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CHAPTER 1

INTRODUCTION

When a saturated loose sand is subjected to earthquake
vibrations, the pore water pressure increases. One cause
of this increase is the compaction of the soil by repeated
shearing. The other cause is the dynamic interaction be-
tween the pore water and the soil skeleton due to the up-
down motion of the bedrock. The increase of the pore water
pressure reduces the effective stress in the soil skeleton
and hence the shearing strength of the soil is reduced.
When the effective stress reduces to zero, the soil has no
resistance to shearing and is said to be in a liquid state.
The term "liquefaction" refers to the process of changing a
saturated granular soil from a so0lid state to a liquid state
as a consequeﬁce of increased pore water pressure(77).
Hence liquefaction is regarded as a process instead of a
state. Liquefaction is said to be completed at a location
when the soil at that location reaches the liquid state.

Liquefaction may cause soils to lose their shearing
strength or to undergo excessive lateral displacements, hence
liquefaction is hazardous to earth or earth-supported struc-
tures. Large scale landslides induced by liquefaction may'
even result in disasters. Many accounts of distruction have
been recorded in the literature(2’19’48’49'63), These facts
necessitate the development of some means to evaluate the

susceptibility of saturated soil deposits to liguefaction.

In the past decade, an undrained cyclic load triaxial

_l_



or a simple shear test, recommended by Seed, has been used
extensively to study the liquefaction potential of saturated

sands(6l'62’64).

In these tests the soil sample is first
consolidated to simulate the static stress condition for a
soil element at a certain depth inside a level deposit. At
this depth, the time history of the shearing stress induced
by earthquake gréund motion is converted into an equivalent
number of uniform stress cycles. This simulated earthquake
loading is then applied to a soil sample around its static
equilibrium stress condition to see if it can be liquefied.
By repeating the same procedure for various depths the li—
quefaction potential for the whole deposit can be evaluated.

Although the repeated shearing by an earthquake is
very rapid, the soil is not truly in an undrained state.
Due to the large bulk modulus of water, a small gradient of
the seepage velocity may influence the effective stress to
a considerable extent. This is especially true when stra-
tification in permeability exists.

In the triaxial or simple shear test procedure, the
time history of the shearing stress induced by earthquake
ground motion is obtained without considering the shearing
strength reduction by the rise in pore water pressure.
Therefore, the interaction between the shearing and the
transient effective stress may not be taken into account.
It can be said that these test procedures are discrete ép—
proaches in that the liquefaction potential is evaluated

individually at various depths. The influence of the



the bulk compressibility and the constrained compressibility
of the soil.

3. An equation that describes the relationship between
time rate of change of the total vertical stress in the soil,
the time rate of change of the confined compressional strain
in the skeleton, the time rate of pore water pressure change,
and the time rate of change of the skeleton's constrained
compressibility.

4. An equation describing the pore water pressure
variation as a result of pore volume change.

5. The equation of motion of the saturated soil.

6. The equation of motion of the pore water.

7. Relations describing the dependence of the small
motion shear modulus and the shear strength upon £he effec-
tive stress.

The first element describes the propagation of plane
shear waves in the deposit. The second element relates the
constrained compressibility to the secant shear modulus of
the skeleton. Elements 3 to 6 constitute a submodel to de-
scribe pressure wave propagation in a saturated deposit.in
the direction perpendicular to the bedrock. Element 7 pro-
vides a means to update the shearing properties of the soil
according to the transient effective stress throughout the
deposit.

The deposit is divided into a number of equal distance
intervals. Within each interval the soil properties'are con-

sidered to be uniform. Their values are determined by



adjacent soil upon the liquefaction potential at a particu-
lar depth is only partially introduced through the determi-
nation of the time history of the shearing stress at that
depth.

A continuous model for liquefaction in level or nearly
horizontal deposits that provides a mutual interaction bet-
ween shearing deformation and transient pore water pressure
will be helpful to increase the understanding of liquefac-
tion and liquefaction induced landslide phenomenon. The

(69)

concept of compaction due to repeated shearing makes
such a model possible.

The liquefaction model, developed in this study, is
composed of the following basic elements:

1. A submodelithat describes the propagation of plane
shear waves in the strain-softening range of a soil when
subjected to repeated shearing. A modified Ramberg-Osgood
shearing stress-shearing strain relationsnip is used in this
submodel. The small motion shear modulus, i.e., the shear
modulus at low shearing strain amplitude, and the shearing
strength of the soil are used in the modified Ramberg-Osgood
relationship. These two quantities are made to depend upon
the effective stress in the soil. The nonlinearity and the
damping characteristics of the soil are further described by
three more parameters. These parameters are kept constant
during shearing.

2. A relationship between the secant shear modulus,



relations designated as element 7 above. When shearing
takes pléce, the shearing stress, shearing strain, and the
reduced shear modulus at the end of a time step are compu-
ted by the shear wave submodel. The time rate of change

of the secant shear modulus and the time Varying constrained
compressibility of the skeleton over this time step are
obtained. These quantites are used via the relationship
designated as element 2 above to calculate the transient
effective stress, pore water pressure, and the velocities
of the skeleton and the pore water. Because the pressure
wave velocity is much higher than the shear wave velocity,
these computations are performed for several smaller time
steps, determined by the first pressure wave speed and the
length of the interval. This is necessary in order for the
time in the pressure wave submodel to again be compatible
with the time in the shear wave submodel. When this is
done the small motion shear modulus and the shear strength
used in the modified Ramberg-Osgood shearing stress-strain
relationship are adjusted according to the current effective
stress. This completes one cycle of the computation. The
next cycle of computation starts out with the shear wave
submodel and updated shearing properties.

When shearing strain reversal takes place in a soil
subjected to repeated shearing, there is a sudden increase
in the shearing rigidity of the soil. Necessarily, the con-
strained compressibility of the skeleton decreases instan-

taneously. Immediately after the shearing strain reversal,



these changes in soil properties are made. Then the com-
putation proceeds according to the sequence described in
the previous paragraph until the next shearing strain re-
versal takes place. The seven basic elements and the cou-
pling described above constitute the model for liquefaction
in level or slightly inclined deposits. Detailed develop-
ment is presented in this report.

The modeling of plane shear wave propagation in soil
deposits is reviewed in Chapter 3. The stress-strain re-
lationship of saturated soil, a two phase medium, is for-
mulated in Chapter 4. The governing equations for the
propagation of pressure waves are formulated in Chapter 5.
An analytical solution for steady oscillatory motions of
linear elastic depoéits is developed in the same chapter.
In Chapter 6, a numerical procedure, based on finite diff-
erence and the method of characteristics, is developed.

Its accuracy is then checked by employing the analytical
solution obtained in Chapter 5. The numerical procedure

is used in Chapter 7 to study the motion generated by the
weakéning of soil skeleton. Chapter 4,5,6 and 7 together
present a model for the propagation of pressure waves.

The propagation of shear waves and.pressure waves are coup-
led together in Chapter 8 to form the model of liquefaction.
The features of the model are demonstrated by examples.

The applicability of the model is demonstrated in Chapter 9
by case studies related to the Niigata earthquake of June,

1964.



CHAPTER 2

LITERATURE REVIEW

(53)

Early in 1885, Reynolds showed experimentally that

sand dilates during shear deformation. Many years later,

(16)

Casagrande demonstrated the dependence of the soil vo-
lume change on the shear deformation and established the
fact that when alternating loads are applied to a saturated
cohesionless soil under undrained condition, the pore pres-
sure may rise to such a high level that the soil liquefies.

(23)

Florin and Ivanov subjected deposits of saturated sand
twenty centimeters thick to impulsive loadings, and found
that loose saturated sand was readily liquefied over the
entire depth. For the case of cyclic loading, liquefaction
proceeded in layers. The upper layer, with comparatively
low confining pressure, liquefied first. Deeper layers
liquefied upon further cyclic shearing. The zone of lique-
fied soil propagated downwards until the whole deposit lig-
uefied. The process of consolidation then took place and
moved upwards toward the surface. The initial density and
shearing strain in the soil on these tests were presumably
relative uniform. However, this trend is correct for non-
uniform cases(sl).

The disastrous consequences of some recent earthquake
induced liquefactions, especially the one caused by the
Niigata earthquake of 1964, have drawn the attention of many

(45,46,61)

so0oil engineers. Seed and Lee conducted a series



of repeated loading triaxial tests on isotropically conso-
lidated undrained samples. Since then it has been recog-
nized that the susceptibility of a sand to liquefaction is
determined by the combined effect of void ratio, confining
pressure, cyclic strain amplitude, and the number of stress
applications. High void ratio, low confining pressure and
large shear strain amplitude are apt to cause liquefaction.
Knowing the variation in density with depth and dynamic
shearing strain distribution in a deposit, the depth where
liquefaction will first occur due to ground vibration can
be estimated.

While the triaxial test provides a reasonable approxi—
mation to the cyclic stresses in the field, it does not per-
mit a full simulation of the field stress conditions. For
many deposits, the soils are subjected to simple shear. By
using a simple shear box, Peacock and Seed(Sl) conducted a
series of cyclic loading simple shear tests on saturated
sand under undrained conditions. The resistance to lique-
faction under simple shear conditions was found to be much
less than those under triaxial test conditions. The techni-
que of the simple shear box test was later improved upon by
Finn, Pickering and Bransby(zz). In addition to the quali-
tatively similar results to those of Seed's, Finn et al. in-
dicated the importance of the ratio of the peak cyclic shear
stress to the mean initial effective normal stress.

The influence of the initial effective normal stress on

liguefaction was also investigated by Seed and Peacock(64)



using both simple shear tests and triaxial tests. They
found that in the simple shear tests, the stress required
to cause liquefaction increased with the coefficient of
earth pressure at rest. In the same study, a correlation
between the results obtained by triaxial tests and the sim-
ple shear tests was established.

A torsional simple shear device which is able to in-
troduce uniform shear stress and strain throughout the sam-
ple has been developed by Ishibashi and Sherif(38). It was
used to examine the effect of the initial coefficient of
earth pressure at rest on liquefaction. Their test results
indicated that for cyclic loading, if the ratio of maximum
change in shear stress to the octahedral normal stress is
plotted against the number of stress cycles of liquefaction,
the initial value of the coefficient of earth pressure at
rest does not influence the liquefaction potential. The
authors attributed the difference between their results and
those obtained by Seed and Peacock(64) to the fact that the
friction stresses along the sides of the simple shear box
used by Seed and Peacock increase with increasing horizon-

(47) examined the mecha-

tal shear stresses. Martin et al.
nism of progressive pore water pressure increase during un-
drained cyclic simple shear tests on saturated sands. The
volume décrease of the saturated sand was visualized as
caused partly by slippage between grain contacts, an irrever-

sible process. They assumed that the volume decrease by

slippage in an undrained shearing cycle is the same as that
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induced in a drained cycle. By considering the pore pres-
sure increase by the combined effect of volume decrease due
to slippage, and volume increase due to unloading of the
soil skeleton, a relation between volume reduction during
drained cyclic tests and pore water pressure increase in
undrained tests was developed. This relation enables one
to compute the transient pore water‘pressure during cyclic
loading by use of parameters based on effective stress in
the soil. This interesting study has the potential of pro-
viding a means for coupling pore water pressure under un-
drained conditions with the dynamic analysis of a saturated
deposit. In the same study, the authors demonstrated the
inadequacy of converting a random shearing stress history
into an equivalent number of uniform stress cycles for the
purpose of computing the transient pore water pressure.

Following Casagrande(3l), Castro(l7)

used the term
"liquefaction" for the phenomenon in which loose sand loses
its shear strength to such an extent that it flows under a
driving force, such as gravitational force in a sloping de-
posit. He used the term "cyclic mobility" to designate the
phenomenon of shearing strain and pore water pressure in-
crease in Seed's consolidated undrained triaxial tests(6l).
Castro conducted such tests on isotropically consolidated
specimens of dense Ottawa sand and observed the occurence
of pore water redistribution. He then concluded that the

recorded pore pressures and axial strains during cyclic

loading may depend on the development of loosened sand that
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forms in a small zone on top of the specimen, hence the
ability of a dense sand to sustain cyclic loading may be
underestimated. The fact that substantial re-distribution
of pore water occurred suggests that under cyclic shearing,
the soil may not be in an undrained condition, i.e., pore
water may move relative to the soil skeleton.

Based on his previous experimental results, Seed stu-
died the landslides caused by liquefaction during or after
earthquakes(63). The importance of detailed information

about the soil properties was emphasized, and a qualitative

discussion on the mechanism of landslides was given.

k(62) (64)

Based on their previous wor ; Seed and Idriss
summarized all the factors known to influence liquefaétion

potential and developed a general method of evaluating this
potential. Some comparison of liquefaction potential eva-

luations with field behavior of soil were also given.

Pyke(sz)

studied the settlement of a layer of dry soil
placed on a shaking table capable of motion in three direc-
tions. The results were compared with the settlement or
volume change in simple shear test and cyclic triaxial tests.
It was shown that the settlement of dry sand under the com-
bined shaking of two horizontal acceleration components are
approximately equal to the sum of the settlements caused by
the components separately. Vertical accelerations further
increase the settlement. Liquefaction characterisﬁics of
sands in laboratory tests were evaluated based on the set-

tlement data and a theory suggested by Martin(47)



-12-

that accounts for the increase in pore water pressure at
constant volume. The effect of shaking in multiple hori-
zontal directions on the shearing stress causing liquefac-
tion in a given number of shearing cycles is to reduce the
stress ratio (maximum shearing stress divided by initial
effective vertical stress) by 20 percent approximately.
Hence, the effect of the second horizontal component on 1li-
quefaction 1is not as great as on the settlement of dry sand.
The influence of the vertical acceleration on liquefaction
was assumed to be small. No gquantitative results however
were provided to justify this assumption.

(1)

Alba et al. studied the behavior of a rénge of sa-
turated sands subjected to cyclic loading under undrained
conditions by a very large simple shear device. The shear
stresses were generated by the inertia of the specimen and

a superimposed ballast, as the specimen base was shaken by
an actuator. This large simple shear device was designed to
obtain a free field zone within the specimen, where the in-
fluence of the boundaries would be minimum. Typical pore
water pressure transducer records showed that a cyclic pres-
sure variation in addition to that caused by the cyclic
stress application was registered at those transducers off
the centerline of the specimen. At the centerline of the
specimen, this cyclic pore pressure variation was absent.
The average specimen shear strains were calculated from the

relative displacement between the ballast, the base of the

specimen, and the sample height. With regard to the pre-
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liquefaction strains, an increase in time rate of strain
change was observed when the dynamically induced pore pres-
sure reached a value of about 50 percent of the initial
vertical effective stress. Large shear strains that de-
veloped after liquefaction was completed were controlled

by the dilatant tendency and the relative density‘of the
sand. All test results were plotted in the form of stress'
ratio (average dynamic shear stress divided by initial ver-
tical effective stress) versus relative density with number
of stress cycles to liquefaction as parameter. A favorable
comparison between test results and field data was obtained.

(76) studied the influence of the

Yoshimi and Oh-oka
degree of shear stress reversal on the liguefaction poten-
tial of saturated sand. A ring torsion apparatus was fas-
tened to a rotating table. The vertical stress on the spe-
cimen was applied by weights. The dynamic shear stress was
applied by the inertial torque of the weights when the
table was set in torsional vibration. Partially reversed
and unreversed tests were performed by imposing shear stress
pulées on the initial static sheair stress. They found that
for partially reversed and unreversed shear tests the shear
strain tends to increase in one direction only. For the
unreversed test no abrupt change in shear stress is ob-
served even when the pore water pressure reaches a fairly
high level. Prior to initial liquefaction, the pore water
pressure increment per stress cycle was found to be propor-

tional to the fifth power of the dynamic shear stress. The



proportionality constant depends on the ratio of initial
shear stress to initial vertical effective stress.

Due to the difficulties in describing the dynamic soil
properties, the analytical and numerical approach to lique-
faction lag behind the experimental investigations men-
tioned abové.

One of the earliest investigations devoted to the phe-
nomena of the deformation of saturated soil was by Terzaghi
(70). The soil was assumed to be elastic, and the voids
were saturated with water. The settlement of a laterally
constrained column of soil under a constant load was in-
vestigated. A similar consolidation problem in three di-
mensions was then studied by Biot(s) from the view point of
mathematical physics. In addition to the assumptions that
the soil is linearly elastic, homogeneous and isotropic and
the strain is small, the existence of a strain energy po-
tential, or the reversibility of soil upon volumetric de-
formation, was introduced. Apart from the porosity, the
number of physical constants necessary to fix the proper-
ties of a saturated elastic soil under small strain was
shown to be four. The coupling of stresses and strains be-
tween the water and the soil skeleton was clearly demon-

(6)

strated. Biot extended his previous work(s) to the

general case of anisotropic material.

After establishing the theory of the deformation of a
porous elastic solid containing a compressible fluid, Biot
(

and Willis 8) described the experimental procedures required
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to obtain the jacketed compressibility, the unjacketed com-
pressibility, and the coefficient of fluid content. The
latter is a measure of the fluid volume entering the pores
of a porous sample during an unjacketed compressibility
test. These three physical constants together with the
shear modulus and the porosity of the medium provide a set
of relations so that the four elastic coefficients in the
theory of deformation can be determined uniquely. The phy-
sical interpretations of these four coefficients in various
forms was discussed. A discussion of extending the theory

(21) used the

to rnion-linear media was also included. Fatt
Biot and Willis' procedure to determine the four elastic
coefficients for a sandstone.

In 1956, Biot(7)

published a theory for the propagation
of stress waves in a porous elastic solid containing a com-
pressible viscous fluid. It was demonstrated that there is
one rotational wave and two dilatational waves, denoted as
the wave of the first kind and the wave of the second kind.
All three waves are transmitted by coupled motions of water
and skeleton. For the shear wave, the rotation of the solid
is in phase with that of the water. Therefore, a rotation
of the solid causes a partial rotational entrainment of the
fluid through an inertia coupling. This coupling influences
the propagation velocity of the rotational wave. For the
dilafational wave of the first kind the inertia coupling

between the water and the solid are in phase with each other.

Wwhile for the wave of the second kind they are out of phase.
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The velocity of propagation of the first wave is consider-
ably higher than that of the second wave. The second wave
is highly attenuated and the propagation is more like the
diffusion process of heat conduction, than that of true
waves. Concerning the dissipation of energy due to the
viscosity of the fluid, the flow of fluid relative to the
solid through the pores was assumed as a Poiseuille flow.
The concept of a dissipation function was used and related
to the permeability of the soil. The existence of a wave
where there is no relative motion between water and solid
was conjectured, and a numerical study on the attenuation
of all three waQes as functions of frequency was presented.
Although this work only concerns the steady oscillatory
wave propagation in an infinite medium, it is the most im-
portant contribution by Biot on this subject.

In 1962, Biot'?)

reformulated his theory of the linear
mechanics of fluid-saturated porous media in a more syste-
matic manner.and the scope was somewhat more general. The
generalized Darcy's law was described in detail and the
acoustic wave propagation theory was extended to anisotro—
pic media. Viscoelasticity and energy dissipation inside
the solid material were discussed. The term viscoelasticity
used by Biot encompassed a vast range of possible dissipa-
tion processes that could be described by arrangements of
dashpots and springs. In a later publication, Biot(lo)

presented a more refined analysis of the relative motion of

the fluid in the pores by introducing the concept of a
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viscodynamic operator. Unlike the generalized Darcy's law,
the concept of a viscodynamic operator included the dynamic
features of the fluid motion in the pores. Various dissi-
pative models which involved intergranular effects, small
fluid-filled cracks, relaxation effects due to fluid bulk
viscosity were discussed and all these models were trans-
lated into specific viscodynamic operators. To the know-
ledge of the writer, this work is the latest contribution
by Biot on the subject of linear acoustic wave propagation
in porous dissipative media under zero initial stress con-
ditions.

The influence of initial stress on elastic waves in a
continuum was pointed out in 1940 and later emphasized by
(4,12).

Biot A theory of deformation of a saturated porous

solid under initial stress was presented by Biot(ll) in
1963. This theory handles the deformation of a non-linear
material by a sequence of incremental deformations. By
adding the inertia terms to the equilibrium equations in
the theory, the acoustic wave propagation in a saturated
porous medium under initial stress can be handled. In 1972,
Biot further extended his theory to the finite deformation
of porous solids(l3).

Other work devoted to the stress-strain relationship,
energy dissipation or stress wave propagation of a saturated
porous media are summarized in the following few paragraphs.

By assuming the porosity to be constant when both the

overall hydrostatic stress and the pore pressure in an
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isotropic medium are varied by a same amount,»and by using
the reciprocal theorem of classical elasticity,'Geerstma(24)
concluded that only three elastic constants are required
for describing pore and rock bulk volume variations if the
porosity is explicitly introduced into the theory. A com-
pressibility apparatus was developed which is capable of
determining the four elastic coefficients in the Biot's
theory. A very similar device was later used by Sawabini
(59) to determine the compressibility of unconsolidated oil
sands.

Brandt(l4)

studied the influence of pressure, porosity
and liquid saturation on the speed of sound in a porous
granular medium. The stress-strain relationship was ob-
tained’by using the Hertz theory for the deformation of
elastic spheres in contact. The spheres were assumed to be
deformable at constant volume. Since the grain shape of
sand is not close to a sphere and the number of contacts
among grains is hard to estimate, this theory based on
spheres in contact may not apply to soil.

(54)

Hardin assumed that the shear modulus varied with
the one-third power of the effective confining stress and
studied the influence of the effective confining stress on
the three wave speeds in the Biot's theory. The same theory
had also been_used by him to study the effects of changes

in soil parameters on damping in the saturated soil.

(34)

Hall and Richart conducted an experimental study

on internal damping of elastic wave energy in granular soils.
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Four different materials were used in this investigation

and air, water or dilute glycerin were used as a pore fluid.
They found that for Ottawa sand, the effect of pore fluid

on the internal energy damping depends on the amplitude of
vibration. Over the range of amplitudes measured, the water
increased the logarithmic decrement by a factor of 1.5 to

4 times that for the dry condition. They observed little
difference between the cases where water and dilute glycerin
were used as pore fluid.

Hardin and Richart(35)

investigated the influence of
void ratio and the effective confining pressure on the
second pressure wave velocity and the shear wave velocity
for round and angular grained sands. They found that both
wave velocities for sand varied with approximately 1/4 power
of the confining pressure. For a given confining pressure,
it was found that the void ratio was the wrost important
variable. The effects of relative density, grain size and
gradation entered only through their effects on the void
ratio. This work also contained valueble data on the ex-
perimentally determined second pressure-wave velocity for
different sands, which may be used to estimate the bulk com-
pressibility of the soil under drained conditions; a material
property important to the stress wave propagation phenomena.

(39) related the four elastic coefficients in

Ishihara
the Biot's theory to the compressibilities of the soil bulk,
the solid material, and the water. Following Biot's proce-

dures, he derived the frequency equation and studied the
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characteristics of the waves. He concluded that the pres-
sure wave of the first kind travels through a saturated
medium without causing any change in pore volume, but the
pressure wave of the second kind can progress only when
change in pore volume takes place. He also concluded that
the characteristic frequency of soils is much higher than
the frequencies of earthquake vibrations. It is the long
wave leﬁgth associated with the relatively low frequency
of shaking that makes the socil deform under undrained con-
dition. This last conclusion is different from the common
intutive notion that the undrained condition is caused by
very rapid straining.

Based upon the compressibilities of water, solid ma-

(40) calculated the ela-

terial, and the skeketon, Ishihara
stic coefficients in Biot's theory. By examing the magni-
tudes of these coefficients, the equations that govern the
motions of the soil and the water were simplified. He then
demonstrated that the simplified equations were of the same
form as those developed from elastic theory, and the theory
of elasticity could be used to treat "poroelasticity". He
then related Young's modulus and Poisson's ratio in the
equivalent theory to the material properties of saturated
porous medium. Based on the simplified equations he con-
cluded that for earthquakes or artificial vibrations, the
so0il is loaded under undrained condition. However, the

(35)

experimental results by Hardin and Richart , and by

AHall(34), indicated that the apparent mass originating from
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the relative motion between the so0il skeleton and the water
is about 30 to 40 percent of the water mass per unit volume
of the soil. Tt should be noted that these two works by
Ishihara only concern wave motions in soils without the
presence of boundaries.

