dyne-usec?
cm y ’u'4 dyne/cm? dyne /cm?
cm
0.0032 | 0.0279 |1.47 1.42 0.756 (10.0662 )| 0.756 0.114
x10'2 x10'2 | x10'? | x10'? | x10'? | x10'2
COMPUTED MODEL CONSTANTS
I 22 12
K, q, Ci Cu Cn
_ 2
dyne/cm4 m dyne/cm2 dyne/cm2 dyn‘e/cm2
cm
227.213x10'2| 0.399x10'2 | 0.210x10'? | 0.220x10'% | 0.0039x10'?
TABLE 3.
PROPERTIES OF BORON REINFORCED CARBON PHENOLIC
SPECIFIED LAYER PROPERTIES
R R
h, h, P P H Ho A A2
dyne-usec? > 2
cm 2 dyne/cm dyne/cm
cm |
0.0052 | 0.026 2.37 .42 0.951 10.0662 | 0.806 0.114
x10'2 x10'2 x10'2 x10'2 x10'? x10'2
COMPUTED MODEL CONSTANTS
| 22 12
K, q, Cln CTi C\
can? |
dyne/cm"' dyne ,u.4sec dyne/cm2 <:|_yne/cm2 dyne/cm2
cm
239.387x10'2| 0.280x10'2 | 0.410x10'2 | 0.204x10'> | 0.0055x10'?
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Figures 3-8 show comparisons between spectral lines representing
phase velocities for waves travelling in principal directions. The
matching is remarkably good. Figure 9 shows the same comparison for

" waves proﬁégating parallel to the X1~Xs plane at an angle of 45 degrees
with theax] axis. In Figures 3 and 7 comparison is made not only with
the exact theory but with spectral lines derived from both first and
second order effective stiffness theories [2,4]. From both figures we
may conclude that the theory presented here is superior to the first
order theory. In Figure 3, the present theory -and the second order
theory are about equally effective; while for P waves travelling in the
Xy direction shown in Figure 7, the second order effective stiffness
theory is superior to the present theory. However, it is important

to point out that this preferable performance is obtained at the
expense of a considerable increase in complication. Even though the
dispersion introduced by the Tower approximate spectral line appears to
be slight, we can report that the transient wave behavior, predicted by
the present theory, of P waves propagating in the X, direction agrees |
well with the behavior reported from experiments. This comparison

will be presented in the next chapter.

In all of these Figures the spectral lines give the relationship
between phase velocity and wave number. Since the second spectral line
extends toward infinite phase velocity as the wave number approaches zero,
very little insight into the behavior of this higher mode is gained from
these Figures for small wave numbers. Accordingly, for this mode, a
comparison is made of spectral lines reflecting the relationship between
frequency and wave number; these lines have finite cut-offs. Frequency
spectra for this higher mode for P waves and SH waves propagating paraliel

to layering are shown in Figures 4 and 6, respectively.
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The last two figures, Figures 10 and 11, are devoted to thornel
and boron reinforced carbon phenolic lanﬁnates, respectively. In the
Figures we compare the first spectral lines found using the present
theory with the exact and experimental ones for dilatational waves
propagating parallel to layering. The comparisons are made on the
(f-c) plane, where f is the cyclic frequency, related to the angular
frequency w by f = w/2n. The Figures indicate that agreement between
experimental and theoretical data is remarkably good. '

Finally, an important point should be noted. For waves propagating
perpendicular to 1éyering, the exact spectrum has a banded structure
with passing and stopping bands. These bands are regions of the spec-
trum representing harmonic waves that propagate and attenuate
respectively. The present approximate theory and others, except those
proposed by Herrmann, Kaul and Delph [7,8], do not predict the
stopping bands. In these papers the authors have developed a one-
dimensional approximate theory, which they call effective dispersion
theory, for waves propagating perpendicular to layering only. Their
theory accommodates the first stopping band and approximates quite well
the two Towest spectral lines over the first two Brillouin zones. A
refined three-dimensional approximate theory based on micromorphic
mixture theory is being developed fdr two phase composites by the
authors of the present work and will be reported soon. In that work
it is found that the refined theory, which accommodates both the
symmetric and antisymmetric displacement distributions, within phases,
predicts the stopping bands for waves propagating perpendicular to

Tayering.
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FIG. 6. THE SECOND SPECTRAL LINE ON THE FREQUENCY-WAVE NUMBER PLANE FOR
SH WAVES PROPAGATING PARALLEL TO LAYERING
(SUN'S MATERIAL)



60

4 |-
2
10
B °r
6 e
EXACT :
— - — PRESENT APPROXIMATE THEORY
4 - —_— = FIRST ORDER EFFECTIVE STIFFNESS THEORY
— — — SECOND ORDER EFFECTIVE STIFFNESS THEORY
0 | 1 | | y £
0 | 2 3 4 5
2h,
T \; E /‘LZ) >\21 Pz )
2A
‘l- K Hi A Pi g
Y

FIG. 7. SPECTRUM FOR DILATATIONAL WAVES PROPAGATING PERPENDICULAR TO
LAYERING (SUN'S MATERIAL)



61

EXACT
2 ' * — -o-— PRESENT APPROXIMATE THEORY

I\:{ \ #a'xz,p’éj
%/" (#;’;P (
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CHAPTER 4
PROPAGATION OF TRANSIENT WAVES IN ELASTIC LAMINATED COMPOSITES

In this chapter we appraise the model by comparing the responses predicted
by the model for a transient input with those observed experimentally.
Experimental data allow us to make comparisons for the behavior of dilatational
waves travelling both parallel and perpendicular to the layers in both plates
and semi-infinite bodies. Where possible, comparison is‘alsd made with

responses predicted by the exact theory.

4.1 Formulation of the Problems

The problems that we study are those dictated by the experiments from
which we have data for transient responses. They involve either layered half
spaces or layered plates; and we study the cases where the layers are paralilel
to the surface of the half space or one surface of the plate, and the cases
where the layers are normal to these surfaces. The time dependent normal
pressure is applied to these surfaces so that for the first cases dilatational
waves are generated normal to the layers,and for the second cases parallel to
them (see Figs.14-20). We assume that the composite slabs or half spaces are
initially at rest before the normal pressure is applied.

