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CHAPTER 1 

INTRODUCTION 

When a saturated loose sand is subjected to earthquake 

vibrations, the pore water pressure increases. One cause 

of this increase is the compaction of the soil by repeated 

shearing. The other cause is the dynamic interaction be-

tween the pore water and the soil skeleton due to the up-

down motion of -the bedrock. The increase of the pore water 

pressure reduces the effective stress in the soil skeleton 

and hence the shearing strength of the soil is reduced. 

When the effective stress reduces to zero, the soil has no 

resistance to shearing and is said to be in a liquid state. 

The term "liquefaction" refers to the process of changing a 

saturated granular soil from a solid state to a liquid state 

as a consequence of increased pore water pressure(77). 

Hence liquefaction is regarded as a proce3S instead of a 

state. Liquefaction is said to be completed at a location 

when the soil at that location reaches the liquid state. 

Liquefaction may cause soils Lo lose their shearing 

strength or to undergo excessive lateral displacements, hence 

liquefaction is hazardous to earth or earth-supported struc-

tures. Large scale landslides induced by liquefaction may 

even result in disasters. Many accounts of· distruction have 

. . (2 19 48 49 63) been recorded ln the llterature ' , , , 0 These facts 

necessitate the development of some means to evaluate the 

susceptibility of saturated soil deposits to liquefaction. 

In the past decade, an undrained cyclic load triaxial 
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or a simple shear test, recommended by Seed, has been used 

extensively to study the liquefaction potential of saturated 

sands(61,62,64). In these tests the soil sample is first 

consolidated to simulate the static stress condition for a 

soil element at a certain depth inside a level deposit. At 

this depth, the time history of the shearing stress induced 

by earthquake ground motion is converted into an equivalent 

number of uniform stress cycles. This simulated earthquake 

loading is then applied to a soil sample around its static 

equilibrium stress condition to see if it can be liquefied. 

By repeating the same procedure for various depths the li­

quefaction potential for the whole deposit can be evaluated. 

Although the repeated shearing by an earthquake is 

very rapid, the soil is not truly in an undrained state. 

Due to the large bulk modulus of water, a small gradient of 

the seepage velocity may influence the effective stress to 

a considerable extent. This is especially true when stra­

tification in permeability exists. 

In the triaxial or simple shear test procedure, the 

time history of the shearing stress induced by earthquake 

ground motion is obtained without considering the shearing 

strength reduction by the rise in pore water pressure. 

Therefore, the interaction between the shearing and the 

transient effective stress may not be taken into account. 

It can be said that these test procedures are discrete ap­

proaches in that the liquefaction potential is evaluated 

individually at various depths. The influence of the 
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the bulk compressibility and the constrained compressibility 

of the soil. 

3. An equation that describes the relationship between 

time rate of change of the total vertical stress in the soil, 

the time rate of change of the confined compressional strain 

in the skeleton, the time rate of pore water pressure change, 

and the time rate of change of the skeleton's constrained 

compressibility. 

4. An equation describing the pore water pressure 

variation as a result of pore volume change. 

5. The equation of motion of the saturated soil. 

6. The equation of motion of the pore water. 

7. Reiations describing the dependence of the small 

motion shear modulus and the shear strength upon the effec­

tive stress. 

The first element describes the propagation of plane 

shear waves in the deposit. The second element relates the 

constrained compressibility to the secant shear modulus of 

the skeleton. Elements 3 to 6 constitute a submodel to de­

scribe pressure wave propagation in a saturated deposit in 

the direction perpendicular to the bedrock. Element 7 pro­

vides a means to update the shearing properties of the soil 

according to the transient effective stress throughout the 

deposit. 

The deposit is divided into a number of equal distance 

intervals. Within each interval the soil properties are con­

sidered to be uniform. Their values are determined by 
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adjacent soil upon the liquefaction potential at a particu­

lar depth is only partially introduced through the determi­

nation of the time history of the shearing stress at that 

depth. 

A continuous model for liquefaction in level or nearly 

horizontal deposits that provides a mutual interaction bet­

ween shearing deformation and transient pore water pressure 

will be helpful to increase the understanding of liquefac­

tion and liquefaction induced landslide phenomenon. The 

concept of compaction due to repeated shearing(69) makes 

such a model possible. 

The liquefaction model, developed in this study, is 

composed of the following basic elements: 

1. A submodel that describes the propagation of plane 

shear waves in the strain-softening range of a soil when 

subjected to repeated shearing. A modified Ramberg-Osgood 

shearing stress-shearing strain relationsnip is used in this 

submodel. The small motion shear modulus, i.e., the shear 

modulus at low shearing strain amplit1lde, and the shearing 

strength of the soil are used in the modified Ramberg-Osgood 

relationship. These two quantities are made to depend upon 

the effective stress in the soil. The nonlinearity and the 

damping characteristics of the soil are further described by 

three more parameters. These parameters are kept constant 

during shearing. 

2. A relationship between the secant shear modulus, 
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relations designated as element 7 above. When shearing 

takes place, the shearing stress, shearing strain, and the 

reduced shear modulus at the end of a time step are compu­

ted by the shear wave submodel. The time rate of change 

of the secant shear modulus and the time varying constrained 

compressibility of the skeleton over this time step are 

obtained. These quantites are used via the relationship 

designated as element 2 above to calculate the transient 

effective stress, pore water pressure, and the velocities 

of the skeleton and the pore water. Because the pressure 

wave velocity is much higher than the shear wave velocity, 

these computations are performed for several smaller time 

steps, determined by the first pressure wave speed and the 

length of the interval. This is necessary in order for the 

time in the pressure wave submodel to again be compatible 

with the time in the shear wave submodel. When this is 

done the small motion shear modulus and tile shear strength 

used in the modified Ramberg-Osgood shearing stress-strain 

relationship are adjusted according to the current effective 

stress. This completes one cycle of the computation. The 

next cycle of computation starts out with the shear wave 

submodel and updated shearing properties. 

When shearing strain reversal takes place in a soil 

subjected to repeated shearing, there is a sudden increase 

in the shearing rigidity of the soil. Necessarily, the con­

strained compressibility of the skeleton decreases instan~ 

taneously. Immediately after the shearing strain reversal, 
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these changes in soil properties are made. Then the com­

putation proceeds according to the sequence described in 

the previous paragraph until the next shearing strain re­

versal takes place. The seven basic elements and the cou­

pling described above constitute the model for liquefaction 

in level or slightly inclined deposits. Detailed develop­

ment is presented in this report. 

The modeling of plane shear wave propagation in soil 

deposits is reviewed in Chapter 3. The stress-strain re­

lationship of saturated soil, a two phase medium, is for­

mulated in Chapter 4. The governing equations for the 

propagation of pressure waves are formulated in Chapter 5. 

An analytical solution for steady oscillatory motions of 

linear elastic deposits is developed in the same chapter. 

In Chapter 6, a numerical procedure, based on finite diff­

erence and the method of characteristics, is developed. 

Its accuracy is then checked by employing the analytical 

solution obtained in Chapter 5. The numerical procedure 

is used in Chapter 7 to study the motion generated by the 

weakening of soil skeleton. Chapter 4,5,6 and 7 together 

present a model for the propagation of pressure waves. 

The propagation of shear waves and pressure waves are coup­

led together in Chapter 8 to form the model of liquefaction. 

The features of the model are demonstrated by examples. 

The applicability of the model is demonstrated in Chapter 9 

by case studies related to the Niigata earthquake of June, 

1964. 



CHAPTER 2 

LITERATURE REVIEW 

Early in 1885, Reynolds (53) showed experimentally that 

sand dilates during shear deformation. Many years later, 

Casagrande (16) demonstrated the dependence of the soil vo-

lume change on the shear deformation and established the 

fact that when alternating loads are applied to a saturated 

cohesionless soil under undrained condition, the pore pres-

sure may rise to such a high level that the soil liquefies. 

Florin and Ivanov(23) subjected deposits of saturated sand 

twenty centimeters thick to impulsive loadings, and found 

that loose saturated sand was readily liquefied over the 

entire depth. For the case of cyclic loading, liquefaction 

proceeded in layers. The upper layer, with comparatively 

low confining pressure, liquefied first. Deeper layers 

liquefied upon further cyclic shearing. 1'he zone of lique-

fied soil propagated downwards until the whole deposit liq-

uefied. The process of consolidation then took place and 

moved upwards toward the surface. The initial density and 

shearing strain in the soil on these tests were presumably 

relative uniform. However, this trend is correct for non­

uniform cases (61) . 

The disastrous consequences of some recent earthquake 

induced liquefactions, especially the one caused by the 

Niigata earthquake of 1964, have drawn the attention of many 

soil engineers. (45 46 61) . Seed and Lee " conducted a serles 

-7-
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of repeated loading triaxial tests on isotropically conso~ 

lidated undrained samples. Since then it has been recog-

nized that the susceptibility of a sand to liquefaction is 

determined by the combined effect of void ratio, confining 

pressure, cyclic strain amplitude, and the number of stress 

applications. High void ratio, low confining pressure and 

large shear strain amplitude are apt to cause liquefaction. 

Knowing the variation in density with depth and dynamic 

shearing strain distribution in a deposit, the depth where 

liquefaction will first occur due to ground vibration can 

be estimated. 

While the triaxial test provides a reasonable approxi-

mation to the cyclic stresses in the field, it does not per-

mit a full simulation of the field stress conditions. For 

many deposits, the soils are subjected to simple shear. By 

using a simple shear box, Peacock and seed(5l) conducted a 

series of cyclic loading simple shear tests on saturated 

sand under undrained conditions. The resistance to lique-

faction under simple shear conditions was found to be much 

less than those under triaxial test conditions. The techni-

que of the simple shear box test was later improved upon by 

. . k' d B b ( 2 2 ) I dd . t . h . Flnn, P1C erlng an rans y . n a 1 lon to t e quall-

tatively similar results to those of Seed's, Finn et ale in-

dicated the importance of the ratio of the peak cyclic shear 

stress to the mean initial effective normal stress. 

The influence of the initial effective normal stress on 

liquefaction was also investigated by Seed and Peacock(64) 
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using both simple shear tests and triaxial tests. They 

found that in the simple shear tests, the stress required 

to cause liquefaction increased with the coefficient of 

earth pressure at rest. In the same study, a correlation 

between the results obtained by triaxial tests and the sim­

ple shear tests was established. 

A torsional simple shear device which is able to in­

troduce uniform shear stress and strain throughout the sam­

ple has been developed by Ishibashi and Sherif(38). It was 

used to examine the effect of the initial coefficient of 

earth pressure at rest on liquefaction. Their test results 

indicated that for cyclic loading, if the ratio of maximum 

change in shear stress to the octahedral normal stress is 

plotted against the number of stress cycles of liquefaction, 

the initial value of the coefficient of earth pressure at 

rest does not influence the liquefaction potential. The 

authors attributed the difference between their results and 

those obtained by Seed and Peacock(64) to the fact that the 

friction stresses along the sides of the simple shear box 

used by Seed and Peacock increase with increasing horizon­

tal shear stresses. Martin et al. (47) examined the mecha-

nism of progressive pore water pressure increase during un­

drained cyclic simple shear tests on saturated sands. The 

volume decrease of the saturated sand was visualized as 

caused partly by slippage between grain contacts, an irrever-

sible process. They assumed that the volume decrease by 

slippage in an undrained shearing cycle is the same as that 
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induced in a drained cycle. By considering the pore pres-

sure increase by the combined effect of volume decrease due 

to slippage, and volume increase due to unloading of the 

soil skeleton, a relation between volume reduction during 

drained cyclic tests and pore water pressure increase in 

undrained tests was developed. This relation enables one 

to compute the transient pore water pressure during cyclic 

loading by use of parameters based on effective stress in 

the soil. This interesting study has the potential of pro-

viding a means for coupling pore water pressure under un-

drained conditions with the dynamic analysis of a saturated 

deposit. In the same study, the authors demonstrated the 

inadequacy of converting a random shearing stress history 

into an equivalent number of uniform stress cycles for the 

purpose of computing the transient pore water pressure. 

. (31) (17) 
Followlng Casagrande ,Castro used the term 

"liquefaction" for the phenomenon in which loose sand loses 

its shear strength to such an extent that it flows under a 

driving force, such as gravitational force in a sloping de-

posit. He used the term "cyclic mobility" to designate the 

phenomenon of shearing strain and pore water pressure in­

crease in Seed's consolidated undrained triaxial tests (61) . 

Castro conducted such tests on isotropically consolidated 

specimens of dense Ottawa sand and observed the occurence 

of pore water redistribution. He then concluded that the 

recorded pore pressures and axial strains during cyclic 

loading may depend on the development of loosened sand that 
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forms in a small zone on top of the specimen" hence the 

ability of a dense sand to sustain cyclic loading may be 

underestimated. The fact that substantial re-distribution 

of pore water occurred suggests that under cyclic shearing, 

the soil may not be in an undrained condition, i.e., pore 

water may move relative to the soil skeleton. 

Based on his previous experimental results, Seed stu­

died the landslides caused by liquefaction during or after 

earthquakes (63) . The importance of detailed information 

about the soil properties was emphasized, and a qualitative 

discussion on the mechanism of landslides was given. 

Based on their previous work(62), Seed and Idriss(64) 

summarized all the factors known to influence liquefaction 

potential and developed a general method of evaluating this 

potential. Some comparison of liquefaction potential eva­

luations with field behavior of soil were also given. 

pyke(52) studied the settlement of a layer of dry soil 

placed on a shaking table capable of motion in three direc­

tions. The results were compared with the settlement or 

volume change in simple shear test and cyclic triaxial tests. 

It was shown that the settlement of dry sand under the com­

bined shaking of two horizontal acceleration components are 

approximately equal to the sum of the settlements caused by 

the components separately. Vertical accelerations further 

increase the settlement. Liquefaction characteristics of 

sands in laboratory tests were evaluated based on the set­

tlement data and a theory suggested by Martin(47) 
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that accounts for the increase ln pore water pressure at 

constant volume. The effect of shaking in multiple hori­

zontal directions on the shearing stress causing liquefac­

tion in a given number of shearing cycles is to reduce the 

stress ratio (maximum shearing stress divided by initial 

effective vertical stress) by 20 percent approximately. 

Hence, the effect of the second horizontal component on li-

que faction is not as great as on the settlement of dry sand. 

The influence of the vertical acceleration on liquefaction 

was assumed to be small. No quantitative results however 

were provided to justify this assumption. 

Alba et al. (1) studied the behavior of a range of sa­

turated sands subjected to cyclic loading under undrained 

conditions by a very large simple shear device. The shear 

stresses were generated by the inertia of the specimen and 

a superimposed ballast, as the specimen base was shaken by 

an actuator. This large simple shear device was designed to 

obtain a free field zone within the specimen, where the in­

fluence of the boundaries would be minimum. Typical pore 

water pressure transducer records showed that a cyclic pres­

sure variation in addition to that caused by the cyclic 

stress application was registered at those transducers off 

the centerline of the specimen. At the centerline of the 

specimen, this cyclic pore pressure variation was absent. 

The average specimen shear strains were calculated from the 

relative displacement between the ballast, the base of the 

specimen, and the sample height. With regard to the pre-



-13-

liquefaction strains, an increase in time rate of strain 

change was observed when the dynamically induced pore pres­

sure reached a value of about 50 percent of the initial 

vertical effective stress. Large shear strains that de­

veloped after liquefaction was completed were controlled 

by the dilatant tendency and the relative density of the 

sand. All test results were plotted in the form of stress 

ratio (average dynamic shear stress divided by initial ver­

tical effective stress) versus relative density with number 

of stress cycles to liquefaction as parameter. A favorable 

comparison between test results and field data was obtained. 

Yoshimi and Oh-oka(76) studied the influence of the 

degree of shear stress reversal on the liquefaction poten­

tial of saturated sand. A ring torsion apparatus was fas­

tened to a rotating table. The vertical stress on the spe­

cimen was applied by weights. The dynamic shear stress was 

applied by the inertial torque of the weights when the 

table was set in torsional vibration. Partially reversed 

and unreversed tests were performed by imposing shear stress 

pulses on the initial static sheaL stress. They found that 

for partially reversed and unreversed shear tests the shear 

strain tends to increase in one direction only. For the 

unreversed test no abrupt change in shear stress is ob­

served even when the pore water pressure reaches a fairly 

high level. Prior to initial liquefaction, the pore water 

pressure increment per stress cycle was found to be propor­

tional to the fifth power of the dynamic shear stress. The 
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proportionality constant depends on the ratio of initial 

shear stress to initial vertical effective stress. 

Due to the difficulties in describing the dynamic soil 

properties, the analytical and numerical approach to lique­

faction lag behind the experimental investigations men­

tioned above. 

One of the earliest investigations devoted to the phe-

nomena of the deformation of saturated soil was by Terzaghi 

(70) The soil was assumed to be elastic, and the voids 

were saturated with water. The settlement of a laterally 

constrained column of soil under a constant load was in-

vestigated. A similar consolidation problem in three di­

mensions was then studied by Biot(5) from the view point of 

mathematical physics. In addition to the assumptions that 

the soil is linearly elastic, homogeneous and isotropic and 

the strain is small, the existence of a strain energy po­

tential, or the reversibility of soil upon volumetric de­

formation, was introduced. Apart from the porosity, the 

number of physical constants necessary to fix the proper­

ties of a saturated elastic soil under small strain was 

shown to be four. The coupling of stresses and strains be­

tween the water and the soil skeleton was clearly demon­

strated. Biot(6) extended his previous work(5) to the 

general case of anisotropic material. 

After establishing the theory of the deformation of a 

porous elastic solid containing a compressible fluid, Biot 

and Willis(8) described the experimental procedures required 
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to obtain the jacketed compressibility, the unjacketed com­

pressibility, and the coefficient of fluid content. The 

latter is a measure of the fluid volume entering the pores 

of a porous sample during an unjacketed compressibility 

test. These three physical constants together with the 

shear modulus and the porosity of the medium provide a set 

of relations so that the four elastic coefficients in the 

theory of deformation can be determined uniquely_ The phy­

sical interpretations of these four coefficients in various 

forms was discussed. A discussion of extending the theory 

to non-linear media was also included. Fatt(2l) used the 

Biot and Willis' procedure to determine the four elastic 

coefficients for a sandstone. 

In 1956, Biot(7) published a theory for the propagation 

of stress waves in a porous elastic solid containing a com-

pressible viscous fluid. It was demonstrated that there is 

one rotational wave and two dilatational waves, denoted as 

the wave of the first kind and the wave of the second kind. 

All three waves are transmitted by cOupled motions of water 

and skeleton. For the shear wave, the rotation of the solid 

is in phase with that of the water. Therefore, a rotation 

of the solid causes a partial rotational entrainment of the 

fluid through an inertia coupling. This coupling influences 

the propagation velocity of the rotational wave. For the 

dilatational wave of the first kind the inertia coupling 

between the water and the solid are in phase with each other. 

While for the wave of the second kind they are out of phase. 
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The velocity of propagation of the first wave is consider-

ably higher than that of the second wave. The second wave 

is highly attenuated and the propagation is more like the 

diffusion process of heat conduction, than that of true 

waves. Concerning the dissipation of energy due to the 

viscosity of the fluid, the flow of fluid relative to the 

solid through the pores was assumed as a Poiseuille flow. 

The concept of a dissipation function was used and related 

to the permeability of the soil. The existence of a wave 

where there is no relative motion between water and solid 

was conjectured, and a numerical study on the attenuation 

of all three waves as functions of frequency was presented. 

Although this work only concerns the steady oscillatory 

wave propagation in an infinite medium, it is the most im-

portant contribution by Biot on this subject. 

In 1962, Biot(9) reformulated his theory of the linear 

mechanics of fluid-saturated porous media in a more syste-

matic manner and the scope was somewhat more general. The 

generalized Darcy's law was described in detail and the 

acoustic wave propagation theory was extended to anisotro-

pic media. Viscoelasticity and energy dissipation inside 

the solid material were discussed. The term viscoelasticity 

used by Biot encompassed a vast range of possible dissipa-

tion processes that could be described by arrangements of 

, 1 bl" ,(10) dashpots and sprlngs. In a ater pu lcatlon, Blot 

presented a more refined analysis of the relative motion of 

the fluid in the pores by introducing the concept of a 
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viscodynamic operator. Unlike the generalized Darcy's law, 

the concept of a viscodynamic operator included the dynamic 

features of the fluid motion in the pores. Various dissi­

pative models which involved intergranular effects, small 

fluid-filled cracks, relaxation effects due to fluid bulk 

viscosity were discussed and all these models were trans­

lated into specific viscodynamic operators. To the know­

ledge of the writer, this work is the latest contribution 

by Biot on the subject of linear acoustic wave propagation 

in porous dissipative media under zero initial stress con­

ditions. 

The influence of initial stress on elastic waves in a 

continuum was pointed out in 1940 and later emphasized by 

Biot(4,12). A theory of deformation of a saturated porous 

solid under initial stress was presented by Biot(ll) in 

1963. This theory handles the deformation of a non-linear 

material by a sequence of incremental deformations. By 

adding the inertia terms to the equilibrium equations in 

the theory, the acoustic wave propagatlon in a saturated 

porous medium under initial stress can be handled. In 1972, 

Biot further extended his theory to the finite deformation 

of porous solids(13). 

Other work devoted to the stress-strain relationship, 

energy dissipation or stress wave propagation of a saturated 

porous media are summarized in the following few paragraphs. 

By assuming the porosity to be constant when both the 

overall hydrostatic stress and the pore pressure in an 
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isotropic medium are varied by a same amount, and by using 

the reciprocal theorem of classical elasticity, Geerstma(24) 

concluded that only three elastic constants are required 

for describing pore and rock bulk volume variations if the 

porosity is explicitly introduced into the theory. A com-

pressibility apparatus was developed which is capable of 

determining the four elastic coefficients in the Biot's 

theory. A very similar device was later used by Sawabini 

(59) to determine the compressibility of unconsolidated oil 

sands. 

Brandt (14) studied the influence of pressure, porosity 

and liquid saturation on the speed of sound in a porous 

granular medium. The stress-strain relationship was ob-

tained by using the Hertz theory for the deformation of 

elastic spheres in contact. The spheres were assumed to be 

deformable at constant volume. Since the grain shape of 

sand is not close to a sphere and the number of contacts 

among grains is hard to estimate, this theory based on 

spheres in contact may not apply to soil. 

Hardin (54) assumed that the shear modulus varied with 

the one-third power of the effective confining stress and 

studied the influence of the effective confining stress on 

the three wave speeds in the Biot's theory. The same theory 

had also been used by him to study the effects of changes 

in soil parameters on damping in the saturated soil. 

Hall and Richart(34) conducted an experimental study 

on internal damping of elastic wave energy in granular soils. 
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Four different materials were used in this investigation 

and air, water or dilute glycerin were used as a pore fluid. 

They found that for Ottawa sand, the effect of pore fluid 

on the internal energy damping depends on the amplitude of 

vibration. Over the range of amplitudes measured, the water 

increased the logarithmic decrement by a factor of 1.5 to 

4 times that for the dry condition. They observed little 

difference between the cases where water and dilute glycerin 

were used as pore fluid. 

Hardin and Richart(35) investigated the influence of 

void ratio and the effective confining pressure on the 

second pressure wave velocity and the shear wave velocity 

for round and angular grained sands. They found that both 

wave velocities for sand varied with approximately 1/4 power 

of the confining pressure. For a given confining pressure, 

it was found that the void ratio was the rrost important 

variable. The effects of relative density, grain size and 

gradation entered only through their effects on the void 

ratio. This work also contained valu2ble data on the ex-

perimentally determined second pressure-wave velocity for 

different sands, which may be used to estimate the bulk com­

pressibility of the soil under drained conditions; a material 

property important to the stress wave propagation phenomena. 

Ishihara (39) related the four elastic coefficients in 

the Biot's theory to the compressibilities of the soil bulk, 

the solid material, and the water. Following Biot's proce­

dures, he derived the frequency equation and studied the 
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characteristics of the waves. He concluded that the pres­

sure wave of the first kind travels through a saturated 

medium without causing any change in pore volume, but the 

pressure wave of the second kind can progress only when 

change in pore volume takes place. He also concluded that 

the characteristic frequency of soils is much higher than 

the frequencies of earthquake vibrations. It is the long 

wave length associated with the relatively low frequency 

of shaking that makes the soil deform under undrained con­

dition. This last conclusion is different from the common 

intutive notion that the undrained condition is caused by 

very rapid straining. 

