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ABSTRACT

A 1inear system model which accounts for the
behavior of both body and surface waveg hag been recently
developed. A method to sgeparate body and surface waves
in strong motion accelerograms was devised based on
this model., Preliminary development of the surface
wave transfer functions was undertaken so that the method
of wave separation could be tested using this new system
model. Mainshock records from the 1971 San Fernando
earthquake were used to test the method.

A problem with spurious peaks was encountered in
the calculation. Tests showed that these large unrealistic
peaks were indeed false information. Their existence in
the separated body and surface wave spectra had made the
spectra uselegs. Various methods were introduced to
eliminate these largepeaks from the spectrum. These
methods all proved to be effective, in different ways.
The corrected body and surface wave spectra showed the
expected characteristics.

Only preliminary studies were done in this thesis.
Further development on the system model 1s needed. In
particular, the surface wave transfer functions should be
improved. Methods should be developed to evaluate the

accuracy of the separated body and surface wave spectra.
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CHAPTER 1

INTRODUCTION

1.1  PREVIQUS WORK

In order to provide reliable design earthquake
procedures, various properties of the earthquake mechanism
must be understood. The behaviors of the earthquake
source, the travel path and the local site conditions
are all important factors in the prediction of earthquake
motions.

A complete system model was first proposed by
Kanai (1957) in his work on the prediction of ground
motions. This model incorporated all the properties of
an earthquake from the source to the site. Since then,
many researches have been carried out based on this
concept. Referendes of the wvarious early researches
on this subject can be found in the works of Lastrico
(1970), and Johnsen (1972). A+t the UCLA Earthquake
Laboratory, a linear system model has been developed based
on the same concept. This model describes the bedy
wave behaviors from source to site (Lastrico 1970).
Numerous applications of this model were made using data
from the 1971 San Fernando earthquake. These researches
included the works done by Johnsen (1972), Engman (1973),
and Duke and Hradilek (1973). However, this model was

found inadequate in some of the research. In particular,



the work done by Duke and Hradilek (1973) pointed out
that this model lacked the necessary surface wave charac-
teristics.

A new model has since been developed (Duke and Mal
1975), in which the behaviours of both body and surface
waves are taken into account. Reconciliation of the new
model with strong motion data requires the separation of

body and surface wave motions in ground motion records.
In this thesis, a2 method for the separation of body and
surface waves in accelerograms is tested against measure-
ments for the first time. This study will serve the dual
purpose of testing the new system model and of examining
the feasibility of separating body and surface wave
components in strong motion accelerograms. Detailed
discussions of the theory of linear systems andthe concept
of the models of system components are presented in the
following sections. The subsequent chapters apply a
me thod of separation of body and surface waves using

the new system model.

1.2 MATHEMATICS OF THE TINEAR SYSTEM ANALYSIS

According to the definition given by Bendat and
Piersol (1971), a linear system 1s a system which has
constant parameters between two clearly defined points
of input and output. These parameters must be invariant

with respect to time, They must be additive such that



the output of a sum of inputs is equal to the sum of the
outputs produced by each input individually. They must
also be homogeneous such that constants remain as
constants in the gystem.

Two of the most fregquently encountered operations
in the linear system theory are convolution and Fourier
transform. Convolution 1s used to determine the output
of a system due to some specified input. The equation

is given as follows,
R
v(t)=l__n(T)x(t-T)dT (Bq., 1.1)

where

x(t)

the input,
h(t) = the impulse response of the system,

y(t) = the output.

Fourier transformation is used to examine the frequency
content of a time dependent function. The transform

pair are

F)={ "¢ (+)e Wbt
. (Eq. 1.2)
£(t)= g/ op@)e W%

where
F(w) is the complex Fourier spectrum,

f(t) is the real time history.



Although convolution is the basic tool used in
linear syétem analysis, the integration shown in Eq. 1.1
is computationally costly and thus avoided where feasible,
Instead, a simpler method for solving it is used. This
method takes the Fourier transform on both sides of
Eq. 1.1, thus replacing the convolution operation in the
time domain with a multiplication operation in the

frequency domain, Eq. 1.1 then becomes
¥ (W) =H (w) X () - (Bg. 1.3)

where

(W) is the input spectrum,

Y(wW) is the output spectrum,

H(w) is the transfer function (or the filter*) of

the systen.

Fop a large cascade sgystem, see Fig. 1.2, it is then
possible to arrange various properties of the system as the
product of a chain of transfer functions. the response

can then be calculated in the following manner,
Y (W) =X (@) H, (@)H, (W) .. 1.\ H () (Eq. 1.4)

This approach not only avoids the tedious integrations

#In the theory of system analysis, "transfer function"
and "filter" are synonymous.
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which the convolutions require in the time domain, it
also establishes the foundation for developing the

linear system analysis used in this thesis.

1.3 A COMPLETE SYSTEM MODEL FOR EARTHQUAKES

The cascade filtering system can be used to model
earthquake effects., Two independent linear equations
can be written ag shown below to describe the process

of surface and body wave propagation (BSth 1974).

G, (@0,1)=S (W) C, (W)R (9, ¢, 7N (W, )Wy (@)X (W) T{W)
G, (w,r)=SW)C (W)R (6,4, r)W_ (W)X (W)Tw)  (Eqg. 1.5)

where

Gb(w,r), Gs(uhr) are the body and surface wave
portions of the ground motion, respectively,

S(w) describes the motion of the fault slippage,

Cb(w) despribes the procegses near the source for
waves propagating away from the source to the basement
complex,

cs(w) describes the processes near the source for

waves propagating from the source up to the surface.



Rb(6.¢.r), RS(9,¢,r) are the directionality effects,
or otherwise hnown as the radiation pattern.

M(W,r) describes the effects of.mantle on the waves
propagating in the basement complex ébove it.

wb(an, Wé(w) describe the attenuations and geometrical
spreadings along the travel paths.

xb(w), Xsﬁﬂ) describe the amplifications of waves
due to the local site properties.

T{w) is the correction factor for the errors in the

ingtrumental response.

