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ABSTRACT

EFFECT OF DUCTILITY ON RESPONSE SPECTRA
FOR ELASTO-PLASTIC SYSTEMS

The purpose of this work is to evaluate two procedures used
to estimate response spectra for inelastic systems subjected to
earthquakes. The first, which is a set of rules suggested by New-
mark, derives the inelastic response spectrum for the elastic one.
The second is a procedure which replaces the nonlinear spring of
the system by an equivalent linear one with stiffness and damping
obtained as functions of a characteristic strain.

It is concluded that Newmark's procedure, although approxi-
mate, performs quite satisfactorily. The second procedure, although
not as satisfactory as Newmark's, reproduces the general trends of
spectra quite well also.
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PREFACE

The work described in this report is based on the thesis by
Samir Sehayek, presented to the Civil Engineering Department at
M.I.T. in partial fulfillment of the reguirements for the degree
of Master of Science. The research was supervised by Professor
José M. Roesset and was made possible through Grant GI-43106 from
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source of information in earthquake design. It is clear, however, that

there is no reason to assume that the earthquake that might occur in any

given location would have precisely the same characteristics multiplied

throughout the whole range of frequencies by a constant factor.

One approach towards a better characterization of strong motions was

taken by Newmark, recognizing seven distinct ranges in the response spec-

trum (Fig. 1-5).

a)

A range of very small frequencies in which the relative displace-
ment of the 1-DOF system is practically equal to the maximum
ground displacement (in other words the structure is so flexible
that it remains practically at rest).

A transition range.

A range of frequencies over which the maximum relative displace-
ment of the 1-DOF system does not change very much in the average
and can be assumed as constant, function of damping.

An intermediate range of frequencies over which the maximum rela-
tive velocity of the 1-DOF system does not change very much and
can be assumed to be a constant, function of damping.

A range of frequencies over which the maximum absclute accelera-
tion of the 1-DOF system does not change very much in the average
and can be assumed to be a constant, function of damping.

A second transition zone.

A range of high frequencies for which the absolute acceleration
of the 1-DOF system is practically equal to the maximum ground
acceleration (in other words the structure is so stiff that it
follows practically the motion of the ground).

Figure 1-5 shows the basic Newmark spectrum as defined above. To
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CHAPTER 1 - INTRODUCTION

Earthquake considerations have always represented special problems
in the design of buildings. Due to the unpredictable nature and magni-
tude of earthquakes, their effects can be treated only in an approximate
way through sets of simplified rules. Within the last two decades, how-
ever, our knowledge and understanding of the subject have greatly im-
proved due to new analytical methods, the aid of computational tools,
and intense study and research undertaken by universities in this coun-
try and abroad.

Our aim in this report is to study and investigate some of these
analytical methods and rules and if possible to come up with some con-
clusions and recommendations as how to best use and apply these methods
in design practice.

Basically, our only means of studying the effects of an earthquake
is through an earthquake record. Such a record, recorded by a strong
motion accelerograph, reproduces the variation of the ground accelera-

tion to be given by a function of the form:

0 for t <0
v = |f(t) 0<t<Ty
0 Tyt

the response of a single degree-of-freedom system (Fig, 1-1), to a base
motion represented by an acceleration ;S = f(t) could be determined

using Duhamel's integral. This integral is given as
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1 -8{t-1)s
u(t) = -1 [O o) e sin wy(t-7,)d (1)
where Wy = damped natural frequency
_wl _ g2 . wZ(]_pZ)
B = wp
p = fraction of critical damping.

Now we can define the maximum value of u(t) as

Sd(w,p) = max. over tlu(t)l

For a given value of p, S, is known as the displacement response spectrum.

d
In a similar way one can define a velocity response spectrum for u(t)

and an acceleration response spectrum for y(t).

The maximum relative velocity of a single D.0.F. system is very close
to w times the maximum relative displacement except for small values of w.
It is thus more common to define a pseudo velocity as w|u(t)| and pseudo

velocity respon-e spectrum as
S (w,p) = w Sy(w,p)
In the same way we define a pseudo acceleration response spectrum as
5,(,p) = wS,(0,p) = ® S(w,p) (2)

Hence it is obvious that once we compute one of these spectra (cor-
responding to a given value of damping), the other two are immediately
determined using relation (2).

