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Abstract

In Part I of this report, a general analysis is made of

characteristics of three strong ground motion records obtained from a

moderate earthquake near Wufeng, on April 14, 1976. Both time and

frequency domain techniques are used. The intensity function has a

single peak shape, which suggests that the fault mechanism is simple.

Using an intensity function of this shape, the general pattern of the

ground motion is simulated. A comparison of these simulated motions

with the recorded ground motions shows similar characteristics. The

frequency domain analysis indicates that the predominant frequency is

about 2.5 Hz. The interpretation of the fault-plane solution, which

appears to give the best explanation of the strong ground motion

records, is that the fault is a left-lateral thrust with N410E strike

and 36°SE dip. Although this interpretation is different from that

of CERC obtained from sensitive seismographs, it agrees well with

almost all the strong motion records.

In Part II of this report, the problem of risk maps is examined

using the distribution of seismic intensity both in time and space in

Taiwan. In this study, instead of the Poisson distribution for earth­

quake occurrence, a modified Hazard distribution is adopted. This

distribution allows a dependence between successive earthquakes.

Hazard contour maps have been drawn using this method for thirteen

cases. These are compared with various risk map estimates, by other

authors, having the same general tendencies.
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PART I

Characteristics of Strong Ground Motions Recorded
during the Wufeng, Taiwan Earthquake of April 14, 1976





A.

3

Introduction

On April 14, 1976 a moderate earthquake took place near Wufeng,

Taiwan, in the Republic of China. This shock triggered the strong motion

accelerographs installed at Tsengwen, Wanchiu, and Chiayi, which measured

ground motions of the greatest intensity recorded since the strong motion

network was set up in Taiwan in 1972. Figure 1 shows the location of the

main shock. Parameters of the main shock, determined by the Chinese

EarthqUake Research Center (CERC), Academia Sinica, were as follows:

origin time---14h OOm 46.3s(GMT)

epicenter 10cation---23° 20.8' N 1200 40.1' E

focal depth---7.7 km

magnitude---S.3ML•

The estimated maximum intensity was IV on the Japanese intensity scale;

the distribution of intensity was as shown in Fig. 2.

Twenty hours after the main shock, four seismographs were tempora­

rily set up to record aftershocks. The distribution of the epicentral

locations for 43 aftershocks is shown in Fig. 3. From aftershock inform­

ation and a composite fault plane solution based on the direction of

P-wave first motion, the fault plane strikes NSoE and dips 600W as shown

in Fig. 4. The fault depth profile for the aftershocks is shown in

Fig. 5. The fault mechanism is predominantly thrusting with a slight

strike-slip component. The fault does not seem to be related to either

the Chashan fault or the Tatou fault located in the epicentral region as

shown in Fig. 3.

In the following sections of Part I of this report, characteristics

of the strong ground motions recorded at the Tsengwen, Wanchiu, and Chiayi
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stations during the Wufeng earthquake are examined. Because of lack of

information on the geology, faults, and soil conditions in the Wufeng

region, it is difficult to compare these characteristics with the

characteristics of earthquake ground motions recorded in other regions.

However, it is of considerable interest to compare them with the Gharac­

teristics of strong ground motions recorded in the Western United States,

so an attempt to do this is presented in the final section.

B. General Features
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Based on the shapes of the wave forms shown in Fig. 6 and the

information provided in Table 1 certain general features can be noted.

While the general shapes of the three records at each station are similar,

the horizontal motion is in each case of higher intensity than the verti­

cal motion. The impulse appearing in the N90
0

E component of the Wanchiu

station gives a maximum peak acceleration of 357 gals which is consider­

ably greater than the expected value of 150 gals given by Schnabel and

Seed ([13J, Fig. 6) for a distance of about 15 miles from the causative

fault and a magnitude of 5.3. Furthermore, this peak acceleration is

considerably larger than the peak acceleration of 115 gals recorded at

the Tsengwen station even though the epicentral distance to the Wanchiu

station is much greater than it is to the Tsengwen station. It

should also be noted that the phases of the largest wave at each of these

two stations are of opposite polarity. This report attempts to explain

these two abnormal features.

c. Fault Motion and Location

For a better understanding of the fault motion, it is desirable

to refer the horizontal particle velocity and displacement to a coord­

inate system with axes parallel and normal to the fault. The axes are

taken along the directions N50 E and N85
0

W which are parallel and normal

to the fault, respectively. By integrating acceleration, the velocity and

displacement curves shown in Figs. 7, 8, and 9 are obtained.

In Section B it was pointed out that the velocity phase of the

Wanchiu station is opposite to that of Tsengwen. From the velocity curves
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in Figs. 7 and 8, the phase at about 3 seconds (probably the S-wave)

shows again that the direction of velocity is reversed. During the

strong motion (from 3 seconds to 8 seconds), the velocity at the

Tsengwen station is southeast and downward; whereas the velocity

at the Wanchiu station is northwest and upward. This suggests a left

lateral thrust fault.

The composite fault plane solution based on the direction of

P-wave first motion of the main shock and four aftershocks by using an

equal-area projection of the lower hemisphere is shown in Fig. 4. It

represents a thrust fault earthquake mechanism. One nodal plane strikes

o 0
The other nodal plane strikes N41 E and dips 36 SE

If the latter solution is chosen, the extension of this fault motion must

pass through the area between the Tsengwen and Wanchiu stations close to

the Wanchiu station, as shown in Fig. 10. This solution with Wanchiu and

Tsengwen on opposite sides of the fault and Wanchiu very close to the

fault is consistent with the opposite polarities at these stations and a

high peak acceleration at Wanchiu.