1,4 A STMPLIFIED MODEL USING BODY WAVES ONLY ‘ ¢

For the analysis of strong ground motions due to a
local shallow¥ earthquake, a simplified model has been
adopted in the literature (Lastrico 1070, Johnsen 1972, ‘
Engman 1973). This model ignores surface waves and and
agsumes that all the enérgy is carried by the body waves.

Eq. 1.5 is then reduced to a single equation
G{Ww) =B (w)W (W)X (w) (Eq. 1.6)

where (
E(W) is a lumped source function which includes both

the body and the surface wave parts of SW), C{w)},

R(8,6,r). f

*The depth of the earthquake source is considered shallow
Cif it is relatively close to the surface compared to the
depth to the mantle. '
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W) is the lumped transfer function for the
transmission path,

X(W) is the lumped transfer function for the local
site amplification.
However, thils model was found to be inadequate for
obtaining satigfactory results in analyses (Duke and

Hradilek 1973).

1.5 A SIMPLIFIED BODY AND SURFACE WAVE MODEL

A better model is therefore proposed in an effort to
improve the results of various analyses. This model
considers body and surface waves to be equally important.
The following two independent linear equations are

considered simultaneously:

Gy (W)=E_(W)R (6,8, r)W (W)X (w)

(Eq. 1.7)
Gy (W)=E (W)R (€, B, )Wy, (W)X (W)

- where Es(w) and Ebﬁu) are the lumped source functions with
Rg(€,®,r) and Rb(9,¢,r) separated from them.
The subsequent sections of this Chapter describe

Eq. 1.7 for the purpose of thisg thesis.

1.6 SQURCE FUNCTIONS

The source functions, Eb and ES, are really the
products of various properties and effects of the source
mechanism. Approximate representations used for the

linear system analysis allow E, and ES to be written as

10
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the product of two different source properties as shown
below.
E_S(w)zs(w)cs(w) (Eq. 1.)
E, (W)=S (w)C, (W)
S(w) is the Fourier transform of the time dependent
equivalent double couples due to the propagation of
rupture along the fault surface, It depents on the
fault parameters, such as rupture speed, fault geometry,
effective stress release, and seismic moment. Cb(an
and Cq (W) are crustal effects near the source. They
can be estimated using the Haskell-Thomson model
(Thomson 1950, Haskell 1953, 1960, 1962, Matthiesen
1964, Carriveau 1970). Cb(un can be modeled as P
and S waves propagating away from the source to the
basement complex, and CS(D) can be modeled as the
free vibration of the layers in the near field.
This thesis will not contain any detailed analysis
on the modeling of the source functions. One reason
is the lack of sufficient research at the present

time for constructing such models. Also, for the method

used in the present analysis, most elements of the source

functions cancel out in the equations.

13



1.7 DIRECTIONALITY EFFECT

The directionality effect is also khown as the
radiation pattern of the source. The amount of source
energy received is different for any two stations at
equal distances but at different azimuthél directions ‘
from the source. Fig. 1.6 shows a2 typical example of the
radiation pattern. The lobes represent the relative size
of amplitudes in various directions. Note that for this
example, the amplitudes are zero at 45°, 135°, 225°, and
315°, and the maxima are at 0°, 90°, 180°, and 270°.

For simplicity, the radiation pattern due to a
double couple point source is modeled for the present
study. The derivations are presented in Appendix A.

The resulting transfer functions Rs(&hr) and Rb(khr) are

the sums of the vector components given in Eg. A.7, which
is reproduced below.

Res (0:8:2)=2 05, V540, 0 -2 %N N (Bq. 1.9)
Ry (00420280, 75%8 01 -2 75) B

where

{
Rsi’ Rbi denote the ith cemponents of the displacement

vector.

1, 2, 3 are the coordinates as shown in Fig. 1.7a.

71, 7%! 76 are the directional cosines of the station

in the above coordinate system.

3

ij ig the Kronecker delta. (

1h
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Fig. 1.6 Shear Wave Radiation Pattern Due to

A Double Couple Point Source
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A and B are the amplitude normalization factors.

The above equations give radiation patterns on the
coordinate system based on the orientation of the fault
plane, which is illustrated in Fig. 1.7a. However in
order to establish radiation patterns in the plane
parallel to the ground surface, this coordinate system
should be rotated to the orientation shown in Fig. 1.7b
using the usual equations for éoordinate transformation

shown below,

X' = A X tayta,,s
''=a ,.x + a_, +a_, 2 Eq. 1.1
Y y'x vy " fyre (Eq 0)
-
Z a0 X + az,yy + aZ,Zz

where ai‘j are the directional cosines, and x, y, z, and

x', y', z' are two sets of coordinate systems.

1.8 THE EFFECTS OF THE TRAVEL PATH

It is a very difficult task to describe the earthquake
waves along their path from source to site. The complex
and irregular configuration of the earth's crustal
structure hampers the feasibility of such a rigorous
analysis. As an alternative, estimations based on simple
analyses coupled with information from experimental data

is used to estimate this effect.

17



From these studies, 1t was found that a wave
propagating in a homogeneous medium can be described

g “R, where R™™ is the geometrical spreading

in the form R
factor and e'mR is the attenuation factor. Ewing and
others (1957) have shown that the geometrical spreading
factor for Love and Rayleigh waves should be 1/VR;
and for compressional and shear wavesg, it should
be 1/R. TFor the attenuation, BEth (1974), White (1965),
and Lastrico (1970) have all indicated that & should
take the form of W/(2QV) where & is the angular frequency,
Q is the factor for damping (BS8th 1974), which measures
the rate of attenuation in the medium, and V is the
propagation velocity of the waves.