What is usually done in practice is to subject the single D.O.F.

system with a given natural period and critical damping (Fig. 1-1) to



the earthquake under study. The mass will undergo a maximum displace-
ment relative to the fixed reference frame, which is usually the ground
(Fig. 1-2).

Similarly by subjecting a large number of 1-DOF systems with differ-
ent frequencies and corresponding to a given value of damping to this
same record, their maximum response can be computed. A displacement
response spectrum is then plotted as the maximum relative displacement
versus the natural period or frequency of the system.

Following the same procedure, response spectra for different values
of damping can be obtained (Fig. 1-3), thus providing all the necessary
information for the elastic design of 1-DOF systems.

Because of the direct relationship between the displacement, pseudo
velocity and pseudo acceleration response spectra, it has become custom-
ary to plot the pseudo velocity spectrum as a function of period or fre-
quency on a double logarithmic scale. Fig. 1-4 shows the spectrum of
the 1940 E1 Centro earthquake plotted this way. Horizontal lines corre-
spond to constant pseudo velocity values. Lines inclined at 45 degrees
(with + ve slope) represent the constant relative displacement values.
Those with the negative slope are of constant pseudo acceleration values.
It is thus possible from this plot to read simultaneously the values of
these three components corresponding to any value of period or frequency
of the 1-DOF system.

The set of response spectra used in practice was for a long time
that of the 1940 E1 Centro earthquake. This earthquake has been thoroughly

documented and for some time was considered a sufficient and reliable
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source of information in earthquake design. It is clear, however, that

there is no reason to assume that the earthquake that might occur in any

given location would have precisely the same characteristics multiplied

throughout the whole range of frequencies by a constant factor.

One approach towards a better characterization of strong motions was

taken by Newmark, recognizing seven distinct ranges in the response spec-

trum (Fig. 1-5).

a)

A range of very small frequencies in which the relative displace-
ment of the 1-DOF system is practically equal to the maximum
ground displacement (in other words the structure is so flexible
that it remains practically at rest).

A transition range.

A range of frequencies over which the maximum relative displace-
ment of the 1-DOF system does not change very much in the average
and can be assumed as constant, function of damping.

An intermediate range of frequencies over which the maximum rela-
tive velocity of the 1-DOF system does not change very much and
can be assumed to be a constant, function of damping.

A range of frequencies over which the maximum absolute accelera-
tion of the 1-DOF system does not change very much in the average
and can be assumed to be a constant, function of damping.

A second transition zone.

A range of high frequencies for which the absolute acceleration
of the 1-DOF system is practically equal to the maximum ground
acceleration (in other words the structure is so stiff that it
follows practically the motion of the ground).

Figure 1-5 shows the basic Newmark spectrum as defined above. To
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construct design spectra of this nature, it is thus necessary to:

1) Define the design earthquake by means of its ground acceleration,
velocity and displacement.

2) Once these three parameters have been characterized, the design
spectrum for a given percentage of critical damping requires the
specifications of seven quantities. The quantities suggested by
Newmark are the ratios of:

dmax/dG ’ fC/fB ? fF/fD
vmax/VG ’ fC/fA
amax/aG ’ fE/fD

On the basis of the 1940 E1 Centro response spectra, newmark suggests:

fC/fB = 4 . fE/fD = 4
fc/fA =10 . fF/fD = 10
And the ratios of dmax/de’ Vmax/VG and amax/aG for different values of

damping are given as:

Da?ping dmax/dG Vmax/VG amax/aG
0 2.5 4.0 6.4
0.5 2.2 3.6 5.8
1 2.0 3.2 5.2
2 1.8 2.8 4.3
5 1.4 1.9 2.6
7 1.2 1.5 1.9

10 1.1 1.3 1.5
20 1.0 1.1 1.2

Garcia (ref. 1) extended Newmark's work by considering the records of five

earthquakes (E1 Centro 1940, Taft, Olympia, Helena and Golden Gate). The

average values suggested by Garcia are:



