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COVARIANCE ANALYSIS OF THE RESPONSE OF BUILDINGS TO
EARTHQUAKE LOADING

INTRODUCTION

The seismic design of a building poses many difficulties to the

structural engineer due mainly to the many uncertainties present in the

problem. Three major sources of uncertainties are:

the ground motion: intensity (maximum acceleration), strong motion
duration, frequency content (pseudo spectral density function
or response spectrum);

the structure: dynamic properties (natural frequencies), resistances
of the structural members, stress-strain relationship of the
materials or 'members;

the response of the building: model of the building, method of
analysis.

This report deals primarily with the third source of uncertainty,

specifically with the problem of the method of analysis. We will assume

that we know the ground motion parameters and we will choose a simplified

model of the building (the shear-beam model) with deterministic structural

properties and for that case we will propose a method that has some advan­

tages over the well-known methods of time-history analysis, response spec­

trum and random vibration. The statement of the problem as well as a

brief discussion of the traditional methods are given in Chapter 1. The

second chapter presents the theories of covariance analysis and statistical

linearization. Finally, in Chapter 3 the proposed method is applied to

structures starting with the simplest case (l-story, elastic structure

t
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subjected to white noise support motion) and going to more realistic and

complicated cases (multi-degree-of-freedom systems with bilinear hysterEtic

behavior and subjected to non-white noise motion). Whenever possible the

results will be compared with those of other methods. This chapter ends

with the general conclusions. After the tables, figures and bibliography,

four appendices contain additional information about methods and formulae

used in this report.

CHAPTER 1 - STATEMENT OF THE PROBLEM AND METHODS OF ANALYSIS

1.1 Statement of the Problem-
Two important steps in the seismic design of a building are the seiec­

tion of a structural model and the representation of the ground motion.

Structural Model

The most widely used dynamic model for a frame building is the shear

beam model (Fig. la). In this model the mass of the building is concentra­

ted at each floor level, the floor diaphragms are assumed to be infinitely

rigid, and the damping is represented by dashpots connecting each floor

with the lrwer one. The lateral resisting forces of the columns of each

floor of the building are added together and assigned to a single spring.

Due to these assumptions the response of the model is characterized by one­

degree-of-freedom (dof) per floor. The resulting equations of motion are:

for a single-dof system: my + cy + F(y) = - mUg (1)

for a multiple dof system:

1st floor

(2)

floor j 2 ~ j < n

floor n

.
mlYl + clYl - c2Y2 + Fl(Yl)- F2(Y2) = - m1u g. .
mjaj + cjYj -cj+1j+l + Fj(Yj) ~+l(Yj+l) = 0

m a + cy' + F (y ) = 0n n n n n . n
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where: Yi = interstory displacement (floor i relative to floor i-l)

Yi = interstory velocity

Yi = interstory acceleration

ai = absolute acceleration

ug = ground acceleration at the base of the structure

ci = damping factor of dashpot connecting floor i with floor i-1

mi = mass of floor i

Fi(Yi) = restoring force of spring of floor i (Fig. l.b)

For elastic structures the restoring force is simply given by:

F.(Y.) = k.y., " , ,
where k; is the stiffness of the spring. In reality, however, the columns

of a building do not behave elastically during an earthquake and one has to

assume an inelastic behavior for the spring. In this case, a more realistic

stress-strain relation is the bilinear hysteretic behavior shown also in

Fig. l.b. The major difficulty in using this relation is that it is not

memoryless as is the elastic one. In other words, while the elastic force

at any instunt of time depends only on the interstory displacement at that

instant of time, the restoring force in a bilinear hysteretic model depends

on the history of the interstory displacements. Specifically, the stress­

strain curve will vary each time the yield level is exceeded. More will be

said about this in Section 3.3.

The ground motion

The major uncertainties a structural engineer has to deal with in the

dynamic analysis of a building are related to the characterization of the
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earthquake ground motion. It was already mentioned that these uncertain­

ties are:

- the intensity

- the frequency content

- the duration.

In relation to the intensity it is important to consider the maximum

intensity or peak acceleration as well as the variation in time. Several

intensity curves have been suggested by different authors (Fig. 2): trape­

zoidal curves [lJ, exponential curves [2J, etc. These intensity curves

apply as a factor to the maximum amplitude of the motion or to the variance

of the acceleration.

The frequency content of the earthquake is very dependent on the origin

of the earthquake, the distance epicenter to site, and the soil conditions

at the site. Due to this reason it is very unrealistic to take a record of

a single earthquake for the dynamic analysis of a structure. Better account

of the variability of this parameter is taken by using a response spectra

or even better a spectral density function which can be related to the local

conditions more easily.

Finally, the duration of the ground motion is also important, especially

for flexible structures. Of course it is related to the intensity curve

mentioned above. It is most important to define the duration when a constant

intensity is assumed as in the traditional random vibration approach. Several

authors have given definitions of motion duration [25,26J.

1.2 Methods of Analysis

Three types of analysis procedures are of interest. They are: the

response spectrum approach, the time history analysis, and the random vibra­

tion approach.
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The response spectrum approach

It is the simplest way to estimate the maximum system response, say

the maximum displacement due to a ground motion. It makes use of the re­

sponse spectrum which is a plot of the maximum response of single-degree­

of-freedom (SDOF) systems for different values of the natural frequency

and the damping factor. This response spectrum is of course dependent on

the site, reflecting the seismicity of the region and the local soil condi­

tions. For multi-degree-of-freedom (MDOF) systems, the response spectrum

is applied to all or only to the lower natural frequencies separately and

finally the response is computed from the modal responses with a combina­

tion rule (e.g. root-sum-square rule), An extension of this approach for

elastoplastic structures has been suggested by Newmark and Hall [27].