To implement the above into the path dependent
transfer functions, Wbﬂd), Ws(aﬂ, the appropriate

equations, in their simplest forms, are

_juiry
| Zq.V
Wow =i-e "0
b (Eq. 1.11)
el g
2.V,
W, (W) = - -8
ry

18



The subscripts, b and s, denote the body wave and the
surface wave properties of the particular arguments,
respectively. Vb is the average propagation velocity

of the shear waves in the bedrock. VS is the average
propagation velocity of either L.ove waves or Rayleigh
waves, depending on whether the vibrational direction of
interest is tangential motion or radial and vertical
motion, respectively. Fig. 1.8 describes the various
properties pictorially. The absolute values of W's are

taken.in Eq. 1,13 in order to insure that the inverse

transformg of Wb and WS are real functions of time*,

1,9 TLTOCAL SITE PROPERTIES

In the study of strong earthquakes, it is believed
by many researchers that the local geological
structure has important effects on ground motions.
Various types of studles on actual earthguake records
have supported this statement. A study by Seed (1970)
indicated that the matching of natural frequencies of
the building and the local soil correlates strongly
with the building damages in the Caracas Earthquake of

July 29, 1967. Using spectral analysis technique,

#The inverse Fouriler transform of an even function is
real, and ©f an odd function is imaginary (Brigham 1974,
McGillem 1974) '

19
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Schnabel and others (1971) were able to match the recorded
spectra with predicted spectra at the various test sites
in their study by considering the effect of site condi-
tions only. In the study by Whitman and others on the
damage of the TOFAS factory in Turkey (1974), it was found
that the local soil amplification was the main cause of
the collapse of the buildings.

For the body wave part of the analysis pursued here,
a model for the local site amplification effect, Xb,
is avallable and has been used in the UCLA Earthquake
Laboratory (Matthiesen, et. al. 1964, Lastrico 1970,
Johnsen 1972, Engman 1973). Based on the Haskell-

Thomson procedure (Thomson 1950, Haskell 1960, 1962), this
model wag developed to calculate the amplification of
damped vertical shear waves traveling through uniform
horizontal layers. Detailed derivation of this model can
be found in the work by Lastrico (1970) and Carriveau
(1970). Typical illustrations of the amplification
spectra calculated from this model can be found in
Chapter 3 and in the works by Johnsen (1972) and Engman
(1973).

The development of a local site amplification model
for surface waves is still under research. Since local
surface waves are assumed to travel horizontally,
ingtead of vertically like the local shear waves,

there are difficulties in defining the boundary at

21



which the "local" surface wave effects begin to take
place., In work done by Murphy and others (1970),

the site related amplification of surface waves was

shown to take place over a horizontal distance of

several kilometers. Thils seems to contradict the concept
of "local” site effects due to surface waves., For this
reagon, the transfer function XS will be temporarily
assumed unity for the work in this thesis.

It should be mentioned that although the site effects
are generally believed to be important by many researchers,
there are some who think otherwise. Hudson (1974) compared
the ground motion spectra from the San Fernando Earth-
quake at several pairs of sites and found no direct
indication of significance of .the local site effecits.

The statistical studies done by Trifunac (1975) have also
showed no significant differences in the compared indices

among the 3 types of soil conditions considered,
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CHAPTER 2
SEPARATION CF BODY AND SURFACE WAVES

2.1 METHODS TO SEPARATE WAVE CONTENTS IN AN ACCELEROGRAM

The separation of body and surface waves in a near
field strong motion accelerogram is not an easy task. Due
to the closeness of the recording stations to the epicenter,
the deviations among arrival times for the various types
of meismic waves are very small. Therefore, unlike far
field seismograms, the various types of waves can not
easily be distinguished in an accelerogram. Fig. 2.1
presents an illustration of this.

In order to use the body and surface wave conterits
of the accelerograms in analyses, a scheme to separate the
wave contents must be devised. In the following paragraphs,
two crude methods and two analytical methodg are intro-
duced. Of the two crude methods, one simply cuts the
accelercograms into two parts, and the other cuts the
'frequency gpectrum, so these can only give very rough
approximations of the body and surface wave contents,
and thelr usages are quite limited, O0f the two analytical
methods, one incorporates the theory of wave mechanics
and the other makes use of the linear system theory. These
are more reliable in obtaining separated body and surface

waves,

CUTTING ACCELEROGRAMS Ag illustrated in Fig., 2.1, for
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most seismograms the various wave contents can be separated
out and analyzed individually. This approach used on an
accelerogram can only give crude approximations to the
body and surface wave contents in the seismogram. A few
velocity time histories* from the 1971 San Fernando
earthquake are presented in Fig, 2.2 for illustration,
The identification of the two types of waves can be
approached in the following manner. From the concept
of surface wave dispersion (B8th 1974), the first long
wave appearing in the velocity time history is identified
as the first arrival of surface waves. The end of the
body waves is identified by locating the point where the
high frequency content becomes negligible in the record.
This corresponds to the fact that the nondispersive body
waves have more high frequency contents than do the disper-
give surface waves., From this method, the approximate
regions where the two types of wave exist simultaneously
are ildentified in Fig. 2.2. If an arbitrary point can
be selected in the range of the overlaps to separate each
of these time histories, a set of estimated body and
surface wave contents can be obtained. However, because
of the apparent large overlaps between the waves, this
method of wave separation can only give crude approxima-

tions.

*The velocity time histories are obtained by integration
of the accelerograms. It is easier to distinguish between
the various wave types in the velocity records than in the
accelerations.
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CUTTING SPECTRA An alternative crude approach on the

cutting scheme is to break the frequency spectrum into
two parts. It is generally understood that surface
waveg have less high frequency contents than body waves
(see Fig. 2.1). Therefore, it is possible to separate
the spectrum into two parts, with the higher frequency
rarts taken to represent body wave contents, and with
the lower frequency parts taken to represent surface
wave contents. The only question that needs to be
answered is where should one cut the spectrum.