Dayping dmax/dG Vmax/VG amax/aG
2.10 4.50 9.00

0.5 2.01 3.52 5.95
1.91 3.25 5.00

1.82 2.80 4.03

1.56 2.08 3.01

10 1.33 1.59 2.26
20 1.08 1.13 1.67

While these values are only slightly different from those of Newmark,
the frequency ratios were on the other hand somewhat different, thus sug-
gesting slight modification over those proposed by Newmark. Garcia sug-

gested that the values of fB and fE could be computed from the equation

-.17
fC/fB )

F/f

6.1 (1 + 3008

D 2.1 + 0.283 log (1 + 4508)

thus showing damping dependence instead of taking fC/fB = fE/fD = 4 as
suggested by Newmark.

Since Newmark's set of proposed data is the one that is still used
in practice, it will be the one we will be referring to in succeeding
chapters.

The preceding discussion provided us with some information concern-
ing elastic 1-DOF systems. Using modal analysis and some approximations,
this information provides the basis for the design of linear multi-DOF

systems.
Modal analysis involves the determination of the responses in each

mode separately and the use of superposition to provide the total response.

The total response is normally approximated by using the square roct of



the sum of the squares of the maximum responses determined for each nor-
mal mode.

The approximation introduced by superimposing maxima (or the square
of the sum of the squares) is an area which is under discussion and will
not be dealt with here. Rather, we will shift our discussion to the
behavior of nonlinear 1-DOF systems under strong ground motion.

Under a severe earthquake, design codes recognize that a structure
may not remain elastic and that a certain amount of yielding and plastic
deformation may‘take place in different components (except maybe for rather
flexible structures).

| The mathematical determination of the dynamic response of inelastic
systems, once a nonlinear model has been selected, offers 1ittle problem
and requires only a step-by-step numerical integration of the equation of
motion. The significant questions in this area relate to:

a) The modeling of the structure; i.e., selection of nonlinear

springs which will properly reproduce the behavior of different

structural components, and the determination of which type of
nonlinear effects is really significant.

b) The interpretation of results and their generalization into
design guidelines.
Some of the mathematical models describing nonlinear systems often used
are shown in Fig. 1-6.
A substantial amount of work has been carried out trying to determine
the varjation of maximum effects as a function of earthquake intensity,

elastic or ultimate strength and natural period. The first step in this
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direction was the determination of inelastic response spectra. Figs.
1.7 and 1.8 show response spectra for elastoplastic systems with zero
and 10% damping under the NS component of the 1940 E1 Centro earthquake
as reported by Blume, Newmark and Corning (ref. 2). Note that each
spectrum corresponds to a fixed value of the ductility factoru (ductil-
ity being defined as the ratio of the maximum distortion in the spring
to the limit elastic d{stortion).

Response spectra for other nonlinear systems have been obtained by
Veletsos (ref. 3). The results are often interpreted in a simple way by

comparing the response of a nonlinear system to that of an "eguivalent"

Tinear system. There are two main effects which characterize the re-
sponse of a single D.O.F. system in the inelastic range:

a) a reduction in the instantaneous or equivalent stiffness with
increasing deformation;

b) a loss of energy through hysteretic loops.

The first effect represents an increase in the natural period (or
a decrease in the natural frequency), while the second can be interpreted
as an increase in damping.

The purpose of the present work is to consider an elastoplastic sys-
tem (Fig. 1.6a) and subject it to five different earthquakes with a total
of 9 components (ET Centro 1940 NS, E1 Centro 1940 EW, Taft NW, Taft SW,
Helena NS, Helena EW, Golden Gate, Olympia NW, Olympia NE). Using a
numerical integration procedure, the respdnse spectra of each record for
different values of ductility , are obtained. These spectra are then

used to evaluate:
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(1) A procedure suggested by Newmark for shifting from the elas-
tic response spectra (M = 1) to any level of desired ductil-
ity for nonlinear systems. The details of this procedure
are described in Chapter 2.

(2) A procedure often used in practice to determine the response
of inelastic systems by replacing the nonlinear system by an
equivalent linear system. This, too, is described in Chap-
ter 2.

Chapter 2 covers the details of the two procedures mentioned above
and also the procedure followed to obtain the actual inelastic response
spectra for levels of ductility from u =1 to 10. Since we used nine
earthquake records, then nine different sets of plots were obtained, one
corresponding to each earthquake.