The symmetry conditions of the problems suggest that the field variables,
such as velocities, stresses, etc., depend on time t and the perpendicular
distance x measured from the plane surface to which the pressure is applied.

If we denote the normal x-components of phase stresses and strains by

a, and e, the constitutive equations, Eq. (A.1), become
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91 = S118 * 5128
(4.
Oy = 51281 * Spp8p -
where
SaB = C?? , for propagation parallel to layering
; (4.
Sas = ng » for propagation perpendicular to layering.

Then, using Eq.(2.11) the strains, e, are related to the x-components of the

phase displacements, u,, by

auu
€ = 3x

When the weight of the composite material is neglected the equations of linear

momentum, Egs.(3.31), become

907 . .
3%+ Klug = ug) = mpvy - av,
(4.
302 . .
5% Klup - up) =mavy Fmyv,,
where
m =p;+9; m=p,+Qq (4
and
K = K] y 0= a > for propagation parallel to layering (
\ 4
K= K2 s 4= q2 » for propagation perpendicular to layering,

and v, are the x-components of phase velocity and are related to the displace-

ments by Vo T Uy

(4.

1)

2)

3)

4)

.5)

.6)
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Since the medium is initially at rest all the field variables (ua, Vi etc.)
are zero at t = 0.

Equations (4.1), (4.3) and (4.4) constitute the governing equations of
our problems. Their solutions for appropriate initial and boundary conditions,
which will be discussed later, determine the time variatidns of the field

variables (ua, Vs Oy ea) at an arbitrary station.

4.2 Solutions of the Problems

The method of characteristics is used because the governing equations are
hyperbolic and our problems contain only one space variable; furthermore this
method accommodates a variety of boundary conditions.

A full discussion of the method of characteristics is given in[24]. The
method of characteristics reduces the governing partial differential
equations to an equivalent system of ordinary differential equations, called
canonical equations, which are valid along characteristic lines only. The
canonical equations are more appropriate for numerical analysis as their
solutions are simple to obtain. The method of characteristics also employs
decay equations from which the discontinuities across wave fronts can be
computed before starting the numerical analysis.

Because of the particular types of time variations chosen for the applied
pressure in the numerical analysis, which will be discussed later, the decay
equations are not needed in this study. Accordingly, we present the canonical

equations only.

Canonical Equations

In order to put the governing partial differential equations, Eqs. (4.1),
(4.3) and (4.4), into the form of a system of first order differential equations,

we first differentiate Eq. (4.3) with respect to time and obtain the
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compatibility equations

. ava
eu= -é—)-(—- (47)
Differentiating Eq. (4.1) with respect to time and using Eq. (4.7) we get
v oV
- 1 _2
9 =511 3 512 3%
(4.8)
ov Y
¢ = _2 _2
9 = S12 3%t S22 &
Equations (4.4) and (4.8) constitute a system of first order differential
equations. In matrix form the system has the form:
AT, +BE, +C=0, (4.9)
where
- - [~ ( W
m -9 0 0 0 0 -1 0 v—K(uz—u1)
-q m 0 O 0 0 0 -1 K({u,-uq) |
A= 2 ;o - se=< 2T (aa0)
0 0 1 0 —51] —512 0 0 0
LO 0 0 I_ —512 —522 0 0 L_ 0
L - o
E is the unknown vector defined by
G= v, Vo 0y 0, b7 (4.11)
- 1T 27172 ? o
and
oA
UtT 3t P YxT W

and T denotes the transpose of a matrix or vector.
We next find the characteristic lines along which the canonical equations

are valid. They are governed by the characteristic-equation
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det (B - VA) = 0, (4.12)

where V = %%— is the wave propagation velocity. The canonical equations are
then

. du . .
T T ¢ co, vatid atong L= v (1210, (aa3)

where-%f indicates differentiation along the characteristic line with respect

(

to time, and & ) is the left-hand eigen vector satisfying the equation

o7 o(1) = (1) 4T (i)

» no summation over i (i = 1-4). (4.14)

In Eqs.(4:13) and (4.14) V(1) is the ith eigenvalue determined by Eq. (4.12). For

our problems the four eigenvalues are

v e v@ L s

o~ .oy(3) _ (4) _ _
] 13 1= Cp V= ¢E§ =C, V7= -z, = €, » (4.15)
where z] and z2 are the roots of_
(MM, = G2)2% = [MoSq + MeSon + 2qS..]2 + S14Sa, - S2. = 0 (4.16)
12 2°11 1°22 T €9°72 11°22 ~ °12 .

Examination of Eq. (4.5) will show that the coefficient (m]m2 - q2) is positive
as 9.2 0; in addition since the strain energy function is positive definite it
follows that zq and z, are nonnegative. This ensures that the V(i) (i = 1-4)

are real. In the discussions which follow we assume, without loss of generality,
that zy > 2,.

We study separately the cases for waves travelling parallel and
perpendicular to layering and ascertain the appropriate wave ve]ocities for
each case by studying Egs.(3.52),(3.56-59), (4.2) and (4.16). For the case of
waves propagating parallel to layering, g%-= V(i) (i = 1,2) describe two

characteristic families of straight lines with s]obes (C]) and (-C]) on the
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(x-t) plane; i.e., x = C]t = const. (see Fig.12). For the same case
%%-= V(i) (i = 3,4) describe another two families of straight lines
X * Czt = const. For the case of waves propagating perpendicular to layering
the first two characteristic families are again governed by x * C]t = const.-
(see Fig. 13). The remaining two become vertical lines parallel to the t axis
because for this case C2 = 0.

Finally, the canonical equations are obtained from Eqs. (4.9), (4.10) and

(4.13). For waves propagating parallel to layering they are

.y sy, d .y sy d
(my + 9 V(1)a(1))a%l-— (@ +m, V(1)a(1)) H%Z

‘ (4.17)
do .y do . . .
1 T, () %2 (i) (i) ) = dx _ (1)
- 6177- ot T - (1+v* 7a' ) K(u2 u]) = 0, along It v
(i = 1-4; no summation on i)
where the coefficients a(i) (i = 1-4) are defined by
S . S
11 (i) 212 (i)
by ym o™ v ey
a(1) - V = V * (4 ]8)
5., +q(viih)? s, - m,(vi1))2 '
12 22 2

For waves propagating perpendicular to Tayering the first two canonical equations valid
along the characteristic 1inesx * C]t = const. are again given by Eq. (4.17)

with i = 1 and 2. The remaining two, which are valid along the vertical lines, are

S dv S dv S
11 1 11 2 11 - dx -
(s, Vae - (s, ml g - K5 - uy) =0, along g = 0
d o (4.19)
(0] g
- dt] 4 A dtz = 0, along %%-= 0.