The time history analysis

In this method the response is obtained directly from the numerical

integration of the equations of motion. For SDOF systems there are two

alternative methods: to integrate directly Eq. 1 or to use the Duhamel or

convolution integral:

where: h(t-T) = transfer function

f(T) = forcing function (e.g., Ug(T),

(3)

In both cases the input is a digitalized record of acceleration of real

or artificial earthquakes.

For MDOF systems one can perform a modal analysis applying what is done

for MDOF systems to each mode and combining the responses, or one can inte-

grate numerically Eqs. 2 without a modal decomposition. When the response
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of inelastic systems is required, a modal decomposition cannot be applied.

The direct solution of Eqs. 2 instead can be applied to inelastic struc­

tures too and has also the advantage that it gives the exact solution (ex­

cept for round-off errors) .

Both methods described so far, the response spectrum approach and the

time history analysis, are deterministic. Input data as well as the results

are deterministic values. But in view of the uncertainties of the ground

motion it is more meaningful to have probabilistic results, e.g. distribu­

tion function for the maximum relative displacements. These results can be

achieved with deterministic methods by combining the results of a large num­

ber of cases or trials all dealing with the same structure but differing in

the ground motion.

Monte Carlo Simulation

In a typical Monte Carlo simulation, a large number of artificial earth­

quakes are generated having some parameters in common, e.g. evolution of the

intensity in time, frequency content, whereas others are varied in accordance

with a probabilistic law. The structure is subjected to all the earthquakes

and a statistical analysis of the responses is performed.

Theoretically, when an infinite number of earthquakes are generated,

the resulting probability laws for a given input will be exact. Of course,

in practice, this is not possible, and between 20 and 1000 time histories

are made. For example, for a gaussian response, 256 trials are necessary

to achieve 95% confidence that an accuracy of 10% can be achieved. This

large amount of "trials" is the main disadvantage of the Monte Carlo Simula­

tion. It is (economically) justifiable only when no other method is applica­

ble and when the importance of the structure requires an accurate analysis.
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Random Vibration Approach

This approach takes into account that the ground motion is of a ran­

dom nature and determines directly the distribution of the response; spe­

cifically~ it gives first and second order moments (mean values and vari­

ances) of the response from where a distribution function can be construc-

(4)
Wn(4; -1J + ~ f G(w)dw

t wn 0

relative displacement at time t

2 G(wn)
O"y(t) ~ 3

w
l1

= variance of thewhere:

ted. Traditionally this approach works in the frequency domain by defining

a spectral density function G(w) which contains the information about the

frequency content of the earthquakes at a site. The variance of the re­

sponse and the maximum response for a given probability level can then be

computed. For elastic SDOF systems the variance of the relative displacement

is given by:

wn = natural frequency of the system

6t = effective damping factor at time t~ given by

Q _ f3
~t - 1 - exp( -26w trn

(5)

f3 = critical damping factor

For MDOF systems the variance is computed for each mode separately with the

same formula. The variances for the interstory displacements are computed

using the modal variances~ the modal shape and participation factors. A

more detailed explanation of this approach can be found in Ref. [4J. The

extension to inelastic structures has also been studied. G. Gazetas [6J

proposed a semi-empirical extension of this approach to MDOF elastoplastic

systems. It starts with an elastic analysis~ defines yielding states de­

pending on which story yields first after each elastic period~ computes the
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responses for each state independently and finally combines them in accord­

ance with the probability of occurrence of each state. The most important

result is the distribution of the ductility factor which can be used directly

in a safety analysis.

In the following chapter a state space approach will be presented. It

can be regarded as another random vibration approach because it also con­

siders the random nature of the input. Its main difference with the more

traditional approach is that it works in the time domain. It has the same

advantage of the time history analysis in that it can deal with evolutionary

ground motions and that it gives the response at any instant of time during

the ground motion. As will be shown, it gives exact solutions for SDOF and

MDOF elastic systems. It can also be applied to bilinear hysteretic systems

giving reasonable good results for several cases.

Finally, in order to complete the picture about the methods that are

being used, a last method should be mentioned. It uses the Fokker-P1anck

Equation for obtaining the time dependent response statistics. This method

is applicable to bi- and trilinear hysteretic SDOF and MDOF structures re­

sponding to white noise or filtered ground motion [14,23,24,28].
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CHAPTER 2 - COVARIANCE ANALYSIS AND STATISTICAL LINEARIZATI9~,

In this chapter a method will be presented which we will abbreviqte

by CASREL, which stands for ~ovariance Analysis of the ~tructural Response

to Iarthquake ~oading.

2.1 Elastic Structures

The equation of motion for a structure sUbjected to ground motion

(eqs. 1 and 2) can be written as a set of simultaneous first-order differ­

ential equations. For SDOF elastic systems Eq. 1 can be written as:

mv + cv + ky = - m u
9

v =y

Defining the state vector ~* as ~ = {~}

(6)

Eqs. 6 change to:

(7)

The same can be done for MDOF systems (Eqs. 2). For the general case,

we will write Eq. 7 in the following way (emphasizing the time dependence):

where:

~(t) = F(t) ~(t) + G(t)~(t)

F(t) and G(t) are continuous time dependent matrices and

wet) is the forcing function vector (ground motion).