In an applications of this method by Murphy and
others (1964), their response spectra were arbitrarily
cut at 1 Hz. The portion below this value was assumed
as the surface wave spectrum, and the portion above

was assumed as the body wave spectrum,

APPLICATION OF ENGINEERING SEISMOLOCY One of the analy-

tical methods for obtaining separated body and surface
waves is to use the theory of wave mechanics. Rigorous
ma thematical model for the earth can be constructed for

the analysis. From the model, the separated body waves
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and surface waves can then be obtained with an accuracy as
good as the model itself. In principle, the exact
result can be obtained from this theory provided that
the earth can be modeled in an exact way. However, in
order for the computation to be gimple and economical,
simplifications on the model of the earth and the source
mechanism are necessary. Assumpiions of linearity and
homogeneity of the layered earth are also needed in
order to simplify the application of the theory. The
ability to obtain accurate results becomes limited

by the tediousness of the computation. TIllustrations of
the application of this theory can be found in the works
of Carraveau (1973), Mal (1972) and Drake (1972),
APPLTICATION OF LINEAR SYSTEM THEQRY Another analytical

method is to use the linear system theory, where Fourier
transforms are incorperated in the analysis. Like the
theory of wave mechanics, simplified model is also
degirable for this analysis., However, since the transfer
fﬁnctions are "black boxed" mathematical models, the
computation is not as tedious. For this reason, the
linear system theory has been selected for the analyses

on wave separations in this thesis.
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2.2 SEPARATION USING LINEAR SYSTEM ANATYSIS

A linear system model suitable for the application
to the separation problem was presented in Sec. 1.4.
Using this model, one can separate the body and surface
wave contents in the ground motion records in two ways.

The first approach involves one earthquake event and

one recording station. Using the equations below

& (@0)=E, ()R, (6,7, ), (@)X, (@)
G, (@)=E_ (@)R_(6,r_)W_ (W)X (w) (Bq. 2.1)
G (W) =0, (@) +¢ ()

a theoretical Fourier spectrum of the ground motion, G,
can be synthesized from the predicted ground motion
spectra for body and surface waves, Gb and GS, by
establishing appropriate models for Eb, ES, Ry» Ry

wb, WS. Xb’ and XS. By adjusting the parameters in

the model of the transfer functions using successive
iteration, the contents of body and surface waves can
be obtalned by trying to match the predicted G with

the actual recorded ground spectrum. A simpler version

of the method which involved only body waves can be found

in the work by Johnson (1975). In his work, theoretical
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ground motion spectra in "envelope" form were compared
with actual records.

However, the method presented above regulires the
knowledge of separate source functions for both body and
surface waves. But, at the present time, such models can
not be applied with confidence due to the lack of suffi-
cient research on this subject matter. Therefore the
application of the above method is avoided in the present
work,

An alternative method which makes use of two stations
and one earthquake event is prefered in this thesis.

By means of ratios, this method bypasses the need of
source functions, ES and Eb' Based on the system model
presented in Egq. 1.8 and Fig. 2.3, a set of system

equations can be written for the two stations.

Goq W)=E_W)IR_4 (O, 4 )W 4 (@)X _, ()

Gy (@)=E, (WIR,; (8,1 W, (@)X, ()
(Eq. 2.2)

GSZ(unzﬁs(w)Rsz(g'rsz)WszOO)XSZ00)

Gy (V=B (W) Ry, (8,75 )W, 5 ()X, ()

to avoid the use of ES and Eb' the following two ratios

are used to eliminate them from the analysis.

Gsl“d) Es(w)Rsl(e’rsl)wsl(w)xsl(w)
Ggp (W) 7 E ()R 5 (0,0 )W _, (W)X _, (W)

Gy W) E (W)Ry, (0,1, )y, (W)X, (@)
G (0] = B (018, (6, Ty Ty (0K, @

(Eq. 2.3)
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let

G . (W)

M(w) = g2
82 (Eq. 2.4)

- sz W

where M{w) and N(W) represent the ratio of the known

surface wave transfer functions, R_, WS, XS and body wave

S
transfer functions, Rb’ Wb’ Xb’ respectively. A set of

linear equations can then be written as shown below.

G g (W) Gy, (W)=6; (W)
G p (W)HGy 5 (W)=G, (W)
Gy (W)/G, (W)=M ()
Gy (@)/ G (W) =N (w)

(Eq. 2.5)

where Gi(w) and Gz(w) are the Fourier spectra of the
recorded ground motions at the two stations, and M(W)
and N(w) are ratios of transfer functions shown Eq. 2.4.
Solving the four equations simultaneously for the
unknowns Gsl’ Gbl’ Gs2’ and sz, the following solutions

can be obtained.

. ; NGz-Gl . o ~ M(NszGl)
s2  N-M ’ st N-M
(Bg. 2.6)
o - Gy -MG, . o - N(G, -MG, )
b2 N-M ! bl N~-M

where the four unknowns are now functions of the ratlos
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of transfer functions and the two station records, which
are essentially known guantities.
The subsequent chapters will examine in detail

the feasibility of using this methoed.
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CHAPTER 3
APPLICATION OF LINEFAR SYSTEM MODEL

Records from the 1971 San Fernando earthquake are
gselected to test the method of analysis prescribed in
the preceeding section. Mainshock records at the ground
levels of 8244 Orion Ave., 15250 Ventura Blvd. and
1800 Century Park East are used. Detalled description of
the earthquake can be found in the publication by the
USGS and the NOAA (1971). And the description on the
source of the pre-processed raw records can be found in
the work by Johnsen (1972). Digitized accelerograms from
three stations were selected to test the method pres-
cribed., These records were first rotated based on +the
epicentral location obtained by Hanks (1974), only the
tangential components of them are used in this analysis.
Fig. 3.1 presents a general description of the three
stations of interest.

In this thesis, only a preliminary explorétion will
be attempted on the proposed method of wave separation.
No rigorous treatment will be attempted. The reason
is because many of the transgfer functions required for
the newly propbsed model have not yet been well estalished.
Therefore, instead of rigorous analysis on the separa-
tion of bedy and surface waves, thils thesis will

serve only as a preliminary examination on the wave
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gseparation scheme and the newly proposed system model.

3.1 THE SYSTEM FUNCTIONS

Based on the theories discussed in Chapter 1, the
required functions, the R's, W's and X's are developed
below for the 3 stations used.

