
--~ ....... 

Publication No. R76·42 Order No. 558 

EFFECT OF DUCTILITY 
ON RESPONSE SPECTRA 

FOR ELASTO-PLASTIC SYSTEMS 

by 

SAMIR SEHA YEK 

Supervised by 
, 

Jose M. Roesset 

September 1976 

Sponsored by the National Science Foundation 

Division of Advanced Environmental Research 

and Technology 

Grant GI~431 06 

ASRA INFORMATION RESOURCES 
NATIONAL SCIENCE FOUNDATION 

PB 298795 

._ clo ,--< 
- ",- , 

" ", 
.--' , 

~, , 



Additional Copies May be Obtained from 
National Technical Information Service 

U. S. Department of Commerce 
5285 Port Royal Road 

Springfield, Virginia 22151 



1 

Massachusetts Institute of Technology 
Department of Civil Engineering 
Constructed Facilities Division 
Cambridge, Massachusetts 02139 

EFFECT OF DUCTILITY ON RESPONSE SPECTRA 
FOR ELASTO-PLASTIC SYSTEMS 

by 

SAMIR SEHAYEK 

Supervised by 

Jose M. Roesset 

September 1976 

Sponsored by National Science Foundation 
Division of Advanced Environmental Research and Technology 

Grant GI-43106 

Research Report R76-42 

Any opinions, findings, concl~sion.s 
or recommendations expressed In this 
publication are those of the author.(s) 
and do not necessarily reflect the views 
of the National Science Foundation. 

der No. 558 





ABSTRACT 

EFFECT OF DUCTILITY ON RESPONSE SPECTRA 
FOR ELASTO-PLASTIC SYSTEMS 

The purpose of this work is to evaluate two procedures used 

to estimate response spectra for inelastic systems subjected to 
earthquakes. The first, It-Ihich is a set of rules suggested by Nehl

mark, derives the inelastic response spectrum for the elastic one. 

The second is a procedure which replaces the nonlinear spring of 

the system by an equivalent linear one with stiffness and damping 

obtained as functions of a characteristic strain. 

It is concluded that Newmark's procedure, although approxi

mate, performs quite satisfactorily. The second procedure, although 

not as satisfactory as Newmark's, reproduces the general trends of 

spectra quite well also. 
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PREFACE 

The work described in this report is based on the thesis by 
Samir Sehayek, presented to the Civil Engineering Department at 

M.I.T. in partial fulfillment of the requirements for the degree 
of Master of Science. The research was supervised by Professor 
Jose M. Roesset and was made possible through Grant GI-43106 from 

the National Science Foundation, Division of Advanced Environmental 
Research and Technology. 

This is the third of a series of reports published under this 

grant. The first two were: 

1. Research Report R76-37, by Tarek S. Aziz: "Ine"'astic Dynamic 
Analysis of Building Frames," August 1976. 

2. Research Report R76-38, by I(enneth i1ark: IINon1 inear Dynamic 

Response of Rei nforced Concrete Frames, 11 ,;ugus t 1976. 
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to 

source of information in earthquake design. It is clear, however, that 

there is no reason to assume that the earthquake that might occur in any 

given location would have precisely the same characteristics multiplied 

throughout the whole range of frequencies by a constant factor. 

One approach towards a better characterization of strong motions was 

taken by Newmark, recognizing seven distinct ranges in the response spec-

trum (Fi g. 1-5). 

a) A range of very small frequencies in which the relative displace

ment of the l-OOF system is practically equal to the maximum 
ground displacement (in other words the structure is so flexible 

that it remains practically at rest). 

b) A transition range. 

c) A range of frequencies over which the maximum relative displace
ment of the 1-00F system does not change very much in the average 

and can be assumed as constant, function of damping. 

d) An intermediate range of frequencies over which the maximum rela

tive velocity of the l-OOF system does not change very much and 

can be assumed to be a constant, function of damping. 

e) A range of frequencies over which the maximum absolute accelera

tion of the l-OOF system does not change very much in the average 

and can be assumed to be a constant, function of damping. 

f) A second transition zone. 

g) A range of high frequencies for which the absolute acceleration 

of the l-OOF system is practically equal to the maximum ground 

acceleration (in other words the structure is so stiff that it 
follows practically the motion of the ground). 

Figure 1-5 shows the basic Newmark spectrum as defined above. To 
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CHAPTER 1 - INTRODUCTION 

Earthquake considerations have always represented special problems 

in the design of buildings. Due to the unpredictable nature and magni

tude of earthquakes, their effects can be treated only in an approximate 

way through sets of simplified rules. Within the last two decades, how-

ever, our knowledge and understanding of the subject have greatly im

proved due to new analytical methods, the aid of computational tools, 

and intense study and research undertaken by universities in this coun-

try and abroad. 