The Chiayi station is on the same side of the fault as Tsengwen;

this is consistent with the records of the horizontal components of

ground velocity and displacement in Figs. 7 and 9. However, the early

part of the vertical motion at these two stations appears to be reversed

and this suggests some further complication in fault mechanism or wave

propagation path.
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D. Time Domain Analysis

An analysis of the Wufeng records was made in the time domain

using the method developed by Kubo and Penzien [lOJ. The results are

shown in Figs. 11, 12 and 13. These results were obtained using a time

window length ~T of one second separated by 0.5 second intervals. The

solid, short-dashed and intermediate-dashed curves in these figures

represent, respectively, the major, minor and intermediate principal

axes and the horizontal long-dashed straight line represents the direct­

tion 8
E

to the reported epicenter.

Figure 14 shows the directions of the principal axes in three­

dimensional space. The length OA represents the magnitude of the va­

riance of the principal ground motion. The square root of OA (sigma)

can be used to represent the intensity function of the moving window

process. Angle 8 is measured from the North axis to the projection of

the northerly extension of the principal axis onto the horizontal plane

through "0". From this definition, as the horizontal direction of a

principal axis rotates in a continuous manner through the east-west

direction, the value of 8 changes instantaneously by 180
0

, Le. changes

from +900 to -900 or from -900 to +900 depending upon whether the hori­

zontal projection of the principal axis is rotating clockwise or counter­

clockwise. Hence, there may be sudden jumps in the functions of 8.

Angle ¢ is the declination of the principal axis from the vertical axis

as shown in Fig. 14.

From a comparison of Figs. 11, 12 and 13, the following features

are noted:
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1. The shapes of the intensity curves are similar. The main part of

each curve has a time shift of about 0.5 second which agrees with

the difference in epicentral distance. The time shifts are concen­

trated within a three second range. Epicentral distance vs peak

intensity and epicentral distance vs time of peak intensity are

plotted for some San Fernando earthquake records and the Wufeng

record in Fig. 15. The upper bound on these observations suggests

a straight line; it is therefore at least plausible that linear

relations hold between attenuation and distance and between time

delay and distance.

2. During the early low intensity motion the major and intermediate

principal axes are nearly vertical. By contrast, during the high

intensity motion they are all nearly horizontal. This is consist­

ent with the initial arrival of the P-wave, followed by mainly SH

and Love waves.

3. The horizontal directions of the major and intermediate principal

axes sometimes suddenly interchange. During the period of strongest

intensity motion the horizontal direction of the major principal

axis at Tsengwen is toward the epicenter, but at the Chiayi and

Wanchiu stations the horizontal directions of the major axes are

perpendicular to the direction of the epicenter while the inter­

mediate principal axes are pointed toward the epicenter. From the

intensity curves shown in Figs. 12 and 13, it can be seen that the

values of the major and intermediate principal aXes at the Chiayi

and Wanchiu stations are close, and this suggests that there is

very little difference between these two axes.
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E. Frequency Domain Analysis

The frequency domain analysis consists of three different

approaches:

1. the moving window technique;

2. frequency content of the time sequence, and

3. the maximum response of the two horizontal components.

The results suggest common characteristics that are described

below.

1. Figures 17, 18 and 19 show the results of a moving window

analysis. The definitions of ¢ and 8 and the sign convention are the

same as in the time domain analysis. In this study a frequency window

length 6f of 1 Hz separated by 0.5 Hz intervals was used. The major and

intermediate principal axes are always in the horizontal plane for fre­

quencies below 6 HZ, although there is some variation above 6 Hz. During

the period of high intensity motion the horizontal directions of the ma­

jor and intermediate principal axes are the same as in the time domain,

(compare Figs. 16, 17 and 18 with Figs. 11, 12 and 13).

The predominant frequencies of the three stations are concentrated

between 2 and 3 Hz. At Tsengwen the frequency intensity decreases mono­

tonically with increasing frequency, whereas there is some increase near

6 Hz at Wanchiu and Chiayi.

2. The frequency content of the time sequence is shown in Figs.

19, 20 and 21. These diagrams show unexplained complexities which may be

caused by the complex nature of the ground motion as influenced by the

energy release mechanism, wave propagation path, local geology and soil

conditions. The dominant frequency changes its value suddenly at a fixed

time which may indicate the arrival of different types of seismic waves.
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3. The amplitude spectra of the two horizontal components and

the maximum response spectra combining components are shown in Figs. 22,

23 and 24. At the Chiayi and Wanchiu stations there are some signifi­

cant amplitudes in the frequency range 5 - 7 Hz but none at the Tsengwen

station. If the envelope of the maximized spectra in Figs. 22, 23 and

24 is drawn, the shape of the envelope is very close to the intensity

curves of the major principal axes in Figs. 16, 17 and 18. In the method

of the maximum response spectrum the intensity is chosen as the maximum

value of the two horizontal components whereas the intensity for the ma­

jor principal axis method is obtained from the maximum value of three

components. If the vertical component is small and relatively unimportant

compared with the two horizontal components, both the maximum response

value and the major principal intensity value should be the same.