(8)

In order to consider the randomness of the ground motion, we divide the

forcing vector into two components:

* A bar underlining a symbol indicates a vector and capital letters sym-
bolize matrices.
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~(t) =Q(t) + !!(t)

in wh i ch !?-(t) = E[~-' t)) = the mean or expected value and

!:!..(l) = the random component, uncorrelated in time (white noise).

Thus, one can write:

(9)

8(t-T) = Dirac delta, and

Q(t) = the spectral density function at time t.

As a consequence of the random input, the state vector will also have a

random component. It can be written as:

~(t) = !!!.(t) + .!:.(t)

!!!.(t) = E[~(t)] = mean value

~(t) = random component which in general will be autocorre­
lated.

A covariance matrix P(t) containing all the second moments of the state

variables can be defined as:

P(t) = E[.!:.(t) ~T(t)]

the element Pij in the i th row and jth column of P is equal to the covari­

ance between the elements i and j of the state vector ~.

Having defined all the components of Eq. 8, it can be written in terms

of the mean values and the random components [22]:

!!!.(t) = F(t) !!!.(t) + G(t) Q(t) (lOa)

P(t) = F(t) P(t) + P(t) FT(t) + G(t) Q(t) GT(t ) (lOb)

Eqs. 10 give the propagation of the mean and covariance matrix in time.

They can be numerically integrated going in time steps through the time
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domain (see Appendix A). Of course, this process can easily be computer

coded. The solution is then carried out very efficiently by a computer.

Taking a sample consisting of only one ground motion, Eq. lOa will

give the same result as a time history analysis for that ground motion.

But in general, a forcing function representative of many earthquakes ;s

taken and then Eq. lOa is identically zero (for zero initial conditions)

and Eq. lOb gives the second moments of the state variables. Hence Eqs.

10 provide a direct method for analyzing the statistical properties of the

state vector. This is to be contrasted with the Monte Carlo Simulation

where many sample trajectories of ~ are calculated from computer-generated

random noise. The second moments are then estimated by averaging over the

~nsemble of generated trajectories. Note also that Eq. lOb leads to exact

solutions for P (within computer accuracy) whereas a Monte Carlo Simulation

yields only approximate solutions for any finite number of simulations. Con­

sequently, the direct analytical method is both exact and generally the most

efficient technique for analyzing linear systems with varying ground motion.

2.2 Statistical Linearization Technique

In order to apply the method described so far to nonlinear systems, a

linear approximation for the nonlinearity has to be found first.

For nonlinear systems, Eqs. 1 or 2 can be written in vector form as:
.
~Jt) = f(~,t) + G(t) '!'L(t) (11)

where f(~,t) contains the nonlinear relation between the state variables.

We try a linearization of the form:

A

f(~,t) = i + N(X-~) (12 )

The terms of the right-hand side member are computed by imposing the condi-
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tions that the error of the approximation defined as:

'"
~ = i(~,t) - i -, N(~-~) (13)

satisfies E[~T S ~] = minimum for any positive semi-definite
matrix S.

For imposing this condition, the joint probability density function (jpdf)

of the state variables is required. Since it is in general not available,

an exact solution is not possible. One procedure for obtaining an approxi­

mate solution is to assume the form of the jpdf of the state variables.

Generally the assumption is made that the state variables are jointly Gaus­

sian, because it is convenient, and often reasonable. We will later make

different assumptions in order to improve the results, as will be discussed

in the next chapter and in Appendix C. It will also be shown there, that

the statistical linearization really captures (at least a part) of the non-

linearity of a bilinear hysteretic system. This is a major difference with

a Taylor series which loses completely the nonlinearity of that system.

Once i and N are determined from Eq. 13, the solution of Eq. 11 is

carried out in the same way as for elastic systems with following propaga-

tion equations:
. ,..
~(t) = f(t) + G(t) ~(t) (14a)

P(t) = N(t) P(t) + P(t) NT (t) + G(t) Q(t) GT(t) (l4b)

which differ from their elastic counterparts only in that

A

F(t) ~(t) has been replaced by f(t) and

F(t) has been replaced by N(t).

Again, we will deal only with Eq. 14b, since Eq. 14a is always zero for

zero initial conditions.
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2.3 The Spectral Density Function

In the derivation of the differential equations of the covariance

matrix P(t), the assumption of uncorrelated forcing function had to be

made. This assumption (Eq. 9) leads to the definition of the spectral

density function Q(t). In reality it is impossible to have uncorrelated

(white noise) ground motion, and a method for avoiding this limitation

will be put forth in the next chapter. Moreover, even if we want to im-

pose an ideal white noise, we cannot do it unless we reduce the length of

the time steps of the integration procedure to zero. This problem has

been discussed already in other publications [7,8]. The autocorrelation

function and spectral density function for finite time step lengths are

shown in Fig. 3a and b. In Appendix B, a brief analysis shows that for a

rectangular psd function the response can be made to be as close to white

noise response as desired, by taking the frequency Wo large enough (Fig. 3c).

This means that for the psd function of Fig. 3b, the response will be also

as close to white noise as required, provided a sufficiently small ~t is

taken.

The relation between this psd function and that generally used in random
vibration is:

Q(t) = a(t) 7T Go
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CHAPTER 3 ~ APPLICATIONS OF CASREL

In this chapter the technique describ~d in the previous chapter will

be applied to classical cases of responses of structures to ground motions,

going from the simple to the more complicated cases. Whenever possible

the results will be compared with those of other methods.