Our aim in this report is to study and investigate some of these 

analytical methods and rules and if possible to come up with some con-

clusions and recommendations as how to best use and apply these methods 

in design practice. 

Basically, our only means of studying the effects of an earthquake 

is through an earthquake record. Such a record, recorded by a strong 

motion accelerograph, reproduces the variation of the ground accelera-

tion to be given by a function of the form: 

o for t < 0 

f(t) 

the response of a single degree-of-freedom system (Fig \ 1-1), to a base 
.. 

motion represented by an acceleration Ys f(t) could be determined 

using Duhamel IS integral. This integral is given as 
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Figure 1-1 
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FigurE' 1-2 

Response of a Single D.O.F. System 

with a Given UJ and 6 to Earthquake Record 
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where WD = damped natural frequency 

= w2 _ 62 = W2(1_p2) 

6 = wp 

p = fraction of critical damping. 

Now we can define the maximum value of u(t) as 

Sd(W,P) = max. over ti u(t)i 

(1) 

For a given value of p, Sd is known as the displacement response spectrum. 

In a similar way one can define a velocity response spectrum for ~(t) 

and an acceleration response spectrum for y(t). 

The maximum relative velocity of a single D.O.F. system is very close 

to W times the maximum relative d-isplacement except for small values of w. 

It is thus more common to define a pseudo velocity as w!u{t)! and pseudo 

velocity respon~e spectrum as 

In the same way we define a pseudo acceleration response spectrum as 

(2) 

Hence it is obvious that once we compute one of these spectra (cor-

responding to a given value of damping), the other two are immediately 

determined using relation (2). 

What is usually done in practice is to subject the single D.O.F. 

system with a given natural period and critical damping (Fig. 1-1) to 



the earthquake under study. The mass will undergo a maximum displace

ment relative to the fixed reference frame, which is usually the ground 

(Fig. 1-2), 

Similarly by subjecting a large number of l-DOF systems with differ

ent frequencies and corresponding to a given value of damping to this 

same record, their maximum response can be computed. A displacement 

response spectrum is then plotted as the maximum relative displacement 

versus the natural period or frequency of the system. 

Following the same procedure, response spectra for different values 

of damping can be obtained (Fig. 1-3), thus providing all the necessary 

information for the elastic design of l-DOF systems. 

Because of the direct relationship between the displacement, pseudo 

velocity and pseudo acceleration response spectra, it has become custom

ary to plot the pseudo velocity spectrum as a function of period or fre

quency on a double logarithmic scale. Fig. 1-4 shows the spectrum of 

the 1940 El Centro earthquake plotted this way. Horizontal lines corre

spond to constant pseudo velocity values. Lines inclined at 45 degrees 

(with + ve slope) represent the constant relative displacement values. 

Those with the negative slope are of constant pseudo acceleration values. 

It is thus possible from this plot to read simultaneously the values of 

these three components corresponding to any value of period or frequency 

of the l-DOF system. 

The set of response spectra used in practice was for a long time 

that of the 1940 E1 Centro earthquake. This earthquake has been thoroughly 

documented and for some time was considered a sufficient and reliable 
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source of information in earthquake design. It is clear, however, that 

there is no reason to assume that the earthquake that might occur in any 

given location would have precisely the same characteristics multiplied 

throughout the whole range of frequencies by a constant factor. 

One approach towards a better characterization of strong motions was 

taken by Newmark, recognizing seven distinct ranges in the response spec-

trum (Fi g. 1-5). 

a) A range of very small frequencies in which the relative displace
ment of the l-DOF system is practically equal to the maximum 
ground displacement (in other words the structure is so flexible 
that it remains practically at rest). 

b) A transition range. 

c) A range of frequencies over which the maximum relative displace
ment of the l-DOF system does not change very much in the average 
and can be assumed as constant, function of damping. 

d) An intermediate range of frequencies over which the maximum rela
tive velocity of the l-DOF system does not change very much and 
can be assumed to be a constant, function of damping. 

e) A range of frequencies over which the maximum absolute accelera
tion of the l-DOF system does not change very much in the average 
and can be assumed to be a constant, function of damping. 

f) A second transition zone, 

g) A range of high frequencies for which the absolute acceleration 
of the l-DOF system is practically equal to the maximum ground 
acceleration (in other words the structure is so stiff that it 
follows practically the motion of the ground). 