F. Simulated Motion

As previously shown [lOJ the three translational components of

ground motion are independent in a statistical sense, provided they are

directed along a set of principal axes. Therefore, one can simulate

ground motion by generating three independent components with appropriate

intensity and frequency content along the principal axes.

The method employed in this study to generate a non-stationary

random process is to divide the time axis into segments in a continuous

manner and superpose a sinusoidal wave for which the spectral density

function will coincide with a prescribed time dependent spectral density

function.
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The intensity content shown in Fig. 25 was deduced from the

average intensity curves obtained from a time domain analysis of the

three stations. A spectral density function of the type which has been

proposed by Kanai and Tajimi [15J was employed, where

2

h
2 W -

1 + 4 \12 B
g

G(w.t) g
2 2

(1 - ~)2 + 4 h (~)2 \i
2 g 2 g

\I \I
g g

in \vhich B is constant, w denotes circular frequency and \i and hare
g g

the dominant circular frequency and a parameter which indicates sharpness

of the peak, respectively.

Because the results of the frequency domain analysis are too

varied to yield typical characteristics the function suggested by Kubo [lOJ

was used. The dominant circular frequency \I is assumed to be dependent
g

upon time, having the form

.\1 = 2n (a t + b)
~ g

i=1,2,3

-2 17
where a and b are equal to 25 and -S' respectively. The parameters .h

~ g

are assigned values 0.2, 0.3, and 0.6 for the major, intermediate and

minor principal axes, respectively.

The three component accelerogram simulated by the computer is

shown in Fig. 26. Although a comparison with Figs. 6a, 6b and 6c shows

that the high maximum peak has disappeared, these simulated accelerogram

components reflect the general features of the ground motion in the area

for a particular focal mechanism.
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G. Concluding Remarks

It is difficult to draw general conclusions from an analysis of

records from only three stations for one earthquake. From this pre­

liminary work for Taiwan, however, the following observations can be

made for the Wufeng earthquake of April 14, 1976:

1. The time domain analysis shows that the main part of the fault

motion was horizontal. The intensity function has a single peak

shape, which suggests that the fault mechanism is simple. Using

an intensity function of this shape, the general pattern of the

ground motion can be simulated. A linear relation is indicated

between attenuation and distance and between time delay and dis­

tance. Further study of this simple form for the attenuation law

is required in future Taiwan earthquakes.

2. The frequency domain analysis indicates that the predominant

frequency is about 2.5 Hz. There is significant difference in

the frequency content for the Wanchiu and Tsengwen stations

although they are so close. A plausible inference is that the

fault passes through the area between these two stations and

contributes more high frequency energy to the near station.

From this study it is apparent that both the principal axis

method and the maximum response method are actually based on

the same concept and we obtain the same solution in this case.

3. Because of the independent characteristics of components along

principal axes we simulate three components of ground motion

using prescribed intensity and frequency content functions. A

comparison of these simulated motions with the recorded ground

motions shows similar characteristics.
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4. An earthquake of size similar to the 1976 Wanchiu earthquake occurred

in Humboldt County, California on June 7, 1975, for which the earth-

quake parameters are quite similar as shown in the following table:

epicentral focal
Station M distance peak acc. record duration depth

km g sec km

Wanchiu 5.3 24 0.35 20 7.7

Humboldt 5.3 20 - 25 0.35 20 20 - 25

Usually at an epicentral distance of 20 km for magnitude 5.5, the peak

acceleration is less than 0.15g, but these two records have maximum

impulses of 0.35g associated with the S-wave. When the Wanchiu record

is plotted on the same scale as the Humboldt record, the seismograms

appear to be very similar, as shown in Figs. 27 and 28. The strong

motion is concentrated in the four second period range from 3 seconds

to 7 seconds. Also, the frequency content and phase are alike. This

could imply that both the fault mechanism and recording station have

the same properties. Further study in this direction would be valuable.

5. The interpretation of the fault-plane solution which appears to give

the best explanation of the strong motion records is that the fault is

a left-lateral thrust with N4loE strike and 36
0

SE dip. The amplitude

of the displacement curve indicates that the horizontal motion is

greater than the vertical motion, so the fault motion is predominantly

strike-slip with a slight thrust component. Although this interpreta-

tion is different from that of CERC obtained from sensitive seismo-

graphs,it agrees well with all the strong motion records except for

the vertical motion of the Chiayi station.
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PART II

Estimation of Seismic Hazard in Taiwan
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A. Introduction

Taiwan is located along the circum-pacific seismic zone and has

suffered great damage from a number of destructive earthquakes through­

out its history. In recent years, there has been a rapid development

of industry in Taiwan with many highrise buildings and large structures.

It has therefore become urgent to develop risk maps and associated

design codes. This report takes up one aspect of this problem and

examines the distribution of ground motion both in time and space in

Taiwan.

Broadly, there are two different methods which have been

followed for this purpose in various countries. One of these methods

(e.g. by Milne and Davenport [l9])is based on a direct statistical

analysis of acceleration or intensity data, recorded at or near a

prescribed point on the risk map. The other method (e.g. Cornell [8l;

Algermissen and Perkins [2])is based on a statistical representation

of the dis"tribution of earthquake sources, and an attenuation law is

applied to the predicted near source motion to establish the expected

maximum ground acceleration at particular points.

In "this study, the influence of each earthquake in the list of

historical seismicity is considered at a specific grid point in Taiwan.