RADIATION PATTERN, R, AND RS A double couple point

b
source on a 52° dip slip fault plane is used to calculate

the directionality effect. Fig. 3.2 illustrates the
orientation of this double couple. Although the double
couple source function does not come close to resembling
the actual source mechanism, 1t is, nevertheless, suffi-
cient for the purpose of the present exploratory analysis.
Using Eq. 1.11 and Eq., 1.12, the resulting radiation
patterns can be obtained. Fig. 3.3 illustrates some
typical results calculated from the model shown in

Fig. 3.2. This solution will be assumed to be applicable
for both Rb and R, in this analysis as it is stated in
Appendix A,

TRAVEL PATH EFFECTS FOR BODY WAVES The W. function is

b
calculated using Eq. 1.13a. The valueg for the para-

meters Qb and V., are selected based on the work by

b
Lastrico (1970) and Duke et. al. (1971). For Q,» 2
value of 200 is used to express the damping in the

crystalline rock in the San Fernando Valley region.

For Vb’ a value of 3.4 Km/sec is used as the shear wave
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velocity in the crystalline rock, A typical shape of Wb
is illustrated in Fig. 3.4a.
SITE AMPLIFICATION EFFECTS FOR BODY WAVES The function

Xb for the stations used in this analysisg have been
calculated by Johnsen (1972} and Engman (1973). The
results termed in their reports as “XALL" are selected

as the most appropriate ones to be used here. These
incorporate a site model extending to the original ground
surface., Fig., 3.5 illustrates these functions.

SURFACE WAVE BFFECTS Due to the nonavailibility of a

convenient algorithm for surface wave site effects, the
function Xs will be taken as unity in this analysis.

The path functions Ws are calculated according to

Egq. 1.13b. A value of 50 is selected for Qs reflecting
the average amount of damping in the top 0.6 km of geology
in the San Fernando Valley . (Duke et al. 1971). A wvalue
of 1.5 km/sec is set for Vs‘ This value is an average of
shear wave velocity in the upper 0.6 km of geology in the
San Fernando Valley. And it is assumed to be roughly the
average velocity for the surface waves traveling in the
wave guide of this depth. A typical shape of WS is
illustrated in Fig. 3.4b.

CONSIDERATIQN OF TIME DELAYS Based on the Fourier

transform pair given in Eq. 1.2, the effect of time shift

can be calculated from the following equation.
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(w) - 1wt

F(u“})shi:f”r;ed = Fworiginal'e

(Eq. 3.1)

where >0 gives positive time shift (delay), and t<0 gives
negative time shift (advance). In this analysis, the
arrival time difference for both the body waves and the
gsurface waves between the two stations are considered.

For the body waves, the estimation of the difference in

arrival time is calculated by the following equation.

+ - "w2 + Tx2 B “wi n "xi (Eq. 3.2a)
delay Crock CXZ Orock Cxl

where the letter r denotes distance and ¢ denctes velocity.

For the surface waveg, -1t is calculated by the following

egquation

d
delay s

2”4y

surf

t

(Eq. 3.2Db)

where the letter d denotes epicentral distance and Coypf
denotés the average surface wave velocity, which wasg
used in the function W_. Fig. 3.6 defines all the symbols
used in Eq. 3.2a and 3.2b. '

The errors resulting from the uncertainties in the
distances and velocities, the delay time for the
arrival of waves between staticns, and the effect of

surface wave dispersion have been ignored because

of the exploratory nature of this research.
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3.2 THE PROBLEM IN COMPUTING SEPARATED WAVES

Based on the preliminary model provided in the
above Section, the separated body and surface waves
should show the following characteristics:

(1) Due to the relatively higher rate of damping

specified in the transfer function WS over W one

b’
should expect the higher frequency contents in the
.surface anes to decay faster than those in the body
waves as the distance increaseg, (2) One ghould

expect the general amplitude for body waves to decay
faster than surface waves as the distance increases.

This is because the surface waves decay with a

factor of 1/Jr while the body waves decay with a factor
of 1/r. (3) The general shapes of the pair of

separated body and surface wave gpectra should not differ
from each other too much. The reason being that the
various characteristics of the surface waves, such as

the dispersion phenomenon and the amplification due

to the effects of wave guides have not been modeled,
Therefore, the surface wave. and the body wave
characteristics are governed primarily by the Ws and

W. transfer functions, respectively, which are similar

b
in shape.
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Using Eq. 2.5 and the transfer functions discussed
in the last section, a set of separated surface and body
waves for the pailr of stations, Holiday Inn and Century
City, and the pair, Holiday Inn and Bank of California
were obtained. The numerators, the denominators, the
original ground motions, the separated body and surface
waves and the inverse transforms of the body and surface
waveg are presented 1In Fig. 3.7 and Fig. 3.8 for the
above two station.pairs in that order. Fig. 3.7 presents
the calculations for the pair of stations, Holiday Inn
and Century City; Fig. 3.8 presents the calculations for
the palr of stations, Holiday Inn and Bank of California.
After examining the results, it was found that some
- of the computed results exhibited large unrealistic peaks,
This is especially evident in the calculations shown in
Fig. 3.8b. The periodic appearance of these large
peaks and the fact that they exist at the same sets of

frequencies reinforce the doubt of their wvalidity.

In the previous work done with Linear System
Theory, similar spurious peaks have appeared on
numerous occasions. In the work by Johnson (1975),
the occurrance of a large number of spurious peaks

had hampered his analysis of the testing of the procedure
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known as "Method II". In his inverse Fourier transforms,
the spurious peaks in the spectra caused the time history
to continue without decay. The reason for this is that
the large peaks are like impulse functions in the
frequency domain. And their inverse transforms are
continuous_sine waves. So, when a few of these large
peaks exist in the Fourier spectrum, its inverse transform
will be dominated by a superposition of a set of sine
waves corresponding to the frequencies of these spurious
peaks. A typical pair of his results is illustrated
in Fig. 3.9. The same problem with spurious peaks had
appeared earlier in the work by Johnson and Yee (1972),
Johnsen (1972), and Engman (1973).

