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CHAPTER 1

INTRODUCTION

1.1 Object and Scope

The overall objective of the experimental study was to develop a better

understanding of the response of reinforced concrete frame-wall structures

subjected to earthquake motions. An incidental objective of the research

was to investigate improved methods of analysis for design of structures

behaving in linear and nonlinear ranges of response.

To accomplish these objectives four model frame-wall structures were

constructed and subjected to strong base motions generated by an earthquake

simulator. The multistory structures were not models of any particular

prototype but physical representations of an engineer's concept of lateral

load resistance in a building. Each small-scale structure consisted of

planar elements resisting inertial loads resulting from a single direction

of motion. Story weights, coupling frames and walls at each of ten levels,

were ridiculously stiff and attached so that the mass would be effectively

lumped at the centroid of each story level. Observed response of the

structures was interpreted to investigate behavior as one would with

results of a numerical analysis of a similar idealized model.

Comparing response of a physical model with that of a mathematical

model is a useful technique for investigating mechanisms of behavior.

However, an understanding of response, which may result in improved methods

of analysis for design, may be inferred directly from response of the
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physical model. The experimental analysis presented in this study con

sisted of proportioning structures according to a proposed design method,

testing the structures, and interpreting observed response to evaluate

the applicability of procedures used with the design method. Distributions

of reinforcement were establ ished from results of a conventional 1inear

modal analysis. Stiffnesses of selected members of the design model

were arbitrarily reduced to localize nonlinear behavior and to obtain an

economical pattern of reinforcement. t1easured response of the test

structures (accelerations and displacements) were examined in terms of

apparent modal properties to evaluate the correctness of the design method

in estimating lateral loads applied to the nonlinearly behaving structures.

Internal-force measurements were also examined to investigate frame-wall

interaction in the nonlinear range of response and to check the reliability

of the design method for proportioning individual elements.

1.2 Previous Research

Several approaches to the development of improved analytical methods

for earthquake-resistant design of reinforced concrete structures have

been attempted. Because costs of testing full-scale multistory buildings

in the nonlinear range of response are generally prohibitive, research

has consisted primarily of studies using either numerical or small-scale

physical models. Hidalgo and Clough [11] subjected a large-scale

(approximately two-thirds) frame structure to strong simulated base motions.

Examination of measured response of the two-story structure was mainly

concerned with detailing of members and joints rather than overall response.
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Mahin and Bertero [17J evaluated the use of linear and nonlinear

analytical techniques to identify response of three buildings that were

damaged significantly during earthquakes. Results of their research

emphasized/the need for explicit considerations of the effects of inelastic

behavior in estimating response parameters such as drifts, internal forces

and ductility requirements.

Tansirikongol and Pecknold [24J investigated approximate modal

analysis methods for bilinear multi-degree-of-freedom systems using elastic

and inelastic response spectra. Story displacements calculated using

approximate methods were from 5 to 40 percent different than values

calculated using a more refined nonlinear dynamic analysis.

Pique [21J investigated the use of simple analytical models to estimate

inelastic dynamic response of frames. His research demonstrated that shear

beam and equivalent single-degree-of-freedom models could provide reasonable

approximations of response to that calculated using a more elaborate point

hinge model.

The primary objective of previous experimental studies of small-scale

structures has been to match test results with calculated response. An

understanding of behavior was inferred from assumed concepts included

with the analytical model if a good correlation between measured and

calculated results was observed. One of the few model structures of this

category not tested on the University of Illinois Earthquake Simulator was

a one-fifth scale six-story, single-bay frame investigated by Wilby [26J.

Several small-scale structures have been tested at the University of Illinois

as part of a continuing series of research projects involved with effects

of earthquake motions on reinforced concrete buildings. Gulkan [7J tested



4

the applicability of a linear-model approach with a one-story single-bay

frane. Investigation of multistory structures [1,.9, 15, 18, 20J began

with Otani testing a three-story frame,. followed by Lybas and Aristizabal

examining energy dissipation capabilities of six- and ten-story coupled

wall structures. Cecen, Healey and Moehle tested ten-story, three-bay

frames similar to the frames described in this report.
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CHAPTER 2

OUTLINE OF EXPERIMENTAL PROGRAM

The experimental study consisted of tests of reinforced-concrete

model structures subjected to a program of base motions generated by an

earthquake simulator. Each ten-story structure comprised two frames re

sisting lateral inertial loads in parallel with one slender structural wall.

Geometry of each structure was the same (Fig. 2.1). However, patterns of

reinforcement were varied according to a design concept as discussed in the

next chapter.

Experimental parameters of the four-structure series were the base

motions and strength of structures.

A photograph of the experimental arrangement is presented in Fig. 2.2.

The frames and wall were coupled at each level by a 465 kg mass so that

. lateral displacements of each element would be equal. A system of steel

channels was provided to transfer lateral and vertical forces from the mass

to the centroid of each frame joint without eccentricities. Lateral forces

were transferred to the wall from the mass by a connection with negligible

resistances to rotations about each principal axis of the wall. Construction

of the test structures was planned so that no dead load was supported by the

wall. Both frames and wall were secured to the simulator platform with pre

stressed steel angles which assured a fixed-base condition for all motions.
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Base motions consisted of scaled earthquake simulations of progres

sively increasing intensities, and low-amplitude steady-state excitations.

Earthquake motions modeled were the north-south component of the ground

motion measured at E1 Centro, California in the 1940 Imperial Valley Earth

quake, and the N21E component of the motion measured at Taft, California

in the 1952 Tehac~api Earthquake. The time axis of these recorded acce1er

ograms was compressed by a factor of 2.5 so that frequency contents of each

base motion would be in similar ranges as natural frequencies of the test

structures. A typical sequence of loading is depicted in Fig. 2.3. Inten

sities of initial earthquake simulations were representative of design-bases

motions. Subsequent test runs were approximately two and three times as

intense as initial test runs. Following earthquake simulations, the last

two structures in the series were subjected to sinusoidal base excitations

at frequencies within ranges of expected natural fundamental frequencies.

Before and after each base motion structures were subjected to low-amplitude

imp1uses so that free-vibration response could be examined.

Response of each structure was recorded continuously on forty-eight

channels. Measurements at each level included displacement, acceleration,

and strain in the bolts of the connecting system which indicated force re

sisted by the wall. Accelerations were measured in transverse and vertical

directions also for detection of torsional and axial response. Data was

converted to digital form, calibrated, and stored on magnetic tape for fur

ther processing and plotting.
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Detailed descriptions of the testing apparatus and procedures for

fabricating, erecting arid testing the structures and recording and reducing

data are presented in the Appendix.

The experimental study also included two series of cyclic-load tests

to determine hysteresis properties of the small-scale members. Four wall

specimens were fixed at base and loaded laterally with a single concentrated

force. Four interior and four exterior beam-column units were loaded with

representative story shears at idealized locations of contraflexure. De

scriptions and results of static tests are presented in Chapter 4.
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. CHAPTER 3

DESIGN OF EXPERIMENT

Conceptual design of the test structures and base motions is dis

cussed in the first section of this chapter. Reasons for selecting frame

and wall geometries, size of story weights, and intensity and frequency

content of base motions are presented. The method of analysis used for

proportioning reinforcement is discussed in the second section of this

chapter followed by description of the reinforcing schemes and anticipated

maximum displacements.

3.1 Conceptual Design

(a) Geometry of Test Structures

Locations and sizes of structural elements in most buildings are

seldom chosen with optimization of the structure in mtnd. Walls may be in

cluded in the structural configuration because of architectural demands.

For example, slender walls for an elevator shaft serve a vital building

function but may not influence appreciably displacement response of a high

rise building subject to strong ground motion. However, the wall will re

sist a fraction of the lateral load redundantly with other structural ele~

ments which provides the engineer with options for proportioning strength

throughout the structural system economically.
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Previous tests of model frame structures without walls I9~18J

revealed serviceable behavior during design earthquake simulations. Selec

tions of wall dimensions for this experimental study were, therefore, not

intended to necessarily stiffen the frames, but to result in a structural

system where wall-frame interaction could be examined. The ideal geometry

of wall and frames was considered to be one where variations in force dis- .

tributions for each component could be percepti"ble with cracking of concrete

and yielding of reinforcement.

Frame geometries were not varied from the previous series of tests so

that comparisons of observed behavior could be made. Ten stories were

originally selected so that higher-mode response could be examined. Aspect

ratios of story heights to bay widths were selected to be comparable to

ratios of actual buildings. Overall dimensions of the frames were limited

by the size of the similator platform. Frames with three bays were tested

so that response would include behavior of interior and exterior joints.

Beam and column depths were established so that reasonable reinforcing ratios

would result and shear deformations would be minimal.

Wall depths were established so that total story shears would be re

sisted mainly by wall at base and by frames at upper storys. To demonstrate

why an eight-inch (203mm) wall was selected, calculated shear at each story

res is ted by frames and wall are presented in Fi g. 3.1. Shear di agrams have

been generated using the analytical model descirbed in the next section with

a triangularly shaped lateral-load distribution. Diagrams are shown for

stiffnesses based on uncracked and post-yield behavior.
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(b) Size of Story Weights

Story weights were made as large as space limitations would permit

so that minimum intensities of base motion would result in yield of rein

forcing bars of a reasonable diameter. Story weights were also made as

stiff as possible in the horizontal plane so that lateral displacements of

wall and frame would be equal.

(c) Base Motions

Preliminary natural frequencies were'used to establish a factor for

compressing the time axis of the base motion. As depicted in Fig. 3.2, a

time scale factor of 2.5 was chosen so that the fundamental frequency of the

test structures would be in the range of decreasing spectral acceleration.

This range was selected so that the structures would resist less load with

increasing damage. A smoothed spectral-response curved representing response

to recorded ground motions of El Centro and Taft earthquakes was used.

Maximum base accelerations, were established for initial earthquake

simulations so that the small diameter reinforcing bars would be stressed to

yield.

3.2 Design of Test Structures

(a) Description of Analytical Model

Linear analyses were made for design using the model described in Fig.

3.3. The model consisted of a single frame coupled in the same plane with a

wall so that lateral displacements would be equal at each level. Calculation

of response considered flexural and shear deformations of beams, columns and
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wall. Axial deformations of columns was considered, but axial deformations of

beams was neglected. Further idealizations included rigid joint cores, fixed bases,

and lumped masses at each level. To parallel current design-office practice

a commercial dynamic analysis program, ETABS 127] , was used for computing

response. Displacement and force maxima were calculated for the first three

modes of vibration using the smoothed spectral~response curve shown in Fig.

3.4.

(b) Stiffness Assumptions

Stiffnesses of frame members and lightly reinforced wall were selected

arbitrarily in the design process to obtain an economical distribution of

strength. Stiffnesses of the heavily reinforced wall were selected for-

mally to conform witn conventional calculations of cracked-section stiff-

ness. A IIdeterministric ll stiffness was felt to be a precarious value because

of uncertainties associated with calculation of stiffness of a reinforced-

concrete member: quantitative estimate of modulus of elasticity of concrete,

. extent of cracking, shear deformations and slip of reinforcement. To illus-

trate inaccuracies of cracked-section stiffnesses, calculated values are

compared with measured values (Fig. 4.7) in the next chapter. Implicit in

a design method that models stiffnesses arbitrarily or incorrectly is the pos

sible occurrence of nonlinear behavior in members that respond stiffer in the
I

elastic range than assumed for design. If members are detailed properly and

provided strengths are equal to required strengths, nonlinear behavior will

result in an average stiffness that will correspond to the assumed softened

stiffness. Reduced stiffnesses of beams and lightly reinforced wall were
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chosen so that nonlinear behavior would occur in these members. Beam and

wallstiffnesses were calculated by dividing cracked-section stiffnesses by

six and three. Stiffnesses used fordesiim are summarized in Table 3.1.

The design procedure followed the Substitute-Structure Method [22]

explicitly. The principal feature of the method is that advantages of non

linear behvaior may bemodeleCl using a linear modal analysis. Stiffnesses

are reduced arbitrarily by a "damage ratio", defined in Fig. 3.5, which

establishes limits of tolerable respons'e il1 selected members. Strength re

quirements vary with the arbitrary selection of damage ratios which reduces

design criterion to one of acceptable displacements.

Increases in energy dissipation with increased nonlinear behavior are

represented by the formula below .

where

and

. 8s = substitute (equivalent viscous) damping factor

~ = damage ratio.

Damping factors for each mode are determined by "smearing" damping factors

for individual members in thesame proportion as distributions of strain

energies.

To illustrate the economy of the method, design forces and first-mode

di spl acements cal cul ated for the substitute structure (l ightly reinforced

wall structure) are compared with values obtained from conventional methods

usinggross-'section and cracked-section stiffnesses (Fig. 3.6). Design re

qulrementsfOrbeams, columns and wall were reduced substantially for the
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substitute structure. Displacements for the softened structure were larger

but within acceptable limits for serviceability (one percent of height).

Apart from changes in distribution of moments within the redundant structure,

the total force resisted by the combined frame-wall system was reduced be

cause of lower natural frequencies (1.9 versus 3.5 and 4.3 Hz) and higher

damping factors (12 versus assumed values of 10 percent).

(c) Anticipated Response

Natural frequencies and mode shapes 'calculated for design are pre

sented in Table 3.2 and Fig. 3.7. Smeared damping factors calculated from

strain-energy distributions of the first three modes are summarized in Table

3.3. Anticipated maximum displacements for each structure type (Fig. 3.8)

suggested a reduced lateral inertial load for the structure with the lightly

reinforced wall. First- and second-mode displacements were only slightly

1arger for the softened-walls tructure because natural freC1uenci es (1 .9

versus 2.4) and damping factors (12 versus 8.5) reduced spectral accelera-

. tions to 62 percent of accelerations of the stiffer structure.

First-mode beam, column and wall moments calculated for design (Fig.

3.9) demonstrated anticipated wall-frame interaction. Single curvature of

lower-story columns suggested the dominance of the stiff wall at base.

Smaller beam and column moments at lower stories and largermoments at base

of wall signified the larger stiffness selected for design of the heavily

reinforced wall. Reversal in direction of force resisted by wall, indicated

by a point of contraflexure, suggested that wall and frame stiffnesses were

matched for a revealing force interaction.
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(d) Longitudinal Reinforcement Reguirements

Design forces were obtained by multiplying the squre root of the sum

of the squar·es (RSS) of the fi rs t three<moda1 components' by the factor below.

where Vabs = sum of absolute ~alues of first- and second-mode

base shear

Vrss = RSS of first three modes of base shear

Furthermore, column moments were increased by a factor of 1.2 to lessen the

likelihood of nonlinear behavior of members carrying vertical axial loads.

Design moments are presented in Fig. 3.10. Net axial tensions for

columns are listed in Table 3 .. 4 for use ",lith column interaction diagrams

(Fig. 3.11). Reinforcement for beams and wall was selected directly from

design moments. Provided yield strengths which are plotted in Fig. 3.10

were calculated using the following relationship [6] commonly used for ul

timate flexural capacities Of reinforced concrete members.

As f
M = As fy d (1 - O. 59 bd ! )

u c

where Mu = moment at yield of tensile reinforcement

As = area of tensile reinforcement

fy = yield strength of reinforcement

d = effective depth of section

f~ = compressive strength of concrete
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Increase in strength because of compression reinforcement was also includ

ed for heavily reinforced walls. Measured strength parameters are tabulated

in the Appendix. As demonstrated in Fig. 3.10, flexural strengths provided

for beams and wall were in many cases much larger than required. Excessive

strengths were a result of (1) a minimum of four bars per section necessary

for confinement, and (2) a uniform pattern of reinforcing bars of the same

diameter. Column strengths provided also exceeded requirements because of

these two reasons. As demonstrated with interaction diagrams (Fig. 3.11)

calculated using conventional methods [6], two bars per face in columns was

sufficient for most of the column members. Descriptions of frame and wall

reinforcement are presented in Fig. 3.12.

(e) Details for Shear and Anchorage

Shear reinforcement was provided in columns and beams so that ultimate

flexural moments could be developed at each end of the member. Shear rein

forcement for the wall was provided based on shear forces from the analysis

. which were increased conservatively by a safety factor of three.

Anchorage of longitudinal reinforcement was provided conservatively

also by assuming a bond strength of 1.4 MPa. Bars were hooked at the top of

columns and walls, and at the ends of beams (Fig. 3.12) for additional devel

opment length. At column and wall bases, bars were welded to embedded plates

capable of resisting the full tensile strength of the section.

Static tests of frame and wall elements, discussed in the next chapter,

indicated no loss of specimen strength resulting from shear or bond distress.
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. CHAPTER 4

MEASURED HYSTERESIS RELATIONSHIPS OF MEMBERS

Results of cyclic-load tests ot: frame and wall members are presented

and discussed in this chapter. Measureq stiffnesses and strengths are com

pared with calculated values and behavior of full-scale reinforced concrete

members.

4.1 Object of Tests

Samples of frame and wall elements were subjected to slowly applied

load reversals to examine behavior of the small-scale members in the non

linear range. Incidental objectives of the tests are noted below.

(1) Strength, stiffness,.and energy dissipation characteristics were

examined to justify correlations with behavior of full-scale. reinforced con

crete structures subjected to loading reversals.

(2) Frame specimens were subjected to similar displacement histories

as the ten-story structures to view internal response. Average stiffnesses

of measured hysteresis loops were used to evaluate the correctness of using

a linear model to calculate response maxima (See 7.4). Measured stiffnesses

and strengths were also compared with values assumed for design to reconcile

differences between anticipated and measured response (Sec. 7.5).

{3} Measured hysteresis relationships provided a reference to

K. Emori [5J for investigating the accuracy of a nonlinear analytical model.
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(4) Measured strengths of wall and beam members were used to calcu

late collapse loads for ~omparison with measured response maxima (Sec. 7.2).

4.2 Experimental Program

Test specimens and experimental procedures were established so that

local behavior of ten-story structures could be visualized from response of

static-test specimens. Geometries of specimens (Fig. 4.1) were chosen to

simulate flexural behavior of the test structures. Beam and column lengths

were selected to model idealized locations of points of contraflexure:

center of bays and mid-heights of stories. Exterior-and interior-joints

specimens were tested to investigate behavior of longitudinal beam rein

forcement with respect to bonding with concrete. Heights of wall specimens

were selected to represent equivalent moment-shear ratios at base of ten

story walls. Cross section dimensions, materials and fabrication procedures

were the same as described in the Appendix for the ten-story structures.

Equiva1entstory displacements could be measured with the testing

apparatus used for frame specimens (Fig. 4.2a). Pseudo story shears were

transferred across column members that were restrained against rotation by

flexural stiffness of beam members. Loading programs (Fig. 4.3a) were

representative of measured histories"of fifth-story displacements of struc

tures subjected to design-basis earthquake simulations. Large amplitude

displacements of structure FW1 resulting from an E1 Centro simulation and

of structure FW4 resulting from a Taft simulation composed loading patterns

"A" and "B". Measurements (Fig. 4.4a) consisted of displacement
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at point of load application, and displacement and rotation of joint. Ex

perimental procedures and a complete set of measured data for frame speci

mens are presented in detail in Reference 14.