Following the same procedure as Biot and Ishihara, Ba-

(3)

zant and Krizek expressed the three elastic constants P,
Q, and R in Biot's paper in terms of compressibilities of
the soil skeleton. Compressibility of solid particles was
then demonstrated to be unimportant, and can be neglected
for practical problems. An inelastic incremental skeletal
strain was incorporated in the stress-strain relationship
to describe the nonlinear inelastic behavior of soils. A
simple proportionality between the incremental non-elastic
skeletal strain and the corresponding pore water pressure
rise under undrained conditions was established. The pro-
portional constant was called the densification compliance.
Its value was shown to be close to the bulk compressibility
of the soil skeleton at the stress levz2l under consideration.

Richart(Ss)

found that based on Ishihara's simplified
equations and for low frequency wave propagations, the first
pressure-wave velocity is within 1 to 2 percent of the value
found from the "Wood Equation" for wave velocity of a mix-
ture of solid particles in water. Therefore, it seems that
the stiffness of the soil skeleton is overshadowed by the

presence of the pore water. The question of small amounts

of air in the pore water upon the wave motion was also
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(25), Ghaboussi and Wilson(26’27) developed a

Ghaboussi
variational principle by using Biot's theory. This princi-
ple incorporated with the finite element method was used to
evaluate the pore water pressure and force on soil skeleton
in an earthdam-reservoir system. Presently, they have in-
cluded non-linear material properties in the model in order

to evaluate the liquefaction potential(28).

(68) used the method of

Streeter, Wylie and Richart
characteristics to evaluate the liquefaction potential in
a level deposit and in an earth dam. Although the compres-
sional stress-strain in soil skeleton was not considered,
the importance 6f the change in porosity upon liquefaction

(56) further demonstrated in his

was indicated. Richart
Terzaghi lecture that the Ramberg-Osgood shearing stress-—
strain relationship used in the method of characteristics

is realistic.

(7) (50)

By using the Biot theory , Papadakis studied the
plane pressure wave propagation in a horizontal saturated
deposit composed of elastic soil. The motion was caused by
the vertical movement of the underlying bedrock. He ob-
tained én analytical solution for the steady oscillatory
motion of the deposit. Case studies based on this solution
lead to the conclusion that "for soils having a very large
permeability value, the solid and fluid constituents tend

to move together". Since the relative motion between solid

and fluid should be larger when the soil is more permeable,
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the validity of the analytical solution is doubtful. In
the same study, Papadakis neglected the apparent mass terms
in the equation of motion for the solid and for the water
and hence was able to transform the four governing equations
into two pairs of characteristic equations. The motion of
saturated deposits subjected to random normal bedrock motions
were studied numerically. In his discussion on the pressure
wave propagation in relation to liquefaction, he suggested
the use of a Ramberg-Osgood type of shearing stress-shearing
strain relationship.

The modern theory of mixture was originated by Trues-

dell and Toupin(72)

(32)

and later developed by Green and Naghdi
. The medium 1s visualized as if every point in space
were occupied by one partical of each constituent of the

mixture. According to Ghaboussi(zs), this theory is equi-

valent to Biot's theory when the deformations are infinitely

small.

(87) (32)

Becker modified the theory of Green and Naghdi
She then used the modified theory to study the behavior of
saturated sands in small strain range. Through a nonlinéar
constitutive equation, normal stress variations due to shear
loads was included. In this theory the soil was assumed to
be elastic and no compaction or settlement was considered.
By assuming the fluid to be incompressible, Hsieh and

(37)

Yew employed the concept of the mixture theory to study
wave propagation in saturated porous media. The existence
of two pressure waves and a shear wave was demonstrated and

a numerical study on the frequency equation was given.



CHAPTER 3

SHEAR WAVE TRANSMISSION IN SATURATED SOIL DEPOSITS

The response of dry soil deposits subjected to ground
shaking has been studied by the method of characteristics,
incorporated with the Ramberg-Osgood shearing stress-strain

relationship.(68)

The response of saturated soil deposits
is different from that of dry deposits in that the effec-
tive stress depends on the shearing strain history. How-
ever, since the pore water cannot sustain shearing stress
and since there is no horizontal relative motion between
the pore water and the soil skeleton, the method of charac-
teristics for dry deposits can be applied to the shearing
of saturated deposits.

The method of characteristics for shear wave trans-
mission in soil deposits is reviewed in this chapter. This

constitutes the shear wave submodel, which is a component

of the model for liquefaction.

3-1. Shearing stress-shearing strain relationship

The non-linear shearing stress-strain relationship for
soil in the strain softening range can be described by the
Ramberg-Osgood relationship defined as follows

for initial loading,

T T .
Y = = (l + o l - | ) (3—1)
So €1 '

for unloading and reloading,
R-1

T = T T - T
L L. (3-2)

R A R
1 G0 2Cl"cm

-24-
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where G0 is a small motion shear modulus, y is shearing
strain, T denotes shearing stress, T is shearing strength,

7, and Y1 represent the coordinate of the most recent strain

1
reversal point on the stress-strain plot. R, o, and Cl are
parameters and their values are constant for a given soil.
The derivative of 1 with respect to y, obtained from
Equation (3—1) or Equation (3-2) gives the tangential shear

modulus at a given stress level. Letting G be the tangen-

tial shear modulus, one can write

At = G Ay

in which A denotes an incremental change in the quantity
under consideration. Dividing both sides by At, a time in-

crement, one has

Since the time rate of change in shearing strain is
identical with the rate of change of the x-component of the

soil speed in the z direction, Figure 3-1, one can write

L =g X

t 0z
in which U is the velocity of the soil skeleton in the x

direction.

3-2. Equation of motion in x direction for saturated soils

Consider Figure 3-1, the equation of motion can be
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written as

9T oU

5z ~ P 3¢ ~ P9 sin 6 = 0 (3-4)

in which g is the acceleration of gravitation, 6 is the
slope of the deposit, and p is the mass density of the sa-
turated soil. Knowing the mass density of water Po? the
mass density of solid particles Pgr and the porosity n, the

soil mass density p can be calculated as

p=mnp. *+ (1 - n) oy ' (3-5)

3-3. The characteristic equations
Equation (3-3) and Equation (3-4) form a system of hy-
perbolic equations and hence can be transformed into the
characteristics form that facilitates numerical solutions.
Letting A be an unknown multiplier, one can combine

Equation (3-3) and Equation (3-4) linearly as follows

9T U \ 9T U, _
——z'—p—a—E pgs:.n6+)\(——€—GE—0,
or
ot , L 3ty _ o AU, AG 3U, _ in 6 = i
A(§€ + X _E) 0 (Bt + o 3z pg sin 6 = 0. (3-6)
If one sets
dz _ 1 _ AG | _.
at )X o (3‘7)

then all the derivatives in Equation (3-6) are carried out

in a common direction designated by %% in the z-t plane.
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The values of A can be obtained from Equation (3-7) as

= L
A= i\/c;

whence
dz _ ‘/g - -
3t Vo, + Vs | (3 8)

in which VS denotes the shear wave speed.

The two characteristic equations, designated as C+ and

C equations, are

[ 1 drt _ du _ . _
—d—E _CE g sin 6 = 0
+ pG
c < (3~9)
dz
at -~ Vs v
L
1 ar du .
— =— + =— + g sin 6 = 0
_ \/Bat dt
c (3-10)
dz
L dt Vg -

3-4. Finite difference approximation

The numerical solution of the C' and C~ characteristic
equations is visualized on the z-t diagram shown in Figure
3-2. The deposit is divided into a number of equal distance
intervals of length Az. The material properties in each
reach are considered to be uniform. A time step common to
all intervals is used. The point R is located in such a way
that the segment RP represents the c’ characteristic direc-
tion in interval AC at time t. Similarly, point S is lo-

cated such that the segment SP represents the C characteristic
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direction in interval CB at the same instant. Conditions at
point R and S must be evaluated from known conditions at
points A, B and C before the unknowns at point P can be

found. Linear interpolation is used for this purpose. At

R
UR = UC - %g VSR(UC - UA), (3-11)
TR = Te ™ %g VSR (TC - TA), (3-12)
and at S
Ug = U - %% VSS (UC - UB), - (3-13)
Tg = To = %% VSS (TC - TB), (3-14)

where VS and VS are the shear wave speeds in interval AC
R S

and CB respectively. t is a specified time step. At and
Az are chosen in such a manner that the Courant condition
for stability is satisfied.

The C* characteristic equation can be approximated as

1 T. =T u -1U
(=) p = R_ P R _ g sin 6°= 0, (3-15)

oG At At

and the C characteristic equation is approximated as

1 T. - T u -U
(=)g B—2+ -2 —5 4 g sin o = o. (3-16)
VpG At At

At every interior point, the two unknowns Tp and U_ can be

solved uniquely from Equation (3-15) and Equation (3-16).
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In the context of liquefaction, two types of surface
boundary conditions are of importance. The first case is
where the water table is at the ground surface. 1In this
case the shearing stress at the surface of the deposit is
zero. The surface horizontal velocity can be solved readily
from the C  characteristic equation rising from the interior
of the deposit, Figure 3-2a. The boundary condition of the
second type is where the water table is below the ground
surface. The upper boundary of the deposit is considered
at the water table instead of at the ground surface. The
layer of dry soil above the water table is approximated by
a rigid slab, having the same amount of mass as that of the
unsaturated soil. The equation of motion for the slab in
the x direction provides one relationship between Tp and Up
at the water table. Referring to Figure 3-2a, this relation

can be expressed as

-WGT sin 6 + .5 (Tp + T

in which WGT is the weight of the layer of unsaturated soil
per unit surface area. The second relationship is the C~
characteristic equation. Tp and Up at the water table can
be solved using these two relations.

When the distance between the ground surface and the
water table is large, the figid slab approximation is poor
and the propagation of the shear wave inside the unsaturated
soil should be considered.

At the lower boundary, the velocity Up is the same as
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that of the bedrock, a prescribed guantity. The shear
stress Tp at the bedrock can be solved from the C+ charac-
teristic equation, as shown in Figure 3-2c.

After Tp and Up are solved at every node at.the instant
t + At, a new shear modulus for each distance interval is
computed from Equation (3-1) or Equation (3-2) on the basis
of the average shear stress in that interval. The same

procedure is repeated for obtaining the solution at the

next time step.

3-5. Accuracy

Numerical errors associated with the computation proce-
dure can be attributed to two sources, i.e., discretization
and interpolation. Error due to discretization can be re-
duced by reducing the time step and meanwhile keep the
Courant condition satisfied. Error due to interpolation for
a given space-time grid was investigated rumerically by Wylie
and Streeter(BS). A 50 foot deposit was used. It was
divided into 7 distance intervals for numerical solution.
It was shown that when a tangentiai _hear modulus was lowered
‘to 1/6 of its original small motion value, the resulted error
was about 5 percent. This estimation of interpolation error
was based on the method of chafacteristics grid, in which in-
'terpolations were used only once every 10 time steps.

In the following chapters, except otherwise stated, the
amount of discretization and interpolation used fall into

the range where the accuracy of the numerical procedure was

studied by Wylie and Streeter.



CHAPTER 4

STRESS-STRAIN RELATIONSHIPS FOR SATURATED SANDS

The distribution of stress between the granular soil
skeleton and the pore water in a saturated soil plays an
important role in liquefaction study. The stress-strain
relationship for saturated soil subjected to confined com-
pression is considered. A constrained compressibility of
the skeleton appears in the formulation. Its magnitude is
related to the bulk compressibility and the secant shear
modulus of the soil skeleton through a linear elastic theory

(7)

suggested by Biot. The use of the formulated relations
to portray the irreversible volumetric deformation due to
shearing is explained. In this study, the soil grains are

assumed to be incompressible.

4-1. Stress-strain relationships for the two phases of a
saturated soil subjected to confined compression.

Let n be the porosity of the soil, defined as the ra-
tio of pore volume to total volume of a soil element. When
the soil is homogeneous, n equals the ratio of pore area to
total area of a cross section. Let w and w be the dis-
placement field of the skeleton and of the pore water in
z direction. w and w arevdefined in such a way that the
volume of solid and water passing through a unit area, fixed
in space, are (1 - n) w and nw respectively. Both w and w
are functions of the coordinate z and time t. The initial

value of w and w are denoted by w5 and WO respectively.

-32-
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Consider the elementary volume shown in Figure 4-1.
The increase in the volume of solid material above its ini-
tial value is

3(1l - n)(w - wo)

- 0Z 8z =

9 (w - wo) on

[-(1 - n) B T + (w - wo) 5;] 5z,

and the increase in the volume of water above its initial

value is

9 n{w - w,.)
0 -
- §z =
0z

3(w - wy) _ _ on
[-n —y T T (w - wo) 5;] §z.

The decrease in the volume of water that originally
occupied the void space in the elementary volume is the

summation of the above two quantities

o (w - wo) d(w - w,)
-(w -w, - w+ w.) on } Sz
0 0’ 9z °

In the above expression, the last term is a product of two
small quantities and can be neglected. By the definition of

the compressibility of water, Cw’ one can write

1 p*
‘c‘:‘— - - — — ’
W d(w = wy,) 3 (w = w,)
(l..n)______.__g._ + n _____..__._Q_.
92 0z

n
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or

_ - n Pb* (4-1)

9w - wo) d(w — WO)

(1-n) N + n P

1
C
w

in which P* is the excess pore water pressure. The guantity
-n P* represents the excess tensile force acting on the por-
tion of the unit area of soil occupied by water. Denote

this quantity by S*, then

S* = -n P*, (4-2)

In terms of S$*, Equation (4-1) can be written as

(1-n) 3(w - w,) n 3(w - WO)
S* = t o ——
C 92 C JZ
w w
Let SO be the initial hydrostatic value of the tensile

force acting on the portion of the unit area of soil occu-

pied by water, and S be the current value of the same quan-

tity, then
— a%
S S* + SO ’
or
(1-n) 3 (w = wO) n 3(w - WO)
S = 5z T 5z T S - (4-3)
w . W

Next, consider the strain in the soil skeleton when in
a drained state. No stress in the pore water can be de-
veloped although the pores undergo straining. The tensile

force acting on the skeleton per unit area of soil is also
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the effective tensile stress, - Ez’ while Ez denotes the
vertical effective stress. Consider a mass of soil with
a volume 6z before straining, Figure 4-2. After straining,

the strain level in the skeleton can be represented by

1 ow _ oW
6—2—[(W+—8-Z-CSZ)—W]—E.

The stress—-strain relation for the skeleton is then

written as

1 9w ‘
z - C 3z (4-4)
C

in which CC is the constrained compressibility of the soil

skeleton. is known as the secant constrained modulus.

Cc
The total tensile stress, o, is the sum of the tensile

effective stress and the tensile pore water pressure, i.e.,

o= -0, +5,

z n
or

1 1 ow 1 3(w - w)

o= *ae) 3zt e Tz
c w w

_ 1 Bwo _ “i 8(w0 - wo) .\ EQ (4-5)

nC 209z Cw 0z n

4-2. The dependence of the constrained modulus of the ske-
leton upon its secant shear modulus.
As in an elastic solid, constrained compression of a

porous material involves both shearing strain and volumetric
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ground surface

(1-n) (w—wo) n (w—wo)

4

w77
N

Figure 4-1 Void volume change in a control volume
when in confined compression

ground surface

| FEN

5z

Constrained volumetric deformation of an

Figure 4-2
elementary mass of the soil skeleton
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strain. So the ability of a porous material to sustain con-
strained compression under drained conditions depends on its
shear modulus. The corresponding behavior of real soil is
more complicated. Nevertheless it is reasonable to expect
that soil behaves in a similar fashion. In the following,
the relation among the constrained compressibility, the bulk
compressibility and the secant shear modulus of an isotropic
linear elastic porous medium composed of incompressible solid
material with zero initial stress is developed. This rela-
tion is assumed to hold for soils.

Consider an elementary cube of soil with its sides
parallel to the coordinate axes x-y-z. This cube is con-
sideréd to be large enough compared to the size of the pores
so that it can be treated as homogeneous, and at the same
time small enough such that it can be regarded as a "point"
in a microscopic sense. The average displacement components
of the soil skeleton in x, y, and z directions are denoted
by u, v, and w, and those of the pore water by u, v, and w.

The strain components of the skeleton are

= du = du , v
€xx T x ! Yxy = 3y t 5% €tc-.
and
S L o % - 0w
x ox ' y oy ' €z T 3z °

The cubic dilatation of the soil skeleton, €, is

€ = ¢ + € + € . (4-6)
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This quantity‘also represents the cubic dilatation of the

soil bulk. The cubic dilatation of pore water, e, is

€=t +e +¢€
X y z

There are two sources that give rise to the dilatation
of pore water. The first is the compressibility of water
itself. The second is the pore volume change when the ske-
leton is deformed. This can be made clear by considering
a unit cube of soil shown in Figure 4-3. The volume dis~-
placed by water and solid in the z direction can be written

as

- [(1-n) €,, T D EZ] .

Similarly, the volumes displaced by water and solid in the

other two directions are, respectively,

- [(1-n) €y ¥ D E%] and - [(1-n) eyy + n E&].

Thus the total volume decrease due to the displacements

is

- [(1-n) (exx + ?yy + ezz) + n (sx + ey + ez)],

or
- [(1-n) € + n €].
Since no gap between solid and water can be developed, the

above quantity must equal the volume decrease caused by the

dilation in pore water itself. Hence one can write

n EQ = (1-n) € + n € (4-7)
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X
nv
y z nw
1 /
1 4 ¢
t 2 /
_ 1 /7 V4 - aa
NU e 5 7 Ve (4 0W
, & P X
! —teee _
(1-n)u "’)'_ ______ . (1-n)u+a<lai)u

3 oW
3z
nv+30Y
oy
(l_n)w+8(l—n)w

9z

Figure 4-3 Void volume change in a unit cube of a
control volume
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in which EQ is the dilation in water. It is related to the

change in the mass density of water by

Rearranging Equation (4-7), one obtains,

T =g, -4l

W = £ . (4-8)

It is seen that € is composed of two parts, i.e., dilation
in water itself and pore volume change.

The general stress-strain relationship for an isotro-
pic, linear elastic porous medium was obtained by

(7)

Biot. The existence of a strain energy potential was

assumed. The result is listed in the following

O = 26y €, T A E+Q € (4-9)

O,y = 26y By T A€+ Q € (4-10)
o,, = 2Gy €,, + A e +Q € (4-11)
T,y = G Yy (4-12)
Tax G0 Y2x (4-13)
Txy = %0 Yy (4-14)

S=Q¢ + R ¢ (4-15)
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In the above, Oxx denotes the x component of the tensile

force acting on the skeleton per unit area of soil. Oyy

and o,, are similar quantities in the y and z directions.

T, T.., and T are shear stresses acting on the surfaces
Y2 ZX Xy

of a soil element with normals in the x, y, 2z directions re-

spectively. sz, sz’ and YXY denote correspondlng shear

strains. Txy and ny are synonymous to T and Y used in

Chapter 3. G, denotes small motion shear modulus. A4, Q,

0
and R are elastic coefficients to be determined by experi-
ment.(a)
The octahedral normal tensile stress, Ooet’ is ob-
tained by adding Equations (4-9) through (4-11)
o} =41 (o + C + o )
oct 3 XX Yy 2z
l —
=3 (2GO + 3A) € + Q € , (4-16)
or
Onpct = @ € + Q ¢ (4-17)
‘where
o =L (26, + 3a). | (4-18)
3 0
From Equations (4-15) and (4-17) one can write
R o - QS
e = —t (4-19)
Raoa -0
and
-0 S
Q Ooct ¢

o
I}
|

(4-20)

Ro - 0Q
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Since the volumetric behavior of soil depends on the

effective stress, it is desirable to replace Yot by its
effective counterpart, Eoct' By definition

Ooct = (OOCt + 8) + P
in which O oot + S represents the total tensile stress and

P is the pore water pressure. S is related to P by an equa-

tion similar to Equation (4-2). Hence, one obtains

Soct = %oct + (n-1)P . (4-21)

Substituting Equation (4-21) into Equations (4-19) and (4-20),

one obtains the following

RO + [R(n-1) + QnlpP
e = oct 5 , (4-22)
Raoa - Q
and
Qo + [Q(n-1) + a nlP

oct

ol
I
!

(4-23)
R o - Q2

Now consider a drained compression test where P is kept
zero and hence no dilation in water itself can be developed.
Under this condition Equation (4-8) yields

(1-n)
n

g = -

> (4-24)

From Equations (4-22), (4-23), and (4-24), and with the
condition that P = 0, one obtains
RO
e = __.___(.).gt_z_ ’ . (4_25)
Ra-Q
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and
in e = _f_ieﬁf , (4-26)
n Raoa =290
whence
R = == Q. ' (4-27)

1-n

Note that Equation (4-25) indicates that the dilatation

of the soil skeleton is proportional to ¢

oct’ the propor-

tionality constant must be the bulk compressibility, Cb.

Therefore, by definition, one can write

c = R (4-28)

b R o - Q2

Now, imagine a cube of soil being immersed in water in-
side a container and then the whole container being pres-
surized. The water pressure increases in all the pores
evenly. Hence no effective stress is generated. Conse-
quently, no strain can be developed in the skeleton. At
the same time, the pore water itself is compressed with the
pore volume unchanged. Under this condition, Equation (4-8)

reduces to

£ = ew . (4-29)

Substituting Equation (4-29) into Equation (4-23) with Eoct

being zero, one obtains

- .9 (n-1) + o n
R o - Q2

€

w P . | (4-30)



Equation (4-30) indicates that the pore water pressure is
proportional to the dilatation in water itself. By the de-

finition of the compressibility of water, one can write

_Q (n-1) + an
Co = ,
Rao ~-0Q

- (4-31)

From Equations (4-27), (4-28) and (4-31) one can solve

for 0, R and o. The result is

0=z, (4-32)
w
= _
R =& , (4-33)
w
2
=14 Q-n)- -
o = Cb + —C . (4-34)
w

From Equation (4-18) and Equation (4-34), the elastic co-

efficient A is obtained as

.2
(i gl— , (4-35)

W

1

ote *

o

in which Cw is a known property of water, n can be deter-
mined by standard procedures, and Cb can be determined by a
triaxial test or calculated from known second pressure wave
and shear wave speeds in a deposit. Thus the values of A,
Q and R can be calculatéd for a given soil.

For constrained compression in the z direction, no dis-

placement in either the x or y directions can take place.

Hence, € = ¢€ and € = €

22 51 SO Equation (4-11) becomes

+0€,,

Q
!

(2G0 + A) ¢

Y4 "Z2Z
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or

g = [% G

VA4

2
1 (1-n) l-n -— _
0 + o + —] ¢ + E;_ €, - (4-36)

b n Cw ZZ

Similarly, Equation (4-15) reduces to

n-—_
= e,, v @ € (4-37)

2

<
€

In order to obtain the constrained modulus for the soil
skeleton, one needs to consider a drained condition where

S = 0. Thus, from Equation (4-37),

— n-1
e = —= ¢
z n zZZ

Substituting this relation into Equation (4-36), and noting
that now o, is the effective tensile stress, -0,. Thus for

S = 0, one can write

-5 = (% G+ =%) £ . (4-38)

From Equation (4-4) and Equation (4-38), one obtains

1

0 C . (4-39)

1
C
c
It is noted that in the linear theory of elasticity of
solid materials the same relation among the shear modulus,
bulk compressibility and constrained compressibility holds.

(39) has obtained

In a slightly different manner, Ishihara
Equation (4-39) for an isotropic, linear elastic porous
medium composed of a compressible solid.

It is assumed that a relation similar to Equation (4-39)
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holds for soils when subjected to simple shear, i.e.,

1_4 1 -
E“—BGS'FC (4—-40)
c

in which Gs is the secant shear modulus of soil. The use

of Equation (4-40) is outlined in the following section.

4-3. Compaction and volumetric straining during shearing
When a dry( loose sand is subjected to a monotonic
shearing under constant effective confining pressure, its
volume and shear modulus decrease until the shearing stress
equals its shearing strength. After the shearing strength
is reached, deformation continues with no further volume
change. The void ratio during constant volume shearing is

(16) The mechanism behind

called the critical void ratio.
this observed behavior was hypothesized by Casagrande to be
a continuous rearrangement of sand grains until minimum fric-

(31)

tional resistance is reached. A more elaborate mechanism

for compaction during repeated shearing is proposed by Youd
(78).