71

FIG. 12. DESCRIPTION OF CHARACTERISTIC LINES FOR DILATATIONAL WAVES
PROPAGATING PARALLEL TO LAYERING IN A LAYERED
COMPOSITE SLAB OF THICKNESS H
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FIG. 13. DESCRIPTION OF CHARACTERISTIC LINES FOR DILATATIONAL WAVES
PROPAGATING PERPENDICULAR TO LAYERING IN A
LAYERED COMPOSITE SLAB OF THICKNESS H WHICH
AT THE RIGHT END IS PERFECTLY BONDED TO A
HOMOGENEOUS ELASTIC SLAB OF THICKNESS Hy
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4.3 Numerical Analysis

The purpose of this paper is to appraise the ability of the model theory
to predict dynamic responses to transient inputs; therefore;the specific
problems that we solve are those for which there are experimental data. These
consist of four separate problems. Two involve plates of finite thickness, one
having the layers parallel to the surfaces and the other perpendicular. The
other two problems study the responses in half spaces, again with the two
distinguished by whether the layering is parallel or normal to the surface.

The first problem involves a composite slab of thickness H subjected to a
uniform dynamic pressure on one surface (see Fig. 14 or 15). The other surface
is free of traction. The surfaces of the slab are perpendicular to layering
so that the pressure applied generates dilatational waves that propagate
parallel to the layers. We seek the so]ution(ﬁi)= (ua, Vg ou) at a station x
and time t. The method of characteristics is best understood by examining
Fig.12 showing the (x~t) plane. On this plane the solution region is bounded
by the vertical Tines x = 0 and x = H. The portion of the first wave front before
reflection is the line S1 given by x - C]t = 0. This line divides the solution
region into the undisturbed and disturbed regions'D1 and D2, respectively. The
reflected wave fronts are not shown in the figure because they are not needed
in the numerical analysis since the time variation chosen for the applied
pressure eliminates first order discontinuities across such wave fronts. To
find the numerical solution, the disturbed region D2 is subdivided by means of
one primary and one secondary grid. The primary grid is shown by solid Tines
and formed by two sets of parallel lines x * C]t = const. so that the space
mesh size Ax is related to the time mesh size At by Ax = C1At. The secondary
sets of grid lines are members of the families x # C2t = const. and are

shown by dotted 1ines in Fig.12. These lines are used when analyzing an

individual element. Although we note that the values of ﬁi along 51 can be
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determined from decay equations, they are all zero here because the composite
slab is initially at rest, and because the applied pressure distribution in

our problems has no discontinuity at t = 0. To establish the Gi at points of
region D2 we start from the origin and move along S] where the Gi are known.
Using a technique for each element, we advance into the region, element by
element, in the order (0', 1', 2', ..., 0" , 1", 2",...). The technique depends
on the element which can be one of three types on the (x-t) plane, namely,

M, L and N (see Fig. 12). For an interior element M we know Gi at the points

A], A2 and,As, and wish to determine it at the point A. As Gi has six
components, we need six equations to establish them. Four equations come from

the canonical equations, Eq. (4.17), written along the lines AAi(i = 1-4). The

remaining two are the compatibility equations,

Vo = Uy s (4.20)

which relate phase displacements to phase velocities and are valid along the
vertical line AA5. For the values of the Gi at the interior points A3 and A4
we use linear interpolation between the points A] and A5 or A2 and A5. The Gi
at the point A are found by integrating the six equations using an implicit
trapezoidal integration formula.

For the element L, adjacent to the line x = 0, the procedure is the same
except that the two equations along the lines AA] and AA3 are replaced by the

boundary conditions at x = 0,
o,(A) = -n p(A) , (4.21)

where p is the applied dynamic pressure. Similarly, for the other boundary

element N the free traction boundary conditions at x = H,

Oa(A) = Q (4.22)
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replace the canonical equations along lines AA2 and AA4.

The procedure for the problem shown in Fig. 16, involving wave propagation
parallel to layering in a composite half space, is the same as that discussed
for a composite slab except that the element N is disregarded since H becomes
infinite for a half space.

To explain the numerical procedure for the cases for which the direction
of propagation is perpendicular to layering, we choose the specific problem
described in Fig. 18. The problem involves a composite slab of thickness H
subjected to a uniform dynamic pressure on one surface. The other surface of
the composite is perfectly bonded to a trailer of thickness H1, which is made
of a homogeneous material. For reasons which will be discussed later, the
other surface of the trailer is assumed to be free of traction. We refer to
Fig.13 showing the (x-t) plane and distinguish between two regions on this
p}ane. The first, bounded by the vertical lines x = 0 and X = H, is the
solution domain for the composite slab, while the second bounded by the Tines
x=H and x = H + H], is that for the homogeneous trailer. The Tine S]
describing the first wave front divides the space-time domain into the undisturbed
and disturbed regions D1 and DZ‘ The 1ine S1 is composed of two line segments.
The first segment OE has the slope C] and represents the wave front before
reflection and refraction occur at the interface x = H. The second segment EF
describes the transmitted wave front and has the slope C = Z%il., where C 1is
thevdilatational wave propagation velocity in the trailer whizh is identified
by Lame's constants u and A and the mass density p. The primary grid for the
numerical analysis is formed by the characteristic lines with slope C1 in the
composite slab region and with slope C in the homogeneous slab region. For the
whole solution domain we use a common time mesh size At which dictates two

different space mesh sizes Ax and Ax' in the composite and homogeneous regions.
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The numerical procedure for this case is basically the same as that
discussed for wave propagation parallel to 1ayeking. The differences occur in
the individual elements, boundary conditions and interfaée continuity conditions.
Accordingly, in what follows, we discuss only these differences. We first
note that at points in the composite region the number of unknowns (uu, Vs oa)
is six. On the other hand the unknowns in the homogeneous region are only
three, the displacement u, particle velocity v and stress o. For the interior
element M of the composite region two equations come from the canonical
equations along AA] and AA2, Eq. (4.17) and i = 1,2, two from the canonical
equations along AAS, Eqs. (4.19), and the remaining two from the compatibility
equations along AA5, Eq. (4.20). For the boundary element L of the composite
region, the canonical equation along AA] is replaced by the boundary condition

at x = 0,

2 .
z oa(A) = -p(A) . (4.23)
a=1 '

For the interior element P of the homogeneous region we need only three
equations to find the unknowns at the point A. Two of them are the canonical

equations of the homogeneous slab:

do - dv

dt = ° C a6 0 a]ong AA]

(4.24)
do , - ~ dv _
HE'+ p C T - 0 along AA2 .