Figure 1-5 shows the basic Newmark spectrum as defined above. To 
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construct design spectra of this nature, it is thus necessary to: 

1) Define the design earthquake by means of its ground acceleration, 
velocity and displacement. 

2) Once these three parameters have been characterized, the design 
spectrum for a given percentage of critical damping requires the 
specifications of seven quantities. The quantities suggested by 
Newmark are the ratios of: 

On the basis of the 1940 E1 Centro response spectra, newmark suggests: 

fC/fS = 4 

fe/fA = 10 

fE/fD = 4 

fF/fo = 10 

And the ratios of dmax/dG, vmax/vG and amax/aG for different values of 

dampi ng are given as: 

Damping d /d vmax/VG ama/aG % max G 

0 2.5 4.0 6.4 

0.5 2.2 3.6 5.8 

1 2.0 3.2 5.2 

2 1.8 2.8 4.3 

5 1.4 1.9 2.6 

7 1.2 1.5 l.9 

10 1.1 1.3 1.5 

20 1.0 1.1 1.2 

Garcia (ref. 1) extended Newmark's work by considering the records of 

earthquakes (E1 Centro 1940, Taft, Olympi a, Helena and Golden Ga te) . 

average values suggested by Garcia are: 

five 

The 



Oamping dmaxfdG vmaxfvG amaxfaG 
% 

0 2.10 4.50 9.00 

0.5 2.01 3.52 5.95 
1 1. 91 3.25 5.00 
2 1.82 2.80 4.03 
5 1. 56 2.08 3.01 

10 1. 33 1.59 2.26 
20 1.08 1. 13 1.67 

While these values are only slightly different from those of Newmark, 

the frequency ratios were on the other hand somewhat different, thus sug-

gesting slight modification over those proposed by Newmark. Garcia sug

gested that the values of fB and fE could be computed from the equation 

fC/fB 6.1 (1 + 300sr·1 7 

fE/fO = 2.1 + 0.283 log (1 + 450S) 

thus showing damping dependence instead of taking fC/fB = fE/fO = 4 as 

suggested by Newmark. 

Since Newmark1s set of proposed data is the one that is still used 

in practice, it will be the one we will be referring to in succeeding 

chapters. 

The preceding discussion provided us with some information concern

ing elastic l-DOF systems. Using modal analysis and some approximations, 

this information provides the basis for the design of linear multi-DOF 

systems. 

Modal analysis involves the determination of the responses in each 

mode separately and the use of superposition to provide the total response. 

The total response is normally approximated by using the square root of 



the sum of the squares of the maximum responses determined for each nor

mal mode. 

The approximation introduced by superimposing maxima (or the square 

of the sum of the squares) is an area which is under discussion and will 

not be dealt with here. Rather, we will shift our discussion to the 

behavior of nonlinear 1-00F systems under strong ground motion. 

Under a severe earthquake, design codes recognize that a structure 

may not remain elastic and that a certain amount of yielding and plastic 

deformation may take place in different components (except maybe for rather 

flexible structures). 

The mathematical determination of the dynamic response of inelastic 

systems, once a nonlinear model has been selected, offers little problem 

and requires only a step-by-step numerical integration of the equation of 

motion. The significant questions in this area relate to: 

a) The modeling of the structure; i.e., selection of nonlinear 
springs which will properly reproduce the behavior of different 
structural components, and the determination of which type of 
nonlinear effects is really significant. 

b) The interpretation of results and their generalization into 
design guidelines. 

Some of the mathematical models describing nonlinear systems often used 

are shown in Fig. 1-6. 

A substantial amount of work has been carried out trying to determine 

the variation of maximum effects as a function of earthquake intensity, 

elastic or ultimate strength and natural period. The first step in this 
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direction was the determination of inelastic response spectra. Figs. 

1.7 and 1.8 show response spectra for elastoplastic systems with zero 

and 10% damping under the NS component of the 1940 El Centro earthquake 

as repoy'ted by Blume, Newmark and Corning (ref. 2). Note that each 

spectrum corresponds to a fixed value of the ductility factor~ (ductil

ity being defined as the ratio of the maximum distortion in the spring 

to the limit elastic distortion). 

Response spectra for other nonlinear systems have been obtained by 

Veletsos (ref. 3). The results are often interpreted in a simple way by 

comparing the response of a nonlinear system to that of an "equivalent" 

linear system. There are two main effects which characterize the re-

sponse of a single D.O.F. system in the inelastic range: 

a) a reduction in the instantaneous or equivalent stiffness with 

increasing deformation; 

b) a loss of energy through hysteretic loops. 

The first effect represents an increase in the natural period (or 

a decrease in the natural frequency), while the second can be interpreted 

as an increase in damping. 