Due to the fact that pore water can not be drained
readily during a given amount of rapid repeated shearing,
the compaction of fully saturated sands is much less than
that of dry sands. It is very likely that liquefaction may
be completed well before the critical void ratio is reached.
The compaction mechanism for saturated sand can be thought
as similar to that of dry sands. The amount of compaction,
no matter how small, can not be recovered.

In this study, it is hypothesized that as the shearing
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strain increases, the shear modulus decreases as does the
ability of the skeleton to sustain confined compression.
Since the so0il is loaded by its own weight, it settles in
response to the weakening of the skeleton. During this
settlement, both compaction and elastic volumetric straining
may take place. The volumetric strain under confined com-
%%-, is defined based on the actual displacement.
Hence %% encompasses unit compaction (compaction per unit

depth) and elastic volumetric strain.

pression,

oW

The time rates of change in 3, —Ez and C_ are related
by
jﬂ:ﬁﬁl = = (—Oz) ESC + _i 3_ (EZ (4-41)
ot CC t Cc ot ‘az’’

This equation is obtained by taking time derivatives on both
sides of Equation (4-4). The constrained compressibility

is related to the secant shear modulus and the bulk quulus
of the skeleton, as shown in Eguation (4-40). It is assumed
that the bulk compressibility does not change during shear-

ing. Thus, from Equation (4-40), one obtains

_ _ 4 2 _
ACC = 3 Cc AGS : (4-42)

Since the shearing strain softening property of the skeleton
3G aC
§E§ , and thus 5?9 , can be considered as known

is known,
quantities at a given strain level during shearing. Equa-
tions (4-41) and (4-42) make it possible to calculate the

amount of settlement when a layer of loose sand is sheared.

At the moment of strain reversal in repeated shearing
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the soil instantly regains most of its shearing rigidity.

As a result, the skeleton recovers much of its confined
compressional strength that has been lost during the shear-
ing stroke preceeding the stress reversal. Since this
strengthening is instantaneous, Equation (4-41) is not
applicable at the instant of shearing strain reversal. Imme-
diately after the strain reversal, the soil, now slightly
densified by the compaction that took place during previous
strokes, is compacted further as the shearing to the oppo-~

site direction proceeds.



CHAPTER 5
PROPAGATION OF PLANE PRESSURE WAVES IN
SATURATED DEPOSITS

The governing equations for the pressure wave motions
in a saturated deposit are developed in this chapter. The
analytical solution for a uniform linear elastic deposit in
steady oscillatory motion is developed. The influence of
permeability and porosity upon the motion is examined by
examples. Wave motions in more realistic deposits can be
studied by a numerical procedure, which is considered in

Chapter 6.

5-1. Equation of motion of saturated soils

Since a saturated soil is considered as a two phase
medium, it is necessary to consider the velocity for each
constituent. The velocity of the skeleton, W and the seep-
age velocity W are used to describe the motion of the soil.
In terms of the displacement fields defined in Chapter 4,

one can write

oW

and
W= @-w 5
W= aE (W w). (5-2)

Consider a soil element in Figure 5-1, the equation of mo-

tion can be written as

90 DW
(0 + 37 §z) - o + pgdz = (p g tnoe

DR

\ Dt) §z,

-49-
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or

%0 _ oW D _
3z VP9 = 0 pg D Py B - (5-3)

The presence of the second term on the right hand side is
due to the fact that the unbalanced force causes pore water
to accelerate relative to the soil skeleton. The convec-
tive component in the two accelerations, W %g and W %g ’
are small quantities relative to the remaining terms of the

equation and hence can be neglected. Therefore, the equa-

tion of motion for soil becomes

] _ W W
5-2. Equation of motion for water in pores

The motion of pore water relative to the soil skeleton
is slow and hence is considered as laminar. The resistance
force to the flow imparted by the soil skeleton is expresséd
in terms of Darcy's law. Consider a soil element in Figure
5-2, the equation of relative motion of pore water can be

written as

98 4, - _ oW _

(s + Sz §z) S+ n Py 9 Sz §z n ow 3t
nzpwg _ DW
Sz '——"}z“——‘ W= 6z n pw ﬁt—

in which k is the permeability in z direction. The fourth
term on the left side represents the apparent body force
due to the acceleration of the skeleton. The fifth term on

the left side is due to the viscosity of the pore water.
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ground surface

unit area

1 pgdz

o + -5;62
Figure 5-1 Forces on a soil element
ground surface
S
z [ l T
dz T 2
np géz W nopL9
w W Sz
i_ np=—ss Sz A

Figure 5-2 Forces on the water portion of a soil element
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It is treated as if it were a body force, this detail is
given in Appendix 1. After simplifying, the equation of

motion for water in pores can be written .as

0S oW n2p _
3z TR Py 9 TR oL FE " k W=mnp

. (5-5)

5-3. Timé derivative of stress strain relations

In the study of pressure wave propagation, it is con-
venient to work with velocities of the soil constituents
rather than their displacements. Take time derivatives on
both sides of Equation (4-3), noting that the time deriva-
tives of the quantities with subscript zero vanish, one ob-
tains

1 32w + .0 32 (W - w)
Cw atoz C otoz

#le
g

After interchanging the order of differentiation and em-

ploying Equations (5-1) and (5-2), one obtains

1 oW n
c szt
w w

(5-6)

=%
NES

Similarly, take time derivatives on both sides of Equa-
tion (4-5), one obtains

30 1 1 oW 1 oW 1 3w aC
— = (et —) — + — — - — —c .
ot C n C 97 C 293z C Z 3z 3t

c W w c

From Equation (4-4) and the definition of effective tensile

stress, one can write

1 1 S
._._..2_ .B_YV_ - = (0 - __) R
Cc 0z Cc n
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hence
30 1 1 oW 1 W@ 1 S BC_
- e tae) =t e R w - BT
o w w c
Equations (5-4), (5-5), (5-6) and (5-7) together govern the
propagation of plane pressure waves.
5~4. Steady oscillatory motion of uniform linear elastic

deposit

In this section the soil is considered as linear elas-
tic so the last term in Equation (5-7) vanishes. S and o
can be considered as the dynamic stresses above or below
their static value. By dropping the gravity terms in Equa-

tions (5-4) and (5-5) and taking time derivatives, one gets

5%W  n 0., 3%% 1 %0
2 + 2 - e = O ’ (5_8)
it o) ot p dzdt
and
2 2= 2 =
) g + W 1 378 + D9 gﬂ -0 . (5-9)

ot 3t2  n o, 9zt kK dt

Differentiate Equations (5-6) and (5-7) with respect to z,

one obtains

9s _ 123 g - ?,g =0, (5-10)
dzot Cw 9z Cw 9z
and
2 2 2
20 (L Ly 2R L3N _, . (5-11)

dzat C n Cw 0z C. 3z
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Eliminating %E%E between Equations (5-8) and (5-11) yields

32w n o, %% 1 1 1 3%w 1 32w
+ - = [(—+ ) — + — —]
at2 o at2 o} C n C 322 C 822
C W w
= 0. (5-12)
2

Eliminating gE%? between Equation (5-9) and (5-10) yields

2 2— 2 2
W , n
C

1
(—= 2
ot ot n oo, Cw 9z

=l

= 0. (5-13)

)]

) +
k

Q2
g 1%

2

g

The simple harmonic motion of the soil deposit is known
after W (z, t) and W (z, t) are solved simultaneously from
Equations (5-12) and (5-13).

Let the solution to Equations (5-12) and (5-13) assume

the following form

i(wt - %)

W (z, t) H(z) e (5-14)

. in
el(wt - i)

W (z, t) G(z)

I

(5-15)

where w is the specified angular frequency of the motion and
i =V~1. H(z) is the amplitude of the skeleton velocity
fluctuation at depth z, and G(z) is the amplitude of the
seepage velocity fluctuation at depth z. The barticular
form of H(z) and G(z) depend on boundary conditions.

Substitute Equations (5-14) and (5-15) into Eguations
(5-12) and (5-13) and simplifying, one obtains

2q a%c

o]}

G=20, (5-16)
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and
2— 2=
o, LH L 46 L o T +a.G=0 (5-17)
5 2 6 2 7 8
dz dz
in which
1 1 1 1 2
0, = = (5~ + ); Uy = =3 A, = W ;
1 o} CC n Cw 2 o) Cw 3
n p wz 1 1
a, = Y ;o = oo = - ;
4 0 5 n P Cw 6 pw Cw
= 2. = 2 - i, D9
o w; og w io ¢ -

For convenience, let

dH _ = dG _ =

3z - P(z) and iz - Q(z) ,
then

dzﬁ_d§ dza_dé’

—5 = and S

dz d dz dz

With P(z) and Q(z), Equations (5-16) and (5-17) can be re-
written as a homogeneous system of four first order ordinary

differential equations

,

ay %g + o, %g + ag H+ a, G=0,

< Qg %g +oag gg + a, H + dg G=20, (5-18)
P-8E.,,

Lﬁ—g—_f=0.
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Let P(z) = aekz; 0(z) = bekz; H = cexz; and G = de

Az
be a particular solution to the above system, where a, b,
c, and d are four constants. Substitute this particular

solution into the system, one obtains

( =
alak + asz + a3c + a4d 0
a5aA + a6bx + a7c + usd = 0 (5-19)
<
a ~CcA =0
b -ad = 0
.

Nontrivial solution for a, b, c, and d exists if and only

if the following equation holds

det alk azx a3 u4 = 0.
aSA QGX a7 a8
(5-20)
1 0 -A 0
0 1 0 -A

The solution to Equation (5-20) is

> 2>
W N -

- 1 2 _
A= i/;Yl ( Yo i’/Y?.. 4Y1Y3)

in which Y] = 0q0g T Qs Yy = Qy0g = G,0g = A, + 030,

Y3 T 0308 T U yQor and Al > XZ > A3 > A4.

For Aj, i =1, 2, 3, 4, one can solve aj, bj' cj and

dj from Equation (5-19). It is noted that since A is ob-

tained from Equation (5-20), only three equations in System
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(5-19) are independent from one another. Consequently, one
can always assign unity to dj' j=1, 2, 3, 4, and then

solve for aj, bj,land cj. Such a solution is written as

follows
2
O~ A._  + O
ay = -y (2——4)
al Aj + o3
b. = A
j j !
2
,c _ a6 %j + a8
j 2 '
a5 Aj + a7
d. =1,
J
for j =1, 2, 3, 4. The four particular solutions
Ajz
P.{(z) = a. e
J( ) J
Ajz
z) = b. e
QJ() 5
ij iji=1, 2, 3, 4
H.(z) = c. e
J( ) J
. Z
J
G. = e
J(z)

for the system (5-18) are thus obtained. The general solu-
tion to the system can be written as a linear combination
of these four particular solutions, as shown in the fol-

lowing

P(z) =



_ A% Ayz A3z Ay
Q(z) = Sq bl e + 52 b2 e + S3 b3 e + s4 b4 e
A2 AnZ A2 A,Z

_ _ 1 2 3 4

H(z) = sl c1 e + 52 c, e + s3 c3 e + s4 c4 e
ALz A2 ALZ Aa2

— _ 1 2 3 4

G(z) = sl e + 52 e + s3 e + Sy e

in which sl, Sy s3 and s, are four constants to be deter-

4
mined from given boundary conditions.
Consider a deposit of soil resting on an impermeable
bedrock, the depth of the deposit being D. The boundary

condition imposed at the bedrock is

i(wt - %)

W (D, t) AMP e ’

and

i
o

W (D, t)

in which AMP is a real number representing the single ampli-
tude of the skeleton velocity at the bottom. At the sur-

face, the condition of constant stresses is imposed, hence

aS _

3t Iz=0 -0
and

30 _

—ﬁ\zzo—o.

In terms of P(z), Q(z), H(z) and G(z), these boundary con-

ditions can be written as
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(H(D) = amp ,

G(D) = 0 ,

_ (5-21)
P(0) =0 ,

| G0) =0 .

These four equations yield the following four independent

equations to determine s s s, and s, uniquely,

17 72" 73 4
_ AlD AZD A3D A4D
H(D) = c, e sy tc, e s, *+ c,y e S5 +c, e s, = AMP,
A,D A,D A LD A,D
= _ 1 2 3 4 _
G(D) = e Sy + e S, + e S3 + e Sy = 0o,
P(0) = a; s, + a, s, + ay S, + a, S, = 0,
Q(0) = b, s, + b, s, +b,s, +b, s, =0.

After solving s S s, and s, from the above four equa-

1’ 72" 73 4
tions, the solution to System (5-18), subjected to condition
(5-21) is obtained. This solution, in terms of W, W, S and

o is expressed as follows

_ i(wt - 3)
W (z, t) = H(z) e
3 3 i(wt = 3)
W (z, t) = G(z) e
. B i(wt - %)
S(z, t) = ToC [P(z) + n Q(z)]e
w
R m
i(wt - %)
o(z, £) = «= [(=% + 1) B(z) + == Q(2)] e 2

C

— [ (=
1w Cc n Cw -



The computer program used to generate numerical results of

this lengthy solution is included in Appendix 2.

5-5. Examples

A level saturated deposit 50 feet deep was used in the
following examples to demonstrate the role of‘various para-
meters in steady oscillatory motion. For all the examples
the mass density of water was taken as 1.94 lb—secz/ft, and
the imposed skeletal velocity at the impervious surface of
the bedrock was 0.2 sin (2nt) fps. W, W and the dynamic
stresses S and ¢ (above or below their static value) were

obtained from the program listed in Appendix 2.

Example 5-1. The motion of loose, medium and dense
saturated sands

Representative values for the parameters associated

with typical loose and dense sand were given by Ishihara,(39)

and were used in this chapter. Parameters associated with

the medium sand were estimated. All the data are listed

in Table 5-1.

TABLE 5-1
PROPERTIES OF SANDS USED IN CHAPTER 5

Loose Sand Medium Sand Dense Sand
n 0.5 0.4 0.3
o s lb-sec’/ft 5.13 5.13 5.13
c ., £t°/1b 3.4 x 1007 2.4 x1077 1.3 x 1077
c,, £t?/1b 2.3x10°%  2.3x107% 2.3 x 1078

k, fps 0.003 0.001 0.0003
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The amplitudes and phase angles of the oscillation
throughout the deposit are plotted in Figure 5-3 and Figure
5-4. The phase angle of any quantity under consideration
is defined as the phase difference between the quantity and
the skeletal velocity at the bottom of the deposit. These
plots show that except near the impermeable bedrock, W, S
and ¢ were in phase with one another, and each individual
quantity as 90 degrees out of phase with respect to W. Os-
cillations in W and W in a loose deposit were slightly lar-
ger than those in a dense deposit. However, the difference
in the amplitudes of dynamic stresses were quite different.
These differences might be attributed to the difference in

porosity, as shown later in Example 5-3.

Example 5-2. The effect of permeability

In order to see how the motion was influenced by per-
meability alone, the medium sand was used in conjunction
with the permeability of loose and dense sands in Example
5-1. Results are shown in Figures 5-5 and 5-6. It is seen
that permeability greatly influenced the relative motion
between the skeleton and pore water. The influence of the
permeability on the skeletal velocity and the dynamic stress
S was small, while it had negligible influence upon the

dynamic total stress g.

Example 5-3. The effect of porosity

The influence of porosity was then examined by using

the medium sand in conjunction with the porosity of loose
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and dense sands in Example 5-1. Results are shown in
Figures 5-7 and 5-8. Except for the éeepage velocity, the
oscillations of W, S, and o were close to those shown in
Example 5-1. Hence, in general, the effect of porosity
overrides that of permeability, and the soil skeleton and
pore water tend to move together when the permeability is
small.

Computations for Examples 5-1, 5-2, and 5-3 were re-
peated with a bedrock velocity frequency of 10 Hertz. Re-

sults were similar to those described above.
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CHAPTER 6

NUMERICAL SOLUTION BY THE METHOD OF CHARACTERISTICS

In this chapter the set of governing equations is
shown to be hyperbolic for most saturated sands. Four
characteristic equations are obtained after the governing
equations are transformed into the normal form. These
characteristic equations are then approximated by finite
differences to obtain numerical solutions. The accuracy
of the numerical procedure is checked by using the analy-
tical solution obtained in Chapter 5. The numerical pro-
cedure developed in this chapter is used in the subsequent
chapters to study the motions in deposits with time Vary—

ing, inelastic material properties.

6-1. The hyperbolicity of the governing equations.
By linear combinations of Equations (5-4) and (5-5),

one obtains

2

oW 1 0S 1 a0 n=p g
T T =03z "o - o3z ¢ = W-g
ot np p 3z ne_, p 0z k(npw o)

=0, (6-1)

and

oW p 88 . __ 1 3 _ __ong =
ot np (np - p) 3z np_ - p 9z k(np - p)

=0 . (6-2)

Write Equations (6-1), (6-2), (5-6) and (5-7) in matrix
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(1 0 0o o) (w)
0 1 0 o !|Ww
0 0 1 0|]|s
o o 0 1) (o),
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r -1 1 W R
0 0 W
ne.-=p no_-=p
0 -1 —
0 0 ~ . W
npw(npw 0) np=p
-1 -n
ol ol 0 0 S
w w
1 1 -1
-(== + =) = 0
( n Dwg - 3
+ — W-~-g| =
k(npw o)
_png —
; W
k(now - p)
(6-3)
0
1 S acc
e 7T R
L J

in which the subscripts t and z at the lower right corner

of the brackets represent partial differentiation.

matrices A, B, D and X as follows

-
A= 0
0
-1
C
w
1 1
~ (= + =)
L Cc  nG,

OP
o

LI =

-1l
np.-pe

p

np, (np_=o)

0

L ).,
nQ -
_.l 0
np.=p
0 d5
0
J Ld7

Define
3
dl d2
dy dy
0 0
0 01,
J
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2
n“p_g
8= (1 0 o0 01 D= [ W -g X = (W)
k(noW o) W
0 1 0 0 ETEB;gBT W W
0 0 1 0 0 S
1 s 3C
(0 0 0 1y CARE S
c J

then Equation (6-3) can be written in the following short

form
B Xt + A Xz + D =20. (6-4)

For computational advantages, it is desirable to trans-
form Equation (6-4) into a normal form in which every com-
ponent equation involves derivatives in only one direction
on the z-t plane. Assume such a transformation exists.
Denote this transformation by E and let e 4 i, 3 =1, 2,

3, 4 be the elements of E. Pre-multiplying Equation (6-4)

by E yields

BB Xt + B A Xz + ED=20. (6-5)

In order to obtain the normal form, the following condition

is imposed on E

EA=XEB (6-6)

1> Ao

k3 > A4. Substituting Equation (6~6) into Equation (6-5)

in which X is a real diagonal matrix with elements X

EB Xt + X EB XZ +ED=0. (6-7)



-72-

It is seen that in the ith equation of system (6-7), all
derivatives take place along the direction %% = Ai on the
z-t plane.

Each row in system (6-6) represents four homogeneous

equations in the four unknowns eij’ j=1, 2, 3, 4. For a

non-trivial solution to exist, one must have
det|X - A, B| =0 . (6-8)

Since Ai represents the direction of differentiation on the
z-t plane, all four Ai's must be real and distinct. This
is the sufficient condition for the existence of the trans-
formation E, which is taken as the definition for hyperbo-
licity.

In Equation (6-8), since B is a unit matrix, one can
simply solve for the eigenvalues of the matrix A for K.

Let

d

Q
i

d,d. + d2d7 + d

195 d6 + d

4

3 8

and

B = dld4d5d8 + d2d3d6d7 - dld4d6d7 - d2d3d5d8 ’

then Equation (6-8) becomes

whence

1 2
)\i = i\/f(o‘ i\[oc - 4B) . (6-9)

In order that the four Ai's be real, it is necessary
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that the soil must have properties such that B8 > 0 and

az > 4. One can visualize Ai as the speed of propagation
of disturbances on the z-t plane. Hereafter, the absolute
value of Al or A4 is called the first p-wave speed and that

of Az or A3 is called the second p-wave speed.
For the purpose of demonstrating the hyperbolicity of

Equation (6-3) for most saturated sands, Equation (6-9) was

employed to compute the two wave speeds for two types of

sand over a range of void ratio and effective confining

pressure. These two sands were the round-grained sand and the

(35) The small

angular-grained sand of Hardin and Richart.
motion shear modulus of these sands were related to the

void ratio, e, and the effective confining pressure, 50, by:

for round grained sand

5 0.5
560 (2.17 - —
Gy = W5, (6-10)
(psf) (psf)
and for angular grained sand
2 0.5
G, = 147601(3.27 - e) EO . (6-11)
(psf) (psf)

The effective confining pressure was calculated from the

following equation

_ 1+ 2K0 _

% T T3 % (6-12)
in which L is the coefficient of earth pressure at rest
and Ez denotes vertical effective stress.

(39)

Based on Ishihara's data , the bulk compressibility

of the skeleton, Cb’ at a particular porosity was calculated



from the following interpolation formula

6

C. = [4.403 + 0.176 (n - 0.5)] x 10~° £t2/1p.

b

This formula is based on the bulk compressibilities given
by Ishihara at n = 0.3 and n = 0.5. The constrained com-

pressibility of the skeleton, Cc' was calculated from G

0
and Cb from Equation (4-39). Other data used in the com-
-8 2
putation were: p = 1.94 1b—sec2/ft, CW = 2.348 x 10 ft°/

1b, Py = 5.15 lb—secz/ft and KO = 1. Results are shown in
Figures 6-1 and 6-2. The wave speed for incompressible soil
grains suspended in water could be computed from the Wood

equation(54)

and was also shown in Figure 6-2 for compari-
son.

From Figures 6-1 and 6-2 it is seen that 4 real and
distinct eigenvalues of matrix A were obtained for a wide
range of soils. Hence Equation (6-3) is hyperbolic within
the range of void ratio and the range of effective con-
fining pressure tested. These ranges are wide enough to

cover situations in which possible liquefaction need be

investigated.

6-2. The characteristic equations.
After the wave speeds are obtained, one can solve for
the transformation E. Noting that B is a unit matrix, one

can write Equation (6-6) as
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After the multiplication, one can equate the ith row on both

sides and obtain the

)
€i3

for i =

d5 + ei4

1, 2, 3,

d

4.

7

following

System (6-13) is a homogeneous system for eij

2, 3, 4.

solution

equations in system (6-10) are independent.

€iq

(6-13)

j =1,

Since Xi satisfies Eguation (6-8), non-trivial

s exist.

results are

.
€i1

Because of this condition,

= 1 and solve for ei

e.
17 ~i

2

_ \;©dg + 4, d; 4, - 4, d; dg
X,(@, d; + d, dg)

M oTei 9
dy

_ My €59 " 9

- 7
dg

only three

One can set

5 and €3 accordingly.

The

(6-14)
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for i = 1, 2, 3, 4. This completes the solution for .
The ith row of Equation (6-5) can be written out in

long hand as

W JW 38 . 3¢ oW W
®j1 3¢t T G2t T Ci3se Yot M o152 T A i 32
aS 00 nzpwg _
Ay ej33e T ri3e €i1 (k(npw—p) Ww-g9)
npg B 1 s ac_
e, W= (0 -2 =S=0,
i2 k(npw o) Cc n’ 3t
or
oW oW oW oW 5S 98
ej1 G+t Ao3z) tegy Gt Ayaz) teys Gt A 5P
n’p g npg
90 20 w = =
togg oAy 3g) ey (ETHB;:BT W=-g) - e, K{np,-p) "
aC,,
+——-(O""-")§-E—-=0
C

In terms of characteristics, one can write

2
= np.g

( aw aw ds do w = -

®i1d T Ci2d TCi3ae ta T Cinlkmo oy T 9
i npg _ 1 S BCC
C e. e ee—— W + — (O' - —) e = 0 _

{ Ti2 k(npw 0) CC n’ 9t (6—-15)
dz _

| @t T Ay

for i =1, 2, 3, 4. The first equation in system (6-15) is
called the C* characteristics equation, and it is valid only

if the second equation is satisfied.
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System (6-15) is equivalent to System (6-3) in the
sense that every solution of the one is a solution of the
other. However, in contrast to System (6-3), every charac-
teristics equation in System (6-15) contains derivatives in
a common direction on the z-t plane. This fact not only
enables one to approximate System (6-15) conveniently by
finite differences, it also simplifies the treatment of

boundary conditions.