The last one is the compatibility equation v = u valid along the vertical line
AA5. For the boundary element S, the free traction boundary condition at
x = H+ Hys o(A) = 0, replaces the canonical equation along AA,. In the

analysis of the mixed interface element Q, the interface continuity conditions
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2 2 , 2
aE]GG(A)'= o{A); OLz]ndvm(A) = v(A) ; dE]n@u@(A) = u(A) , (4.25)

are used.

We use the same procedure for the problem, shown in Fig.17, involving
propagation perpendicular to layering in a half space, except that the width of
the composite siab is infinite. Finally for the problem shown in Fig.20 which
contains a buffer slab between the applied pressure and composite, the
continuity conditions between buffer and composite are taken into account in

the analysis.

4.4 Assessment of the Homogeneous Model

We assess the homogeneous, dispersive model, and the theory which governs
the propagation of waves in it, by comparing the transient wave behavior in
the model with all of the data we have been able to gather describing transient
wave response in layered media. Primarily these data are obtained from
physical experiments but we have been able to make comparisons, for some of the
cases, with the responses predicted by the exact theory and with another
approximate theory due to Hegemier, Gurtman and Nayfeh [10].

The first case we study is a plate of thickness H in which the layers
are aligned normal to the surfaces (Figs. 14 and 15). The response is generated
by a pressure, p(t), applied normal to one surface so that the resulting
waves propagate parallel to the layers. The opposite face is free of traction.
The response measured is the average particle velocity on the free face. The
experiments on these plates were performed by Whittier and Peck[23]. Two
different 1aminates were studied, both having a thickness H = 0.635 cm.
The first is composed of alternate layers of thornel and carbon phenolic,
the second alternate layers of boron and carbon phenolic. The mechanical

properties of these materials and the layer thicknesses are listed in Tables 2 and 3,
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along with the necessary model constants appropriate to the homogeneous model
for each of the layered materials. In accordance with the information presented
in [3], the time distribution of the pressure is taken in our analysis to be a
quasi step function, which is zero at t = 0, rises linearly to a constant value
during a rise time of 0.08 u sec. after which it remains constant.

The numerical analysis is carried out using a mesh size of At = 0.005 u

2
sec. The responses are the time variations of the average velocity V=% n v

o=1 ¢ @

at x = H.

Some comments on the model theory are in order. In the development of
the equations of linear momentum a complicated elastodynamic operator,
which appears in the equations, was replaced by a power series expansion. The
major theory was obtained by retaining the first three terms of the expansion.
It was indicated that a simple cruder theory could also be developed by
retaining only the first term. Responses using both of these theories were
found for both laminated materials and are displayed in Figs. 14and15. For a
comparison of these responses with the experimental data, the velocity is nor-
malized with respect to its value at t = «» and, as the absolute times in the
experiments were not measured, the experimental wave profiles are translated
parallel to the time axis, so that the times corresponding to the first theore-
tical and experimental peaks approximately coincide. We are also able to show
the response in the second plate (Fig. 14) as it is predicted by the approximate
theory due to Hegemier, Gurtman, and Nayfeh [10]. They obtained their numerical
results by using the method of finite differences and they took the dynamic
input as a step velocity impulse applied to the surface x = 0.

A study of Figs. 14 and 15 shows that the responses predicted by the model
theory, particularly the three term theory, are close to the experimental res-

ponses. Not only are the amplitudes quite accurate, but the responses are in
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phase with the experimental for large times following the first disturbance.
The response predicted by Hegemier in Fig. 14 is quite accurate for short
times but quickly falls out of phase with the experimental profile for larger
times. ‘

The next case studied is much the same as the first cases except that
the body is a half space. The forcing function is the same and alternate
layers of boron and carbon phenolic are perpendicular to the surface. We use
the three term theory for predicting responses and instead of comparing these
with other data, we use response profiles at three stations at successively
large distances from the surface to ascertain the nature of the dispersion as
the wave profile progresses into the half space. Examination of Fig.16 shows
that close to the surface the initial part of the response is steep and the
periods of oscillation are‘small, and as the disturbances move into the
material the initial slope lessens and the periods become larger -- phenomena
that we would expect.

For the third case, fesponse from the model theory is compared with two
responses predicted by other theories. The body is a half space and consists
of alternate layers of stainless steel and PMMA parallel to the surface. The
response is generated by normal pressure applied to the surface so that the
waves generated propagate normal to the layers. The properties of both the
stainless steel and PMMA are shown in Table 4, along with the model constants
appropriate to the laminate that are needed in finding the response. The
pressure p(t) is normal to the surface and has a uniform step distribution in
time. To eliminate the complication of having a first order discontinuity in
the solution region D2’ the discontinuity in the pressure at t = 0 is replaced
by a linear distribution that is zero at t = 0 and reaches a constant value at

t = 2At. In the numerical analysis, At = 0.03 p sec. is used.
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Comparison is made with the responses predicted by the exact theory and
the theory due to Hegemier and Nayfeh [6]. The response due to the exact field
equations of elasticity is complicated. The lengthy computations are based
on tracing out reflected and transmitted components of one-dimensional dila-
tational waves.

Comparison of the responses can be made by examining Fig.17. For early
times the responses from the model and exact theories match accurately and for
longer times, after the arrival of the first disturbances, the amplitudes match
but the responses grow out of phase.