Based upon the compressibilities of water, solid ma­

terial, and the skeketon, Ishihara (40) calculated the ela­

stic coefficients in Biot's theory. By examing the magni­

tudes of these coefficients, the equations that govern the 

motions of the soil and the water were simplified. He then 

demonstrated that the simplified equations were of the same 

form as those developed from elastic theory, and the theory 

of elasticity could be used to treat "poroelasticity". He 

then related Young's modulus and Poisson's ratio in the 

equivalent theory to the material properties of saturated 

porous medium. Based on the simplified equations he con­

cluded that for earthquakes or artificial vibrations, the 

soil is loaded under undrained condition. However, the 

experimental results by Hardin and Richart (35) , and by 

Hall(34), indicated that the apparent mass originating from 
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the relative motion between the soil skeleton and the water 

is about 30 to 40 percent of the water mass per unit volume 

of the soil. It should be noted that these two works by 

Ishihara only concern wave motions in soils without the 

presence of boundaries. 

Following the same procedure as Biot and Ishihara, Ba­

zant and Krizek(3) expressed the three elastic constants P, 

Q, and R in Biot's paper in terms of compressibilities of 

the soil skeleton. Compressibility of solid particles was 

then demonstrated to be unimportant, and can be neglected 

for practical problems. An inelastic incremental skeletal 

strain was incorporated in the stress-strain relationship 

to describe the nonlinear inelastic behavior of soils. A 

simple proportionality between the incremental non-elastic 

skeletal strain and the corresponding pore water pressure 

rise under undrained conditions was established. The pro­

portional constant was called the densification compliance. 

Its value was shown to be close to the bulk compressibility 

of the soil skeleton at the stress lev3l under consideration. 

Richart(55) found that based on Ishihara's simplified 

equations and for low frequency wave propagations, the first 

pressure-wave velocity is within 1 to 2 percent of the value 

found from the "Wood Equation" for wave velocity of a mix­

ture of solid particles in water. Therefore, it seems that 

the stiffness of the soil skeleton is overshadowed by the 

presence of the pore water. The question of small amounts 

of air in the pore water upon the wave motion was also 
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raised. 

Ghaboussi (25), Ghaboussi and Wilson(26,27) developed a 

variational principle by using Biot's theory. This princi­

ple incorporated with the finite element method was used to 

evaluate the pore water pressure and force on soil skeleton 

in an earthdam-reservoir system. Presently, they have in­

cluded non-linear material properties in the model in order 

to evaluate the liquefaction potential (28) . 

Streeter, Wylie and Richart(68) used the method of 

characteristics to evaluate the liquefaction potential in 

a level deposit and in an earth dam. Although the compres­

sional stress-strain in soil skeleton was not considered, 

the importance of the change in porosity upon liquefaction 

was indicated. Richart(56) further demonstrated in his 

Terzaghi lecture that the Ramberg-Osgood shearing stress­

strain relationship used in the method of characteristics 

is realistic. 

By using the Biot theory (7) , Papadakis (50) studied the 

plane pressure wave propagation in a horizontal saturated 

deposit composed of elastic soil. The motion was caused by 

the vertical movement of the underlying bedrock. He ob­

tained an analytical solution for the steady oscillatory 

motion of the deposit. Case studies based on this solution 

lead to the conclusion that "for soils having a very large 

permeability value, the solid and fluid constituents tend 

to move together". Since the relative motion between solid 

and fluid should be larger when the soil is more permeable, 
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the validity of the analytical solution is doubtful. In 

the same study, Papadakis neglected the apparent mass terms 

in the equation of motion for the solid and for the water 

and hence was able to transform the four governing equations 

into two pairs of characteristic equations. The motion of 

saturated deposits subjected to random normal bedrock motions 

were studied numerically. In his discussion on the pressure 

wave propagation in relation to liquefaction, he suggested 

the use of a Ramberg-Osgood type of shearing stress-shearing 

strain relationship. 

The modern theory of mixture was originated by Trues­

dell and Toupin (72) and later developed by Green and Naghdi 

(32) The medium is visualized as if every point in space 

were occupied by one partical of each constituent of the 

mixture. According to Ghaboussi(25) , this theory is equi­

valent to Biot's theory when the deformations are infinitely 

small. 

Becker(S7) modified the theory of Green and Naghdi (32). 

She then used the modified theory to study the behavior of 

saturated sands in small strain range. Through a nonlinear 

constitutive equation, normal stress variations due to shear 

loads was included. In this theory the soil was assumed to 

be elastic and no compaction or settlement was considered. 

By assuming the fluid to be incompressible, Hsieh and 

Yew(37) employed the concept of the mixture theory to study 

wave propagation in saturated porous media. The existence 

of two pressure waves and a shear wave was demonstrated and 

a numerical study on the frequency equation was given. 



CHAPTER 3 

SHEAR WAVE TRANSMISSION IN SATURATED SOIL DEPOSITS 

The response of dry soil deposits subjected to ground 

shaking has been studied by the method of characteristics, 

incorporated with the Ramberg-Osgood shearing stress-strain 

relationship. (68) The response of saturated soil deposits 

is different from that of dry deposits in that the effec-

tive stress depends on the shearing strain history. How-

ever, since the pore water cannot sustain shearing stress 

and since there is no horizontal relative motion between 

the pore water and the soil skeleton, the method of charac-

teristics for dry deposits can be applied to the shearing 

of saturated deposits. 

The method of characteristics for shear wave trans-

mission in soil deposits is reviewed in this chapter. This 

constitutes the shear wave submodel, which is a component 

of the model for liquefaction. 

3-1. Shearing stress-shearing strain relationship 

The non-linear shearing stress-strain relationship for 

soil in the strain softening range can be described by the 

Ramberg-Osgood relationship defined as follows 

for initial loading, 

R-l 
Y = T (1 + a I _T_ I ) 

GO ClTm 

for unloading and reloading, 

y - Y 1 = 
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T - T 
1 

R-l 

) . 

(3-1) 

(3-2) 
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where GO is a small motion shear modulus, y is shearing 

strain, T denotes shearing stress, Trn is shearing strength, 

Tl and Yl represent the coordinate of the mo~t recent strain 

reversal point on the stress-strain plot. R, a, and Cl are 

parameters and their values are constant for a given soil. 

The derivative of T with respect to y, obtained from 

Equation (3-1) or Equation (3-2) gives the tangential shear 

modulus at a given stress level. Letting G be the tangen-

tial shear modulus, one can write 

In = G lJ.y 

in which IJ. denotes an incremental change in the quantity 

under consideration. Dividing both sides by IJ.t, a time in-

crement, one has 

~ G IJ.t . 

Since the time rate of change in shearing strain is 

identical with the rate of change of the x-component of the 

soil speed in the z direction, Figure 3-1, one can write 

(3-3 ) 

in which U is the velocity of the soil skeleton in the x 

direction. 

3-2. Equation of motion in x direction for saturated soils 

Consider Figure 3-1, the equation of motion can be 
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written as 

;h au 
- p -- - pg sin e = 0 az at (3-4) 

in which g is the acceleration of gravitation, e is the 

slope of the deposit, and p is the mass density of the sa-

turated soil. Knowing the mass density of water p , the 
w 

mass density of solid particles Ps' and the porosity n, the 

soil mass density p can be calculated as 

p = n p + (1 - n) p . w s (3-5) 

3-3. The characteristic equations 

Equation (3-3) and Equation (3-4) form a system of hy-

perbolic equations and hence can be transformed into the 

characteristics form that facilitates numerical solutions. 

Letting A be an unknown multiplier, one can combine 

Equation (3-3) and Equation (3-4) linearly as follows 

aT au . e + "\ (l!. - G.£Q) 0 az - p at - pg Sln 1\ at az = , 

or 

A (l!. + 1:. .£.!:.) - p (au + AG au) - pg sin e = o. at A az at p az (3-6) 

If one sets 

dz 1 AG 
dt = I = p (3-7) 

then all the derivatives in Equation (3-6) are carried out 

in a common direction designated by ~~ in the z-t plane. 
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The values of A can be obtained from Equation (3-7) as 

A = +{g - G 

whence 

dz +{f + V 
dt = = - p s 

in which V denotes the shear wave speed. s 

(3-8) 

+ The two characteristic equations, designated as C and 

C equations, are 

1 dT dU sin 8 = 0 
~PG dt - dt - g 

C 

dz 
dt = 

1 dT 

V s 

~PG dt 
+ 

dz = -V 
dt 

dU + sin e 0 g = dt 

s 

3-4. Finite difference approximation 

(3-9) 

(3-10) 

The numerical solution of the C+ and C characteristic 

equations is visualized on the z-t diagram shown in Figure 

3-2. The deposit is divided into a number of equal distance 

intervals of length 6z. The material properties in each 

reach are considered to be uniform. A time step common to 

all intervals is used. The point R is located in such a way 

that the segment RP represents the C+ characteristic direc-

tion in interval AC at time t. Similarly, point S is 10-

cated such that the segment SP represents the C- characteristic 
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direction in interval CB at the same instant. Conditions at 

point Rand S must be evaluated from known conditions at 

points A, Band C before the unknowns at point P can be 

found. Linear interpolation is used for this purpose. At 

R 

lit U
A

) , UR = Uc - liz VSR(UC - (3-11) 

lit 
Vs (L

C LA) , LR = LC - liz -
R 

(3-12) 

and at S 

Us = Uc - lit V (U
C - UB) , liz Ss 

(3-13 ) 

LS = LC - lit V (L C - L B) , liz Ss 
(3-14) 

where Vs and Vs are the shear wave speeds in interval AC 
R S 

and CB respectively. lit is a specified time step. lit and 

liz are chosen in such a manner that the Courant condition 

for stability is satisfied. 

The C+ characteristic equation can be approximated as 

Up - UR - - g sin eo = 0, 
lit 

and the C characteristic equation is approximated as 

1 
_ (c;.) S 
V PG 

L - L U - U 
P S + P S + g sin e = o. 

lit lit 

(3-15) 

(3-16) 

At every interior point, the two unknowns Land U can be 
p p 

solved uniquely from Equation (3-15) and Equation (3-16). 
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In the context of liquefaction, two types of surface 

boundary conditions are of importance. The first case is 

where the water table is at the ground surface. In this 

case the shearing stress at the surface of the deposit is 

zero. The surface horizontal velocity can be solved readily 

from the C characteristic equation rising from the interior 

of the deposit, Figure 3-2a. The boundary condition of the 

second type is where the water table is below the ground 

surface. The upper boundary of the deposit is considered 

at the water table instead of at the ground surface. The 

layer of dry soil above the water table is approximated by 

a rigid slab, having the same amount of mass as that of the 

unsaturated soil. The equation of motion for the slab in 

the x direction provides one relationship between T and U 
p P 

at the water table. Referring to Figure 3-2a, this relation 

can be expressed as 

-WGT sin 
WGT U - Uc p 

g flt 
(3-17) 

in which WGT is the weight of the layer of unsaturated soil 

per unit surface area. The second relationship is the C 

characteristic equation. T and U at the water table can p p 

be solved using these two relations. 

When the distance between the ground surface and the 

water table is large, the rigid slab approximation is poor 

and the propagation of the shear wave inside the unsaturated 

soil should be considered. 

At the lower boundary, the velocity Up is the same as 
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that of the bedrock, a prescribed quantity. The shear 

stress T 
P 

+ at the bedrock can be solved from the C charac-

teristic equation, as shown in Figure 3~2c. 

After T and U are solved at every node at. the instant 
p p 

t + 6t, a new shear modulus for each distance interval is 

computed from Equation (3-1) or Equation (3-2) on the basis 

of the average shear stress in that interval. The same 

procedure is repeated for obtaining the solution at the 

next time step. 

3-5. Accuracy 

Numerical errors associated with the computation proce-

dure can be attributed to two sources, i.e., discretization 

and interpolation. Error due to discretization can be re-

duced by reducing the time step and meanwhile keep the 

Courant condition satisfied. Error due to interpolation for 

a given space-time grid was investigated rumerically by Wylie 

and Streeter(85). A 50 foot deposit was used. It was 

divided into 7 distance intervals for numerical solution. 

It was shown that when a tangentia~ ~hear modulus was lowered 

to 1/6 of its original small motion value, the resulted error 

was about 5 percent. This estimation of interpolation error 

was based on the method of characteristics grid, in which in-

terpolations were used only once every 10 time steps. 

In the following chapters, except otherwise stated, the 

amount of discretization and interpolation used fall into 

the range where the accuracy of the numerical procedure was 

studied by Wylie and Streeter. 



CHAPTER 4 

STRESS-STRAIN RELATIONSHIPS FOR SATURATED SANDS 

The distribution of stress between the granular soil 

skeleton and the pore water in a saturated soil plays an 

important role in liquefaction study. The stress-strain 

relationship for saturated soil subjected to confined com­

pression is considered. A constrained compressibility of 

the skeleton appears in the formulation. Its magnitude is 

related to the bulk compressibility and the secant shear 

modulus of the soil skeleton through a linear elastic theory 

suggested by Biot. (7) The use of the formulated relations 

to portray the irreversible volumetric deformation due to 

shearing is explained. In this study, the soil grains are 

assumed to be incompressible. 

4-1. Stress-strain relationships for the two phases of a 

saturated soil subjected to confined compression. 

Let n be the porosity of the soil, defined as the ra­

tio of pore volume to total volume of a soil element. When 

the soil is homogeneous, n equals the ratio of pore area to 

total area of a cross section. Let wand w be the dis-

placement field of the skeleton and of the pore water in 

z direction. wand ware defined in such a way that the 

volume of solid and water passing through a unit area, fixed 

in space, are (1 - n) wand nw respectively. Both wand w 

are functions of the coordinate z and time t. The initial 

value of wand ware denoted by Wo and Wo respectively. 

-32-
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Consider the elementary volume shown in Figure 4-1. 

The increase in the volume of solid material above its ini~ 

tial value is 

a (1 - n) (w - w ) 
______ ~~----__ o_ oz = 

az 

a(w - wo) an 
[- (1 - n) a Z + (w - w 0) az] 0 Z, 

and the increase in the volume of water above its initial 

value is 

The decrease in the volume of water that originally 

occupied the void space in the elementary volume is the 

summation of the above two quantities 

d (w - w 0) a (w - w 0) 
{-[(l-n) dZ +n dZ 

- (w - Wo 

In the above expression, the last term is a product of two 

small quantities and can be neglected. By the definition of 

the compressibility of water, C , one can write w 

1 p* 
= C d(W - w

O
) d (w - w ) w 

(l-n) + 0 
dZ 

n 
dZ 

n 



or 

1 
C= 

w 
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- n p* 
(4-1 ) 

in which p* is the excess pore water pressure. The quantity 

-n p* represents the excess tensile force acting on the por-

tion of the unit area of soil occupied by water. Denote 

this quantity by 8*, then 

8* = -n P*. (4-2 ) 

In terms of 8*, Equation (4-1) can be written as 

8* = 
(l-n) Cl (w - w 0) n Cl (w - w 0) 

Clz + c Clz 
w 

Let 8 0 be the initial hydrostatic value of the tensile 

force acting on the portion of the unit area of soil occu-

pied by water, and 8 be the current value of the same quan-

tity, then 

8 = 8* + 8 0 ' 

or 

8 = (4-3) 

Next, consider the strain in the soil skeleton when in 

a drained state. No stress in the pore water can be de-

veloped although the pores undergo straining. The tensile 

force acting on the skeleton per unit area of soil is also 
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the effective tensile stress, - a , while 0 denotes the 
Z Z 

vertical effective stress. Consider a mass of soil with 

a volume oz before straining, Figure 4-2. After straining, 

the strain level in the skeleton can be represented by 

1 dW dW 8Z [(w + az 0 z) - w] = az . 

The stress-strain relation for the skeleton is then 

written as 

- 0 z = 1 dW 
C az (4-4 ) 

c 

in which C is the constrained compressibility of the soil 
c 

skeleton. Cc 
1 is known as the secant constrained modulus. 

The total tensile stress, 0, is the sum of the tensile 

effective stress and the tensile pore water pressure, i.e., 

or 

4-2. 

o = - 0 
Z 

(---.l 0 = C c 
+ 

1 dW
O - -- az nC W 

+ S 
n 

1 
nC ) 

W 

1 

C W 

dW 1 d(W - W) 
az + Cw dZ 

d(W
O 

- W ) So 0 + (4-5) 
dZ n 

The dependence of the constrained modulus of the ske-

leton upon its secant shear modulus. 

As in an elastic solid, constrained compression of a 

porous material involves both shearing strain and volumetric 
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ground surface 

! 
z 

oz 

n(w-wo)+ 

d (l-n) (w-w ) 
(l-n) (w-w 0) + d ZOo Z 

Figure 4-1 Void volume change in a control volume 
when in confined compression 

ground surface 

1 w 

OZ 

Figrire 4-2 Constrained volumetric deformation of an 
elementary mass of the soil skeleton 
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strain. So the ability of a porous material to sustain con-

strained compression under drained conditions depends on its 

shear modulus. The corresponding behavior of real soil is 

more complicated. Nevertheless it is reasonable to expect 

that soil behaves in a similar fashion. In the following, 

the relation among the constrained compressibility, the bulk 

compressibility and the secant shear modulus of an isotropic 

linear elastic porous medium composed of incompressible solid 

material with zero initial stress is developed. This rela-

tion is assumed to hold for soils. 

Consider an elementary cube of soil with its sides 

parallel to the coordinate axes x-y-z. This cube is con-

sidered to be large enough compared to the size of the pores 

so that it can be treated as homogeneous, and at the same 

time small enough such that it can be regarded as a "point" 

in a microscopic sense. The average displacement components 

of the soil skeleton in x, y, and z directions are denoted 

by u, v, and w, and those of the pore water by u, V, and w. 
The strain components of the skeleton are 

and 

E: xx = 

= 

au 
ax ' 

au 
ax ' 

au av 
Yxy = ay + ax 

av = ay , 

etc. , 

The cubic dilatation of the soil skeleton, £, is 
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This quantity also represents the cubic dilatation of the 

soil bulk. The cubic dilatation of pore water, s, is 

E = E + E + S 
X Y z 

There are two sources that give rise to the dilatation 

of pore water. The first is the compressibility of water 

itself. The second is the pore volume change when the ske-

leton is deformed. This can be made clear by considering 

a unit cube of soil shown in Figure 4-3. The volume dis-

placed by water and solid in the z direction can be written 

as 

- [(l-n) szz + n ~z] . 

Similarly, the volumes displaced by water and solid in the 

other two directions are, respectively, 

- [(l-n) s + n ~ ] and - [(l-n) E + n ~ ]. xx x yy y 

Thus the total volume decrease due to the displacements 

is 

- [(l-n) (S + E + S ) + n (~x + E + S )], xxyy zz y z 

or 

- [( l-n) E + n s]. 

Since no gap between solid and water can be developed, the 

above quantity must equal the volume decrease caused by the 

dilation in pore water itself. Hence one can write 

-
n Sw = (l-n) S + n S (4-7) 



y z 
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x 

(l-n) w 

nu 
I 
I 
I 

(l-n) u ---1-)100 I 

nv 

nw 

- au -1--"" n u +-a-x 

~------
( 1 ) a (l-n) u 

-n u+ ax 

- anv nv+-­ay 

(1 - ) +a (l-n)w 
n w az 

Figure 4-3 Void volume change in a unit cube of a 
control volume 
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in which E is the dilation in water. It is related to the 
w 

change in the mass density of water by 

c w 

dp 
w = - --

Rearranging Equation (4-7), one obtains, 

-
E = (l-n) 

n E • (4- 8) 

It is seen that E is composed of two parts, i.e., dilation 

in water itself and pore volume change. 

The general stress-strain relationship for an isotro-

pic, linear elastic porous medium was obtained by 

B ' t (7) 
10 . The existence of a strain energy potential was 

assumed. The result is listed in the following 

a = 2G
O 

E + A E + Q E xx xx 

a = 2GO E + A E + Q E yy yy 

T yz 

T zx 

T xy 

S=QE+RE 

(4-9 ) 

(4-10) 

(4-11) 

(4-12 ) 

(4-13) 

(4-14) 

(4-15) 
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In the above, 0 denotes the x component of the tensile xx 

force acting on the skeleton per unit area of soil. o yy 

and 0 are similar quantities in the y and z directions. zz 

Tyz ' T
ZX

' and Txy are shear stresses acting on the surfaces 

of a soil element with normals in the x, y, z directions re-

spectively. yyz' Yzx' and Yxy denote corresponding shear 

strains. T and yare synonymous to T and y used in 
xy xy 

Chapter 3. GO denotes small motion shear modulus. A, Q, 

and R are elastic coefficients to be determined by experi­

ment. (8) 

The octahedral normal tensile stress, 0 t' is ob­oc 

tained by adding Equations (4-9) through (4-11) 

or 

where 

and 

o oct 
1 = -3 (0 + 0 + 0 ) xx yy zz 

1 = 3 (2G
O 

+ 3A) E + Q E 

o = a E + Q E oct 

1 
a = 3 ( 2 G 0 + 3A). 

From Equations (4-15) and (4-17) one can write 

E = 

-
E = 

(4-16) 

(4-17) 

(4-18) 

(4-19 ) 

(4-20) 
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Since the volumetric behavior of soil depends on the 

effective stress, it is desirable to replace ° t by its oc 

effective counterpart, aoct ' By definition 

° oct = (Ooct + S) + P 

in which ° + S represents the total tensile stress and oct 

P is the pore water pressure. S is related to P by an equa-

tion similar to Equation (4-2). Hence, one obtains 

0
0ct 

= 0 0ct + (n-l)P . (4-21) 

Substituting Equation (4-21) into Equations (4-19) and (4-20), 

one obtains the following 

E = 

and 

E = 

R 0 0ct + [R(n-l) + Qn]P 

R a _ Q2 

Q 0 0ct + [Q(n-l) + a n]P 

2 R a - Q 

(4-22) 

(4-23) 

Now consider a drained compression test where P is kept 

zero and hence no dilation in water itself can be developed. 

Under this condition Equation (4-8) yields 

E = (l-n) 
E 

n 
(4-24) 

From Equations (4-22), (4-23), and (4-24), and with the 

condition that P = 0, one obtains 

E = 
R 0

0ct 
2 R a - Q 

(4-25) 
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and 

l-n 
-- E (4-26 ) 

n 

whence 

R = l~n Q. (4-27) 

Note that Equation (4-25) indicates that the dilatation 

of the soil skeleton is proportional to ° t' the propor­oc 

tionality constant must be the bulk compressibility, C
b

. 

Therefore, by definition, one can write 

R 
(4-28) 

Now, imagine a cube of soil being immersed in water in-

side a container and then the whole container being pres-

surized. The water pressure increases in all the pores 

evenly. Hence no effective stress is gene~ated. Conse-

quently, no strain can be developed in the skeleton. At 

the same time, the pore water itself is compressed with the 

pore volume unchanged. Under this condition, Equation (4-8) 

reduces to 

E = E 
W 

(4-29) 

substituting Equation (4-29) into Equation (4-23) with 00ct 

being zero, one obtains 

Q (n-l) + a n p . 
R a _ Q2 

(4-30) 
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Equation (4-30) indicates that the pore water pressure is 

proportional to the dilatation in water itself. By the de-

finition of the compressibility of water, one can write 

C w = Q (n-l) + a n 
R a _ Q2 

(4-31) 

From Equations (4-27), (4-28) and (4-31) one can solve 

for Q, Rand a. The result is 

Q = l-n 
C w 

n 
R = C 

w 

= 1 + (1-n)2 
a Cb nCw 

(4-32) 

(4-33) 

(4- 34) 

From Equation (4-18) and Equation (4-34), the elastic co-

efficient A is obtained as 

2 1 (1-n)2 
A = - 3" GO + C

b 
+ nc~ (4-35) 

ln which C is a known property of water, n can be deter­w 

mined by standard procedures, and Cb can be determined by a 

triaxial test or calculated from known second pressure wave 

and shear wave speeds in a deposit. Thus the values of A, 

Q and R can be calculated for a given soil. 