From a step by step examination of the processes of
the separation calculation, it was found that these
large peaks seem to correlate well with the dips in the
amplitude of the denominators, N-M. Note in Fig. 3.7
and 3.8 that the spurious peaks occur wherever the
denominator approcaches zero. This phenomenon also
existed in the works referenced in the above paragraph.
In the next chapter, this observation will be demons-
trated with the various testings performed. Chapter 5
will then present some possible methods for eliminating

the spurious peaks and their effects.
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CHAPTER &
A DEMONSTRATION OF THE CAUSE OF

THE SPURIQUS PEAKS PROBLEM

Before any attempt is made in eliminating the
spurious peaks from the results of the separated waves,
a brief examination of the causes of the spurious peaks
is done in this chapter. Two arbitrary stations will
be used for this purpose. This chapter will serve as
a demonstration for confirming the spuricusness of these

large peaks, and also verify their correspondence with

the dips in the denominator, N-M. No rigorous parametric

study will be attempted.

In order to properly perform the study on the causes
of the spurious peaks, a controlled condition on the
system is established. A set of exact solutions to the
body wave and surface wave contents must be known.

All transfer functions must also be exact. If these
conditions exist one will be able to observe the
possible errors that each parameter contributes by
comparing basic theory with computed results. However,
gince this is only a tesf case, it is not necessary to
base the test system on ény real physical event. In
addition, no actual physical units will be attached to
any of the parameters. These simplifications can help

eage the analyses performed in this chapter.
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4.1 PREPARATION OF TEST DATA

The simplest way to create a controlled set of data
is to design a source function and a set of transfer
function, and then to generate the body and surface wave
contents and the total ground motions at two arbitrary
stations based on the method described in Eq. 2.1.

For the source, time function with exponential decay
of the form shown below was arbitrarily chosen.

2
L _
5 -220%

e(t) = (220/m) (Eq. 4.1)

1
Knowing that the Fourier transform of h(t)=(a/w)2exp(—dt2)
is H{w)=exp(-«/ho)*, the Fourier transform of Eg. 4.1
with an arbitrary time delay of 1.0 unit gives a
gsource function of the following form.
2
s - i(1.0)w

E W) =e¢ (BEq. 4.2)
For simplicity, this function will be used to represent
both Eb and Es'

The path {transfer function Wb and WS are those
described in Egq. 1.13. The parametric values are listed
in Table 4.1,

For the Xb's one layer site amplification models

based on the site conditions at Holiday Inn and Bank of

*See Brigham (1974), page 27 for the description of this
function. '
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STATTONS 1 2

ry 23.4 39.5
r 6.0 24.0
Qb 100 100
QS 100 100
Vi 3.4 3.4
v 3.2 3.2

Table 4,1 Values of the Parameters Used in

Degigning Wb and Ws
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California are used for station #1 and Station #2,
respectively. The two models are illustrated in Fig.
h.1.

The transfer functions Rb’ RS and Xs are set at unity
in the analysis.

Using the above functions, the separate spectra of
body and surface waves and their combined spectra of
total ground motion are calculated. These results are
shown in Fig. 4.2,

These spectra provide the bases for the testing
pursued in this chapter. The subsequent analyses will
test the separation equations based on the test data

provided above.

4.2 TESTING THE SEPARATION EQUATIONS

Before performing any parametric studies, the separa-
tion equations are tested to check for their validity.
Using the unaltered transfer functions created above,
the two ground motions were separated to obtain their
body and surface wave parts. The results obtained are
exact. These results are not presented here since they
resemble the original spectra shown in Fig. 4.2 exactly.
This test indicates that the separation equation

proposed in Sec. 2.2 is valid.
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4.3 PARAMETRIC STUDIES

Using the artificial‘model established in Sec. 4.1,
three types of parametric studies are performed to test
for the problem of spurious peaks.

The first study examines the effects on the separated
body and surface waves due to variations on the epicentral
distances. For this study, the epicentral distance
of station #2 is altered both +2 units and also -2 units.
Fig. 4.3 and 4.4 presents the resulting separated body
and surface wave components along with the denominators
N-M.

The second study examines the effects on the separated
body and surface waves due to variations on the differences
of arrival times for the two types of waves between
the two stations. Fig. 4.5, 4.6 and 4.7 pregents the
resulting separated body and surface wave components
along with their denominators, N-M, for the cases with
the time delays for both waves increased 0.001, 0.01,
and 0.1 units.

The third and the last study compares the signifi-
cantness of the spurious peak problem for systems with
different amounts of high frequency contents. To do this,
three differnet source functions of the form shown in
Eg. 4.3 below and in Fig. 4.8 are used to create the test

data.
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—) .
_ Is0 ~ ¥
E1 = e
2
—-&)
o~ — 1
E, = ¢880 (Eq. 4.3)
2
A .
1w
E,= e 00_

3

The procedure isISame as those described in Sec. 4.1,
Begides the source function, the system model remains
the same., Note that the second source function, EZ'
is the one used in the first two studies.

The two types of parametric studies used earlier
are performed again with these three systems. The first
study invelves an increase of the epicentral distance of
station #2 by 5 units. The second study has the station
to station time lags for both the body waves and the
surface waves increased by 0.01 units. The exact
results and the results with the two testings are
pregented in Fig. 4.9 for the first source function,
in Fig. 4.10 fbr the second source function, and
in Pig. 4.11 for the third source function. And the
denominators for all cases are presented along with
the test results.

From the above three studies, a definite correspon-
dence can be observed between the dips of the denomina-

tors, N-M, and the large peaks. Comparing the resulting
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separated body and surface wave spectra from the
parametric studies with the exact spectra, it becomes
clear that these large peaks are definitely spurious.
And for this reason, these peaks ought to be somehow
avolded in order to improve the results obtained from
the inaccurate models used in this analysis. In the
next chapter, precedures will be presented to eliminate

the spurious peaks.
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CHAPTER
COMPUTATTIONATL. PROCEDURE

The preceeding chapter demonstrated that the spurious
peaks are indeed false information. These peaks were
due to errors introduced by the computational procedure.
" In this chapter, four methods are introduced for the
purpose of eliminating the spurious peaks from the
separated body ahd surface wave spectra. The station pair,
Orion and Ventura are used for a majority of the studies
presented in this chapter. The results obtained should

be compared with Figs. 3.8b and 3.8e.