The testing apparatus used to test wall specimens (Fig. 4.2b) trans

ferred a lateral load across the cantil ever specimens to a fixed-base founda

tion. Because of uncertainties of curvature distribution along the height

of dynamically tested walls, no attempt was made to simulate recorded dis

placement histories. Instead, the performance of walls was tested by sub

jecting wall specimens to loading programs (Fig. 4.3b) of progressively

increasing displacements within the nonlinear range. Measurements (Fig.

4.4b} consisted of displacements at each level and rotation near the base.

Descriptions of the test apparatus and experimental procedures for the wall

tests are presented in the Appendix.

4.3 Observed Behavior

(a) Frame Specimens

A palpable observation from measured hysteresis relationships of

frame specimens (Fig. 4.5a and 4.5b} was that extensive nonlinear behavior

had occurred in the frames. Shapes of hysteresis curves plotted from dis

placement or joint rotation measurements were nearly identical (Fig. 4.7)

which demonstrated that nonlinear behavior had occurred in beams and not

columns.

Perceptible reductions in stiffness in load-reversal regions of in

terior-joint specimens (Fig. 4.5b) coupled with observations of excessive

crack widths suggested deterioration of bond between longitudinal beam
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When displaced to limits of the testing apparatus (approximately ten

times the maximum displacement of the loading pattern), frame specimens re

sisted maximum loads with no 10$s of strength. Damage was concentrated at

beam ends (Fig. 4.6a and 4.6b). No distress in shear, or anchorage strength,

or excessive cracking within the joint core was observed.

(b) Wall Specimens

Behavior of wall specimens was represented by stable hysteresis loops

(Fig. 4.5c and 4.5d) indicating energy dissipation capability superior to

that of frames. Similarly shaped curves plotted from displacement and ro

tation near base indicated that nonlinear behavior was concentrated near

base of wall. Rotational stiffnesses of the first-quarter cycle and the

absence of a sudden increase in rotation upon reversal of the load suggested

that extension of anchored reinforcement had occurred elastically, and that

nonl inear behavior was attributable to yield of longitudinal reinforcement.
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Average stiffnesses of cycles of progressively increasing displace

ments reduced. Final loading cycles, pa,rticularly of lightly reinforced

walls, revealed appreciable stiffness reductions. However, maximum dis

placements of these cycles were well beyond the range observed for ten

story walls.

Failure of wall specimens occurred at extremely large displacements

as a result of fracture of reinforcement. Extensive formations of shear

cracks and severe crushing of concrete was 'observed for heavily reinforced

walls (Fig. 4.6c). Limited propagation of shear cracks and nominal crush

ing of concrete was observed for lightly reinforced walls (Fig. 4.6d).

Accumulation of plastic deformation of reinforcement was much more percep

tible for lightly reinforced walls.

4.4 Comparison of Measured and Calculated Behavior

Although design of reinforcement was based on stiffnesses that were

chosen arbitrarily, correct assumptions of strength and stiffness in the

linear range of response were necessary for members to soften to assigned

limits. In this section, calculated values of strength and stiffness based

on cracked sections are compared to measured behavior of frame and wall

specimens.

(a) Frame Behavior

Envelopes of load-rotation measurements for the flrst quarter of all

loading cycles (Fig. 4.7a) prov;;ded a definable indication of beam behavior.

Before initial cracking of concrete, measured behavior could be represented
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satisfactorily with cal cul ated stiffnesses based on gross secti ons. After

cracking, calculated stiffnesses based on cracked sections could not re

present the softening of the curve attributable to slip of beam reinforce

ment.

Measured beam strengths were larger than values calculated for design

(Fig. 4.7b). Design strengths included tensile resistance of a single layer

of reinforcing bars whereas large curvatures at maximum loads may have re

sulted in tension of the bars near the compression fibers. Calculated

flexural strengths considering tensile strengths of both layers of bars

were coincident with measured strengths.

Similarly shaped hysteresis loops of displacement and rotation (Fig.

4.8) suggested linear column behavior. Deflection of the column may be

interpreted from displacement and rotation measurements using the relation

ship below.

0column = ~ - 8joint h

where °column = deflection of half-story column

~ = measured displacement at level of beam

8joint = measured joint rotation

h = half story height (119 rom)

As demonstrated in Fig. 4.9, column behavior could be represented satis

factorily with calculated stiffness based on cracked section.

(b) Wall Behavior

Moment-displacement relationships for the first-quarter cycle of

loading (Fig. 4.10) indicated that wall specimens were softer in the linear
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ran~e than calculated considering only curvatures. Rotation at £lase of

wall, attributable to pullout of anchored reinforcement, was the primary

source of discrepancy between measured and calculated behavior. Eliminating

rotation components from displacement measurements revealed that behavior

above base could be represented closely using cracked-section stiffnesses.

Flexural strengths of wall specimens were approximated reasonably

well with values calculated for design (Fig. 4.10).

4.5 Compari son of Sma11- and Full-Scale Behavi or

The primary goal of selecting materials for the model structures was

to simulate characteristics of full-scale reinforced concrete structures sub

jected to loading reversals. Consequent load-deflection relationships for

members of the models and actual buildings were essential for valid ex~ra

polation of conclusions made from the test results.

Numerous investigators [2, 3,8, 10,16,25] have reported tests of

large-scale reinforced concrete structural elements subjected to cyclic

loads. Measured hysteresis curves from four tests are presented in Fig. 4.11

for qualitative comparison with measured curves for the small-scale frame

and wall elements. Similar tendencies are noted below.

(1) Slope of the curve in the loading portion of the first quarter

cycle was appreciably larger than in loading portions of subsequent cycles.

(2) Slope of the curve near maximum loads reduced substantially.

(3) Slope of the curve in unloading portions of a cycle was larger

than the slope in the previous loading'portion.
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(4) Slope of the curve reduced suddenly in load-reversal portions

of a cycle, particularly for interior-joint specimens.

(5) Slope of the curve in low-load portions of a cycle increased

with loading.

(6) Maximum loads attained in early cycles could also be attained

in later cycles.

(7) Average slope of the curve for a loading cycle reduced following

a cycle of larger maximum deflection.

These similarities suggest that the mechanisms of energy dissipation in

full-scale reinforced concrete structures were modeled correctly with the

materials used to fabricate the test structures.



24

CHAPTER 5

OBSERVED RESPONSE TO SIMULATED EARTHQUAKE MOTION

. 5. 1 Introductorx Remarks

Observed dynamic response of the test structures subjected to simulated

earthquake motion is presented in this chapter. Observations are viewed

through the window of recorded signals and obserVed patterns of concrete

damage.

5.2 General Comments

(a) Response Histories

Measurements from the recorded signals comprised absolute accelera

tions displacement relative to bases and strain in the bolts connecting the

wall with the remainder of the structural system. The measured bolt strain

indicated force resisted by the wall at each level.

Confirmation of the reliability of the reduced acceleration wave

forms was provided by comparison of nearly identical accelerations for north

and south frames. Displacements were not measured for individual frames

except at the top level where agreement was observed. Checks at various

times during each test run showed the deflected shape to be smooth indicating

individual measurements to be consistent. A discussion of the reliability

of the force measurements is presented in Sec. 7.4.
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Shear and moment response histories are presented with the observed

response because the calculation of shear and moment was no more than the

summation of observed accelerations using masses and story heights as

additional calibration factors. Shears and moments were calculated from

accelerations measured on the north side of each structure. The secondary

effect of gravity load acting through lateral displacements was included

with the moments.

Representative acceleration and displacement records are depicted in

Fig. 5.1 to serve as an introduction to the presentation of the observed

waveforms. Amplitude is plotted on the vertical axis versus time in seconds

on the horizontal axis. Units of response are given in the title above

each waveform. The duration of each simulation was initialized at an

arbitrary point in time common with all of the measured response histories.

Response was recorded for an additional three seconds following the forced

base excitation to observe free-vibration response. Residual amplitude

resulting from nonlinear behavior during a test run has been reported also

at the start of the record for a subsequent test run.

Forty-eight channels of recorded signals were observed for each test

run. Including shear and moment response a total of 816 waveforms were

examined. Not all of these response histories are presented in this report.

Acceleration records are reported only for the north frame because of observed

symetry of response. Acceleration and force resisted by wall are presented

for all levels for initial test runs and at alternate levels for second test

runs. Displacement, shear and moment response histories are presented for

alternate levels for all test runs because of the similarity of waveform

shape between adjacent levels.
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Measured response histories for all test runs are not reported.

Response to initial test runs is reported for all test structures. Response

histories for higher intensity simulations are presented only for second

test runs because of small differences in observed earthquake intensities

and behavior with third test runs.

(b) Sign Conventions

The convention for the positive sense of displacement, acceleration

or force applied to the wall was arbitrary'but mutual consistency of signs

between each form of response was necessary to avoid confusion for later

interpretation. Displacement was assigned a positive sense as the structure

swayed east. Acceleration was established kinematically consistent with

displacement so that, for harmonic motion, acceleration would be negative

for a positive displacement. Lateral inertial force was considered to resist

acceleration according to D'Alembert's principle so that a positive force

would result from a negative acceleration. Positive displacement occurred

with a positive force which was consistent with elementary structural

principles. Lateral forces resisted by wall were sensed with the same sign

as lateral inertial loads. Shear and moment were calculated so that a

positive lateral force would increase shear and moment.

(c) Terminology

The term "mode" is used in this report with the terms "frequencies ll

and "shapes". For ideally linear behavior these terms may be defined using

classical descriptions found in dynamics textbooks. For nonlinear behavior

there cannot be a particular frequency or shape pertaining to a mode.

However, apparent first- and higher-mode frequencies and shapes were
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observed. In this report IIfirst mode ll shall refer to the condition when the

response of all ten levels is in phase. "Second mode ll and IIthird mode"

shall refer to the conditions when there is one and two stationary points

along the height of structure.

Double-amplitude response refers to the sum of maximum positive and

negative displacements within a particular half cycle.

(d) Organization of Chapter

The measurements are organized so that response to the same earth

quake simulation type may be compared for structures with heavily and

lightly reinforced walls. The initial condition of each structure is

reported first. Damage observed prior to initial test runs due to shrinkage,

1i fti ng, transport and erection is presented wi th fi gures of crack patterns

for the frames and wall of a structure. Response histories of base motions,

displacements, accelerations, forces resisted by wall, shears and moments

are then presented followed by distributions of the same response along

. the height of structure at selected instants. Shear and-moment for the

wall are shown with a solid line. Shear and moment for the entire structure

are shown with a broken line. Response at times of maximum displacement

are also shown in tabular form. Crack patterns and widths observed after

a test run are reported. A key to figure and table designations is

provided in Table 5.1.
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5.3 Observed Response of Structures During Initial Test Runs

(a) Initial Condition of Test Structures

The initial condition of each test structure subjected to the initial

or "design earthquake" simulation of E1 Centro (FW1, FW2) or Taft (FW3, FW4)

is depicted in Fig. 5.2 and Fig. 5.14. Cracks were marked immediately prior

to the first test run on each side of the wall for test structures FWl and

FW2, and on the formed side of each frame for test structures FW3 and FW4.

The largest crack width was smaller than 0'.02 mm.

(b) Base Motions

Base accelerations measured on the north and south frames for each

test structure subjected to the E1 Centro simulation are presented ;n Fig.

5.3. Amplitude and frequency characteristics of the base accelerations for

the north and south frames were nearly identical with maximum base accelera

tions of 0.50 g and 0.52 g for test structure FWl and 0.48 9 and 0.48 g

for test structure FW2. High-frequency components were dominant in the

records for the structure with the lightly reinforced wall (FW2). Direct

comparison of the response of each structure is still acceptable because

the high frequencies are out of the range of the natural frequencies of the

first and second modes.

Base accelerations were measured on the north and south frames of

the structures subjected to the Taft simulations and were found to be similar.

Maximum base accelerations of 0.47 9 were measured for both the north and

south frames of test structure FW4. Test structure n~3 was subjected to

maximum base accelerations of 0.42 g and 0.41 9 for the north and south

frames. Response histories of the base accelerations measured on the north
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frame (Fig. 5.15) for each structure (FW3~ FW4) were of nearly identical

frequency content. Measured base displacements were similar for each

structure with maximum amplitudes of 12.2 mm and 11.8 mm for test structures

FW4 and FW3.

A more detailed interpretation of the base motion is presented in

the next chapter with the use of spectral-response curves.

(c) Vertical and Transverse Accelerations

Response histories of vertical acceleration measured at the top of

the north-east column for each structure (FW1~ FW2, FW3 and FW4) contained

similar frequencies (28, 27, 28, and 24 hz) and similar maximum amplitudes

(0.17,0.18,0.18, and 0.23 g). Vertical accelerations measured at the top

of the south-west column were not of equal amplitude with those measured at

the top of north-east column suggesting a vertical translation of the tenth

level mass as well as a small rotation. The dominant frequency remained

constant throughout the duration.

Accelerations in the transverse (minor) direction were small for

each structure (maximums of 0.11,0.09,0.09 and 0.07 g for structures FW1,

FW2, FW3 and FW4). Because of the small amplitudes, electronic noise in the

recording process had a significant influence on the measured response

histories. The accelerations presented in Fig. 5.4 and 5.16 are from

measurements at the east end of the tenth level mass. Transverse accelera

tions were also measured at the west end for structures FWl and FW2 where

similar response was observed of the opposite sign indicating a more

prevalent torsional rather than translational motion in the minor direction.
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(d) Displacements

Displacement response histories for each structure (Fig. 5.4 and

5.16) were of similar shape at all levels indicating the dominance of the

apparent fundamental mode on the displacement response. Each structure

responded at an apparent first-mode frequency which decreased throughout

the duration of the test run. Small vibrations of each structure at a

higher frequency were observed at the lower levels during low-amplitude

motions.

Structures with heavily reinforced walls (FW1, FW4) deflected more

lIregularlyll than the structures with lightly reinforced walls (FW2, FW3).

Structures FWl and FW4 responded at a more consistent fundamental frequency

than structures FW2 and FW3. Amplitudes of displacement were of similar

magnitude in each direction for structures FWl and FW4, and not for

structures FW2 and FW3. The structures with heavily reinforced walls

oscillated through more cycles of large-amplitude displacement than did

the structures with lightly reinforced walls. Residual displacements at

the end of the test run were essentially zero for structures FWl and FW4,

and measurable for structures FW2 and FW3. Deflected shapes (Fig. 5.6 and

5.18) at times of maximum response indicated the stiffening effect of

the heavily reinforced walls at the base. At the lower stories, structures

FWl and FW4 deflected similatly to a cantilever beam in flexure, and at

the upper stories stmilarly to a frame or lIshear beam.1I Structures FW2

and FW3 defl ected more as a frame for the full hei ght with a rotation at

base larger than that of structures FWl and FW4. Maximum interstory

displacements were observed between the fifth and seventh stories for all
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structures and were similar for structures of the same base motion type

(1.7 and 1.5 percent of story height for FWl and FW2~ and 1.2 and 1.1

percent for FW3 and FW4).

A series of large-amplitude displacements were observed during the

initial three seconds of El Centro simulations. During this period

structure FWl responded with seven cycles of high amplitude displacement.

Structure FW2 responded at a frequency similar to that of structure FWl

during the first four cycles of large amplitude motion before being limited

to smaller amplitudes at a lower frequency. At nearly the same instant, a

shift in the displacement record was introduced which was present for the

rest of the duration and remained as a permanent displacement once the

motion had ceased. Maximum displacements at the tenth level were essentially

equal for each structure subjected to El Centro simulations, and occurred at

nearly the same instant (28.2 mm at 1.96 seconds for structure FW1,. and

27.7 mm at 1.98 seconds for structure FW2).

Large-amplitude displacements were more uniformly distributed

over the full duration for structures subjected to Taft simulations than

structures subjected to El Centro simulations. Structure FW4 vibrated

ata higher apparent fundamental frequency than did structure FW3. Maximum

displacements at the tenth level for each structure type were similar but

did not occur at similar times (16.9 rom at 2.09 seconds for structure FW3,

and 18.2 mm at 5.96 seconds for structure FW4). Residual displacement for

structure FW3 was introduced during the first cycle of large amplitude

displacement, and was smaller than the residual for the structure with the

lighter reinforced wall subjected to an El Centro simulation.
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(e) Accelerations

Accelerations were observed to be synchronized with and had the same

periodicity as measured displacements and forces resisted by wall. Fre

quencies larger than the apparent fundamental frequency were prevalent in

the measured acceleration records. Lateral force distributions along the

height (Fig. 5.6 and 5.10) determined from measured accelerations were

sensitive to changes in time because of the controlling influence of the

high frequencies.

Response histories of acceleration at lower levels were similar in

form to that of accelerations measured at the base. Frequency content of

the base motion was prominent in acceleration records of the lower six

levels of each structure. Maximum base accelerations were amplified at

the first, second, fifth and tenth levels ,by factors of

FWl FW2 FW3 FW4

Tenth leve1 2.1 1.9 1.7 1.1

Fifth level 1.2 0.7 1.3 0.6

Second level 1.3 0.8 1.2 1.0

First level 1.3 0.7 1.2 0.9

The acceleration amplification, at the instant of maximum base

acceleration, for structure FW4 was low and the acceleration at the top

was in' a direction opposite to that of the base acceleration.

Frequency characteristics of the measured accelerations~ particularly

at upper levels, indicated strong participation of the second and third

modes on the total acceleration response. Accelerations at the eighth level
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for each structure were devoid of frequencies in the range of calculated

second-mode frequenc.ies.· Third-mode frequencies which were visible in

response histories at seventh, eighth and tenth levels were not observed

at ninth level.

(f) Forces Resisted by Wall

Response histories of force resisted by wall at lower levels were

synchronized with and contained similar frequencies as accelerations at

those levels. Force response histories at upper levels were dominated by

the apparent fundamental-mode frequency observed with displacements.

Forces measured at the tenth level were opposite in sign to forces mea

sured below the ninth level. Ninth level forces were small in amplitude

and contained high frequencies not observed at other upper levels.

Residual forces acting between the wall and frames at the end of a

test run were measured at nearly all levels for all test structures. Shifts

in all force records occurred during the first cycle of large-amplitude

displacement. Residual forces were larger for the structures subjected to

El Centro simulations than Taft simulations. Larger residuals were

observed at first level for the structures with lightly reinforced walls

than for the structures with heavily reinforced walls.