6-3. Finite difference approximation.
The numerical procedure is best visualized on a z-t
diagram shown in Figure 6-3. The method of specified time

intervals(4l)

is used to establish the z-t grid. After
discretization, the material properties in each distance
interval are considered to be uniform. Since the wave
speeds vary with time, conditions at points 1, 2, 3, and 4
must be evaluated from known conditions at points A, B and
C before the conditions at point p can be found. The fol-

lowing interpolation formulas, in terms of the skeletal

velocity W, are used for interior points

at point 1
AlAt
Wl = WC + ——ZE— (WA - WC) ’ (6-16)
at point 2
_ 1 2,.2 _ 2
W, = E_Z;Z [XzAt(AzAt + Az) W, + 2()\2 At Az™) WC
+ AZAt (XzAt - Az) WB] ' (6-17)
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at point 3

_ 1 2
Wy = —= [A30t (M50t + bz) W, + 2(A At

3 5 pZ2

2 2
Az™) WC

+ A3At (A3At - Az) WB] , (6-18)

at point 4
A4At

4 c iz W

5 - Wo) - (6-19)

Similar interpolation formulas are used to obtain Wi’ Si'

and oi for i = 1, 2, 3, 4.
The C' characteristics equation is integrated in its

characteristic direction as

ej1 Wp = Wy) + €55 (Wp = W) +e;5 (Sp - 8y)
At npg _ _
volop m0y) =y legs ke (M W)
2
n"p g (6-20)

- eil Yo =57 (npw_p) (WP + Wi)] + At eil g

At Si BCC SP SCCI
- — [C. (0. -~ —=)=—| + C (0, - —=)=—— ]
2 c, i n ‘9t & ST At P n ‘9t £+ At
for i =1, 2, 3 and 4. eil’ ei2 and ei3 are evaluated at

time t. The subscripts t and t + At represent the time at
which the quantities under consideration are evaluated. It
is adequate to use first order approximations for the co-
efficients of the first three terms of the characteristic
equations of System (6-15), while second order approxima-
tions are necessary for the last three terms in the same
equation.

For a given initial condition, for example, the static
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condition, W, Wi’ s; and o, i=1, 2, 3, 4, can be com-
puted from the interpolation formulas. One can then solve
for W, W, S, and o at every interior node from the four
equations represented by Equation (6-20).

At the surface of the deposit, two characteristics can
be drawn from the interior to the upper boundary. Referring

to Figure 6-3a, the interpolation formula for obtaining the

conditions at points 3 and 4, in terms of W, are

W, = —L _ [(28z + Ag0t) (bz + A At) W

2 A22

Cc

+ 2A3At(2Az + A,At) W, + A_At(Az + X3At) WD], (6-21)

3 B 3

K4At
W, = W, -

4 C Az (WB - W

C) . (6-22)

The boundary conditions, discussed in the next section, to-
gether with the integrated C3 and C4 characteristic equa-
tions in Equation (6-20) constitute a system of four equa-
tions which enables one to solve the four variables at the
surface.

At the bottom of the deposit, two characteristics can
be drawn from the interior to the lower boundary. Referring
to’Figure 6-3c, the interpolation formula for obtaining the

conditions at points 1 and 2, in terms of W, are

XlAt
Wl = WC + iz (WA - WC) ’ (6-23)
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= 1
2 2 A22

[A At(AlAt - Az)WE + ZAlAt(AlAt - 2Az) W

1 A

+ (XlAt - AZ)(XlAt - 2Az)WC]. (6-24)

Two boundary conditions together with the Cl and C2 charac-
teristic equations in Equation (6-20) yield a unique solu-

tion for the four unknowns at the lower boundary.

After the solution is obtained at t + At, one can ob-

tain the solution at t + 2At by the same procedure.

6-4. Boundary conditions.

A few boundary conditions are considered in this sec-
tion.
(a) Free surface.

At the free surface, there is no stress in the soil

skeleton, and the pore water pressure is zero, therefore

s(0, t)

i
o

(6-25)
and

o(0, t) =0 . (6-26)

W and W can then be solved from the integrated C3 and C4

characteristic equations.
(b) Unsaturated soil layer above the water table.

The upper boundary of the deposit is always considered
to be at the water table. During transients, the vertical
acceleration of the soil mass between the ground surface
and the upper boundary is negligible when compared with
that in the horizontal direction. Therefore, the effective

stress at the upper boundary can be considered to be equal
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to the weight of the unsaturated soil per unit surface area.
The elevation of the water table is treated as fixed during

ground shaking. Hence the boundary conditions are

S(0, t) =0 , (6-27)
and

o(0, t) = WGT . (6-28)

(c) Impermeable bedrock at the base of the deposit.
No relative motion between the soil skeleton and pore

water can take place at the impermeable base, therefore

W(D, t) = 0. (6-29)

The vertical component of the skeletal velocity at the base

is identical to that of the bedrock, hence
W(D, t) = vertical component of the bedrock motion (6-30)

Other boundary conditions, such as permeable bedrock,
may be incorporated into the numerical procedure. These
more complicated boundary conditions are not included in

the present study.

6-5. Accuracy.

The accuracy of the numerical procedure is checked by
using the steady oscillatory motion treated in Chapter 5.
From the analytical solution, the velocities and dynamic
stresses at a particular instant can be computed. Then by
adding the static stresses to the dynamic stresses, one can
obtain the actual level of stresses in the deposit. Using

these velocities and stress levels as the initial conditions
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and treating the boundary conditions appropriately, the
steady oscillatory motion should be closely approximated
by the numerical procedure.

Consider a horizontal saturated deposit 50 feet deep
with the following material properties: n = 0.4, p_ =

5.13 lb-sec?/ft, C, = 2.4 x 10”7

8

ftz/lb, Py = 1.94 lb—secz/ft,

C =2.3x 10

v ft2/lb and k = 0.001 fps. This deposit was

set in steady oscillatory motion with a frequency of 5
Hertz. The skeletal velocity at the impervious bedrock was
0.2 sin (10mt) fps.

For the numerical solution, the deposit was divided
into 5 equal distant intervals. The solution at a depth of
20 feet was obtained from both the analytical solution and
the numerical procedure. Results are plotted in Figures
6-4 and 6-5. In the numerical solution the computation
had been carried out for seven cycles, and the motion stayed
steady oscillatory throughout these seven cycles. It is
seen that the agreement between these solutions was ex-

cellent.
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CHAPTER 7
VERTICAL MOTIONS OF SOILS WITH SPECIFIED
TIME HISTORY OF SHEAR MODULI

This chapter concerns the calculation of transient pore
water pressure and effective stress in a saturated soil de-
posit when the constrained compressibility of the soil is
rapidly changed. The constrained compressibility at a given
depth in the déposit is visualized as a time-varying func-
tion resulting from dynamic shearing. In this chapter pre-
specified time histories of the secant shear modulus are
used to simulate changes in the constrained compressibility.
Examples are employed to demonstrate the resulting vertical
motions and the accompanying changes in effective stress and
pore water pressure in a horizontal deposit.

It is to be noted that the shear modulus of the skeleton
depends upon the shearing strain amplitude and the effective
stress, hence it should not be specified independently. How-
ever, the examples with specified shear modulus changes does
provide an aid in the description of the pressure wave sub-
model when changes in constrained compressibility are pre-
sent. More realistic cases are presented in the next chap-

ter.

7-1. Monotonic weakening of skeleton

Consider a level deposit 53.33 feet deep with following

properties: n = 0.4, p_ = 5.13 lb-sec’/ft, c, = 4.8 x 1077
2 -8
0 = 1.0, Py = 1.94 lb-sec”/ft, Cw = 2.3 x 10

1b and k = 0.001 fps. The water table was 3.33 ft below the

£t2/1b, X ££2)

-88-—
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ground surface. The small motion shear modulus, GO’ through-
out the deposit was calculated from Equation (6-10). The
time history of secant shear modulus at depth z, Gs (z, t),

was specified as

Go(z) cos (2.09 t), t < 0.7
G. (z, t) = {(7-1)

GS(ZI 0'7) 4 t > 0-7

The deposit under the water table was divided into 8
equal distance intervals. The shear modulus in each inter-
val was considered to be the average value of the shear mo-
duli at the ends of the interval. The constrained compres-
sibility of each interval was computed from Equation (4-40).

Its time rate of change was computed from
—C = . c 2 _S (7-2)

This equation can be obtained directly from Equation (4-42).
The response of the deposit to the GS changes are shown
in Figures 7-1 and 7-2. It can be sef2n that during the
course of shear modulus reduction, the pore water pressure
increased, and at the same time, the effective stress de-
creased such that the total stress at a section stayed ap-
proximately constant. Accompanying the pore water pressure
buildup, there was an upward flow of water. Downward dis-
placement of the skeleton took place throughout the deposit.
After the shear modulus in the bottom interval reached the
low value at 0.7 seconds, as shown in Figure 7-1, the effec-

tive stress at the bottom started to recover, and the excess
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pore water pressure was dissipated gradually. Upward flow
of the pore water and the downward movement of the skeleton
continued. The tendency toward a new static equilibrium

with a smaller porosity was evident.

7-2. Cyclic weakening of the skeleton

When a sand is subjected to cyclic shearing in the
strain softening range, its shearing stress—sheariné strain
relation can be represented schematically by Figure 7-3.
Associated with each stroke, for example, from a to b, there
is a monotonic decrease in the secant shear modulus. Upon
the shearing strain reversal at b, the soil regains most of
its shearing rigidity. A monotonic decrease in shear modu-
lus takes place again for stroke bc. The corresponding
variation of the secant shear modulus with time is shown
schematically in Figure 7-4. Similar shear moduli changes
were used in the following example.

Consider a horizontal saturated deposit 50 feet deep
with the following properties: n = 0.5, p_ = 5.13 1b—sec2/
6

ftz/lb, K0 = 1.0, Py = 1.94 lb—secz/ft,

£t2/1b, and k

ft, C, = 2.2 x 10~
C = 2.35 x 1078
w

I

0.00328 fps. The water
table was at the ground surface. The small motion shear
modulus throughout the deposit was a function of effective
stress, as described by Equation (6-10).

The deposit was divided into 8 equal distance intervals.
The time history of the specified shear modulus of each in-
terval was shown in Figure 7-5. Associated with each of the

jumps at b, c, and d, there was an abrupt decrease iﬁ the -
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constrained compressibility of the skeleton. The time rate
of change of the constrained compressibility immediately
after the sudden stiffening was considered to be zero. The
stresses and velocities immediately before the stiffening
were used as the initial condition for the subsequent com-
putations. By this procedure, the sudden stiffening of the
skeleton did not interfere with the trend of the soil to
move toward a denser state as shearing progresses.

Figure 7-6 illustrates the transfer of stress at the
base of the deposit from skeleton to pore water. The pulses
in these two traces corresponded to the shear modulus varia-
tions. At the beginning and the end of each stroke, the
time rate of change of the shear modulus was smaller than
that at the middle of the stroke. As a result, the pore
water pressure rise at the ends of a shearing stroke was
less rapid than that at the middle of the stroke. When the
excess pore water pressure became high and, at the same
time, the rate of shear modulus decrease was small, the soil
might gain some effective stress. This situation occurred
briefly at about 0.77 seconds, as indicated in Figure 7-6.

Figure 7-7 shows the profile of the excess pore water
pressure, in terms of piezometric head, at various moments.
Due to the presence of the impermeable bedrock, there was no
pore water pressure gradient at the base of the deposit. 1In
the interior and at the surface of the deposit the gradient
of the excess pore water pressure was negative. Accordingly,

pore water moved up towards the ground surface and eventually
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seeped out of the deposit. The flow of pore water was more
rapid at the later stages when the negative gradient became
larger. Figure 7-8 shows the accompanying transient effec-
tive stress profiles.

Downward displacement of the skeleton occurred through-
out the deposit, as shown in Figure 7-9. It is noted that
the maximum downward displacement occurred at approximately
18.75 feet, instead of at the ground surface. As a result,
the porosity of the top three intervals increased as time
progressed. This trend was consistent with the piezometric
head profiles. In Figure 7-7, it can be seen that the maxi-
mum negative gradient occurred approximately at the middle
of the deposit. According to Darcy's law and the principle
of mass conservation, the amount of water contained in the
top three intervals must increase as time went on, hence the
increase of the porosity in the top three intervals. The
porosity of the lower portion of the deposit decreased be-
cause of the upward drainage and the volume reduction in
pore water itself.

The above example together with the example in Section
7-1 demonstrates that the pressure wave submodel is able
to describe quantitavely the anticipated accumulated increase
in pore water pressure and the corresponding reduction in
effective stress when the constrained modulus of a saturated

deposit is reduced.
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CHAPTER 8
THE LIQUEFACTION MODEL

The pressure wave submodel was presented in Chapter 7,
where the time history of the shear modulus was specified
in advance. A more realistic situation, in which the motion
in the vertical direction is caused by repeated shearing, is
developed in this chapter. A coupling between the propaga-
tion of plane shear waves and the vertical motion of the
soil due to changes in its constrained compressibility is
developed. The coupled motions constitute the model for
liquefaction.

The liquefaction model is presented with the help of
a flow diagram. The modeling of transient effective stress
and changes in pore water pressure in horizontal deposits
is demonstrated by examples. The use of the model to pre-
dict the onset of mass earth movement of s5lightly inclined

deposits due to liquefaction is also presented.

8-1. Modified Ramberg-Osgood shearinc stress-shearing strain
relationships
The Ramberg-Osgood relationships, outlined in Chapter
3, have been used successfully to describe the shearing
stress-shearing strain relationships for unsaturated soils
deformed in the strain softening range. Since the effective
stress at the depth under consideration is constant during
shearing, the initial small motion shear modulus, GO’ and

the shear strength, e are independent of time. When a

-101-



-102-

saturated soil is sheared rapidly, the effective stress at
the depth under consideration is affected by the development
of excess pore water pressure at that depth. Therefore the
deformation characteristics of the skeleton vary with time.

The shearing stress-strain relationships used in the
liguefaction model are

for initial loading,

. . R-1
Yy = ——— (1 + o|———r ) (8-1)
GO(OZ) Cle(ozf
for unloading and reloading,
TS T T - Ty R-1
LA S B —= (1 + o|—————| ) (8-2)
Go(oz) 2C11m(oz)

in which Ez denotes vertical effective stress. The meaning
of the remaining variables are the same as those defined in
Chapter 3.

Since at the depth under consideration, G0 and T, are
functions of the transient effective stress, the stress-
strain curves represented by Equations (8-~1) and (8-2) are
no longer Ramberg-Osgood curves. For the rest of the study,
Equations (8-1) and (8-2) are called the modified Ramberg-
Osgood relationships. The erendence of G0 on Ez can be

expressed by

. 1+ 2 Ko —
Go(oz) = n(—~—§———— o.) (8-3)

in which KO is the coefficient of earth pressure at rest.

It is treated as constant throughout the depth and does not
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change during shearing. n is a coefficient, its value at
depth z depends upon the initial shearing rigidity of the
soil at that depth. Equation (8-3) is similar to Equations
(6-10) and (6-11), except that the effect of the void ratio

is neglected. The relationship between T and Ez is

0 — 2 1 -K

T = {(—————-Oz sin ¢)° - | (8-4)

in which ¢‘is the effective internal angle of friction.

An example was used to illustrate the effects of reduc-
tion in G0 and T, upon the shearing behavior of soils.
Assume that, as a result of shearing, the effective stress
in a saturated soil element changed with the shearing stress.
The assumed relation between the effective stress and the
shearing stress is shown in Figure 8-1. Other parameters
used in the example were o = 1, R = 3, C. = 0.8, n = 5000,

1
K, = 0.5 and ¢ = 35 degrees. The modified Ramberg-Osgood

0
curves for one cycle of shearing are shown in Figure 8-2.
The original Ramberg-Osgood curves based on constant and
maximum GO and T, are also shown in the same figure. It is
seen that, for a given shearing stress amplitude, the modi-
fied Ramberg-Osgood relationships gave a larger strain amp-
litude than that given by the original Ramberg-Osgood rela-
tionships. The general shape of the modified curves depends
upon how the effective stress is changed during shearing.

The modified curves may not necessarily be similar to the

original Ramberg-Osgood curves.
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8-2. The liquefaction model.

The deposit below the water table is divided into a
number of equal distance intervals. Within each interval,
the properties of the soil are considered to be uniform.
Both the shear wave submodel and the pressure wave submodel
are applied to the same intervals of soils so discretized.
For each interval, the bulk compressibility, Cb’ and the

small motion shear modulus are related by

= U G ’ (8"‘5)

in which u is a coefficient. Equation (8-5) is used to es-
timate Cb when only GO is known. When this is the case, the
value of yu can be estimated from Poisson's ratio of the soil
under consideration. When both Cb and GO can be estimated
from laboratory or field data, then Equation (8-5) is not
needed. Cb of each interval is assumed tn be constant during
shearing. Thus any change in the constrained compressibility
in each interval is attributed to the change in the secant
shear modulus in that interval.

For both submodels the Courant condition only needs to
be checked once based on the initial speeds of shear wave
and first pressure wave. Since a»fixed z-t grid and a spe-
cified time step are used, and since these speeds are the
maxima during the entire period of shaking, this check on
the Courant condition insures the stability of the numerical

procedure as time progresses.

The coupling between the two submodels is described in
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terms of the sequence of events occurring during repeated
shearing. Suppose that at time t the state of stresses and
velocities throughout the deposit are known, and that thé
boundary conditions are given. One can use the shear wave
submodel to calculate the shearing stress, the shearing
strain, and the secant shear modulus at time t + At. The
time rate of change of the constrained compressibility,
caused by the secant shear modulus changes over the time
step At, can then be calculated. This quantity represents
the weakening of the skeleton to sustain confined compres-
sion. It is used in the pressure wave submodel which com-
putes the resulting transient effective stress and pore water
pressure, and the velocities of soil skeleton and pore water
during At. Because the first pressure wave speed is much
higher than the shear wave speed, these computations are
carried out for several smaller time steps, At. At is de-
termined by the initial highest first pressure wave speed

in the discretized deposit and the length of distance inter-
val used. This allows the time in the pressure wave sub-
‘model to catch up with the time in the shear wave submodel.
In other words, for every time step At, the computation of
pressﬁre wave motion is carried out N times such that N At
equals At. During the N steps in the pressure wave submodel,
the constrained compressibility in each interval is updated
at the end of every time step At. This adjustment is in
accordance with acc/at computed from the shear wave submodel

between time t and time t + At. When the time in the
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pressure wave submodel catches up with the time in the shear
wave submodel, Equations (8-3) and (8-4) are used to compute

a new G, and Tm from current effective stresses at the ends

0

of every distance interval. The new G0 and T SO computed

for each interval represent the shearing characteristics of
that interval at the new state of effective stress. Thus
far, one cycle of the computation is completed. The next -
cycle of computation starts out with the shear wave submodel
and the newly defined shearing characteristics of the soil.
Figure 8-3 illustrates the sequence of events described
above.

At the moment of shearing strain reversal, there is a
sudden increase in the secant shear modulus. Through the
use of Equation (4-40), the constrained compressibility of
the interval in which strain reversal just took place is
computed according to the newly increased secant shear modu-
lus. In the meantime, acc/at in this interval is set to
zero over the time step At which immediately follows the
strain reversal. With the ﬁewly defined soil properties,
the pressure wave submodel is then used to compute the effec-
tive stress, the pore water pressure, and the velocities of
the skeleton and pore water over the time step At. Chart

8~1 outlines the liquefaction model by a flow diagram.

8-3. Examples.

Example 8-1. Consider a horizontal deposit having a

depth of 50 feet. The deposit was composed of round-grained

sand(54). The soil properties were: n = 0.4,¢ = 34 degrees,
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K, = 1 - sin ¢ = 0.4354, o_ = 5.13 lb-sec?/ft, u = 1.2,a =1,
R = 3, and Cl = 0.8. The small motion shear modulus through-
out the deposit was computed from Equation (6-10). The

shear strength throughout the deposit was computed from
Equation (8-4). Other relevant properties were p, = 1.94

8 £t2/1b, and k = 0.00328 fps.

1b-sec’/ft, C = 2.348 x 10°
The deposit was divided into 8 equal distance inter-
vals. The initial discretized G0 and Ty are listed in

Table 8-1.

TABLE 8-1

SMALL MOTION SHEAR MODULUS AND SHEAR STRENGTH

Layer GO’ psf Tn! psft
1 0.469 x 10° 56
2 0.812 x 10° 168
3 1.049 x 10° 280
4 1.241 x 10° 393
5 1.407 x 10° 504
6 1.556 x 10° 616
7 1.691 x 10° 728
8 1.816 x 10° 840

The bedrock underlying the deposit was assumed to be
rigid and to move back and forth sinusoidally with a fre-
quency of 4 Hertz. For the purpose of comparison, two sin-
gle amplitudes of the bedrock velocity were used. They were
0.05 fps and 0.10 fps. The dynamic response of the deposit

to these bedrock motions is shown in Figures 8-4 through 8-11.
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Figure 8-4c represents the sinusoidal horizontal velo-
cities of the bedrock, or the velocities at the base of the
deposit. Figure 8-4a and Figure 8-4b illustrate the time
variations of the shearing stress and shearing strain in the
6th interval counted from the ground surface. For the case
of small bedrock motion and except the initial transient,
the soil oscillated around its static position. A gradual
decrease in the amplitude of shearing stress trace after the
initial transient can be seen in Figure 8-4a. A corres-
ponding increase in the amplitude of the shearing strain
trace can be seen in Figure 8-4b. Hence the shearing rigidity
of the soil was reduced by the repeated shearing. This pro-
cess 1s more explicitly illustrated by Figure 8-5 where the
shearing stress is plotted against the shearing strain. The
gradual leveling of the longitudinal axes of the hysteresis
loops indicates that the soil was softened by the repeated
shearing. For the case of large bedrock motion, similar but
more pronounced results were obtained. Due to the high
shearing stress developed and the rapid loss of shearing
rigidity, neither the shearing stress nor the shearing
strain oscillated around their static value. The dynamic
shearing stress-shearing strain relation for the large ex-
citation is shown in Figure 8-6. For the last few cycles
of shearing, very little stress was needed to develop a large
strain. Hence the soil was softened considerably. Compared
with Figure 8-5, the area of the loops is larger, indicating

that more energy was dissipated in the soil.
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Figure 8-7 illustrates the accumulative increase in the
pore water pressure and the corresponding reduction of effec-
tive stress at a depth of 31.25 feet. It is seen that the
sum of the pore water pressure and the effective stress at
any instant was approximately equal to the total static
stress at that depth. The time rate of increase in the pore
water pressure decreased as the soil became softer. The
effective stress curves for both cases indicate that, gen-
erally, for a deposit with a uniform permeability where the
re-distribution of pore water pressure is not inhibited,
the effective stress approaches zero asymptotically.

Figure 8-8 shows the gradually reduced shearing strength
of layer 6 together with the shearing stress actually deve-
loped in the same layer. For the case of large bedrock mo-~
tion, the shearing strength was not enough for some brief
moments. Since the deposit was horizontal, there was no
driving force to cause large strain to develop during these
brief moments. The occurrence of shearing stress which ex-
ceeded the shearing strength could have been eliminated by

(56) to occur.

allowing inelastic slip

Figure 8-9 shows the downward surface displacement of
the deposit for the two cases. The volumé decrease in the
deposit associated with the settlement could be decomposed
into two parts. The first part was due to the volume reduc-
tion of pore water by the excess pore water pressure, and
was proportional to the excess pore pressure level. The

second part was attributed to the volume of water that was

expelled out of the deposit from the ground surface. “This
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volume was proportional to the gradient of excess pore water
pressure in the deposit. The pore water pressure at the
ground surface was zero and the excess pore pressure gra-
dient was nearly uniform between 0 and 31.25 feet, as shown
in Figure 8-11. Hence the volume decrease due to drainage
was also proportional to the excess pore water pressure
level. One can compare Figure 8-7 and Figure 8-9 to see
that this indeed was the case. If the motion of the bedrock
was stopped at 2 seconds, the settlement would continue un-
til the pore water pressure distribution becomes hydrostatic
again.