The purpose of the present work is to consider an elastoplastic sys

tem (Fig. 1.6a) and subject it to five different earthquakes with a total 

of 9 components (El Centro 1940 NS, El Centro 1940 EW, Taft NW, Taft SW, 

Helena NS. Helena EW, Golden Gate, Olympia NW, Olympia NE). Using a 

numerical integration procedure, the response spectra of each record for 

different values of ductility )l are obtained. These spectra are then 

used to evaluate: 
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(1) A procedure suggested by Newmark for shifting from the elas

tic response spectra (~ = 1) to any level of desired ductil
ity for nonlinear systems. The details of this procedure 
are described in Chapter 2. 

(2) A procedure often used in practice to determine the response 
of inelastic systems by replacing the nonlinear system by an 

equivalent linear system. This, too, is described in Chap
ter 2. 

Chapter 2 covers the deta il s of the two procedures menti oned above 

and also the procedure followed to obtain the actual inelastic response 

spectra for levels of ductility from ~ = 1 to 10. Since we used nine 

earthquake records, then nine different sets of plots were obtained, one 

corresponding to each earthquake. 

Similar plots were obtained using the approximate method. 

In Chapter 3 Newmark's rule is defined. The analytical procedure 

used to evaluate it is then described. This is followed by a discussion 

on the results obtained and an evaluation of the above mentioned rule. 

Chapter 4 follows the same procedure for the approximate method. 

And finally, conclusions and recommendations concerning these two 

methods are discussed in Chapter 5. 



CHAPTER 2 

Newmark's Inelastic Response Spectra 

The procedure suggested by Newmark for obtaining inelastic response 

spectY'a of single D.O.F. systems for any level of ductility is illustrated 

graphically in Fig. 2.1. 

These response spectra are intended to define the pseudo (or maximum 

absolute) acceleration, Sa' of the mass of the single D.O.F. system as a 

function of damping and frequency. In order to determine the inelastic 

response spectra for the maximum relative displacement, the curve obtained 

by these rules is multiplied by the ductility factor W over the complete 

range of frequencies. Clearly for an inelastic system it is no longer pos-

sible to read acceleration, velocity and displacement from a unique curve. 

Newmark's procedure consists basically of the following steps: 

a) The elastic response spectra (w = 1) of the single D.O.F. system 

is divided into seven distinct ranges, as shown on Fig. 1.5. This 

is shown as the curve for W = 1 on Fig. 2.1. 

b) For the frequency range covered by Rl, R2, R3 and R4, the pro

cedure is to multiply the Sv values by a factor of l/w, thus mak

ing a downward vertical shift of the curve only. This implies 
that in this range the maximum relative displacement is the same 

as for an elastic system independently of the ductility ratio w. 

c) The Sv values of R5 are multiplied by a factor of 1/ 12W -1 . 

d) A transition line is drawn from the limiting frequency of R5 to 

the elastic spectrum at the limit of R6. 
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Figure 2-1 Newmark's Inelastic Response Spectra 



While the assumption of equal maximum relative displacement (an 

acceleration ratio of l/~) is intuitively clear for small frequencies, 

the suggested ratio in range 5 is based on energy considerations, as 

shown on Fig. 2.2. 

If we let Energy of Elastoplastic system = Energy of Elastic 

system, we can write: 

1/2k u~e = 

Replacing um = ~Uy and rearranging terms, we obtain 

u 
--..L = __ ._'---_ 

ume /2]1-

In the range of high frequencies, on the other hand, Newmark sug-

gests that the ductility requirements increase so rapidly with earthquake 

intensity that systems should be designed to remain elastic. This leads 

to the rule that the acceleration is constant independently of the duc-

til ity factor ]1. 

Inelastic Response Spectra Using Equivalent Elastic Systems 

Another approach which is sometimes used in determining the inelas-

tic response of a single D.O.F. system is to replace the inelastic system 

by an elastic system with an equivalent stiffness and damping factor 

(Fig. 2.3). 

The equivalent stiffness and damping factors are given as 



u 
y 

Ll 
me 

,. 

u 
u = llu m y 
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where: 

k = K 
ef ]1char 

Sef = S + .£. (1 1 ) 
TI ]1cha r 

k = actual stifness factor of elastoplastic system 

]1char ductility factor corresponding to a char~cteristic dis
placement or strain. For a ~teady-state response, ]1char 
is the maximum]1. For a transient response on the other 
hand, ]1char is taken as a fraction of the maximum ductil
ity, ]1, typi ca lly 2/3]1. 

S = viscous damping of the elastoplastic system. 