Because of different hysteresis properties and loading histories of

wall and frames (Sec. 4.3) the distribution of lateral inertial force

between wall and frames did not remain constant for different amplitudes

within a particular cycle, nor were they constant for similar amplitudes at

different times during the test run. Distributions for initial test runs

are presented (Fig. 5.6 and 5.18) at three times during the cycle of maximum
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displacement, and at times of maximum positive and negative displacement

for two cycles occurring at-different portions of the test duration.

Comparison of force distributions at similar amplitudes of response
- .

for each test structure was difficult because of the confusion introduced

by residuals which resulted in erratically appearing force distribut-ions.

One example is the large residual forces measured at the first level of

lightly reinforced walls. Additionally; measured accelerations containing

high frequencies did not provide a standar~ lateral inertial load distribu

tion for comparing force distributions of different walls. Despite these

limitations the following general trends were observed.

(1) Force distributions of each structure type were similar for low

amplitude motion, and dissimilar for high-amplitude motion.

(2) At lower levels the wall resisted most of the total lateral load.

At the tenth level the frames resisted all of the total load in addition

to restraining the wall from deflecting as it would if it were not connected

to the frames.

(3) At larger amplitudes, heavily reinforced walls resisted a larger

percentage of the total lateral load than lightly reinforced walls, especially

at upper stories.

(g) Shears and Moments

Shear and moment response histories (Fig. 5.5 and 5.17) calculated

from measured acceleration and force responses had similar characteristics

as recorded response histories. Shear and moments were synchronized with

displacements at apparent fundamental-mode frequencies. Maxima of shear and

moment responses occurred at nearly the same instant as did the maxima of
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displacement and acceleration. Response histories of shear and moment

at upper levels resembled acceleration and force response histories at the

same levels. At lower levels, the shape of response histories of moment

resisted by the entire structure were nearly identical to the shape of

displacement response histories. Shear and moment for entire structure

response were slightly higher for structures with heavily reinforced walls.

Cycles of large-amplitude shear and moment were observed during the

first three seconds of El Centro simulations (Fig. 5.5). Cycles of

large-amplitude shear and moment were distributed over the total duration

of Taft simulations (Fig. 5.17). Residual shears and moments at the

end of a test run were larger for structures subjected to El Centro than

Taft simulations.

Shears and moments for the wall (shown by a solid curve in the

figures) were in phase with shears and moments for the entire stru~ture

at lower levels. At upper levels, shears and moments for the wall opposed

those for the entire structure.
t40ments at lower levels of heavily reinforced wans and shears at

lower levels of both wall types were resisted almost exclusively by the wall

at small amplitudes of motion.
The wall resisted a large portion of the total first-story shear

for each structure type (approximately eighty and sixty percent for

heavily and lightly reinforced walls). Heavily reinforced walls were

more effective in resisting shears at higher stories than lightly rein

forced walls. A larger participation of the apparent second mode on the

shear response was observed at lower levels for lightly·reinforced walls.

The fraction of the total base moment resisted by the wall. was

consistently lower than the fraction of the total first-story shear resisted



36

by the wall. Maximum amplitudes of moment at the base of each wall were

close to the maximum moment· capacities observed from cyclic-load tests.

Walls with heavier reinforcement resisted approximately 45 percent of the

total base moment occurring at the peak displacement of each half-cycle.

Walls with light reinforcement resisted approximately 20 percent of the

total base moment for the first few cycles of large-amplitude motion. For

the rest of the test runs the base moment resisted by the lightly reinforced

walls was negligible.

Moment diagrams at particular instants (Fig. 5.6 and 5.10) indicated

a lower point of contraflexure for lightly reinforced walls than for heavily

reinforced walls. For most instants s the point of contraflexure for each

wall type became higher as the amplitude of the total moment increased.

The increase in height was more sensitive to changes in amplitude for the

heavily than lightly reinforced walls.

Yield of tensile reinforcement appears to have occurred at the base

of the wall of test structure FWl as observed by the plateaus in the moment

response histories when the structure swayed in the negative direction.

The moment measured at the plateaus (approximately 7.0 kN-m) was less than

the moment at which the tensile reinforcement yielded during the cyclic-load

tests (14.4 kN-m) indicating a possible initial moment from unrecorded forces

applied to the wall during the construction process.

(h) Condition of Test Structures Following Test Run

Cracks were marked following the initial test run for structures

subjected to both El Centro simulations (Fig. 5.7) and Taft simulations.

(Fig. 5.19). Crack widths were measured at the ends of each beam of each
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frame following the test run. The mean crack width for any particular level

is presented in Table 5;2.

5.4 Observed Response of Structures During Subsequent Test Runs

(a) Base Motions

Base accelerations measured on north and south frames for each test

structure subjected to El Centro simulations are presented in Fig. 5.8.

Maximum base accelerations for the second test run were measured to be

1.58 9 and 1.82 9 for the north and south frames of test structure FW1,

and 0.92 9 and 0.92 9 for test structure FW2. The acceleration maxima for

structure Fl~l are measured from "spikes,1l or amplitudes of very short duration,

and should not be used as an index of the simulated earthquake intensity.

To provide a clearer comparison of base-motion intensity, the amplitudes

at an arbitrary instant (0.88 seconds) were measured to be 0.60 9 for both

the north and the south frames of structure FW1. At the same instant,

. accelerations of 0.55 9 were measured at the base of both the north and

the south frames of structure FW2.

Measured response histories of base motions for structures subjected

to Taft simulations (Fig. 5.20) had similar frequency characteristics and

amplitudes. Acceleration maxima measured at the base of the north and the

south frames were 0.93 9 and 0.94 9 for structure FW4, and 0.97 9 and 0.94 9

for structure FW3. Base displacement maxima were 27.5 mm and 25.5 mm for

structures FW4 and FW3.
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(b) Vertical and Transverse Accelerations

Response histories of vertical acceleration (Fig. 5.9 and 5.21)

measured at the top of the north-east column for each structure CFW1, FW2,

FW3 and FW4) contained similar frequencies (23, 23, 22 and 19 Hz) which

remained constant throughout the duration. Similar maximum amplitudes

, were measured for structures subjected to the same earthquake simu1at'ion type

(0.34 and 0.38 9 for FW1 and FW2, and 0.54 and 0.51 g for FW3 and FW4).

Accelerations measured in the vertical direction at the top of the

squth-west column were not of equal amplitude with those measured at the

top of the north-east column indicating vertical translation as well as

rotation of the mass. The increase in amplitude with higher intensity base

motion was not observed in previous tests of frames without walls [9,18J.

Transverse accelerations measured at the east and west ends of the

tenth level mass had similar amplitudes but were opposite in sign indicating

a small torsional motion. Maximum amplitudes were 0.23, 0.12, 0.17 and

0.10 g for structures FW1, FW2, FW3 and FW4.

(c) Displacements

Features observed in the displacement response for the initial test

run were observed also for the second test run. Response histories (Fig.

5.9 and 5.21) at each level were simi.1ar in shape indicating the prominence

of an apparent fundamental mode in displacement response. The apparent

first-mode frequency decreased throughout the duration of the test run, but

with a smaller change than that observed for the initial test run. Com

'ponents of displacement response at the second-mode frequency were more

prevalent in the second test run than in the first test run.
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The shape of displacement response histories for structures with

heavily reinforced walls (FW1, FW4) subjected to the second test run

resembled the shape of response histories for structures with lightly

reinforced walls (FW2, FW3) subjected to the first test run. Residual

displacements for structures FWl and FW4 were larger following the second

test run than following the initial test run. During the second test,run,

structures with lightly reinforced walls responded with more irregular

amplitudes and more inconsistent frequencies than did structures with

heavily reinforced walls. Residual displacements for structures FW2 and

FW3 were smaller following the second test run than following the first

test run.

Deflected shapes at times of maximum positive and negative displacement

for the second test run (Fig. 5.11 and 5.23) were similar to deflected shapes

observed for the first test run. Maximum interstory displacements' were

observed between the fifth and seventh stories for all structures, and

were similar for structures subjected to the same base mption (2.5 and

2.3 percent of story height for structures FWl and FW2, and 2.9 and 2.8

percent for structures FW3 and FW4).

Structures subjected to El Centro simulations responded with large

amplitude displacements which were distributed over the full duration rather

than being concentrated over the first three seconds as observed for initial

test runs. Structures subjected to Taft simulations responded similarly

as observed for the first test run with large-amplitude displacements being

distributed over the full duration. Maximum displacements at the tenth
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level were similar for structures subject to the same base motion (:£ and

43mm for FWl and FW2, and ·48 and 46 mm for FW3 and FW4).

(d) Accelerations

Characteristics observed in measured acceleration response histories

of the initial test run were also apparent for the second test run (Fig.

5.9 and 5.21). Accelerations were in phase with displacements at the

apparent fundamental-mode frequency. High frequencies were dominant in

the records at nearly all levels. Respons·e histories at lower levels

resembled measured base accelerations. Frequencies observed in the base

accelerations were noticed in acceleration records for the lower six levels

of each structure. The spike in the base acceleration record of structure

HJl was observed in acceleration response histories up to the fourth level.

Maximum base accelerations were amplified at the first, second, fifth and

tenth levels by factors of:

FWl Ft~2 FW3 FW4

Tenth Level 0.7 0.9 1.3 1.1

Fifth Level 0.8 0.6 0.5 0.5

Second Level 1.0 1.0 1.6 1.0

First Level 1.1 0.9 1.3 1.1

Maximum accelerations below the fourth 1eve1 occurred at the same instant

as maximum base accelerations. Above the fourth level maximum accelerations

occurred at instants which varied from level to level.

Acceleration records at upper levels revealed similar influences

of higher modes as observed for the initial run. Eighth-level acceleration



41

response histories contained nearly no component~ at the apparent second

mode frequency. Third-mode frequencies which were present at other upper

levels were not visible at ninth level.

(e) Forces Resisted by Wall

Characteristics of response histories of forces resisted by wall

for the first test run were evident in response histories of the second

test run (Fig. 5.9 and 5.21). Response histories at all levels were

synchronized with displacements and accelerations at the apparent funda

mental-mode frequency. At lower levels, force response histories contain

ed similar frequencies as acceleration response histories at the same levels.

Spikes in the acceleration records of structure FWl were observed in the

force records up to the fourth level. Forces measured at tenth level were

opposite in sign to the forces measured below ninth level. Amplitudes of

force resisted by wall were similar to amplitudes measured for the first

test run.

Subsequent test runs revealed characteristics not observed in force

response of initial test runs. Response histories at upper levels con

tained more high-frequency components than observed in first test runs.

The distribution of cycles of large-amplitude force was more uniform over

the duration of subsequent test runs than over the duration of the initial

run for El Centro simulations.

Amplitudes of force resisted by wall measured at the end of the

first test run were nearly identical with measurements at the beginning of

the second test run indicating little relaxation of the structures and
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little drift in strain gages during the intennission between test runs. Net

residual forces measured ove"r the duration of subsequent test runs wer'e con

siderably smaller than for the initial test run. Net residual forces of

structures subjected to El Centro simulations were similar to those of

structures subjected to Taft simulations.

Force distributions at times of maximum displacement (Fig. 5.11 and

5.23) appeared to be more erratically shaped than those of the first test

run because of the strong influence of shifts in the force response histories.

Inelastic deformations, particularly at the base of the wall, controlled the

shape of force distributions more than inertial loads.

(f) Shears and Moments

Although amplitudes of shear and moment were larger for higher

intensity base motions, many characteristics observed in the response

histories of the initial test run were visible in response histories of

subsequent test runs (Fig. 5.10 and 5.22).

Maxima of shear and moment occurred at nearly the same instant as did

maxima of acceleration and displacement. Shapes of moment response his

tories at lower levels were nearly identical to displacement histories at

the same levels. At upper levels, shear and moment response histories

contained several components at high frequencies. Shears and moments for

the wall at upper levels opposed those for the total structure.

Shears and moments for the total structure were slightly larger

for structures with heavily reinforced walls. The participation of, the

second mode on the first-story shear response was greater for structures
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with lightly reinforced walls than for structures with heavily reinforced

walls.

Moment diagrams for each structure (Fig. 5.11 and 5.23) at times of

maximum displacement indicated little change in the point of contraflexure

from the first test run.

Differences were observed in shear and moment response between

initial and subsequent runs. The portion of the total first-story shear

resisted by the wall varied with each test structure. Shear resisted by

the wall at the first story of structure FWl (approximately 60 percent of

the total shear) was less than the percentage observed for the same struc

ture subjected to the first test run. The other heavily reinforced wall

(FW4) resisted a similar percentage of the total shear at the first story

during the second run (approximately eighty percent) as it did during the

first run. Structures with lightly reinforced walls (FW2, FW3) resisted

shears unsYmmetrically as the structures deflected in positive and negative

directions. The wall of each structure resisted nearly all of the shear

at the first story in the positive direction, but only a small fraction in

the negative direction.

Each wall resisted similar percentages of total moment at lower

, levels during subsequent test runs as it did during initial test runs.

Wall moments at upper levels of structure FW3 for the second test run

were observed to be in phase with the total-structure moment at small

amplitudes, and of opposite sense at large amplitudes.

Structures subjected to El Centro simulations responded with large

amplitude shears and moments which were distributed more uniformly over
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the full duration of the second run than the first run. The distribution of

cycles of large-amplitude shears and moments over the full duration of sub

sequent Taft simulations was similar to the distribution for the initial

test run.

(g) Condition of Test Structures Following Test Run

Cracks marked after the second run (Fig. 5.12 for structures sub

jected to El Centro simulations .and Fig. 5.24 for structures subjected to

Taft simulations) indicated an increase in damage to each structure during

the second test run. Crack widths measured at the beam ends (Table 5.2)

were larger than those measured previously.
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CHAPTER 6

INTERPRETATIONS OF OBSERVED DYNAMIC RESPONSE

6.1 Introductory Remarks

The previous chapter presented the observed response with a minimum

amount of interpretation. In this chapter, measured base motions are inter

preted using Fourier-amplitude spectra and spectral-response curves. Dynamic

characteristics of each test structure are examined through interpretation

of measured response histories using Fourier transform techniques, and

through interpretation of measurements obtained during free and steady-

state vibration tests.

6.2 Base Motions

To aid in the evaluation of the response of test structures to

simulated earthquake motions, Fourier-amplitude spectra and spectra1

response curves have been calculated from measured base accelerations.

These curves serve as the basis for interpreting the frequency content

of each base motion, and the impact of each base motion on resulting

structural response.

(a) Frequency Content of Measured Base Motions

Fourier-amplitude spectra calculated from accelerations measured

at the base of north frames, which were essentially the same as those
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calculated from south accelerations, are presented in Fig. 6.1. Comparing

spectra of the same simu1ationtyperevea1ed nearly identical frequency

contents of base motions for all test runs of both structures subjected

to Taft simulations. Frequency contents of E1 Centro base motions dif

fered for simulations occurring on different test dates. High-frequency

accelerations measured at the base of structure FW1 during the first

test run (Fig. 5.3) which are visible on the plot at 37 Hz were not ob

served during the testing of structure FW2 .. Frequencies in the range of

10 to 25 Hz were more prevalent for E1 Centro accelerations measured at

the base of structure FW1 than accelerations measured at the base of

structure FW2.

(b) Spectral-Response Curves

Maximum responses to measured base accelerations of several linear

single-degree-of-freedom oscillators with varying natural frequencies were

calculated for a full range of oscillator frequencies (from 1.0 to 50.0 Hz)

and damping factors (0, 2, 5, 10 and 20 percent). The calculation involved

a numerical process for solving the convolution integral whose derivation

may be found in most books on dynamics [4, lJ, 19] for calculating the

response of an oscillator to a general impulsive load. Spectral-response

curves are presented so that comparisons may be made between simulations

of the same earthquake type. Curves calculated from observed acceleration

records of El Centro and Taft simulations are presented in Fig. 6.2 and

6.3. Spectral-response curves of displacement, velocity and acceleration

are plotted in tripartite format for the first two test runs of each
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structure. Individual curves of acceleration and displacement are pre

sented in arithmetic format for all three test runs of each structure so

that loads and displacements may be more easily read.

Spectral-response curves calculated from accelerations measured

at the base of the north frame were nearly identical with those calculated

using south accelerations. Spectral-response curves presented in this

report are calculated from north accelerations.

Spectral-response curves of displacement were similar in shape

for all test runs of each base-motion type. Spectral-response curves

of acceleration were similar in shape for all test runs of Taft simula

tions. For El Centro simulations, spectral-response curves of acceler

ation were similar in shape for frequencies less than 5.0 Hz.

To examine differences in acceleration spectral response at higher

frequencies, spectral accelerations at a high frequency and damping factor

(50 Hz and 0.20) have been plotted versus the maximum measured base

acceleration (Fig. 6.4). For an oscillator whose natural frequency is

much higher than the frequencies of the base acceleration, the maximum

acceleration of the oscillator should approach that of the base motion.

This trend was generally observed for the measured base motions because

the frequency of 50 Hz is beyond the range of the dominant frequencies of

the undistorted base accelerations. Maximum base accelerations for the

second and third test runs of structure FWl (Fig. 5.8) occurred as II spikes,1I

or at a relatively high frequency resulting in a larger spectral than

maximum base acceleration. Spectral acceleration at 50 Hz was also higher

than the maximum base acceleration for the base motion of the first test
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run of structure FW2 because of high frequency accelerations observed

in the base motion response history (Fig. 5.3). The high frequency was

approximately 37 Hz as measured from Fourier-amplitude spectra of the
~

base motion (Fig. 6.1) which was close to the frequency (50 Hz) at which

the spectral acceleration was compared.

(c) Spectrum Intensities

Because of distortions of maxima observed in measured base-acce1-

eration records of higher intensity simulations~ maximum base acceleration

should not be used as a measure of base motion intensity. Spectrum in

tensity is defined in this report as the area under the spectral-response

curve of velocity calculated for a given damping factor between natural

periods of an oscillator of 0;04 and 1.00 seconds. This definition is

derived from Housner's (1952) concept of spectrum intensity as a measure

of earthquake intensity. Alterations have been made in the bounding periods

defined by Housner [12] to account for compressing the duration of the

actual earthquake by a factor of 2.5.

Spectrum intensities have been calculated for each of the base

motions measured for each test structure. The relationship between max

imum base acceleration and spectrum intensity (Fig. 6.5) confirms that

maximum base accelerations are an inaccurate index of intensity for stronger

simulations.

To simplify comparisons of spectrum intensity with structural response~

spectrum intensities based on damping factors of O.OO~ 0.02~ 0.05~ and

0.20 are compared with spectrum intensities based on a damping factor of

0.10 (Fig. 6.6). The linear relationship indicates that~ for the measured
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base motions, spectrum intensity calculated using anyone of the damping

factors would serve as an equally good measure of base motion intensity.

Spectrum intensities calculated from measured base motions using a damping

factor of 0.10 are presented in Table 6.1.