Figure 8-10 shows the lateral displacement of the ground
surface relative to that of the bedrock as functions of time.
The fundamental frequency of the deposit before shaking was
2.678 Hertz. At 2 seconds, the fundamental frequency was
1.343 Hertz for the small excitation case and 0.584 Hertz
for the large excitation case. Since the exciting frequency
was 4 Hertz, higher than the fundamental frequency of the de-
posit throughout the 8 cycles of shearing, the relative dis-
placements shown did not indicate the overall shearing strain
of the deposit.

FPigure 8-11 demonstrates the spatial distribution of
the effective stress, drop in the effective stress, and the
excess pore water pressure at 2 seconds. For both cases,
the excess pore water pressure was very close to the drop in
the effective stress. Note that the bedrock was impervious
and hence there was no excess pore water pressure gradient

at the bottom of the deposit.
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Example 8-2. Frequently the water table may lie below

the ground surface. This may either be a natural state or
a fill has been placed to bring the surface level above water.
In either cases, its effect is to increase the shearing
strength of the deposit. It was seen in the previous exam-
ple that for the large bedrock motion, the deposit did not
have sufficient strength to sustain the 8 cycles of shearing.
The response of the same deposit with the same bedrock motion
is studied in this example when a 12.5 foot layer of soil
was placed as overburden.

The fill was composed of a soil with a moist unit weight
of 103 lb/ft3. G0 and T, were computed from Equation (6-10)
and Equation (8-4) respectively. The deposit below the water

table was divided into 8 equal intervals. The discretized

G0 and Tm are shown in Table 8-2.

TABLE 8-2

SMALL MOTION SHEAR MODULUS AND SHEAR STRENGTH

Layer GO’ psf T psf
1 1.279 x 10° 416
2 1.440 x 10° 529
3 1.586 x 10° 640
4 1.719 x 10° 753
5 1.842 x 10° 864
6 1.958 x 10° 976
7 2.067 x 10° 1088
6

8 2.171 x 10 1200
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The response of the deposit is shown in Figures 8-12
through 8-18. Figures 8-12a and 8-12b indicate that in
layer 6 the shearing stress was larger, while the shearing
strain was smaller than that when the fill was absent. The
dynamic shearing stress-shearing strain curves in Figure 8-13
show that the shearing stress developed was not large enough
to cause rapid weakening, such as those shown in Figure 8-6,
although the softening trend was evident.

The time variations of pore water pressure and effec-
tive stress at a depth of 31.25 feet below the water table
are shown in Figure 8-14. At the end of 2 seconds, the pore
water pressure was still increasing at a high rate. This
indicates that the soil still had a big margin of safety at
the end of 2 seconds.

The strengthening effect of the £ill upon the deposit
is more clearly shown in Figure 8-15. Compared with Figure
8-8, it is seen that for the same number of shearing cycles
the deposit with fill had a greater margin between the time
varying shearing strength and the actual dynamic shearing
stress.

The downward displacement of the surface, shown in
Figure 8-16, was larger than that shown in Figure 8-9. This
was caused by the higher excess pore water pressure, which
was, in turn, caused by the larger changes in the secant
shear modulus during shaking.

In Figure 8-18, the distribution of the effective stress

across the deposit at five selected instants are plotted.
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The effective stress at the original ground surface was set
to be the weight of the fill per unit surface area. As a
result, the minimum effective stress occured at a greater
depth. Since the initial effective stress was larger at a
greater depth, the severity of liquefaction throughout the

whole deposit was lessened.

Example 8-3. Consider a 50 foot deep round-grained sand

deposit. It was composed of 8 layers of sand having equal
thickness. Layers 4 and 5 had a smaller porosity and were
much less premeable than the remaining layers. The soil

5.13 lb-sec’/ft, o =

i

properties were: for all layers, g

R=3, ¢, =0.8, w= 1.2, for layers 1,2,3, and 6,7,8, n =

1
0.4, ¢ = 34 degrees, KO = 0.4354, k = 0.00328 fps, for laye
4 and 5, n = 0.35, ¢ = 40 degrees, KO = 0.3558, and k =
0.0000328 fps. The relevant pore water properties were:
8

c, = 2.34 x 107 ££°/1b, and p_ = 1.94 lb-sec’/ft. The shea
ing strength and the small motion shear modulus throughout t
the deposit were computed from Equations (8-4) and (6-10).

The discretized G, and Tn are listed in Table 8-3.

0
The lateral velocity of the bedrock, shown in Figure
8-19c, was sinusoidal with a frequency of 4 Hertz and a sing
amplitude of 0.06 fps. The deposit was inclined by 1 degree
and the water table was at the ground surface.
Because of the gravity, the initial shearing stress was
proportional to the depth. The dynamic shearing stress and

shearing strain in layers 5 and 6 are shown in Figures 8-19a

and 8-19b. In both layers, the dynamic shearing stress and

1,

rs

r—-

he
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TABLE 8-3

SMALL MOTION SHEAR MODULUS AND SHEAR STRENGTH

Layer GO, psf T! psf
1 0.469 x 10° 61
2 0.812 x 10° 168
3 1.049 x 10° 280
4 1.523 x 10° 403
5 1.741 x 10° 525
6 1.579 x 10° 635
7 1.713 x 10° 746
8 1.837 x 10° 859

shearing strain oscillated around their initial values after
the initial transients disappeared. The shearing strains
were skewed with respect to the initial shearing strains,
indicating that permanent shearing strains occurred. After
about 0.8 seconds, the shearing strain in layer 5 was con-
siderably larger than that in layer 6, although the shearing
stresses in these two layers were close. This is explained
later.

The shearing stress-shearing strain relationships are
shown in Figure 8-20 and Figure 8-21. Due to the initial
shearing stress and shearing strain, the loops are not cen-
tered approximately around the origin. The soil was strained
into a more nonlinear region in one direction than the other.
It is also seen that after 3 cycles of shearing, layer 5

became considerably softer than layer 6.
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Figure 8-22 illustrates the time variations of pore
water pressure and effective stress at 25 feet and at 31.25
feet from the surface. These two sets of curves are similar
except for the static values of pore water pressure and
effective stress.v

Figure 8-23 shows the dynamic shearing stress and the
shearing strength in layers 5 and 6. In layer 5 the peak
shearing stress exceeded the shearing strength after about
0.8 seconds for some brief moments. This was not considered
to be a failure, since the lack of strength was only tem-
porary. However, relatively large shearing strains resulted
from this temporary shearing strength deficiency. This can
be readily seen in Figure 8-19b, in which the peaks of
shearing strain in layer 5 deviated remarkably from those
in layer 6 temporarily after about 0.8 seconds.

Failure of an inclined deposit is considered to occur
when the shearing strength of any layer of the deposit be-
comes less than or equal to the average static shearing
stress in that layer. In the present example, failure occurred
when the shearing strength of layer 5 dropped below its sta-
tic shearing stress at 1.4 seconds. The computation was ter-
minated when failure occurred. After the failure large la-
teral or downhill movement would occur. The modeling of
mass earth movement itself is beyond the scope of the study.

Figures 8-26 and 8-27 illustrate the spatial variations
of the piezometric head and the effective stress at five
selected instants. The soil below the less permeable layers

was sheared nearly in an undrained condition. As a result,



-136-

4200.00

- 20.00 feet below surface

— ——~— 31.25 feet below surface

i

3600.00

—fe

3000.00

2u00.00

4

1800.00

1200.00

4

i

'Ef;goEgJIVE STRESS OR PCRE WATER PRESSURE IN PSF

.80 1.20 1.60 2,00
TIME IN SECGNDS

.00

.00 40

Figure 8-22 Example 8-3, time variation of effective
stress and pore water pressure



SHERRING STRESS OR STRENGTH IN PSF

-500.00

300.00 500.00 700.00

100.00

-137-

layer 5

~— -— — layer 6

T =T .
\ m static’
failure occured

-100.00

-300.00

700.00

—). 4

—

-—

0.00

4

Figure 8-23

-+

.80 1.20 1.60 2,00
TIME IN SECONDS

Example 8-3, time variation of shearing
strength and shearing stress



-138-

the effective stress reduction and the piezometric head were
nearly uniform in this portion of the deposit. The condition
of the soil that lies above the less permeable layers was
very similar to that shown in Figure 8-11. Water squeezed
out of the upper portion of the less permeable zone was
drained upwards more easily than that in the lower portion.
This is evidenced by the difference in the gradient of the
piezometric head in the less permeable layers. Minimum
average effective stress occurred in the lower_portion of
the less permeable zone during the late stages of shearing.
It was this portion of the deposit that failed first.

The response of the same deposit resting on a horizontal
rock surface was also obtained. The dynamic shearing stress
and shearing strain were similar to those in the inclined
deposit, except that the strain was smaller. The initial
rise in pore water pressure and the corresponding drop in
effective stress were less rapid in the horizontal deposit
than those in the inclined deposit. This could be explained
by the larger changes in the secant shear modulus in the in-
clined deposit in which the initial shearing stress was
present. The shearing strength of the horizontal deposit
was slightly larger than that in the inclined deposit during
the 8 cycles of shearing. ' The downward displacements of the
ground surface were almost identical for the two cases. This
displacement for the inclined deposit is shown in Figure
8-24. The lateral relative displacement between the surface

and the bedrock of the inclined deposit, shown in Figure 8-25,
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was larger than that of the horizontal deposit. This dif-
ference was due to the gravitational force.

The response of the same horizontal deposit subjected
to a slightly larger excitation was obtained as well. A
single amplitude of 0.07 fps, instead of 0.06 fps, was used
for the bedrock velocity. In this case, liquefaction was
completed beneath the less permeable layers at approximately
1.82 seconds or after 7 cycles of shearing. Due to the
absence of any driving force, no large deformation was
developed, although the soil at a depth of 31.25 feet was

in a liguid state.



CHAPTER 9

LIQUEFACTION CASE STUDIES

During the earthquake of June 16, 1964 in Niigata,
Japan, 340 out of the 1530 reinforced concrete buildings
in the city were damaged by the earthquake. From the dis-
tribution of buildings that tilted more than 2.5 degrees,

(48)

Ohsaki defined three zones of severity of damage in

Niigata. The map showing the zones of damage is shown in
Figure 9-la.

The soil strata of Niigata City is composed of sand
layers. It was observed that in zone C, the heavily da-
maged zone, light structures buried in the ground, such as
a reinforced concrete box for purifying sewage floated up,
while heavy buildings sank down.(48) Numerous sand craters
were also observed. These facts indicate that liquefaction
was completed at some locations during the earthquake. There
is a section in zone C on which a 9 foot till had been placed.
This section showed no evidence of failure due to liquefac-
tion while the surrounding areas withcut £fill were damaged.(sz)
It was also observed that ground failure due to liquefaction
did not occur in zone A or zone B. The different severity
of liquefaction in the same city during the earthquake was

attributed to differences in soil conditions.(48’62)

Thus
the soil behavior of Niigata provides an opportunity to
judge the applicability of the proposed model for liquefac-

tion.

The responses of the deposit in zone B, zone C, and the

-143-
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filled section in zone C to an earthquake were studied. In
zone A, the water table was'abéut 10 feet below the ground

surface, and the soil conditions were assumed to be similar
to those of the section with fill. Thus no study was con-

ducted for zone A. In the following sections the soil con-
ditions, the earthquake used, the response of the ground in
the 3 areas of interest and a discussion on the computed

results are presented.

9-1. Reported and estimated soil conditions.

Sand layers underlie the city of Niigata. A cross
section of the strata together with three lines indicating
the blow counts, N, of the standard penetration test are
shown in Figure 9-1b. Very loose sand with N~values less
than 5 lie near the ground surface. Loose and medium sand
with N-values between 10 and 30 lie, in general, at depth
from 30 to 45 feet below the ground surface. Sand with N
values greater than 30, in general, lie at a depth greater
than 45 feet. The distance between the ground surface and

(62)

firm base material is about 200 feet. Lens-like layers

of silty sand are scattered about in the sand layers.(48)
This local non-uniformity was not considered in the study.
Since so0il usually does not fail in shear at large effec-
tive confining pressure, only the top 50 feet of the deposit
was used in the case studies. The depth of saturated depo-
sit was 47 feet. This depth was divided into 7 equal layers.
Soil properties varied with depth, but in each layer, they

are considered to be uniform. The water table in both zone

B and zone C was 3 feet below the ground surface.
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The specific gravity of the solid material in Niigata

(75) The unit weight of the sand above the

3

sand is 2.66.

water table was estimated as 110 1b/ft~ and the submerged

unit weight was estimated as 50 lb/ft3.(62) Based on this
submerged weight and the unit weight of water, a porosity
of 0.52 was calculated. Niigata sand is poorly graded,

with a coefficient of uniformity less than 5.(48)

The per-
meability was estimated as 0.00024 ft/sec. All the proper-
ties described above were considered common to all zones.

The differences in soil conditions between zone B and
zone C were characterized by the blow counts, N, from the
standard penetration test. The variations of the blow
count with depth for these two zones has been reported by
Seed(62) and is reproduced in Figure 9-2. It is seen that
at a depth of 15 feet from the ground surface or deeper,
the penetration resistance of zone C was considerably less
than that of zone B. This infers the shearing strength of
zone C was lower than that of zone B. The friction angle,
¢, for the 7 layers in both zones could be obtained from
the blow counts by using the correlation established by

(80) The blow counts and ¢

Peck, Hanson and Thornborn.
values in degrees are listed in Table 9-1.

The coefficient of earth pressure at rest, KO' was es-
timated as 0.46 for zone B and 0.48 for zone C, and was con-
sidered to be uniform in both zones. Due to the high void

ratio, which was assumed to be common for all zones, Equa-

tion (6~11) was used to calculate G0 for the three areas.
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TABLE 9-1

BLOW COUNTS AND FRICTION ANGLES IN ZONE B AND ZONE C

Zone B Zone C
Layer No. Blow Count ‘Jg Blow Count JE
1 7 29 6 28
2 8 29 7 29
3 13 31 8 29
4 19 33 10 30
5 26 35 17 32
6 34 37 24 34
7 39 38 30 36

A comparison Qas made between the Niigata sand and
that at the Eglin Field, Florida. The Eglin marine sand(sl)
is a medium, poorly graded sand with a void ratio of appro-
ximately 0.7. The specific gravity of the solid material

of Eglin sand is 2.66 and its moist unit weight is 110 1lb/

,ft3. The envelope of the grain size distribution curves of
the Niigata sand, reported by Ohsaki(48), and that of the
(82)

Eglin marine sand, reported by Heller , are shown in
Figure 9-3. Based on these data, it was assumed that Nii-
gata sand is similar, but has a lowei density than Eglin
marine sand. Figure 9-4 shows the comparison between the
estimated small motion shear modulus of the deposit in
Niigata city and the same quantity in the Eglin Field Site.
The latter was determined in situ by vibration and steady
state tests. The tests only extended to a depth of 12 feet.
It can be seen that the estimated small motion shear modu-
1i throughout the deposit were realistic. The small mo-

tion shear moduli so estimated were used for both zone B

and zone C.
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Before estimating the bulk moduli, the following obser-

vations were made. Al—Hussaini(83)

conducted plane strain
and triaxial compression tests on saturated Chattahoochee
river sand to demonstrate the effect of relative density
and strain conditions on the strength and stress-strain
characteristics of sand. He concluded that the bulk modulus
of sand tested increased with increasing relative density.

On the other hand, Richart, Hall and Woods(54)

demonstrated
that, besides its influence via void ratio, relative density
has a negligible influence on low strain level shear modu-

(52) also observed that variations of low strain

lus. Pyke
level shear modulus with respect to relative density were

not very great. Thus it is reasonable to anticipate that,
in general, the ratio of bulk modulus, B; to the small mo-
tion shear modulus, GO’ increases with increasing relative
density. Based on Figures 4 and 8 of Al-Hussaini's paper,
the following tabulation of variation of B/G0 versus rela-

tive density was obtained. The effective confining pres-

sure corresponding to the derived data in Table 9-2 is 70

TABLE 9-2

VARIATION OF B/G0 W.R.T. RELATIVE DENSITY

relative density 36 42 63 77 88 95

B/G .633 .717 1.22 1.43 1.67 2.34

0

psi. The bulk moduli B were secant moduli, calculated from

Figure 4 mentioned above. In the course of obtaining G0

from Figure 8 of Al-Hussaini's, a Poisson's ratio of 1/3
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was assumed. Table 9-2 supports the stated trend that B/G0
increases with increasing relative density. This trend was
assumed to hold for Niigata sand.

The moduli B and G0 can be regarded as properties of
the soil skeleton at small deformations. For small defor-

mations, the soil skeleton can be treated as a linear elas-

tic material. Therefore, the ratio B/G0 can be expressed

in terms of Poisson's ratio, v, as(GO)
B _ 201 +v) _
G, ~ 3 - 2v) | (9-1)

The Poisson's ratio of each zone in Niigata City was
not reported and hence had to be estimated. It would be
helpful if the Poisson's ratio of a similar sand were known.
This information was again provided by the test data of Eg-
lin marine sand. The shear wave speed and the pressure wave
speed of the unsaturated soil were obtained in situ at the
Eglin Field Site by vibratory and steady state methods.(8l)
The motion of soil during these field tests was small, thus
elasticity theory applied. The Poiscon's ratio calculated
from these two wave speeds lie between 0.36 and 0.46. Based
on this information and noting that Eglin marine sand is
denser than Niigata sand, the Poisson's ratio of zone B in
Niigata was estimated as 0.4 and that of zone C in Niigata
was estimated as 0.3. From the estimated Poisson's ratio
and from Eguation (9-1), B/GO was calculated as 4.67 for

zone B and 2.17 for zone C.

Because of the fill, the effective confining pressure



~152-

was larger in the filled area than that surrounding it. The

moist unit weight of the fill was estimated as 110 lb/ft3.

The depth of the f£fill was 9 feet(62), and the water table
was 12 feet below the ground surface. Except for the pro-
perties that were affected by the effective confining pres-
sure, the soil was considered to be the same as that in 2zone
C. The initial small motion shear modulus and the initial

shear strength for the three areas are summarized in Tables

9-3, 9-4 and 9-5.

TABLE 9-3
INITIAL GO AND Tm IN ZONE B
Layer No. GO, pst T pst
1 0.457 x 10° 114
2 0.591 x 10° 191
3 0.700 x 10° 306
4 0.794 x 10° 439
5 0.878 x 10° 589
6 0.955 x 10° 754
7 1.026 x 10° 902

For all zones, the soil below the water table was
assumed to be fully saturated. A bulk modulus of 4.26 x lO7
psf and a mass density of 1.94 lb—secz/ft were used for the

pore water. In the modified Ramberg-Osgood relationship, a =1,

R = 3.0 and Cl = 0.8 were used for all the case studies.
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TABLE 9-4
INITIAL G, AND t_ IN ZONE C
Layer No. GO' psf ' psf
1 0.426 x 10° 115
2 0.597 x 10° 206
3 0.707 x 10° 289
4 0.802 x 10° 396
5 0.887 x 10° 540
6 0.965 x 10° 701
7 1.037 x 10° 875
TABLE 9-5
INITIAL G, AND t_ IN THE FILLED SECTION OF ZONE C
Layer No. GO, pst Tm? psf
1 0.773 x 10° 322
2 0.861 x 10° 428
3 0.941 x 10° 511
4 1.014 x 10° 633
5 1.083 x 10° 805
6 1.147 x 10° 990
7 1.208 x 10° 1190

9~-2. The excitation used in the case studies.
The maximum ground acceleration recorded at the base-

ment of an apartment building during the earthquake was re-

(62)

corded as 0.1l6g. The bedrock is located at about 200
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feet below ground surface and its motion was unknown. Seed
and Idriss scaled down the accelerogram of the Taft earth-
quake of July 21, 1952 by a factor of 0.72, and then used
it in the analysis of liquefaction in Niigata.(62)
Since only the top 50 feet of the deposit was used in
the present study, it was necessary to specify the motion
of the sand at a depth of 50 feet, instead of at the bed-
rock. The velocity obtained by integrating the accelero-
gram of the Taft earthquake was multiplied by 0.55 and was
used as the horizontal velocity of the sand at a depth of
50 feet. The corresponding maximum acceleration at the
ground surface, computed through the use of CHARSOIL(84)

was 0.16g. This specified velocity, or the "base velocity"

is shown in Figure 9-5.

9-3. Results and interpretations of the computed response.
Shown in Figure 9-6 are the time histories of shearing
stress in layer 4 of zone B, zone C, and the filled section
of zone C. During the first 3 seconds, the dynamic shearing
stresses in zone B and zone C were similar. This is rea-
sonable since the "base velocity" variation was Small during
this period and both zone B and zone C were strong enough
to be responsive to the excitation. The shearing stress in
layer 4 of the filled area of zone C was different from
that in the remainder of zone C. This was attributed to the
9 foot fill which strengthened the soil and changed the
natural frequencies of the deposit. The shearing stress

variation of the filled section was larger than those in
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zones B and C. After 3 seconds the variation of "base velo-
city" became more violent. The shearing stress trace in zone
B began to deviate from that in zone C, with zone B being
more responsive to the shaking. The shearing stress in

zone C became smaller after 7 seconds of shaking, indicating
that.the deposit was softened considerably. The improvement
of performance attributed to the fill was reflected by the
higher shearing stress, compared with that of zone C, during
the same time interval. Figure 9-7 shows the strain history
of the three cases. After 6 seconds, the strain difference
between zone B and zone C was more pronounced. The strain
in the filled section of zone C was smaller than that sur-
rounding it, although the shearing stress developed in the
latter was smaller.

Figures 9-8, 9-9 and 9-10 show the hysteresis loops of
layer 4 of zone B, zone C, and the filled section of zone
C. It is seen that near the end of the shaking, the incre-
mental strain associated with a given incremental stress
was much larger in zone C, than those in zone B and the
filled section. This sharp contrast suggests that at the
end of 10 seconds, zone C failed while zone B and the filled
section did not. However, the rigidity of zone B and the
filled section had been reduced as well.

Figures 9-11, 9-12 and 9-13 show the rising pore water
pressure and the corresponding effective stress reductions
at a depth of 20.14 feet. It is seen that liquefaction was
almost completed in zone C at this depth. In the filled

section the drop in effective stress was the largest among
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these three areas. The level of effective stress in the
filled zone remained higher than that in zone C during the
transients, because the initial effective stress in the
filled zone was larger. Figures 9-12 and 9-13 reveal that
after 3 seconds, the time rate of effective stress reduc-
tion in the filled section was greater than that in zone C.
This corresponds to the more violent motion of the "base".
At about 7 seconds the difference in the rate of decrease
of effective stress started to diminish. After 9 seconds
the difference was almost non-existent. Meanwhile, the
"base" was still moving violently. Hence the results sug-
gest that for a given period of shaking, there was a net
gain in effective stress, and hence in shearing strength,
when a fill had been placed.

Figures 9-14, 9-15 and 9-16 show the shearing strength
and the shearing stress in layer 4 of the three areas. Since
the friction angle of layer 4 of zone C was 3 degrees less
than that of layer 4 of zone B, the initial shearing strength
of the former was less than that of the latter. The high
initial shearing strength of the filléd section was caused
by the higher initial effective confining pressure in the
deposit. In all three areas, the dynamic shearing stress
exceeded the shearing strength for several brief moments
after 6 seconds. At 10 seconds the shearing strength in
zone C was only 7.9 psf as compared to 83.3 psf in zone B
and 41.7 psf in the filled section of zone C.

Figures 9~17 and 9-18 show the time variation of the

relative displacement between the "top" and the "base" of
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the deposit. The magnitude of the settlements were consis-
tent with the pore water pressures. All were very small.
The horizontal relative displacement traces were similar to
the strain traces shown in Figure 9~7 except that the dif-
ference among the three displacement curves was not as
large. This is reasonable since the strain traces shown
are associated with the weakest layer.