Similar plots were obtained using the approximate method.

In Chapter 3 Newmark's rule is defined. The analytical procedure
used to evaluate it is then described. This is followed by a discussion
on the results obtained and an evaluation of the above mentioned rule.
Chapter 4 follows the same procedure for the approximate method.

And finally, conclusions and recommendations concerning these two

methods are discussed in Chapter 5.



CHAPTER 2

Newmark's Inelastic Response Spectra

The procedure suggested by Newmark for obtaining inelastic response
spectra of single D.0.F. systems for any level of ductility is illustrated
graphically in Fig. 2.1.

These response spectra are intended to define the pseudo (or maximum
absolute) acceleration, Sa’ of the mass of the single D.0.F. system as a
function of damping and frequency. In order to determine the inelastic
response spectra for the maximum relative displacement, the curve obtained
by these rules is multiplied by the ductility factor M over the complete
range of frequencies. Clearly for an inelastic system it is no longer pos-
sible to read acceleration, velocity and displacement from a unique curve.

Newmark's procedure consists basically of the following steps:

a) The elastic response spectra (M = 1) of the single D.0.F. system

is divided into seven distinct ranges, as shown on Fig. 1.5. This
is shown as the curve for ¥ = 1 on Fig. 2.1.

b) For the frequency range covered by R1, R2, R3 and R4, the pro-
cedure is to multiply the SV values by a factor of 1/u, thus mak-
ing a downward vertical shift of the curve only. This implies
that in this range the maximum relative displacement is the same
as for an elastic system independently of the ductility ratio H.

c) The SV values of R5 are multiplied by a factor of 1/ Y2u -1 .

d) A transition line is drawn from the limiting frequency of R5 to
the elastic spectrum at the limit of RG6.
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While the assumption of equal maximum relative displacement (an
acceleration ratio of 1/u) is intuitively clear for small frequencies,
the suggested ratio in range 5 is based on energy considerations, as
shown on Fig. 2.2.

IT we let Energy of Elastoplastic system = Energy of Elastic

system, we can write:

2 _ 2
1/2k Upe = k uy U = 1/2 kuy

Replacing Uy, = uuy and rearranging terms, we obtain

uy% 1

Une 2y -1

In the range of high frequencies, on the other hand, Newmark sug-
gests that the ductility requirements increase so rapidly with earthquake
intensity that systems should be designed to remain elastic. This Teads
to the rule that the acceleration is constant independently of the duc-

tility factor y.

Inelastic Response Spectra Using Equivalent Elastic Systems

Another approach which is sometimes used in determining the inelas-
tic response of a single D.0.F. system is to replace the inelastic system
by an elastic system with an equivalent stiffness and démping factor
(Fig. 2.3).

The equivalent stiffness and damping factors are given as
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where: k

Hehar

Processing of

K o= —
Yehar

1
Hehar

2
Bof = BF 3 (- )

actual stifness factor of elastoplastic system

= ductility factor corresponding to a charccteristic dis-

placement or strain. For a steady-state response, Hehar
is the maximum u. For a transient response on the other
hand, Hehar is taken as a fraction of the maximum ductil-

ity, u, typically 2/3y.

viscous damping of the elastoplastic system.

Earthquakes

Our proceeding study and analysis will be based on the basis of

nine earthquake records available at M.I.T.

Earthquake Component Maximum Recorded
Ground Acceleration
E1 Centro 1940 N-S .319g
ET Centro 1940 E-W .218g
Taft 1952 N-69-W .157g
Taft 1952 S-21-W -178g
Helena 1935 N-S .140g
Helena 1935 E-W .152g
Golden Gate 1957 S-80-E .128g
Olympia 1949 N-10-W .184g

Olympia 1949 N-80-E .318g



These records were selected because they are normally considered as
representing typical motions on firm ground. This assumes that the
motion generated by each of them is based on a record registered on
firm ground. It does not therefore account for the effect of local
soil conditions which may in fact exist and thus distort the records.
The records had a standard base line correction applies to them,

as suggested by Berg and Housner (ref. 4).