Spectrum intensities for the first test run of all structures were

similar (a coefficient of variation of 4.8 percent). Spectrum intensities

for the second and third test runs were not similar for each test structure

(coefficients of variation of 11 and 14 percent for runs two and three)

making comparison of response of different structures for a particular

higher intensity test run difficult.

For the same simulation type, structures with more heavily rein-

forced walls were subjected to base motions of larger spectrum intensity

than for structures with lightly reinforced walls. Except for the initial

test run of structures FW3, spectrum intensities of Taft simulations were

larger than those of El Centro simulations.

(d) Comparison of Spectral-Response Curves
for the First Test Run

Displacement spectral-response curves for initial test runs of

El Centro simulations (Fig. 6.7) were nearly identical. For·Taft simu-

lations spectral curves of displacement were similar in shape for each

base motion of both test structures but differed in magnitude by approx

imately the same factor as did spectrum intensities. Spectral displace

ments for both El Centro and Taft simulations increased with decreasing

frequency to a frequency of approximately 2.0 Hz. Spectral displacements
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for El Centro simulations continued to increase for frequencies less than

2.0 Hz but remained nearly constant for Taft simulations.

Acceleration spectral-response curves were essentially the same

curve for initial test runs of El Centro simulations for frequencies be

low 5.0 Hz (Fig. 6.8). For Taft simulations spectral-response curves of

acceleration followed the same pattern as for displacement. Curves were

similar in shape for each base motion of both structures but varied in

amplitude. Spectral accelerations for both El Centro and Taft simula-,

tions decreased similarly for frequencies below 4.0 Hz. No comparisons

can be made between spectral accelerations of El Centro and Taft simula

tions for frequencies larger than 4.0 Hz.

Spectral-response curves used to estimate lateral loads in the

design process (Sec. 3.3) are plotted in Fig. 6.8 for comparison with

spectra calculated from measured base accelerations. Design spectra were

based on maximum base accelerations of 0.40 g as compared with measured

values of 0.55, 0.48, 0.42 and 0.47 9 for test structures FW1, FW2, FW3

and FW4. First-mode forces were approximated more accurately in the design

process than higher-mode forces as seen by larger deviations between the

design spectra and spectra based on measured base motions for frequencies

larger than 5.0 Hz.

(e) Study of Partial Durations

To investigate the influence of selected portions of the duration

on response, $pectral-response curves have been calculated for the first

three, six and nine seconds of both El Centro and Taft simulations (Fig. 6.9).
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Maximum response resulting from acceleration impulses during the first

three seconds of E1 Centro simulations were the same maxima as calculated

for the full duration. Maximum response resulting from the first six

seconds of Taft simulations were equal to maxima resulting from acceler

ations of the full duration except for oscillators with natural periods

between 0.31 and 0.72 seconds.

6.3 Measured Dynamic Characteristics of Test Structures

Natural frequencies, mode shapes, and an estimate of the energy

dissipation of each test structure are interpreted in this section using

measurements obtained during free-vibration and steady-state tests, and

earthquake-simulation test runs. Because of probable nonlinear behavior

of the test structures, a particular natural frequency, deflected shape,

or damping factor for a particular mode may not exist. Unique values

discussed in this section are attributed to measured vibrations with

characteristics similar to those of a structure behaving'linear1y.

(a) Natural Frequencies

Free-vibration tests were performed before all earthquake simula

tions and all steady-state tests. Steady-state tests were performed

following each earthquake simulation for test structures FW3 and FW4.

Apparent fundamental-mode frequencies measured during each type of vibra

tion are summarized in Fig. 6.10. The maximum tenth-level displacement

measured during the previous earthquake simulation has been plotted to

serve as an index of the current stiffness of each structure.
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Fundamental frequencies obtained from free-vibration tests were

determined from Fourier-amplitude spectra of measured tenth-level accel

erations (Fig. 6.14). Frequencies obtained from steady-state tests were

measured during apparent resonant conditions (Fig. 6.18). Fourier spectra

of tenth-level displacement response (Fig. 6.13) were used to establish

dominant fundamental-mode frequencies measured during each earthquake

simulation. Because of variations in stiffness and base motion occurring

over the duration of a simulation, apparent. fundamental frequencies varied

over a range as wide as 3.0 Hz. The single frequency used for comparison

with frequencies of other test runs was the frequency at which the spectral

amplitude was the largest.

Vibration of a structure that softens with increasing displacement

would be expected to decrease in frequency as amplitude of the motion in

creases. This tendency was observed from vibration tests that aeflected

test structures varying amounts. Maximum tenth-level displacements during

free-vibration and steady-state tests were approximately 0.5 and 5.0 mm.

During earthquake simulations, maximum tenth-level displacement (one-half

of double-amplitude) varied from 18 mm to 56 mm. Frequencies measured

during free-vibration tests were consistently larger than those measured

with other types of vibration tests. Steady-state frequencies were in

most cases larger than those measured during earthquake-simulation test

runs.

Frequencies of structures containing walls that were lightly rein

forced (FW2, FW3) decreased more significantly during third test runs than
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for structures with heavily reinforced walls (FW1, FW4). This trend was

observed only for response during earthquake simulations, and not from

low-amplitude vibration tests.

Apparent frequencies of structures with generally decreasing stiff

ness would be expected to decrease. Second-mode translational frequencies

obtained from Fourier-amplitude spectra of measured free-vibration response

did reduce appreciably during the initial earthquake simulation (Fig. 6.ll).

First-mode frequencies, however, remained essentially constant.

To examine the relative decrease between first- and second-mode

frequencies with cracking of concrete, frequencies have been calculated

for test structures with varying distributions of cracking (Fig. 6.l5).

Cracking was considered to occur progressively from the base to the top

level of each test-structure type. Symmetrical patterns of cracking

consisted of both frames cracked, both frames with the wall cracked, and

the wall cracked alone. The unsymmetrical case of only one frame cracked

with the wall was also examined. Test structures were modeled with linear

elastic elements using the ETABS computer program. Stiffnesses were based

on transformed sections for members which were considered to be uncracked,

and cracked sections for members which were considered to be cracked.

Salient conclusions of the study are

(1) For any amount of cracking (stiffness reduction), decrease in

frequency was greater for the second mode than for the first

mode.

(2) First- and second-mode frequencies were more sensitive to

cracking of the frames than the wall. First-mode frequencies

were nearly insensitive to cracking of the wall.
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(3) First-mode frequencies were more sensitive to cracking at

lower levels of the frames and wall than at upper levels.

(4) Second-mode frequencies were more sensitive to cracking at

upper levels of the frames and lower levels of the wall than

at other portions of the structure.

(5) Cracking of only one frame reduced the first-mode frequency

nearly equally as cracking of both frames.

(6) Cracking of only one frame reduced the second-mode frequency

much less than cracking of both frames.

Another dominant frequency of approximately 7 Hz was observed in

Fourier-amplitude spectra of the free-vibration response (Fig. 6.14)

measured before initial test runs. The same frequency was observed in

Fourier-amplitude spectra of tenth-level transverse accelerations measured

during initial free-vibration tests (Fig. 6.16) suggesting the existehce

of the 7 Hz frequency as a fundamental torsional frequency. This frequency

was not observed during subsequent free-vibration tests, except for one

test which followed test run three of structure FW1. Excitation of the

presumed torsional mode may be attributed to unsymmetrical cracking of the

frames before being subjected to large-amplitude motions of initial test

runs. Free-vibration tests following initial test runs resulted in measured

frequencies which agree with calculated values for a fully cracked, but

symmetrical, structure. Prominant vibrations in the torsional mode may

have reappeared following the third test run of structure FWl because of

unsymmetrical spalling of concrete in frames, or a possible eccentric"ity
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of the load applfed to the tenth-level mass which was used to excite the

structure in free vibration.

The small change in measured first-mode translational frequency

before and after initial test runs may be attributed to unsymmetrical,

partially cracked frames prior to the run and symmetrical, cracked frames

following the run. This is consistent with the small change in the cal

culated first-mode frequencies as one frame of the unsymmetrical idealized

structure cracked (conclusion 5 from calculation of frequencies). The

larger decrease in measured second-mode translational frequencies occurring

during initial test runs is also consistent with the presumed pattern of

cracking and the trend of the calculated second-mode frequencies (con

clusion 6 from calculation of frequencies).

(b) Mode Shapes

A unique deflected shape for a particular mode of response may not

be an ambiguous concept for the nonlinearly behaving test structures be-

.cause measured deflected shapes (Fig. 5.6, 5.11, 5.18 and 5.23) appeared

to represent response of structures behaving linearly. Deflected shapes

of the test structures vibrating at the apparent fundamental-mode frequency

were inferred from displacement records measured during earthquake simula

tions. Response histories at all ten levels were filtered to exclude

components at frequencies larger than the apparent fundamental-mode fre

quency. Mode shapes, tabulated in Table 6.2, were representative of response

at varying displacement amplitudes within a particular cycle, and at maximum

amplitudes of successive cycles.
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Mode shapes were inferred also from displacements measured during

resonant conditions of steady-state vibration tests of structures FW3 and

FW4 and are presented in Table 6.3.

The variation in shape for different amplitudes of vibration,

test structure, and type of vibration (earthquake-simulation or steady

state) was small. To examine the measured shapes further, the following

shape characteristics were calculated which were useful for interpretation

of measured response of the test structure~ as single-degree-of-freedom

(SOOF) systems.

(1) Modal participation factor, cn' defines participation of an

individual mode of a structure subject to a motion at base:

c = fP n]: [m} l!l
n [¢n]T [m] [¢nJ

where [¢n] = mode shape

[m] = mass matrix

or, for equal masses at all ten levels:

L:</J.

cn = ( L:¢~2 )
1 . 1 101= ,
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dn. = c '<P On, n ni

an. = cn <pn. An, . ,
where dn. ' an. = displacement and acceleration for mode n, ,

and level i

On' An = displacement and acceleration for mode n

of SDOF system

(2) Effective weight coefficient, Yn, relates the total weight of

the structure, W(45.8kN), and the SDOF acceleration (in terms

of gravity acceleration) to the base shear for a particular

mode n:

Vbn = Yn WAn

The derivation of Yn follows from the summation of inertial

forces at each level which are related to a SDOF acceleration:

for equal masses at all ten levels.

(3) Effective'height of resultant lateral load, Hn, is the height

above the base at which the total lateral load acts for mode n:

L (i) (<p n.)
H = h ( ---:-_...:...'- )

n L <P n. ,, . i = 1,10

for equal masses and .uniform story heights, h, throughout

structure.

The modal participation factor, base shear coefficient and effective height

of resultant lateral load were calculated for measured mode shapes and are
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tabulated with each shape in Tables 6.2 and 6.3. Shape characteristics

were similar for all test structures and were insensitive to changes in

amplitude of vibration. This conclusion indicates that the measured

response may be interpreted in terms of the response of a series of SDOF

oscillators each vibrating at a particular modal frequency.

(c) Energy Dissipation

Estimates of energy dissipated by each structure responding at

the apparent fundamental-mode frequency were derived from data measured

duri,ng free-vibration and steady-state vibration tests. Accelerations

measured at the tenth level during free-vibration tests were used with

the logarithmic decrement method [4, 13] to calculate estimates of the

equivalent-viscous damping factor for each test structure. Acceleration

response histories (Fig. 6.14) were first filtered to exclude components

at frequencies larger than four Hz so that amplitudes of the apparent

first-mode motion would be more clearly visible for interpretation.

Filtered records are represented in the figure with a solid "line which

is superimposed over a broken line which represents the total measured

response. Calculated damping factors inferred from free-vibration test

data are presented in Table 6.4.

Apart from calculated estimates of energy dissipation, filtered

free-vibration response histories revealed two tendencies which were

observed for all test structures.

(1) Response measured during free-vibration tests attenuated much

more rapidly after the test structure had been subjected to an initial
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earthquake simulation. The apparent increase in energy dissipation may

be attributable to cracking of the concrete during initial earthquake

simulations.

(2) Response at higher frequencies attenuated more rapidly than

response at the apparent first-mode frequency indicating a greater amount

of energy dissipation for higher modes.

Energy dissipation at a higher amplitude (5.0 mm tenth-level dis

placement versus 0.5 mm for free-vibration tests) was inferred from

response amplification measured during steady-state tests. Frequency

response curves (Fig. 6.18) were constructed by plotting the magnification

of base displacement versus the input frequency. Magnification of base

displacement was defined as the ratio of the maximum equivalent single

degree-of-freedom displacement of the structure relative to the base and

the maximum base displacement. An equivalent single-degree-of-freedom

displacement was calculated by dividing the measured tenth-level displace

ment by the ordinate of the mode shape at the tenth level and the modal

participation factor, both of which were determined from displaced shapes

measured at apparent resonant frequencies. According to a similar formu

lation by Jacobsen and Ayre [13] the equivalent-viscous damping factor may

be approximated as one-half of the inverse of the magnification factor

at resonance. Alternatively, the damping factor may be approximated by

the width of the frequency-response curve,
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where 8 = equivalent-viscous damping factor

wl' w2 = input frequencies at a magnification equal to

the maximum magnification /~

wR = resonant frequency .

. Damping factors have been approximated using both of these derivations with

data from steady-state vibration tests of structures FW3 and FW4 (Table 6.5).

It should be noted that response of test structures subjected to sinusoidal

base motions may not have been completely 1inear. Damping factors have

been calculated using a method which is based on linear behavior, and

should therefore be viewed only as approximations of actual energy dis

sipation. Despite this limitation, three tendencies were observed from

the frequency-response curves (Fig. 6.18) with progressive softening of

each test structure.

(1) Magnification of base displacement decreased as the natural

frequency decreased indicating an increase in energy dissipation with

softening of the structure.

(2) The test structure containing the lightly-reinforced wall (FW3)

had smaller magnifications of base displacement than did the structurE!

containing the heavily-reinforced wall (FW4). This tendency may be

attributable to a greater amount of energy dissipation for the structure

with a greater extent of nonlinear behavior.

(3) As the natural frequency of a test structure decreased, the

shape of the frequency-response curve became less symmetrical. The s·'ope

of the low-frequency side of each curve became steeper, and the slope of

the high-frequency side became flatter suggesting a greater extent of non

linear behavior.
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Damping factors calculated from data measured during free- and

steady-state vibration tests are plotted versus the maximum tenth-level

displacement observed during the previous earthquake simulation (Fig. 6.17).

As for the comparison of natural frequencies with changes in stiffness,

maximum tenth-level displacement has been plotted to serve as an index of

the current stiffness of each structure. The trend of the increase in

energy dissipation with event was similar for each type of vibration

test. A smaller increase in energy dissipation was observed following

higher-intensity earthquake simulations than following lower-intensity

simulations. Additionally, damping factors calculated from data measured

at larger amplitudes (steady-state tests) were larger than those calculated

from data measured at smaller amplitudes (free-vibration tests).

6.4 Frequency Content of Measured Response

When a structure is subjected to a strong motion at the base, resulting

-response is a complex interaction of the changing dynamic characteristics

of the structure and the frequency content, sequence, and intensity of the

base motion. The frequency content of any type of response (acceleration,

displacement, shear, etc.) may not directly reflect the stiffness properties

of a building. Interpretation of the relative amplitud~of the components

of the observed response is necessary to identify ranges of natural fre

quencies, and to suggest relative participations of each mode.

Measured response histories of the test structures are interpreted

in this section with respect to frequency content. Records have been
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transferred to the frequency domain by an analysis which decomposed each

record into a series ofsin~soidal components at frequencies ranging from

0.0 to 40.0 Hz. Normalized amplitudes of each component have been plotted

versus the frequency of each component as Fourier-amplitude spectra. A

further step reassembled components within a particular frequency range

resulting in time-domain response which was filtered to exclude components

at frequencies outside the particular range. In this manner measured response

histories were filtered to exclude all components at frequencies larger

than apparent fundamental frequencies.

Representative Fourier-amplitude spectra and corresponding filtered

waveforms for each form of measured response are presented in Fig. 6.19.

Filtered records are shown as solid lines which are superimposed over

measured records which have been represented as broken lines. Displacement,

acceleration, force-on-wall, shear, and moment response were measured·

during the initial test run of structure FW4. To show variations in

frequency content of response of walls with appreciable differences in

reinforcing ratios, Fourier-amplitude spectra and filtered waveforms of

response of a lightly reinforced wall (initial test run of structure FW3)

are presented also in Fig. 6.18.

(a) Displacement Response

The frequency content of measured displacement records (Fig. 6.19a)

consisted primarily of frequencies that were apparent fundamental mode.

Filtered waveforms were essentially the same curves as measured waveforms,

and nearly no frequencies were observed on Fourier-amplitude spectra out

side of the range of fundamental-mode frequencies. The same shape of
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measured waveforms at each level supports the observation that the dis

placement response of the test structures may be represented by a single

degree-of-freedom system.

(b) Acceleration Response

Unlike displacement response the frequency content of measured

acceleration response (Fig. 6.19b) consisted of many high-frequency

components. At lower levels (below third level) frequency contents of

accelerations resembled that 'of base accelerations (Fig. 6.1) suggesting

behavior of a rigid structure. At upper levels, accelerations did not

include base-acceleration frequencies but did contain high frequencies

attributable to higher-mode effects.

Despite changes in natural frequencies with damage and amplitude

of motion, apparent first-, second-, and third-mode components of accel

eration at each level were observed to be distributed along the height

with essentially the same shape as the mode shape. For example,

, amplitudes of filtered acceleration waveforms at each level were distributed

similarly to displacements. Zero ordinates of second-mode shapes could be

inferred from frequency contents of measured accelerations. Though the

range in second-mode frequencies was generally wide on Fourier-amplitude

spectra (approximately from 10 to 20 Hz) nearly no components were visible

at the eighth level. Furthermore, filtered waveforms at the eighth level

were essentially the same curve as measured acceleration response histories

at that level signifying a constant node point and shape of an apparent

second mode for all amplitudes and instants throughout the duration. A
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similar but less revealing trend may be observed for apparent third-mode

frequencies by examining frequency contents of acceleration records at

the fifth and ninth levels. The consistent pattern of high-frequency

accelerations along the height of structure implies that the distribution

of lateral forces applied to the nonlinearly behaving test structures

may be represented us i ng a moda1 ana lys is.

(c) Shear and Moment Response

The large participation of high-frequency components in lateral

force response was not observed in shear or moment response. Amplitudes

on Fourier-amplitude spectra of shear and moment response (Fig. 6.l9c and

6.l9d) at frequencies larger than apparent fundamental-mode frequencies were

small. Filtered waveforms of shear and moment response presented in the

same figure indicated a large participation of the apparent fundamental

mode. High-frequency lateral forces at upper levels did influence shear

and moment response at upper levels but appeared to have cancelled for

shear and moment response at lower levels. Increases in shear or moment

at lower levels resulting from high-frequency accelerations at lower levels

were negligible.

Filtered shears and moments at all levels varied with time similarly

as did measured displacements indicating an apparent linear response of

the test structures.