3.1 Elastic SDOF Systems Subjected to Wbite Noise Motion

For this simple case, the state vector contains simply the relative

displacement and velocity corresponding to the one dof; no linearization has

to be performed, and therefore the result is exact (within computer accur­

acy). This is shown in Table 1, where the results of CASREL for the steady­

state variance of the relative displacements are compared with the analytical

solution for several values of the natural frequency and the critical damp-

ing ratio.

Fig; 4 shows that CASREL can deal with non-stationary ground motions.

In 4a the motion starts with full strength at t=O and stops at t=2 secs.

The response shows pretty well the fluctuations due to the transient compon­

ent and shows very good agreement with the traditional random vibration

approach. Fig. 4b shows the response for a smoothly varying ground motion

intensity. This is one of the main advantages of CASREL, since other

methods (e.g. the response spectrum and stationary random vibration ap­

proaches) cannot deal with these cases. Fig. 5 shows the standard deviation

of the velocity and the dimensionless coefficient of correlation given by:

for the same case as Fig. 4b. Both are also direct results of CASREL. An
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interesting observation is that the coefficient of correlation tends to

zero as the response of the system tends to a steady state.

3.2 Elastic SDOF Systems Subjected to Filtered Ground Motion

As was said in section 8.3 t although the input is not rigorously white

noise t for practical purposes it can be considered as such when the time

step is small. On the other side t ground motions are never white noise,

but instead the psd function shows one or more maximum values as shown in

Fig. 6 for two records of a real earthquake [5J.

There are two ways of dealing with this problem. The first tries to

fit a function to the autocorrelation function of the ground motion one

wants to reproduce [21J. We prefer and will explain in more detail the

second method in which a function is chosen to fit the psd function of the

ground motion, because it has more physical meaning. Fig. 7 shows this

approach: it is assumed that the structure rests on a soil layer which lies

on the bedrock and which filters the white noise motion of the bedrock. The

psd function at the base of the structure is given by the transfer function

of the soil layer. GenerallYt the soil layer is considered as a SDOF system

with following equation of motion:

.. . 2
u + 2~ w u + w u - - ur9 g g g g g

(16 )

where ur and ug are as defined in Fig. 7 and

~ and ware the equivalent soil damping and frequency. The re-
g 9

sulting psd function ;s the well-known Kanai-Tajimi spectra:

G(w) = (17)
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In order to introduce the soil filtering into the covariance analysis,

we augment the state vector including two new state variables: u and u.
9 9

Eq. 7 is changed to:

ug 0 1 0 0 u 0
9.. 2

-2t,;gwg 0 0 -0ug -wg u
= 9 + r (18 )

x 0 0 0 1 x 0

2 2t,;gwg -kim -elm 0v W 9 V

Note that since Eq. 18 is applied in time steps, wand t,; can be made
g g

time-dependent, hence the motion at the base of the structure can be made

time dependent in both intensity and frequency content.

Of course, this method can be expanded in order to reproduce psd

functions with more than one mode as in Fig. 6b. This is done by writing

two or more equations of the type of Eq. 16 for additional state vari­

ables. In essence this corresponds to having several horizontal soil

layers.

In Table 2 results for the steady-state variance of the relative dis-

p1acemen~s of CASREL are given for several cases with different natural

frequencies and damping ratios of the structure and for two different psd

functions which are shown in Fig. 8. These results are compared with those

of two methods: the traditional random vibration approach (Eq. 4) and the

analytical solution given by Eq. 19 [15J.

(19 )
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From the results it is clear that in this case CASREL gives also

the exact results (within computer accuracy), whereas the traditional

random vibration approach has two sources of inaccuracies: Eq. 4 is only

approximate (although generally a very good approximation), and further­

more the evaluation of the integral in it will never be exact.

On the other hand, Eq. 4 can be applied to any psd function, where­

as CASREL and Eq. 19 require that an approximate Kanai-Tajimi spectra is

found first.

3.3 SDOF inelastic Structures

The statistical linearization as described in section 2.2 has been

applied to a great variety of nonlinear systems [16,17]. Applications to

bilinear hysteretic systems have been reported by several authors [9,10,

11,12,13,18], sometimes under the names of quasi or equivalent lineariza­

tions. In this study a relatively simple linearization was used. A

brief explanation follows; the detailed analysis is given in Appendix c.

Fig. 9 shows a decomposition of the bilinear hysteresis (a) into an

elastic part (b) and a perfectly elastop1astic part (c). The linearization

is applied only to the elastoplastic component introducing a new variable:

the plastic displacement d. The assumptions are made that the relative

velocity of the system is gaussian distributed, that the restoring force

for the elastoplastic system follows a truncated gaussian distribution, and

that both are independent.

The result of the analysis is the following linear relation:
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a 1 a y a
-kim -2plk/m k(l-r)/m v + a

kA¢(l-r) \ kA¢o-r) d -ug

A = 2pv

( 20)

and p is a function of o¢/¢m as shown in Fig. 10. It represents the

probability of positive (or negative) yielding taking place at an in­

stant of time in which the motion is such that the standard deviation of

the restoring force ¢ is G¢.

Table 3 shows the flow chart for the computations involved in CASREL

for the case of an inelastic structure. Although the Runge-Kutta type

method requires computation of the linearization coefficients A
V

and \p
twice for each time step, it does not affect the accuracy of the results

to compute them only once.