The spatial variation of effective stress in zone B
and zone C at several selected moments are shown in Figure
9-19. 1In zone C, liquefaction was almost completed after
9 seconds of shaking. In both zones, loss of effective
stress increased with depth. However, at a greater depth,
the soil had more effective stress that could be lost po—'
tentially. The soil at a shallower depth lost its effec-
tive stress almost completely before the same situation de-
veloped at a greater depth. On the other hand, the fill
maintained the effective stress near the water table at an
approximately constant level. Therefore the critical depth,
the depth at which liquefaction was first completed, was

some intermediate depth.

9-4. Discussion of the computed results.

It is believed that the estimated so0il properties are
reasonably representative of those in situ at Niigata. How-
ever, the imposed velocity at a depth of 50 feet was only a .
crude estimate of the actual event. There was no specific
reason for using the Taft earthquake accelerogram, except

(62)

that Seed and Idriss used it in a similar study. A
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factor that scaled down the velocity, obtained from the Taft
accelerogram, was used. Its magnitude was determined by the
criterion that the maximum ground acceleration, computed
from ‘CHARSOIL, matched with that actually recorded, i.e.,
0.16g. It is noted that in this computation the loss of
effective stress of the deposit was not considered. When
the loss of effective stress was taken into consideration,
the resulting maximum ground acceleration was smaller than
0.16g. Table 9-6 is a summary of the maximum accelerations

computed for the three different areas. By examining the

TABLE 9-6

COMPUTED MAXIMUM GROUND ACCELERATIONS

MAXIMUM GROUND TIME TO MAX.
CONDITIONS ACCELERATION ACC., SECONDS
from CHARSOIL, zone C 0.16g 7.26
zone B 0.09g 6.83
filled section in zone C 0.07¢g 4.58
zone C 0.07g 3.37

time to the maximum ground acceleraticn and the "base" velo-
city shown in Figure 9-5, it is seen that when the loss of
effective stress was considered, the deposit became rather
soft before it could experience the large excitation
occurring during the late stages of shaking.

The maximum acceleration alone is not an adequate de-
scription of an earthquake excitation but the frequency
content of the earthquake needs to be considered as well.

(62)

A comparison between the Taft accelerogram and the
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(86)

Niigata accelerogram revealed that the Taft earthquake
contains more high frequency components than does the Nii-
gata earthquake. Thus more shearing cycles were involved
when the Taft accelerogram was used. This fact may some-
what offset the discrepancy of the smaller calculated acce-
leration at the ground surface.

Figures 9-14 and 9-15 indicate that there was a dif-
ference of 43 psf in the initial shearing strength between
zone B and zone C. Although helpful, this difference was
not the only factor which differentiated the response of
these two zones. 1In this study, the bulk moduli were es-
timated from the small motion shear moduli and Poisson's
ratios. The bulk moduli thus estimated were kept constant,
while the shear moduli were allowed to change according to
the effective stress. The larger Poisson's ratio of zone B
implied a smaller percentage of its constrained moduli that
could be reduced by shaking. This percentage was an impor-
tant factor that differentiated the response of zone B from
that of zone C.

In order to describe the severity of liquefaction, an

index called "relative fluidity", is defined as follows

initial current
relative _ constrained modulus - constrained modulus

fluidity

initial constrained modulus - bulk modulus

Before shaking starts, the relative fluidity is zero. When
the rigidity is completely lost by shaking, there is no
difference between the constrained modulus and the bulk mo-

dulus, then the relative fluidity equals 1. The changes
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in conditions existing in the three areas are shown in
Table 9-7. At 10 seconds, the relative fluidity in the
4th layer of the deposit in zone C was almost 1, indicating

its shearing rigidity was almost non-existent.

TABLE 9-7

INITIAL AND FINAL CONDITIONS IN THE THREE ZONES

Filled Section

Zone B Zone C of Zone C
initial C_, psf  4.768 x 10° 2.811 x 10° 3.554 x 10°
c_ at 10 sec, psf 3.863 x 10° 1.743 x 10° 2.301 x 10°
B, psf 3.709 x 10°% 1.741 x 10%° 2.201 x 10°
relative fluidity  0.8546 0.9981 0.9261

During the 10 second period, the first pressure wave
speed almost remained constant while the shear wave speed
dropped considerably. The tangential sheer modulus of
layer 4 in zone C and in the filled section of zone C drop-
ped to less than 1/6 of its original static value for a
large portion of the last 2 seconds of shaking. Since the
accuracy of the shear wave submodel has not been investi-
gated for the large interpolations associated with low tan-
gential shear moduli, these portions of the results were
only qualitative.

The significantly different computed response obtained
for each region is in agreement with the actual performance
observed at Niigata. In addition, Figure 9-19 shows that in

zone C, after about 9 seconds of shaking, a zone of low
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effective stress, ranging approximately from 13 feet to
27 feet below the water table, was established. 1In Figure

19 of the work by Seed and Idriss(62)

r the "zone of lique-
faction after 10 seconds of ground motion" ranged from 15
feet to 27 feet below the water table. These two results
compare favorably although the term "1iquefaction“Aused by
Seed and Idriss means zero effective stress or excessive
shearing strain, instead of just low effective stress. 1In
the same study, Seed and Idriss reported a greater margin
of safety in the filled section of zone C than that of zone
B. While in the present case studies, liquefaction was
more severe in‘the filled section of zone C than that in
zone B.

All the computations were performed on the Amdahl
470V/6 computer at the Computing center of The University of
Michigan. The time steps used in the computation for zone
C was 0.01225 seconds in the shear wave submodel and
0.001225 seconds in the pressure wave submodel. For the
10 seconds of shaking the CPU time used was 28 seconds.

The program for the liquefaction model is listed in Appendix

3.



CHAPTER 10

SUMMARY AND CONCLUSIONS

A numerical model was developed for liquefaction in a
horizontal or nearly horizontal deposit subjected to ground
shaking. The deposit was considered to be one dimensional,
composed of layers of soils with different properties, and
the water table could lie at or below the ground surface.

The model was composed of two interactive parts, i.e., the
shear wave submodel and the pressure wave submodel. The
modeling of plane shear wave propagation in a soil deposit
was reviewed. The development of the pressure wave submodel
and a coupling between the two submodels was presented in
detail. |

The soil was idealized as a two-phase medium composed
of water and a structural skeleton. The shearing behavior
of the skeleton was strain-softening. In *the vertical di-
rection, the soil deformation was considered to be constrained
compression. Stress-strain relationships for the two phases,
with the skeleton undef constrained compression, was develop-
ed. For the structural skeleton, a secant constrained modu-
lus, its inverse being the constrained compressibility, was
used. It was assumed that the bulk modulus of the skeleton
remained constant during shearing, but that the shear modulus
decreased with shearing strain amplitude. Therefore, accord-
ing to Equation (4-40), the secant constrained modulus was
reduced by shearing strain. This was the fundamental hypo-

thesis of the liquefaction model.

-175-
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The governing equations for pressure wave propagation
in saturated deposits were then formulated. An analytical
solution for a uniform linear elastic deposit undergoing
steady oscillatory motion in the vertical direction was ob-
tained. This solution was employed to study the influence
of permeability and porosity upon the response of saturated
deposits.

The set of governing eguations for the pressure wave
propagation was demonstrated to be hyperbolic for a wide
range of soils, and a numerical procedure based on the method
of characteristics was developed. Excellent comparisons
between the numerical solution and the analytical solﬁtion
for a deposit in steady oscillatory motion were obtained.
With the variation of constrained compressibility included,
the numerical procedure was used to calculate changes in
effective stress and pore water pressure, settlement of the
skeleton, and upward flow of pore water in nonlinear deposits
when the stiffness of the skeleton was weakened rapidly.
Satisfactory results were obtained.

A coupling between the propagation of shear waves and
the vertical motion of the soil due to changes in its con-
strained compressibility was developed. The two submodels,
when coupled together, constituted the model for liquefac-
tion. Several examples were used to demonstrate the fea-
tures of the model and the results were in agreement‘with
known behavior of saturated deposits during shaking. In

addition, the model showed that when the movement of pore
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water was not inhibited the effective stress in a deposit
approached zero asymptotically as shaking continued. The
effective stress could be reduced to zero rather quickly

if the movement of pore water was inhibited by a less per-
meable layer. The use of the model to predict the onset of
lateral spreading of a slightly inclined deposit due to 1li-
guefaction was also demonstrated.

Case studies in relation to the Niigata earthquake of
1964 were presented. Three areas of Niigata city were in-
volved and a significantly different computed response was
obtained for each region. This was in agreement with the
actual performancevobserved at Niigata. These case studies
demonstrated the potential applicability of the model'to
liquefaction.

In this study, liquefaction was considered as a process,
instead of a state. Hence, in saturated deposits with strain-
softening shearing behavior, liquefaction always took place
no matter how slight the shaking. A measure of severity of
liquefaction was given by the "relative fluidity", an index
defined in Chapter 9.

Further studies related to the present model should
include verifications of Equations (4-40) and (4-42) by ex-
periments or by available data. The shearing stress-shearing

strain relationship used for saturated soil undergoing rapid

shearing is also needed to be substantiated experimentally.



APPENDIX 1

By using Darcy's law, it can be shown that the viscous
force generated by flows in a rigid porous material can be
regarded as a body force. This is shown in the following.

Darcy's law for vertically downward flow can be written

as
W=k & (B
nW—kaE(pg z) ,
W
or
dp np.9 _
3= T W9 - (A-1)

Let Z be a body force per unit mass of water, positive
in the z direction. For steady flow, balancing of forces

on an elementary volume of water yields
Z+ p.9g (A-2)

From Equations (A-1l) and (A-2), one obtains

(A-3)

=l

_ng
z K

This equation is used in deriving Equation (5-5).
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APPENDIX 2

STFADY NSCTLLATNRY MNATINN NF LLFVEL UNTENRM . FLASTIC
SATIIRATFND DFPNSTTS

Fs PNRNSTTY

K7: PFRMIRIILITY IM FPS

RHOAF: MASS DEMSTITY NFE THE FILIIID TN SLUGS PFR CURIC FOOT
RHNS: MASS NENSITY NF THF SNLIN IN SLHGS PFR CURTC FONT
Ne NDEFPTH NF THF DFPASTIT IN FNANT

CC: CNANSTRAINFD CNOMPRFESSIRILITY NF SKFLFTON IN FT%%? /LR
Cwes COMPRESSIRILITY NOF WATFR TN FTx%2 /1R

AMP: AMPLTTUDFE NF SKFILFTAL VFINCITY AT RASF TN FT/SFC
NM: ANGHI AR FREOUENCY DF THE MNOTINN TN RAD/SFC

MEXP: AN TINTEGFR HSFND TN AVOID TN LARGF AN ARGUMENT 'IN THE
FXPNANTTATTIOM, SFT MFXP TN A 1ILARGF VALIIF, SAY, 10, WHEN
N IS TAOD LARGE NR K7 TS TNN SMALL

IMPILICTT CNAMPLFEX1 A (A=H 1 N=7)
RFEAL%R CDARSyNIMAGNREALWNATAN? 4 FoRHNF 4RHNS 4 CC o CW K74 N,
1TSTART«TFNN 477 « TRy AMP ,NM
NIMENSTON LM{4) 4 Al4) RI4)sCl4)sS(4),CCCLL)
MAMFLTIST/NDIN/F2RHNF ¢RHNS ¢CC o CWaK7 e AMP MM N NPT, TSTART
1+N«NFXP , TEND

10 RFANISNDIN,FNN=9Q)
WRTITF({ADIN)
All=1,/0C+)1a /(F%CMW)
A22=F/CH
AA=1,/CW
7=NDCMPIEX(0.NN,LT.NO)
RHN=F%RHNF+ (1 ,-F)*RHNS
ALLT=A11/RHN
A 2=AA/RHN
AL 3=NMENM
ALL=F%RHNFxNMNM /RHO
M. BS=AA/( EXRHNOF)
A_6=A22 /( FRRHNF)
ALT=A1_3
ALR=NM:(NM—-7%Fx32 ,2 /K7)
GA1=ALI=ALA=-AL2%ALS
GAP=AL 1AL R=ALL4RALS=AL?2=ALT+AL3%ALA
GA3=A} AL R=-AL4LNRALT
CCCC=CNSORTIGA?RGAD -4 ,NOEGAYRGAT)
LME1)=CDSORT{.BNO/GALX(-GA2+CCCCH)
LM{2)Y=CNSORT(.5ND/GALR{-GA2-CCCC))
IM(3)==I.M(2)
IM(4) ==~ M(1)
nn 1 I=1,.4
ALT)==LMOI)(AL2%IMIT YL MOT YHALLY/ (ALYSHLMIT )L M(T)+AL3Z)
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R{T)=LM(T)
T CUT ) ==l ALZRIME TS IMOT ) +A1L4) /(AL T=IMETYRIEM{T)+AL3)
£2=1.

NN 11 T=1,.MFXP

11 C?2=C2%CPDEXPLILM(2)=LM(Y1))IXN/NEXP)
ANA=CU2Y/CL1YRC2-A(2)/A(1)
RRR=CP2~A(2)/A(1)
Pl=(R(3)/B(1)=ACR)Y/ACI)Y/(R(2)Y/B1I=A{(2)V/AL1))
P2=(R(4)/BIL)=AL4)Y/A01)VY/HLRI2YV/RLIY=A(2)Y /A1)
C3=1.
P12 T=1,NFXP

12 C3=C3RCNEXP((ILM(3)=IM{1))D/NFEXP)
P3=(C3-A(3)/A(1))/BRR
Ca=1,
NN 13 I=1,NFEXP

13 Ca=C4xCPEXP((ILM{4)=| M{1) =D /NEXP)
Pa={(C4—-A(4)Y/A (1)) /RRR
PH=(C(3)/CIIIHC3I-A(3)/A(1 Y)Y/ AAA
PA=(CI4)Y/CL1YHCH4=A(L) /A1) )Y/ ANA
Ci=1,
N 14 T=1,NEXP

14 C1l=CL*=CDEXP{LM(1YRD/NEXP)
PT7T=AMP/(C(1)*xC1xAAA)
S(3)=PT7/{PA-P2)%((P5=P1)/(PH=-P?2)=(P 3= Pl)/(PA -pP2)))
S{4)==(P3=P1)/(P4L=P2)%S(3)
S(?2)==8(3)%P1-S(4)*%p?
9(1)--8(7)’A(?)/A(1)—%(3)4A(%)/A(1)—§(4)'A(A)/A(l)
N77=N/N
77==N77
MPT=N+1
NN 100 1I=1,NMP1
77=771+4D717
WRITF( 64333177

333 FORMAT(1IHO,Y NFPTH FROM SHRFACF TS ' 4F12.4.2XeVETY /16X,

1t TTMF'.RX.'H7'.10X9'N7'.10X9'Q',11X.'T')
NN 2 I=1e4
CCC(IY=1.
DN P =1 .NFXP

2 CCCUI)=CCC{TIYRCNFXP(LM(I %77 /NFXP)
P=S(1)xA(LYRCOCCL1IY+S{2)HA(2VCCCI2)+S{R)XA(B)HCCC(3)+
1S(4)==A{4)=CCC(4)
N=S{1)*B{1)RCCCLLI+S(2)*R(2)¥xCCC(2)+S(3)%B(3)XCCC(3)+
1S4 =R 4)RCCC(4)
H=S{1)XC(1)=CCCL1Y+S{2)%C(2VY%RCCCI2)+S{3)RC(3)XCCC(3)+
1S04)=C{4)3=CCC(4)
G=S{1)*CCC{1Y+S(2)1%CCC(2V+S(3)=CCC(3V+S(4V*XCCC(4)
SS=( AAP+A22%0D) /(OMKT )
TT={ALY=P+AARD )Y/ (NM£7)
SAMPH=CNABS(H)
SAMPG=CDABS(G)
$AMPSS=CDARS(SS)
SAMPTT=CNDARS(TT)
SANGH=DATAN2 (DIMAG({H)YNDRFAL(H))
SANGG=NATANZ2 {DIMAG(G) DRFAL(G))
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$ANGSS=NATAND? (DIMAG(SS ) NREAI (85))
SANGTT=DATAN2 (DIMAG(TT) DRFAL(TT))
WRITF( As222)$AMPH , $AMPG, $AMPSS, SAMPTT
WRITE( 64222 ) $ANGH , $ANGG , SANGSS o $ANGTT

227 FNRMAT(10X410F12.5)

NTF=( TENND=TSTART)/(NPT~1)
TE=TSTART=NTF

NN &4 T=1,NPT

TE=TF+NTF

777=NMETE=1.5707963
SU7=$AMPHIECDEXP (7% (777 +$ANGH) )
W7 =6 AMPGRCNFEXP (7% (777 +$ANGG ) )
$SSS=6AMPSSHCNFEXP (735 (77 7+ ANGSS ) )
$T=6AMPTT#CNEXP (7% (777 +$ANGTT) )

4 WRITE( 6222 TEa$I17 48W7 4 $SSS. 6T

100 CANTINIIF

.60 TO 10
99 STNP
FND

SAMPLF DATA
ENIN F=o4RHNF=1.94,RHNS=5,13.CC=2,4N~74CW=2,3N=-8,K7=,001,

AMP‘:.?Q”M=%7.406.N=100NPT=? OTQTART=0. OTFND=]. 702400. O
NEXP=5, EFND



APPENDIX 3

FILF NTIGATA 1/7/76

MNONE TMNFAR TRAMSTFENTS NF LAYFRFD SATHRATED DFPﬂQTT
SHRIFCTED TN GROLND SHAKING

RAMRERG~-NSGNON REVFRSAL RASFN ON SHEARINMNG STRAIN

TANGENT & IN SWAVFE, SCFNT G IN PWAVF

HOART7NNTAL OUAKFE INPUT IS FEFD THRAGH NDEVICE 7

THF SNTI. DFPASTT MAY RF INCLINED,

HUNTFARM SEFCTIONING ON BROTH P-WAVF AND S-WAVF SHRRNUTINFS
ND. NRDFR TINTFRPOLATION AT POINTS 2 AND 3

$R NBRNT 5=PNTT 6H==X T=0UAKFVFI, 8=0UTFILF T=30

NAMES FNR IMPUT

ReC:  COANSTANTS IN FOS. (6-10) AND (6-11)
P PARAMETER IM RAMRBRERG-NSGNND RFELATINANS
: COEFFICIENT NF FARTH PRESSIRF AT REST
NDEPTH NF THF DEPNSIT(SATIRATED PART). FT
F:  PORNSTITY
RHNF: MASS DENSITY NF WATFR. SLUGS/FT*
RHNS: MASS DENSTTY NF SNLIN, §|UG§/FT*
Nt NUMBFR NF FOUAL DISTANCE INTERVALS
TMAX: TAME SPAN NF COMPUTATINNS, SFEC
CW: CNMPRESSIBILITY NF WATER. FT#%2/1R
STGMIN:  MINIMIM FEFECTIVE STRESS.PSF
THETA:  FRICTINN ANGLF, RADIAMS
AMP:  AMPLITUDF NF REDRNCK VFLAGITY, FPS
NM:  FREOUENCY NE REDRNCK VELNCITY, RADIANS/SEC
R: PAPAMETFR IN THE RAMRERG-NSGNAND RELATINNS
K7: PERMEARILITY. FPS
JPR,IPRSTG: PRINTING PARAMETFRS
CREAC: RATIO NF BULK MODULIS TN STATIC SHEAR MANILUS
ISIM:  1SIM=1 IMPLY FARTHOUAKF EXCITATINN
FAC: A FACTOR APPLIFD TN FARTHOUAKE VFELACTITY INPHIT
N4 NUMRER OF FARTHOUAKE VFLNCITY DATA PNDINTS
111: DETAILED NUTPUT IS PRINTED OUT FOR THF ITITH LAYER
SLR1.SLR?2: CONSTANTS UISED FNR RENRNCK FXCTTATIAN
TSTOP: TIME THAT EXCITATION IS SUSPENDED
TPMIN, TPMAX: TIMF INTERVAL FNR DETAILED P-WAVE NUTPUT
TPMATIN: TIME AFTFR WHICH NUTPUT STARTS
SLNPE: SLDPE NF DFPNSTT, RANIANS
MyMMM:  TNP AND RBNTTNM LAYFRS NF A LESS PERMEARLE ZNNE
TOC: TOC=SHEAR STRENGTH/YIFLD SHFAR STRESS
W: NVFERBURNON, PSF

A,
Al
KO
Ne

NAME FOR NUTPUT

SIGRT FFFECTIVF STRFESS, PSF
PPNR: PNRF WATER PRFSSIURF, PSF , ;
DIS71: DNOWNWARD SURFACE DISPLACEMENT, FT

TTAl:  SHFARING STRESS IN LAYFR I11, PSF

SSTM:  SHEARING STRAIN IN LAYFR ITI

-182-
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Gt TANGENTTIAL SHEAR MNDULUS NF LAYFR IT1, PSF

RFND:  RELATIVF NDISPLACFMENT (LATFRAL) BFTWFFN
SURFACE AND BNTTOM NF DFPOSTIT, FT

TAUM:  SHFEARING STRFNGTH NF ILAYFR I11., PSF

TAUCL) o TAU(M) G TALI(NT):  SHFARTING STRESSFS, PSF

PPOARNT: PNMNRE WATFR PRFSSIIRF AT THF BOTTNM. PSF

St SFCANT SHEAR MONULUS NOF LLAYFR TIT, PSF

1C:  INDFX THAT TRACFS THF RAMBFRG=NSGNNN CURVFS

e Ee ke NeleNeReReleale!

IMPLICTT RFEAL#B(A=H,Kyl. +N=7)

COMMON  /PPP/STGRI10) U7 (10) ¢WZH{10)SH{IN),T(10),
INTISZ1.PFLTG(10)4CC(10),CRIIN)VAALLI(10),4,RTI(10),N58,
TWZDE10)4SDE10) o NEWNEA(10).DEBRI10)NEA25(10),D2{10),
IKZ0I0) « CHWa NDFLTGOI10)Y+ NLNGL10) o+ NTPGHN4(10),NDA{10), DR,
TOUAT s QUA? g OUAZ G TPMINGTPMAX CCNE10) oM MMMNN, TOUTT

COMMON /SSS/TAUPTIO}STALHL10),OT(10)«ACCPKACC,PKT,
INTSXE10)SLATSLR2,TSTAPCV(999) ,FACISIM

COMMON /RARNSG/GO(10)«TY(10)9sRI10)+G(1I0),GS{10),ALP
1eUXNE1I0)yUXC1I0) IRFVLIO)LTIC(20),IVC(10)

COMMON DZPyRHOF GRHNS s TR+ NT 4 NTP, AMP, M,
ITF(I0)SRHN{10) 4 Wy SSLOPF «MGNT 4 1S

DIMENSTON TAUOA(C10) 4y VS(10)«VP(10)4VP2(10),SSTNO(10)
14KOELO)oTHETACLIO) 4PZH(10),PHWPN(10)4F(10),DFLSIG(10)

NAMFLTIST/DIN/AyByCoALP oKDy Dy FeRHNF 9y RHNS My TMAX 3 Ciy SIGMIN,
1THFTAGAMP MM 4R 4K7 4 JPR 4 JPRSTIG4CRFAC4ISIMFAC N4, ,TT]
1eSIBLeSLRBR2,TSTNP S TPMIMy TPMAXy TPMAINGSLOPF ¢MyMMMyTOC o W

TYFLDIXX o XKy XT )= o8 XXENSORT L (1 o +XK)HENSTIMNIXT ) )2~ (1,-XK)
1%%2)/TNC

110 RFAD(5,NTN,FND=99)
WRTITE( AyDNINY
JTECOISTIM . FOLIIRFAN(T71I2M(CV(T)sT=14N4)
1172 FORMAT(9F8,.5)
I0UTT=0
MT=N+1
NIS71=0,
NN 4 T=1,M
RHNM{ I )=F (I )*RHOF+(1.=F (1) )*RHNS
4 FUTY=F(I}Y/(1.-F(T1)) :
FN=F (1)
NEELSTIGELY=0,
JJI=0
JJJ1=0
N7eP=nN/N
PKACC =0,
PKT=0.
C ITNTTIAL CONDITION
77=0,
777=W
nn K I=]~N1
H7e1)=0,
WZH{T)=0,
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2227
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W7N(1)=0,

PWPN(T1)=717

T(1)==777

STGR(TY==77-T(T1)

HX( I)=ﬂ.