For constrained compression in the z direction, no dis-

placement in either the x or y directions can take place. 

Hence, E = E zz and E = E
Z

' so Equation (4-11) becomes 



or 

o zz 
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2 
= [ ! 1 + ( l-n ) ] 

3 GO + C
b 

n C
w 

E: zz 

Similarly, Equation (4-15) reduces to 

S = (l-n) 
C 

w 
E: zz 

(4-36) 

(4- 37) 

In order to obtain the constrained modulus for the soil 

skeleton, one needs to consider a drained condition where 

S = O. Thus, from Equation (4-37), 

n-l 
n 

E: zz 

Substituting this relation into Equation (4-36), and noting 

that now 0 is the effective tensile stress, -0 . Thus for zz z 

S = 0, one can write 

E: zz 

From Equation (4-4) and Equation (4-38), one obtains 

1 4 1 
C

c 
= 3 GO + C

b 

(4- 38) 

(4-39) 

It is noted that in the linear theory of elasticity of 

solid materials the same relation among the shear modulus, 

bulk compressibility and constrained compressibility holds. 

In a slightly different manner, Ishihara (39) has obtained 

Equation (4-39) for an isotropic, linear elastic porous 

medium composed of a compressible solid. 

It is assumed that a relation similar to Equation (4-39) 
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holds for soils when subjected to simple shear, i.e., 

1 = 4 G + 1 (4-40) 
C

c 
3 s Cb 

in which G is the secant shear modulus of soil. The use s 

of Equation (4-40) is outlined in the following section. 

4-3. Compaction and volumetric straining during shearing 

When a dry, loose sand is subjected to a monotonic 

shearing under constant effective confining pressure, its 

volume and shear modulus decrease until the shearing stress 

equals its shearing strength. After the shearing strength 

is reached. deformation continues with no further volume 

change. The void ratio during constant volume shearing is 

called the critical void ratio. (16) The mechanism behind 

this observed behavior was hypothesized by Casagrande to be 

a continuous rearrangement of sand grains until minimum fric­

tional resistance is reached. (31) A more elaborate mechanism 

for compaction during repeated shearing is proposed by Youd 

(78) 

Due to the fact that pore water can not be drained 

readily during a given amount of rapid repeated shearing, 

the compaction of fully saturated sands is much less than 

that of dry sands. It is very likely that liquefaction may 

be completed well before the critical void ratio is reached. 

The compaction mechanism for saturated sand can be thought 

as similar to that of dry sands. The amount of compaction, 

no matter how small, can not be recovered. 

In this study, it is hypothesized that as the shearing 
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strain increases, the shear modulus decreases as does the 

ability of the skeleton to sustain confined compression. 

Since the soil is loaded by its own weight, it settles in 

response to the weakening of the skeleton. During this 

settlement, both compaction and elastic volumetric straining 

may take place. The volumetric strain under confined com-

o dW 0 d fO d b d h 1 dO 1 press1on, az ' 1S e 1ne ase on t e actua 1SP acement. 

dW Hence az encompasses unit compaction (compaction per unit 

depth) and elastic volumetric strain. 

The time rates of change in ~~, -oz and Cc are related 

by 

d(-a ) 
z 

(-0 ) dC z c 1 d dW 
= -c-- a:t + c at (az)· (4-41 ) at c c 

This equation 1S obtained by taking time derivatives on both 

sides of Equation (4-4). The constrained compressibility 

is related to the secant shear modulus and the bulk modulus 

of the skeleton, as shown in Equation (4-40). It is assumed 

that the bulk compressibility does not change during shear-

ing. Thus, from Equation (4-40), one 0btains 

Since the 

is known, 

4 C 2 
3" c (4-42) 

shearing strain softening property of the skeleton 
dG dC s c a:t and thus a:t ' can be considered as known 

quantities at a given strain level during shearing. Equa-

tions (4-41) and (4-42) make it possible to calculate the 

amount of settlement when a layer of loose sand is sheared. 

At the moment of strain reversal in repeated shearing 
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the soil instantly regains most of its shearing rigidity. 

As a result, the skeleton recovers much of its confined 

compressional strength that has been lost during the shear­

ing stroke preceeding the stress reversal. Since this 

strengthening is instantaneous, Equation (4-41) is not 

applicable at the instant of shearing strain reversal. Imme­

diately after the strain reversal, the soil, now slightly 

densified by the compaction that took place during previous 

strokes, is compacted further as the shearing to the oppo­

site direction proceeds. 



CHAPTER 5 

PROPAGATION OF PLANE PRESSURE WAVES IN 
SATURATED DEPOSITS 

The governing equations for the pressure wave motions 

in a saturated deposit are developed in this chapter. The 

analytical solution for a uniform linear elastic deposit in 

steady oscillatory motion is developed. The influence of 

permeability and porosity upon the motion is examined by 

examples. Wave motions in more realistic deposits can be 

studied by a numerical procedure, which is considered in 

Chapter 6. 

5-1. Equation of motion of saturated soils 

Since a saturated soil is considered as a two phase 

medium, it is necessary to consider the velocity for each 

constituent. The velocity of the skeleton, Wand the seep­

age velocity Ware used to describe the motion of the soil. 

In terms of the displacement fields defined in Chapter 4, 

one can write 

W aw = at 
, (5-1) 

and 

W 
a (w w) . = ~ - (5-2) 

Consider a soil element in Figure 5-1, the equation of mo-

tion can be written as 

(0 + ~~ oz) - a + pgoz = (p ~~ + n Pw g~) oz, 

-49-
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or 

dO 
3Z + pg 

DW DW 
= P Dt + n Pw Dt . (5- 3) 

The presence of the second term on the right hand side is 

due to the fact that the unbalanced force causes pore water 

to accelerate relative to the soil skeleton. The convec-

I . W 3W - aW tive component in the two acce eratlons, az and W az ' 
are small quantities relative to the remaining terms of the 

equation and hence can be neglected. Therefore, the equa-

tion of motion for soil becomes 

dO az + pg 
dW 3W 

= P at + n Pw at . (5-4 ) 

5-2. Equation of motion for water in pores 

The motion of pore water relative to the soil skeleton 

is slow and hence is considered as laminar. The resistance 

force to the flow imparted by the soil skeleton is expressed 

in terms of Darcy's law. Consider a soil element in Figure 

5-2, the equation of relative motion of pore water can be 

written as 

(8 + ~; oz) - 8 + n Pw g oz - oz n Pw ~~ 

DW 
W = oz n Pw Dt 

in which k is the permeability in z direction. The fourth 

term on the left side represents the apparent body force 

due to the acceleration of the skeleton. The fifth term on 

the left side is due to the viscosity of the pore water. 
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ground surface 

0 

Z 

t ~ oz 

1 pgoz 

Figure 5-1 Forces on a soil element 

ground surface 

z 

oz 

1 

s 

np goz 
w 

s + ~oz 
dZ 

unit area 

t 
-

k 
W oz 

Figure 5-2 Forces on the water portion of a soil element 
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It is treated as if it were a body force, this detail is 

given in Appendix 1. After simplifying, the equation of 

motion for water in pores can be written as 

(5-5 ) 

5-3. Time derivative of stress strain relations 

In the study of pressure wave propagation, it is con-

venient to work with velocities of the soil constituents 

rather than their displacements. Take time derivatives on 

both sides of Equation (4-3), noting that the time deriva-

tives of the quantities with subscript zero vanish, one ob-

tains 

as 
at 

2 2 -
1 awn a (w - w) 

= c- ataz + c ataz 
w w 

After interchanging the order of differentiation and em-

ploying Equations (5-1) and (5-2), one obtains 

as 1 aw n aw 
at = C

w 
3Z + C

w 
az . (5-6 ) 

Similarly, take time derivatives on both sides of Equa-

tion (4-5), one obtains 

aa 1 1 aw 1 aw 
at = (c- + ~) 3Z + C 3Z 

c w w 

1 aw ac c 
CZ az at c 

From Equation (4-4) and the definition of effective tensile 

stress, one can write 

1 aw = 
~ az c 

§.) 
n 
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hence 

1 

e c 

S ae 
( ) c 

cr - n a-t (5-7 ) 

Equations (5-4), (5-5), (5-6) and (5-7) together govern the 

propagation of plane pressure waves. 

5-4. Steady oscillatory motion of uniform linear elastic 

deposit 

In this section the soil is considered as linear elas-

tic so the last term in Equation (5-7) vanishes. Sand cr 

can be considered as the dynamic stresses above or below 

their static value. By dropping the gravity terms in Equa-

tions (5-4) and (5-5) and taking time derivatives, one gets 

a 2w n Pw a 2w 1 a 2 cr 

at2 + 
at2 = 0 , 

P P azat 
(5-8 ) 

and 

a 2w + 
a 2w 1 a 2s + ~ aw 0 

at2 at2 = . 
n Pw azat k at 

(5-9) 

Differentiate Equations (5-6) and (5- 7) with respect to z, 

one obtains 

azat 

and 

azat 
(~ + _1_) a2w 
e n e az 2 

c w 

= a , (5-10) 

(5-11) 
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a2
0 

Eliminating azat between Equations (5-8) and (5-11) yields 

1 

p 

1 1 a2w 
[(- + --) -

"z2 Cc n Cw 0 

= O. (5-12) 

a2s 
Eliminating azdt between Equation (5-9) and (5-10) yields 

1 1 ,,2w ,,2w- ,,-W 
( 
__ _ 0_ + _n _0_) + na 0 ( = = O. 5-13) 
c az 2 C az 2 k at n p 

w w w 

The simple harmonic motion of the soil deposit is known 

after W (z, t) and W (z, t) are solved simultaneously from 

Equations (5-12) and (5-13). 

Let the solution to Equations (5-12) and (5-13) assume 

the following form 

W (z, t) = H(z) ei(wt - ;) (5-14 ) 

W (z, t) 
- i(wt - 2!.) = G(z) e 2 (5-15 ) 

where w is the specified angular frequency of the motion and 

i =~. H(z) is the amplitude of the skeleton velocity 

fluctuation at depth z, and G(z) is the amplitude of the 

seepage velocity fluctuation at depth z. The particular 

form of H(z) and G(z) depend on boundary conditions. 

Substitute Equations (5-14) and (5-15) into Equations 

(5-12) and (5-13) and simplifying, one obtains 

o , (5-16) 
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and 

d 2li d 2G + + H + 0. 5 -2 0. 6 -2 0. 7 dz dz 

in which 

0.1 = 1 (-.! + 
p C 

C 

2 n p w 
w 
p 

2 

1 
nc); 

W 

a = w ; 7 

For convenience, let 

dH P (z) and dG 
dz = dz = 

then 

d 2 H dP and d 2G 
-2 = -2 
dz dz dz 

0. 2 

Q (z) 

= dQ 

dz 

0. 8 G = 0 (5-17) 

1 2 = --" 0. 3 = w ; 
P C I 

W 

1 1 

With P(z) and Q(z), Equations (5-16) and (5-17) can be re-

written as a homogeneous system of four first order ordinary 

differential equations 

dP dQ 
0.1 dz + 0.2 dz + 0. 3 H + 0. 4 G = 0 , 

(5-18) 

P dB 
0 - dz = , 

Q dG 
0 - dz = " 
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- AZ - AZ 
Q(z) = be i H = ce - AZ and G = de 

be a particular solution to the above system, where a, b, 

c, and d are four constants. Substitute this particular 

solution into the system, one obtains 

(S-19 ) 

a -cA = 0 

b -Ad = 0 . 

Nontrivial solution for a, b, c, and d exists if and only 

if the following equation holds 

all.. a 2 A a 3 
a 4 = o. 

det 

aSA a
6

A a 7 as 

(S-20) 
1 0 -A 0 

0 1 0 -A 

The solution to Equation (S-20 ) is 

+j2~1 
Al 

+ JY2 
2 A2 

A = (-Y2 - 4yl y
3

) = 1..3 
A4 

in which Yl = a
1

Ct 6 
- Ct 2a S ' Y2 

= alCtS - a 4a S - a 2a 7 + a
3

a
6

, 

Y3 = Ct
3

a S 
- Ct

4
a

7
, and Al > 1..2 > 1..3 > 1.. 4 . 

For A., j = 1, 2, 3, 4, one can solve a., b., c. and 
J J J J 

d. from Equation (S-19). It is noted that since A is ob­
J 

tained from Equation (S-20), only thr~e equations in System 
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(S-19) are independent from one another. Consequently, one 

can always assign unity to d., j = 1, 2, 3, 4, and then 
J 

solve for a. , 
J 

follows 

a. = - A. 
J J 

b. = A. , 
J J 

a
6 c. = 

J 
as 

d. = 1 , 
J 

b., and 
J 

A. 2 
+ 

J 

A.. 
2 

+ 
J 

c .. Such a solution is written as 
J 

as 
, 

a 7 

for j = 1, 2, 3, 4. The four particular solutions 

P. (z) = 
J 

Q. (z) = 
J 

Ii. (z) = 
J 

a. e 
J 

b. e 
J 

c. e 
J 

A.Z 
G.(z) = e J 

J 

A.Z 
J 

A.Z 
J 

A.Z 
J 

j = 1, 2, 3, 4 

for the system (S-lS) are thus obtained. The general solu-

tion to the system can be written as a linear combination 

of these four particular solutions, as shown in the fol-

lowing 

p (z) 
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o (z) sl b l 
"lz 

s2 b 2 
"2 z 

s3 b 3 
"3 z 

s4 b 4 
"4 z 

= e + e + e + e 

H (z) 
"lz "2 z "3 z "4 z 

= sl c l e + s2 c 2 e + s3 c 3 e + s4 c 4 e 

G (z) 

in which sl' s2' s3 and s4 are four constants to be deter­

mined from given boundary conditions. 

Consider a deposit of soil resting on an impermeable 

bedrock, the depth of the deposit being o. The boundary 

condition imposed at the bedrock is 

W (0, t) = AMP e 
i(wt - ;) 

and 

W (0, t) = 0 

in which AMP is a real number representing the single ampli-

tude of the skeleton velocity at the bottom. At the sur-

face, the condition of constant stresses is imposed, hence 

and 

as 
at 

ao 
at 

I 

I 

= 0 , 
z=O 

= 0 • 
z=o 

In terms of p(z), Q(z), H(z) and G(z), these boundary con-

ditions can be written as 
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R(D) = AMP 

G(D) = 0 
(5-21) 

P(O) = 0 

'0 (0) = 0 

These four equations yield the following four independent 

equations to determine sl' s2' s3 and s4 uniquely, 

H(D) 

G (D) 

After solving sl' s2' s3 and s4 from the above four equa­

tions, the solution to System (5-18), subjected to condition 

(5-21) is obtained. This solution, in terms of W, W, Sand 

o is expressed as follows 

W (z, t) 

W (z, t) 

S(z, t) = 

0(Z, t) = 

= H(z) e 

TI 
i (wt - '2) 

i (wt - ;) 
= G(z) e 

1 [ P (z) + iw n 
C w 

1 [ (~ 1 
iw + i1C) C c w 

i(wt - TI) 

'O(z)] e 
2 

i(wt TI 

1 -
- -) 

P (z) 2 
+ c Q (z)] e 

w 
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The computer program used to generate numerical results of 

this lengthy solution is included in Appendix 2. 

5-5. Examples 

A level saturated deposit 50 feet deep was used in the 

following examples to demonstrate the role of various para-

meters in steady oscillatory motion. For all the examples 

2 the mass density of water was taken as 1.94 Ib-sec /ft, and 

the imposed skeletal velocity at the impervious surface of 

the bedrock was 0.2 sin (2nt) fps. W, Wand the dynamic 

stresses Sand cr (above or below their static value) were 

obtained from the program listed in Appendix 2. 

Example 5-1. The motion of loose, medium and dense 

saturated sands 

Representative values for the parameters associated 

with typical loose and dense sand were given by Ishihara, (39) 

and were used in this chapter. Parameters associated with 

the medium sand were estimated. All the data are listed 

in Table 5-1. 

TABLE 5-1 
PROPERTIES OF SANDS USED IN CHAPTER 5 

Loose Sand Medium Sand Dense Sand 

n 0.5 0.4 0.3 

2 5.13 5.13 5.13 Ps' Ib-sec /ft 

C c' ft 2/1b 3.4 x 10- 7 2.4 x 10-7 1.3 x 10-7 

C w' ft 2/lb 2.3 x 10- 8 2.3 x 10- 8 2.3 x 10- 8 

k, fps 0.003 0.001 0.0003 
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The amplitudes and phase angles of the oscillation 

throughout the deposit are plotted in Figure 5-3 and Figure 

5-4. The phase angle of any quantity under consideration 

is defined as the phase difference between the quantity and 

the skeletal velocity at the bottom of the deposit. These 

plots show that except near the impermeable bedrock, W, S 

and a were in phase with one another, and each individual 

quantity as 90 degrees out of phase with respect to w. Os­

cillations in Wand W in a loose deposit were slightly lar­

ger than those in a dense deposit. However, the difference 

in the amplitudes of dynamic stresses were quite different. 

These differences might be attributed to the difference in 

porosity, as shown later in Example 5-3. 

Example 5-2. The effect of permeability 

In order to see how the motion was influenced by per­

meability alone, the medium sand was used in conjunction 

with the permeability of loose and dense sands in Example 

5-1. Results are shown in Figures 5-5 and 5-6. It is seen 

that permeability greatly influenced the relative motion 

between the skeleton and pore water. The influence of the 

permeability on the skeletal velocity and the dynamic stress 

S was small, while it had negligible influence upon the 

dynamic total stress o. 

Example 5-3. The effect of porosity 

The influence of porosity was then examined by using 

the medium sand in conjunction with the porosity of loose 
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and dense sands in Example 5-1. Results are shown in 

Figures 5-7 and 5-8. Except for the seepage velocity, the 

oscillations of W, S, and cr were close to those shown in 

Example 5-1. Hence, in general, the effect of porosity 

overrides that of permeability, and the soil skeleton and 

pore water tend to move together when the permeability is 

small. 

Computations for Examples 5-1, 5-2, and 5-3 were re­

peated with a bedrock velocity frequency of 10 Hertz. Re­

sults were similar to those described above. 
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CHAPTER 6 

NUMERICAL SOLUTION BY THE METHOD OF CHARACTERISTICS 

In this chapter the set of governing equations is 

shown to be hyperbolic for most saturated sands. Four 

characteristic equations are obtained after the governing 

equations are transformed into the normal form. These 

characteristic equations are then approximated by finite 

differences to obtain numerical solutions. The accuracy 

of the numerical procedure is checked by using the analy-

tical solution obtained in Chapter 5. The numerical pro-

cedure developed in this chapter is used in the subsequent 

chapters to study the motions in deposits with time vary-

ing, inelastic material properties. 

6-l. The hyperbolicity of the governing equations. 

By linear combinations of Equations (5-4 ) and (5-5), 

one obtains 

aw 1 as 1 au 2 n Pwg 
aE- + + W - g 

n p
w - p az np - p az k(np - p) 

w w 

= 0 , (6-1) 

and 

aw + 
p as 1 au png 

at nPw(n p
w 

p) az az- w - np - p k(np - p) w w 

= 0 . (6-2 ) 

Write Equations (6-1), (6-2), (5-6) and (5-7) in matrix 
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form 

1 0 0 0 w + 0 0 -1 1 
W np -p np -p w w 

0 1 0 0 W 0 0 P -1 
W np (np -p) np -p w w w 

0 0 1 0 S -1 -n 
0 0 S C C w w 

1 1 1 -1 
0 0 0 0 0 o t - (- + -) 

Cw 
0 C ncw z c 

2 

+ 
n Pwg 

W = 0 k(npw - p) - g 

-pn9: 
k(npw - p) W 

(6- 3) 
0 

1 S ac 
(0 - c 

Cc n)at 

in which the subscripts t and z at the lower right corner 

of the brackets represent partial differentiation. Define 

matrices A, ~, n and X as follows 

= 0 0 
-1 1 

0 0 d 1 d 2 
A = n p. - P n p. - p w w 

P -1 
0 0 d 3 d 4 

0 0 n Pw (n Pw - p) np - p w 

-1 -n 0 0 d S d 6 0 0 C C w w 

-(.-J: + 1 -1 0 0 d 7 d S 0 0 C nC ) C c w w 
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2 

~ = 
n Pwg 

D = k(n p
w- p ) W - g 100 0 x = 'W 

010 0 -npg 
W k (np -p) 

w 
w 

o 0 1 0 0 S 

1 S ae 
(0 c 

C - n)a-t o 001 , o 
c 

then Equation (6-3) can be written in the following short 

form 

(6-4) 

For computational advantages, it is desirable to trans-

form Equation (6-4) into a normal form in which every com-

ponent equation involves derivatives in only one direction 

on the z-t plane. Assume such a transformation exists. 

Denote this transformation by ~ and let e~i' if j = 1, 2, 

3, 4 be the elements of~. Pre-multiplying Equation (6-4) 

by E yields 

(6-5 ) 

In order to obtain the normal form, the following condition 

is imposed on ~ 

(6-6) 

in which ~ is a real diagonal matrix with elements AI> A2 > 

A3 > A4 · Substituting Equation (6-6) into Equation (6-5) 

(6-7 ) 
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It is seen that in the ith equation of system (6-7), all 

. k 1 1 h d' . dZ 1 derivat1ves ta e p ace a ong t e 1rect1on at = Ai on the 

z-t plane. 

Each row in system (6-6) represents four homogeneous 

equations in the four unknowns e .. , j = 1, 2, 3, 4. For a 
1J 

non-trivial solution to exist, one must have 

detlA - A. BI = 0 • 
1 

(6-8 ) 

Since A. represents the direction of differentiation on the 
1 

z-t plane, all four A. 's must be real and distinct. This 
1 

is the sufficient condition for the existence of the trans-

formation E, which is taken as the definition for hyperbo-

licity. 

In Equation (6-8), since B is a unit matrix, one can 

simply solve for the eigenvalues of the matrix A for X. 

Let 

and 

then Equation (6-8) becomes 

- ex 

whence 

(6-9 ) 

In order that the four A. 's be real, it is necessary 
1 
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that the soil must have properties such that S > 0 and 

2 a > 4S. One can visualize Ai as the speed of propagation 

of disturbances on the z-t plane. Hereafter, the absolute 

value of Al or A4 is called the first p-wave speed and that 

of A2 or A3 is called the second p-wave speed. 

For the purpose of demonstrating the hyperbolicity of 

Equation (6-3) for most saturated sands, Equation (6-9) was 

employed to compute the two wave speeds for two types of 

sand over a range of void ratio and effective confining 

pressure. These two sands were the round-grained sand and the 

angular-grained sand of Hardin and Richart. (35) The small 

motion shear modulus of these sands were related to the 

void ratio, e , and the effective confining pressure, a 0' by: 

for round grained sand 

31560 (2.17 
GO = 1 + e 

(psf) 

2 0.5 
- e) -aO 

(psf) 

and for angular grained sand 

G = 14760 (2.97 - e)2 
o 1 + e 

0.5 

(psf) 

(6-10) 

(6-11) 

The effective confining pressure was calculated from the 

following equation 

(6-12) 

in which KO is the coefficient of earth pressure at rest 

and a denotes vertical effective stress. z 

Based on Ishihara's data(39) , the bulk compressibility 

of the skeleton, Cb, at a particular porosity was calculated 
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from the following interpolation formula 

-6 2 Cb = [4.403 + 0.176 (n - 0.5)] x 10 ft /lb. 

This formula is based on the bulk compressibilities given 

by Ishihara at n = 0.3 and n = 0.5. The constrained com-

pressibility of the skeleton, Cc ' was calculated from GO 

and Cb from Equation (4-39). Other data used in the com­

putation were: Pw = 1.94 lb-sec2/ft, Cw = 2.348 x 10-
8 

ft2/ 

lb, Ps = 5.15 lb-sec2/ft and KO = 1. Results are shown in 

Figures 6-1 and 6-2. The wave speed for incompressible soil 

grains suspended in water could be computed from the Wood 

equation (54) and was also shown in Figure 6-2 for compari-

son. 