Determination of Response Spectra

The nonlinear system considered in this work is the elastoplastic
system shown in Fig. 2.4. The equation of motion for the 1 D.0.F. sys-

tem shown subjected to a ground acceleration is

M+ cu + kF(u) = - MJg
or U+ 2p w U+ w? Flu) = - Jg (2-1)
where M = mass of the 1 D.0.F. system

u = displacement of the mass relative to ground
F(u)= spring force divided by initial stiffness
k = initial stiffness of the spring

¢ = coef. of viscous damping
c

p = = percentage of critical damping
2/kM
ag = ground acceleration

Equation (2-1) can be transformed to a nondimensional form by defining

a dimensionless response z as
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where Us u and z = = u

and by defining f(z) = Fu) as shown in Fig. 2.5.

Note that f(z)

1l
N

for z < 1
=1 for z > 1

Substituting for z in Eq. (2-1), we obtain

uyz + pruyi + wzuyf(z) = - ug
or z + 2pwz + wzf(z) = - U
u
h
u
= -k (D)
Yy
Mu
2
= - (+9) (2-2)
y
From Eq. (2-2) we see that the dimensionless response z = %—- of
Yy
a nonlinear system depends on
a) The fraction of critical damping, p.
b) The initial undamped natural period of the system, T = %ﬁ or

its frequency w.

c) The ratio Mug/Fy.
S - F(B T M .
imply, z = f( ug/Fy)

Through numerical integration of the equation of motion, using the

available earthquake records, the time history response of the system

could be obtained.(Fig. 2.6). The nine records used were digitized at



sponse obtained defines the maximum response of the system u
u, .
/ y

This maximum response is defined for one given single D.0.F. system

max which in

turn defines the ductility of the system u = Uax
with a given B8, T, Fy, M and subjected to a given ground acceleration ug.
By varying Fy we can end up with a plot of Unax VS* Mugmax/Fy defined for
certain T and B as shown in Fig. 2.7.

We can repeat the same procedure for different values of natural per-
iod. From the generated plots we can extract by interpolation plots of the

acceleration ratio Jm versus frequency (Fig. 2-8) for different

ax/ugmax
damping factors.

Computer Program and Generation of Plots

The amount of effort to be spent on computations and generation of
plots made the use of the computer necessary. The numerical integration pro-
cedure used in generating the maximum response was based on a central dif-
ference formula.

Ecuation (2-1) can be rewritten as:

Mu, + 28w M u, * F(un) = - M Ugn (2-3)
where o Upgy T Zuﬁ U
Upg = 2
At
A B
n 2At

Substituting for ﬂn and ﬁn in Equation (2-3) and rearranging terms,

we obtain the recurrence formula:
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Since u,_; is not defined at t = 0, we assume a linear acceleration dur-

ing the first time interval to obtain:

2 2 + Buwht 1 .2 1
g0 77 " g At g1 2
90 1 + guat + (1/6)fAt T+ guat + 1/66°at

up = - g At 5
Using thenthe recurrence formula for a given set of values of[}g correspond-
ing to an earthquake record, the maximum response Unay Was calculated. Plots
similar to those of Fig. (2-7) and (2-8) could then be extracted.

The computer was used to determine all the desired spectral curves
and to generate plots similar to that of Fig. 2-8. Plots of pseudo veloc-
ity ratio versus frequency and displacement ratio versus frequency were
also generated. Having these three sets of plots thus furnished all the

necessary information needed to proceed with the analysis and comparisons.

This is the topic of the next chapter.

Additional Considerations

The computer program developed for this study was assigned to take
a standard range of frequencies .03 to 20.0 cycles per second with 57
points uniformly spaced on a logarithmic scale. The value of damping con-
sidered was .05. Although other values of damping could be considered,
the choice of only one value seemed to provide sufficient information as
far as the intention of this work is concerned--that is, evaluating New-
mark's procedure for obtaining inelastic response spectra and the second
procedure used by replacing the nonlinear system with a Tinear one with

modified effective stiffness and damping factors.