(d) Wall Response

Frequency contents of wa 11 response (Fi g. 6. 1ge and 6. 19f) werE~

unlike frequency contents of acceleration response at the same level sug-
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gesting the presence of forces resisted by wall that were not simply some

fraction of the lateral inertial load applied to the structure. Internal

forces resulting from frame-wall interaction must have also been present.

High-frequency components of the base motion observed in acceler

ation response at lower levels were not prevalent in wall response. At

the tenth level, lateral inertial forces (accelerations) contained apparent

second- and third-mode frequencies yet force was applied to the wall at

frequencies which were predominately in the range of fundamental-mode

frequencies.

To gain insight into the relationship between force applied to the

wall at a particular level and lateral force applied to the structure at

all levels, a set of influence coefficients was calculated and is

presented in Table 6.6. The force applied to the wall at a particular

level may be calculated by summing the products of lateral force applied

to the structure and the corresponding influence coefficient. Coefficients

have been determined using the Mueller-Breslau principle ,with the linear

model of the softened structure described in Sec. 7.3 with beam and wall

stiffnesses inferred from cyclic-load tests. Influence coefficients are

the lateral deflections at each level resulting from an imposed unit axial

distortion of a particular link member connecting the wall and frames of the

analytical model.

According to Table 6.6, the wall resisted most of the total lateral

load at the first level OOOand 93 percent for heavily and lightly rein

forced walls). However, forces resisted by wall at the first level were



66

dependent also on loads applied to the structure at upper levels. Because

the sum of upper level lateral loads was much larger than the lateral load

at the first level, force resisted by wall at first level would be expected

to be influenced predominantly by loads applied to the structure at upper

levels. Frequency contents of wall response (Fig. 6.lge) at lower levels

were observed to be similar to frequency contents of acceleration, or

lateral load, response (Fig. 6.19b) at upper levels.

The small high-frequency components, in the tenth-level wall response

may be explained also with the set of influence coefficients. Forces applied

to the wall at the tenth level, according to Table 6.6, were dependent

largely on lateral forces applied to the test structure at the seventh,

eighth and ninth levels. Because of the large accelerations measured at

these levels which were predominantly at a fundamental frequency, the

force resisted by wall at tenth level would be expected to be acting

predominantly at a fundamental frequency.

Frequency contents observed in response of force resisted by wall

were reflected in the response of wall shears and moments. Shear and

moment response of structure FW4 (Fig. 6.19g and 6.19i) contained few

frequencies other than apparent fundamental-mode frequencies. An ex

ception to this tendency was observed for the moment response at the

sixth level which was near a point of contraflexure for the first-mode

loading. Shear and moment response for structure FW3 (Fig. 6:l8h and

6.l8j) contained a large participation of second-mode frequencies as did

the force response. The conspicuous appearance of second-mode frequencies
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in the wall response of structure FW3, and the predominantly first-mode

wall response of structure FW4 suggested the sensitivity to characteris

tics of the base motion and a small change in second-mode frequency.

6.5 Interpretation of Measured Response Using a Linear SDOF Oscillator

Measured hysteresis relationships for frame elements (Fig. 4.5)

subjected to loading programs which simulated recorded displacement

histories indicated that the test structures had incurred substantial

nonlinear deformations during earthquake simulations. However, nearly

identical measured displacement shapes for all amplitudes of motion

(Sec. 6.3b) suggested that response of the nonlinearly behaving multi

degree-of-freedom (MDOF) structures may be represented by a series of

single-degree-of-freedom (SDOF) oscillators each with a natural frequency

equal to that of a particular mode of the MDOF structures. Furthermore,

observations of apparent modal frequencies (Sec. 6.3a) implied the possiblity

·of modeling nonlinear behavior of a particular cycle using a linear stiff

ness.

Maxima of displacement and acceleration response of linear SDOF

oscillators subjected to measured base motions were determined using

spectral-response curves (Fig. 6.2 and 6.3). Frequencies of the oscillators

were set equal to measured natural frequencies of the test structures for

cycles of maximum response. Damping factors were estimated with values

obtained from data obtained during steady-state vibration tests (Fig. 6.17).

Calculated SDOF response was extended to estimate MDOF response using
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characteristics of measured mode shapes from Table 6.2. Comparisons of

measured with calculated first-mode maximum response are shown for

. displacement at level ten (Fig. 6.20a), acceleration at level eight

(Fig. 6.20b), shear at first story (Fig. 6.20c), and moment at base

(Fig. 6.20d). The choice of level at which a particular comparison

was made was based on small participations of higher modes (as indicated

by frequency contents of measured response histories) so that the

response of a single apparent mode could be investigated.

The calculation procedure did estimate measured displacements,

accelerations, shears and moments reliably for each of the four test

structures subjected to design-basis earthquake simulations. For sub

sequent simulations calculated response, excluding displacement response,

was progressively smaller than measured response as the intensity of the

base motion increased. Increases in second-mode participation were

observed in frequency contents of measured eighth-level acceleration and

first-story shear response. However, the increases were not substantial

enough to reconcile differences between calculated first-mode and measured

response. Error in the calculation procedure was largest for accelera

tions but was not reflected as greatly in shear or moment response.

Calculated estimates of displacements of test structures subjected to

higher intensity base motions agreed reasonably well with measured

values, and would have served as an adequate criterion of structural

behavior for design.

Maxima of each cycle of measured base moment and tenth-level displace

ment have been plotted (Fig. 6.21) to compare force-displacement relation-
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ships measured at various times throughout the test run with calculated

relationships using a linear SDOF oscillator. Base moment has been chosen

as a measure of total lateral load resisted by a structure because of

small participations of higher modes.

It should be noted that calculated stiffnesses have been based on

softened structures whose frequencies were measured during the cycle of

maximum displacement. Calculated moment-displacement relationships should

represent lower bounds of all moment-displacement data points and not

necessarily envelope curves. Structures subjected to motions resulting

in cycles of successively increasing displacement responded with a gradual

deterioration of stiffness characterized by a round-shaped curve circum

scribing the moment-displacement data points. This tendency was prevalent

for structures with heavily reinforced walls (FW1, FW4) subjected to initial

test runs. Cycles of maximum displacements for other test structures and

test runs occurred early into durations resulting in more linearly shaped

envelopes of moment-displacement maxima.

Comparison of calculated slopes with measured data demonstrated

further the acceptability of using a model based on linear behavior to

represent the measured nonlinear response. Calculated stiffnesses agreed

well with measured moment-displacement data for design-basis earthquake

simulations. For subsequent test runs calculated stiffnesses were in the

range of measured data but did not always represent a lower bound to

apparent measured stiffnesses (the third test runs of structures FWl and

FW4). The reason may be in part because observed frequencies during

subsequent test runs were difficult to identify because of erratically
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shaped displacement response histories (Fig. 5.9 and 5.21). Also,

permanent displacements which were measured during many subsequent

test runs were not included in the linear-model interpretation. The

general tendencies of the test results, however, suggested that a linear

model may be used to represerit adequately for design purposes the nonlinear

response measured during initial earthquake simulations. More specifically,

the test structures may have been proportioned at the base to resist a

moment which was a direct function of the anticipated displacement of

the softened structure.
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CHAPTER 7

DISCUSSION OF TEST RESULTS

7.1 Introductory Remarks

Interpretations of observed dynamic response presented in the

preceding chapter consisted primarily of comparisons of measured data.

An identification of deformational characteristics of the members was

not necessary. In this chapter observed response is interpreted more

extensively with the use of member stiffnesses and strengths inferred

from results of cyclic-load tests of wall and frame elements. Ultimate

strengths of the test structures are calculated and compared with maxima

of measured lateral loads. Dynamic characteristics of the structures

are calculated using a linear analytical model and are compared with

measured characteristics. Using the same model, reductions in stiffness

. of beams and wall are identified from measured wall response to demonstrate

the adequacy of representing nonlinear wall-frame interaction with linear

principles. Before investigating wall forces in detail, however, the

reliability of force measurements is discussed in terms of consistency

with other measurements.

7.2 Strength of Test Structures

Collapse of the test structures did not occur. However, an

evaluation of the strength of the structures is presented in this section
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to serve as a check on acceleration measurements, and to provide insight

into the dynamic behavior of the structures. Maximum measured moments

at base and shears at first st~ry (Table 7.1) were used to represent

the total lateral load resisted by the structures.

(a) Collapse Mechanism

Ideally, for a frame structure collapse will occur when applied

loads exceed the strength of the structure. An unstable mechanism will

be developed resulting from inelastic rotations at ends of critical

members. Several patterns of inelastic-hinge formation may be geomet

rically admissible for a mechanism to occur, however, the pattern re

quiring the minimum amount of work from the applied loads will be the

mechanism at which collapse will occur. Three categories of mechanisms

were considered for the calculation of test-structure strength.

The first category comprised all combinations of hinge formation

in the columns and wall above the base and is depicted in Fig. 7.1 (a).

Because work of the external loads was dependent on distribution of

inertia loads along the height of structure for this category of mechanisms,

the most severe distribution of a single load applied at the tenth level

was considered.

The second category consisted of a mechanism with hinges at the

base of columns and wall, and at the ends of beams at all levels. (Fig.

7.1 b). Because of the triangular deflected shape, the limiting base

moment for this mechanism was independent of loading distribution.

The third category considered overturning of the entire test

structure resulting from an assumed uplift of the columns (Fig. 7.1 c).
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This mechanism was eliminated from the selection of a governing mechanism

however, because maximum axial tensions developed in the exterior columns

from limiting beam shears and dead load did not exceed tensile capatities

of the columns.

Collapse loads were calculated for each mechanism using the princi

ple of virtual displacements with wall and beam. strengths measured from

cyclic-load test data (Fig. 4.5 and 4.7), and column strengths estimated

from calculated interaction diagrams (Fig. 3.11). Because of the large

amount of internal work required to develop yielding in the wall above

the base, mechanisms of the first category were not found critical. For

the governing mechanism (Fig. 7.1 (b)) limiting moments at base, Mbmax '

and shears at first story, V·b··. ,were calculated using the following re-max
1ationships.

= 0.229 Wint

10
1: 0'..

t = l'
= 10

1: ( i )( ~i )
i = 1

where Wint = total internal work,

Mbmax

= 119 KN for structures with lightly reinforced

walls

= 165 KN for structures with heavily reinforced

walls

O'.i = ordinate of shape of loading distribution at

level i
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(b) Factors of Safety Against Collapse

Factors of safety against collapse have been calculated by dividing

the calculated limiting base moment or first-story shear by the measured

moment or shear. Calculations based on first-story shear and base moment

should result in the same factor of safety, however, both have been used

so that calculation procedures may be confirmed. Additionally, higher

frequency shear response may suggest the influence of strain rate on

strength increase when compared with moment ·response.

Because the calculation of limiting first-story shear was depen

dent on the distribution of inertial loads, the minimum factor of safety

against collapse should not have occurred necessarily at the same time

as the maximum shear. Measured load distributions at 0.01 second intervals

are compared in Fig. 7.2 for a structure subjected to a representative

high-intensity base motion (strucutre FW1, test run 3). Instants near the

times of maximum first-story shear and base moment are represented. As

demonstrated by appreciable differences in load distribution,. the calculation

of limiting first-story shear demanded consideration of distributions at

several instants. Loading distributions were calculated from measured

acceleration response histories at 0.004 second intervals. The minimum

factor of safety based on first-story shear calculated using this approach,

however, was found to occur at the same instant as the maximum base moment.

This was expected because the limiting base moment was independent of

loading distribution and time for the governing collapse mechanism. The

factor of safety based on base moment would then be expected to occur at



75

the time of maximum base moment. Factors of safety against collapse are

summarized below.

Test Structure

FWl

FW2

FW3

FW4

Based on Base Moment

0.92

0.85

0.83

0.88

Based on First-Story Shear

0.94

0.87

0.86

0.88

Factors of safety were nearly the same whether calculated using

base moment or first-story shear as the criterion. The implications of

the close agreements were that the calculation procedures were correct,

and that strength increases resulting from higher frequency shear response

were not greater than those resulting from lower frequency moment response.

The fact that all factors of safety were less than one was contrary

to observations that collapse did not occur. The minimum factor of safety

represents a ma~imum 20 percent increase in strength than. calculated. Two

effects not considered in the calculations may be attributable to presumed

strength increases as discussed in Sec. 7.4 (c). Strain-rate effects may

have increased yield stress of reinforcement. Additionally, compressive

axial forces may have been acting on wall during high-intensity simulations

which would increase the flexural capacity of wall from that calculated.

If factors of safety are calculated using measured wall moments at base

instead of maximum moments observed from cyclic-load tests, the minimum

factor of safety becomes 0.97.
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In summary, the critical collapse mechanism for all test structures

included yielding of the reinforcement at base of wall and columns, and at

beam ends which agreed with observed crack patterns (Fig. 5.12 and 5.24).

Minimum factors of safety against collapse occurred at times of maximum

moment. Calculated values of factor of safety were as low as 0.83 suggesting

neglected strength increases because of strain rate effects and compressive

axial force on wall.

7.3 Calculation of Dynamic Characteristics Using a Linear Model

Despite nonlinear response at the member level, as indicated by

measured hysteresis relationships of frame and wall members, overall mea

sured response of the test structures contained characteristics indicative

of structures behaving linearly: frequency contents of observed waveforms

revealed dominant components at particular frequencies (Fig. 6.13), dis-

placed shapes were nearly constant for all amplitudes of motion (Sec. 6.3 (b».

response maxima of the composite wall-frame system could be estimated reliably

for all four structures subjected to design-basis earthquake simulations

using measured shapes and SDOF oscillators behaving linearly (Sec. 6.5).

Because of these observations of apparent linear behavior, an attempt is

presented in this section to calculate dynamic characteristics using a

linear analytical model. Stiffnesses of the model for members with non-

linear deformations have been approximated with average slopes of measured

hysteresis relationships for cycles of maximum displacement. Natural fre

quencies and mode shapes were calculated using the model and are compaY'ed

with dynamic characteristics interpreted from measurements.
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(a) Description of Linear Model

Features of the analytical model (Fig. 7.3) that were different or

not included in the design model (Sec. 3.2) were (1) beam flexural stiff

nesses, (2) wall flexural stiffnesses, and (3) consideration of lack of

fixity at column and wall bases. Because approximations of stiffnesses

of members with nonlinear deformations could not be accurately established,

a range of stiffness for these members was considered. Relative reductions

in beam stiffness resulting from nonlinear behavior were assumed to be

directly proportional with measured interstory displacements. Beam stiff

nesses have been normalized with respect to values at the fifth level so

that correlations may be made with measurements of static-test specimens

which were subjected to loading programs representative of interstory dis

placements at the fifth story. Distributions of beam stiffnesses relative

to the beam stiffness at fifth level are tabulated in Table 7.2. Flex-

ibility at base of wall was modeled with a rotational spring of which

stiffness was varied over a range determined from measured displacements

of wall specimens subjected to cyclic loads.

Rotational springs were used also to model pullout of anchored

reinforcement at base of columns. Referring to Fig. 7.4, flexibility of

these springs was calculated considering a uniform bond stress distribution

along the length of the developed portion of the bar. It should be noted

that by using the same calculation procedure, pullout of reinforcement at

base of wall which was implicit in cyclic-load test measurements would

result in values of 2.5 and 0.8 x 10-7 radian/kN-mm for lightly and heavily

reinforced walls.
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Stiffnesses of wall members where measured moments exceeded measured

moduli of rupture were calculated considering fully cracked sections.

Column and wall stiffnesses inferred from measurements obtained during

cyclic-load tests of frame and wall components were in close agreement

with values calculated using cracked-section stiffnesses (Sec. 4.4).

Column and wall stiffnesses used in the analytical model are tabulated

in Table 7.3. A nominal value for the modulus of elasticity of 20,000

MPa, based on data from test cylinders, was assumed.

(b) Calculated Frequencies and Mode Shapes

Fundamental frequencies calculated using the analytical model

have been plotted versus the fifth-level beam stiffness used in each

calculation (Fig. 7.5). Beam stiffness has been expressed in terms of

a damage ratio (as defined in Fig. 3.5) so that effects of beam damage

on frequency may be more clearly stated. Calculated frequencies are

presented also for a range of possible flexibilities of wall at base.

Tendencies associated with variations in these stiffnesses ~re noted.

(1) Reduction in frequency resulting from softening in beams

w'as much greater than that resulting from softening at base of wall.

(2) Reduction in frequency resulting from softening in beams

and wall decreased with increase of softening.

(3) Reduction in frequency resulting from softening in beams

decreased at essentially the same rate for all levels of softening of

wall.

Ranges of calculated second-mode frequencies are presented in

Table 7.4. Calculated mode shapes were insensitive to variations in
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assumed stiffnesses as demonstrated in Table 7.4 by small differences

in shapes for extreme stiffness considerations.

Frequencies calculated considering beams to be cracked (damage

ratio of 1.0) coincided with frequencies measured during free-vibration

tests following initial test runs (Fig. 6.14). Comparisons of calculated

frequencies with frequencies observed during earthquake simulations will

be presented in Sec. 7.5 following examination of stiffness reductions

in beams and wall.

7.4 Reliability of Measurement of Force Resisted by Wall

Because the measurement of forces, through measurement of strain,

resi~ted by wall was attempted for the first time in this study, checks

for consistency with other measurements was felt appropiate. Frequency

characteristics of the measured forces were discussed in Sec. 6.4 (d)

and were found to be consistent with frequency contents of measured dis

placements and accelerations. Other comparisons supporting the reliability

of the force measurements were:

(1) measured displacements with displacements calculated from

measured forces,

(2) ~atterns of measured residual forces with patterns calculated

from distributions of permanent rotations,

(3) measured moments at base of wall with estimated flexural

strength of wall.

(a) Oi'splacements Calculated from Forces

At particular instants, tenth~level displacement was calculated

from measured wall forces. A simple model was used which consi.dered
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linear behavior along the full height of wall, and a linear rotational

spring at base. Cracked and uncracked stiffnesses were assumed depending

on the magnitude of the measured moments at each level. Because of the

dependence of the spring stiffness on loading history, deflection was

calculated for a fixed base and set equal to the measured displacement

to determine the necessary base rotation. Base moment from the measured

forces and calculated base rotation are listed in Table 7.5. Comparison

of these values with the experimental curve of moment-rotation (Fig.

4.5 (c) and (d) ) suggested that the measured forces resulted in credible

displacements.

(b) Pattern of Residual Forces

A salient feature of the measured force response was residuals

measured at the end of a test run. The residual measurement was not

electronic drift in the gage because of nearly identical readings at
!

the end of a test run and at the beginning of a subsequent test run

more than an hour 1ater. Forces were prevalent between wall' and frames

for the unloaded structure after a dynamic test because of different

inelastic deformations of wall and frames.

Measured residual forces were smaller for structures subjected to

Taft simulations than those subjected to El Centro simulations because

of more balanced loading reversals throughout the duration.