From Figures 6-1 and 6-2 it is seen that 4 real and 

distinct eigenvalues of matrix A were obtained for a wide 

range of soils. Hence Equation (6-3) is hyperbolic within 

the range of void ratio and the range of effective con-

fining pressure tested. These ranges are wide enough to 

cover situations in which possible liquefaction need be 

investigated. 

6-2. The characteristic equations. 

After the wave speeds are obtained, one can solve for 

the transformation~. Noting that B is a unit matrix, one 

can write Equation (6-6) as 
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ell e 12 e 13 e 14 0 0 d l d 2 = Al 0 0 0 ell e 12 e 13 e 14 

e 2l e 22 e 23 e 24 0 0 d 3 d 4 0 1..2 0 0 e 2l e 22 e 23 e 24 

e 3l e 32 e 33 e 34 d S d 6 0 0 0 0 1..3 0 e 3l e 32 e 33 e 34 

e 4l e 42 e 43 e 44 d 7 d 8 0 0 0 0 0 1.. 4 e 4l e 42 e 43 e 44 

After the multiplication, one can equate the ith row on both 

sides and obtain the following 

e i3 d S + e i4 d 7 = A. e il 1 

e i3 d 6 + e i4 d 7 = A. e i2 1 

(6-13) 

e il d l + e i2 d 3 = A. e i3 1 

e il 
d 2 + e i2 d 4 = A. e i4 1 

for i = 1, 2, 3, 4. 

System (6-13) is a homogeneous system for e .. , j = 1, 
1J 

2, 3, 4. Since A. satisfies Equation (6-8), non-trivial 
1 

solutions exist. Because of this condition, only three 

equations in system (6-10) are independent. One can set 

e i4 = 1 and solve for e il , e i2 and e i3 accordingly. The 

results are 

e i2 = 

e i3 = 

e i4 = 

Ai
2 

d S + d 4 d 6 d 7 - d 4 d S d 8 
Ai(d4 d 6 + d 2 d S ) 

A. - e il d 2 1 

d 4 

A. e i2 - d 8 1 

d 6 

1 

(6-14 ) 
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for i = 1, 2, 3, 4. This completes the solution for ~. 

The ith row of Equation (6-5) can be written out in 

long hand as 

aw + aw + ~+ ao 
+ A. aw A. aw e i1 e i2 at e i3 at e il az + e i2 az at at 1 1 

as ao 2 n p g 
+ A. A. + w g) e i3 at + at e i1 (k (np -p) W -1 1 

W 

npg 1 S ac 
- e i2 W + (0 - -) c 

0 k(npw-p) at = c n , 
c 

or 

2 
ao ao n Pwg npg 

+ (- + A. -) + e ( W - g) - e
1
· 2 W at 1 az il k(np -p) k(np -p) w w 

1 S ac 
c 

+ C- (0 - n) ~ = 0 • 
c 

In terms of characteristics, one can write 

2 
dW dW dS do n Pwg 

e + e + e - + + e ( W - g) -il dt i2 dt i3 dt dt il k(np -p) 
w 

c i npg 1 S ac 
W + (0 -) c 0 e i2 k(np -p) - at = c n (6-15) w c 

dz A. dt = 
1 

for i = 1, 2, 3, 4. The first equation in system (6-15) is 

called the c i characteristics equation, and it is valid only 

if the second equation is satisfied. 
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System (6-15) is equivalent to System (6-3) in the 

sense that every solution of the one is a solution of the 

other. However, in contrast to System (6-3), every charac-

teristics equation in System (6-15) contains derivatives in 

a common direction on the z-t plane. This fact not only 

enables one to approximate System (6-15) conveniently by 

finite differences, it also simplifies the treatment of 

boundary conditions. 

6-3. Finite difference approximation. 

The numerical procedure is best visualized on a z-t 

diagram shown in Figure 6-3. The method of specified time 

intervals (41) is used to establish the z-t grid. After 

discretization, the material properties in each distance 

interval are considered to be uniform. Since the wave 

speeds vary with time, conditions at points 1, 2, 3, and 4 

must be evaluated from known conditions at points A, Band 

C before the conditions at point p can be found. The fol-

lowing interpolation formulas, in terms of the skeletal 

velocity W, are used for interior points 

at point 1 

(6-16) 

at point 2 

(6-17) 
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at point 3 

(6-18) 

at point 4 

(6-19) 

Similar interpolation formulas are used to obtain W., S., 
1 1 

and 0. for i = 1, 2, 3, 4. 
1 

The c i characteristics equation is integrated in its 

characteristic direction as 

e il (Wp - Wi) + e i2 (Wp - Wi) + e i3 (Sp - Si) 

6t npg 
+ (op - 0i) = ~ [e i2 k(npw-p) (Wp + Wi) 

2 
n Pwg 

- e il k(np -p) (Wp + Wi)] + 6t e il g 
w 

(6-20 ) 

6t S. dC Sp ac 
[C (0. - ~)~I + C (op - -)~I ] 

2 c t 1 n at t C t + 6t n at t + 6t 

for i = 1, 2, 3 and 4. e il , e i2 and e
i3 

are evaluated at 

time t. The subscripts t and t + 6t represent the time at 

which the quantities under consideration are evaluated. It 

is adequate to use first order approximations for the co-

efficients of the first three terms of the characteristic 

equations of System (6-15), while second order approxima-

tions are necessary for the last three terms in the same 

equation. 

For a given initial condition, for example, the static 
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condition, W., W., S. and a., i = 1, 2, 3, 4, can be com-
111 1 

puted from the interpolation formulas. One can then solve 

for W, W, S, and a at every interior node from the four 

equations represented by Equation (6-20). 

At the surface of the deposit, two characteristics can 

be drawn from the interior to the upper boundary. Referring 

to Figure 6-3a, the interpolation formula for obtaining the 

conditions at points 3 and 4, in terms of W, are 

(6-21) 

A46t 
W4 = We - -xz- (WB - We) (6-22) 

The boundary conditions, discussed in the next section, to­

gether with the integrated e3 and e4 characteristic equa-

tions in Equation (6-20) constitute a system of four equa-

tions which enables one to solve the four variables at the 

surface. 

At the bottom of the deposit, two characteristics can 

be drawn from the interior to the lower boundary. Referring 

to Figure 6-3c, the interpolation formula for obtaining the 

conditions at points 1 and 2, in terms of W, are 

(6-23) 



-83-

Two boundary conditions together with the Cl and C2 charac-

teristic equations in Equation (6-20) yield a unique solu-

tion for the four unknowns at the lower boundary. 

After the solution is obtained at t + 6t, one can ob-

tain the solution at t + 26t by the same procedure. 

6-4. Boundary conditions. 

A few boundary conditions are considered in this sec-

tion. 

(a) Free surface. 

At the free surface, there is no stress in the soil 

skeleton, and the pore water pressure is zero, therefore 

5(0, t) = ° , (6-25) 

and 

0(0, t) = 0 • (6-26) 

Wand W can then be solved from the integrated c3 and C4 

characteristic equations. 

(b) Unsaturated soil layer above the water table. 

The upper boundary of the deposit is always considered 

to be at the water table. During transients, the vertical 

acceleration of the soil mass between the ground surface 

and the upper boundary is negligible when compared with 

that in the horizontal direction. Therefore, the effective 

stress at the upper boundary can be considered to be equal 
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to the weight of the unsaturated soil per unit surface area. 

The elevation of the water table is treated as fixed during 

ground shaking. Hence the boundary conditions are 

8(0, t) = ° , (6-27) 

and 

0(0, t) = WGT . (6-28) 

(c) Impermeable bedrock at the base of the deposit. 

No relative motion between the soil skeleton and pore 

water can take place at the impermeable base, therefore 

W(D, t) = 0. (6-29 ) 

The vertical component of the skeletal velocity at the base 

is identical to that of the bedrock, hence 

W(D, t) = vertical component of the bedrock motion (6-30) 

Other boundary conditions, such as permeable bedrock, 

may be incorporated into the numerical procedure. These 

more complicated boundary conditions are not included in 

the present study. 

6-5. Accuracy. 

The accuracy of the numerical procedure is checked by 

using the steady oscillatory motion treated in Chapter 5. 

From the analytical solution, the velocities and dynamic 

stresses at a particular instant can be computed. Then by 

adding the static stresses to the dynamic stresses, one can 

obtain the actual level of stresses in the deposit. Using 

these velocities and stress levels as the initial conditions 
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and treating the boundary conditions appropriately, the 

steady oscillatory motion should be closely approximated 

by the numerical procedure. 

Consider a horizontal saturated deposit 50 feet deep 

with the following material properties: n = 0.4, Ps = 

5.13 Ib-sec 2/ft, C = 2.4 x 10- 7 ft 2/1b, P = 1.94 lb-sec2/ft, c w 

C = 2.3 x 10- 8 ft 2/1b and k = 0.001 fps. This deposit was w 

set in steady oscillatory motion with a frequency of 5 

Hertz. The skeletal velocity at the impervious bedrock was 

0.2 sin (lOrrt) fps. 

For the numerical solution, the deposit was divided 

into 5 equal distant intervals. The solution at a depth of 

20 feet was obtained from both the analytical solution and 

the numerical procedure. Results are plotted in Figures 

6-4 and 6-5. In the numerical solution the computation 

had been carried out for seven cycles, and the motion stayed 

steady oscillatory throughout these seven cycles. It is 

seen that the agreement between these solutions was ex-

cellent. 
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CHAPTER 7 

VERTICAL MOTIONS OF SOILS WITH SPECIFIBD 
TIME HISTORY OF SHEAR MODULI 

This chapter concerns the calculation of transient pore 

water pressure and effective stress in a saturated soil de-

posit when the constrained compressibility of the soil is 

rapidly changed. The constrained compressibility at a given 

depth in the deposit is visualized as a time-varying func-

tion resulting from dynamic shearing. In this chapter pre-

specified time histories of the secant shear modulus are 

used to simulate changes in the constrained compressibility. 

Examples are employed ~o demonstrate the resulting vertical 

motions and the accompanying changes in effective stress and 

pore water pressure in a horizontal deposit. 

It is to be noted that the shear modulus of the skeleton 

depends upon the shearing strain amplitude and the effective 

stress, hence it should not be specified independently. How-

ever, the examples with specified shear modulus changes does 

provide an aid in the description of the pressure wave sub-

model when changes in constrained compressibility are pre-

sent. More realistic cases are presented in the next chap-

ter. 

7-1. Monotonic weakening of skeleton 

Consider a level 

properties: n = 0.4, 

2 
ft /lb, KO = 1.0, Pw = 

lb and k = 0.001 fps. 

deposit 53.33 feet deep with following 

Ps = 5.13 lb-sec2/ft, Cb = 4.8 x 10- 7 

1.94 lb-sec2/ft, C = 2.3 x 10- 8 ft 2/ 
w 

The water table was 3.33 ft below the 
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ground surface. The small motion shear modulus, GO' through­

out the deposit was calculated from Equation (6-10). The 

time history of secant shear modulus at depth z, G (z, t), s 

was specified as 

G (z, t) s 

Go (z) cos (2.09 t), t < O. 7 

G (z, 0.7) s , t > 0.7 

( 7-1) 

The deposit under the water table was divided into 8 

equal distance intervals. The shear modulus in each inter-

val was considered to be the average value of the shear mo-

du1i at the ends of the interval. The constrained compres-

sibility of each interval was computed from Equation (4-40). 

Its time rate of change was computed from 

ae c 
at = 

4 

3 

aG 
e 2 s 

c at (7-2) 

This equation can be obtained directly from Equation (4-42). 

The response of the deposit to the Gs changes are shown 

in Figures 7-1 and 7-2. It can be spen that during the 

course of shear modulus reduction, the pore water pressure 

increased, and at the same time, the effective stress de-

creased such that the total stress at a section stayed ap-

proximately constant. Accompanying the pore water pressure 

buildup, there was an upward flow of water. Downward dis-

placement of the skeleton took place throughout the deposit. 

After the shear modulus in the bottom interval reached the 

low value at 0.7 seconds, as shown in Figure 7-1, the effec-

tive stress at the bottom started to recover, and the excess 
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pore water pressure was dissipated gradually. Upward flow 

of the pore water and the downward movement of the skeleton 

continued. The tendency toward a new static equilibrium 

with a smaller porosity was evident. 

7-2. Cyclic weakening of the skeleton 

When a sand is subjected to cyclic shearing in the 

strain softening range, its shearing stress-shearing strain 

relation can be represented schematically by Figure 7-3. 

Associated with each stroke, for example, from a to b, there 

is a monotonic decrease in the secant shear modulus. Upon 

the shearing strain reversal at b, the soil regains most of 

its shearing rigidity. A monotonic decrease in shear modu-

Ius takes place again for stroke bc. The corresponding 

variation of the secant shear modulus with time is shown 

schematically in Figure 7-4. Similar shear moduli changes 

were used in the following example. 

Consider a horizontal saturated deposit 50 feet deep 

with the following properties: n = 0.5, Ps = 5.13 Ib-sec2/ 

-6 2 2 ft, Cb = 2.2 x 10 ft /lb, KO = 1.0, Pw = 1.94 Ib-sec /ft, 

C
w 

= 2.35 x 10- 8 ft 2/1b, and k = 0.00328 fps. The water 

table was at the ground surface. The small motion shear 

modulus throughout the deposit was a function of effective 

stress, as described by Equation (6-10). 

The deposit was divided into 8 equal distance intervals. 

The time history of the specified shear modulus of each in-

terval was shown in Figure 7-5. Associated with each of the 

jumps at b, c, and d, there was an abrupt decrease in the 
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constrained compressibility of the skeleton. The time rate 

of change of the constrained compressibility immediately 

after the sudden stiffening was considered to be zero. The 

stresses and velocities immediately before the stiffening 

were used as the initial condition for the subsequent com­

putations. By this procedure, the sudden stiffening of the 

skeleton did not interfere with the trend of the soil to 

move toward a denser state as shearing progresses. 

Figure 7-6 illustrates the transfer of stress at the 

base of the deposit from skeleton to pore water. The pulses 

in these two traces corresponded to the shear modulus varia­

tions. At the beginning and the end of each stroke, the 

time rate of change of the shear modulus was smaller than 

that at the middle of the stroke. As a result, the pore 

water pressure rise at the ends of a shearing stroke was 

less rapid than that at the middle of the stroke. When the 

excess pore water pressure became high and, at the same 

time, the rate of shear modulus decrease was small, the soil 

might gain some effective stress. This situation occurred 

briefly at about 0.77 seconds, as indicated in Figure 7-6. 

Figure 7-7 shows the profile of the excess pore water 

pressure, in terms of piezometric head, at various moments. 

Due to the presence of the impermeable bedrock, there was no 

pore water pressure gradient at the base of the deposit. In 

the interior and at the surface of the deposit the gradient 

of the excess pore water pressure was negative. Accordingly, 

pore water moved up towards the ground surface and eventually 
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seeped out of the deposit. The flow of pore water was more 

rapid at the later stages when the negative gradient became 

larger. Figure 7-8 shows the accompanying transient effec­

tive stress profiles. 

Downward displacement of the skeleton occurred through­

out the deposit, as shown in Figure 7-9. It is noted that 

the maximum downward displacement occurred at approximately 

18.75 feet, instead of at the ground surface. As a result, 

the porosity of the top three intervals increased as time 

progressed. This trend was consistent with the piezometric 

head profiles. In Figure 7-7, it can be seen that the maxi­

mum negative gradient occurred approximately at the middle 

of the deposit. According to Darcy's law and the principle 

of mass conservation, the amount of water contained in the 

top three intervals must increase as time went on, hence the 

increase of the porosity in the top three intervals. The 

porosity of the lower portion of the deposit decreased be­

cause of the upward drainage and the volume reduction in 

pore water itself. 

The above example together with the example in Section 

7-1 demonstrates that the pressure wave submodel is able 

to describe quantitavely the anticipated accumulated increase 

in pore water pressure and the corresponding reduction in 

effective stress when the constrained modulus of a saturated 

deposit is reduced. 
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CHAPTER 8 

THE LIQUEFACTION MODEL 

The pressure wave submodel was presented in Chapter 7, 

where the time history of the shear modulus was specified 

in advance. A more realistic situation, in which the motion 

in the vertical direction is caused by repeated shearing, is 

developed in this chapter. A coupling between the propaga­

tion of plane shear waves and the vertical motion of the 

soil due to changes in its constrained compressibility is 

developed. The coupled motions constitute the model for 

liquefaction. 

The liquefaction model is presented with the help of 

a flow diagram. The modeling of transient effective stress 

and changes in pore water pressure in horizontal deposits 

is demonstrated by examples. The use of the model to pre­

dict the onset of mass earth movement of 3lightly inclined 

deposits due to liquefaction is also presented. 

8-1. Modified Ramberg-Osgood shearina stress-shearing strain 

relationships 

The Ramberg-Osgood relationships, outlined in Chapter 

3, have been used successfully to describe the shearing 

stress-shearing strain relationships for unsaturated soils 

deformed in the strain softening range. Since the effective 

stress at the depth under consideration is constant during 

shearing, the initial small motion shear modulus, GO' and 

the shear strength, lm' are independent of time. When a 
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saturated soil is sheared rapidly, the effective stress at 

the depth under consideration is affected by the development 

of excess pore water pressure at that depth. Therefore the 

deformation characteristics of the skeleton vary with time. 

The shearing stress-strain relationships used in the 

liquefaction model are 

for initial loading, 

R-l 
y = (1 + a I T I ) 

C1T (0 ) 
m z. 

for unloading and reloading, 

y - Y 1 = 
T - Tl T - Tl 

(1 + al----
GO(oz) 2C1 T m (Oz) 

(8-1) 

R-l 

(8-2 ) 

in which ° denotes vertical effective stress. The meaning z 

of the remaining variables are the same as those defined in 

Chapter 3. 

Since at the depth under consideration, GO and Tm are 

functions of the transient effective stress, the stress-

strain curves represented by Equations (8-1) and (8-2) are 

no longer Ramberg-Osgood curves. For the rest of the study, 

Equations (8-1) and (8-2) are called the modified Ramberg-

Osgood relationships. The dependence of GO on 0z can be 

expressed by 

(8-3 ) 

in which KO is the coefficient of earth pressure at rest. 

It is treated as constant throughout the depth and does not 
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change during shearing. n is a coefficient, its value at 

depth z depends upon the initial shearing rigidity of the 

soil at that depth. Equation (8-3) is similar to Equations 

(6-10) and (6-11), except that the effect of the void ratio 

is neglected. The relationship between T and a is m z 

T 
m 

1 + KO 
= {( a 

2 
sin 

z (8-4) 

in which ~ is the effective internal angle of friction. 

An example was used to illustrate the effects of reduc-

tion in GO and Tm upon the shearing behavior of soils. 

Assume that, as a result of shearing, the effective stress 

in a saturated soil element changed with the shearing stress. 

The assumed relation between the effective stress and the 

shearing stress is shown in Figure 8-1. Other parameters 

used in the example were a = 1, R = 3, C
l 

= 0.8, n = 5000, 

KO = 0.5 and ~ = 35 degrees. The modified Ramberg-Osgood 

curves for one cycle of shearing are shown in Figure 8-2. 

The original Ramberg-Osgood curves ba~ed on constant and 

maximum GO and Tm are also shown in the same figure. It is 

seen that, for a given shearing stress amplitude, the modi-

fied Ramberg-Osgood relationships gave a larger strain amp-

litude than that given by the original Ramberg-Osgood rela-

tionships. The general shape of the modified curves depends 

upon how the effective stress is changed during shearing. 

The modified curves may not necessarily be similar to the 

original Ramberg-Osgood curves. 
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8-2. The liquefaction model. 

The deposit below the water table is divided into a 

number of equal distance intervals. Within each interval, 

the properties of the soil are considered to be uniform. 

Both the shear wave submodel and the pressure wave submodel 

are applied to the same intervals of soils so discretized. 

For each interval, the bulk compressibility, Cb, and the 

small motion shear modulus are related by 

(8-5) 

in which ~ is a coefficient. Equation (8-5) is used to es-

timate Cb when only GO is known. When this is the case, the 

value of ~ can be estimated from Poisson's ratio of the soil 

under consideration. When both C
b 

and GO can be estimated 

from laboratory or field data, then Equation (8-5) is not 

needed. C
b 

of each interval is assumed to be constant during 

shearing. Thus any change in the constrained compressibility 

in each interval is attributed to the change in the secant 

shear modulus in that interval. 

For both submodels the Courant condition only needs to 

be checked once based on the initial speeds of shear wave 

and first pressure wave. Since a fixed z-t grid and a spe-

cified time step are used, and since these speeds are the 

maxima during the entire period of shaking, this check on 

the Courant condition insures the stability of the numerical 

procedure as time progresses. 

The coupling between the two submodels is described in 
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terms of the sequence of events occurring during repeated 

shearing. Suppose that at time t the state of stresses and 

velocities throughout the deposit are known, and that the 

boundary conditions are given. One can use the shear wave 

submodel to calculate the shearing stress, the shearing 

strain, and the secant shear modulus at time t + ~t. The 

time rate of change of the constrained compressibility, 

caused by the secant shear modulus changes over the time 

step ~t, can then be calculated. This quantity represents 

the weakening of the skeleton to sustain confined compres-

sion. It is used in the pressure wave submodel which com-

putes the resulting transient effective stress and pore water 

pressure, and the velocities of soil skeleton and pore water 

during ~t. Because the first pressure wave speed is much 

higher than the shear wave speed, these computations are 

carried out for several smaller time steps, ~t. ~t is de-

termined by the initial highest first pressure wave speed 

in the discretized deposit and the length of distance inter-

val used. This allows the time in the pressure wave sub-

model to catch up with the time ln the shear wave submodel. 

In other words, for every time step ~t, the computation of 

pressure wave motion is carried out N times such that N ~t 

equals ~t. During the N steps in the pressure wave submodel, 

the constrained compressibility in each interval is updated 

at the end of every time step ~t. This adjustment is in 

accordance with ae lat computed from the shear wave submodel c 

between time t and time t + ~t. When the time in the 
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pressure wave submodel catches up with the time in the shear 

wave submodel, Equations (8-3) and (8-4) are used to compute 

a new GO and Tm from current effective stresses at the ends 

of every distance interval. The new GO and Tm so computed 

for each interval represent the shearing characteristics of 

that interval at the new state of effective stress. Thus 

far, one cycle of the computation is completed. The next 

cycle of computation starts out with the shear wave submodel 

and the newly defined shearing characteristics of the soil. 

Figure 8-3 illustrates the sequence of events described 

above. 

At the moment of shearing strain reversal, there is a 

sudden increase in the secant shear modulus. Through the 

use of Equation (4-40), the constrained compressibility of 

the interval in which strain reversal just took place is 

computed according to the newly increased secant shear modu-

Ius. In the meantime, ac fat in this interval is set to c 

zero over the time step 6t which immediately follows the 

strain reversal. With the newly defiLed soil properties, 

the pressure wave submodel is then used to compute the effec-

tive stress, the pore water pressure, and the velocities of 

the skeleton and pore water over the time step 6t. Chart 

8-1 outlines the liquefaction model by a flow diagram. 

8-3. Examples. 

Example 8-1. Consider a horizontal deposit having a 

depth of 50 feet. The deposit was composed of round-grained 

sand(54). The soil properties were: n = 0.4,¢ = 34 degrees, 
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Figure 8-3 Coupling between the shear wave subrnodel 
and the pressure wave subrnodel 
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start 

setup initial conditions 

determine initial GO and Tm 

calculate the P-wave 

and the S-wave speeds 

setup the time steps 

6t and 6t 

satisfied 

submodels 

initialize time 

no 

Chart 8-1 The flow diagram of the liquefaction model 
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increment time 

call S-wave 

subroutine 

calculate 
aG ae 

s c 
~&at 

call P-wave 

subroutine 

update GO and Lm according to 

new effective stresses 

output 

yes 

update e , 
ae c 

c set -- = 0 at 

( flow diagram continued) 
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KO = 1 - sin cp = 0.4354, Ps = 5.13 Ib-sec
2
/ft, ]J = 1.2,0. =1, 

R = 3, and Cl = 0.8. The small motion shear modulus through­

out the deposit was computed from Equation (6-10). The 

shear strength throughout the deposit was computed from 

Equation (8-4). 