The ground motion is transferred to each point by an attenuation law

which is derived from the intensity distributions of historical Taiwan

earthquakes. This procedure yields a probability distribution of

intensity at each point, which provides the basis for statistical

estimation. In previous earthquake risk mapping in Taiwan, such

distributions were assumed to be Poisson distributions, i.e. the events
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were assumed to be independent. Because, however, both the sizes of

the earthquakes and their rates of occurrence are functions of the

ambient strain in the crust and lithosphere, it is more physically

satisfactory to assume a statistical model that reflects this property.

Therefore, instead of the Poisson distribution, a modified Hazard

distribution was adopted in this work. The Hazard law has a memory in

that the probability of an event is calculated as a function of the

time from the last earthquake in the region (Vere-Jones [24]). The

resulting measure of earthquake risk is somewhat different in general

from that calculated on other assumptions. It is convenient to refer

to it simply as a Seismic Hazard Intensity map with the probability

sense understood.

The hazard computed in the above way increases with the time

since the last earthquake in accord with the elastic rebound theory of

earthquake generation. The simple application of the non-Poisson

distribution is extended to take into account the distribution of

earthquake size and the calculation of the Hazard function at specific

points. A preliminary Hazard Intensity map has been drawn using the

new method and it is compared with risk estimates by other authors for

Taiwan (Tsai [23], and Mau [18]).

There are also interesting problems in using the historical

(pre-1900) earthquakes reported from Taiwan. The incompleteness of

the lists becomes greater with remoteness from the present, yet it is

probable that at least the great earthquakes were reported. A numerical

experiment in which the seismicity gaps were filled by a random

generation process is described and checked against the old earthquake

catalogs. A resulting Hazard map is generated for comparison with the

maps constructed on the data of this century.
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B. Taiwan Earthquake Catalogue

The known occurrence of earthquakes in Taiwan can be divided

into three intervals. In the earliest interval there were no seismo-

graphs, so that the time and location of occurrence were usually

registered only by local officials in disaster records. A systematic

study of historical Taiwan earthquakes from 1655 to 1900 has been under~

taken by the Academia Sinica. Recent publications in Chinese include

the "Catalog of Chinese Earthquakes", Academia Sinica, Peking.

In 1897, a Gray-Milne seismograph was first set up at the Taipei

weather station, Central Weather Bureau. Immediately preceding World

War II, there were 15 stations with 38 sets of various types of seismo­

graphs spread over the main island and some offshore islands, and the

seismological service for local earthquakes had reached a level of

completely recording all earthquakes above magnitude 4.0. After the

very severe earthquakes of Hualien and the Taitung area in 1951, modern

types of seismographs were introduced in order to help meet the require­

ment of construction of earthquake-proof structures. The earthquake

records from the network during this second interval have been analysed

and the seismicity statistics published (Hsu, [11]).

The third interval began in 1972 when the National Science

Council (NSC) inaugurated an Earthquake Research Group with respon­

sibility for detailed study of Taiwan earthquakes (Tsai et al. [23]).

An island-wide network was then established to monitor earthquakes

occurring in any part of Taiwan down to magnitude 2.5. Since the

beginning of 1973, a quarterly catalog of earthquakes in Taiwan has

been pUblished based on this telemetry network.
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A catalog of earthquakes from the above sources of data as well

as other references from the second and third intervals (1900-1976) is

now available (Lee, Wu, and Wang, [15]). This study is based on that

catalog and before 1900 on the catalog published by the Academia Sinica,

Peking.

A complete list of reported earthquakes is not reproduced here

but a card deck was punched which contains all this information for

processing. In Table 1, a list of the largest earthquakes in Taiwan

has been selected from the complete catalog. In order to provide an

indication of the occurrence rate of earthquakes a time series of

events is shown in Fig. 9 for the centuries 1655 to present. These

time series diagrams give a general idea of the rate of release of

seismic energy in the Taiwan region and consequently a rough measure of

overall seismic risk.

C. Hazard Model

Although intensity is in many ways more physically satisfactory

to specify the size of an earthquake, it was necessary to use earth-

quake magnitude as the independent variable in the preliminary study

because, in general, the size of most earthquakes listed in the Taiwan

Catalog for this century is associated with magnitude rather than

intensity. In the usual way the law of earthquake occurrence is

taken to be

a - b m (1)

where N = number of occurrences per unit of time with magnitude
m

greater than mj a is a constant which depends on the period of
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TABLE 1

TAIWAN REGION (1900 to present)

LARGE EARTHQUAKES (M > 7.0 )

Location
Year Mo. Day Lat(N) Long(E) Mag.

1908 1 11 23.7 121.4 7.3

1909 4 14 25.0 121.5 7.3

1909 11 21 24.4 121.8 7.3

1910 4 12 25.1 121. 9 7.75

1915 1 5 25.0 123.0 7.25

1917 7 4 25.0 123.0 7.7

1917 7 4 25.0 123.0 7.2

1920 6 5 24.0 122.0 8.0

1922 9 1 24.6 122.2 7.6

1922 9 14 24.6 122.3 7.2

1935 4 20 24.4 120.8 7.1

1935 9 4 22.5 121.6 7.2

1936 8 22 22.0 121.2 7.2

1941 12 16 23.4 120.4 7.1

1951 10 21 23.8 121. 7 7.3

1951 10 22 23.8 121.9 7.1

1951 10 22 24.1 121.8 7.1

1951 11 24 23.5 121.0 7.3

1957 2 23 24.0 121.6 7.2

1959 4 26 24.8 122.7 7.5

1966 3 12 24.1 122.7 7.5

1972 1 4 22.5 122.1 7.2

1972 1 25 22.6 122.4 7.5

1972 4 24 23.6 121. 6 7.3
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observation and the extent of the region; b is a measure of the

occurrence rate for a particular region. The magnitude in use is the

surface wave magnitude in general, although the catalog is not always

consistent on the definition of magnitude used. This inconsistency

should not significantly affect the present results.