The final study, Figs.(18-20) is devoted to a comparison of the responses
predicted by the model theory with experimental data obtained by Lundergan and
Drumheller [25]. Their experiments were performed on a laminated plate of
thickness H = 1.009 cm, composed of alternate layers of stainless steel and
epon 828 running parallel to the surfaces. The properties of the layers and
“the values of the constants appearing in the model are given in Table 5. One
.surface of the plate is subjected to a uniform normal pressure, and the other
surface is perfectly bonded to an epon 828 trailer. The time variation of the
particle velocity is measured on the outer surface (data plane) of the trailer
by using an optical interferometer observed through a PMMA window attached to
the trailer at the data plane (see Figs. 18-20). Since the window material has
a mechanical impedance of within three percent of that of epon 828 [8], the
outer face of the trailer, on which the velocity is measured, is taken as
being free of traction in our analysis. The elasticity solutions in the figures
correspond to the solutions obtained by using the equations of elasticity and
by tracing out the wave components reflected and refracted at interfaces.

The responses shown in Figs.(18-20) all afise from the same type of

excitation and differ only in their durations. Figures 18-20 have infinite,
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0.8 u sec. and 1.7 u sec. durations, respectively. The rise or descent time
of the applied pressure is taken in all cases to be 2At, when At = 0.0175 u
sec. The problem described in Fig. 20 differs somewhat in that there is an
epon 828 buffer between the surface of the laminated plate and the applied
pressure.

With  Figs.(14-20) we have the basis for a significant assessment of the
model. We felt the need for such an assessment for a number of reasons. To
review the reasons, it is important to realize that what we have is a set of
equations governing the dynamic behavior of a homogeneous, elastic, dispersive
material which is used to replace a two phase Tayered laminate. This model,
as do all, consists of two parts, the form of the model, or the form of the
governing equations, and the set of values of the parameters that appear in
the equations. Both parts need to be assessed.

In the derivaticn of the equations of the model we used the classical
mixture theory rather than the more complicated micromorphic mixture theory.
This gave rise to some uneasiness because the classical mixture theory accom-
modates only the symmetrical distributions of field quantities within the
phases. In the same part of the derivation, the elastodynamic operator which
resulted was replaced in the final theory by an approximation consisting of
the first three terms of a power series expansion.

We arrived at a set of equations for finding the nineteen model constants
in terms of the layer constants in an arbitrary way, by using what seemed to
us to be the simplest method. In doing so we were aware that a preferablie set
of parameters could be found using some rational optimization method such as
system identification. We also knew that with nineteen unknowns such methods
would be formidable.

The most demanding assessment 'seemed to us to be a compariscn of

experimental data with transient responses predicted by the model theory
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TABLE 14

LAMINATED COMPOSITE

SPECIFIED LAYER PROPERTIES (AFTER HEGEMIER)

R R
hi h, P P2 2t | 2pate
_ 2 _ 2
cm cm dyne ;u.:ec dyne ,u.4sec dyne/cm2 dyne/cm2
cm cm
0.0125 0.0392 7.9 .15 1.258 0.089
x10'2 x10'2 ~ xI0'2 x10'2
COMPUTED MODEL CONSTANTS
1 22 12
Ko qz Caz Czz Caz
_ 2
dyne/cm4 M—e—#;;e—?- dyne/cm2 dyne/cm2 dyne/cm2
cm
128.4x10% | 0.185x10% | 0.0014x10'2 | 0.0908x10'2 | 0.0110x10'2
TABLE §
PROPERTIES OF STAINLESS STEEL-EPON 828
LAMINATED COMPOSITE
SPECIFIED LAYER PROPERTIES (AFTER LUNDERGAN)
R R
h| h2 p; P2 2/.[,|+)\| 2/.L2+)\2
- 2 . 2
cm cm dyne-usec” | dyne-psec dyne/cm2 dyne/cm2
cm? cm?
0.038| 0.0123 7.896 .26 1.642 0.0878
x10'2 x10'2 x10'2 x10'2
COMPUTED MODEL CONSTANTS
I 22 12
Ko q2 Ca Cz2 Ca
i 2
dyne/cm4 M dyne/cm2 dyne/cm® dyne/cm?
cm ~
362.331x10'? | 0.645x10% | 0.6962x10° | 0.0784x10'% | -0.2336x10"
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for waves propagating both parallel and perpendicular to the layers. The
figures show this comparison to be quite satisfactory; for the relatively
simple model with the simple method of finding the parameters, the responses
appear to be accurate. Further, the accuracy is not restricted to early

arrival times but extends to behavior far behind the head of the pulse.
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APPENDIX A

For future use in subsequent studies we write the stress con-

stitutive equations in matrix form

911 912 1

p
} , (A.7)
21 22 2

o o S .
where ¢ and e~ are vector representations of stress and strain tensors

defined by

Q
]

o o o o o o
0 = (0475 0pps 0335 0755 Oy3s Tp3)

1D
1

[o 4 ol [0 ol 5] o
= (&7 €555 €33, 2895, 205, 20,4),

EuB is a 6 x 6 material coefficient matrix of the form
r o oeB
C]] .o C]6
%8 - :
af 0B
61 Css
and p°°B is a six dimensional vector defined by

oB af o
F (p]1, Poos P33s Pios p13, p23)

The stress constitutive equations, Eq. (A.1), govern the anisotropic
behavior of a given composite. The symmetry conditions, Eq. (2.25),

indicate that the matrices E]] and QZZ are both symmetric, and QZ] is
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T
21 . 912. This establishes the

equal to the transpose of 212 i.e., C

symmetry of the overall stiffness matrix in Eq. (A.1).

The matrix form of the positive definiteness condition, Eq. (2.36),

is

1N —

¢32>0, (A.2)

where S is an arbitrary twelve dimensional vector and C is the 12 x 12

overall stiffness matrix defined by

112
c- |7 . (A.3)
JAPR Y.