5.1 METHOD A: A ROUGH TREATMENT

One of the simplest ways to treat the spurious
peaks is to cut them off from the specirum at an arbitrary
level. This method, although crude, does serve the
purpose of producing "believable" inverse transform.
However, the reliability of this procedure is quite
poor, because there is no predetermined rule on the
level of amplitude where the spurious peaks should be cut
off. For this reason, no effort will be attempted in
this thesis to treat any 5f the results using this

me thod.
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5.2 METHOD B: SMOOTHING

Spectra with large fluctuations of peaks and valleys
have often been smoothed for various purposes. In the
problem of avoiding spurious peaks from divisions of two
spectra, both B8th (1974) and Dobry (1971) have recommended
that the numerator and the denominator be pre-smoothed in
an amount determined by trial and error.

In this sectlon, the same procedure will be attempted
on the separation equations given in Egq., 2.5, where the
numerators (NGz'Gi)’ M(NGZ—Gl), (Gl"MGz)’ and N(Gi'MGZ)’
and the denominator, (N-M), will all be smoothed before
dividing. A smoothing algorithm which smoothes complex
spectra with a triangular function was developed for this
purpose¥®. By trial and error, it was found that the best
scheme is to use 7 weights on the triangular function
and to smooth both the numerator and denominator twice.
The resulting surface wave and body wave contents for
the Orion and Ventura pair are presented in Fig 5.1
through 5.4 along with their numerators, denominators

and inverse transforms,

*¥See Appendix B, Program #3, Subroutine CMOOTH.
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RATIO OF SMOOTHED SPECTRA
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5.3 METHOD C: TINTERPOLATTON

Another method in treating the spurious peaks is

by interpolation across the region of the peak. Once
the location of the peaks are identified from the results,
the values at those frequencies are simply removed. In
place of the missing gaps, "straight lines" are inter-
polated across these gaps in the complex domain. This
is done using the following egquation,

Li-Irirgt
(Ilas‘c—I

G.=

i ) (G106t Criret) Crirss (BQ 5:1)

first

where the G's are the amplitudes, and the I's are
fregencies. Fig. 5.5 illustrates this procedure. The
results from this procedure are presented in Fig. 5.6
through 5.9 along with their inverse transform. The

range of freguencies that were eliminated and interpolated
are listed in Table 5.1. This same set of frequency
ranges was used for each of the four spectra treated

by this method.
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Fig. 5.5 Interpclation Procedure
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5.4 METHOD D: MULTIPLE-STATION PROCEDURE

The fourth method of correcting spurious peaks is
to calculate many sets of separated wave contents for
a given station by pairing one particular station with
a number of others. Since the chance of getting spurious
peaks in all of these independent calculations at any
particular frequency is not so great, therefore, a
corrected spectrum of the separated body wave or surface
wave can be constructed by replacing the unwanted sections
of a particular separated spectrum with the same
section obtained in any one of the other calculations
where no spurious peaks exist in the section.

In this analysis, the records at Orion, Ventura, and
Century Park East are used to obtain two independent
body and surface wave components for Orion. Using
the modulus of the two denominators of N-M as weighting
factors, each pair of the independently calculated
spectra for body wave and for surface wave at Orion can
be combined to form a new spectrum which most likely
will contain nho spurious peak. In this thesis, the
following procedure is incorporated. For every pair
of points at a particular frequency, let us call them
G, and G,, where 1 and 2 refer to the two independent
spectra, the final result for body and surface waves at

every frequency point can be calculated by using the
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equationg* shown below,

. D1 D2

G sl G tls—51 G
Seinal D1 + D2 st D1 + D2 s2
G :__._..D_J;.___ G +___D_2__.___ G
bfinal Dl + D2 bl D1 + D2 b2

where

(Eq. 5.2)

DX denote the modulus of the respective denominator
at theparticular frequency value of interest.

ny denote the complex values from the spectra
at the same frequency point.

b denotes body wave component.

g denotes surface wave component

1 and 2 are the two independently calculated spectra,

Fig. 5.10 to 5.13 illustrates the resulting body and

surface wave spectra at Orion.

#See Appendix B, Program #2, Subroutine ADJUST.
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5.5 DISCUSSION

Other than the first method, which was not analyzed,
all of the three remaining methods seem to have given
satisfactory body and surface wave spectra. Comparing the
raw results for the separated body and surface wave
gpectra at Orion shown in Fig. 3.8b and 3.8e with those
in this chapter, it can be noted that the improvements
are quite significant. Note that the peak accelerations
in the resulting time histories were significantly
lowered to a level comparable to the peak acceleration
of 0.25g recorded on the actual accelerogram at Orion
(Caltech 19733,

However, the inverse transforms of the spectra
obtained from the three methods did not compare too well.
This is due to the fact that the inverse transforms are
quite sensitive to the actual content of the Fourier
spectra. The different corrections applied to the
gpectra can certainly affect the contents of these
inverse transforms.

The inverse transform in Fig. 5.1b, 5.2b,5.3b and
5.4b contain some unwanted data at the ends. The author
believes that they are caused by the aliasing effect
(Otnes 1974) in the discrete Fourier fransform operations.
Since they do not directly affect the analysis intented
in the thesis, therefore, no treatments are done to

improve these inverse transforms.
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CHAPTER 6
CONCLUSION

This thesis had the intention of doing preliminary
testing of both a newly modified linear system model
and a specific application of the model to the separation-
of body and surface waves. However, due to difficulties
both in the construction of the surface wave transfer
functions and the occurence of spurious peaks in the
computed body and surface wave spectira, the problem
became more complicated than was originally anticipated,.

The primary problem which hampered this study
was the appearance of the spurious peaks. Their
domination of the calculated body and surface wave spectra
made these spectra useless., Instead of doing research on
the transfer functions of the separated ground motions,
this theslis was diverted toward methods of eliminating the
spurious peaks.