Of course, the proposed linearization is rather arbitrary. Several

other linearizations of the bilinear hysteresis could be found by changing

the assumptions or by introducing more state variables (e.g. [13]).

Special cases are those for r = 1.0 (elastic system) and r = a (per­

fectly elastoplastic system). Due to the assumptions explained above for

all the values of r unequal to 1.0, CASREL gives only approximate results.

How good the approximation is can be assessed only by comparison with

Monte Carlo Simulations.
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Figs. 11 and 12 show results from 80 simulations (from [18]) and

from CASREL. The variance of the relative displacement has been normal...

ized with respect to the paramter 0, defined as:

D =VG/W~

which is a measure of the intensity of the ground motion with dimensions

of length. In both cases the ratio of the secondary to the first stiff­

ness is 1/2. In Fig. 12 the ground motion is stronger than in Fig. 11

for the same structure as indicated by the ratio 6y/0 (6y= yield displacement).

The fluctuations of the response computed from the simulations for

large values of t (e.g., wnt = 12rr) are due to statistical errors and

show that an ensemble of 80 simulations is too small. In consequence, it

is difficult to assess how wall CASREL approximates the exact solution,

but the general trend of CASREL is similar to the simulations. What

should be emphasized is that in both methods the response tends to a

steady-state value even if the damping ratio is zero. This is not true

for elastic structures as can be seen easily from Eq. 4.

A be~:er notion about the degree of approximation of CASREL is ob­

tained from Figs. 13 and 14. Here the results of CASREL are compared with

Monte Carlo results obtained from 1000 simulations [13J. From these fig­

ures it is obvious that the proposed method performs pretty well for

rigidity ratios greater than 0.2 or 0.3 (moderate nonlinearity) and for

ground motion intensities Go less than 0.6.

In relation to the effect of the value of r, two points have to be

noted: the statistical linearization fails to predict the response for

r < 0.1. Other authors reported this same conclusion even for more compli-
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cated linearizations [13,9]. The second interesting point is that the

response has a minimum value for r in the neighborhood of 0.3.

With respect to the intensities of the ground motion it should be

emphasized that even the lower value of it (Go = 0.2) produces a pretty

high yielding action. This is evident by comparing the steady-state

standard deviation of the response for the linear system (for r = 1.0,

0y =~=;'5 = 2.24) with the yield displacement (6Y = 1.0) for the bi-y .

linear systems. This means that for these systems yielding occurs almost

in each oscillation and explains the marked decrease in the response.

Obviously, what was done in order to consider non-stationary or non-

white input to linear systems applies also to bilinear systems. Fig. 15

for example shows the responses of an elastic system and of a bilinear

hysteretic system (with r = O.3) to the same nonstationary white noise

ground motion.

3.4 Multi-Oegree-Of-Freedom Systems

The extension of CASREL to MOOF systems is obvious: the state vector

is augmented to contain the relative displacement, the relative velocity

and the plastic displacement (for inelastic systems) for each floor. The

matrix N(t} is obtained after some algebraic manipulations from Eqs. 2 and

is given in Table 3. In the remaining aspects the procedure outlined for

SDOF systems can be applied in the same way.

Fig. 16 shows the response for an elastic 4 OOF system with the char­

acteristics shown in Table 5 to stationary and filtered ground motion.

For comparison, the results of the random vibration approach in the frequency

domain are given. For doing this the damping coefficients were taken propor-
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tional to the corresponding stiffnesses in order to be able to decouple

the modal equations of motion. This is necessary because the random vi~

bration approach in the frequency domain works with modal equations (and

dampings; see Appendix D).

In Fig. 17 the responses of an elastic system and an inelastic system

with the same natural (small amplitude) frequency and subjected to the

same non-stationary ground motion are shown. No comparison with other

methods are possible in these cases.

General Conclusions

The procedure outlined in Chapters 2 and 3 represents a powerful tool

for pr~dicting the second moments of the response of an elastic shear beam

model to earthquake loading.

As was shown, it gives exact results for elastic single and multi­

degree of freedom systems and for white noise or filtered ground motion.

In these cases its main advantages are:

it treats ground motion and response in a probabilistic manner,
giving 1irectly the second moments of the response;

it deals very easily with time varying ground motions in intensity as
well as frequency content.

However, our main objective in trying this procedure was to compute

the responses of inelastic systems. From comparisons with Monte-Carlo

simulations we have to conclude that for these systems the results are not

satisfactory for the particular linearization used. It also seems doubt­

ful that other statistical linearizations would do much better for bilinear

hysteretic systems with low secondary stiffnesses (r < 0.2).
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TABLE 1 - RESULTS FOR ELASTIC SINGLE-DEGREE-OF-FREEDOM
SYSTEMS SUBJECTED TO WHITE NOISE INPUT

Natural Critical 2 3 CASRELFrequency Damping ax = TIGo/4Bwn

5 0.05 0.12566 0.12566

10 0.05 0.015708 0.015708

15 0.05 0.004654 0.004654

20 0.05 0.001963 0.001964

10 0.02 0.039270 0.03927

10 0.10 0.007854 0.007854

TABLE 2 - RESULTS FOR ELASTIC SINGLE-DEGREE-OF-FREEDOM
SYSTEMS SUBJECTED TO FILTERED MOTION

0.00248 0.002620.002620.05

Analytical Random i
Critical Result Vibration! CASREL i

20

Natural

I
J

GroundGround
Frequency Damping Frequency Damping , (Eq. 19 ) (Eq. 4)i I ;

I
I !