The influence of permanent rotations, resulting from inelastic

action, on residual force resisted by wall at a particular level was

examined using the Mueller-Breslau principle. Using the mathematical
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model described in Sec. 7.3 (a) with beam and wall stiffnesses inferred

from cyclic-load tests, a unit axial distortion was imposed between wall

and frames at a particular level. Moments generated at beam ends and

at base of wall by the distortion were coefficients that indicated the

influence of permanent rotation on residual force at that particular

level.

As demonstrated by the influence coefficients (Table 7.6), per

manent rotation at the base of wall had a significant effect on residual

force at first and second levels. Using the calculated influence co

efficient for the lightly reinforced wall at the first level (528 kN/

radian) with the measured residual force (3.2 kN for FW2-Run 1) indicated

a rotation at the base of wall equal to 0.006 radians. The experimentally

obtained relationship between moment and rotation at the base of the wall

(Fig. 4.5 (d) ) confirmed that 0.006 radians was a credible permanent

rotation for the loading history of the El Centro simulation. Using the

same base rotation with the influence coefficient for the force at the

second level ( -64 kN/radian) resulted in a calculated force of -0.4 kN

which was consistent with the -0.7 kN measured force.

Permanent rotations at the end of the beams were the primary influence

on residual forces at upper levels. By examination of the influence co

efficients, the largest residual should occur at the level where the

difference between permanent rotations at adjacent levels was a maximum.

A large residual force was measured at the sixth level for the heavily

reinforced wall subjected to an El Centro simulation (Fig. 5.4). This
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suggested the maximum difference in permanent rotations at ends of beams

to be between levels seven and five which seemed credible because the maximum

difference in frame story shears was between stories seven and five (Fig.

5.5). A similar argument can be made for the lightly reinforced wall

subjected to the El Centro simulation where a large residual was measured

at the seventh level.

(c) Wall Base Moments

Moment at base of wall determined from measured forces were used

as a check on the reliability of strain gage readings by comparing them

with flexural capacities of walls. Response maxima of the moment histories

(Fig. 5.5, 5.10, 5.17, 5.22) are listed in Table 7.7 with strengths ob

served under static conditions (Fig. 4.5(c) and (c)). Moments calculated

from measured forces Were larger than observed static-loading strengths

for most test runs.' However this did not discount the reliability of

individual force measurements because of possible increases in strength

resulting from compressive axial load on wall, and increases ~n yield

stress of reinforcement due to strain rate effects.

Tension tests performed by Staffier [23] on knurled specimens of

No. 8 gage black annealed wire indicated that a twenty percent increase

in upper yield stress was possible at a strain rate of 0.04 per second

which was the approximate maximum rate measured from the response histories

of base moment.

Ideally, no axial force should have been present on the wall at

the start of the test sequence. Unequal vertical displacement of the wall
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relative to the frames, especially from rotation at the base of the wall,

could have resulted in compressive axial forces on the wall. Vertical

accelerations as high as 0.8g (Fig. 5.9 and 5.21) were measured during

subsequent test runs corraborating the exchange of vertical force between

frames and wall. A simple model (Fig. 7.8 (a) ) was used to estimate the

magnitude of the axial force for a rotation of 0.01 radian at base of wall.

Axial stiffnesses of the columns were based on the cross-sectional area

of the reinforcement, and a modulus of elasticity of 200,000 MPa. Axial

stiffness of the wall and flexural stiffness of the floor levels were

considered to be infinite so that a maximum axial force on wall would

result. A maximum axial force on wall was calculated to be approximately

twenty-five percent of the total dead load. The increase in flexural

strength of the wall for this axial load was approximately twenty percent

as determined from the moment-axial load interaction diagram (Fig. 7.8(b) ).

Increases in strength of wall during earthquake simulations over

static strengths was also suggested in Sec. 7.2 where maximum shears and

moments resisted by the combined frame-wall system were investigated.

It should be noted that the base moments for the first and second

test runs of test structure FW3 were based on a force at the ninth level

equal to zerobecauseof a malfunctioning tape recorder channel. The ninth

level force was small for the initial test run of the other test structures

justifying the approximation of zero force. The zero force assumption

may not have been justified for the second test run because of a possible

residual force at the ninth level. A -1.5 kN residual force was observed
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at the start of the third test run which may have beE:n present for the

second run. The sense of this residual would decrease the maximum observed

moment, and the difference between negative and positive maxima.

(d) Summary

The discussion of the reliability of the measurement of forces

resisted by wall revealed that

(1) the force measurement was synchronized with displacement

and acceleration measurements,

(2) measured forces resulted in calculated deflections similar

to measured displacements,

(3) residual forces acting between the wall and frames were

consistent with patterns of permanent rotations,

(4) moment at base of wall determined from measured forces

were larger than static flexural strengths which may be attributable

to strain-rate effects and axial load on the wall.

7.5 Identification of Reductions in Stiffness Using a Linear Model

Quantitative esti~ates of reductions in stiffness resulting from

nonlinear behavior may be inferred from experimental tests of frame and

wall members subjected to cyclic loads. In this section reductions in

stiffness are estimated using an alternate approach. Reductions are

identified from response measurements using a linear model which is

assumed to represent nonlinear response accurately. Correctness of the
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assumption is then examined by comparing reductions in stiffness based

on the linear model with ·average slopes of measured hysteresis loops.

(a) Description of Linear Analysis

The analytical model used in this study was the same model used to

calculate dynamic characteristics in Sec. 7.3 (a). Softening of

the wall was represented by increasing flexibilities of the rotational

spring at base. Softening of the beams was represented by increasing

damage ratios. Lateral loads were distributed according to fundamental

mode shapes which were calcuJated for each combination of frame and wall

stiffness. A unit spectral acceleration for all first-mode frequencies

was used so that the calculation would be applicable for structures with

different base motions.

(b) Identification Parameters

Using displacements or accelerations of the overall structure as

identification parameters of member stiffness would be erroneous. Response

of the frame-wall system, like a set of parallel springs, would depend not

on stiffness of individual components, but on the sum of their stiffnesses.

In this respect, identical response of the composite structure may result

from an infinite number of combinations of frame and wall stiffnesses.

Admissible parameters, however, would be internal-response measurements

such as frame or wall response.

Measurement of force resisted by the wall at a particular level

would be expected to be sensitive to wall and frame stiffnesses, and would
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therefore serve as an appropriate identifier. However, measurements of

shear and moment at base of wall were preferred because

(1) shear and moment response comprised a population of ten

measurements, thus diminishing the error resulting from

individual gages,

(2) shear and moment response contained smaller residual components

than individual force measurements which simplified inter

pretation using a linear analysis,

(3) shear and moment response contained fewer high-frequency

components than individual force measurements, which facilitated

compari~9ns with results of first-mode calculations.

Results·of linear analyses are presented in Fig. 7.6. Shear at

base of wall (Fig. 7.6a) was plotted versus flexibility of wall at base so

that stiffness reductions of wall at base could be identified from measurements

of wall base shear. Moment at base of wall (Fig. 7.6b) was plotted versus

damage of fifth-level beams so that stiffness reductions of beams could be

identified from measurements of wall base moment. Base-moment curves

include a discontinuity because of different distributions of beam damage.

Stiffnesses representing cracked and rigid beams were calculated using a

uniform damage ratio for all beams. Stiffnesses representing beams behaving

in the nonlinear range were calculated using a distribution of damage

ratios identical with the distribution of measured interstory displacements

(Table 7.2).

Shear resisted by wall at base would be expected to be insensitive

to stiffness properties of frames because observed shears at base were
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resisted primarily by wall. This expectation is confirmed with the cal

culation results (Fig. 7.6a) for walls with small base flexibilities

(less than 5.0 radianjKN-mm). However, for larger base f1exibi1ities,

which would be expected for the lightly reinforced walls during initial

test runs and for all walls during higher intensity runs, shear resisted

by wall at base was sensitive to frame stiffness. In this range of wall

flexibility, wall base shear decreased with increased softening of beams.

The reversed tendency may be explained by examining force distributions

on wall (Fig. 7.7). For walls fixed at base no force reversal at level

one was present and wall base shear did not vary appreciably. For walls

with a large base flexibility (10 X 10-7 radianjKN-mm) reductions in beam

stiffness resulted in increased reversals at level one and reduced shears

resisted by wall at base. Reversals in force on wall were attributable

to interactive forces between wall and frames resulting from constrained

displacements at each level.

Ideally, no interactive forces would develop between frames and

walls with, when separated, identical deflected shapes. Conversely, large

interactive forces would develop between frames and walls with dissimilar

deflected shapes. A frame with rigid beams (shear beam) loaded at top,

or a rigid wall pinned at base would deflect in a triangular shape. A

frame with no beams would deflec't in the same shape as would a wall fixed

at base (flexure beam). Therefore, larger interactive forces and smaller

shears at base of wall would result from combinations of (l) light beam

damage (shear beam) and light damages of wall at base (flexure beam), and

(2) heavy beam damage (flexure beam) and heavy damage of wall at base

(wall pinned at base).



88

For the range of relative wall-frame stiffnesses of the test

structures, shear at base of wall was insensitive to combinations of

damage of the first category. For heavy 'damage or large flexibilities

of wall at base, shear at base of wall was sensitive to softening of

beams. For this reason, identification of stiffness reductions at base

of wall may be inconclusive for structures with excessive nonlinear

behavior of wall at base.

{c} Amplitude ofTotal Lateral Load

Calculated results of moment and shear at base of wall {Fig. 7.6}

were based on a modal analysis using a unit spectral acceleration re

sponse for all frequencies. For comparison with calculated values,

measured maxima of shear and moment response were normalized with respect

to the intensity of the particular earthquake simulation as described

below.

Spectral-response curves were not used to determine index values

of base motion intensity because inaccurate estimates of damping factor

would have resulted in a wide range of plausible spectral accelerations.

Amplitude of the total lateral load was inferred from measured first-mode

shapes, and measured base moments resisted by the combined wall-frame

system. First-mode SDOF accelerations, Al , were related directly to

base moment, Mb, by the relationship {Sec. 6.3b}

Mb
Al = WHY, 1

where Yl and Hl were established as functions of the first-mode shape and
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were found to be nearly constant for all amplitudes of motion. It should

be noted that accelerations determined in this manner were equal to values

read from spectral-response curves (Fig. 6.2 and 6.3) in ranges of damping

factors from eight to twelve percent.

Maxima of measured shea~ and moment response at base of wall,

and corresponding base-moment response of entire structure were read from

records which were filtered to exclude components at frequencies larger

than four Hz so that comparison could be made with calculated first-mode

values. Measured wall-response maxima and normalized values are tabulated

in Table 7.8.

(d) Comparison of Calculated and Measured Stiffnesses

Reduced stiffnesses, identified from measured wall response using

a linear model, are summarized in Table 7.9. Stiffnesses based on average

slopes of measured hysteresis loops are presented for comparison with

calculated values so that the correctness of using a linear model to

·represent nonlinear response may be investigated.

Flexibility of wall at base and damage ratio of beams were de

termined from normalized moments and shears (Table 7.8) using calculated

curves (Fig. 7.6). Reductions in wall stiffness were identified from

measured shears using beam stiffnesses inferred from cyclic-load tests.

Reductions in beam stiffness were identified from measured moments using

wall stiffnesses inferred from cyclic-load tests.

Beam stiffnesses based on measured hysteresis relationships were

determined from load and joint-rotation measurements. Stiffness was
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established as the slope of a line connecting points on the curve repre

senting maximum rotations in each direction of loading. Values of stiff

ness for interior and exterior-joint specimens were averaged.

F1exibi1ities at base of wall refer to load-rotation measure-

ments of cyclic-load tests. Because loading programs for wall specimens

were not patterned to represent measured displacement histories of the

test structures, moment-rotation stiffnesses were inferred using limiting

rotations corresponding to first-level displacements of the test structures

measured during initial earthquake simulations.

Comparison of measured and calculated stiffness reductions (Table 7.9),

with qualification, revealed satisfactory correlations. Differences between

measured and calculated values may be attributable to uncertainties in the

measured values of shear and moment at base of wall. Measurements,

particularly shears, wer~ subject to interpretation because of the filtering

process used to vi ew fi rst-mode components. Furthermore, wa 11 response

measurements of structuresiFW1 and FW3 were distorted. As discussed in

Sec. 5.2 (g), forces may have been acting on the wall of structure FWl

before the initial earthquake simulation. Shear and moment records for

structure FW3 did not include ninth-level forces: damage ratio of 2.9,

instead of 1.4, would result from a wall base moment of 14 kN-m which

would require a 0.8 kN force on wall at the ninth level which was credible

considering measurements at ninth level of other structures.

Using stiffnesses identified in this study or measured with cyclic

load tests resulted in calculated fundamental frequencies (Fig. 7.5)
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which agreed with measured frequencies (Fig. 6.13). The major implication

of the correspondence between measured and calculated stiffness reductions

is that a linear model may be used with reduced stiffnesses to approximate

response maxima of structures behaving in nonlinear ranges of response.

However, the small population of experimental data (test structures FW2

and FW4) was insufficient to support a strong argument in favor of this

implication. A larger population of data may be generated analytically

using a nonlinear dynamic response computer program developed by K. Emori

[5J. The usefulness of a linear-model representation may then be examined

further with varying reinforcing ratios and base mqtions.

An incidental result of this identification study was an explanation

of the sensitivity of wall-frame interaction to varying combinations of

stiffness deterioration of wall and frames. In the next section, an

understanding of these sensitivities will help explain why the simplified

analytical model used for design was successful.

7.~ Evaluation of Design Method

Test structures subjected to initial earthquake simulations responded

with no loss of possible building function. Displacements were within

acceptable ranges for serviceability, and no cracking or crushing of

concrete requiring repair was observed. The design method used to proportion

reinforcement was successful. However, interpretations of measured response

suggested that member stiffnesses were not the same as assumed for design.

(1) A damage ratio for the beams of six was assumed for design

whereas values of approximately three were inferred from cyclic-
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load test measurements, and four from the identification

study presented in the preceding section.

(2) Fixity at column and wall bases was assumed for design

whereas rotations resulting from pullout of anchored rein

forcement were observed during wall static tests.

(3) Uniform softening along the height of lightly reinforced

walls was assumed for design whereas nonlinear behavior

was observed only locally at base during cyclic-load tests.

To demonstrate why the design method was successful despite differences

in structural characterization, estimates of response used for design

are compared with measurements in Fig. 7.9 through 7.11. Design values

were adjusted by spectral accelerations calculated from measured intensities

of motion so that comparisons between measured response and response based

on assumed behavior could be made independently of predictions of base

motion intensity. Spectral accelerations for first-mode response were

determined as described in Sec. 7.5 (c). Second-mode response was cal

culated using spectral accelerations determined from measured base motions,

and an estimated damping factor of ten percent.

(a) Inaccuracies of Assumed Behavior

Measured displacements were smaller than values calculated for

design (Fig. 7.9) which may be attributable to stiffer beams than assumed.

Using beam stiffnesses inferred from cyclic-load tests (where specimens

were subjected to loading programs representative of measured dynamic

test displacements), calculated displacements corresponded with measure-



93

ments. Further corroboration that beam stiffnesses were approximately

one half of design assum~tions (damage ratios of three rather than six)

was close agreement of calculated first-mode frequencies (Fig. 7.5)

with measured values (Fig. 6.13).

To suggest why the beams did not soften as assumed for design,

a representative load-deflection relationship measured during cyclic-load

tests is compared in Fig. 7.12 with an idealized relationship used for

design. Beams may not have softened as much as assumed because of

larger flexural str~ngths provided than required. Higher strengths. would

have hindered the onset of yield and retarded anticipated softening.

Higher strengths were primarily a result of the following two factors.

(1) More reinforcement was provided than required by the design

method. Beam reinforcement was proportioned so that a simple

pattern of bars of the same size would result. Additionally,

a minimum of four bars per section was provided for confinement

of concrete.

(2) Beam flexural strengths were higher than calculated for design

because of neglected tensile resistance of reinforcement near

the extreme compression fiber. Strengths measured during

cyclic-load tests correlated with values calculated assuming

both layers of reinforcement to yield in tension. Light rein

forcing ratios and a probable loss of bond of longitudinal

beam reinforcement across column widths would support this

implication.
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Ratios of provided strengths, as measured d~ring static tests,

and design moments for beams are listed below.

Level Structures with Structures with
Heavily Reinforced Walls Lightly Reinforced Walls

10 1.8 2.3

9 1.6 1.8

8 1.6 1.2

7 1.6 2.0

6 1.6 1.7

5 1.7 1.6

4 2.0 1.6

3 2.4 1.9

2 3.4 1.5

1 5.9 3.4

It should be noted that other behavior characteristi~s may have

influenced reductions in beam stiffness. Uniform damage of beams at

every level, as assumed for design, could not have occurred unless dis-

placements of all stories were equal. More intense earthquake simulations

than predicted for design may have utilized portions of underestimated

strengths. Quantitative estimates of stiffness reductions resulting from

increases in ~trength and other characteristics would require an analytical

investigation beyond the scope of this experimental study. However, beam

stiffnesses of approximately twice those assumed for design appear credible

considering the higher strengths provided.
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(b) Comparison of Measurements with Design Requirements

Design estimates of shears and moments resisted by the entire

structure and the wall are compared with measured values in Fig. 7.10

and 7.11. Because response of individual beams and columns was not

. measured, accuracy of the design method for calculating frame response

must be inferred from correlations of measured and estimated responses

for both the entire structure and the wall.

As mentioned in Sec. 3.2 (d) design values were estimated by the

square root of the sum of the squares (RSS) of the first three modal

components, multiplied by the following ratio of base shears.

Vrss + Vabs
2 Vrss

where Vabs = sum of absolute values of first- and second-

mode base shear

Vrss = RSS of first three modes of base shear

. Investigation of methods to combine modal components is not the object of

this study, however comparisons of calculated with measured values may

vary depending on the method of combination. For example, three commonly

used methods resulted in a wide range of calculated-to-measured ratios of

wall base shear as noted below.



96

Sum of RSS of
Absolute Values of First, Second and

Test Structure First and Second. Modes Third Modes ~SS)

FWl 1.6 1.2 1.4

FW2 1.7 1.3 1.5

FW3 1.6 1.3 1.4

FW4 1.1 0.9 1.0

Quantitative comparisons of calculated and measured response including

high-frequency components should be made with attention to these deviations.

Measured shear and moment diagrams for the entire structure corre

lated closely with design values (Fig. 7.10). Similarities of measured

and calculated values would be expected if measured and calculated shapes

were similar. As discussed in Sec. 6.3 (b), shears and moments for a

mode may be expressed in terms of an effective weight and an effective

height, each a function of the mode shape. Factors determined from f-irst

mode shapes calculated for design are compared in Table 7.10 with factors

determined from measured shapes.