Ib-sec2/ft, C w 

Other relevant properties were Pw = 1.94 

= 2.348 x 10-8 ft 2/1b, and k = 0.00328 fps. 

The deposit was divided into 8 equal distance inter-

valse The initial discretized GO and Tm are listed in 

Table 8-1. 

TABLE 8-1 

SMALL MOTION SHEAR MODULUS AND SHEAR STRENGTH 

Layer GO' psf T , psf 
m 

1 0.469 x 106 56 

2 0.812 x 10 6 168 

3 1. 049 x 10 6 280 

4 1. 241 x 10 6 393 

5 1. 407 x 10 6 504. 

6 1. 556 x 10 6 616 

7 1. 691 x 10 6 728 

8 1.816 x 10 6 840 

The bedrock underlying the deposit was assumed to be 

rigid and to move back and forth sinusoidally with a fre-

quency of 4 Hertz. For the purpose of comparison, two sin-

gle amplitudes of the bedrock velocity were used. They were 

0.05 fps and 0.10 fps. The dynamic response of the deposit 

to these bedrock motions is shown in Figures 8-4 through 8-11. 
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Figure 8-4c represents the sinusoidal horizontal velo­

cities of the bedrock, or the velocities at the base of the 

deposit. Figure 8-4a and Figure 8-4b illustrate the time 

variations of the shearing stress and shearing strain in the 

6th interval counted from the ground surface. For the case 

of small bedrock motion and except the initial transient, 

the soil oscillated around its static position. A gradual 

decrease in the amplitude of shearing stress trace after the 

initial transient can be seen in Figure 8-4a. A corres­

ponding increase in the amplitude of the shearing strain 

trace can be seen in Figure 8-4b. Hence the shearing rigidity 

of the soil was reduced by the repeated shearing. This pro­

cess is more explicitly illustrated by Figure 8-5 where the 

shearing stress is plotted against the shearing strain. The 

gradual leveling of the longitudinal axes of the hysteresis 

loops indicates that the soil was softened by the repeated 

shearing. For the case of large bedrock motion, similar but 

more pronounced results were obtained. Due to the high 

shearing stress developed and the rapid loss of shearing 

rigidity, neither the shearing stress nor the shearing 

strain oscillated around their static value. The dynamic 

shearing stress-shearing strain relation for the large ex­

citation is shown in Figure 8-6. For the last few cycles 

of shearing, very little stress was needed to develop a large 

strain. Hence the soil was softened considerably. Compared 

with Figure 8-5, the area of the loops is larger, indicating 

that more energy was dissipated in the soil. 
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Figure 8-4 Example 8-1, time variation of bedrock velocity, 
shearing stress and shearing strain 



o o o ~
 
r.

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-,

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

, 

o o 
, 

o o C
\I o 

~
O
 

(
I
)
'
 

n .. J
5 -

2 >
-
i 

sm
a
ll

 
b

e
d

ro
c
k

 
m

o
ti

o
n

 

(I
) 

(
f)

 
w

o
 

C
C

O
 

~
O
~
 

~
 

(I
) 

t.
.:

) 
2

0
 

....
....

. 0
 

C
C

· 
a:

8 
W

 ...
. 

J
:
I 

(
I)

 o o ,
 

o o ~
 

o o . o 
I 

~ •
 

-.
0

4
 

-.
0

2
 

-.
0

1
 

.o
t 

.0
2 

.0
4 

.0
5 

SH
EA

RI
NG

 S
TR

AI
N 

(X
I0

2 
) 

F
ig

u
re

 
8

-5
 

E
x

am
p

le
 

8
-1

, 
sh

e
a
ri

n
g

 
s
tr

e
s
s
-
s
tr

a
in

 
re

la
ti

o
n

s
h

ip
s
 

in
 

la
y

e
r 

6
; 

sm
a
ll

 
e
x

c
it

a
ti

o
n

 

.0
7 

I I-
' 

I-
' 
~
 

I 



0 0 0 0 (I
')

 

0 0 0 0 (\
J 

0 
lL

.0
 

en
· 

a.
.. 
8 .... 

Z
 

>
--

1
 

en
 

en
 

w
o

 
ce

O
 

1
-0

 
en

 
~
 

Z
o

 
>

--
1

0 

ge
g t 

W
 ...

. 
1

0
 

I
I
 

en
 

8 

0 0 0 0 (\
J
 

I 0 0 0 0 (1
')

."
-

I 

la
rg

e
 

b
e
d

ro
c
k

 
m

o
ti

o
n

 

1 

-.
O

ll
 

-.
0

2
 

-.
01

 
.0

1 
.0

2 
• O

il 
.0

5
 

SH
EA

RI
NG

 S
TR

AI
N 

(X
l0

2 

F
ig

u
re

 
8

-6
 

E
x

am
p

le
 

8
-1

, 
S

h
e
a
ri

n
g

 
s
tr

e
s
s
-
s
tr

a
in

 
re

la
ti

o
n

s
h

ip
 

in
 

la
y

e
r 

6
; 

la
rg

e
 
e
x

c
it

a
ti

o
n

 

.0
7 

I I-
' 

I-
' 

1J
l I 



-116-

Figure 8-7 illustrates the accumulative increase in the 

pore water pressure and the corresponding reduction of effec-

tive stress at a depth of 31.25 feet. It is seen that the 

sum of the pore water pressure and the effective stress at 

any instant was approximately equal to the total static 

stress at that depth. The time rate of increase in the pore 

water pressure decreased as the soil became softer. The 

effective stress curves for both cases indicate that, gen­

erally, for a deposit with a uniform permeability where the 

re-distribution of pore water pressure is not inhibited, 

the effective stress approaches zero asymptotically. 

Figure 8-8 shows the gradually reduced shearing strength 

of layer 6 together with the shearing stress actually deve-

loped in the same layer. For the case of large bedrock mo-

tion, the shearing strength was not enough for some brief 

moments. Since the deposit was horizontal, there was no 

driving force to cause large strain to develop during these 

brief moments. The occurrence of shearing stress which ex-

ceeded the shearing strength could have been eliminated by 

allowing inelastic slip(56) to occur. 

Figure 8-9 shows the downward surface displacement of 

the deposit for the two cases. The volume decrease in the 

deposit associated with the settlement could be decomposed 

into two parts. The first part was due to the volume reduc-

tion of pore water by the excess pore water pressure, and 

was proportional to the excess pore pressure level. The 

second part was attributed to the volume of water that was 

expelled out of the deposit from the ground surface. This 
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small bedrock motion 

large bedrock motion 
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TIME IN SECONDS 

Figure 8-7 Example 8-1, time variation of effective 
stress and pore water pressure 
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Figure 8-8 Example 8-1, time variation of shearing 
strength and shearing stress 
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volume was proportional to the gradient of excess pore water 

pressure in the deposit. The pore water pressure at the 

ground surface was zero and the excess pore pressure gra­

dient was nearly uniform between 0 and 31.25 feet, as shown 

in Figure 8-11. Hence the volume decrease due to drainage 

was also proportional to the excess pore water pressure 

level. One can compare Figure 8-7 and Figure 8-9 to see 

that this indeed was the case. If the motion of the bedrock 

was stopped at 2 seconds, the settlement would continue un­

til the pore water pressure distribution becomes hydrostatic 

again. 

Figure 8--10 shows the lateral displacement of the ground 

surface relative to that of the bedrock as functions of time. 

The fundamental frequency of the deposit before shaking was 

2.678 Hertz. At 2 seconds, the fundamental frequency was 

1.343 Hertz for the small excitation case and 0.584 Hertz 

for the large excitation case. Since the exciting frequency 

was 4 Hertz, higher than the fundamental frequency of the de­

posit throughout the 8 cycles of shea~ing, the relative dis­

placements shown did not indicate the overall shearing strain 

of the deposit. 

Figure 8-11 demonstrates the spatial distribution of 

the effective stress, drop in the effective stress, and the 

excess pore water pressure at 2 seconds. For both cases, 

the excess pore water pressure was very close to the drop in 

the effective stress. Note that the bedrock was impervious 

and hence there was no excess pore water pressure gradient 

at the bottom of the deposit. 
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Figure 8-9 Example 8-1, time variation of downward surface 
displacements 

+l 
lH 

.020 small bedrock motion 
S 
0 
+l ---- large bedrock motion +l 
0 
.0 

· U) .005 ::-
p, 
0 
+l 

\ r · \ /' U) / J \ .,-t -.010 I '0 

I \ / · \ N I \" 
.,-t 
H \ I 0 ..c: v 

-.025 

0 .4 . 8 1.2 1.6 2.0 

time in seconds 

Figure 8-10 Example 8-1. time variation of horizontal dis­

placements 



-121-

o ~ ground surface and water table 

6.25 

12.5 

18.8 

25.0 

31. 3 

37.5 

43.8 

50.0 
o 500 1000 

time = 2 seconds 

1500 

drop of effective 
stress or rise of 
pore water pressure 

2000 2500 

effective stress, drop of effective stress, and 
rise of pore water pressure, psf 

Figure 8-11 Example 8-1, spatial variation of effective 
stress, effective stress drop, and pore 
water pressure rise 
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Example 8-2. Frequently the water table may lie below 

the ground surface. This may either be a natural state or 

a fill has been placed to bring the surface level above water. 

In either cases, its effect is to increase the shearing 

strength of the deposit. It was seen in the previous exam­

ple that for the large bedrock motion, the deposit did not 

have sufficient strength to sustain the 8 cycles of shearing. 

The response of the same deposit with the same bedrock motion 

is studied in this example when a 12.5 foot layer of soil 

was placed as overburden. 

The fill was composed of a soil with a moist unit weight 

of 103 Ib/ft3 . GO and Lm were computed from Equation (6-10) 

and Equation (8-4) respectively. The deposit below the water 

table was divided into 8 equal intervals. The discretized 

GO and Tm are shown in Table 8-2. 

TABLE 8-2 

SMALL HOTION SHEAR MODULUS AND SHEAR STRENGTH 

Layer GO' psf Tm' psf 

1 1. 279 x 106 416 

2 1. 440 x 10 6 529 

3 1. 586 x 10 6 640 

4 1.719 x 10 6 753 

5 1. 842 x 106 864 

6 1. 958 x 10 6 976 

7 2.067 x 106 1088 

8 2.171 x 106 1200 
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The response of the deposit is shown in Figures 8-12 

through 8-18. Figures 8-12a and 8-12b indicate that in 

layer 6 the shearing stress was larger, while the shearing 

strain was smaller than that when the fill was absent. The 

dynamic shearing stress-shearing strain curves in Figure 8-13 

show that the shearing stress developed was not large enough 

to cause rapid weakening, such as those shown in Figure 8-6, 

although the softening trend was evident. 

The time variations of pore water pressure and effec­

tive stress at a depth of 31.25 feet below the water table 

are shown in Figure 8-14. At the end of 2 seconds, the pore 

water pressure was still increasing at a high rate. This 

indicates that the soil still had a big margin of safety at 

the end of 2 seconds. 

The strengthening effect of the fill upon the deposit 

is more clearly shown in Figure 8-15. Co~pared with Figure 

8-8, it is seen that for the same number of shearing cycles 

the deposit with fill had a greater margin between the time 

varying shearing strength and the act'lal dynamic shearing 

stress. 

The downward displacement of the surface, shown in 

Figure 8-16, was larger than that shown in Figure 8-9. This 

was caused by the higher excess pore water pressure, which 

was, in turn, caused by the larger changes in the secant 

shear modulus during shaking. 

In Figure 8-18, the distribution of the effective stress 

across the deposit at five selected instants are plotted. 
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Figure 8-12 Example 8-2, time variation of base velocity, 
shearing stress, and shearing strain 
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Figure 8-14 Example 8-2, time variation of effective 
stress and pore water pressure 
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Figure 8-15 Example 8-2, time variation of shearing 
strength and shearing stress 
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The effective stress at the original ground surface was set 

to be the weight of the fill per unit surface area. As a 

result, the minimum effective stress occured at a greater 

depth. Since the initial effective stress was larger at a 

greater depth, the severity of liquefaction throughout the 

whole deposit was lessened. 

Example 8-3. Consider a 50 foot deep round-grained sand 

deposit. It was composed of 8 layers of sand having equal 

thickness. Layers 4 and 5 had a smaller porosity and were 

much less premeable than the remaining layers. The soil 
. 2 

properties were: for all layers, p = 5.13 Ib-sec /ft, a = 1, s 

R = 3, c
l 

= 0.8, ~ = 1.2, for layers 1,2,3, and 6,7,8, n = 

0.4, ¢ = 34 degrees, KO = 0.4354, k = 0.00328 fps, for layers 

4 and 5, n = 0.35, ¢ = 40 degrees, KO = 0.3558, and k = 

0.0000328 fps. The relevant pore water properties were: 

C = 2.34 x 10- 8 ft 2/lb, and p = 1.94 lb-sec2/ft. The shear-w w 

ing strength and the small motion shear modulus throughout the 

the deposit were computed from Equations (8-4) and (6-10). 

The discretized GO and Lm are listed in Table 8-3. 

The lateral velocity of the bedrock, shown in Figure 

8-l9c, was sinusoidal with a frequency of 4 Hertz and a single 

amplitude of 0.06 fps. The deposit was inclined by 1 degree 

and the water table was at the ground surface. 

Because of the gravity, the initial shearing stress was 

proportional to the depth. The dynamic shearing stress and 

shearing strain in layers 5 and 6 are shown in Figures 8-l9a 

and 8-l9b. In both layers, the dynamic shearing stress and 
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TABLE 8-3 

SMALL ~mTION SHEAR MODULUS AND SHEAR STRENGTH 

Layer GO' psf Tm' psf 

1 0.469 x 10 6 61 

2 0.812 x 10 6 168 

3 1.049 x 106 280 

4 1. 523 x 10 6 403 

5 1. 741 x 10 6 525 

6 1. 579 x 10 6 635 

7 1. 713 x 106 
746 

8 1.837 x 10 6 859 

shearing strain oscillated around their initial values after 

the initial transients disappeared. The shearing strains 

were skewed with respect to the initial shearing strains, 

indicating that permanent shearing strains occurred. After 

about 0.8 seconds, the shearing strain in layer 5 was con­

siderably larger than that in layer 6, although the shearing 

stresses in these two layers were close. This is explained 

later. 

The shearing stress-shearing strain relationships are 

shown in Figure 8-20 and Figure 8-21. Due to the initial 

shearing stress and shearing strain, the loops are not cen­

tered approximately around the origin. The soil was strained 

into a more nonlinear region in one direction than the other. 

It is also seen that after 3 cycles of shearing, layer 5 

became considerably softer than layer 6. 
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Figure 8-22 illustrates the time variations of pore 

water pressure and effective stress at 25 feet and at 31.25 

feet from the surface. These two sets of curves are similar 

except for the static values of pore water pressure and 

effective stress. 

Figure 8-23 shows the dynamic shearing stress and the 

shearing strength in layers 5 and 6. In layer 5 the peak 

shearing stress exceeded the shearing strength after about 

0.8 seconds for some brief moments. This was not considered 

to be a failure, since the lack of strength was only tem­

porary. However, relatively large shearing strains resulted 

from this temporary shearing strength deficiency. This can 

be readily seen in Figure 8-l9b, in which the peaks of 

shearing strain in layer 5 deviated remarkably from those 

in layer 6 temporarily after about 0.8 seconds. 

Failure of an inclined deposit is considered to occur 

when the shearing strength of any layer of the deposit be­

comes less than or equal to the average static shearing 

stress in that layer. In the present example, failure occurred 

when the shearing strength of layer 5 dropped below its sta­

tic shearing stress at 1.4 seconds. The computation was ter­

minated when failure occurred. After the failure large la­

teral or downhill movement would occur. The modeling of 

mass earth movement itself is beyond the scope of the study. 

Figures 8-26 and 8-27 illustrate the spatial variations 

of the piezometric head and the effective stress at five 

selected instants. The soil below the less permeable layers 

was sheared nearly in an undrained condition. As a result, 
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Figure 8-22 Example 8-3, time variation of effective 
stress and pore water pressure 
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Fisure 8-23 Example 8-3, time variation of shearing 
strength and shearing stress 
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the effective stress reduction and the piezometric head were 

nearly uniform in this portion of the deposit. The condition 

of the soil that lies above the less permeable layers was 

very similar to that shown in Figure 8-11. Water squeezed 

out of the upper portion of the less permeable zone was 

drained upwards more easily than that in the lower portion. 

This is evidenced by the difference in the gradient of the 

piezometric head in the less permeable layers. Minimum 

average effective stress occurred in the lower portion of 

the less permeable zone during the late stages of shearing. 

It was this portion of the deposit that failed first. 

The response of the same deposit resting on a horizontal 

rock surface was also obtained. The dynamic shearing stress 

and shearing strain were similar to those in the inclined 

deposit, except that the strain was smaller. The initial 

rise in pore water pressure and the corresponding drop in 

effective stress were less rapid in the horizontal deposit 

than those in the inclined deposit. This could be explained 

by the larger changes in the secant shear modulus in the in­

clined deposit in which the initial shearing stress was 

present. The shearing strength of the horizontal deposit 

was slightly larger than that in the inclined deposit during 

the 8 cycles of shearing. The downward displacements of the 

ground surface were almost identical for the two cases. This 

displacement for the inclined deposit is shown in Figure 

8-24. The lateral relative displacement between the surface 

and the bedrock of the inclined deposit, shown in Figure 8-25, 
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Figure 8-24 Example 8-3, time variation of downward 
surface displacement 
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was larger than that of the horizontal deposit. This dif­

ference was due to the gravitational force. 

The response of the same horizontal deposit subjected 

to a slightly larger excitation was obtained as well. A 

single amplitude of 0.07 fps, instead of 0.06 fps, was used 

for the bedrock velocity. In this case, liquefaction was 

completed beneath the less permeable layers at approximately 

1.82 seconds or after 7 cycles of shearing. Due to the 

absence of any driving force, no large deformation was 

developed, although the soil at a depth of 31.25 feet was 

in a liquid state. 



CHAPTER 9 

LIQUEFACTION CASE STUDIES 

During the earthquake of June 16, 1964 in Niigata, 

Japan, 340 out of the 1530 reinforced concrete buildings 

in the city were damaged by the earthquake. From the dis­

tribution of buildings that tilted more than 2.5 degrees, 

Ohsaki (48) defined three zones of severity of damage in 

Niigata. The map showing the zones of damage is shown in 

Figure 9-la. 

The soil strata of Niigata City is composed of sand 

layers. It was observed that in zone C, the heavily da-

maged zone, light structures buried in the ground, such as 

a reinforced concrete box for purifying sewage floated up, 

while heavy buildings sank down. (48) Numerous sand craters 

were also observed. These facts indicate that liquefaction 

was completed at some locations during the earthquake. There 

is a section in zone C on which a 9 foot till had been placed. 

This section showed no evidence of failure due to liquefac­

tion while the surrounding areas without fill were damaged. (62) 

It was also observed that ground failure due to liquefaction 

did not occur in zone A or zone B. The different severity 

of liquefaction in the same city during the earthquake was 

attributed to differences in soil conditions. (48,62) Thus 

the soil behavior of Niigata provides an opportunity to 

judge the applicability of the proposed model for liquefac-

tion. 

The responses of the deposit in zone B, zone C, and the 

-143-
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Figure 9-1 Zoning of damage and soil profile of Niigata(86) 
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filled section in zone C to an earthquake were studied. In 

zone A, the water table was about 10 feet below the ground 

surface, and the soil conditions were assumed to be similar 

to those of the section with fill. Thus no study was con­

ducted for zone A. In the following sections the soil con-

ditions, the earthquake used, the response of the ground in 

the 3 areas of interest and a discussion on the computed 

results are presented. 

9-1. Reported and estimated soil conditions. 

Sand layers underlie the city of Niigata. A cross 

section of the strata together with three lines indicating 

the blow counts, N, of the standard penetration test are 

shown in Figure 9-lb. Very loose sand with N-values less 

than 5 lie near the ground surface. Loose and medium sand 

with N-values between 10 and 30 lie, in general, at depth 

from 30 to 45 feet below the ground surface. Sand with N 

values greater than 30, in general, lie at a depth greater 

than 45 feet. The distance between the ground surface and 

firm base material is about 200 feet. (62) Lens-like layers 

of silty sand are scattered about in the sand layers. (48) 

This local non-uniformity was not considered in the study. 

Since soil usually does not fail in shear at large effec­

tive confining pressure, only the top 50 feet of the deposit 

was used in the case studies. The depth of saturated depo­

sit was 47 feet. This depth was divided into 7 equal layers. 

Soil properties varied with depth, but in each layer, they 

are considered to be uniform. The water table in both zone 

B and zone C was 3 feet below the ground surface. 
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The specific gravity of the solid material in Niigata 

sand is 2.66. (75) The unit weight of the sand above the 

water table was estimated as 110 lb/ft3 and the submerged 

unit weight was estimated as 50 lb/ft3 . (62) Based on this 

submerged weight and the unit weight of water, a porosity 

of 0.52 was calculated. Niigata sand is poorly graded, 

with a coefficient of uniformity less than 5. (48) The per­

meability was estimated as 0.00024 ft/sec. All the proper­

ties described above were considered common to all zones. 

The differences in soil conditions between zone Band 

zone C were characterized by the blow counts, N, from the 

standard penetration test. The variations of the blow 

count with depth for these two zones has been reported by 

Seed(62) and is reproduced in Figure 9-2. It is seen that 

at a depth of 15 feet from the ground surface or deeper, 

the penetration resistance of zone C was considerably less 

than that of zone B. This infers the shearing strength of 

zone C was lower than that of zone B. The friction angle, 

¢, for the 7 layers in both zones could be obtained from 

the blow counts by using the correlation established by 

Peck, Hanson and Thornborn. (80) The blow counts and ¢ 

values in degrees are listed in Table 9-1. 

The coefficient of earth pressure at rest, KO' was es­

timated as 0.46 for zone Band 0.48 for zone C, and was con­

sidered to be uniform in both zones. Due to the high void 

ratio, which was assumed to be common for all zones, Equa-

tion (6-11) was used to calculate GO for the three areas. 
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TABLE 9-1 

BLOW COUNTS AND FRICTION ANGLES IN ZONE B AND ZONE C 

Zone ·B Zone C 

Layer No. Blow Count ...! Blow Count <t> 

1 7 29 6 28 
2 8 29 7 29 
3 13 31 8 29 
4 19 33 10 30 
5 26 35 17 32 
6 34 37 24 34 
7 39 38 30 36 

A comparison was made between the Niigata sand and 

that at the Eglin Field, Florida. The Eglin marine sand(8l) 

is a medium, poorly graded sand with a void ratio of appro-

ximately 0.7. The specific gravity of the solid material 

of Eglin sand is 2.66 and its moist unit weight is 110 lbj 

ft 3 . The envelope of the grain size distribution curves of 

the Niigata sand, reported by Ohsaki(48) , dnd that of the 

Eglin marine sand, reported by Heller(82) , are shown in 

Figure 9-3. Based on these data, it was assumed that Nii-

gata sand is similar, but has a lowe~ density than Eglin 

marine sand. Figure 9-4 shows the comparison between the 

estimated small motion shear modulus of the deposit in 

Niigata city and the same quantity in the Eglin Field Site. 

The latter was determined in situ by vibration and steady 

state tests. The tests only extended to a depth of 12 feet. 

It can be seen that the estimated small motion shear modu-

Ii throughout the deposit were realistic. The small mo-

tion shear moduli so estimated were used for both zone B 

and zone C. 
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Before estimating the bulk moduli, the following obser­

vations were made. Al-Hussaini(83) conducted plane strain 

and triaxial compression tests on saturated Chattahoochee 

river sand to demonstrate the effect of relative density 

and strain conditions on the strength and stress-strain 

characteristics of sand. He concluded that the bulk modulus 

of sand tested increased with increasing relative density. 