Processing of Earthquakes 

Our proceeding study and analysis will be based on the basis of 

nine earthquake records available at M.I.T. 

Earthquake Component Maximum Recorded 
Ground Acceleration 

El Centro 1940 N-5 .319g 

E1 Centro 1940 E-W .218g 

Taft 1952 N-69-W .157g 

Taft 1952 S-21-W .178g 

Helena 1935 N-S .140g 

Helena 1935 E-W .152g 

Golden Gate 1957 5-80-E .128g 

Olympia 1949 N-l0-W .184g 

Olympia 1949 N-80-E . 3189 



These records were selected because they are normally considered as 

representing typical motions on firm ground. This assumes that the 

motion generated by each of them is based on a record registered on 

firm ground. It does not therefore account for the effect of local 

soil conditions which may in fact exist and thus distort the records. 

The records had a standard base line correction applies to them, 

as suggested by Berg and Housner (ref. 4). 

Determination of Response Spectra 

The nonlinear system considered in this work is the e1astop1astic 

system shown in Fig. 2.4. The equation of motion for the 1 D.O.F. sys-

tern shown subjected to a ground acceleration is 

or 

where 

.. 
MIJ. + cu + kF (u) Mu 

g 

u + 2p w u + w2 F(u) 

M = mass of the 1 D.O.F. system 

u = displacement of the mass relative to ground 

F(u)= spring force divided by initial stiffness 

k = initial stiffness of the spring 

c = coef. of viscous damping 

p - c = percentage of critical damping 
21kM 
ground acceleration 

(2-1) 

Equation (2-1) can be transformed to a nondimensional form by defining 

a dimensionless response z as 
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where 

and by defining f(z) = 

Note that f(z) = z 

= 1 

and 

_ u 
z -uy 

z max 

F(u) as shown in Fig. 2.5. uy 

for z < 1 

for z > 1 

Substituting for z in Eq. (2-1), we obtain 

or 

u 
= -k (~) 

2 Mu 
= -w (--..9..) 

fy 
(2-2) 

From Eq. (2-2) we see that the dimensionless response z = ~ of 
uy 

a nonlinear system depends on 

a) The fraction of critical damping, p. 

b) The initial undamped natural period of the system, T 
its frequency w. 

c) The ratio MUg/Fy. 

Simply, Z = f(S, T, M~'g/Fy)' 

2'1f 
= -'''' or 

w 

Through numerical integration of the equation of motion, using the 

available earthquake records, the time history response of the system 

could be obtained.(Fig. 206). The nine records used were digitized at 



sponse obtained defines the maximum response of the system umax ' which in 

turn defines the ductility of the system ~ = umax/uy ' 

This maximum response is defined for one given single D.D.F. system 

with a given S, T, Fy ' M and subjected to a given ground acceleration ug. 

By varying Fy we can end up with a plot of umax vs. MUgmax/Fy defined for 

certain T and S as shown in Fig. 2.7. 

We can repeat the same procedure for different values of natural per

iod. From the generated plots we can extract by interpolation plots of the 
... .. 

acceleration ratio uma/Ugmax versus frequency (Fig. 2-8) for different 

damping factors. 

Computer Program and Generation of Plots 

The amount of effort to be spent on computations and generation of 

plots made the use of the computer necessary. The numerical integration pro

cedure used in generating the maximum response was based on a central dif

ference formula. 

Equation (2-1) can be rewritten as: 
. 

F(un) (2-3) ~·1 un + 2 S w M un + = - M ugn 

\vhere un+1 - 2u,: + u 1 n-
un = 

flt2 

un+l - u n-l 
un = 2flt 

Substituting for un and un in Equation (2-3) and rearranging terms, 

we obtain the recurrence formula: 
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Since u 1 is not defined at t = 0, we assume a linear acceleration durn-
ing the first time interval to obtain: 

1 At2 2 + SW6t 1 2·· 1 ul = - 6 ~ ugo 2 2 - 6" 6t ug1 ---------:2.:---.:-2 
1 + SW6t + (1/6)w 6t 1 + SW6t + 1/6w 6t 

Using thenthe recurrence formula for a given set of values of U'g correspond

ing to an earthquake record, the maximum response umax was calculated. Plots 

similar to those of Fig. (2-7) and (2-8) could then be extracted. 

The computer was used to determine all the desired spectral curves 

and to generate plots similar to that of Fig. 2-8. Plots of pseudo veloc-

ity ratio versus frequency and displacement ratio versus frequency were 

also generated. Having these three sets of plots thus furnished all the 

necessary information needed to proceed with the analysis and comparisons. 