From Tinear algebra we know that the inequality, Eq. (A.2), is satisfied
if all of the eigenvalues or principal minors of the symmetric matrix
Q are positive. This explicitly determines the constraints to be

satisfied by the model constants.
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Studies of Steel and Concrete Girder Alternates," by F. Baron and R.E. Hamati - 1975 (PB 251 540)A10

"Static and Dynamic Analysis of Nonlinear Structures,"” by D.P. Mondkar and G.H. Powell - 1975 (PB 242 434)A08
"Hysteretic Behavior of Steel Columns,” by E.P. Popov, V.V. Berterc and S. Chandramouli - 1975 (PB 252 365)all
"Earthquake Engineering Research Center Library Printed Catalog," - 1975 (PB 243 711)A26

"Three Dimensional Analysis of Building Systems (Extended Version)," by E.L. Wilson, J.P. Hollings and
H.H. Dovey - 1975 (PB 243 983)A07

"Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba,
C.K. Chan and H.B. Seed - 1975 (NUREG 0027)A08

"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by R.L. Mayes and R.W.
Clough -~ 1975 (PB 246 292)Al10

"Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V.V. Bertero and
E.P. Popov -1975 (PB 246 388)205

"Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions
for Moderately Strong Earthquakes,” by H.B. Seed, R. Murarka, J. Lysmer and I.M. Idriss - 1975 (PB 248 172)A03

"The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” by J. Mulilis,
C.K. Chan and H.B. Seed -~ 1975 (Summarized in EERC 75~-28)
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"The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear
and Axial Force," by M.B. Atalay and J. Penzien - 1975 (PB 258 842)All

"Dynamic Properties of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and
D. Jurukovski - 1975 (PB 246 945)A04

"State-of-the-Art in Seismic Strength of Masonry — An Evaluation and Review," by R.L. Mayes and R.W. Clough
1975 (PB 249 040)A07

"Frequency Dependent Stiffness Matrices for Viscoelastic Half-Plane Foundations," by A.X. Chopra,
P. Chakrabarti and G. Dasgupta - 1975 (PB 248 121)AQ7

"Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Bertero and E.P. Popov - 1975
"Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V.V. Bertero, E.P. Popov and
T. Endo - 1975

"Influence of Seismic History on the Liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and
C.¥. Chan - 1975 {(Summarized in EERC 75-28)

"The Generation and Dissipation of Pore Water Pressures during Soil Liquefaction," by H.B. Seed, P.P. Martin
and J. Lysmer - 1975 (PB 252 648)A03

"Identification of Research Needs for Improving Aseismic Design of Building Structures,“ by V.V. Bertero
1975 (PB 248 136)A05 -

"Evaluation of Soil Liquefaction Potential during Earthquakes," by H.B. Seed, I. Arango and C.K. Chan -1975
(NUREG 0026)Al13 ’

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction
Analyses," by H.B. Seed, I.M. Idriss, F. Makdisi and N. Banerjee - 1975 (PB 252 635)A03

"FLUSH - A Computer Program for Approximate 3-D Analysis of Soil~Structure Interaction Problems," by
J. Lysmer, T. Udaka, C.-F. Tsai and H.B. Seed - 1975 (PB 259 332)A07

"ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems,” by
E. Berger, J. Lysmer and H.B. Seed -1975 h

"TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling
Waves," by T. Udaka, J. Lvsmer and H.B. Seed - 1975

"Predicting the Performance of Structures in Regions of High Seismicity,” by J. Penzien -1975 (PB 248 130)A03

"Efficient Finite Element Analysis of Seismic Structure - Soil -Direction," by J. Lysmer, H.B. Seed, T. Udaka,
R.N. Hwang and C.-F. Tsai - 1975 (PB 253 570)A03

"The Dynamic Behavior of a First Story Girder of a Three-Story Steel Frame Subjected to Earthquake Loading,"
by R.W. Clough and L.-Y. Li - 1975 (PB 248 841)A05

“"Earthquake Simulator Study of a Steel Frame Structure, Volume II -~Analytical Results," by D.T. Tang - 1975
(PB 252 926)Al0

"ANSR-I General Purpose Computer Program for Analysis of Nen-Linear Structural Response,” by D.P. Mondkar
and G.H. Powell - 1975 (PB 252 386)A08

"Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete
Structures," by M, Murakami and J. Penzien - 1975 (PB 259 530)A05

"Study of a Method of Feasible Directions for Optimal Elastic Design of Frame Structures Subjected to Earth-
quake Loading," by N.D. Walker and K.S. Pister - 1975 {PB 257 781)A06

"An Alternative Representation of the Elastic~Viscoelastic Analogy," by G. Dasgupta and J.L. Sackman - 1975
(PB 252 173)A03

"Effect of Multi-Directional Shaking on Liquefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1975
(PB 258 781)A03
"Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," by

T. Okada and B. Bresler - 1976 (PB 257 906)all

"Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and
T-Beams,"” by S.-Y.M. Ma, E.P. Popov and V.V. Bertero - 1976 (PB 260 843)Al2

"Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp - 1976

"Earthquake Induced Deformationsof Farth Dams," by N. Serff and H.B. Seed - 1976
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"Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G.H. Powell - 1976 (PB 252 220)
alo

"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake,” by T. Kubo
and J. Penzien (PB 260 556)All

"Expected Performance of Uniform Building Code Design Masonry Structures,” by R.L. Mayes, Y. Omote, S.W. Chen
and R.W. Clough - 1976

"Cyclic Shear Tests on Concrete Masonry Piers," Part I - Test Results," by R.L. Mayes, Y. Omote and R.W.
Clough -~ 1976 (PB 264 424)A06

"A Substructure Method for Earthquake Analysis of Structure - Soil Interaction,” by J.A. Gutierrez and
A.K. Chopra -~ 1976 (PB 257 783)A08

"Stabilization of Potentially Liquefiable Sand Deposits using Gravel Drain Systems," by H.B. Seed and
J.R. Booker - 1976 (PB 258 820)}AG4

"Influence of Design and Analysis Assumptions on Computed Inelastic Response of Moderately Tall Frames," by
G.H. Powell and D.G. Row- 1976

"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications,” by D. Ray, K.S. Pister and
E. Polak - 1976 (PB 262 859)A04

"Coupled Lateral Torsional Response of Buildings to Ground Shaking," by C.L. Kan and A.K. Chopra -
1976 (PB 257 907)209

"Seismic Analyses of the Banco de America," by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976

"Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation," by R.W. Clough and
J. Gidwani -~ 1976 (PB 261 323)A08

"Cyclic Shear Tests on Masonry Piers, Part II - Analysis of Test Results,” by R.L. Mayes, Y. Omote
and R.W. Clough - 1976

"Structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and
C.W. Roeder -~ 1976 (PB 260 715)A05

"Experimental Model Studies on Seismic Response of High Curved Overcrossings," by D. Williams and
W.G. Godden -~ 1976

"Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure,” by
F. Baron and R.E. Hamati - 1976

"Investigation of the Inelastic Characteristics of a Single Story Steel Structure Using System
Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven ~ 1976 (PB 258 453)A07

"Capacity of Columns with Splice Imperfections," by E.P. Popov, R.M. Stephen and R. Philbrick - 1976
(PB 260 378)A04

"Response of the Olive View Hospital Main Building during the San Fernando Earthquake,” by S. A. Mahin,
R. Collins, A.K. Chopra and V.V. Bertero - 1976

"A Study on the Major Factors Influencing the Strength of Masonry Prisms," by N.M. Mostaghel,
R.L. Mayes, R. W. Clough and S.W. Chen - 1976

"GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during
Cyclic or Earthquake Loading,” by J.R. Booker, M.S. Rahman and H.B. Seed - 1976 (PB 263 947)A04

"Rehabilitation of an Existing Building: A Case Study," by B. Bresler and J. Axley - 1976

"Correlative Investigations on Theoretical and Experimental pynamic Behavior of a Model Bridge
Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388)All

"Earthguake Response of Coupled Shear Wall Buildings," by T. Srichatrapimuk - 1976 (PB 265 157)A07
“"Tensile Capacity of Partial Penetration Welds," by E.P. Popov and R.M. Stephen - 1976 (PB 262 899)A03

"Analysis and Design of Numerical Integration Methods in Structural Dynamics,” by H.M. Hilber - 1976
(PB 264 410)A06

"Contribution of a Floor System to the Dynamic Characteristics of Reinforced Concrete Buildings," by
L.J. Edgar and V.V. Berteroc - 1976

"The Effects of Seismic Disturbances on the Golden Gate Bridge," by F. Baron, M. Arikan and R.E. Hamati -~
1976

"Infilled Frames in Earthquake Resistant Construction,"” by R.E. Klingner and V.V. Bertero - 1976
(PB 265 892)A13
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Y"PLUSH - A Computexr Program for Probabilistic Finite Element Analvsis of Seismic Soil-Structure Inter-
action," by M.P. Romo Organista, J. Lysmer and H.B. Seed - 1977

"Soil~Structure Interaction Effects at the Humboldt Bay Power Plant in the Ferndale Earthquake of June

7, 1975," by J.E. Valera, H.B. Seed, C.F. Tsal and J. Lysmer — 1977 (P83 265 795)a04

"Influence of Sample Disturbance on Sand Response to Cyclic Loading," by K. Mori, H.B. Seed and C.X
Chan - 1977 (PB 267 352)a04

"Seismological Studies of Strong Motilon Records,” by J. Shoja-Taheri - 1977 (PB 269 655)}Al0

"Testing Facility for Coupled-Shear Walls," by L. Li-Hyung, V.V. Bertero and E.P. Popov - 1977
“"Developing Methodologies for Evaluating the Earthquake Safety of Existing Buildings,"” by No. 1 -

B. Bresler; No. 2 - B. Bresler, T. Okada and D. Zisling; No. 3 - T. Okada and B. Bresler; No. 4 ~ V.V,

Bertero and B. Bresler - 1977 (2B 267 334)A08

"A Literature Survey - Transverse Strength of Masonry Walls," by Y. Omote, R.L. Mayes, S.W. Chen and
R.W. Clough - 1977 (pPB 277 933)a07

"DRAIN-TABS: A Computer Program for Inelastic Earthquake Response of Three Dimensional Buildings," by
R. Guendelman-Israel and G.H. Powell -~ 1977 (PB 270 693)A07

"SUBWALL: A Special Purpose Finite Element Computer Program for Practical Elastic Analysis and Design
of Structural Walls with Substructure Option," by D.Q. Le, H. Peterson and E.P. Popov - 1977
(PB 270 567)A05

"Experimental Evaluation of Seismic Design Methods for Broad Cylindrical Tanks,” by D.P; Clough
(PB 272 2B0)A1l3

"Earthquake Engineering Research at Berkeley - 1976," - 1977 (PB 273 507)A09

"Automated Design of Earthquake Resistant Multistory Steel Building Frames,"

by N.D. Walker, Jx. - 1977
(PB 276 526)AQ9

"Concrete Confined by Rectangular Hoops Subjected to Axial Ioads,” by J. Vallenas, V.V. Bertero and
E.P. Popov -~ 1977 (PB 275 165)A06

"Seismic Strain Induced in the Ground During Earthquakes," by Y. Sugimura - 1977 (PB 284 201)A04

"Bond Deterioration under Generalized Loading,” by V.V. Bertero, E.P. Popov and S. Viwathanatepa - 1977

"Computer Aided Optimum Design of
Zagajeski and V.V. Bertero - 1977

Ductile Reinforced Concrete Moment Resisting Frames,”" by S.W.
(PB 280 137)A07

"Earthquake Simulation Testing of
D.F. Tsztoo - 1877 (PB 273 506)}a04

a Stepping Frame with Energy-Absorbing Devices," by J.M. Kelly and

“Inelastic Behavior of Eccentrically Braced Steel Frames under Cyclic Loadings,” by C.W. Roeder and
E.P. Popov ~ 1977 {PB 275 526)Al5

YA Symplified Procedure for Estimating Earthquake-Induced Deformations in Dams and Embankments,"” by
Makdisi and H.B. Seed - 1977 (PB 276 820) A04

“The Performance of Earth Dams during Earthguakes," by H.B. Seed, F.I. Makdisi and P. de Alba — 1377
(PB 276 821l)Aa04

"Dynamic Plastic Analysi; Using Stress Resultant Finite Element Formulation,” by P. Lukkunapvasit and
J.M. Kelly - 1577 (PB 275 453)Aa04

“"Preliminary Experimental Study of Seismic Uplift of a Steel Frame," by R.W. Clough and A.A. Huckelbridge
1977 (PB 278 763)A08

"Earthquake Simulator Tests of a Nine-Story Steel Frame with Columns Allowed to Uplift,” by A.A.
Huckelbridge - 1977 (PB 277 944)a09