HUXN(I1)Y=0,

TAUTY=772%DSTN(SLNPF)

TF(TILFOJNTIYGN TN 8

77=77+RHNFX3?2 ,2%xN7P
7772=7277+RHN{TV*x32,2%N7P

NISX(1)=0,

Sti{1)=0,

Snely=0,

77=0,

PN Bl I=72,N1

TAHO(T =1 )=a5% (TAU(T=1)+TAII(T1))
77=77+RHOF%32,2%N7P

SU{1)==77%F(]-1)

ST Y==77%F (1)

\/SMAX:O.

P71 T=1,N

I1=1+1

NTETY =S8 (TACTI+TAU(TLY)

FN=F (1)

TY(T)=TYFLD{ .5 (STGRITI+STGR(T1))KO(T) THFTA(T))
GO(T)=GOLD( 5% (STGRITI+SIGRITLIIIZKO(T))
CRITY=1./(CRBFACGO(T))
VSIT)=NSORT(GO(T)Y/RHN{T))
TFIVS(T)Y.GTVSMAX)IVSMAX=VS(T)

SSTNO( T )=o B {TAN(TY+TAUNLTYI)IN/GO(T IS (] o+
(B (TAUCTI)+TAUBCTINY/TY (T IRE{(R(TI)=-1.))
TVvC(1)=
TREV(T)

NELTGOT O.

MDGETY=6G0(T1)

PDFLTG(T)=0.

WRITE( 642222V (6GN0(T)eI=1,N)
WRTITF(642222)Y(VS(T)eT=14N)
WRITE(642222)(TY(I)4I=1,N)
FORMAT(10F172.2)

VPMAX=0, :

NN 18 I=1,N
CCITY=1./7(1.333333%NILNG(TI)+1./CR({(T1))
CCNEIY=CCLT)
NI=1./{RHN{T)I-F(TIXRHNF)

N2{1)==-N1

N3==RHN{ T)}*%NY/(F{1)*xRHNF)

Nal])y=N1

N&E==1,/0W

NAELT Y==F(T)Y/CW

ng=nNs A i
N7==1./{(F(I1)*%CW)=1,/CC(T)

AM TLT)=N4(THIENR+NIXNH(TI+DNT %NS
RTI(I)Y=DN1xN4{1)-N2{(T)==N3

1
)
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NER=NH*XNK
NDGACT)I=R4(T)ENH(T)

N4SR(TY=N4& (T )%XNER

DG E25(T)=N4(T)=NA(TI+D2 (T ):%D5
AL=AALYI(T)+N2(T)%NT
RT=(DSR~-NG(TIXNTIXRTI(T)
VP2{T)Y=DSORT({(AL=DSORT(ALMAL -4 ,DO%XRT ) )x,8N0)
VPIT)=DSORT({AIL+NSORT(AL#AL =4 NOXRT ) )%k, 5NN)
TE(VPIT)Y.GT JVPMAX)IVPMAX=VP(T)

CANTINHF

WRITEA{ Ay2222)(VP(IT)eI=1,N)

WRTTE( 642222)Y(VP2(T1)s1=1,N)

NTP=N7P/VPMAX

NN=IDTIMT(VPMAX/VSMAX)

NDT=NTPNM

WRTITE( 642224 )NTP,NTHNN,N7ZP

DN 22 I=1,4N

TFIVSLT)IRDT JGT.NDZPYCAILL FXIT

TFIVPIT)IRDTP GT.DZPYCALL FXIT

CANTININE v

TRIVSIN)YEDT GT.NZPYCALL FXIT

FORMAT(1X4'NTP=t,F12.5+s1 NT=1,F12,5,' NN=t,[D,.

1F12.5)
NTPGR=NTP*32, 2

S SSLNPF=NT%32 . 2%NSTIMN{SLNPF)

MIALI=N7P(DZP+N7P)
OUAP2==N7P=EDNZP
OHAZ=(DN7P+N7P)}%D7P
TF=0,

GIIIIV=GO(IITI)
GSITI)=60(T11)
1IC{ITI)=0

N TH 723

TFE=TE+DT

JJd=J0J+1
TRF{TE.GT.TMAX)YGN TN 111
CALL SWAVE

NN 21 I=1,N
PDELTGNET)=DFLTG(T)
NELTGITI)=(GS(TI)=-NLDG(T
ITFCIRFVIT)FN.OINFLTGL
TF(TF.GF.TSTNPYIDFLTGI(T
CONTINIIF

PN 25 T=2,N1
NFILSIGITYI=0,
TF{SIGR(IT).LF.SIGMIN)INFISTG(T )=SIGMIN
CANTINDF .

nn 9 I=1~N

11=1+1

IF(IRFV(TI).FNL,1)GNA TN 9
FN=F(T)/(1.-F({T))

MNGEETYI=GO(T)
CCLT)=1./(1.333333%NI.DG(I1)+1./CRI(1))
CANTINUF

=0,

nZp=",
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CAILLL PWAVFE
TECTIQUITLEOGLIGN TN 111
NN 24 T=1,N
I1=1+1
FN=fF{T)/(1.=-F(T1))
NENGITY=GS(T)
GOLI)=GNLD 5% (STGRITI+NFLSIGET)+STGR{TII+NFISIGIILI)Y)KO(T)Y)
TAUCT)Y=TAUP(T)
TY(T)=TYFLD{ 6% (SIGRITI+DFLSIGUII+SIGRITIYN+NFLSIGITIL))
L« KO(T) W« THETA(T))
24 TRFV{1)=1
TAUINI)Y=TAUP(N1)
NN P28 T=1,N
TF(TAUN(T) JGF.TACHTY(TI)IGN TN 29
28 CNMTINUE
GN TO 30
279 WRITE(As1115)T1.TF
1115 FORMAT(1X,'RFACH NO, ', 124" FAILFD AT ',F12.4s% SECNNDS. ')
CALL EXIT
30 TF(TE.LEF.TPMAINYGO TO 20
TF(JJI/IPRSIGHIPRSIG.NE,JIIIGN TN 26
WRITF{As1113)TFL(SIGRIT)I=14N1)
NN 27 1=1,4,M1
27 PZH{I)=(=SD{T)/FLTI)=PWPN(T))/(32.7%RHNF)
WRITE( Ae1TI14)TFH(PZH(IT) o T=1N1)
1114 FORMAT{IX e 'TF=t,F10.4, " PZH= 1',]10F10.3)
1113 FORMAT(IX ' TE=1'4F10.4e' SIGR= 1',10F10,2)
26 TFOJJI/IPRRIPRLFOLJIJIGN TN 23
G TN 20
23 PPAR==SNIITIT)/F(IIT)
PPARNI==SU (ML) /F(N) .
SSTN=SSTMO(ITIV+(DISX(ITII+1)=DISX(TIT))/D7P
TFIDARS{SSTM)Y.GT..0R)CALL FXIT
TTAU= 5= (TAUCTTIT)Y+TAU(TTIT+1))
TAUM=TOC*TY(1171)
REN=NTSX(1)=-NISX(N1)
JJJd1=JJJ1+1
WRITE(RG11I3)IPPORGSIGR{IIIT)¢NISZ1+sTTAUSSSTNLGIITT),RED,TAUM,
JTAH(L) o« TAU(NY ¢ TAUCN] ) « PPNRNT WGS{TTIT) L IC(TTIT)
113 FNRMAT(2F 8.2+ F10.T70FBe2¢F10.7+4FRB.0F10.5,5F8:72,F8.,0,13)
GNTH 20 '
111 WRITE(AsL114)(F(T)eTI=14N)
114 FNRMAT(15FR,.,5)
WRTITE( 6,11 6)YPKACC,PKT _
116 FORMAT(1Xy "MAX, GRNINT ACC. = Y,F12.4,' NCCURFD AT ,F12.4,
1' SFCONDSGY)
WRITE(B8,115)INT,JPR,JJIL
115 FORMATIFRLH54214)
99 STNp
© FND

—

SHRROUTINE SWAVF
IMPLICTT RFAL®R(A-H Kol ,0=7)
CAOMMON  /SSS/TAUP(LI0) 4 TAI(10),NT(10)+ACC+PKACC,PKT,
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INTSX{10)eSILRIWSLR2,TSTNP (CV(G99) FACISTM
CNMMON /RARNSG/GO(10)YaTY(10)sR(10)4GLIN)ZGSIIN)LALP
1oUXNA(T10)UX(10) W IREVIIO)LTIC(I20)IVC(10)
COMMON NZPLRHNF«RHNS s TFeNT «NTPy AMP L NM,
TF(10) «RHN(10) e WeSSLAPF N GN1 4 JJJ
DIMFENSTON HXP(10),VS{(10)
NN A T=14N
TT=e 5% (TAUCT)+TAU(T+1))
CALL GGITTNT(T)e1)
OTLT)=TT
A VSIT)=NSORTIGITY/RHN(T))
RIANRS] I=71N
IP1=T+1
IMI=1-1
C1P=1,./DSORT(RHN(TM] )G (IM1))
CIM=1./NSORT(RHN(T)*=G(T))
THAP=VS{IM1Y*DT/N7P
THAM=VS(T)=NT/D7P
UXR=UX{TY+THAPR{IIX(IMTI)Y=UIX{T))
TAUR=TAU(T)+THAPK(TAII(IMLI)=-TAU(T]))
UXS=UX(T)I+THAMS(UX(TIPT)=-tIX(T))
TAUS=TAU( [ )+THAMR(TAU(TIPYI)=TAU(T))
CP=C1PRTAUR-IIXR+SSLNPF
CM==C1I1M=TANS-1IXS+SSLNOAPF
TAUP(T)={CP-CM)Y/(C1P+CIM)
HXPLI)=TAUP(1)%=C1P-CP
9 NISXET)=DNISX{T)+55(IXP{TI+IX(TI))*%DT
C HPPFR R.(Ce
CIM=1./DSORTIRHN(1)*=G(1))
THAM=VS(1)xDT/D7P
UXS=UX{1)+THAMR (LIX(2)=HX(1))
TAUS=TAU(L)+THAMS(TA(2)-TAII(1))
CIM=1,/DSORTIRHN(L1)*xG(1))
CM==CIM=TALIS=-UXS+SSILNPF
WENT=W/(164,1%NT)
TAUP(1)=(WGDTHSSLAPF=~{TAN 1) +WEDTHR{UX(TI)I+CM)IIY /{1 o+
IWGENTxC1IM)
HXP{I)Y==(TAUP(1)XC1M+CM)
ACC=(UXPLL)Y=-UIX(1))/DT
IF{NDARS(ACC) «GTLPKACCIPKACC=DARS(ACE)
IFIDARS(ACC) oGF .PKACC)YPKT=TF
NISX(1)=DISX{I)+.5%(UXP(1)+1IX(1))*%DT
C LMWFR RL.Ce.
IF(ISIMJED.LIGN TN 8
UXP{N1)=AMPRDSTIN(OAMRTF )% (1 ,~SLRI*NFXP(~SI.B2%TF))
B8 TF{ISIMJFQJLIUXPINY)=CV(JJIJI)=FAC
IFITELGT.TSTOAPYUXP(N]L )Y =0,
THAP=VS({N)XDT/D7P
UXR=UX{(MNL)Y+THAP=(UXIN)Y=UX(NT))
TAUR=TALH{NI)+THAPS{TAU(N}=TAI(N]L))
C1P=1./NSORT(RHAIMNYIRG(NY)
CP=TAUR*C1IP~UIXR+SSILOPF
TAUP(NI)Y=(CP+lIXP(N1Y)/C1P
UXP{N]1)=C1P=xTAUP(NY1)=CP
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DISXENLI)I=DISXINII+,5%(UXP{MYL)+IX{NL))I%DT
C UPDATING VARIARILES
NN 10 T=1,N1
HXN{T)Y=X{T1)
10 UXET)Y=0XP(T1)
RFE THRN
FND

SHRRANTINE GGITTNTTL1)

TMPLICTT RFALEAR(A=H,KelLoaN~7)

COAMMON  /RARNSG/GO(10)TY(10)Y4RI10)4G(10)«RSE10)ALP

1oUXN(10) 4UX(I0) o TRFEVILIO),ICI20),IVC(10)

NIMENSTAN LIP(20),YM(20,20)

GVADYNRY=1./(1 +NREALPHXDARS(NY )% (DR=1,))

GSVINDYWDRYI=1./ (1 . +ALPEDARS(NY )3k (DR~1,)) _

GRO(DY s NYOeNRI=14 /(1 +DREALPKDARS ((DY=DYN) /2 Yk%(DR=1.) )

GSRA(DY ¢NYNeNRI=1 /(1 o +ALPEDABRS((DY=DYN) /2. )% (DR=1.))

T=TT/TY(1)

NT=NTT/TY(1)

TE(IVC(IYLFO,0)GN TN 10

TROCUXO(T) =UXN T+ (UX (T)=UX{T+1)) L T.0.)60 TN 5
9 GITI)=GO(T)RGV(T,R{T))

GSET)=GO(T)®GSY(T,R(T))

1C(T)=0

RFTIRN
5 TVC(I)=0D

UP({T)Y=UX(T+1)=1X(1)

1C(1)=2?

YM(1,7)==0DTT

YM(2,1)=NTT

IRFV({T)Y=0

I =GO(TY*GRO(TNTLR(T))

GSET)Y=6G0CT)%GSRAIT AT WR(T))

RF TURN
10 TFINDARS(T).GF.NARS(YM(1,T)/TY(I)))IGN TN 15

TECQUXOCTY=OXN(T+1)) % (UX(T)I=UX(T+1)).6T.0.)60 TN 20

HPLT)Y=UX{ IT+1)=UX (1)

IC(T)=1C(I)+1

IF(IC(T).GT.20)1IC(1)=19

TRFV(I)=0

TRCUHP LT (T-YMIC(I)=1T)/TY(I)) 6T 0.)GA TN 22

YM{IC(T)e1)=NTT
11 GUIY=GOCTYRGRA(T SYMITIC(TI)«T)/TY(TYWR(T))

GSEIY=GOCTIIRGSRO(TYMITC(T) oI )/TY(T)4R(T))

RETURN
15 TVC(I)=1

G TN 9
20 TF(UPII)R{T=YM{IC(I)=1aT)/TY(I))alLT40.)GN TN 11
272 1C(IY=1C(1)=?

TE(TC(TY.EQ.3)6N TN 11

TRIIC(TY)LEN.2)6N TN 11 :

GN TN 20

FND
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SHRRAIITIME PWAVF

IMPLICIT RFALMR(A~H Kyl «N=7)

DIMENSINAN HZP{10) JWZPUHL10)«SPUHLLI0) oTP(10)+sTR{L4444,10)
ITSAVE(4,10) 41 (4410),WZPDNI10)SPN{10)

COMMON /PPP/SIGRILI0) U7 (10) 4WZHH{10)4SU{10),T(10),
INISZ1IDFLTGEI0) 4CC(1I0) 4 CRI1IND)IZAALI(1I0)}RTI(10),D58,
TWZD(E10)eSDE10)eNB4NGA(10)4DEBB{10)DL625(10).D2110),
1IKZ(10) e CWyNDFLTRN(I0)NLNGII0) 4 DTPGeNALI0)4DNA(T10) 4 D8,
10UAYL s OHA2 yOUAB G TPMIN G TPMAX G CCONIYI0) oM yMMMGNN, TOUTT

COMMON DNZP¢RHNFLRHNS,TF+NT,NTP, AMP, (M,

LF(1I0) «RHN{ 10O ) ¢ We SSILNPF ¢NgN1 4, 11

W7PU(N1)Y=0,

WZPD(N1)=0,

SPII{1)=0.

SPR{1)Y=0.

HZP(N1)=0D,

TIMF=TF=-NT+DOTP

100 DN 1 T=1,N

NLNGET)=NLNGITY+DFLTG(T)

CClTI)=1./(1.333333%0LDG(I)+1./CR(I))

NT7T==1./(F{T)%CW)=~1,/CCN(T)

AL=AALLY(T)+DN2(1)*DT

RT=(DSR=NH{T1I=NT)IXRTI(T)

NNN=NSORT(AIXAL—-4 ,NO*RT)

L1 I)=DNSORT((AL+DDN)YI*,5)

L2 1)=DSQRT((AL=NDN)*,5)

{341 )==1(2.1)

4y I)==L(1s1)

COMSTl1==16,1DTPAF(T)%D4(TY/K7(LT)

CONST7 =4 66666THCC{TYDFLTG(IY/F(T)

nn ] .,zlqlf

TROJe T oI =1L lJe TRy T)EDSHNAE(T)IEDT~NASRITIIV/(L(Je])
1#N4A25(T))

TROJe 2« D)= L{JeI)=TRIIy1,T)XN2(T))/DG(T)

TRUJeB3eI)=(L(JaT)ETR{IHZ?24T)I=DNR)Y/DA(T V+CNNSTT

TSAVE( )y I)=TR{ I3 2+ I)~CONSTIH(TR(Jel oI )% F (T ) =RHNF=~
1TR(J42+ 1V%RHN(T))

TRUJeb s 1)=1 e ~CNNSTT7F(])

TR(J$241)=2. TR H,2,1)=-TSAVF(.J,1)

1 CONTINUF
C SURFACF R.C.

TH3==1(3,1)%NTP

TH4&== (4,1)%DTP/D7P

QHAL=(DZP+N7P~=-TH3 )} (N7P-TH3 ) /0OlIAY

OUAS=TH3H(TH3I~-N7ZP=-N7P) /OUIAD

DUHAA=TH3S(TH3I=NZP) /DIIA3

S3=SDE1)HQUALLSU(2)%OUAS+SII{3)*0Q11AA

T3=T(1)xOUAL+T(2)xOIAS+T (3 )%NIAL

N74=U7 (1)Y+TH4E(7(2)=117 (1))

W74=WZD( 1 )+THEA(WZII(2)=W7D({1))

S4=SND(1)+TH4x(SI{?2)=-SD(1)})

Ta=T{1)Y+TH4(T(2)=-T(1))

B73=UZ(1)%0UAG+IZ (2 )=0UAS+7 (3)%011AA

WZ3=WZD(1)R0UAG+WZU(2)%OUASHWZII(3)0IIAA
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CONST2=,66666667T%CCILYENFLTGI1IY/F(Y)

CONST3=, 66666667=CCO(1L)=DFLTGN(1)/F(1)
C3=2TR{34141)%UT734+TSAVF(3,1)1%W734+(TR(343,1)-CNNST2~
1CNANST3)3:83
1401+ CONST3%F (1) IRT34+TR(3,1 31 )XNTPGHTR( 34441 )%W
Ca=TR{4 41y 1V%U74+TSAVE(L41)=W74+(TR{4 4341 )=CNNST 2~
1CNNSTR )Y %SG
1+ (1 a4+COMST3RF 1)) RT44+TR{4 141 )RNTPG+TR (444471 )W
WZPU(1)=(C3/TR(3,1,1)~C4/TR(44141))Y/(TR(34241)/
ITR(’%QIQ].)“TR(L"Q?Q].)/TR(A'Q]'1 ))

WZPD{1Y=WZPII(1)
H7ZP(1)=C3/TR{IB34141)=TR(34241)/TR(34141)W7PI{1]1)
TP(1)=-W

STGR(1)=SPD(ILY/F(1)=-TP(1)
NISZ1=NTISZ1+4+.5%xNTPR(UZP(1)+17.(1))

ROATTAM RBR.C,

THI=L{1,N}=DTP/D7P

TH?2=L(2.N)%DTP

NM]1 =N-1

OUAT=(TH2=N7P)=TH?2 /0O1IA]

OUA8={ TH?2=D7P=N7P)xTH?2 /OIIAD
DUAG=(NZP+NZP=THZ2)*(D7P~TH2)/0UIA3

HZ1=U7 (NIY+THIR(HZ(N)=HZ(NTY)
WZ1z=WZUINIYSTHLR(WZUIN)-W7HH{NT1)Y)
S1=SUINL)+THLH(SUIN)=SII{N]))
TI=T(NL)+THLIH=(TIN)=T(N1))
S?2=SDINMIIRQOUATH+SU{INYROUABH+SH(NT IROLIAQ
T2=T(NMIYHOUAT+TINYIROUARET (N] }%=NDIIAQ

UWZ2=07 (NMIIYROQUATHU7 (N)YRQIUIABHIIZ (N1 )YROIIAQ

W72 2=WZDINMIYEOUAT+WZUH{INYROUDARFWZII{NT )*QUAS
CONST2=46666A6KTHCCINYENDFLTGINY/F{IN)

CONST3=, 6666666THCCNINYEDFLTGNINY /F (M)
Cl=TR{T41gNIEUTZTH+TSAVE(T JNYISWZ T+ (TR T1e34N)-CNANST 3~
1CNANST2)xS1
14+(1 o +CNANST3RFINY)IRTI+TR(1,1+N)EDTPG

C2=TRI?24 1y N)EUZ2+TSAVFL{2,N)EWZ24+ (TR (2434N)=CNNST 3~
1CANST?2)*S2

T+ 0 1a+CNAMST3RF(N)IRT24TR (241 4N ENTPG
SPUINII=(C1-TR{1 41 ,N)IZP(NLI)=C2+4TR{ 241 4N)UHZP(NL))/
ITRI143,N)=TR(Z2434N))

SPNINTY=SPU(N])
TPIN1)=(C2=-TR(291eN)RU7P(NL)=TR{2+3+N)IESPU(NL))I/TR{244,N)
STGRINLI)Y=SPUHINTI)Y/F(MY=TP (N1}

TFISIGRINLI)JLF.OL)GN TN gR

INTFRINDR PNINTS

NN 39a ]=2~N

iMi=1~1

IP1=1+1

Fll=F(IMLIY/F(T)

THI=L(1,IM1YXNTP/D7P

TH?2=L(2,TM1)%DNTP

TH3==1 (3. 1)%NTP

THa==| (4, 1)EDTP/DIP

DHAT=TH?2 = (TH?2+N7P) /OHIA]
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OUAB=(TH2=N7P )= (TH2+NZP ) /0O1IAD

OUAG=( TH?2=D7P )%TH2 /OIIA3

MIATO=THRR (TH3=ND7P) /0OHAY
OHAILI=(TH3=D7P Y= { TH3I+N7P)/ONIAD?
ONAY2=(DN7P+TH3)RTH3/NOIIAT
UZY1=U7CT)+THI= (U7 (ITM1)Y=-17 (1))
WZ1=W7UH{TY+THIR(WZD(IMI)=W7II(T))
SI=SULT)I+THI=(SD{IMI)=SUI(T))
Tl=T{T)+THYI=(T(IMIY=-T(T))

H24=U7 (T )+THA& (7 (TP )=-H7(T))
WZ4=W7D(T)+THAX{(WZ7U(TPL)=WZD(T))
S4=SNDIT)+TH&(SU(TIPYI)I=SD(T))
Ta=T{I)+THL(TCIPI)=T(T))

IF({I.FOM JNRe TLFOMEMMMYIGN TN 330
S2=SNEIML)ROUATH+SH{T)IROUAR+SH (TP )Y%0DNIAQ
T?2=T(IML)I%OUAT+TLTIROUAR+T(TP1 )5=DOIIAQ
S3=SNITMIIHOUALIOFSH{T)HOITALT+SU(TPT)=NIIALD
T3=T(IMYI)HOUATO+T(TI=OUALI+TLIP1L)ROIIALD
H7Z2=U7 ( TMLY==DUATHUI7 (TYROUHARHIIZLTP] Y%NIIAQ
WZ22=W7D(THMI Y ROUATHWZIT YROIAS+W7HI{TP] }*=0IIAQ
HZ3=U7 (IMI)Y0OUALIN+UZ (TIYROUATLY+UZ (TPTIRDIIALD
W7 3=WZD{ TML)XOUATO+WZ (T )RONALTHWZII{TPY ) =0OUIAYD?
GN TN 331

33N MMI=1-1

MMP=1-2

QUAT=( TH2=N7P )IRTH2 /OLIAL

DUAB=( TH2=N7P=N7P)3%TH2 /O1IAD
OUAG=(N7P+N7P=THP? ) (DN7P=TH2 ) /DA
S?2=SNDIMM2YXNIAT+SH{MM]T )RQIIAR+SII{ TYXNDIIAQ
T2=T{MM2)=NUAT+T(MM] )QUAR+T (T )ROUIAQ

N72=117 {MM2)}<OUIAT+UI7 (MMT )S<OLTARHIIZ (T )R0DITAQ

W7 2=W7ZD{MM2)5OUTATHWZHT{MMT }SOUIARFWZUI{ T Y*ROUIAQ
MP1=T1+1

MP2=1+7

OHAG=(N7P+DN7P=TH3IYR(N7P=-TH3I}Y/OUIA]
OUAB=THR(TH3=-NZP=-N7P)/NOIAD
OHAA=THIR(TH3-N7P)/0OIIAR
S3=SDIT)=OUAL+SII{MPL)=OAS+SII{MP2 )OIAL
T3=T(T)ROUAL+T (MPLYRMIASHT (MP 2 )50k

H73=U7 (T )ROUAL+U7 {MP] )ROUASHII7 (MPD)ROLIAA
W7Z3=W7D(T)ROMAGHWTH(MPY YROUASHWZIH{MP? YROIIAGL

331 CONST2=, 6666666TCCIIMI)ENFLTGIMYI)Y /F(TMT)

CONSTL=, p666AAATHCCN{TMIIXNDFLTGN(IMLIY/F(TIM])
COL=TR(1414TMIIKIZI+TSAVF{] ¢IMI)%EW7Z14+(TR(]143,IM1)-
1CNNST4A-CNNST?)