This is the topic of the next chapter. 

Additional Considerations 

The computer program developed for this study was assigned to take 

a standard range of frequencies .03 to 20.0 cycles per second with 57 

points uniformly spaced on a logarithmic scale. The value of damping con-

sidered was .05. Although other values of damping could be considered, 

the choice of only one value seemed to provide sufficient information as 

far as the intention of this work is concerned--that is, evaluating New-

mark1s procedure for obtaining inelastic response spectra and the second 

procedure used by replacing the nonlinear system with a linear one with 

modified effective stiffness and damping factors. 



CHAPTER 3 

Evaluation of Newmark's Rule 

As described in Chapter 1, for an elastic system the pseudo accel

eration Sa' defined as w2Sd, will be a very close approximation to the 

maximum absolute acceleration for usual values of viscous damping. In a 

s imil ar way the pseudo velocity wi 11 represent a good estimate of the 

maximum relative velocity except in the low frequency range. (Notice that 

the velocity is not an important design parameter). Thus the possibility 

of reading displacement, velocity and acceleration from a unique diagram. 

For an elasto-plastic system, on the other hand, if uy is the yield 

displacement, fy the yield force, M the mass and ko the initial or elastic 

stiffness, for values of the ductility ratio ~ larger than 1 the maximum 
f 

acceleration is limited to MY 

With 2 _ ko 
w -M 0 

f k u 2 
Ymax =1=~=w uy M M 0 

Whereas umax = ~u . y 

Defining thus the maximum acceleration, or pseudo-acceleration as 
2 wouy in order to read the maximum relative displacement from the same dia-

gram, it is necessary to multiply the displacement scale by the appropriate 

factor P. This is consistent with Newmark's procedure. 

In these conditions it might be more appropriate to plot directly 



the pseudo-acceleration versus frequency, rather than the pseudo-velocity 

(defined now as wUy)' Such a plot is shown in Figure 3.1 for the E-W 

component of the 1940 E1 Centro earthquake. These plots could now be used 

in two different ways: 

a) for a given one-degree-of-freedom system with known characteris

tics ko' M, fy one could find for the particular earthquake con
sidered the ductility requirements by interpolating the value of v. 

b) for a system with known ko' M and a desired design ductility V 

one could read the pseudo-acceleration and obtain the necessary 
value of the yield force fy to guarantee this ductility. 

Notice that in Fig. 3.1 the acceleration ~max is divided by the maxi

mum ground acceleration of the earthquake Ug, to give a dimensionless am

plification ratio as was done in Garcia1s work. 

While these plots might be simpler to use for design purposes, plots 

of pseudo-velocity (scaled also by dividing by the maximum ground velocity) 

were also obtained. These plots are the ones usually shown for elastic 

spectra and permit thus an easier comparison. In addition it is easier to 

visualize in these plots the seven spectral ranges defined by Newmark. 

Of course both kinds of plots are directly related, the second one being 

simply the first divided by Wo at each frequency. Figure 3.2 shows the 

normalized pseudo velocity spectra corresponding to Fig. 3.1. Because of 

the normalization the factor to pass from Fig. 3.1 to Fig. 3.2 would be 

Ugmax/woUgmax' where ugmax is the maximum ground velocity of the earth

quake. This normalization is of no consequence, however, to the remainder 

of the work. 
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Similar plots were obtained for each of the nine accelerograms con

sidered. Each diagram, corresponding to a given ductility factor ~, was 

then treated individually and an envelope was drawn with the seven ranges 

of Newmark's spectrum 0 For each range the ratio was then obtained between 

the elastic spectral value (~ = 1) and the particular curve considered. 

Fig. 3.3 illustrates the envelope for ~ = 1 and Fig. 304 the correspond

ing one for ~ = 5. The resulting ratios are shown in Tables 3.1 to 3.7 

for the seven ranges. It should be pointed out that for some of the 

eqrthquakes the extreme ranges could not be located within the frequency 

range studied (0.03 to 20 cps). 

For each one of the ranges the ratios were then plotted as a function 

of ductility factor ~ for all accelerograms. Figures 3.5 to 3.11 show 

the resulting upper and lower bounds, the average curves, Newmark's recom

mended curve, and the curve that would best fit the average. It is impor

tant to notice that a lower value of the ratio (as corresponding to the 

lower bound) represents a more strict requirement (larger ductility for 

a given fy or larger value of fy for a desired ductility). 

The best fit curves shown in these figures were obtained by a trial 

and error procedure. An equation of the form 

R = [a(~-l) + l]Y (3-1) 

was assumed to apply. This functional form would of course include New

mark's factors, ~ for the first four range, (2V_l)1/2 for the fifth range, 

and one for the last range. 