Differences between calculated and measured first-story shears

were larger than differences for base moments as suggested by similar

trends between effective weights and products of effective weights and

heights. Shear and momerit response of the combined frame-wall system

was insensitive to variations in stiffness assumptions because mode

shapes were relatively insensitive to stiffness considerations.

Measured shears and moments for the wall were generally small er

than design estimates (Fig. 7.ll). Shears at upper stories revealed
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inconsistent trends with calculated values suggesting sensitive force

distributions on wall. At lower stories, measured values appear to have

been smaller than estimated which was primarily a result of adjusting

design values for this comparison by measured base-motion intensities.

Design moments presented in Fig. 7.11 may exceed flexural strengths

because the design moments actually used were based on a lower intensity

base motion. Because differences between measured and estimated response

of the combined frame-wall system (Fig. 7.10) were small, apparent

differences in wall response would suggest actual differences in frame

response.

An understanding of the implications of inaccurate stiffness

assumptions on wall response (Fig. 7.6) will qualify trends between

measured and estimated response. Referring to Fig. 7.6b, beam damage

ratios of three rather than six as assumed for design would reduce"wall

base moments by as much as twenty percent. Flexibilities at base of

wall not considered for design would also reduce wall base moments.

However, referring to Fig. 7.6a, flexibility at base of wall would

reduce wall base shears substantially with nearly no effect from in

accurate beam stiffnesses.

In summary, inappropriate stiffness assumptions for design resulted

in only slightly different distributions of forces between wall and frames

than calculated for design. Stiffer beams than assumed attracted more of

the total shear and moment to the frames which was resisted by higher beam

strengths than assumed. More intense base motions than assumed for design,

however, utilized full flexural capacities of wall which resulted in an

economical design despite inaccurate stiffness assumptions.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

The object of this experimental study was to investigate behavior of

reinforced concrete frame-wall structures subjected to strong earthquake

motions. Each small-scale structure (total height of 2.29 meters) consisted

of two three-bay frames and one wall resisting lateral loads in parallel

(Fig. 2.1 and 2.2). Measurements at each of ten levels included accelera

tions, displacements and forces resisted by the wall. Experimental parameters

of the four-structure series were the simulated earthquake motion (El Centro,

NS component or Taft. N21E component). and the strength of structure.

Strength of members was established according to a design method

that recognized energy dissipation capabilities of reinforced concrete

structures in the nonlinear range of response. A linear analytical model

with arbitrarily softened members was used with spectral-response curves

representing scaled base motions to obtain estimates of maximum response.

Beam stiffnesses. calculated using conventional methods for cracked sections,

were divided by six to save reinforcement and localize nonlinear behavior

of frames at ends of beams. Two conceptions of response at base of wall

resulted in structure types with radically different wall reinforcement.

Walls intended to respond nonlinearly were reinforced with one-fourth as

much reinforcement as walls intended to respond linearly. Reinforcing

requirements were obtained by assuming cracked-section stiffness for the
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"linear" walls and one-third of cracked-section stiffness for the "non linear"

walls. Frame reinforcement was approximately the same for both structure

types.

Each structure was subjected to three earthquake simulations of

progressively increasing intensity. Spectral-response curves computed

from measured base motions of initial simulations were similar for each day

of testing, but revealed slightly more intense motions than considered for

design of the structures. Intensities of subsequent test runs were

approximately 2.0 and 2.5 times intensities of initial simulations.

Complementary dynamic testing included excitation of the structures at low

amplitudes in free and steady-state vibration.

To support the investigation of response to earthquake motions,

replicas of portions of the frame and wall were subjected to slowly applied

cyclic loads. Measured load-deflection relationships were used to sub

stantiate modeling of hysteretic response of reinforced concrete structures,

and to interpret internal response of test structures subjected to earth

quake mottons.

In addition to providing data for testing a numerical model of the

structures [5J , observed response of the test structures suggested

tendencies from which the following conclusions were made.

(1) Structures behaved in the nonlinear range. Response of the combined

frame-wall system over the duration of an earthquake simulation revealed:

(a) a decrease in apparent natural frequencies

(b) an increase in energy dissipation
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(c) permanent displacements

(d) residual forces· resisted by wall

(e) a softened relationship between base moment and displacement

Nonlinear behavior occurred at regions selected in the design process as

indicated by

(a) cracks at ends of beams and base of wall

(b) measured hysteresis relationships of frame and wall specimens

(c) amplitudes of moment measured ~t base of wall

(d) pattern of residual forces resisted by wall

(2) Arbitrary softening of wall in the design process resulted in a more

economical structure with no loss of serviceability. Decreased frequencies

and increased energy dissipation capabilities of structures with a softened

wall resulted in smaller lateral loads which compensated for the increased

flexibility of structure. Measured displacements of structures with lightly

and heavily reinforced walls were nearly equal.

(3) Strength of the test structures could be calculated conservatively using

conventional procedures of limit design with static strengths of members.

(4) Displaced shapes measured at variable amplitudes of motion were nearly

equal which suggested that response at any level of the nonlinearly behaving

structures could be represented with a single~degree-of-freedom system.

(5) Response of the combined frame-wall system contained characteristics

indicative of structures behaving linearly.

(a) Frequency contents of measured response revealed dominant

components at particular frequencies.
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(b) Measurements of acceleration at eighth level did not contain

apparent second...mode frequencies suggesting an invariable

second...mode shape for all amplitudes of motion.

(c) Response maxima could be estimated reliably using a linear

oscillator to represent the structure.

(6) Apparent natural frequencies and mode shapes for first and second modes

coincided with those of a linear analytical model with member stiffnesses

equal to average slopes of measured hysteresis loops.

The major implication of conclusions (4), (5) and (6) is that a

linear modal analysis using softened member stiffnesses was acceptable

for calculating response maxima of the combined frame-wall system.

(7) Force resisted by individual frames or wall could not be calculated

reliably using a linear model because of the following reasons.

(a) Force residuals which were a result of variable extents of

nonlinear behavior of frames and wall could not be calculated

with a linear analysis.

(b) Maximum force response did not necessarily occur at same time

as maximum displacement because internal forces between frames

and wall were sensitive to relative softening of beams and wall

at base.

(c) Unlike displacement or acceleration response, force response was

sensitive to participation of second-mode components which were

highly dependent on the natural frequency of the oscillator and

characteristics of the base motion.
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(8) Effects of frame-wall interaction along the vertical axis was indicated. . .
by high-frequency accelerations measured in the vertical direction. Increases

in amplitude of accelerations with base-motion intensity suggested a transfer

of axial load between wall and frames as a result of a suppressed tendency

for the wall to lift at base.

(9) The redundant system of frames and wall behaved in accordance with

the strengths provided. Individual strengths and stiffnesses were different

from those assumed for design, yet response of the combined frame-wall system

was estimated reliably for each structure. Forces resisted by individual

frames or wall were not estimated correctly for reasons mentioned in

conclusions (7) and (8). However measured moments at base of wall had

to be limited by strengths provided.

(10) The design method was successful for each of the four test structures:

displacements were within acceptable ranges for serviceability and no

cracking or crushing of concrete requiring repair was observed for base

motions corresponding to the design level.
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Table 3.1 Stiffnesses Used for Design

Moments of Inertia, x 10~;4

Levell Structure with Structure with
Story __~ He_avily~ReiJ1forced 1'JAll Lightly Reinforced Wall

Beams* Ext. Col. Int. Col. Wall Beams Ext. Col. Int. Col. Wall

10 0.80 10.6 14.7 1660 0.80 10.6 10.6
9 1.08 10.6 14.7 1660 0.80 10.6 10.6
8 1.08 10.6 10.6 1660 0.80 10.6 10.6
7 1.08 10.6 10.6 1660 1.08 10.6 10.6
6 1.08 10.6 10.6 2400 1.08 10.6 10.6
5 1.08 10.6 10.6 2400 1.08 10.6 10.6
4 0.80 10.6 10.6 2470 1.08 10.6 10.6
3 0.80 10.6 10.6 2470 1.08 '14.7 10.6
2 0.80 10.6 10.6 2470 0.80 14.7 10.6
1 0.80 10.6 10.6 2470 0.80 14.7 10.6

*Frame Values for Single Frame

Modulus of Elasticity = 25 MP a

553

553

553
553
553
553

553

553

553

553

......
o
en



Table 3.2 Calculated Mode Shapes and Frequencies for Design

Structure with Heavily Reinforced Wall Structure with Lightly Reinforced Wall
First Mode Second Mode Third Mode First Mode Second Mode Third Mode

Frequency, Hz. 2.40 9.35 22.7 1.86 6.80 15.8

Mode Shape
Level

10 1.00 1.00 -1.00 1.00 1. 00 -1.00
9 0.88 0.45 0.10 0.91 0.51 0.00

8 0.76 -0.08 .0.87 0.80 0.03 0.76

7 0.63 -0.52 0.98 0.69 -0.39 0.98
.......
0
""-J

6 0.50 -0.80 0.44 0.58 -D.67 0.62

5 0.36 -0.88 -0.39 0.45 -0.84 -0.11
4 0.24 -0.77 -0.97 0.33 -0.81 -0.81
3 0.14 -0.54 -1.05 0.21 -0.64 -1.09
2 0.07 -0.29 -0.73 0.11 -0.37 -0.86
1 0.02 -0.09 -0.27 0.03 . -0. 12 -0.33



Table 3.3 Smeared Damping Values

Structure with Heavily Reinforced Wall Structure with Lightly Reinforced Wall

Beams Columns Wall Beams Columns Wall

Damage Ratio 6 1 1 6 1 3

Damping
Factor 0.14 0.02 0.02 O. 14 0.02 0.10 .

Strai n Energy
Parti ci pat ion ---'

0
Factor 00

Mode 1 0.55 0.05 0.40 0.70 0.11 0.:19
Mode 2 0.31 0.07 0.62 0.45 O. 14 0.41
Mode 3 0.14 0.09 0.77 0.22 0.19 0.59

Smeared Damping
Factor, Ss

Mode 1
Mode 2
Mode 3

0.085
0.057
0.036

0.12
0.11
0.096



Table 3.4 Column Net Axial Tensions for Design, kN*

Story Structure with Heavily Reinforced Wall Structure with Lightly Reinforced Wall

Exterior Interior Exteri or Interi or
Columns Columns Columns Columns

10 -0.1 -0.5 -0.1 -0.6

9 O. 1 -1.1 -0.2 -1. -1

8 0.3 -1.6 -0.3 -1.7

7 0.4 -2.2 -0.2 -2.2

6 0.6 -2.7 0.0 -2.8 .....
0
1.0

5 0.7 -3.3 0.1 -3.3

4 0.5 -3.9 0.2 -3.9

3 0.3 -4.4 0.3 -4.4

2 -0.1 -4.9 0.2 -5.0

1 -0.5 -5.5 -0.1 -5.6

v + V
*RSS (ABS RSS)_ Dead Load

2VRSS



Table 5. 1 Key to Figures and Tables Presenting Observed Response

Structures Subjected to Structures Subjected to
Figure or Table El Centro Simulations Taft Simulations

(FW1, FW2) (FW3, FW4)

Run 1 Run 2 Run 1 Run 2

Response Histories
Base Motions 5.3 5.8 5.15 5.20
Measured Response 5.4 5.9 5.16 5.21
Shear and Moment Response 5.5 5.10 5.17 5.22

Distribution of Response
Along Structure Height 5.6 5.11 5.18 5.23 ............

0

Crack Patterns Following
Test Run 5.7 5.12 5.19 5.24

Table of Measured Response at
Time of Maximum Displacement
Structure with Heavi ly

Reinforced Wall 5.3a 5.3c 5.3e 5.3g
Structure with Lightly

Reinforced Wall 5.3b 5.3d 5.3f 5.3h



Table 5.2 Measured Widths of Cracks at Beam Ends,* mm

Test Structure

Level FWl FW2 FW3 FW4
Run 1** Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

10 0.06 0.08 0.11 . 0.05 0.09 0.11 0.08 0.12 0.17 0.06 0.13 0.20

9 0.06 0.08 O. 11 0.05 0.09 0.13 0.08 0.11 0.17 0.05 O~ 15 0.20

8 0.06 0.10 0.11 0.06 0.10 0.14 0.10 0.14 0.24 0.07 0.15 0.20

7 0.06 O. 10 o. 11 0.06 0.10 0.13 0.08 o. 11 0.18 0.06 0.16 0.21

6 0.06 0.10 0.11 0.08 0.10 0.15 0.06 0.12 0.19 0.07 0.15 0.22 ...............
5 0.06 0.09 0.11 0.07 0.10 0.12 0.07 0.10 0.18 0.08 0.21 0.23

4 0.07 0.11 0.13 0.07 0.11 0.14 0.07 0.11 0.20 0.07 0.18 0.20

3 0.07 0.10 0.11 0.06 0.10 0.14 0.06 0.11 0.20 0.06 0.12 0.17

2 0.06 0.08 0.11 0.06 0.10 0.13 0.06 0.13 0.20 0.06 0.14 0.18

1 0.06 0.08 o. 10 0.06 0.10 0.13 0.06 0.10 0.20 0.06 0.14 O. 17

* Mean of crack widths at ends of all beams per level

** Measured following test run



Table 5.3 Measured Response at Time of Maximum Displacement
(a)

Response at 1.96 Seconds
Test Structure FW1

Test Run 1

Level Displacement Acceleration Force on Wall Shear Moment
(mm. ) (g. ) (kN. ) (kN. ) (kN.-m.)

Total Wall Total Wall

10 28.2 -0.62 -2.62 2.8 -2.6 0.7 -0.6

9 26.5 -0.62 1.30 5.6 -1.3 2.0 -0.9

8 23.8 -0.64 2.91 8.6 1.6 4.0 -0.5 -.I
-.I

N

7 20.5 -0.71 2.12 11.8 3.7 6.7 . 0.3

6 17.0 -0.69 1.85 14.9 5.6 10.2 1.6

5 13.5 -0.58 3.05 17.6 8.6 14.4 3.5

4 9.5 -0.45 2.72 19.6 11.3 18.9 6.1

3 7. 1 -0.29 1. 75 20.9 13.1 23.8 9.1

2 4. 1 -0.10 2.87 21.4 15.9 28.8 12.8

1 2.0 0.07 -1.27 21.0 14.7 33.7 16.2



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(b)

Response at 1.98 Seconds
Test Structure FW2

Test Run 1

Level Displacement Acceleration Force on Wall Shear Moment
(mm.) . (g. ) (kN.) (kN. ) (kN.-m.)

Total Wall Total W-a 11

10 27.7 -0.66 -3.93 3.0 -3.9 0.7 -0.9

9 25.0 -0.65 -0.57 5.9 -4.5 2.1 -1.9

8 22.9 -0.61 2.44 8..7 -2. 1 4.1 -2.4 ............
7 20.2 -0.57 0.24 11.3 -1.8 6.8 -2.8 w

6 16.9 -0.43 1.20 13.3 -0.6 9.9 -3.0

5 13.9 -0.28 1. 75 14.6 1.1 13.3 -2.7

4 10.4 -0.21 1.62 15.5 2.8 16.9 -2.-1

3 8. 1 -0.15 0.39 16.2 3.2 20.7 -1.3

2 4.9 -0.10 0.96 16.6 4. 1 24.7 -0.4

1 2.2 0.01 5.49 16.6 9.6 28.6 1.8

(



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(c)

Response at 1.42 Seconds
Test Structure FWl

Test Run 2

Level Displacement Acceleration Force on Wall Shear Moment
(mm. ) (g. ) (kN. ) (kN. ) (kN. -m.)

Total Wall Total Wall

10 -38.4 1.06 2.93 -4.8 2.9 -1. 1 0.7

9 -40.1 0.98 -0.09 -9.3 2.8 -3.3 1.3

8 -32.9 0.81 -2.11 -13.0 0.7 -6.3 1.5 --'
--'

1.2 +>-
, 7 -30.2 0.62 -1.93 -15.8 -1.2 -10 .. 0

6 -25.4 0.42 -4.35 -17.7 -5.5 -14.2 -0.1

5 -19.6 0.32 -0.92 -19.1 -6.5 -18.7 -1.5

4 -15. 1 0.32 -0.66 -20.6 -7.1 -23.5 -3.2

3 -10.8 0.35 -3.90 -22.2 -11.0 -28.8 -5.7

2 -6.6 0.42 -0.76 -24.1 -11.8 -34.4 -8.4

1 -3.3 0.47 -1.67 -26.3 -13.5 -40.6 -11.5



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(d)

Response at 2.46 Seconds
Test Structure FW2

Test Run 2



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(e)

Response at 5.96 Seconds
Test Structure FW4

Test Run 1

Level Displacement
(mm. )

Acceleration
(g. )

Force on Wall
(kN.)

Shear
(kN. )

Total Wall

Moment
(kN. -m. )

Total Wall



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(f)

Response at 2.09 Seconds
Test Structure FW3

Test Run 1

Level Displacement
(mm. )

Acceleration
(g. )

Force on Wa 11
(kN. )

Shear
(kN. )

Total Wa 11

Moment
(kN.-m. )

T6ta~~'~1VaTl

10 16.9 -0.53 -3.37 2.4 -3.4 0.6 -0.8

9 16. 1 -0.52 0.00 4.8 -3.4 1.7 -1.5

8 14. 1 -0.48 2.96 6.9 -0.4 3.3 -1.6
.......

7 12.4 -0.42 1.29 8.9 0.9 5.3 -1.4 .......
-....J

6 10.4 -0.34 0.76 10.4 1.6 7.8 -1.1

5 8.5 -0.26 -0.03 11.5 1.6 10.5 -0.7

4 6.6 -0.20 1.05 12.4 2.7 13.4 -0.1

3 4.7 -0.14 1.23 13.1 3.9 16.4 0.8

2 3.0 -0.08 1.10 13.5 5.0 19.6 2.0

1 1.4 -0.00 2.29 13.5 7.3 22.7 3.6



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(g)

Response at 4.28 Seconds
Test Structure FW4

Test Run 2

Level Displacement Acceleration Force on Wall Shear Moment
(mm. ) (g. ) (kN. ) (kN.) (kN. -m.)

Total Wall Total Wa-ll

10 45.5 -1.63 -4.91 7.4 -4.9 1.7 -1.1

9 40.7 -1.33 -1.59 13.4 -6.5 4.8 -2.6

8 36.1 -0.95 9.91 17.7 3.4 9.0 -1.8

7 30.0
.......