"Nonlinear Soil- Struchure Interaction of Skew Highway Bridges," by M.-C. Chen and J. Penzien - 1277
(PB 276 176)A07

YSeismic Analysis of an Offshore Structure Supported on Pile Foundations,” by D.D.-N. Liou and J. Penzien

1977 (PB 283 180)A06

YDynamic Stiffness Matrices for Eomogeneous Viscoelastic Half-Planes,™ by G. Dasgupta and A.K. Chopra -
1977 (PB 279 654)n06

“A practical Soft Story Earthquake Isolation System," by J.M. Kelly and J.M. Eidinger - 1977
(PB 276 814)A07

"Seismic Safety of Existing Buildings and Incentives for Hazard Mitigaﬁion in San Francisco: An
Exploratory Study," by A.J. Meltsner - 1977 (P8 281 970)A05

"Dynamic Analysis of Electrohydraulic Shaking Tables," by D. Rea, S. Abedi-Hayati and Y. Takahashi
1977 (PB 282 569)204

“An Approach for Improving Seismic - Resisfant Sehavior ctf Rasinforce
E. Galunic, V.7. Bertero and Z.P. Popov - 1977

4 Concrete Interior Joints,"” by
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"The Development of Energy—-Bbsorbing Devices for Aseismic
Base Isolation Systems," by J.M. Kelly and D.F. Tsztoo
1978 (PB 284 978)a04

"Effect of Tensile Prestrain on the Cyclic Response of
Structural Steel Connections," by J.G. Bouwkamp and

A. Mukhopadhyay - 1978

"Experimental Results of an Earthguake Isolation System
using Natural Rubber Bearings," by J.M. Eidinger and
J.M. Kelly - 1978

"Seismic Behavior of Tall Liquid Storage Tanks," by A. Niwa
1978

"Hysteretic Behavior of Reinforced Concrete Columns

.Subjected to High Axial and Cyclic Shear Forces," by

S.W. Zagajeski, V.V. Bertero and J.G. Bouwkamp - 1978

"Inelastic Beam~Column Elements for the ANSR-I Program,”
by A. Riahi, D.G. Row and G.H. Powell - 1978

"Studies of Structural Response to Earthquake Ground
Motion," by 0.A. Lopez and A.K. Chopra — 1978

"A Laboratory Study of the Fluid-Structure Interaction
of Submerged Tanks and Caissons in Earthquakes,”
by R.C. Byrd - 1978 (PB 284 957)A08

"Models for Evaluating Damageability of Structures,”
by I. Sakamoto and B. Bresler — 1978

"Seismic Performance of Secondary Structural Elements,"”
by I. Sakamoto - 1978

Case Study--Seismic Safety Evaluation of a Reinforced
Concrete School Building,” by J. Axley and B. Bresler
1978

"Potential Damagéability in Existing Buildings,” by
T. Blejwas and B. Bresler - 1978

"Dynamic Behavior of a Pedestal Base Multistory Building,"
by R. M. stephen, E. L. Wilson, J. G. Bouwkamp and M.
Button - 1978

"Seismic Response of Bridges - Case Studies," by R.A.
Imbsen, V. Nutt and J. Penzien - 1978

"A Substructure Technique for Nonlinear Static and Dynamic
Analysis," by D.G. Row and G.H. Powell - 1978

"Seismic Performance of Nonstructural and Secondary Structural

Elements," by Isao Sakamoto - 1978
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"Model for Evaluating Damageability of Structures," by
Isao Sakamoto and B. Bresler - 1978

"Response of K~Braced Steel Frame Models to Lateral Loads,”
by J.G. Bouwkamp, R.M. Stephen and E.P. Popov - 1978

"Rational Design Methods for Light Equipment in Structures
Subjected to Ground Motion," by Jerome L. Sackman and
James M. Kelly -~ 1978

"Testing of a Wind Restraint for Aseismic Base Isolation,”
by James M. Kelly and Daniel E. Chitty - 1978

YAPQOLLC A Computer Program for the Analysis of Pore Pressure
Generation and Dissipation in Horizontal Sand Layers During
Cyclic or Earthquake Loading,” by Philippe P. Martin and

H. Bolton Seed - 1978

"Optimal Design of an Earthquake Isolation System,” by
M.A. Bhatti, K.S. Pister and E. Polak - 1978

"MASH A Computer Program for the Non-Linear Analysis of
Vertically Propagating Shear Waves in Horizontally Layered
Depogits,” by Philippe P. Martin and H. Bolton Seed -~ 1978

"nvestigation of the Elastic Characteristics of a Three
Story Steel Frame Using System Identification," by Izak Kaya
and Hugh D. McNiven - 1978

"Investigation of the Nonlinear Characteristics of a Three-
Story Steel Frame Using System Identification,” by I. Kaya
and H.D. McNiven - 1978

"gtudies of Strong Ground Motion in Taiwan,” by Y.M. Hsiung,
B.A. Bolt and J. Penzien - 1978

"Cyclic Loading Tests of Masonry Single Piers Volume 1 -
Heigrt to Width Ratio of 2," by P.A. Hidalgo, R.L. Mayes,
H.D. McMiven & R.W. Clough - 1978

"cyclic Loading Tests of Masonry Single Piers Volume 2 -
Height to Width Radio of 1," by $.-W.J.Chen, P.A. Hidalgo,
R.L. Mayes, R.W. Clough & H.D. McNiven - 1978

"Analytical Procedures in Soil Dynamics," by J. Lysmer - 1978
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"Hysteretic Behavior of Lightweight Reinforced Concrete’
Beam—-Column Subassemblages," by B. Forzani, E.P. Popov,
and V.V. Bertero - 1979

"The Development of a Mathematical Model to Predict the
Flexural Response of Reinforced Concrete Beams to Cyclic
Loads, Using System Identification,'" by J.F. Stanton and
H.D. McNiven - 1979

"Linear and Nonlinear Earthquake Response of Simple
Torsionally Coupled Systems," by C.L. Kan and
A.KX. Chopra -~ 1979

"A Mathematical Model of Masonry For Predicting Its Linear
Seismic Response Characteristics,”™ by Y. Mengi and
H.D. McNiven - 1979