CHAPTER 3

Evaluation of Newmark's Rule

As described in Chapter 1, for an elastic system the pseudo accel-
eration Sa’ defined as wZSd, will be a very close approximation to the
maximum absolute acceleration for usual values of viscous damping. In a
similar way the pseudo velocity will represent a good estimate of the
maximum relative velocity except in the low frequency range. (Notice that
the velocity is not an important design parameter). Thus the possibility
of reading displacement, velocity and acceleration from a unique diagram.

For an elasto-plastic system, on the other hand, if uy is the yield
displacement, fy the yield force, M the mass and kO the initial or elastic
stiffness, for values of the ductility ratio u laraer than 1 the maximum

f
acceleration is Timited to MX"

k
. 2 _ "o
W'lth wO_W
f k u
y =_\}i:_o_:y_=w2u
ma X M oy
Whereas umax = UUy

Defining thus the maximum acceleration, or pseudo-acceleration as
wguy in order to read the maximum relative displacement from the same dia-
gram, it is necessary to multiply the displacement scale by the appropriate

factor 1. This is consistent with Newmark's procedure.

In these conditions it might be more appropriate to plot directly



the pseudo-acceleration versus frequency, rather than the pseudo-velocity
(defined now astuuy). Such a plot is shown in Figure 3.1 for the E-W
component of the 1940 E1 Centro earthquake. These plots could now be used
in two different ways:

a) for a given one-degree-of-freedom system with known characteris-
tics ko, M, fy one could find for the particular earthquake con-
sidered the ductility requirements by interpolating the value of u.

b) for a system with known ko, M and a desired design ductility u
one could read the pseudo-acceleration and obtain the necessary
value of the yield force fy to guarantee this ductility.

Notice that in Fig. 3.1 the acceleration ymax is divided by the maxi-
mum ground acceleration of the earthquake Ug, to give a dimensionless am-
plification ratio as was done in Garcia's work.

While these plots might be simpler to use for design purposes, plots
of pseudo-velocity (scaled also by dividing by the maximum ground velocity)
were also obtained. These plots are the ones usually shown for elastic
spectra and permit thus an easier comparison. In addition it is easier to
visualize in these plots the seven spectral ranges defined by Newmark.

Of course both kinds of plots are directly related, the second one being
simply the first divided by W, at each frequency. Figure 3.2 shows the
normalized pseudo velocity spectra corresponding to Fig. 3.1. Because of
the normalization the factor to pass from Fig. 3.1 to Fig. 3.2 would be

/

where U is the maximum ground velocity of the earth-

u Wy
gmax’ oYgmax’ gmax

quake. This normalization is of no consequence, however, to the remainder

of the work.
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Similar plots were obtained for each of the nine accelerograms con-
sidered. Each diagram, corresponding to a given ductility factor ¥, was
then treated individually and an envelope was drawn with the seven ranges
of Newmark's spectrum. For each range the ratio was then obtained between
the elastic spectral value (M = 1) and the particular curve considered.
Fig. 3.3 illustrates the envelope for W =1 and Fig. 3.4 the correspond-
ing one for 1 = 5. The resulting ratios are shown in Tables 3.1 to 3.7
for the seven ranges. It should be pointed out that for some of the
eqrthquakes the extreme ranges could not be located within the frequency
range étudied (0.03 to 20 cbs)u

For each one of the ranges the ratios were then plotted as a function
of ductility factor u for all accelerograms. Figures 3.5 to 3.11 show
the resulting upper and Tower bounds, the average curves, Newmark's recom-
mended curve, and the curve that would best fit the average. It is impor-
tant to notice that a lower value of the ratio (as corresponding to the
lower bound) represents a more strict requirement (larger ductility for
a given fy or larger value of fy for a desired ductility).

The best fit curves shown in these figures were obtained by a trial

and error procedure. An equation of the form
=T Y
R = [a(u-1) + 1] (3-1)

was assumed to apply. This functional form would of course include New-
mark's factors, u for the first four range, (211—1)1/2 for the fifth range,

and one for the last range.