The cumulative distribution function of earthquake magnitude in

accordance with (1) is

-13 (m-m )a
e (2)

where 13 = b. £n 10, and mo is the lower limit of magnitude. If the

magnitude is less than mO' the earthquake is unimportant in terms of

damage and hazard. In each seismic region the form (1) does not hold

at very high magnitudes, otherwise this would predict an infinite

amount of energy released in earthquake activity per unit of time.

Hence an upper limit magnitude ml is set, which according to seismic

activity recorded allover the world is in the range 8.5--9.0. How-

ever, geotectonic and historic evidence for a particular region may

indicate the adoption of a smaller value.

Cornell [8] imposes a limitation on the upper bound of the

exponential distribution of magnitudes;

1 m < m
- 0

P(m) 1 - k[l
-13 (m-mo)]

< m <= - e mO
m

l

a m':::' ml

(3)

where the truncating factor k is
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Now it is necessary to define an attenuation model that relates

the decay of amplitude of the earthquake ground motion to the

distance from the source. For this purpose, the earthquake size,

mechanism and location of the focus are important parameters. In this

study, a mean attenuation law was estimated from isoseismal maps for

ten large earthquakes constructed by Hsu [12]. The data were fitted to

the following relation:

I = M + c
l

+ c 2 log (D) (4)

where c l ' c 2 are two constants and D is the distance from the center

of the most intense isoseismal region.

The construction of a seismic risk model depends upon specify-

ing each earthquake as a point in time and space. The proper

statistical model is thus a stochastic point process. The Poisson

model is still the most commonly used for the occurrence of large

earthquakes, because of its simplicity in concept and application.

Let us consider the earthquake as an event along a time axis. This

model assumes that one event in a given magnitude range and in any

given volume of the earth's crust is independent of any other event.

The probability of finding n events in time t, if the mean rate of

occurrence A is known, follows the Poisson probability law

FN (n, At) = (5)

2
The mean E(N) and the variance aN of the Poisson distribution

are both equal to the mean rate. According to the Poisson model, the

probability of finding zero events in time t is
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F
T

(0, t)
-Ate ( 6)

Then the probability of finding a time equal to or less than t is

F(t) (7)

The corresponding probability density function is

f(t) - ;\ -Ate t > a (8)

1 1
with mean I and variance

;\2

The probability that a peak acceleration a is less than or

equal to a, given that an earthquake of size M has occurred, is

F(a) P (a < a I M). (9)

Then the cumulative distribution of the maximum observed acceleration

for N earthquakes is

F (a)
max

P (a < a
max given N events)

F(a)N (independent and equally distributed)

()()

L
i=O

i -;\
F(a)i A .~

~.

(random Poisson events)

-;\(1 - F(a»
e

The return period for an acceleration exceeding a is defined as

(10)

R(a)
1

1 - F(a)
(ll)
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The return period, in years, is then

From (9)

R (a)
y

R(a)
Expected number of earthquakes per year

(12)

exp (- t/R (a»
y

(13)

The main deficiency of the simple Poisson model is that it

ignores the tendency of earthquakes to come in groups which are often

triggered by a large main shock. A second deficiency comes from

ignoring the accumulation of crustal strain with time which entails a

greater probability of a large earthquake as the time interval to the

last earthquake increases.

Many authors have used point process models to deal with the

sequence of times of events in different ways. Improvement of the

Poisson model is generally based on defining a dependence of each

event on the immediately preceding ones. For example, Lee and

Bril1inger [16] try to improve the existing catalog of China by using

an auto-intensity function. They define the rate of earthquake

occurrence to be the expected number of earthquakes in the unit time

or for a given time window. For a stationary point process M(t) the

rate is given by

h =m
lim
dt~O

[ Prob (event in (t, t + dt» ] ,
dt

(14)

and the auto-intensity function is given by

hO(t) dt = P(q I p) (15)
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an earthquake occurs in Ct, t + dt)

p an earthquake occurred at t o.

Supposing that the data 0 ~ T1 2. .... ~ TN (t) < T are available,

the rate of the M process may be estimated by

T

~M = N(T)/ I net) dt

The auto-intensity of the M process can be estimated from

(16)

where T is the length of the observation period, N(T) is the total

number of events, S is window length, net) is the probability of an

earthquake occurring at time t.

In this study, a measure of the effect of an earthquake on the

probability of occurrence of the immediately succeeding earthquake is

sought. The Hazard function, as defined in statistics, has a memory

in that the probability of an event is calculated as a function of

time to the last event and offers a suitable probability model that

improves on the Poisson assumption. The Hazard function hCt) is

defined in terms of the two propositions q and p (the last earthquake

is at t = 0). Then

h(t) dt = p(qlp)
(18)

h(t) =
f(t)

1 - F(t)

where f(t) is the probability density function, F(t) is the probability

distribution function. For the Poisson model, h(t) = A is a constant
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so that the Hazard does not depend on the previous occurrence. An

estimate of h(t) can be best obtained from the relation

h(t) ~t [.Q,n (1 - F (t) ] . (19)

Analysis of aftershock sequences shows that the Hazard function

drops off quickly and then levels off; before larger earthquakes in a

region the seismicity rate usually shows increases.