The average values for the nine accelerograms were then plotted in 
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log-log paper versus a(~-l) + 1 for different values of a and a straight 

line was fitted through them. In this way, an optimum value of a was 

determined visually for each range, then the corresponding value of y 

measured as the slope of the straight line. For range 1, R = ~ was still 

found to be the best fit. For range 2 a straight line with a = 1.16 was 

also seen to be satisfactory directly from Fig. 3.6. For the other five 

ranges the plots are shown in Figs. 3.12 to 3.16. It should be noticed 

that the decision on the best values is somewhat arbitrary and in fact 

different sets of values of a and y can provide very similar results. The 

final values chosen are shown in Table 3.B. 

Discussion of Results 

F-igures 3.5 to 3.11 permit now an evaluation of Newmark's suggested 

procedure. Range 1 corresponding to low frequencies has very little scat

ter and shows that the assumption of R =~ (same maximum displacement for 

the elastic and inelastic systems) is quite satisfactory. From an intui

tive point of view this has to be so, since the system being very flex

ible remains essentially at rest. 

This rule is still satisfactory for range 2, although the scatter in

creases considerably and a value of a = 1.16 would provide a better fit. 

Newmark's procedure would provide, however, a reasonable answer, slightly 

more conservative than the average of the nine records. 

For range 3 it can be seen that Newmark's rule coincides almost \'.Jith 

the lower bound, being therefore more conservative than for the two previ

ous cases. The average is still well fitted by a straight line, but the 
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coefficient a becomes now 1.4. This indicated that in this range the 

displacements of the inelastic system will generally be smaller than those 

of an elastic system, something that would never happen in Newmark's pro

cedure. 

Newmark's rule fits again reasonably well the average in range 4, but 

becomes slightly less conservative, particularly for high values of~. 

In range 5 there is once more relatively good agreement between New

mark's factor (/2~-1) and the average curve, although expressions of the 

form R = (4~_3)·4l or (5~_4)·38 seem to provide a better fit for the data 

set used. 

In range 6 Newmark's rule suggests a linear transition and there is 

not therefore a unique expression for the spectral ratio independent of 

frequency. In range 7 Newmark's rule becomes again conservative. It 

should be noticed, however, that R changes much more slowly with increas-

ing ductility, suggesting, as pointed out by Newmark, that ductility re-

quirements increase very rapidly with earthquake intensity. While there 

is still a functional relationship between R and ~ (as it should physic

ally), the curve is extremely flat and not very different from Newmark's 

horizontal line. 

In order to visualize better the relationship between these ratios 

and the displacements of the system, plots were also obtained of the ratio 

of the maximum inelastic displacement for different values of~ to the 

maximum displacement of an elastic system as a function of frequency. 

These plots shown in Figs. 3.17 to 3.25 show clearly that for low frequen-

cies, this ratio is essentially 1, becomes smaller than 1 particularly 



ln tne jra range, tnen lncreases somewnat, ana ln tne Tlnal tWO ranges 

it increases monotonically and very fast. These figures show actually 

the upper and lower bounds of the results obtained for ductility ratios 

~ from 1 to 10. In the high frequency range the upper bound corresponds 

to ~ = 10 and the lower bound to ~ = 1. This is not true, however, over 

the complete frequency range. 
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Range y R = [a(V-1) + l]Y 

1 1 R = v 

2 1 R = 1.16 (v-l) + 1 

3 1.4 R = 1. 4 (v- 1) + 1 

4 1.5 .825 R = [1.5 (v-1) + 1]·825 

4 .41 R = [4 (v-1) + 1]·41 
5 

5 .38 R = [5 (v-1) + 1]·38 

6 2.5 .335 R = [2.5 (v-1) + 1]·338 

7 2 .11 R = [2 (v-1) + 1].11 

TABLE 3.8 - SUGGESTED EQUATIONS 



The Equivalent Linear System Approach 

In order to evaluate this approach a separate computer program was 

implemented. For a system with an initial frequencyw o and a ductility 

ratio ~ larger than 1, a characteristic ductility of 2~/3 was selected 

and the frequency and damping of an equivalent system were computed as 

indicated in Chapter 2. The response of this equivalent system to the 

desired earthquake was then computed by numerical integration. The same 

series of plots \'iere obtained as for the inelastic systems. 