The average values for the nine accelerograms were then plotted in
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Tog-log paper versus o{u-1) + 1 for different values of o and a straight
Tine was fitted through them. In this way, an optimum value of o was
determined visually for each range, then the corresponding value of vy
measured as the slope of the straight line. For range 1, R = U was still
found to be the best fit. For range 2 a straight line witha = 1.16 was
also seen to be satisfactory directly from Fig. 3.6. For the other five
ranges the plots are shown in Figs. 3.12 to 3.16. It should be noticed
that the decision on the best values js somewhat arbitrary and in fact
different sets of values of o and vy can provide very similar results. The

final values chosen are shown in Table 3.8.

Discussion of Results

Figures 3. 5to 3.11 permit now an evaluation of Newmark's suggested
procedure. Range 1 corresvonding to low frequencies has very little scat-
ter and shows that the assumption of R =u (same maximum displacement for
the elastic and inelastic systems) is quite satisfactory. From an intui-
tive point of view this has to be so, since the system being very flex-
ible remains essentially at rest.

This rule is still satisfactory for range 2, although the scatter in-

creases considerably and a value of @ = 1.16 would provide a better fit.
Newmark's procedure would provide, however, a reasonable answer, slightly
more conservative than the average of the nine records.

For range 3 it can be seen that Newmark's rule coincides almost with

the lower bound, being therefore more conservative than for the two previ-

ous cases. The average is still well fitted by a straight line, but the
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coefficient o becomes now 1.4. This indicated that in this range the
displacements of the inelastic system will generally be smaller than those
of an elastic system, something that would never happen in Newmark's pro-
cedure.

Newmark's rule fits again reasonably well the average in range 4, but
becomes slightly less conservative, particularly for high values of u.

In range 5 there is once more relatively good agreement between New-
mark's factor (/2u-T) and the average curve, although expressions of the

form R = (4u—3)'41 )-38

or (5u-4 seem to provide a better fit for the data
set used.

In range 6 Newmark's rule suggests a linear transition and there is
not therefore a unique expression for the spectral ratio independent of
frequency. In range 7 Newmark's rule becomes again conservative. It
should be noticed, however, that R changes much more slowly with increas-
ing ductility, suggesting, as pointed out by Newmark, that ductility re-
quirements increase very rapidly with earthquake intensity. While there
is still a functional relationship between R and u (as it should physic-
ally), the curve is extremely flat and not very different from Newmark's
horizontal line.

In order to visualize better the relationship between these ratios
and the displacements of the system, plots were also obtained of the ratio
of the maximum inelastic displacement for different values of u to the

maximum displacement of an elastic system as a function of frequency.

These plots shown in Figs. 3.17 to 3.25 show clearly that for low frequen-

cies, this ratio is essentially 1, becomes smaller than 1 particularly



m wne ord range, uner increases somewnat, and i1n tne tinal Wwo randes
it increases monotonically and very fast. These figures show actually
the upper and lower bounds of the results obtained for ductility ratios
u from 1 to 10. In the high frequency range the upper bound corresponds
to u = 10 and the lower bound to u = 1. This is not true, however, over

the complete frequency range.
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Range o Y R = [a(u-1) + 11"
1 1 1 R=muyu
2 1 1 R=1.16 (pu-1) + 1
3 1.4 1 R=1.4 (u-1) +1

5
5 .38 R = [5 (U"]) + ]].38
6 2.5 .335 R = [2.5 (p-1) + ]].338
_ 1
7 2 1 R=[2 (u-1) + 1]

TABLE 3.8 - SUGGESTED EQUATIONS



The Equivalent Linear System Approach

In order to evaluate this approach a separate computer program was
implemented. For a system with an initial frequencytuo and a ductility
ratio y larger than 1, a characteristic ductility of 2u/3 was selected
and the frequency and damping of an equivalent system were computed as
indicated in Chapter 2. The response of this equivalent system to the
desired earthquake was then computed by numerical integration. The same
series of plots were obtained as for the inelastic systems.

In this case the pseudo acceleration of the system will be

2
2 Yo
= S, = - S 4-
a Yeq 7d Hchar 4 1)
and since Sq4 = MU, (4-2)
- u -
Sa = wo Uy (4 3)

Hehar

Notice, however, that the equivalent viscous damping, computed from
the area of the hysteresis loop and added to the original viscous damping
of 5% of critical, results now in large values of p, particularly for large
ductility ratios. Under these conditions the agreement between the pseudo-
acceleration and the maximum absolute acceleration of the system deterior-
ates. Results obtained were, however, the pseudo-acceleration, since

this is what would be normally used in practice.