In this study the above definition of Hazard function is

extended to the seismological context when both earthquake size and

occurrence rate are considered. A joint probability is used to define

an Hazard Intensity function, H(t,m):

H(t,m) dt = P(q and mlp)
(20)

h(t) • P(M > m)

when the size and occurrence rate are independent, and m is the earth-

quake size (for example, magnitude).

The Hazard function and Hazard Intensity function were estimated

for the earthquake sequence in the Taiwan historical earthquake catalog

and the latter function was plotted to produce Hazard Intensity maps.

The procedure and results are presented below.

D. Estimation of the Hazard Parameters from the
Tectonics and Seismicity

Recent concepts of plate tectonics present new and varied

explanations regarding the structural history of Taiwan. Most of the

island of Taiwan (see Figure 1) is on the eastern border of the

Eurasian Plate. However, the Eastern Coastal Range of Taiwan is on the
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western edge of the Philippine Plate. Taiwan's eastern longitudinal

valley represents the margin between the two plates.

Most of the present geological structure of Taiwan is derived

from the interaction of the Eurasian and Philippine Plates. The

interaction is quite complex and there are differing opinions as to

the exact nature of the tectonic forces. More data and research are

required to clarify these questions.

Surface fault displacements that have been observed in this

century are illustrated in Fig. 2 (Bonilla [3]). It is significant

that most surface fault traces that occur are in western Taiwan and

the Eastern Longitudinal valley. The spatial distribution of earth­

quakes in and around Taiwan is shown in Fig. 3. This figure shows that

the epicenters are significantly crowded in several regions, which

define seismic zones or belts.

According to a study by Hsu [11], Taiwan can be divided into

three subseismic zones as shown in Fig. 4, denoted by the names East,

West, and Ryutai seismic zones. The West seismic zone extends from

the vicinity of Taipei in a SSW direction and terminates at Tainan

with a width of about 80 km; the East seismic zone extends from off the

north-east of Ilan, also in a SSW direction, to off the east of

Hengchun and on to Luzon with a width of about 130 km; the Ryutai

seismic zone extends from the Ryukyu Islands in a WSW direction and

terminates at the central part of Taiwan with a width of about 160 km.

The area where the Ryutai and East seismic zones intersect is the area

of the strongest seismic activity. The area corresponds to the junction

of the Taiwan-Luzon arc with the convex side facing the continent and

the Ryukyu arc with the concave side facing the continent.
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Because the epicenters are distributed widely on and around

Taiwan and the fault system of the island is so complicated, it is at

present not feasible to establish correlations between existing faults

and most earthquakes. As an alternative, the Taiwan region has been

divided into equal rectangular elements by means of a grid. The

center of each element is then chosen as an independent seismic source

center.

From 1655 to 1976, 272 large earthquakes are listed in the

catalogs. The area for this study was limited to between 21.5° and

25.5° north latitude and 119.5° and 123.0° east longitude. In the

first 245 years (1655 to 1900) there are only 24 recorded earthquakes;

whereas for the remaining 76 years (1900 to present) there are 248

recorded earthquakes with magnitude above 6.0. Obviously, a great

many significant earthquakes went unreported before instruments were

installed. There are at least two main reasons for this. First, most

of the population has been concentrated in west Taiwan, especially in

the Tainan area, since the settlers moved from the mainland. Secondly,

in the past hundred years, many historical documents have been lost or

burned during military operations. Consequently, different weight

should be given to the records. Some of the earthquakes in the catalog

before 1900 have magnitudes less than 6.0 but greater than 5.6, and

for convenience with the data processing all these earthquake

magnitudes were set to 6.0.

In order to remove the effect of aftershocks which may be mixed

in the catalog, the following rule was used: If two successive events

are closer than 25 km and their time difference is less than half a

year, the second event is classified as an aftershock and removed from



62

the list. The remaining earthquakes are treated as independent events.

Since the strong motion network was established by CERC five

years ago, no large magnitude earthquakes have occurred on land, and

hence the most reliable information about ground motion at various

places is still based on isoseismal maps published by the Central

Weather Bureau (CBW). However, the intensity scale used by CWB was an

old Japanese intensity scale of O--VI. The relations among the various

scales are shown in Fig. 5. Isoseismals of eleven comparatively severe

shocks are shown in Fig. 6.

Many authors have studied attenuation laws for different zones,

and have developed empirical relations. For a given earthquake,

results obtained from different formulae vary significantly, especially

at short epicentral distances. The main shortcoming of these formulae

is that they have been established with data observed at the surface

reflecting not only attenuation features but also soil conditions.

other causes of error arise from the complex mechanism of earthquakes

as well as the propagation pattern. Because this study was restricted

by the lack of available information, the relation (4) in Section C

was chosen and an average attenuation law for intensity and magnitude,

shown in Fig. 7 was calculated from the isoseismal maps available for

Taiwan. The least-squares line, with D in km, is

I M + 1.75 - 2.99 log(D). (21)

In a similar way, the relation for intensity alone is

I ; 1
0

+ 2.56 - 2.74 log(D). (22)

From (21) and (22), an empirical relation relating magnitude with near

source intensity I
O

for Taiwan is



M

63

1
0

+ 1.06. (23)