On the other hand, Richart, Hall and Woods (54) demonstrated 

that, besides its influence via void ratio, relative density 

has a negligible influence on low strain level shear modu­

lus. pyke(52) also observed that variations of low strain 

level shear modulus with respect to relative density were 

not very great. Thus it is reasonable to anticipate that, 

in general, the ratio of bulk modulus, B, to the small mo-

tion shear modulus, GO' increases with increasing relative 

density. Based on Figures 4 and 8 of AI-Hussaini's paper, 

the following tabulation of variation of B/GO versus rela­

tive density was obtained. The effective confining pres-

sure corresponding to the derived data in Table 9-2 is 70 

TABLE 9-2 

VARIATION OF B/GO W.R.T. RELATIVE DENSITY 

relative density 36 42 63 77 88 95 

B/GO .633 .717 1.22 1.43 1.67 2.34 

psi. The bulk moduli B were secant moduli, calculated from 

Figure 4 mentioned above. In the course of obtaining GO 

from Figure 8 of AI-Hussaini's, a Poisson's ratio of 1/3 
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was assumed. Table 9-2 supports the stated trend that B/GO 

increases with increasing relative density. This trend was 

assumed to hold for Niigata sand. 

The moduli B and GO can be regarded as properties of 

the soil skeleton at small deformations. For small defor-

mations, the soil skeleton can be treated as a linear elas-

tic material. Therefore, the ratio B/G O can be expressed 

in terms of Poisson's ratio, v, as(60) 

= 2(1 + v) 
3(1 - 2v) 

(9-1) 

The Poisson's ratio of each zone in Niigata City was 

not reported and hence had to be estimated. It would be 

helpful if the Poisson's ratio of a similar sand were known. 

This information was again provided by the test data of Eg-

lin marine sand. The shear wave speed and the pressure wave 

speed of the unsaturated soil were obtained in situ at the 

Eglin Field Site by vibratory and steady state methods. (81) 

The motion of soil during these field tests was small, thus 

elasticity theory applied. The Pois[on's ratio calculated 

from these two wave speeds lie between 0.36 and 0.46. Based 

on this information and noting that Eglin marine sand is 

denser than Niigata sand, the Poisson's ratio of zone B in 

Niigata was estimated as 0.4 and that of zone C in Niigata 

was estimated as 0.3. From the estimated Poisson's ratio 

and from Equation (9-1), B/GO was calculated as 4.67 for 

zone Band 2.17 for zone C. 

Because of the fill, the effective confining pressure 
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was larger in the filled area than that surrounding it. The 

moist unit weight of the fill was estimated as 110 lb/ft3 . 

The depth of the fill was 9 feet(62), and the water table 

was 12 feet below the ground surface. Except for the pro-

perties that were affected by the effective confining pres-

sure, the soil was considered to be the same as that in zone 

C. The initial small motion shear modulus and the initial 

shear strength for the three areas are summarized in Tables 

9-3, 9-4 and 9-5. 

TABLE 9-3 

INITIAL GO AND lm IN ZONE B 

Layer No. GO' psf lm' psf 

1 0.457 x 10 6 
114 

2 0.591 x 106 191 

3 0.700 x 10 6 306 

4 0.794 x 10 6 
439 

5 0.878 x 10 6 
589 

6 0.955 x 10 6 754 

7 1. 026 x 10 6 902 

For all zones, the soil below the water table was 

assumed to be fully saturated. A bulk modulus of 4.26 x 10 7 

2 psf and a mass density of 1.94 lb-sec 1ft were used for the 

pore water. In the modified Ramberg-Osgood relationship, a = 1, 

R = 3.0 and Cl = 0.8 were used for all the case studies. 



-153-

TABLE 9-4 

INITIAL GO AND Tm IN ZONE C 

Layer No. GO' psf Tm' pSf 

1 0.426 x 106 115 

2 0.597 x 10 6 206 

3 0.707 x 106 289 

4 0.802 x 10 6 396 

5 0.887 x 106 540 

6 0.965 x 10 6 
701 

7 1. 037 x 106 875 

TABLE 9-5 

INITIAL GO AND T IN THE FILLED m SECTION OF ZONE C 

Layer No. GO' psf Tm' psf 

1 0.773 x 10 6 322 

2 0.861 x 10 6 428 

3 0.941 x 10 6 511 

4 1. 014 x 10 6 633 

5 1. 083 x 10 6 805 

6 1.147 x 10 6 990 

7 1. 208 x 10 6 1190 

9-2. The excitation used in the case studies. 

The maximum ground acceleration recorded at the base-

ment of an apartment building during the earthquake was re­

corded as 0.16g. (62) The bedrock is located ~t about 200 
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feet below ground surface and its motion was unknown. Seed 

and Idriss scaled down the accelerogram of the Taft earth-

quake of July 21, 1952 by a factor of 0.72, and then used 

it in the analysis of liquefaction in Niigata. (62) 

Since only the top 50 feet of the deposit was used in 

the present study, it was necessary to specify the motion 

of the sand at a depth of 50 feet, instead of at the bed­

rock. The velocity obtained by integrating the accelero­

gram of the Taft earthquake was multiplied by 0.55 and was 

used as the horizontal velocity of the sand at a depth of 

50 feet. The corresponding maximum acceleration at the 

ground surface, computed through the use of CHARSOIL(84) 

was O.16g. This specified velocity, or the "base velocity" 

is shown in Figure 9-5. 

9-3. Results and interpretations of the computed response. 

Shown in Figure 9-6 are the time histories of shearing 

stress in layer 4 of zone B, zone C, and the filled section 

of zone C. During the first 3 seconds, the dynamic shearing 

stresses in zone B and zone C were similar. This is rea-

sonable since the "base velocity" variation was small during 

this period and both zone B and zone C were strong enough 

to be responsive to the excitation. The shearing stress in 

layer 4 of the filled area of zone C was different from 

that in the remainder of zone C. This was attributed to the 

9 foot fill which strengthened the soil and changed the 

natural frequencies of the deposit. The shearing stress 

variation of the filled section was larger than those in 
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zones Band C. After 3 seconds the variation of "base velo­

city" became more violent. The shearing stress trace in zone 

B began to deviate from that in zone C, with zone B being 

more responsive to the shaking. The shearing stress in 

zone C became smaller after 7 seconds of shaking, indicating 

that the deposit was softened considerably. The improvement 

of performance attributed to the fill was reflected by the 

higher shearing stress, compared with that of zone C, during 

the same time interval. Figure 9-7 shows the strain history 

of the three cases. After 6 seconds, the strain difference 

between zone B and zone C was more pronounced. The strain 

in the filled section of zone C was smaller than that sur­

rounding it, although the shearing stress developed in the 

latter was smaller. 

Figures 9-8, 9-9 and 9-10 show the hysteresis loops of 

layer 4 of zone B, zone C, and the filled section of zone 

C. It is seen that near the end of the shaking, the incre­

mental strain associated with a given incremental stress 

was much larger in zone C, than those in zone B and the 

filled section. This sharp contrast suggests that at the 

end of 10 seconds, zone C failed while zone B and the filled 

section did not. However, the rigidity of zone B and the 

filled section had been reduced as well. 

Figures 9-11, 9-12 and 9-13 show the rising pore water 

pressure and the corresponding effective stress reductions 

at a depth of 20.14 feet. It is seen that liquefaction was 

almost completed in zone C at this depth. In the filled 

section the drop in effective stress was the largest among 
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Figure 9-11 Time history of effective stress and pore 
water pressure in zone B 
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Figure 9-12 Time history of effective stress and pore 
water pressure in zone C 
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Figure 9-13 

TIME IN SECONDS 

Time history of effective stress and pore 
water pressure in the filled section of 
zone C 
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these three areas. The level of effective stress in the 

filled zone remained higher than that in zone C during the 

transients, because the initial effective stress in the 

filled zone was larger. Figures 9-12 and 9-13 reveal that 

after 3 seconds, the time rate of effective stress reduc­

tion in the filled section was greater than that in zone C. 

This corresponds to the more violent motion of the "base". 

At about 7 seconds the difference in the rate of decrease 

of effective stress started to diminish. After 9 seconds 

the difference was almost non-existent. Meanwhile, the 

"base" was still moving violently. Hence the results sug­

gest that for a given period of shaking, there was a net 

gain in effective stress, and hence in shearing strength, 

when a fill had been placed. 

Figures 9-14, 9-15 and 9-16 show the shearing strength 

and the shearing stress in layer 4 of the three areas. Since 

the friction angle of layer 4 of zone C was 3 degrees less 

than that of layer 4 of zone B, the initial shearing strength 

of the former was less than that of the latter. The high 

initial shearing strength of the filled section was caused 

by the higher initial effective confining pressure in the 

deposit. In all three areas, the dynamic shearing stress 

exceeded the shearing strength for several brief moments 

after 6 seconds. At 10 seconds the shearing strength in 

zone C was only 7.9 psf as compared to 83.3 psf in zone B 

and 41.7 psf in the filled section of zone c. 

Figures 9-17 and 9-18 show the time variation of the 

relative displacement between the "top" and the "base" of 
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TIME IN SECONDS 

Figure 9-14 Time history of shearing strength and 
shearing stress in zone B 
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.... +---------;---------~---------+--------~--------~ 
'0.00 2.00 q.OO 6.00 8.00 10.00 

TIME IN SECONDS 

Figure 9-15 Time history of shearing strength and 
shearing stress in zone C 
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TIME IN SECONDS 

Figure 9-16 Time history of shearing strength and 
shearing stress in the filled section 
of zone C 
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the deposit. The magnitude of the settlements were consis­

tent with the pore water pressures. All were very small. 

The horizontal relative displacement traces were similar to 

the strain traces shown in Figure 9-7 except that the dif­

ference among the three displacement curves was not as 

large. This is reasonable since the strain traces shown 

are associated with the weakest layer. 

The spatial variation of effective stress in zone B 

and zone C at several selected moments are shown in Figure 

9-19. In zone C, liquefaction was almost completed after 

9 seconds of shaking. In both zones, loss of effective 

stress increased with depth. However, at a greater depth, 

the soil had more effective stress that could be lost po­

tentially. The soil at a shallower depth lost its effec­

tive stress almost completely before the same situation de­

veloped at a greater depth. On the other hand, the fill 

maintained the effective stress near the water table at an 

approximately constant level. Therefore the critical depth, 

the depth at which liquefaction was first completed, was 

some intermediate depth. 

9-4. Discussion of the computed results. 

It is believed that the estimated soil properties are 

reasonably representative of those in situ at Niigata. How­

ever, the imposed velocity at a depth of 50 feet was only a 

crude estimate of the actual event. There was no specific 

reason for using the Taft earthquake accelerogram, except 

that Seed and Idriss(62) used it in a similar study. A 
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Figure 9-19 Spatial variation of vertical effective stress 
in zone B and zone C at selected moments 
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factor that scaled down the velocity, obtained from the Taft 

accelerogram, was used. Its magnitude was determined by the 

crite~ion that the maximum ground acceleration, computed 

from CHARSOIL, matched with that actually recorded, i.e., 

O.16g. It is noted that in this computation the loss of 

effective stress of the deposit was not considered. When 

the loss of effective stress was taken into consideration, 

the resulting maximum ground acceleration was smaller than 

O.16g. Table 9-6 is a summary of the maximum accelerations 

computed for the three different areas. By examining the 

TABLE 9-6 

COMPUTED MAXIMUM GROUND ACCELERATIONS 

CONDITIONS 

from CHARSOIL, zone C 

zone B 

filled section in zone C 

zone C 

MAXIMUM GROUND 
ACCELERATION 

O.16g 

O.09g 

O.07g 

O.07g 

TIME TO MAX. 
ACC., SECONDS 

7.26 

6.83 

4.58 

3.37 

time to the maximum ground acceleratiGn and the "base" velo-

city shown in Figure 9-5, it is S2en that when the loss of 

effective stress was considered, the deposit became rather 

soft before it could experience the large excitation 

occurring during the late stages of shaking. 

The maximum acceleration alone is not an adequate de-

scription of an earthquake excitation but the frequency 

content of the earthquake needs to be considered as well. 

A comparison between the Taft accelerogram(62) and the 



-172-

Niigata accelerogram(86) revealed that the Taft earthquake 

contains more high frequency components than does the Nii-

gata earthquake. Thus more shearing cycles were involved 

when the Taft accelerogram was used. This fact may some-

what offset the discrepancy of the smaller calculated acce-

leration at the ground surface. 

Figures 9-14 and 9-15 indicate that there was a dif-

ference of 43 psf in the initial shearing strength between 

zone B and zone C. Although helpful, this difference was 

not the only factor which differentiated the response of 

these two zones. In this study, the bulk moduli were es-

timated from the small motion shear moduli and Poisson's 

ratios. The bulk moduli thus estimated were kept constant, 

while the shear moduli were allowed to change according to 

the effective stress. The larger Poisson's ratio of zone B 

implied a smaller percentage of its constrained moduli that 

could be reduced by shaking. This percentage was an impor-

tant factor that differentiated the response of zone B from 

that of zone C. 

In order to describe the severity of liquefaction, an 

index called IIrelative fluidity", is defined as follows 

initial current 
relative = constrained modulus - constrained modulus 
fluidity initial constrained modulus - bulk modulus 

Before shaking starts, the relative fluidity is zero. When 

the rigidity is completely lost by shaking, there is no 

difference between the constrained modulus and the bulk mo-

dulus, then the relative fluidity equals 1. The changes 
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in conditions existing in the three areas are shown in 

Table 9-7. At 10 seconds, the relative fluidity in the 

4th layer of the deposit in zone C was almost I, indicating 

its shearing rigidity was almost non-existent. 

TABLE 9-7 

INITIAL AND FINAL CONDITIONS IN THE THREE ZONES 

Filled Section 
Zone B Zone C of Zone C 

initial C c' psf 4.768 x 10 6 
2.811 x 10

6 3.554 x 10 6 

C at 10 sec, psf 3.863 x 10 6 
1. 743 x 10

6 
2.301 x 10 6 

c 

B, psf 3.709 x 10 6 1. 741 x 10 6 2.201 x 106 

relative fluidity 0.8546 0.9981 0.9261 

During the 10 second period, the first pressure wave 

speed almost remained constant while the shear wave speed 

dropped considerably. The tangential sheer modulus of 

layer 4 in zone C and in the filled section of zone C drop-

ped to less than 1/6 of its original static value for a 

large portion of the last 2 seconds of shaking. Since the 

accuracy of the shear wave submodel has not been investi-

gated for the large interpolations associated with low tan-

gential shear moduli, these portions of the results were 

only qualitative. 

The significantly different computed response obtained 

for each region is in agreement with the actual performance 

observed at Niigata. In addition, Figure 9-19 shows that in 

zone C, after about 9 seconds of shaking, a zone of low 



-174-

effective stress, ranging approximately from 13 feet to 

27 feet below the water table, was established. In Figure 

19 of the work by Seed and Idriss(62) , the "zone of lique­

faction after 10 seconds of ground motion" ranged from 15 

feet to 27 feet below the water table. These two results 

compare favorably although the term "liquefaction" used by 

Seed and Idriss means zero effective stress or excessive 

shearing strain, instead of just low effective stress. In 

the same study, Seed and Idriss reported a greater margin 

of safety in the filled section of zone C than that of zone 

B. While in the present case studies, liquefaction was 

more severe in the filled section of zone C than that in 

zone B. 

All the computations were performed on the Amdahl 

470V/6 computer at the Computing center of The University of 

Michigan. The time steps used in the computation for zone 

C was 0.01225 seconds in the shear wave submodel and 

0.001225 seconds in the pressure wave submodel. For the 

10 seconds of shaking the CPU time used was 28 seconds. 

The program for the liquefaction model is listed in Appendix 

3. 



CHAPTER 10 

SUMMARY AND CONCLUSIONS 

A numerical model was developed for liquefaction in a 

horizontal or nearly horizontal deposit subjected to ground 

shaking. The deposit was considered to be one dimensional, 

composed of layers of soils with different properties, and 

the water table could lie at or below the ground surface. 

The model was composed of two interactive parts, i.e., the 

shear wave submodel and the pressure wave submodel. The 

modeling of plane shear wave propagation in a soil deposit 

was reviewed. The development of the pressure wave submodel 

and a coupling between the two submodels was presented in 

detail. 

The soil was idealized as a two-phase medium composed 

of water and a structural skeleton. The shearing behavior 

of the skeleton was strain-softening. In J:he vertical di­

rection, the soil deformation was considered to be constrained 

compression. Stress-strain relationships for the two phases, 

with the skeleton under constrained cOlpression, was develop­

ed. For the structural skeleton, a secant constrained modu­

lus, its inverse being the constrained compressibility, was 

used. It was assumed that the bulk modulus of the skeleton 

remained constant during shearing, but that the shear modulus 

decreased with shearing strain amplitude. Therefore, accord­

ing to Equation (4-40), the secant constrained modulus was 

reduced by shearing strain. This was the fundamental hypo­

thesis of the liquefaction model. 
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The governing equations for pressure wave propagation 

in saturated deposits were then formulated. An analytical 

solution for a uniform linear elastic deposit undergoing 

steady oscillatory motion in the vertical direction was ob­

tained. This solution was employed to study the influence 

of permeability and porosity upon the response of saturated 

deposits. 

The set of governing equations for the pressure wave 

propagation was demonstrated to be hyperbolic for a wide 

range of soils, and a numerical procedure based on the method 

of characteristics was developed. Excellent comparisons 

between the numerical solution and the analytical solution 

for a deposit in steady oscillatory motion were obtained. 

With the variation of constrained compressibility included, 

the numerical procedure was used to calculate changes in 

effective stress and pore water pressure, settlement of the 

skeleton, and upward flow of pore water in nonlinear deposits 

when the stiffness of the skeleton was weakened rapidly. 

Satisfactory results were obtained. 

A coupling between the propagation of shear waves and 

the vertical motion of the soil due to changes in its con­

strained compressibility was developed. The two s ubmode Is , 

when coupled together, constituted the model for liquefac­

tion. Several examples were used to demonstrate the fea­

tures of the model and the results were in agreement with 

known behavior of saturated deposits during shaking. In 

addition, the model showed that when the movement of pore 
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water was not inhibited the effective stress in a deposit 

approached zero asymptotically as shaking continued. The 

effective stress could be reduced to zero rather quickly 

if the movement of pore water was inhibited by a less per­

meable layer. The use of the model to predict the onset of 

lateral spreading of a slightly inclined deposit due to li­

quefaction was also demonstrated. 

Case studies in relation to the Niigata earthquake of 

1964 were presented. Three areas of Niigata city were in­

volved and a significantly different computed response was 

obtained for each region. This was in agreement with the 

actual performance observed at Niigata. These case studies 

demonstrated the potential applicability of the model to 

liquefaction. 

, ' 

In this study, liquefaction was considered as a process, 

instead of a state. Hence, in saturated deposits with strain­

softening shearing behavior, liquefaction always took place 

no matter how slight the shaking. A measure of severity of 

liquefaction was given by the "relative fluidity", an index 

defined in Chapter 9. 

Further studies related to the present model should 

include verifications of Equations (4-40) and (4-42) by ex­

periments or by available data. The shearing stress-shearing 

strain relationship used for saturated soil undergoing rapid 

shearing is also needed to be substantiated experimentally. 



APPENDIX 1 

By using Darcy's law, it can be shown that the viscous 

force generated by flows in a rigid porous material can be 

regarded as a body force. This is shown in the following. 

Darcy's law for vertically downward flow can be written 

as 

n W = k d (p ) dz 0 g - Z , 
W 

or 

(A-I) 

Let Z be a body force per unit mass of water, positive 

in the z direction. For steady flow, balancing of forces 

on an elementary volume of water yields 

dP 
dz = p Z + P g w w 

From Equations (A-I) and (A-2), one obtains 

This equation is used in deriving Equation (5-5). 

-178-

(A-2) 

(A-3) 
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1? C '1 = C 3 >:' C n F X P ( 1 U'I 1 '3 ) - L MIl ) ) ':' I ) 1 1\1 F X P ) 
P'1=IC'3-f\(3)/i\ll »n~RR 
r,l~= 1. 
nn 13 I=l,I\IFXP 

l?' (4 = (4 ':<(r1F X P IlL MIt.. ) - L M ( 1 ) ),:en 11\1 F X P ) 
P4=(C4-A(4)/I\(l »/RRR 
P ') = ( C ( '1 ) 1 C III >;, ( '3 - i\ ( ?, ) 1 i\ III ) 1 A l\ A 
P~=(CI4)/Cll)*C4-AI4)/l\ll) )/1\~i\ 

C1.=I. 
nn 14 T=l,I\IFXP 

14 Cl=Cl*CnFXPILMll)*n/NFXP) 
P7=AMP/(CIl)*C1*I\I\Al 
S ( ?, ) = P 7 1 1 ( P A- P? ) >:' lIP') - PI) 1 ( P A.,.. P? ) - ( P ?,...,. PI) lIP 4 - P 2 ) ) ) 
S(4)=-IP3-Pl)/(P4-P?l*S(3) 
S(?'=-SI3,*P1-S14)*P? 
S ( 1 ) =- S ( ? ) >:' 1\ ( ? ) 11\1 1 ) - S ( :3 l >!< A ( '3 11 A ( 1 l..,..S ( 4 l ':' A (4 l 1 A ( 1 ) 
n77=n/f\l 
77=-n77 
1\1 P 1 =f\I+ 1 
n n 1 0 [) I I = 1 • "" P 1 
77=7Z+f1Z7 
"IRITF( A.333)77 

1 ITT M r I • R X , I , 11 I • 1 [) X , I IN 7 I • 1 [) X, IS' , 1 1 X • ' T ' ) 
nn 2 1=1.t.~ 

CCC(Il=l. 
n n ? " = 1 • 1\1 F X P 

2 CCCI I )=CCC( I »:'CnFXPI LMI J )>!'7Z/f\IFXP) 
P=Sll)*A(l,*CCC(1'+SI?)*AI?l*CCCI?)+SI3)*1\(3)*CCC(3)+ 

1S141*1\(4)*CCCI4) 
o=Slll*Rll)*CC(1)+S(?)*R(?)*CCC(2)+SI'3)*R(3)*CCC(3)+ 

lS(4)*R(4)*CCCI4) 
H = S 1 1 ) ':' C ( 1 ) ':' C C C 1 1 ) + S I 2 ) ':'C ( ? ) ':'C C C ( ? , + S ( '3 ) * C ( ?, ) ':< C C C ( 3 ) + 

IS(4)*C(41*CCCI41 
G=S(I)*CCCIl)+SI?)*CCCI?)+SI3)*CCC(3)+S(4,*CCC(4) 
SS=(Al\*P+A22*O)/lnM*7) 
TT=(All*P+I\A*O)/(nM*1) 
<l;l\MPH=Cnflf1SIH) 
<t,I\MPG=cnABS(G) 
$I\MPss=cnARS(SSl 
ct,1\1v1PTT=Cf1ARS ITT) 
<l;ANGH=nATAN?(f1IMAGIH).nRFl\L(H)) 
<l;I\NGG=nATAN2(nIMf\G(G).nREAL(G) ) 



r: 
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1; MI G S S = n IH t\ I\I? e n I M t\ G C S S ) • mn: til. e s s ) ) 
1iANGTT=nATAN?cnIMAGCTT).nRFALCTT» 
I,/R I TFe A.22? )~AMPH,.$AMPG. <f;AMPSS. tLlMPTT 
I., R I T F ( A.? 2? ) .$ A N r, H • t l\f'H~ r, • t A "I r, s S • $ ""I r, T T 

??? FnRMATCIOX.IOFl?5) 
n T F = C T F W) - T S TAR T ) / C "I P T - 1 ) 
TF=TSTIIRT-nTF 
f) n 4 T = 1 • ~J P T 
TF=TF+DTF 
777=nM*TF-l.S707gA~ 

1i1l7=$I\MPH>!«f)FXP( 7>:« 777+'tIl"Ir,H» 
<f;W7=1iAMPr,*(f)FXP(7*C717+'tI\NGG» 
1;SSS='tI\MPSs*(nFXPC7*(777+<f;ANGSS» 
<f;T=tAMPTT*(DFXP(7*(777+'I;I\NGTT) ) 