The same procedure described in Chapter 3 was repeated in this case,
obtaining for each spectrum its envelope and determining in each range
the ratio between elastic (u = 1) and inelastic values. In this case,
however, the extreme ranges could not be found within the range of fre-
quencies studied except for a few cases, and the inelastic spectra showed
only clearly the intermediate ranges 3, 4, and 5. For most buildings
those are nevertheless the important ranges.

Tables 4.1 to 4.3 show the ratios obtained for the nine accelerograms
in these ranges, and Figs. 4.1 to 4.3 show the upper and lower bounds,
the average and the best fit curve obtained in Chapter 3. Figures 4.4
to 4.6 show the upper and lower bounds obtained for this approach and for
the actual inelastic systems (Chapter 3), indicating the common region.

In range 3 the approximate metnod provides reasonably good results,
in fact slightly on the conservative side. In range 4 on the other hand
the approximate results seem somewhat unconservative (above the true re-
sults), but the common region is still a substantial part of the total
area between bounds. (Notice that the trend is similar to that observed
with Newmark's method, although the values are different). In this range
accelerations would be on the average underestimated by maybe 20%. In
range 5 again the approximate method seems conservative for large values
of the ductility ratio and only slightly unconservative for ductilities
around 3. In the overall, the procedure exhibits the right trend and
the estimates of accelerations (or required yield Tevel fy) are probably
acceptable considering the variation from one earthquake to another (as

illustrated by the scatter in the results) and the uncertainties involved

in selecting a design earthquake.
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It is interesting, however, to compare also maximum displacements.
Figures 4.7 to 4.15 show the ratio of the maximum inelastic to the maxi-
mum elastic displacement, the first one being obtained by the approximate
method. Comparing these figures to Figs. 3.17 to 3.25, it can be seen
that, while the overall trend is again correct, maximum displacements
seem to be consistently underestimated by the approximate method, the
accuracy being worse than for the accelerations. This is logical, con-

sidering that if S_ is correct, S; will now be u (Sa/wg) instead of

char
(Sa/wg). If the resulting displacements were multiplied by the factor

/U , in our case 1.5, the agreement would be much better.

char
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CHAPTER 5

Conclusions and Recommendations

The purpose of this study was to evaluate two procedures often used
to estimate response parameters for inelastic systems subjected to earth-
quakes. The first one is a set of rules suggested by Newmark to derive
inelastic spectra from the elastic response spectrum. The second was a
method often used, both for single and multidegree of freedom systems,
replacing each inelastic spring by an equivalent linear spring with stiff-
ness and damping functions of a characteristic strain.

Results shown in Chapter 3 indicate that Newmark's rule is always
close to the average for the nine accelerograms considered or on the con-
servative side. Only in ranges 3 and 6 the difference (on the conserva-
tive side) might warrant a more accurate expression. Best fit relation-
ships between R (ratio of elastic to inelastic spectrum) and duc-
tility U were obtained, but such a refinement is probably not warranted.
It is interesting to notice, however, that the inelastic displacement may
be Tess than the elastic displacement, particularly in range 3. The
values shown in Chapter 3 would permit to obtain only average relation-
ships as done in this work, but also maximum (lower bound) or standard
deviations etc. Results are, however, Timited to thé set of earthqguakes
studied.

The second procedure investigated reproduces also fairly well the
ovéra]] trend, although the agreement is not as satisfactory as with New-

mark's rule. Using a characteristic ductility of 2/3 of the maximum,

results for the accelerations are reasonably good, but the displacement



1
of the equivalent Tinear system is consistently smaller than that of the

inelastic system. This would not occur if the displacement was simply

computed as S, = u(Sa/wg).

Due to limitations in computer time results were only obtained for
systems with an initial, viscous damping of 5% of critical. The same pro-
grams could be used to study systems with other values of damping (0, 0.5,
1, 2 and maybe 7 and 10%). This would permit to determine if the value
of viscous damping influences the previous conclusions or if they can be
generalized. Continuation of the study for other values of damping would

seem advisable.
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