Three me‘thods were examined in Chapter 5 for the
elimination of the spurious peaks. Although they can
only providé egtimated corrections for the spectra of
the separated body and surface waves, each of these
methods served successfully to eliminate the spurious
peaks from the calculated spectra of body and surface

waves.
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In addition to the above accomplishment, this thesis
has also ﬁlarified the weaknesses of the system model,
in particular the lack of realistic surface wave
transfer functlons. As was discussed in Sec. 3.2,
due to this weakness the separated body and surface
waves do not show the correct characteristics. Instead,
the body and surface wave spectra are similar in shape.
A typical illustration of this is shown in Fig. 5.173.

This thesis serves only as a preliminary evaluation
of the newly proposed linear system model with its
dependence on wave separation. Further work is needed
to reconcile the model with strong earthquake data.

The author recommends that the following studies be
done:

(1) The establishment of good surface wave transfer
functions, namely the WS and XS functions. Use of (2),
(3) and (%) below can help.

(2) Suitable modeling of the various source related
functions, Es’ Eb, Rs and Rb'

(3) An ideal model of the earth either simulated or
based on field experiments should be created to serve
as a test case to determine the correctness of the
modeling technique for the linear system model.

(4) Middle field strong motion seismograms with
clear sgeparationsg of body and surface waves ought to

‘be used to test the modeling of the linear system
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using Bq. 2.1 and Eq. 2.6 for the analysis.
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APPENDIX A

GREEN'S FUNCTION SOLUTION FOR A DOUBLE COUPLE SOURCE

IN FREQUENCY DOMAIN

In a ihfinite, homogenious, isotropic, elastic
medium, the far field displacement motion due to a
gudden dislocation source can be described by the follow-
ing equation.

@)=7, o -
Uy (£,9)=T; (0,015 yn a5 (Eq. £-1)

where

Um is the displacement in the m direction.

[Ui(o,w)] is the discontinuity jump of the slip area.
n
Tij
nj ig the normal vector of the slip plane.

is the traction vector for the m direction.

S is the area of the fault,
i and J are the indices for the summation.
For a slip system described in Fig. A.1, the above

equation of motion can be reduced to
_ m

by making the substitutions of Ui(o,w)zéijnl and
nj=6j3. Dl is themagnitude of the slip, Sij 18 the

Kronecker delta.
The traction TTB described above can be expressed

in terms of Green's function in the following manner,
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Fig., A,1 Sudden Slip on A Small Plane
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aG 3G
m m im
T - + E . A.
where the Green's function can be written as & function

of frequency shown below,

KR 2 Ak AK:R
. e =) e - e (

where

= /ci.

is the density.
ij is the Kronecker delta.
Making use of Eq. A.3 and A.4, the far field

displacement spectra described in{Eq. A.2 can be expressed

in the following forms.

U"(g (d) (}(D 5) 4'11";“,IR [( K3 "'k!R))/ +( 3 AK;R :eikzﬁ)extr’J

3 AkgR

009 e N 2T %) (A

Uu(80)=(AD09 izl “"'")r, (e i e ey ]

where Ti= Si/R, the directional cosines.

It can be shown that the two terms in each of the
above equations can be broken down into P-wave and S-wave
parts. These components written in the form of indicial
notations are given as follow.

a
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For P-wave

U= (ke (Gl (@ e ) (en ) (R Aew

For S-wave

o ik
Ui(8,0)= (4D2s)(gmm (4 ke N5 + 63 7-27% 7 %) (Eq A6

The above equations can both be interpreted in the
following way. The first factor (D1 S) is the geismic
moment. The next two factors describe the geometric and
exponential decay. They are both frequency dependent.

And the last factor describes the radiation pattern.

In thig thesis, the directionality factor for the
S-wave response‘is used to describe the radiation patterns
in the linear system analysis described in Cahpter 1,

The equations of the following form are used to describe

the sgurface wave and the body wave radiation patterns.

Ryq (e, ¢,r)=A(5.117’3+6.13Y1-2 Y.lrl'rj)

. _ (Eq. A.7)
Ry; (€5 ¢’r):B(6i173+‘5‘i37’1'2Y171’3)

wheré Rsi(9,¢,r) and Rbi(9,¢:r) are the components of
the radiation pattern transfer functions for surface waves
and body waves, respectively. And A and B are constants
for amplitude adjustment.

For the gimple reason that the investigations
conducted in thilis thesis are quite preliminary, no

rigorous effort is made in developing accurate functions
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for the radiatiaon patterns. The assumption of describing
both surface wave and body wave radiation patterns the
game way is quite sufficient for the scope of this

research.
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APPENDIX B

COMPUTER PROGRAMS

The 1listing of four major computer program: used
in the thesis are included in this Appendix for reference,
The main programs and their essential subroutines are
listed below. Other required subroutines may be obtained
from the UCLA Earthquake Laboratory.

1. Test Program For Separation of Body and Surface Waves

This program was used in the analysis done in
Chapter 4. It genérates a specified source function
via Subroutine "GBS" and "SORCE1", calculate the total
ground motion using the method discussed in Chapter 4,
and then perform the separaticn with the specified

parametric errors.

2. Multi-Station Body and Surface Wave Separation Program

This program was used in Chapter 5 both in providing
untreated body and surface wave specira for the use
in the "smoothing scheme" and the "interpolation scheme",
and also performing calculatiori to obtain the corrected
spectra via "multiple-station scheme" by using Subroutine
"ADJUST". Subroutine "MNPREP" prepares input data and
denominator, M-N, and "SEPRAT" performs the separation.
A1l other subroutines are general programs which can

be obtained in the Earthquake Laboratory.
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3. Division of Fourier Specira

This program smoothed the numerator and the denomi-
nator of the complex Fourier spectra using Subroutine
"CMOOTH", and calculates the ratio for the smoothing

scheme described in Chapter 5.

L, Interpolation Program

The program perfroms the interpolation scheme

degcribed in Chapter 5.
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PROGRAM #1

TEST PROGRAM FOR

SEPARATTON OF BODY AND SURFACE WAVES
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PROGRAM #2

MULTI-STATION BODY AND SURFACE WAVE

SEPARATION PROGRAM
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PROGRAM #3

DIVISTION OF FQURIER SPECTRA
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