Initially, the study area was divided into a 12 x 11 grid as

shown in Fig. 8. Using the attenuation equation (21), the influence

of each earthquake in the catalog for 1900-1976 was evaluated at the

center of each grid. In Fig. 9 the results are presented at five

selected points. In this figure the resulting time sequence of peak

intensities at five points of the grid is displayed. The figure

emphasises the lack of data for earthquakes before 1900. Although

originally the definition of intensity is an integer, equation (21)

gives a series of positive real numbers. An examination of Fig. 9

shows intensities greater than 6.0, even close to 7.0. This result

arises from equation (21); if the distance is less than one, the last

term in (21) is positive, so the intensity value becomes large. To

obtain a reasonable value, for D less than 3 kID an intensity value of

6.5 is used in the latter calculation. Hence, an intensity of 6.5 is

the upper bound and corresponds to an upper bound magnitude of 7.65.

The intensity scale III, IV used by CWB corresponds to IV, V of the

MM intensity scale, respectively (see Fig. 5). In this range

intensity begins to have some influence on engineering construction.

So a 3.5 intensity value is set as lower bound which corresponds to

a lower bound magnitude of 4.56. All the earthquakes outside this

range are truncated in the data processing.

For the purpose of determining the constants a, b in equation

(1) Section C, the study region is divided into three subregions which

are roughly equal to the seismic zones defined by Hsu [11]. Using the

earthquake data with magnitude greater than 6.0 the relation shown in
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Fig. 10 is obtained. In his early study Hsu had done the same

calculation with earthquakes greater than 4.0. A comparison of the

values of b is given in the following table:

TABLE 2

.~ this study Hsu
(1971)

A 0.98 0.82

B 1.06 0.89

C 1.05 0.95

The difference in the value of b is due to the data used; in

this case, the lower magnitude threshold was 6.0 whereas it was 4.0

in the work of Hsu. However, there is general agreement between the

two studies. In western Taiwan the value of b is greater than in the

eastern part but there is no significant difference for areas Band C.

Therefore only the two values b = 0.98 and b = 1.0 were adopted in

these calculations.

The Hazard function and earthquake probability are calculated

and plotted using a computer. The grid element with number 14 was

chosen for the test run. In this run only the data from 1901 to 1976

is used and the time interval is one year; the maximum time interval

(NLAST) is taken as ten years. The results are presented in Fig. 11.

Figure llA shows the relation between £n (l-F(t» and the time interval.

The scattered points indicate a curve increasing with time and to avoid

abrupt changes of slope the points were fitted to a parabolic function.
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The smoothed data are shown in Fig. IlB. After measuring the slope

(see equation (19», the Hazard function is obtained as shown in Fig.

llC. The Hazard h(t) is increasing with time which suggests there is

an overall accumulation of elastic strain energy. The probability of

an earthquake is calculated by equation (3), in which B is 2.42 and

2.26 for eastern and western Taiwan, respectively, corresponding to the

b value adopted above. The less the attenuated intensity to the grid

point, the higher the probability of occurrence. In Fig. IlD can be

seen the probability of an earthquake of given ground motion at the

center of grid 14 as a function of time.

E. Generation of Synthetic Historical Seismicity

As pointed out in the first section, instrumental recording of

earthquakes in Taiwan is not long enough to do long range prediction

in risk analysis. Yet spasmodic data on earthquakes are available

back to 1600. In order to incorporate this information in the con­

struction of the Hazard Intensity maps, synthetic earthquake time

series have been generated on the computer using a stochastic process.

For Taiwan as a whole, omitting any reference to specific tectonic

provinces, the probabilistic characteristics of earthquake occurrence

discussed previously make it possible to use random numbers to

simulate the long-term occurrence of moderate to large earthquakes

with the constraint that the resulting time series must resemble in

its main characteristics the observed patterns of earthquake locations

and sizes in the last several centuries.

The comparison of the synthetic spatial-temporal sequence is

with the earthquake list for the period from 1900 to 1976 containing



66

248 events with magnitudes above 6.0. The spatial distribution for

this sequence is shown in Fig. 3. Consider the incomplete series for

1801-1900 which contains 14 earthquakes. The aim is to generate a

synthetic one-hundred years record which is based on the pattern of

1900 to 1976 and which coincides with the historical 1801 to 1900

series. The following assumptions are made:

1. The number of earthquakes is proportional to the length of

time involved.

2. The spatial distribution of earthquakes is similar to the

more recent pattern.

3. The magnitude distribution follows equation (1)

Step 1. Magnitude Estimation

From 248 acceptable records the following relation could be

fitted

log N = a + b M.

For the whole Taiwan region, b = 0.98 as shown in Fig. 12. Under the

assumption that the earthquake number is proportional to the time

interval for 100 years the number of earthquakes is 326. This straight

line is shifted to a parallel one which indicates the total earthquake

number is 326 with magnitude above 6.0. The result is shown in

Fig. 12. This relation yields the magnitude distribution from 6.0

to 8.5. This range is divided into five subranges, each containing a

0.5 magnitude region. The lower the range, the higher is the pro­

bability of occurrence. The computer is then used to generate random

numbers which are allocated to specific subranges according to sub­

range occurrence probability. This result is shown in Fig. 13.
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Step 2. Time Sequencing

A computer subroutine is used to provide random numbers which

are uniformly distributed between zero and one. Select n(n = 326)

random numbers, multiply by one hundred (years), and order from small

to large. This ordered number set provides a synthetic earthquake

series which must meet occurrence pattern tests before acceptance.