1#ST4+ (1L +CONSTHRF{IMI ) )XTI+TR( 141, IML)XDTPG
CN2=TR(2 414 IMIIXIIZ24+TSAVF(D2 3 IMYI)#W724+(TR(2434TMY] )~
1CANST4~-CONST2)
1824+ (1 ,+CNONSTARF(IML Y )RT2+TR (2,1 ,IM1}%NTPG
CONST3=, 666A66AT*CCITYNELTGITIY/F(T)
CONSTH=, 6666A6AT*CCNLTYRDFLTGN(T)Y/FLT)
CN3=TR{34 141 )x173+TSAVF (341 )%kW73+(TR(3,3,1)=CNNST5~
1CNANST3) %S 3

L+{ 1 +CANSTERF (1)) %T3+TR{ 31,7 )%NTPG
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CPA=TR( 441 s 1VRUHZLLTSAVE (4 4 T)YXW7464+ (TR (L4334 1)-CNNSTH~
1CNANSTR ) xS 4
1+ (1 o+ CANSTERE(T) )RTL+TR{4,]1 4 1)YXDTPG
TR12=TR(141+TM1)=TR(?4141IM1)
TRAI4L=TR(341,1)-TR(4,41.1)
TR1I3=TR{141+sIML)/TR{144eIMI)~TR{Z341,4,1)/TR(34441)
M I=(TR(142+TM1)=TR(?472IM1))/TR1?
AL?2=(TR(143,IM1)-TR(2,3,IM1))/TR1?
A 3=(CN1-CN2)Y/TR1?
AL“':(TR(BQZ'I)—TR(A'?QI))/TRglf*F].]_
ALB=(TR(343,1)-TR(&4+3,1))/TR34/F11
AL6=(CN3-CD4) /TR34
AMT=(TRIL142¢TMI)/TRIT1 44 4IMIY=TR(3,2,I)V%F11/TR{344,1))/TR13
ALR=(TR(1934TMI)/TR(1444IM1)-TR{23434,1)/F11/TR(3,4,1))/TR13
MO=(CN1/TR(1+44TM1I)=CNA3/TR(344,T)Y)Y/TR13
SPIHT)Y=0(AL9=AL3)Y/(ALT=ALYL)=(ALO=ALAY/(ALT-ALL))/
TOCALB=AL?2 Y /UALT=ALY)={ALB=ALB) /(AL T=ALSL))
WZPUIT)=(ALS=AL3)Y /(ALT=ALYL)}={ALB-AL2)/(ALT=ALY1)RSPU(T)
H7PITI)=AL3-ALLW7PU(T)=AL2ESPU(T)
TPIIN=(CN1-TR{1 41 +IMII*UZP(T)=TR( 1424 IMI)WZPH(T)
1-TRE1 43, IML)IRSPULT)Y/TR(144,1IM1)
SPD(IY=SPU(IY/F11
W7ZPD( TY=WZPU{T)xF11
SIGRITY=SPD(I)/FLIY-TP(T)
TFISTGRIT) JLE.NIGH TN 98
399 COANTIMUE
PR 6 T=1.M
A FLIY=FOI)+ (1o =FOT Y (UZP(T+1)Y+U7Z (T4 1) =ZP(T)=117 (T ) )
1.5%NTP/N7P
C VPDATING VARIARLES
DO 4 T1=1,N1
NZe1)y=nzpP(1)
W7 (T Y=W7PII(T)
WZD(T)Y=WZPN(T)
SHET)Y=SPUI(T)
SNET)Y=SPN(T)
4 TED)=TPLD)
TF(TIMFLLT.TPMIN (DR, TIMF.GT.TPMAX)IGN TN 94
WRITE(As2222)Y(SH{T)e1=14N1)
WRITE( Ae2222)(SNIT)aT=1.N1)
WRITE( 642222)(T(T)eT1=1,N1)
WRITFE(A,2222)(H7(T1)4T1=14N1)
WRTITE( Ay2222)(WZUI{T )Y I=1,N1)
WRTTE( 642222 (W7ZD(T)sI=14N1)
WRITEL 642222)CCTIT)eT=14N)
WRITF(A2222)Y(NFLTGIT )y I=1,4N)
2222 FNRMAT(1X,10F13,6A)
Q6 NN 7 T=1.N
7 CCOtIy=CC(1)
TIME=TIMF+NTP
TRITIMF . GTL.TF)IGO TN 99 ’
GN TN 100
98 WRTITR(A,33346)1,TIME
3334 FORMAT(IX,'LIQUEFACTINN TS COMPLFTFED AT SFCTINN ',12,
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1" AT P,FR.5,' SFECONDS,. ')

ToUTT=1
G9 RFTHRN
FAD
C
C  SAMPILF DATA
C

EDTN A=1476044B22.97¢0=ub 4 ALP=1.,K0=10%,5,N=bT 49 F=10%,5,
RHNF=1,94 4RHNS=R,13,N=7,TMAX=10,CW=2,3D~-R,STGMIN=1,,
THETA=10%,5,AMP=,2.NM=]12,5,R=10%3,,K7=10%,003, JPR=3,
JPRSTG=20,CRFAC=2, 67+ ISIM=1,FAC=,5,NM4=800,111=4,SIR1=0.,
SIB2=14+TSTNP=10, s TPMIN=G,GR, TPMAX=10N., SI.NPF=0.,

M=]10 ¢ MMM=10,TNC=1.25W=300,,TPMAIN=0,, AFND



10.

11.

12.

REFERENCES

Alba, P. D., Chan, C. K., and Seed, H. B., 1975, "De-
termination of Soil Liquefaction Characteristics by
Large-Scale Laboratory Tests," Earthquake Engineering
Research Center, Report No. EERC 75-14.

Ambraseys, N. N., and Sarma, S., 1969, "Liquefaction of
Soils Induced by Earthquakes," Seismological Society
of America Bulletin, Vol. 59, No. 2, pp. 651-664.

Bazant, 2. P., and Krizek, R. T., 1975, "Saturated Sand
as an Inelastic Two-Phase Medium," Journal of the
Engineering Mechanics Division, ASCE, Vol. 101, No.
EM4, pp. 317-332.

Biot, M. A., 1940, "The Influence of Initial Stress on
Elastic Waves," Journal of Applied Physics, Vol. 11,
pp. 522-530.

Biot, M. A., 1941, "General Theory of Three-Dimensional
Consolidation," Journal of Applied Physics, Vol. 12,
pp. 155-164.

Biot, M. A., 1955, "Theory of Elasticity and Consolida-
tion for a Porous Anisotropic Solid," Journal of
Applied Physics, Vol. 26, No. 2, pp. 182-185.

Biot, M. A., 1956, "Theory of Propagation of Elastic
Waves in a Fluid-Saturated Porous Solid, Part I,
Low-Frequency Range," The Journal of the Acoustical
Society of America, Vol. 28, No. 2, pp. 158-178.

Biot, M. A., and Willis, D. G., 1957, "The Elastic Co-
efficients of the Theory of Consolidation," Journal
of Applied Mechanics, ASME, Paper No. 57-APM-44.

Biot, M. A., 1962, "Mechanics of Deformation and Acous-
tic Propagation in Porous Media," Journal of Applied
Physics, Vol. 33, No. 4, pp. 1482-1498.

Biot, M. A., 1962, "Generalized Theory of Acoustic Pro-
pagation in Porous Dissipative Media," The Journal
of the Acoustical Society of America, Vol. 34, No.
9, pp. 1254-1264.

Biot, M. A., 1963, "Theory of Stability and Consolida-
tion of a Porous Media under Initial Stress," Journal
of Mathematical Mechanics, Vol. 4, pp. 521-~-542.

Biot, M. A., 1965, Mechanics of Incremental Deforma-
tions, John Wiley & Sons Inc.

-194-



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

=195~

Biot, M. A., 1972, "Theory of Finite Deformations of
- Porous Solids," Indiana University Mathematics
Journal, Vol. 21, No. 7, pp. 597-620.

Brandt, H., 1955, "A Study of the Speed of Sound in
Porous Granular Media," Journal of Applied Mechanics,
ASME, Paper No. 55-APM-37.

Burmister, D. M., 1962, "Physical Stress-Strain and
Strength Response of Granular Soils," ASTM STP No.
322.

Casagrande, A., 1936, "Characteristics of Cohesionless
Soils Affecting the Stability of Slopes and Earth
Fills," Journal of Boston Society of Civil Engineers,
January, 1936.

Castro, G., 1975, "Liquefaction and Cyclic Mobility of
Saturated Sands," Journal of the Geotechnical Engi-
neering Division, ASCE, Vol. 101, No. GT-6.

Crochet, M. J., and Naghdi, P. M., 1966, "On Constitu-
tive Eguations for Flow of Fluids Through an Elastic
So0lid," International Journal of Engineering Science,
Vol. 4, pp. 383-401.

Dixon, S. J., and Burke, W. J., 1973 "Liquefaction Case
History," Journal of the Scil Mechanics and Founda-
tions Division, ASCE, Vol. 99, No. SM11l, pp. 921-
937.

Durham, G. N., and Townsend, F. C., 1973, "Effect of
Relative Density on the Liquefacticn Susceptibility
of Fine Sand under Controlled-Stress Loading," Eva-
luation of Relative Density and its Role in Geo-
technicai Projects Involving Cohesionless Soils,
ASTM S'TP-523, pp. 319-331.

Fatt, I., 1959, "The Riot-Willis Elastic Coefficients
for a Sandstone,” Journal of Applied Mechanics, Vol.
26, No. 3, Transactions, ASME, Vol. 81, Series E,
pp. 296-297.

Finn, W. D. L., Pickering, D. J., and Bransby, P. L.,
1971, "Sand Liguefaction in Triaxial and Simple
Shear Tests," Journal of Soil Mechanics and Founda-
tions Division, ASCE, Vol. 97, No. SM4, pp. 639-659.

Florin, V. A., and Ivanov, P. L., 1961, "Liquefaction
of Saturated Sandy Soils," Proceedings, 5th Interna-
tional Conference on Soil Mechanics and Foundation
Engineering, Paris, France.




24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

-196-

Geertsma, J., 1957, "The Effect of Fluid Pressure De-
cline on Volumetric Changes of Porous Rocks," AIME
Transactions, Vol. 210, pp. 331-340.

Ghaboussi, J., 1971, "Dynamic Shear Analysis of Porous
Elastic Solids Saturated with Compressible Fluids,"
Earthquake Engineering Research Center, Report No.
EERC-71-6.

Ghaboussi, J., and Wilson, E. L., 1972, "vVariational
Formulation of Dynamics of Fluid Saturated Porous
Elastic Solids," Journal of the Engineering Mechanics
Division, ASCE, Vol. 98, No. EM4, pp. 947-963.

Ghaboussi, J., and Wilson, E. L., 1973, "Seismic Analy-
sis of Earthdam—-Reservoir Systems," Journal of the
Soil Mechanics and Foundations Division, ASCE, Vol
99, No. SM10, pp. 849-862.

Ghaboussi, J., and Wilson, E. L., 1973, "Liquefaction
Analysis of Saturated Granular Soils," Proceedings,
Fifth World Conference on Earthquake Englneerlng,
Rome, Vol. 1, pp. 380-389.

Goto, S., 1966, "An Experimental Study of Liquefaction
of Saturated Sands," Soils and Foundations, Vol. 9,
No. 1, pp. 53-65.

Gardner, W. S., 1966, "Stress-Strain Behavior of Granu-
lar Soils in One-Dimensional Compression," Conference
Preprint 325, Structural Engineering Conference,
Miami, Florida.

Green, P. A., and Ferguson, P. A. S., 1971, "On Lique-
faction Phenomena, by Professor A. Casagrande: Re-
port of Lecture," Geotechnique, Vol. 21, No. 3, pp.
197-202.

Green, A. E., and Naghdi, P. M., 1965, "A Dynamic Theory
of Interacting Continua," International Journal of
Engineering Science, Vol. 3, pp. 231-241.

Hall, J. R., Jr., 1962, "Effect of Amplitude on Damping
and Wave Propagation in Granular Materials," Ph.D.
Dissertation, University of Florida, Gainesville,
Florida.

Hall, J. R., Jr., and Richart, F. E., Jr., 1963, "Dissi-
pation of Elastic Wave Energy in Granular Soils,"

Journal of So0il Mechanics and Foundations Divison,
ASCE, Vol. 89, No. SM6, pp. 27-56.

Hardin, B. 0., and Richart, F. E., Jr., 1963, "Elastic
Wave Velocities in Granular Soils," Journal of Soil
Mechanics and Foundations Division, ASCE, Vol. 89,
No. SMl1l, pp. 33-65.



36.

37.

38.

39.

40.

41.

42.

43,

44.

45.

46.

47.

-197-

Harr, M. E., 1962, Groundwater and Seepage, McGraw-
Hill Book Company.

Hsieh, L., and Yew, C. H., 1973, "Wave Motion in a
Fluid Saturated Porous Medium," Journal of Applied
Mechanics, ASME, Paper No. 73-APMW-16.

Ishibashi, I., and Sherif, M. A., 1974, "Soil Lique-
faction by Torsional Simple Shear Device," Journal
of the Geotechnical Engineering Division, ASCE, No.
GT8, Vol. 100, pp. 871-888.

Ishihara, K., 1968, "Propagation of Compressional Waves
in a Saturated Soil," Proc. of the International
Syvmposium of Wave Propagation and Dynamic Properties
of Earth Materials, University of New Mexico Press,
pp. 195-206.

Ishihara, K., 1970, "Approximate Forms of Wave Equa-
tions for Water-Saturated Porous Materials and Re=-
lated Dynamic Modulus," Soils and Foundations, Vol.
10, No. 4, pp. 10-38.

Ishihara, K., and Yasuda, S., 1973, "Sand Liquefaction
under Random Earthquake Loading Condition," Pro-
ceedings, Fifth World Conference on Earthquake Engi-
neering, Rome, Vol. 1, pp. 329-338.

Kishida, H., 1969, "Characteristics of Liquified Sands
During Mino-Owari, Tohnankai and Fukui Earthquakes,"
Soils and Foundations, Vol. 9, No. 1, pp. 75-91.

Kishida, H., 1970, "Characteristics of Liguefaction of
Level Sandy Ground During Tokachioki Earthquake,"
Soils and Foundations, Vol. 10, No. 2, pp. 103-111.

Ko, H. Y., and Scott, R. F., 1967, "Deformation of Sand
in Hydrostatic Compression," Journal of the Soil
Mechanics and Foundations iv’'sion, ASCE, Vol. 93,
No. SM3, pp. 137-156.

Lee, K. L., and Seed, H. B., 1967, "Cyclic Stress Con-
ditions Causing Liquefaction of Sand," Journal of
the So0il Mechanics and Foundations Division, ASCE,
Vol. 93, No. SM1l, pp. 47-70.

Lee, K. L., and Seed, H. B., 1967, "Dynamic Strength of
Anisotropically Consolidated Sand," Journal of the
So0il Mechanics and Foundations Division, ASCE, Vol.
93, No. SM5, pp. 169-190.

Martin, G. R., Finn W. D. Liam, and Seed, H. B., 1975,
"Fundamentals of Liquefaction under Cyclic Loading,"
Journal of the Geotechnical Engineering D1v1510n,
ASCE, Vol. 101, No. GT5, pp. 423-438.



48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

-198-

Ohsaki, Y., 1966, "Niigata Earthquake, 1964, Building
Damage and Soil Condition," Soils and Foundations,
Vol. 5, No. 2, pp. 14-37.

Ohsaki, Y., 1970, "Effects of Sand Compaction on Lique-
faction during the Tokachioki Earthquake," Soils and
Foundations, Vol. 10, No. 2, pp. 112-128.

Papadakis, C. N., 1973, "Soil Transients by Characteris-
tics Method," Ph.D. Dissertation, The University of
Michigan, Ann Arbor, Michigan.

Peacock, W. H., and Seed, H. B., 1968, "Sand Liquefac~-
tion Under Cyclic Loading Simple Shear Conditions,"
Journal of the Soil Mechanics and Foundations Divi-
sion, ASCE, Vol. 94, No. SM3, pp. 689-708.

Pyke, R. M., 1973, "Settlement and Liquefaction of Sands
under Multi-Directional Loading," Ph.D. Dissertation,
University of California, Berkeley, California.

Revnolds, O., 1885, "On the Dilatancy of Media Composed
of Rigid Particles in Contact," Philosophical Maga-
zine, Vol. 20.

Richart, ¥. E., Jr., Hall, J. R., Jr., and Woods, R. D.,
1970, Vibrations of Soils and Foundations, Prentice-
Hall Inc.

Richart, F. E., Jr., 1971, discussion on "Approximate
Forms of Wave Equations for Water-Saturated Porous
Materials and Related Dynamic Modulus," Soils and
Foundations, Vol. 11, No. 4, pp. 69-71.

Richart, F. E., Jr., 1975, "Some Effects of Dynamic
Soil Properties on Soil-Structure Interaction,"
Journal of the Geotechnical Engineering Division,
ASCE, Vol. 101, No. GT1l2, Proc. Paper 11764, Dec.,
pp. 1193-1240.

Roberts, J. E., and Souza, J. M. DE., 1958, "The Com-
pressibility of Sands," Proceedings, ASTM, Vol. 50,
pp. 1269-1277.

Roscoe, K. H., Schofield, A. N., and Worth, C. P., 1958,
"On the Yielding of Soils," Geotechnique, Vol. 8,
No. 22, pp. 22-53.

Sawabini, C. T., 1974, "Compressibility of Unconsolida-
- ted Arkosic 0il Sands," Society of Petroleum Engi-
neers Journal, pp. 132-138.

Scott, R. F., 1963, Principles of Soil Mechanics,
Addison-Wesley, Inc.



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

-199-

Seed, H. B., and Lee, K. L., 1966, "Liquefaction of
Saturated Sands During Cyclic Loading," Journal of
the Soil Mechanics and Foundations Division, ASCE,
No. SM6, pp. 105-134.

Seed, H. B., and Idriss, I. M., 1967, "Analysis of Soil
Liguefaction: Niigata Earthquake," Journal of the
S0il Mechanics and Foundations Division, ASCE, Vol.
93, No. SM3, pp. 83-108.

Seed, H. B., 1968, "Landslides During Earthquakes Due
to Soil Liquefaction," Journal of the Soil Mechanics
and Foundations Division, ASCE, Vol. 94, No. SM5,
pp. 1053-1122.

Seed, H. B., and Peacock, W. H., 1971, "Test Procedures
for Measuring Soil Liquefaction Characteristics,"”
Journal of Soil Mechanics and Foundations Division,
ASCE, Vol. 97, No. SM8, pp. 1099-1119.

Seed, H. B., and Idriss, M. I., 1971, "Simplified Pro-
cedure for Evaluating Soil Liquefaction Potential,"
Journal of Soil Mechanics and Foundations Division,
ASCE, Vol. 97, No. SM9, pp. 1249-1273.

Skempton, A. W., 1954, "The Pore Pressure Coefficients
A and B," Geotechnique, Vol. 4, No. 4, pp. 143-147.

Skempton, A. W., 1960, "Effective Stress in Soils, Con-
crete, and Rocks," Pore Pressure and Suction in Soils,
Conference of Institution of Civil Engineers (U.K.)
Butterworth and Company Ltd., London.

Streeter, V. L., Wylie, E. B., and Richart, F. E., Jr.,
1973, "Soil Motion Computations by Characteristics
Method," Journal of the Geotechnical Engineering
Division, ASCE, Vol. 100, No. GT3, pp. 247-263.

Wylie, E. B., and Streeter, V. I., 1976, "Characteris-
tic Method for Liquefaction of Soils," Second In-
ternational Conference on Numerical Methods in Geo-
mechanics, June 20-25, Virginia Polytechnic Insti-
tute, Blacksburg, Virginia 24061.

Terzaghi, K., 1925, "Principle of Soil Mechanics," Engi-
neering News Record.

Terzaghi, K., 1943, Theoretical Soil Mechanics, John
Wiley and Sons, Inc.

Truesdell, C., and Toupin, R., 1960, "Principles of
Classical Mechanics and Field Theory," Handbuch der
Physik, Vol. III/1l, Berlin-Cottingern-Heidelbergq,
Springer-Verlag.



73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

-200-

Verruijt, A., 1969, "Elastic Storage of Aquifers," Flow
Through Porous Media, Edited by R. J. M. De Wiest,
Academic Press.

Whitman, R. V., 1971, "Resistance of Soil to Liquefac-
tion," Soils and Foundations, Vol. 11, No. 4, pp.
59-68.

Yoshimi, Y., 1967, "An Experimental Study of Liquefac-
tion of Saturated Sands," Soils and Foundations,
Vol. 9, No. 1, pp. 53-65.

Yoshimi, Y., and Oh-oka, H., 1975, "Influence of Degree
of Shear Stress Reversal on the Ligquefaction Poten-~
tial of Saturated Sand," Soils and Foundations, Vol.
15, No. 3, pp. 27-40.

Youd, T. L., 1973, "Liquefaction, Flow, and Associated
Ground Failure," Geological Survey Circular 688,
Geological Survey, United States Department of the
Interior.

Youd, T. L., 1972, "Compaction of Sands by Repeated
Shear Straining," Journal of the Soil Mechanics and
Foundations Division, ASCE, Vol. 98, No. SM7, pp.
709-725.

Zwikker, C., and Kosten, C. W., 1949, "Sound Absorbing
Materials," Elsevier Publishing Co., Inc. New York.

Peck, R. B., Hanson, W. E., and Thornborn, T. H., 1953,
Foundation Engineering, John Wiley and Sons, New York.

Fry, Z. B., 1963, "Development and Evaluation of Soil
Bearing Capacity, Foundations of Structures," Water-
way Experiment Station, Tech. Rep. No. 3-632, Rep.
No. 1, July.

Heller, L. W., 1971, "The Partical Motion Field Genera-
ted by the Torsional Vibration of a Circular Footing
on Sand," Ph.D. Dissertation, The University of Fla.

Al-Hussaini, M. M., 1973, "Influence of Relative Density
on the Strength and Deformation of Sand under Plane
Strain Conditions," ASTM Special Technical Publica-
tion 523, pP- 332-347,

Streeter, V. L., Wylie, E. B., and Richart, F. E. Jr;,
1974, CHARSOIL, available through NISEE, University
of California, Berkeley, California 94720.

Wylie, E. B., Streeter, V. L., 1976, "One-Dimensional
Soil Transients by Characteristics," Second Interna-
tional Conference on Numerical Methods in Geomechan-
ics, June 20-25, Virginia Polytechnic Institute,
Blacksburg, Virginia 24061.



-201-

86. Kawasumi,H., Editor-in-Chief, 1968, General Report on
the Niigata Earthquake of 1964, Tokyo Electrical
Engineering College Press, Tokyo, Japan.

87. Becker, R. B., 1975, "Application of Mixture Theory
to Soil Mechanics," Ph.D. Dissertation, The Univer-
sity of Michigan, Ann Arbor, Michigan.