15
I

0.7 10 0.02 I 0.061534 0.0620 : 0.06153
I I

,

10 ! 0.05 0.024193 0.0243 ; 0.02419I , !

I 1 I

I I II

! 0.15588 0.1558 0.15588, 0.4 5 i 0.05! I

I I ,
i 1

I 10 I 0.05 \ 0.03267 0.0331 0.03267, ;
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TABLE 3 - FLOW CHART OF CASREL FOR INELASTIC STRUCTURES

INPUT: Dynamic Propert ; of J
the Structure and Chara\ Zeri s-
ties of the Motion

, ., .....·"'......__•.•-.-' ....v.",_••~...~.
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TABLE 5 - PROPERTIES OF THE 4-DOF SYSTEM

Primary Resist- Yield Dis- Damping
Story r,1ass Stiffness ance placement Factor

1 0.5 127.8 4.142 0.0324 0.9192

2 0.5 127.8 3.643 0.0285 0.9192

3 0.5 127.8 2.704 0.0212 0.9192

4 0.5 127.8 1.439 0.01126 0.9192

Modal Properties
Modal ShapesDamping

Mode Frequency Ratio Floor 1 Floor 2 Floor 3 Floor 4

1 5.56 0.02 1.00 1.88 2.53 2.88

2 16.00 0.058 1.00 1.00 0.00 -1.00

3 24.51 0.088 1.00 -0.35 -0.88 0.65

4 30.07 0.108 1.00 -1.53 1. 35 -0.53

Units are in kips, ft, sec.
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APPENDIX A - STABILITY OF THE INTEGRATION METHODS

One of the major problems to be solved when a procedure with numer­

ical integration is to be used is the selection of the appropriate inte­

gration method. This method must be simple, accurate and stable. There

are a large number of methods (see for example [19J) with different degrees

of complexity. Here, only three widely used methods will be discussed:

the Forward Step or Euler method, the central difference method (CDM) and

a Runge-Kutta type method (RKTM).

First a comment about the order of the differential equations involved
the

in our problem is necessary. In Chapter 2/following differential equations

were obtained for elastic structures:

~(t) =.
P(t)

F(t} ~(t) + G(t) ~(t)

= F(t) P(t) + P(t) FT(t) + G(t) Q(t) GT(t)

(A-l)

(A-2)

For inelastic structures, once the linearization has been performed, the

analysis is completely similar except that N(t) replaces F(t). Eq. A-l is

a second-order differential equation. In consequence, for that equation

the Euler method is conditionally stable (condition: 6t < l/nw , where Lt- n

is the time step and w the highest natural frequency of the system), and
n

both the CDM and the RKTM are unconditionally stable.

However, we are interested in Eq. A-2, which is a third-order differ­

ential equation. This can be shown as follows: For the simplest case

(elastic SDOF system, white noise ground motion), Eq. A-2 can be written as:
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a ~ar(Y) cov(y,vf

= [-k~m .Jrr(Y) COV(Y,V1

at Cov(y, v) -213 /"j Cov(y,v)
+

Var(v) Var(v )

[var(Y) Cov(y, V

J {~
-k/ml +

[: o (" ~+ Cov(y,v) Var(v)
(A.3)

-213/k/mJ Var ug ~

Eliminating the terms in v we get the following equation, in which Z = Var(y)

a3 t- k 2 a=-:3" Z + 6B/K/m -::7 Z + 4 - (1 + 213 ) at Z
at at m

+ 8B;(k/m)3 Z = Var (~g) (A.4)

Eq. A-4 is clearly a third-order differential equation in Z. It will con­

trol the stability of the integration method.

The stability can be checked by writing the variables at time t+~t

as a function of their values at time t in matricial form:

(A.5)

where It contains the variables at time t and it is the forcing function at

time t.

Since this equation is applied in a recursive way for many time steps,

an error in It should not increase when computing It+~t. For this to happen.

the eigenvalues of the matrix A must be in absolute value less than one [20J.

This condition leads genera11y to a limitation in the length of the time

step ~t that can be chosen. Three situations may arise:

1. There is no value of ~t that satisfies the condition. The method is

unstable.

2. There is a finite interval of values for ~t that satisfy the condition.

The method is conditionally stable.
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3. Any value of ~t may be chosen. The method is unconditionally stable.

We will check the stability of the three methods mentioned above.

The Euler Method

The basic equation of the Euler method is:

(A-6)

If this equation is applied to the covariance matrix P and substituting

from Eq. A-2, the following equation is obtained:

Var(y) 1 1 2~t a Var(y) a

COV(Y,Vll = - ~t (l-2S/f~t ~t Cov(y,v) + am

Var(v) t+At a -~t l-4S/fn ~ t Var(v) t ~t Var(~g) tm

(A-7)
Eq. A-7 is of the same form as Eq. A-5, in which

2~t a

A = K (l-2Sf¥m ~t) ~t (A-B)~ - ~t
1TI

a -2 l~ ~t 1-4f3/fn IIjm

The eigenvalues Aof A are obtained by equating the determinant of A-AI to

zero. The characteristic polynomial obtained in such a way is:

The solutions for Aare:

~ = 1 - 2Su0.t

~ = 1 - 2Sw~t - 2~t i 11 - 82

~ = 1 - 2Sw~t + 2 w~t i ,~;, - -'~ r;

(A-9)
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Imposing the condition that the absolute values of the eigenvalues ~ are

less than 1, the condition obtained is:

wt,t <; B

Since this condition implies very small time steps and hence high computer

costs, other integration methods have to be investigated.