Check the series against the observed 14 historical events for the

nineteenth century and calculate the nearest time difference.

From 14 time differences the average time difference is evaluated.

If this average time difference is less than the threshold, this time

sequence is accepted; otherwise, it is repeated until the new time

sequence meets the requirements. In this study, 0.25 years (three

months) was set as the threshold. The result is shown in Fig. 13.

Step 3. Location Estimation

The same 12 x 11 grid as used previously was adopted here.

From the spatial distribution of the selected seismicity, the pattern

of distribution of epicenters is shown in Fig. 14. A high density of

earthquakes indicates a high occurrence probability. It should be

noted that on this model an earthquake has some probability of occur­

ring anywhere so that a small number, equal to 0.1, was given to the

grids in which there were no historical events rather than zero which

would preclude future earthquakes. In the same way as before, random

numbers were generated by computer and allocated to specific grids

according to the grid occurrence probability. Simulated earthquakes

that fall into anyone grid are uniformly distributed in that grid

area around the center of the grid. The result is shown in Fig. 15.
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The procedure outlined above was repeated five times, producing

synthetic seismicity records for five centuries. In each one hundred

generation the spatial distribution pattern and magnitude distribution

pattern were changed randomly with 4% allowance. The results are shown

in Figs. 15-19. Figure 20 shows the combination of five hundred years.

F. Construction of the Hazard Intensity Maps

At this stage it is now feasible to compute Hazard Intensity

maps for Taiwan. In order to investigate the variability of the com-

puted Hazard Intensity maps, a range of conditions was adopted and

computed results compared. The results of the different parameters

and combinations of data specified in Table 3 were plotted using five

contours on the same scale (see Fig. 2lA-K). The terms used in Table

3 are described as follows:

FIG

NLAST

TLBD

TUBD

ATTENUATION

BETA

RECORD

DURATION

figure number

the maximum time between two earthquakes

lower bound intensity

upper bound intensity

attenuation law

beta value (see equation (2»

basically, there are two kinds of records:
76 year real records (R) and
5 IOO-year artificial records (AI,A2,A3,A4,
and AS)

the length of record in years.

The plots were drawn using a standard computer plotting routine based

upon the grid defined in Fig. 8.
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G. Concluding Remarks

Generally speaking, the Hazard Intensity map defined in this

paper provides a generalized measure of relative hazard: the longer

the time span, the higher the seismic hazard; and, in a fixed period

of time, seismically active areas have greater hazard than inactive

areas.

More specifically, the construction of the range of maps,

defined by Table 3, indicates the following results.

1. If the maximum time between earthquakes (NLAST) is

decreased, the hazard contours contract. By contrast, a

decrease of the B value (equation (2» enlarges the hazard

contours. The Hazard Intensity map itself is not very

sensitive, however, to moderate changes in these parameters.

2. If the lower bound intensity (TLBD) is decreased or if the

coefficient of attenuation is decreased, the hazard con­

tours enlarge significantly. The Hazard Intensity map is

rather sensitive to both of these parameters.

The synthetic seismicity maps for Taiwan (Figs 15-20) for the

last five centuries agree well with the expected earthquake distribu­

tion based on the geological information and the occurrence of earth­

quakes this century. One unexpected result is the lack of agreement

for the Chiayi-Tainan area (see Fig. 2). These differences arise

from the physically more realistic probability model used. The

statistical method of generation followed however, does not allow

these maps to be used for specific earthquake prediction in time and

space. It will be of interest, nevertheless, to compare them with
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future observed earthquake occurrence on Taiwan. Figure 20 suggests

that the West Seismic Zone (Fig. 4) might be expected to be the site

of continued moderate earthquake activity. The north-west part of the

island is indicated as an area of lower activity. More precision in

such predictions of seismic intensity must await much more detailed

geological field work on the fault systems of Taiwan. The contours on

the Hazard Intensity maps constructed here have no absolute ground

motion or probabilistic occurrence rate associated with them. Rather

relative hazard ratings 1 to 5 have been allocated to each contour

(Figs. 21A-K). It should be possible however, in future work to use

equation (20) to make specific statistical statements on the hazard

distribution.

It is of interest, finally, to compare the recent risk maps of

Tsai and Mau (Fig. 22) with the Hazard Intensity maps constructed in

this study. They have the same general tendencies even though the

methods of construction and assumptions were different. In particular

the Hazard Intensity map Fig. 21H is similar to the map of Mau which

shows contours of expected ground acceleration with a ten percent

probability of being exceeded in 50 years. Basically the similarities

arise because the earthquake data base is essentially the same in each

case.
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A. 76 year observed record
normal conditions

B. 76 year observed record
NLAST = 15

c. 76 year observed record
TLBD = 2.5

D. 76 year observed record
attenuation coefficient

2.75
Fig. 21 Hazard intensity function contour maps; numbers

indicate relative level of hazard



97

E. 76 year observed record
beta = 2.11, 1.89

G. 100 year artificial
record A2

Fig. 21 (continued)

F. 100 year artificial
record Al

H. 100 year artificial
record A3
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J. 100 year artificial
record A5
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I. 100 year artificial
record A4

K. 376 year record combining
the 76 year observed record
and three 100 year artificial
records (Al,A2,A3)

Fig. 21 (continued)
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