In this case the pseudo acceleration of the system will be 

2 

Sa = 2 S = 
Wo 

Sd (4-1) ---Weq d 
11char 

and since Sd = ~uy (4-2) 

Sa 
2 11 (4-3) = Wo u y llchar 

Notice, however, that the equivalent viscous damping, computed from 

the area of the hysteresis loop and added to the original viscous damping 

of 5% of critical, results now in large values of p, particularly for large 

duct; 1 i ty ra ti os. Under these condi ti ons the agreement behveen the pseudo-

acceleration and the maximum absolute acceleration of the system deterior-

ates. Results obtained were, however, the pseudo-acceleration, since 

this is what would be normally used in practice. 



The same procedure described in Chapter 3 was repeated in this case, 

obtaining for each spectrum its envelope and determining in each range 

the ratio between elastic (~ = 1) and inelastic values. In this case, 

however, the extreme ranges could not be found within the range of fre-

quencies studied except for a few cases, and the inelastic spectra showed 

only clearly the intermediate ranges 3, 4, and 5. For most buildings 

those are nevertheless the important ranges. 

Tables 4.1 to 4.3 show the ratios obtained for the nine accelerograms 

in these ranges, and Figs. 4.1 to 4.3 show the upper and lower bounds, 

the average and the best fit curve obtained in Chapter 3. Figures 4.4 

to 4.6 show the upper and lower bounds obtained for this approach and for 

the actual inelastic systems (Chapter 3), indicating the common region, 

In range 3 the approximate metnod provides reasonably good results, 

in fact slightly on the conservative side. In range 4 on the other hand 

the approximate results seem somewhat unconservative (above the true re

sults), but the common region is still a substantial part of the total 

area between bounds. (Notice that the trend is similar to that observed 

with Newmark's method, although the values are different). In this range 

accelerations would be on the average underestimated by maybe 20%. In 

range 5 again the approximate method seems conservative for large values 

of the ductility ratio and only slightly unconservative for ductilities 

around 3. In the overall, the procedure exhibits the right trend and 

the estimates of accelerations (or required yield level fy) are probably 

acceptable considering the variation from one earthquake to another (as 

illustrated by the scatter in the results) and the uncertainties involved 

in selecting a design earthquake, 
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It is interesting, however, to compare also maximum displacements. 

Figures 4.7 to 4.15 show the ratio of the maximum inelastic to the maxi

mum elastic displacement, the first one being obtained by the approximate 

method. Comparing these figures to Figs. 3.17 to 3.25, it can be seen 

that, while the overall trend is again correct, maximum displacements 

seem to be consistently underestimated by the approximate method, the 

accuracy being worse than for the accelerations. This is logical, con

sidering that if Sa is correct, Sd will now be ~char (Sa/w~) instead of 

(Sa/w;). If the resulting displacements were multiplied by the factor 

~/~char' in our case 1.5, the agreement would be much better. 
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CHAPTER 5 

Conclusions and Recommendations 

The purpose of this study was to evaluate two procedures often used 

to estimate response parameters for inelastic systems subjected to earth

quakes. The first one is a set of rules suggested by Newmark to derive 

inelastic spectra from the elastic response spectrum. The second was a 

method often used, both for single and multidegree of freedom systems, 

replacing each inelastic spring by an equivalent linear spring with stiff

ness and damping functions of a characteristic strain. 

Results shm'ln in Chapter 3 indicate that Newmark's rule is always 

close to the average for the nine accelerograms considered or on the con

servative side. Only in ranges 3 and 6 the difference (on the conserva

tive side) might warrant a more accurate expression. Best fit relation

ships between R (ratio of elastic to inelastic spectrum) and duc-

tility ~ were obtained, but such a refinement is probably not warranted. 

It is interesting to notice, however, that the inelastic displacement may 

be less than the elastic displacement, particularly in range 3. The 

values shown in Chapter 3 would permit to obtain only average relation

ships as done in this work, but also maximum (lower bound) or standard 

deviations etc. Results are, however, limited to the set of earthquakes 

studied. 

The second procedure investigated reproduces also fairly well the 

overall trend, although the agreement is not as satisfactory as with New

mark's rule. Using a characteristic ductility of 2/3 of the maximum, 

results for the accelerations are reasonably good, but the displacement 



-. -

" 
of the equivalent linear system is consistently smaller than that of the 

inelastic system. This would not occur if the displacement was simply 

computed as Sd = ~(S /w2
). a 0 

Due to limitations in computer time results were only obtained for 

systems with an initial, viscous damping of 5% of critical. The same pro

grams could be used to study systems with other values of damping (0, 0.5, 

1,2 and maybe 7 and 10%). This would permit to determine if the value 

of viscous damping influences the previous conclusions or if they can be 

generalized. Continuation of the study for other values of damping would 

seem advisable. 
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