The Central Difference Method

The basic equation for the COM is:

(A-10)

In a similar way as for the Euler method it can be shown that the COM is

also unstable, except for very ~mall time steps.

The Runge-Kutta Type Method

The RKTM works with the time derivative and function at half time steps.

The equations are:

(A.11 )

Combining Eq. A-ll with Eq. A-2, one obtains:

Var (y) 2 t, t 2
2( l-1lwlI t)~ t J1- w tt

Cov(y,v) = t, ttJJ 2(Swt, t-1) (1-3:f3wt, t )t, t -2 (l-S
2

)1ll2~ t
2-2SIll~ t+J

Var(v) t+ It
t, t 2w4 (as 2t, t 2w2-w 2t, t 2 -4Swt, t+1 (6Sw ~t,t2-2w 2t, t)

Var(y)

Cov(y,v)

Var(v) t

o

+ t,t Var ug

a

a \
2 .. I

+ -2wt,t Var(ug)~

t, t 2 .. I
-2- Var(ug) Jt

(A.12)



32

The characteristic polynomial of matrix A is now:

A3+A2(2w2~t2(2_5S2)+ 68w~t-3)+A(4w46t4(484_2S2+l)- 2483w3~t3_4w2~t2(1_7S2)

-128w~t-3) - 8S2w66t6 + 88w5~t5(1+2B2) - 4w46t4(1+4S2+484) +8Bw3~t3(1+3B2)

The solutions to Eq. A-13 are:

222Al = 28 W 6t - 28w6t + 1

A2 = 2w26t2(2B2_1)_ 2Bw6t+l
2 2 2A3 = 2w 6t (28 -1)- 2Sw6t+l

+ 2i {l7 w~t(2Bw~t - 1)

- 2i '1/17 w6t(2Bw~t - 1)

(A-l3)

(A-l4)

Imposing the condition that the absolute values of the eigenvectors are less

than one, the following inequalities are obtained:

w36t3 - 2sw2~t2 + 282w6t - S < 0

Bw~t < 1

The maximum values for W6t for different damping ratios are:

(A-15)

8
0.01
0.02

0.05
0.07

0.10

0.22
0.28
0.40
0.45
0.52

In consequence, this RKTM is also conditionally stable. The limitation on

the maximum value for the time step is of little importance for SDOF sys­

tems, but may become troublesome for MDOF systems for which the condition

must be satisfied by all and in particular by the largest natural frequency.
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To avoid this limitation, more complicated integration methods (e.g. of

the Runge-Kutta family) would have to be used.

Figs. A-l and A-2 show the displacement response of a SOOF system cal­

culated with the three methods and for two different time step lengths. It

can be seen that in both the Euler method is clearly unstable; the same is

true for the COM (which in Fig. A-2 is fluctuating very slightly at 12 sees)

and that in both the RKTM is stable since the condition is satisfied.
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APPENDIX B

THE EFFECT OF THE PSEUDO-SPECTRAL-DENSITY FUNCTION ON THE RESPONSE

The analytical solution for the variance of the relative displacement

of a SDOF system subjected to a motion characterized by the pseudo spectral

density function shown in Fig. B-la is given by the following equation [15J:

where

(B-1)

(B-2)

6 = critical damping ratio of the system

w = natural frequency of the system
n

wl,w2 and Go are parameters of the psd function (Fig. B-la).

A plot of I(w,/w ,6) is shown in Fig. B-2.
1 n

If we make wl = 0 and w2 = 00 in Eqs. B-1 and B-2, we get:

2 7fGocr -
y-~

...,wn

the response for white noise. Thus,

(B-3)

represents the ratio of the response to a psd function as in Fig. B-la

to the white noise response.
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We are particularly interested in the case when wl = a and wn ~ w2 < 00

(Fig. B-lb). For this case:

(B-4)

As can be seen from Fig. B-2, this ratio is very close to unity when w~ is
L.

higher than wn.For example, for e < 0.05 and w2 = 1.5wn, the response dif­

fers from the white noise response in less than 1%. So, by choosing w?
'-

large enough, we can make the response of the system to the psd function

of Fig. B-lb as close to the response to white noise as desired.
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APPENDIX C - A STATISTICAL LINEARIZATION FOR BILINEAR HYSTERETIC SYSTEMS

The bilinear hysteretic restoring force is shown in Fig. 9a. Figs. 9b

and9c show a decomposition of the original restoring force into two parts:

an elastic component and an e1astop1astic component. The equation of the

decomposition is:
F(y) = I(ry + <j>(y) (C-1)

The elastic component can be entered directly into Eq. 7. The second com-

ponent, however, requires further study. First we introduce a new variable,

the plastic displacement d. The definition of d is given by the following

relations:
<j> = <j> and v > a

if { m
<j> =-<j> and v < 0m

elsewhere
(C-2)

Due to this definition, we can write:

<j>(y) = K(l-r)(y-d) (C-3)

Now, all we have to find is a linear relation of d with the other state

variables. Since the definition of d evidences a marked dependence of d

on v and ~. we can try a linearization of the type

d = A v + A . <j>v <P
(C-4)

where AV and A<j> are parameters to be determined by minimizing the error e:

The mean square error is:

e = d - A v - A <j>v <j> (C-5)

E(e2) : E(d2) + A~E(i) + A~ E(1'2) + 2>'vA<j>E(v<j» : 2AVA <j> E(v<j»
. .