4 I.' R J T F ( A. 2 2? ) T F • $ 1 I 7 • t h' 7 • <f; S S S • <I; T 
100 r:nNTIt\llfF 

r,n Tn 10 
99 STnp 

F"ln 

( SAMPIF nllTA 
c 
~nIN F=.4.RHnF=1.94.RHnS=5.1~.(C=2.4n-7.cw=?~n-R,K7=.OOl. 
AMP=.?nM=3?40A.N=10,NPT=?TSTI\RT=O •• TFNn=1.,n=400 •• 
"I F X P = 5 • r. F ,...1 n 



APPENDIX 3 

C F T I F 1\1 I I r, /I. T /I. 1 / 7 / 7 A 
C 1\1 nl'11 PI FAR T R M.I S T F f'H S n F L /I. Y F R F n SAT I I R L\ T F n n F P n S T T 
C SIIR.IFC TFD Trl (;Rrllll\ID SHI\K I Nf, 
C RAM R F R r, - n S r, n n D R F "F R SAL R A S F D nl'J S H FAR HI r, S T R A I f\1 
C T/lNr,FNT r, IN SWI\VF. SCFNT f, IN PWAVF 
C HnRT7nf'Htd. ()l)AKF INf)IlT IS FFFn THRnl)f,H nF"ICF 7 
C THF snIl. DFPnSTT M/l.Y RF TNCLII\IFn. 
C III\IJ FnRM SFCT lfif\1 Tf\.Ir, nN RnTH P-I./A\/F AI\ID S-I~I"\lF SIIRRnllTI NFS 
C ?f\ID. nRDFR INTFRpnl.I\TTnf\1 AT pnIf\ITS ? ANn ~ 

r. <tR nRl\lT t)=f)NII A=-X 7=OllAKF\lFL R=nIlTFILF T=30 
C 
C 1\11\ M F S F n R I f\1 P I IT 
C 
C t\.R.C: cnl\lSTMITS 11\1 FOS. (A-U)) Af\.ID (A-11) 
C til P: PARAMETER nl RAMRFRr,-nsr,nnn RFLATIm,IS 
C KO: cnEFFlr:IHIT nF FARTH PRFSSIIRF AT RFST 
C D: DEPTH nF THF DFPnSITCSATIIRI\TFD PI\RT). FT 
C F: pnRnSITY 
C RHnF: MASS DFNSITY nF t./ATFR. SLIlr,S/FT**3 
C RHns: ~1ASS DFI\ISTTY nF snLIn, SLlIr,S/FT**3 
C 1'1: f\IIJMRFR nF F()IIAL nISTAf\ICF II\ITFRVALS 
r. TMA X: T AMF S P Af\1 fiF CnMPl1T A T I nf\IS, S FC 
C cw: cnMPRFSSIRILITY nF WATFR. FT**2/LR 
C SIf,Mll\l: MJf\.IIMIlM FFFFCTIVF STRFSS.PSF 
C THFTA: FRICTInN ANr,LF, RADIANS 
CAMP: AMPLITUnF nF F~FnRnCK \/HnCITY, FPS 
C nM: FREOIJFI\ICY rlF RFnRnCK VELnCITY, RAnIAf\IS/SEC 
r: R: PAPAMFTFR IN THF RAMRFRr,-nsr,nnD RFLATlrlNS 
r: K7: PFRMFI\RILITY, FPS 
C J P R •. I P R S T f, : PRJ 1\1 T 1 f\1 r, PAR A M F T FRS 
C CRFAC: RATIn nF RIILK MnDllLIlS Tn STlITIC SHFAR MnDIILlIS 
C ISIM: ISP1=1 IMPLY FARTHOIlAKF FXCITATInN 
C FAC: A FACTnR APPL I FD Tn FARTHC)lJII.KF \fELnc lTY II\IPIIT 
C 1\14: l\ilJMRFR nF EARTHnlJAKE VFLflCTTY nATA pnlf\ITS 
C III: DFTAILEn nliTPIiT IS PRII\ITFn nllT FnR THF IIITH LAYER 
C SLRl.StR?: cnNSTAl\lTS liSEn FnR RFnRnCK FXClTt\Tlnl\l 
C TSTnp: TIME THAT FXCTTATInl\1 IS SllSPFl\lDFn 
C TPMIN,TPMI\X: TIMF II\ITFRVAL FnR DETII.ILFD p-I·JA\/F nllTPUT 
C TPMAII\I: TIME AFTFR \,IHICH nliTPIiT STl\RTS 
C SLnPE: SLnPE nF DFPnSIT. RAJlIAf\lS 
C M,MMM: Tnp ANn AnTTnM LAYFRS nF A LFSS PFRMEARLF znNE 
C Tnc: TnC=SHEAR STRFNGTH/YIFL[) SHFl\R STRFSS 
C v.1: nVFRRIJRDOf\I, f)SF 
C 
C I\IAME FnR nliTPllT 
r. 
C SIGR: FFFFCTT"F STRFSS. PSF 
C ppnR: pnRF WIITFR PRFSSIIRF. PSF 
r: nrS71: nm","IWI\RD SlJRFACF [)ISPLACFMFI\IT. FT 
C TTAI1: SHFAR!I\Ir, STRFSS 11\.1 LAYER Ill. PSF 
C S S Tl\1 : S H FAR I f\1 r, S T R A I 1\1 I 1\1 LAY F R I I I 
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C (;: TII"Ir,F"ITIAt SHFIIR 1"1r1f)1JUIS rlF LAYFR ITI, PSF 
C ru 0 : R F 1.11 Tl V F I) I S P L 1\ C F M F 1\1 T ( t 1\ T F R 1\ L) H F Tl-J F F 1\1 
r. SIJRFIH:F M"I) RrlTH1M rlF DFPns IT, FT 
(, T 1\ II M : S H F II R I w; S T R F 1\1 (; T H n F ," 1'lY F R I I I. P S F 
r. T /I , J ( 1 ) • T /II I ( ~I ) • T f\ 1 , ( "I] ) : S H F fl. R I "I r, S T R f= S S F S. P S F 
C ppnRI\ll: PrlRF I"IIITFR PRFSSIIRF AT THF RrlTTnM. PSF 
C r,S: SFCA"IT SHF/IR MnrlllLIIS rlF LflYFR r IT, PSF 
C T C : J NrlF X T H 1\ T T R 1\ C F S T H F RAM R F R (; - n s (; nn f) C II R V F S 
C 
C 
C 

TMPLICIT RFflL*R(fI-H.K.L.n-7) 
C n M 1-1 n "I / P P P / SIr, R ( 1 0 ) • I J 7 ( 1 n ) • I" 7 I , ( 1 0 ) , S 1 J ( 1 n ) • T ( 1 0 ) , 

lOISll.OFLTr,(IO),CC(10),CR(10).I\ALl(10),RTl(10),05H, 
1 1,17 f) ( In) • S D ( In) • I) ') • n 4 A ( 1 0 ) • f) 41) R ( 1 0 ) • n 4 A? I) ( 1 0 ) • n? ( 10 ) , 
1 K 7 ( 1 () ) • C I.' , D F '" T (; n ( 1 () ) • n L n r, ( J 0 ) , n T P (;, nf~ ( 1 0 ) • 0 A ( 1. n ) • n A • 
1. () II /I 1 • () II I\? , () 1 1/\ ~ , T PM I 1\, • T P M fI X • C C n ( 1 0 ) ,M • M MM. "I"'. I () II I T 

r. n M ~~ n"l ISS S / T /\ 1 I P ( 1 n ) • T A I I ( 1 0 ) • n T ( 1 0 ) , fI C C , P K /I C C , P K T , 
1 n T S X ( 1 0 ) • S L R 1 , S L R? , T S T rl P • r. \I ( q q g ) , F !\ C • T S I M 

cnMMnN /RARnsr,/(;0(10).TY(10),R(10),(;(10).(;S(10),flLP 
1 • II X n ( 10) , I J X ( In) • I R F V ( ] 0 ) • T C ( ? 0 ) , I VC ( 10 ) 

cnMMnN n7P,RHnF.RHnS,TF,nT.nTP.AMP.nM. 
1 F ( In) • R H n ( I 0 ) • 1.1 • S S ,_ n P F • ~.1 • 1\11 • ,J, J " 

n I M F 1\1 SIn 1\1 T fill n ( 1 0 ) • V S ( 1 0 ) • \I P ( 10 ) • V P ? ( 1 n ) • SST 1\1 0 ( 1 0 ) 
1 • K 0 ( 1 0 ) • T H F T !\ ( 1 () ) , P 7 H ( 1 () ) • P 1,1 P rl ( 1 0 ) • F ( 1 0 ) , n F LSI r, ( 1 0 ) 

NflMFLIST/OIN/I\,R.C.flLP.Ko.n.F.RHnF,RHnS.N,TMflX,CW,SIr,MIN, 
1 TH F T A • fI M P , nM • R , K 7 , ,J P R • " P R SIr, • C R F AC , J S 1M. F flC , 1\If~ , I I I 
1 • SIR 1 • S L R 2, T S Tn P • T P M T ~I, T PM /I X • T P M fI I 1\1 .S L n P F , M , M M ~~, T OC • 1.1 

TY F L n ( X X • X K • X T ) = • ') ':' X X':' n S n R T ( ( ( I • + X K ) ':' n S I "I ( X T ) ) ':":' 1'- ( I • - X K ) 
1':'*?) ITne 
r,n,n(XX.XK)=/I*(R-FN)**?/(I.+FN)*((l.+?*XK)/~.*xx)**e 

110 RF/lO("i.nTN.FNn=qq) 
loiR I TF ( A. f) I f'..1 ) 

J F ( I S 1M. F (). I ) R FAn ( 7 • II? ) ( C V ( J ) • I = 1 • 1\14 ) 
lI? FnRMI\T(gFR."i) 

rOil T T= 0 

1\11 = "1+ ] 
nTS71=0. 
nn 4 T = 1 • ~J 

RHfl( I )=F( I )':'RHnF+( I.-F( I) )':'RHns 
'+ F(T)=F(I)/(l.-F(T») 

F"I=F ( 1 ) 
nFLSI(;(l)=o. 
,) ,J ,1=0 
,J.LI} =0 
n7 p= n 1"1 
PK~CC=O. 

PK T=O. 
C T~JTTAl r.n~nITInN 

77=0. 
77.7="'1 
nn R 1=1. ~,Il 
117(I)=n. 
1"711( J )=0. 



Inn( 1 )=0. 
P 1.1 P n ( T ) = 1 Z 
TfT)=-777 
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SIr,R( T )=-Z7-T( T) 
IIX(I)=O. 
IIXn(I)=O. 
TAII( I )=77Zt,~f)ST~I( SI_nPF) 
T F ( I • F o. "11 ) r,n Tn R 
77=77+RHnF*~??*n7p 

77Z=Z77+RHn( T )>:'3??'~n7p 
R nlSX( 1 )=0. 

SII(l)=O. 
Sn(l)=o. 
77=0. 
nn Rl 1=?,~.I1 

TluJn( I-I )=.'i':'(TAII( 1-1 )+TAII( I)) 
77=7Z+RHnF*~??*n7p 

SII( I )=-77*F( 1-1) 
Rl sn( J)=-lZ':'F( T) 

\lSMAX=O. 
nn 71 T=l,f\! 
11=1+1 
n T ( 1 ) = • 'i"'< ( r 1\ II ( T ) + T 1\ II ( T 1 ) ) 
F"I=F ( T ) 
T Y ( T ) = T Y F L n ( • 'i ':« S J(~ R ( 1 ) + S J (; R ( J 1 ) ) • K 0 ( J ) .T H F T A ( T ) ) 
(;O( I )=r,nLD( .'i>:« SJr,R( T )+SIr,R( r 1) ),KO( J)) 

[ R ( I ) = 1 • I ( [ R FA [>:, r,O ( I ) ) 
\/S( T )=f)snRT((;O( I) IRHn( I)) 
1 F ( \J S ( I ) • (; T .. \f S M,., X ) \I S ~1 f'>. X = V S ( I ) 
S S Tf\! 0 ( I ) = • 'i >:< ( T A II ( I ) + T 1\ II ( I 1 ) ) 1(;0 ( T ) >!« 1 • + 

1 (. ')>:,( TAI)( I )+TI\II( 11» ITY( T) »:~",« R( 1 )-1.» 
1\1[( 1 )=1 
TRF\f( T )=1 
nFL T(;( I )=0. 
nu)r,( T )=(;O( T) 

·71 nFLT(;(T)=O. 
\,1 R I T F ( A.? 2 2 2l ( r, 0 ( 1 ) .I = 1 , f\! ) 
\,1 R 1 T F ( A, 22? ? ) ( \I S ( 1 ) • T = 1 , 1\.1 ) 
1,1 R I T E ( A.? 2 2 ? ) ( T Y ( I ) , 1 = 1 ,1\1 ) 

2??? FnRMAT(10F1??) 
\/PMAX=O. 
nn 181=1,'" 
C C ( I ) = 1 • I ( 1 • ~ 3 ~:n ~ ':' n ,_ nr, ( I ) + 1 .. I C R ( I ) ) 
[cn( I )=CC( I) 
nl=l./(RHrl( T )-F( T)>!~RHnF) 
n?(T)=-n1 
n~=-RHrl(I)*nlf(F(I)*RHnF) 

n4(I)=nl 
n'i=-1./[1.' 
nA( T )=-F( 1)/[1,1 

nR=n5 
n 7 = - 1. / ( F ( I ) * C \" ) - 1 • I C [ ( T ) 
lIl\ll (I )=n4( T ),:~nR+n3>:~nA( I )+nl,:tn'i 
R T 1 ( I ) = n 1 ,:t n4 ( I ) - n? ( I ) >:~ n 3 



nt;R=/)t;):<f)R 
n4 A( I) =n'd T )):<nnc I ) 
n4t;R ( T ) =n4 ( I )):'f)'1R 
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n'.A71)( T )=/)'d T )*f1A( T )+n2( I ),;<n'1 

"I = II A I 1 ( T ) + r) ? ( I ) ':' D 7 
R T = ( n t; R - f1 6 ( T ) ,;< f17 ) >:< R T 1 ( T ) 

"P 7 ( T ) = n SO R T ( ( III. - n s n R T I II I. ':' 1\ L -4 .00* R T ) ) ):' • c::; nO) 
"PII)=nSORT((I\I.+[)SORT(AI.*AI.-4.nO*RT))*.'1no) 
T F( \/P I J) .(;T. \lPMAX) IlPM/lX=VP (I ) 

J A rnl'H I f\IIIF 

1,/ R I T F ( A. 2 2 ? ? ) ( \I P ( I ) • I = 1 • '" ) 
1,/ R T T F I A. 22 ? 2 ) ( \I P 2 ( I ) • T = 1 • '" ) 
o T P = /) 7 P /1/ P M /I X 
1\1 "I = I n PH ( \I P M 1\ X / \I S ~~ fI X ) 
nT=nTP):<~"~1 

1,/ R T T F ( A, ? 2 ?'~ ) n T P • f) T • 1\1'" • n 7 P 
nn ?? 1=1,1\1 
IF(\lSI I )':'I)T .r,T.nlP)(flLL FXIT 
I F ( \I P ( T ) ):< I) T P • r, T • n 7 P ) ( AI. L F X IT 

?? rn", TI"'"F 
IFI\lS(N)*nT .r,T.nlP)CAl.l FXIT 

? ? 24 F n R MAT I 1 X • ' f) T P = , • F 1 ? • I).' n T = , • F 1 '2 • c::; . ' '" f\1 = , , I ?' 0 Z P = , • 
1 F 1 ? • 5 ) 

nTPr,=DTP):'37.? 
SSI nPF=fH):'3? .2';,OS p., (SIJ1PF) 
ntlAl=D7P':Q n7P+f)lP) 
ntlI\2=-n7p~<f)lP 

011"::3=1 n7 p+n7D )~'117P 
TF=(). 
(;( III)=r,O( III) 
r,S ( I I I ) =r,o ( TTl) 
Ir(IIJ)=o 
r,n Tn 73 

?O TF=TF:+nT 
JJJ=,),I,J+l 
TF(TE.r,T.TMAX)r,n Tn 111 

r " I L S 1,1 " \I r= 
nn ? 1 I = 1. "I 
nFLT(;nl I )=nFLTr,( I) 
n F I .. T (; ( I ) = ( r, S ( I ) - n L n r, ( T ) ) I "I "I 
1 F ( T R F \I ( T ) • F n. 0 ) n F ,_ T r, ( T ) = 0 • 
TF(TF.r,F.TSTnp)nFLT(;(T)=O. 

? 1 rn"l TI "II IF 
nn 25 1='2, "-' 1 
nFLSlr,( I )=0. 
I F ( SIr, R ( T ) • L F • SIr, ~~ I ".1 ) n F I. S T r, ( T ) = S r r,."1 T '" 

? c::; en"l TI "III F 
nn q I = 1. N 
Tl=I+1 
T F ( I R F II ( I ) • F () • 1 ) r, n Tn q 
F 1\1 = F ( T ) / ( 1 • - F ( T ) ) 
nLnr,( T )=r,O( I) 
r e ( I ) = 1 • / ( 1 • ::3 3 3 3 ., 3 * n I .. n r, ( I ) + 1 • / (R ( I ) ) 

q en"'TI"ltiF 



C /I L L P \,1/\ \I F: 
T F ( T Ot I IT. En. 1 ) r, n Tn 1 1 1 
nn 14 1=1,1\1 
J1=I+1 
HI= F ( I ) / ( 1 • - F ( I ) ) 
rltnr,( T ):::r,S( I) 
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r,o ( I ) ::: r, rl U){ • ') ~c( <) 1 r, R ( T ) + n F L SJ r, ( T ) + SIr, p, ( 1 1 ) + n F '- SIr, ( I 1 ) ) , K 0 ( T ) ) 
TAII( I )=TA\lP( J) 

TY ( t ) = T Y F U)( • S ~< ( SIr, R ( I ) + n F L q r, ( T ) + SI r, R ( 11 ) + n F LSI r, ( I 1 ) ) 
I.KO( I). THETI\( T)) 

/4 IRF"( T )=1 
TI\II(1\11 ):::TAlfP(f\ll) 
nrl 1R 1=1,1\1 
IF(TAI'f1(T).r,F.TrlC':<TY(I»r,n Tn 1q 

? R C nJ\1 TI 1\11 1 F 
r,rl Tn ~O 

1q 1,IRITE(A.l11S)I.TF 
1111) FnRMAT(lX,'RFACH I\ln. 1.11,1 FAILFn AT I,Fl1.4,' SEcnl\lnS.1) 

CALL FXIT 
~O TF(TE.LF.TPMAIN)r,n Tn 10 

c 

I F ( ,LLI / "P R S I G>:< J P R S I G .1\1 F • ,1",1 ) Gn Tn? A 
1,1 R I T F ( A, 1 11 :1 ) T F. ( SIr, R ( I ) • I = 1 • f\1J. ) 
nn 77 1:::1,[\.11 

77 P7.H( I )=(-Sn( I )/F( I )-pt.IPn( T) )/(~??;'tRHnF) 
1.1 R I T F ( A. 1 1 1 4 ) T F , { P Z H ( J ) • J = 1 • 1\1 1 ) 

11]4 FnRMAT(lX,'TF=',F10.4,' PZH::: I,lOF10.3) 
111:1 FnRMAT(1X,'TF=',FI0.4.' SIGR= '.lOFIO.?) 

?A IF(,JJ,I/,JPR>:<,IPR.FO.JJ,J)Gn Tn ?3 
Gn Tn 10 

1:1 ppnR=-Sn( JII)/F(III) 
p P nR 1\11 = - S I ) ( I'll ) / F ( 1\1 ) 
S S T[\J = SST 1\1 0 ( I I I ) + ( n I S X ( I I I + 1 ) - n I S X ( I IT) ) / n Z P 
IF(nARS(SSTN).GT •• OS)CALL FXIT 
TTt\lI=.S':<( TAII( I I I )+TI\II( I I 1+1») 
Tl\IIM=Tne'QY( I IT) 
RFn:::nTSX(I)-nISX(N1) 
,J J ,J 1 = .J J J 1 + 1 
I,IR I T E ( R, 113 ) P pn R , S I G R ( I I I ) , n I S Z 1 • T T .M I • SST N , G ( I I I ) , R En, T AlJ M, 

1. T 1\ I I ( 1 ) , T 1\ \J ( [\.1 ) , T All ( 1\11 ) ,p P n R 1\11 , G S ( I I I ) , I C ( 1 I I ) 

1 l:3 F n R ~1 AT ( 2 F n. 1. FlO. 7. FR. 1. FlO. 7. FR. O. F 1 o. ') • SF R. ? , FR. 0 ,I :3 ) 
r,n Tn 10 

111 \,IR I TE ( A, 114) ( F ( 1 ) , 1::: 1,1\1) 
114 FnRMAT(ISFR.S) 

lAIR I TE ( A. 11 A) P K 1\ C C , P K T 
1 1 A F n R MAT ( 1 X, 1 M 1\ X. r, R nil 1\1 T 1\ C C. ::: '. F 1 1 • 4. 1 n C C II R F n 1\ T I, F 1 2 • 4 • 

liS F C nJ\if) S. 1 ) 

\-1 RITE ( R • 11 ') ) n T • J P R • "J ,11 
lIS FnRMAT(FR.').2T4) 
qg S Tnp 

F 1\1 11 

S II R R nil T I 1\1 E S I-I A \I F 
IMPLICTT RFAL*R(A-H.K.l.n-Z) 
C n M M nl\1 / S S S / T All P ( 1 0 ) • T 1\ I f ( 1 0 ) • n T ( 1 0 ) • ACe, P K Ace. P K T , 
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InTSX( In) .SI_RI.SlR?TSTnp.(\I(qqq) .FAC. ISJM 
cnMMnN IRARnS~/Gn(ln).TY(ln),R(ln).G(ln).~S(ln),ALP 

1 • II X n ( 1 n ) .11 X ( 1 n ) • T R F \I ( 1 n ) • 1 ( ( ? n ) • I \lC ( I () ) 
OlMMn(\1 rl7.P. RHrtF. RHns. TF. fn. nTP. AMP. nM. 

1 F ( 1 n) • R Hn ( 1 () ) • \.1. S S L n P F • f\1 • f\II • ,I.)" 
nJMFNSIrJN IIX!>(]Ol.\lS(l() 
nn n 1 = 1 • r,! 
TT=.5>:« TMI( I )+TAII( 1+1)) 
r:ALL GG(TT.I1T(l).I) 
nT(T)=TT 

n \1St I )=nS()RT(~( I )/RHfl( T» 
J)n q I=? N 
IPl=J+l 
IMl=I-l 
[lP=1./f1S0RT(RHn( TMl )':'G( IMl» 
ClM=l. /f1S0RT( RHn( I )':'(;( I» 
THAP=IIS( un )t,'nT/[)7P 
THAM=\lS( T »:<fH In7!> 
IIXR=IIX( I )+THAP>!'(IIX( IMI )-IIX( I») 
TAIIR=TAII( I )+THAP':'!TAII( IMI )-TCIII( I» 
IIXS=IIX( T )+THAM':'(IIX( IP] )-IIX( I) 

TI\II$=TAI)( I )+THAM':« TAII( TPI )-TAIl( I» 
CP=Cl P':<TAlIR-IlXR+SSLnPF 
(M=-C] M':' T AIIS-IIX S+ S S L np F 
T A" P ( I ) = ( C P - C M ) I ( C 1 P +r: 1 r-1 ) 
IIXP( I )=TAllP( I »:'CIP-CP 

q flJSX( I )=J1!SX( J )+.S>!'(IIXP( T l+IIX( I) )*f)T 
C IIPPFR R.C. 