- 2AV E(dv) - 2A<j>E(d<j» (C-6)

where E means expectation or mean value.
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Imposing the minimum error condition, we get:

(C-7)
0(2 _ ( 2 .OA E e ) - 2A¢ E ¢ ) + 2AV E(v¢) - 2E(d¢) =0

¢

From these equations we have to obtain expressions for A
V

and A¢. From

statistics and in view of Eq. C-3, we know that

and

2 2 2 2= K(l-r) (Oy + 0d - 2 Cov (y,d)) (C-8)

. .
Expressions for the covariances E(v¢), E(dv) and E(d¢) can be obtained

only by making assumptions about the probability density functions of ¢

and v. Since ¢ can take values only in the interval (-¢m'¢m) and there is

a finite probability that ¢ = ¢m or ¢ = - ¢ at any instant of time, we. m
will assume that the probability distribution of ¢ is a truncated gaussian

{
distribution as shown in Fig. C- 1. Furthermore, and for simplicity, we will

assume that the velocity is gaussian distributed and that ¢ and v are inde­

pendent. Only the results can tell how good these assumptions are.

With these assumptions, we are able to compute the covariances in the

fo 11 owi ng way:

E(v¢) = 0 (due to the independence assumption)

E(dv) = foo ~fdV(U'W)U du wdw
_00 _00

.
where fav (u,w) = Pr(u ~ d < u + du, w~ v < w + dw)

Due to the definition of d, there, are two alternatives:

(C-9)

{
~ = v

_ d = 0

if ¢ = ¢m or ¢ = -¢m with probability 2p

otherwise.



38

and the joint probability density of d and v is given by:

if u ~ w

if u = w and -~m < ~ < ~m (C-10)

if u = w and ~ = ~m or ~ = -~m

with probability 2p

. roo 2
E(dv) = 2p w fv(w)dw

)
_00

E(dv) = 2p civ

_00 -00

.
fd~(u,w) = Pr(u ~ d < U + du, w~ ~ < w + dw)

(C-ll )

(C-12)

.
d = 0
.
d = v

i f ~ 'f - ~ m and ~ 1 ~tn

i f ~ = - ~ or ~ = ~m m

if

if

Iwl 1 ~m

Iwl = ~ (with probability 2p)
m

(C-13)

Introducinc C-13 into C-12 we have:

.
E(d~) udu 2p ~m

(C-14)

Finally, from Eqs. C-7, C-ll and C-14, we get:
(C-15)
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All that is left is to relate p and o¢. This can be done by imposing the

fundamental conditions of probability and other known conditions to th2

distribution of ¢ shown in Fig. C-l.

2 2
u IB du + 2p = IIT- AB erf (¢m/B) + 2p = 1

p =} (1 -IIT- AB erf (¢m/B)) (C-16)

when ¢ ~ 00 (linear system) we must have p = O. This leads to:
m

ii)

A = _1_
BliT

<t>

2 2 2
J

m u2 21 2
E(¢ ) = 0 = 2p ¢ + A e-u B du

¢ m
-¢m

(C-l7)

and substituting A from Eq. C-17:

2
~.
2 = 1 - erf (¢ntB)

¢m

2 2 2
-<P. IB + 1(.13_) erf(<l1 IB)

e miii 2 ¢m m
(C-18)

(C-19)

From Eqs. C-18 and C-19 the parameter B can be eliminated and p expressed

in function of o¢ and ¢m' Due to the complexity of the equations the sys­

tem was solved numerically. The result is shown in Fig. 10.

The procedure is then: having the variances o~, 02 and 02d at time t~ they v
variance of ¢ is computed from C-8, the probability p is obtained from rig. 10,

the linearization coefficients AV and A¢ are computed from Eqs. C-15 and sub­

stituted into Eq. 18 to compute the derivative at time t. This derivative

is used then to compute the response at time t+ ~ ~t or t + ~t as was de­

scribed in Appendix A.



40

APPENDIX D ~ PROPORTIONAL DAMPING

The procedure described for MDOF systems works for any combination of

values for the damping factors. But in order to be able to compare the

results with those of the random vibration in the frequency domain, the

damping factors have to be taken in such a way that the modal equations

are decoupled.

Let1s consider the dynamic equations of a MDOF system:
.

Mx+Cx+Kx=F

By solving the eigenvalue problem of the system,

(D-1)

(0-2)

We obtain the eigenvalues 222wl ' w2' ... wn and the eigenvectors

If we substitute ~ z = x and premultip1y Eq. D-1 by ~T, we have:

(0-3)

Due to the orthonorma1ity condition of ~ with Mand K, the matrices

are diagonal and for Eq. 0-3 to be decoup1ed all we have to have is that

is also a diagonal matrix. In general this will not be the case, but

imposing some conditions on C this will be' possible. The easiest condi­

tion is that C is proportional to K:
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if C = aK, then ~T C ~ = a ~T K~ = a K (diagonal).

We can choose the proportionality factor a in such a way that the first

modal damping ratio has a specified value. If 81 is the 1st modal damp­

ing ratio and wl the 1st modal frequency, then a is given by:

By taking two or more terms of the Caughey series:

p-l .
C = M I. a i [M-1 K]

1
,

i=O

p modal damping ratios can be matched.

(D-4)
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