CIM=I./nSORT(RHn(Il*G(l) 1 
THAM=\lS(l)*nT/n7.p 
IIXS=IIX( 1 )+TH/\M*(IIX(? )-IIX (1» 
TAIIS=TAII( 1 )+THM~';':( TAII( 2 )-TAIl( 1» 
CIM=I./f1S0RT(RHn(I)':CG(] ) 
(M=-C 1 M,n AIIS-IIX S+ S S L r1P F 
wGnT=w/(16.1*nT) 
T 1\ II P ( 1 ) = ( \4~ n T ':' S S L n P F - ( T 1\ II ( 1 ) + \...1 G n T >!' ( II X ( 1 ) + C M ) ) ) / ( 1 • + 

11,IGn T':' C 1 M ) 
IIXP( 1) =-( TAlIP (1 )':'CU4+P~) 
1Ir:r:=(IIXP( 1 )-IIX( 1) )lfn 
IF(nARS(ACC).~T.PKACC)PKAcc=nllRS(Ar:C) 
IF(nARS(ACC).GF.PKACC)PKT=TF 
DTSX( 1 )=I)ISX( 1 )+.5':'(IlXP(1 )+11 X ( 1) )*f1T 

C Ln\.IFR R.r:. 
rF(ISIM.F().l)~n Tn R 
IIXP(Nl)=AMP*nSIN(nM*TF)*(I.-SlRl*J1FXP(-SLR?*TF)) 

R I F ( I S 1M. F O. 1 ) II X P ( (\11 ) = C \} ( "" ,) ) * F A C 
IF( TE.~T.TSTnp)I)Xp(f\ll )=(). 
THAP=\lS(N)*f1T/n7P 
/I x R = lJ X ( N 1 ) + T HAP ':' ( II X ( (\1 ) -II X (f\ll ) ) 
T .1111 R = T II II ( N 1 ) + TH A P ,;, ( TIIII ( f\1 ) - T All ( (\11 ) ) 
C 1 P = 1 • Ins 0 R T ( R H n ( ~! ) ':' ~ ( (\1 ) ) 

C P = TAli R ':' C 1 P -II X R + S S L n P F 
T A II P ( N 1 ) = ( C P +( I X P ( "'I ) ) / ( 1 P 
IIXP((\IJ. )=CIP':'TIIIJP( (\11 )-CP 
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n 1 S X ( 1111 ) = DIS X ( 1\1 1 ) + • ') ,;. ( \ I X P ( 1\11 ) + I IX ( 1\11 ) ) * n T 
( IIPOfl.TT1\IG \I/l.Rlfl.RLES 

( 

r. 

nn 10 T=1,1\11 
IIxn( 1) =IIX ( J ) 

101IX(I)=IIXP(T) 
RFTIIRf\1 
Ff\'n 

S I J R R n I J T I 1\1 EGG ( T T • fl T T • I ) 
IMPLU-:IT RFAL':'f~(/I-H.K.L.n-z) 

(nM M n 1\1 I R II R n S GIG 0 ( 1 0 ) • TV ( 10 ) • R ( 10 ) • G ( 10 ) • G S ( 10 ) • /I. L P 
1 • II X n ( 10 ) • I J X ( 1 0 ) • 1 R F \I ( 10 ) , I I": ( 70 ) • I \Ie ( 1 0 ) 
n I M F 1\1 S T n N II P ( 7 0 ) • V M ( 7 0 , 7 0 ) 
G\I(OV.nR)=l./(].+nR*/lLP*OARS(OV)**(nR-l. » 

G S" ( f) Y • f) R ) = 1 • I ( 1. • + /l L P~' n J\ R S ( n Y ) >!< ':' ( DR - 1. • ) ) 
GR n ( f) Y • f) YO. DR ) = 1 • I ( 1 • + nR~' f\ L P>:, n fI. R S ( ( DY - f) Yn ) 17. ) ::o,~ ( DR -1 • ) ) 
G S R n ( 0 Y • n V fl. n R ) = 1 • I ( 1 • + 1\ I. P ':' n 1\ R S ( (f) Y - fW 0 ) 17. ) *,~ ( f) R -1 • ) ) 
T=TT/TY( I) 

nT=nTT/TY( I) 

TF(IVC(I).Ffl.O)Gn Tn 10 
TF! (\Jxn( I )-lJxn( I+1) ),:qIlX( 1 )-IIX( 1+1» .IT.O. )GO Tn 5 

q G( I )=GO( I )';'G\I(T.R( 1» 
r..S ( I ) =GO ( I ) ':'GS \f ( T • R ( I ) ) 
TI":(I)=O 
R F TIlR 1\1 

') 1\1C( 1 )=0 
lIP( I )=IIX( 1+1 )-IIX( I) 

IC( 1 )=7 
YM( 1,1 )=-nTT 
YM( 7. 1 )=rlTT 
IRF"( 1)=0 
r..( r )=r..O( I )'!«~Rn(T.nT.R( r» 
r..S( 1) =GO( I )':'r..SRn( T .nT.R (T» 
RFTIJRJ\I 

1 0 1 F ( n f,. R S ( T ) • r, F • n l\ R S ( Y M ( 1 • 1 ) IT Y ( I ) ) ) r..n Tn 1. ') 
TF( (lJxn( I )-IIXn( 1+1) )':«IJX( I )-IIX( 1+1) ).GT .0. )r..n Tn 20 
IIP( I )=IIX( 1+1 )-IIX( I) 
IC( T )=1(( 1 )+1 
IF( IC( I ).(;T.?O)IC( I )=lq 

TRF\I( 1)=0 
I F ( II P ( I )::, ( T - V~I ( I ( ( I ) -1 • 1 ) IT Y ( T ) ) • r.. T • O. ) G n Tn? 7 
YM( ICI I). I )=rlTT 

1 1 r.. ( T ) = r..O ( I ) ':' (; R n ( T • Y M ( I ( ( I ) • T ) IT Y ( I ) • R ( I ) ) 
r..S( I )=GO( I )':<GSRnIT,YM( I(( I). I )/TY( I ).R( I» 
R FTtlRlI1 

15 1\1C( 1)=1 
r..n Tn q 

70 1 F ( I J P ( J ) ':< (T - Y M ( I C ( I ) -1 .I ) IT Y ( I ) ) • LT. O. ) r,n Tn 1 1 
?? 1((1)=T((I)-? 

TF(TC(T).E(}.3)r..n Tn 11 
IF(l((l).r:fl.?)r..n Tn 11 
Gn Tn ?o 
FJ\ln 
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SIIR R nil TI 111 E P I,/A \IF 
IMPLICIT RFAL*R(A-H.K.L.n-l) 
nIMFNSrrlt\1 117P( 10) .1"'lPII( 10).SPII( 10) .TP( 10).TR(4.4.10). 

1 T S 6" F ( 4. 10 ) • I. ( '+. 1 0 ) • t-I Z PI) ( 1 0 ) • S P I) ( 10 ) 
C nM M n t\1 I P P PIS I r, R ( 1 0 ) • 1/ 7 ( 1 0 ) • ,., 7 t I ( 10 ) • S II ( 1 0 ) , T ( 1 0 ) • 

1I)IS71.I)FlTG(10),CC(10),CR(10).AAl1(lO).RT1(10),I)SH, 
11,' 7 Ii ( 10) • S I) ( 10 ) • f) S , f)4 A ( 10 ) ,f)4 SA ( 10) • f)4A 2 "i ( 1 0 ) • I);;> ( 1 0 ) • 
1 K 7 ( 1 0 ) • C I,' , Ii F l T r, n ( 1 0 ) • n L f) r, ( 1 0 ) • I) T P G, n4 ( 1 0 ) , f) A ( 1 0 ) , J) R • 
] Oil A 1 • 011" 2 , Oil A 3 • T PM I t\1 • T P ~1 A X • C C n ( 10 ) • M • M M 1"1 , t\1r>J • 1011 I T 

CflMMnI',1 liZP. RHnF, RHns, TF. I)T, I)TP. AMP. nM, 
IF( 10) .RHr1( lO).I.,/.SSLnpF.N,f\11 ,.1.1" 

IN 7 P II ( ", 1 ):: 0 • 
1.17PI)( N1 )=0. 
SPII(!)=O. 
Spn(l)=O. 
117P(t\1l )=0. 
TTMF=TF-I1T+JHP 

100 lin 1 T = 1. t,1 
n L f) r, ( T ):: n Ul r, ( I ) + Ii F '- T r, ( T ) 
CC( r )=1./(1.333333'mLI)G( r )+l.ICR( I» 
1)7=-1./( F( r )~'CI")-1./ccn( T) 
AL=AAI.l (J )+D?( I )~'1)7 
RT=(I)SR-116( I )~'f)7)':'RT1( I) 
rHm = D S n R T ( J\ I. ':' "l-4. 110~' R T ) 
I. ( 1 • I ) :: I) SO R T ( ( 1\ L + I) I) I) ) * . S ) 
L ( ?, r ) = I) S (J R T ( ( "l- n I) I) ) >!'. "i ) 
f.( 3, I )=-L( 2. T) 
L(4.I)=-LC1.T) 
C nf\.1 S T 1 = - 1 6. 1 ':' n T P ':' F ( I ) ':' n L~ ( I ) I K 7 ( J ) 
cnNST7=. A6A(-,A7':'CC( I ),:,nFIH;( J )/F( r) 

nn 1 .'=l.l~ 

TR ( ,J. 1 , I ) = ( L ( .J. T ) >:' '- ( ., • J ) '::r) S + f)4 A ( T ) * I) 7 - f)4 S R ( I ) ) I ( L ( J, I ) 
1 >!' nl. A2 S ( I ) ) 

T R ( .I, ? I ) = ( l( .,. I ) - HU J • 1 • I );~ f) 2 ( T ) ) I 1)4 ( I ) 
T R ( . J • 3 .' I ) = ( L ( " • I )~, T R ( . ) • ? • T ) - f) R ) I D A ( J ) + C n t\1 S T 7 
T S A \I F ( .I, I ) = T R ( ,I. ? I ) - en,,' 5 T 1 >!' ( T R ( .J • 1 • I ) ':' F ( T ) ':' R H n F -

1 TR ( .1,2. I H' R H n ( J ) ) 
TR (.1,4, I )=1.-cm.IST7':'F( I) 
TR ( J • 2 • J ) =? • ':' T R ( ., • ? • r ) - T S "V F ( ., • r ) 

1 cnNTI1IIIIF 
C SIIRFflCF R.C. 

TH3=-I. (3.1) ':'DTP 
TH4=-L(4.1)*f)TP/DZP 
0IlA4=( nZP+D1P-nn ),:« f)7P-TH3) 101llll 
OIlAS=TH3>:'( nn-nlP-D7P) 101/1\2 

OIl A A=TH3':' (TH3-nz P) IOI'.lI3 
S 3= 51) ( 1 ) >!'OIJ1\4+St I ( ?) ':COII/\ 5+511 (3) *Ollll A 
T3= T ( 1 ) ':' OlJ!l4+ T ( ? ) ':'0111\ 5+ T ( 3 ) ~«()t ILl A 
I 17 4 = II 7 ( 1 ) + T H'~ ':' ( I / 7 ( ? ) -I I 7 ( 1 ) ) 
1./7 4 = w 7 I) ( 1 ) + T H 4 ~( ( 1./ Z II ( ? ) -1./7 n ( 1 ) ) 
S 4 = 5 I) ( 1 ) + T HL~;~ ( S" ( ? ) - Sf) ( 1 ) ) 
T4= T ( 1 ) + TH'~':' ( T ( ? ) - T ( 1 ) ) 
"73= III ( 1 ) >!< Oil 1\4 +1' 7 ( ? ) ':'OIU\ 5 +117 ( 3 ) >!' 011 A A 
"', Z 3 = 1..J 7 Ii ( 1 ) ~~ () II J\ 4 + I,.' 711 ( ? ) '!< ° 11.11 5 + "" ,7'1 , ( 3 ) ':' 011 1\ A 
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(. m,J S T 2 = • A 6 h A Af,f., 7 'i,« C ( 1 ) ':'11 F L T r, ( 1 ) IF ( 1 ) 
(nN S T3=. A6AAAAA7':'CCO ( 1 ) ':'IIF L Tr,n ( 1 ) /F ( ] ) 
( 3 = T R I 3 • 1 • 1 ) ':' II r1 + T S A V F ( 3 • 1 )':c ,,11 3 + ( T R ( :3. :1 • 1 ) -C 01\' S T 2-

1cnl\IS T3 H'S3 
1 + ( 1 • + CONS T 3,;' F I 1 ) ) >:' T 3 + T R ( 3 .1 • 1 ) ':'11 T P r,+ T R ( 3.4. 1 ) ':<"'1 

C 4 = T R I 4 • 1 • 1 ) ':< I 174 + T S t\ V F I 4. 1 ),;, W Z 4 + I T R ( 4 • 3. 1 ) - C nl\1 S T ? -
1 C 0"1 S T 3 ) ':' S 4 
1 + ( 1 • + C fll'l S T 3 ':' F ( 1 ) ) ':' T 4 + T R ( 4. 1 • 1 ) ':< nT P r, + T R ( 4 • 1+ • 1. ) >:' W 

,,11 PI I ( 1 ) = ( C 3 IT R ( 3 • 1 • 1 ) -C 4 IT R ( 4, 1 • 1 ) ) I I T R ( :1. 2 • 1 ) I 
1 TR ( 3. 1 • 1 ) - T R I 4. ? • 1 ) IT R ( 4. 1 • 1 ) ) 

1,17PII( 1 )=I,IZPII( 1) 

I 17 P ( 1 ) = C :3 / T R ( 3. 1 • 1 ) - T R ( 3 • ? • 1 ) IT R ( 3. 1 • 1 ) >:' 1,1 Z P II ( 1 ) 
TP(I)=-I,1 
STr,R( 1 )=SPf)( 1 )/F( 1 )-TP( 1) 
[H S Zl = DIS Z 1 + • t:j ':' II T P ,:« tl7 P ( 1 ) +11 7 ( 1 ) ) 

C RnTTnM R.C. 
THl=l(1.N)*nTP/f)7P 
TH? = L I 2. N ) ':< DT P 
I\IM} ="'-1 
C1I1A7=( TH2-[17P )';'TH?IOIlAl 
OIIA R= I TH?-n 7 p-n 7 P ) ':<TH2 1011 II? 
0111'\9=( DZP+D7P-TH? ),;q DZP-TH2 )/0111'\3 
I I 7 1 = U 7 ( 1\11 ) + T HI';' ( I I Z ( "I ) -I I Z I "11 ) ) 
1,,/ Z 1 = \'" Z I J ( "11 ) + T H 1 >:' ( \r.1 7 I I ( 1\1 ) - 1,/ 7 II ( "11 ) ) 
S 1 = S I I ( "'I 1 ) + T HI';' ( S II ( '" ) - S I I ( "'11 ) ) 
T1=T(Nl)+THl*(T(N)-T(N1» 
S ? = S [) ( "I M 1 ),;, 0 I I {\ 7 + S II ( 1\1 ) ':c 0 tJ II H + S I I ( 1\1 1 )",< 0 I I A 9 
T ? = T ( 1\1 M 1 ) >:' () I I t\ 7 + T ( 1\1 ) ,;, 0 I III R + T ("11 ) >:' 0 tJ/\ 9 
I I 7 ? = I I -; ( "I "1} ) >:' 011/\ 7 + II -; I "'I ) ,;, 0 I \ II R + I \ 7 ( 1\\ 1 ) ':< 0 I I f\ 9 
1t"7 ? = W -; II ( 1\1 tn ),!< (.) I III 7 + 'A/ 7 I I ( ".I ) ,;, 0 I I {\ R + 1,1 Z I 1 ( f\1 1 ) ,;, 0 tJ/\ 9 
CnNST?=.A6hAAAA7*CC(N)*IIFlTr,(N)/F(N) 
( nI',1 S T 3 =. A 6 A f, A A f, 7 ':' C C fl ( ~" ) ':' II F L T r, n ( 1\1 ) I F ( ~ I ) 

C 1 = T R ( 1 • 1 , f\I ) ':' 1\ -; 1 + T S II V F ( 1 • "I ) ':< ,,17 1 + ( T R ( 1 • 3 • "I ) -C n 1\' S T :1-
1 C nl\1 S T? H< S 1 
1+11.+CnNST3*FIN»*Tl+TR(1.1.N)*nTPr, 

C ? = T R ( ? 1 , '" ) >:< II Z ? + T S 1'\ \I F ( ? • 1\1 ) ':' 1,1 Z ? + ( T R ( 2 • :3 • 1\1 ) - en", S T :1-
1 C nl\1 S T? ) ~< S 2 
1 + ( 1. + C n f\ 1ST 3 ':' F ( 1\1 ) )':<T? + T R ( 2 • 1 • 1\1 ) ,:qH P r, 

S PilI f\I 1 ) = ( C 1 - T R ( 1 • 1 • 1\1 ) ':' I I 7 PIN 1 ) - C 2 + T R ( ? • 1 • 1\1 ) ';c I I Z P ( '" 1 ) ) I 
1 TR ( 1 • 3. 1\1 ) - T R ( 2. 3. "" ) ) 

S P n ( "" 1 ) = S P t I ( 1\1 1 ) 
T P ( [\1 1 ) = ( C 2 - T R ( ? • 1 , "" ) >:< II 7 P ( 1\1 1 ) - T R ( 2 • :3 • 1\1 ) >:< S P I I ( 1\11 ) ) I T R ( 2 • 4. 1\1 ) 
S T r,R ( ""I ) = S P \I ( 1\11 ) IF ( "I ) -T P (f\11 ) 
TF( SIr,R(I\ll ).I.F.n. )r,n Tn 9R 

C T f\1 T F R I n R P n nH S 
nn 390 T=2.I\' 
JMl=I-1 
IPl=I+l 
Fll=FI un )/F( 1) 

TH 1 = L ( 1 , Hn ) ,nn P If)? P 
TH?=L(?IMl)*IITP 
TH3=-1 (3. I ) 'HHP 
TH4=-L(4.I)*IITP/IIZP 
01 1/\ 7 = T H ? ':< ( T H ? + II Z P ) I () I 1111 
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(.) II II R = ( T H 7 -0 7 P ) ':' ( T H 7 + n 7 P ) 10 II II 7 
Ollflq=( TH7-01P )':'TH2/()1It1~ 
() I III 1 0 = nn ::' ( T H ~ - f) 7 P ) I n I I J\ J 
01 ) J\ 1 1 = ( T H 3 - f) 7 P ) ,;, ( T H ~ + 07 P ) /011 J\ ? 

() I I II I ? = ( f17 P + T H l ) ':' T H II 0 I I II ~ 
1171=117 ( T )+TH1#( 117 (TM1 )-117 (I)) 

1.1 7 1 = I~J 7 I ) ( I ) + T HI';' ( 1.1 7 r) ( I M 1 ) -1.1 7 I I ( T ) ) 
S1=StI( r )+TH1':' (SO( P~l )-SII( T )) 
Tl=T( T )+TIIH'(T( Pll )-T( T)) 
I I 7 4 = 1 J 7 ( r ) + T HI. ':' ( I ) 7 ( I PI) - I I 7 ( T ) ) 

1.1 U+ = It.l 7 0 ( T ) + T HI. ':' ( 1,171) ( T PI) -lrl7 0 ( I ) ) 
S4=SO( I )+TH/+,:, (511( IPI )-50( I)) 

T 4 = T ( I ) + T I j If ':' ( T ( r PI) - T ( J ) ) 
r F ( I • F n. ~~ • flR. r. F 0 • M + ~1 M M ) r, n T n ~3 0 
5?=SO( TMI )':'OIl/\7+SIJ( T )>:'OllflR+SII( JP1 ),:,Olll\q 

T?=T( TM] )':'Ollfl7+T( T )':'OtII'lR+T( 1Pl »:'OlJflq 
S l = SO ( T M 1 ) ':' n t ) II 1 n + S I ) ( I ) ':' n I I III 1 + S II ( T P J ) ,~ 01 I II J ? 
T3=T( J~11 ):;'(ltlfl]O+T( T )':'OIJflll+T( IPl )':'Olllll? 
"7 ? = tl7 ( T M 1 ) ':' 011/\ 7 + 117 ( T ) ':' () 111'1 R + 117 ( T PI) ::' nil J\ q 
1,117=1V70( UH )':'ClIl1l7+hI711( T )>:,nllAR+bl 711( TPJ )':'Ollllq 
I I 7 ~ = 1 J 7 ( I1'11 ) ':' 01 I /11 n + I 17 ( J ) ,;: 0 I I £I 1 1 + I 1;7 ( I PI) ':' 0 II J\ 1 ? 
lrI 7 '3 = \.17 n ( T ~11 ) ':' 0 I I /l. J n + Irl 7 I I ( T ) ':' () I I II 1 1 + 1,1 71 I ( r PI) ,:,01 I /'. 1 ? 
Gn Tn 3~1 

330 MMl=I-l 
MM?=I-? 
nIIJ\7=( TH?-f17P )':'TH?loIIJ\l 

() I 1/\ R = ( T H? - n 7 P - n 7 p ) ':' T H? 101 I II ? 
nil J\ q = ( n 7 PH) 7 P - T H? ) ,;, ( n 7 P - T H? ) 101 I t\ ~ 
5 ? = S 0 ( M I'~ 7 ) ::' n I I II 7 + S I I ( M M 1 ) ':' 0 I I II R + 5 I I ( J ) ,H) I I II q 
T? = T ( r'1I'~? ) ':' () I I II 7 + T ( W~] ) ':' () I I l\ R + T ( I ) ,;, 0 I I II q 
117./ = \ ) 7 ( ~~ M 2 ) ':' nil II 7 +1 17 ( ~1 M 1 ) ':' 01 III R +/17 ( r ) ,;. Oil II q 
1,17 ? = 1,1 n) ( M ~~;:> ) ':' 0 I I 1I 7 + \,1 7 I I ( M M 1 ) ':' 0 I I J\ R + 1,1 Z I I ( I ) ':' 0 II fI q 

MPl=I+l 
MP?=I+? 
()" lI4 = ( n 7 p + r)7 P - T H ~ ) ':' ( n 7 P - T H ~ ) 10111\ 1 
nlllll)=TH~':'( TH1-n7P-r);7p) 1(11111? 

n 1/1\ A= T H ~ ':' ( T H ~ - n 7 P ) I () I I II 1 

5 ~ = s n ( I ) ':' () I ) II '. + 5 II ( ~w 1 ) ::' () 1/1'1 'i + 5 I .1 ( M P? ) ':' 01 I /l. A 
T ~ = T( T ) ,;, nil J\l. + T ( M P 1 ) ':' nlill I) + T ( M P? ) ':' nil 1\ A 
117~=IJ7 (J )':'()111I4+117 (/'.1Pl )':'nllll'5+117 (~~P? )':'OllI\A 
1,/7 1 = W 7 n ( T ) ':' ()' I 114 + h/ 7 I I ( !vi P J ) ':' O! 11\ '5 + 1.111 I ( M P ? ) ':' 0 I 11\ A 

:n 1 [ n (\, S T? =. A 6 A A (,f., A 7 ':' r: c ( f M 1 ) ':' n F L T r, ( I M 1 ) I F ( T M 1 ) 
(: n (\1 S T 4 = • (, (, A (, A A A 7 ,;: [ (: n ( J M 1 ) ':' n F t T G n ( I M 1 ) I F ( T M 1 ) 
(: n 1 = TR ( 1 • 1 , T M 1 ) >:' I) 7 1 + T S 1\ \I F ( 1 • I M 1 ) * 1,/7 1 + ( T R ( 1 • 3. J ~~ 1 ) -

1 (: n~' S T 4-[ mJ 5 T? ) 

l':'Sl+( 1.+[m I5T l t':<F( IM]) )':cTl+TR( 1.1. TMl )':'nTPr, 
(: O? = T R ( ? , 1 • T M 1 ) ':' I 17 ? + T 5 fll/ F ( ? , f M 1 ) ':'111/ 7 ? + ( T R ( ? • ':i , T M 1 ).­

u:ml S T't-em" S T? ) 
1 ~, S? + ( 1 • + crm S T Lt ':' F ( I M 1 ) ) 'n ? + T R ( ? , 1 , r M 1 ) ':' n T P G 

(: nr,1 S Tl =. A 6 A A A f, A 7 ,;, [C ( T ) ':' 0 F LTG ( I ) IF ( I ) 
C nf\1 5 T '5 = • A 6 is A A A A 7':' r: c n ( I ) ':' n F LTG f' ( I ) I F ( T ) 
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