-0.56 5.31 20.3 8.7 13.7 0.2 .......
00

6 23.6 -0.15 5.46 21.0 14.2 18.7· 3.4

5 17.7 0.19 -0.06 20.1 14.1 23.4 6.6

4 13.0 0.41 -1.99 18.3 12. 1 27.7 9.4

3 8.2 0.65 -0.51 15.3 11.6 31.4 12. 1

2 4.7 0.90 -3.20 11.2 8.4 34.1 14.0

1 1.9 1.10 0.19 6. 1 8.6 35.5 16.0



Table 5.3 (contd.) Measured Response at Time of Maximum Displacement
(h)

Response at 2.15 Seconds
Test Structure FW3

Test Run 2

Level Displacement
(mm. )

Acceleration
(g. )

Force on Wall
(kN. )

Shear
(kN. )

Total Wall

Moment
(kN.-m)

Total Wall

10 48.0 -0.73 -4.11 3.3 -4. 1 0.8 -0.9

9 45.8 -0.66 0.00 6.3 -4.1 2.3 -1.9

8 40.5 -0.61 3.19 9.1 -0.9 4.4 -2.1
-'

37.2 -0.52 2.42 11.4 1.5 7.1 -1.8
-'

7 \D

6 30.8 -0.48 2.84 13.6 4.3 10.4 -0.8

5 25.8 -0.43 2.38 15.6 6.7 14.1 0.8

4 20.6 -0.40 2.63 17.4 9.3 18.2 2.9

3 15.0 -0.30 1.48 18.7 10.8 22.7 5.4

2 9.3 -0.16 -0.39 ·19.5 10.4 27.4 7.8

1 4.6 0.05 6.55 19.2 17.0 32.0 11.7
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Table 6.1 Spectrum Intensities, rom

Damping Factor ~ ,0.10

Test StructureTest
Run

1

2

3

FW1

232

429

505

FW2

229

404

398

FW3

219

484

520

FW4

246

514

561



Table 6.2 First-Mode Shapes Measured Ourinq Earthquake Simulations

Maximum Test Structure FWl Test Structure FW2
Tenth-Level Run 1 Run 2 Run 3 Run 1 Run 2 Run 3Di sp1acement,
mm 7 17 28 38 69 10 22 28 43 62

Level
10 1.00 1.00 1.00 1.00 1.00 1.00 1. 00 1.00 1.00 1.00
9 0.97 0.95 0.95 0.93 0.92 0.93 0.91 0.91 0.90 0.88
8 0.85 0.84 0.83 0.79 0.77- 0.83 0.83 0.83 0.77 0.77
7 0.76 0.73 0.72 0.71 0.69 0.75 0.73 0.73 0.70 0.72
6 0.63 0.60 0.59 0.57 0.57 0.63 0.61 0.61 0.62 0.58
5 0.52 0.48 0.47 0.45 0.45 0.52 0.50 0.50 0.51 0.51 ......

4 0.37 0.35 0.34 0.31 0.32 0.40 0.38
N

0.38 0.38 0.38 ......

3 0.27 0.25 0.25 0.23 0.22 0.31 0.29 0.29 0.30 0.30
2 0.16 O. 15 0.15 0.14 0.13 0.19 0.18 O. 18 0.20 0.17
1 0.08 0.07 0.07 0.07 0.05 0.09 0.08 0.08 0.08 0.09

cl 1. 35 1. 37 1. 38 1. 41 1.42 1.38 1.40 1.40 1.43 1.44

'Yl 0.757 0.743 0.741 0.733 0.727 0.780 0.771 0.771 0.781 0.778
Hl ,meter 1.63 1. 64 1. 65 1.66 1.66 1. 61 1. 62 1. 62 1.61 1. 61



Table 6.2 (contd.) First-Mode Shapes Measured During Earthquake Simulations

Tenth Test Structure FW3 Test Structure FW4
Level Run 1 Run 2 Run 3 Run 1 Run 2 Run 3Displace-

ment, mm. 4 14 17 48 59 11 17 18 46 66
--
Level

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

9 0.95 0.94 0.93 0.94 0.92 0.92 0.91 0.91 0.91 0.92

8 0.82 0.81 0.80 0.83 0.83 0.80 0.80 0.80 0.81 0.82

7 0.72 0.70 0.69 0.75 0.74 0.68 0.68 0.67 0.69 0.71
6 0.60 0.58 0.57 0.62 0.59 0.56 0.56 0.56 0.55 0.57 --'

N

5 0.49 0.46 0.45 0.52 0.50 0.45 0.43 0.43 0.43 0.47 N

4 0.37 0.35 0.34 0.42 0.41 0.33 0.32 0.32 0.32 0.36
3 0.26 0.25 0.23 0.29 0.29 0.22 0.22 0.22 0.21 0.26
2 0.17 o. 15 0.14 O. 19 0.19 0.13 0.13 0.13 0.13 O. 18
1 0.08 0.06 0.06 0.09 0.10 0.06 0.05 0.05 0.06 0.08

c1 1.39 1.40 1.41 1. 38 1.40 1. 41 1.42 1.43 1.41 1.41

'Yl 0.759 0.742 0.735 0.771 0.780 0.726 0.724 . 0.728 0.721 0.757
H1,meter 1.63 1.65 1.66 1. 61 1.61 .1.66 1.67 1.67 1.67 1. 63



Table 6.3 First-Mode Shapes Measured During Steady-State Tests

Level Test Structure FW3 Test Structure FW4

Run 1* Run 2 Run 3 Run 1 Run 2 Run 3

10 1.00 1.00 1.00 1.00 1.00 1.00

9 0.93 0.92 0.91 0.88 0.88 0.89

8 0.81 0.80 0.78 0.78 0.79 0.79

7 0.71 0.73 0.70 0.67 0.67 0.65

6 0.57 0.58 0.58 0.55' 0.53 0.53 N
w

5 0.45 0.43 0.45 0.43 0.41 0.42

4 0.34 0.36 0.36 0.32 0.31 0.32

3 0.24 0.25 0.23 0.22 0.21 0.24

2 0.13 0.15 0.15 0.12 0.13 0.15

1 0.06 0.08 0.07 0.05 0.06 0.07

c1 1.40 1.41 1.42 1.44 1.44 1.45

Yl 0.733 0.747 0.744 0.723 0.720 0.735

H1, meter 1.66 1.64 1.64 1.67 1.67 1.65

* Following Run 1



Table 6.4 Damping Factors Calculated from Free-Vibration Response

Test Free-Vibration Test
Structure Before Run 1 Before Run 2 Before Run 3 Following Run 3

FWl
an 0.0120 0.0200 0.0200 0.0140

an+m 0.0060 0.0038 0.0036 0.0035
m 5 5 5 4
s* 0.022 0.053 0.055 0.055

FW2
an 0.0070 0.0160 0.0160

an+m ' 0.0025 0.0045 0.0037 N-- .j::.

m 11 3 3

S 0.015 0.067 0..078

FW3
an 0.0070 0.0170 0.0207 0.0195

an+m 0.0035 0.0037 0.0040 0.0046
m 10 4 4 3
S 0.011 0.061 0.065 0.077

R44
an 0.0070 0.0160 0.0180 0.0170

an+m 0.0040 0.0052 0.0045 0.0032
m 14 3 3 3
S 0.0060 0.060 0.074 0.089

0 an*s = --'!! ; o = In( -) an = Acceleration at n cycles (g's)2'lTm m an+m an+m = Acceleration at mtn cycles
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Table 6.5 Damping Factors Calculated from Steady-State Response

Steady-State
Test

Test Structure·
FW3

Resonance* Half-Power* Resonance

FW4

Half-Power

Fo11 owi ng Run 1 0.089 0.090' 0.070 0.078

Following Run 2 0.110 0.082 0.093 0.103

Following Run 3 0.110 0.097 0.094 0.112

High Amplitude
Fo11 owi ng Run 3 0.120 0.140 0.081 0.079

* See Sec. 6;3 for explanation of calculation methods.



Table 6.6 Influence of Lateral Loads on Wall Forces

(a) Structure with Heavily Reinforced Wall

Force Acting Level of Unit Lateral Load Applied to Structure
on Wall
at Level 10 9 8 7 6 5 4 3 2 1

10 -0.311 -0.985 -0.740 -0.544 -0.382 -0.255 -0.160 -0.091 -0.044 -0.014

9 0.384 1.225 0.180 0.135 0.095 0.063 0.040 0.023 0.011 0.004

8 0.133 0.078 1.001 0.011 0.008 0.005 0.003 0.002 0.001 0.000

7 0.055 0.033 0.007 0.960 0.008 0.002 0.002 0.001 0.001 0.000 --'
N

6 0.031 -0.008
en

0.009 -0.015 -0.044 0.906 -0.046 -0.027 -0.016 -0.002

5 0.086 0.062 0.036 0.008 -0.029 0.910 -0.038 -0.020 -0.010 -0.003

4 0.061 0.049 0.035 0.020 0.001 -0.028 0.911 -0.036 -0.016 -0.006

3 0.024 0.018 0.011 0.003 -0.007 -0.017 -0.036 0.912 -0.029 -0.007

2 0.036 0.030 0.023 0.016 0.007 -0.005 -0.019 -0.042 0.907 -0.028

1 0.347 0.332 0.317 0.298 0.277 0.250 0.214 0.168 0.104 0.999



Table 6.6 Influence of Lateral Loads on Wall Forces

(b) Structure with Lightly Reinforced Wall

Force Acting Level of Unit Lateral Load Applied to Structure

on Wall
at Level 10 9 8 7 6 5 4 3 2 1

10 -0.297 -0.965 -0.703 -0.489 -0.334 -0.222 -0.141 -0.083 -0.043 -0.016

9 0.657 1.463 0.378 0.262 0.179 0.119 0.076 0.045 0.023 0.009

8 -0.210 -0.204 0.769 - 0.122 -0.085 -0.056 -0.036 -0.021 -0.011 -0.004

7 -0.069 -0.110 -0.151 0.774 -0.116 ':'0.077 -0.049 -0.029 -0.015 -0.006 ~

N
"'-J

6 0.034 0.008 -0.021 -0.062 0.834 -0.075 -0.049 -0.029 -0.015 -0.006

5 0.096 0.071 0.045 0.016 -0.019 0.875 -0.041 -0.026 -0.013 -0.005

4 0.012 -0.001 -0.014 -0.030 -0.051 -0.077 0.832 -0.065 -0.036 -0.013

3 0.048 0.039 0.029 0.018 0.004 -0.015 -0.039 0.868 -0.029 -0.012

2 0.167 0.154 0.140 0.124 0.104 0.077 0.040 -0.006 0.877 -0.022

1 0.189 0.183 0.175 0.167 0.156 0.142 0.123 0.096 0.058 0.929
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Table 7.1 Measured Shear and Moment Maxima

Test Run 1 Run 2 Run 3
Structure V(kN} M( kN-m} V M V M

FWl 21 34 28 41 42 41

F\~2 18 28 25 32 25 31

FW3 16 23 26 33 20 33

FW4 21 34 31 41 35 43

Table 7.2 Relative Interstory Displacements for Initial Simulations

Level

10

9

8

7

6

5

4

3

2

1

Structures wi th
Heavily Reinforced Walls

0.5
0.7
0.8
0.9

1.0

1.0

0.9

0.7
0.7
0.5

Structures with
Lightly Reinforced Walls

0.8
0.8
1'.0

1.0

1.0

1.0

1.1

0.9

0.8
0.7



Table 7.3 Column and Wall Stiffnesses of Linear Model

Moments of Inertia, x 104 mm4

Story Structure with Heavily Reinforced Wall Structure with Lightly Reinforced Wall
Exteri or Interior Wall Exterior Interi or Wall

Column* Column Column Column

10 10.6 14.7 3790 10.6 10.6 3790
9 10.6 14.7 3790 10.6 10.6 3790
8 10.6 10.6 3790 10.6 10.6 1660
7 10.6 10.6 3790 10.6 10.6 1660
6 10.6 10.6 2400 10.6 10.6 1660
5 10.6 10.6 2400 10.6 10.6 1660 .....

'"4 10.6 10.6 2470 10.6 10.6 1660
~

3 10.6 10.6 2470 14.7 10.6 1660
2 10.6 10.6 2470 14.7 10.6 1660
1 10.6 10.6 2470 14.7 10.6 1660

Fl exi bi 1ity of
Spri ng at Base
(xl0-5 radian/

kN-mm) 1.4 1.4 Variable 1.4 1.0 Variable
-

*For single frame



Table 7.4 Calculated Frequencies and Mode Shapes



Table 7.5 Rotation at Base of Wall Calculated from Measured Forces and Displacements



Table 7.6 Influence of Permanent Rotations on Residual Wall Forces

(a) Structure with Heavily Reinforced Wall

Force Acting Permanent Level of Beams with Permanent End Rotationson Wall Rotation
at Level at Base of 10 9 8 7 6 5 4 3 2 1Wall

10 136 241 94 -105 -57 -40 -31 -21 -16 -12 -8

9 -34 329 58 259 -14 10 7 5 4 3 2

8 -3 49 233 -18 210 -24 1 1 0 0 0

7 2 3 39 -200 -3 183 -27 4 0 0 o -I

W

6 23 6 10 37 -193 -2 179 -26 -2 -1 -1 N

5 31 7 10 8 38 -174 -1 157 -31 -2 -2

4 47 3 6 5 4 32 -175 1 178 -32 -2

3 95 2 3 3 2 2 31 -159 1 188 -36

2 124 2 3 3 3 3 2 18 -178 3 223

1 392 4 6 6 6 6 ·8 9 40 -176 -7



Table 7.6 Influence of Permanent Rotations on Residual Wall Forces

(b) Structure with Lightly Reinforced Wall

Force Acting Permanent Level of Beams with Permanent End Rotationson Wall Rotation
at Level at Base of 10 9 8 7 6 5 4 3 2 1Wall

10 58 214 54 -87 -40 -41 -26 -18 -15 -9 -6

9 -31 -326 75 197 -33 36 9 10 7 5 3

8 15 101 -216 -6 201 -69 -10 -9 -3 -3 -2

7 20 -20 72 -167 -3 201 -69 8 -10 -2 ..,2 ......
w
w

6 19 , 14 -9 55 -202 2 206 -61 12 -9 -1

5 20 3 11 -7 69 -203 3 192 -65 11 -6

4 36 3 3 7 -11 66 -206 2 208 -57 , 12

3 82 2 3 1 8 -12 67 -194 16 183 -68

2 -64 3 3 3 3 11 -8 68 -226 0 220

1 528 2 2 2 3 3 10 -9 75 -169 -39



Table 7.7 Comparison of Measured Wall Base Moment Maxima and Capacities, kN-m

Test
Structure

FWl

FW2

FW3

FW4

Capacity*

15.0

4.6

4.6

15.0

Run 1 Run 2 Run 3

16.2 13.8 11. 8
-9.0 -14.5 - -20.6

5. 1 5.2 8.6
- 6.9 - 7.9 - 4.2

(5.0)** (12.8) 9.9
(-5.2) (-7.3) - 6.0

......
w
~

14.0 22.3 21.0
-13.6 -17. 1 -16~0

*Capacity measured during cyclic load tests.
**Values in parenthesis based on zero force at level 9 where measurements were not obtained because

of a malfunction in the tape recorder.



Table 7.8 Normalized Wall Response Maxima

(Initial Test Run)
-----~--

Meas ured Normalized
~

Time Di splace- M* Yl Hl A ** Mbw Vbw Mt *** Vf ***
ment b 1 bw bw

(kN-m) (meter) ( g) (kN-m) (kN) (kN-m) (kN)

FWl 1. 96 28.2 29 0.74 1.6 0.54 12 11 22 20

FW2

FW3

FW4

1. 38

2.12

3.21

20.0

18.7

21. 7

21

20

27

0.77

0.74

0.73

1.6

1.7

1.7

0.37

0.35

0.48

5.~ 3

3.3

11. 2

5.6

7.4

12.3

14

9.4

23

15

21

26

w
CJ'l

*Refer to Sec. 7.5(c) for explanation of notation.

**At time of maximum wall response

***Mbw = Normalized moment at base of wall = Mbw/Al

Vb~ = Normalized shear at base of wall = Vbw/A,



Table 7.9 Measured and Calculated Stiffness Reductions

Test
Structure

Flexibility of Wall at Base
(x 10~7 radian/kN-mm)

Damage Ratio of Fifth-Level Beams

Measured Calculated Measured Calculated

FW1 3.8 (SW2)* . 4.3 3.4 (EJ2)* 4.5
2.4 (SW4) 3.0 (IJl)

.....
w

FW2 10.5 (SW3) 8.2 3.4 (EJ2) 3.8 O"l

3.0 (IJl)

-
FW3 7.0 (SW3) 4.2 2.9 (EJ5) 1.4

2.9 (IJ3)

FW4 1. 6 (SW2) 1.5 2.9 (EJ5) 4.0
1. 2 (SW4) 2.9 (IJ3)

*( ) Frame- or Wall-Specimen Designation



Table 7.10 Comparison of Shape Factors Determined from Design Calculations and Measurements

Structures wi th
Heavily Reinforced Walls

Design Measured

Structures wi th
Li ghtly Reinforced Walls

Design Measured

FWl FW4 FW2 FW3

Eff. Wei ght,

Yl W, 31.2 34.0 33.4 32.9 35.3 33.7
--'
w.......,

Eff. Height,
h, (meter) 1.71 1. 65 1.67 1.67 1.62 1.66

h Yl W(kN-m) 53.4 ~6. 1 55.8 54.9 ·57.2 55.9
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(a) Exterior-Joint Specimen

(b) Interior-Joint Specimen

Fig. 4.6 Observed Damage at Maximum Displacement
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(c) Heavily Reinforced Wall

(d) Lightly Reinforced Wall

Fig. 4.6 (contd.) Observed Damage at Maximum Displacement
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Fig. 5.9 (contd.) Measured Response to Second El Centro Simulations
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Shears of Structure with Heavily Reinforced Wall
Shear and Moment Response to Second El Centro Simulations
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Fig. 5.10 (contd.) Shear and Moment Response to Second El Centro Simulations
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(a) Structure with Heavily Reinforced Wall
Fig. 5.12 Observed Crack Patterns following Second El Centro Simulations
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(b) Structure with Lightly Reinforced Wall
Fig. 5.12 (contd.) Observed Crack Patterns following Second El Centro Simulations
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(a) Structure with Heavily Reinforced Wall
Fig. 5.14 Observed Crack Patterns before Initial Taft Simulations
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(Not To Scale)

(b) Structure with Lightly Reinforced Wall
Fig. 5.14 (contd.) Observed Crack Patterns before Initial Taft Simulations
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Fig. 5.17 Shear and Moment Response to Initial Taft Simulations
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Fig. 5.19 (contd.) Observed Crack Patterns following Initial Taft Simulations
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APPENDIX

DESCRIPTION OF EXPERIMENTAL WORK

A.l Test Apparatus

(a) Earthquake Simulator

The test structures were subjected to earthquake motions generated

by the University of Illinois Earthquake Simulator. Each test structure

was secured to the simulator platform (Fig. A.l) which was activated by

a hydraulic servoram (330 kN capacity) operated in displacement control

from input signals recorded on magnetic tape. The frequency range of

the simulator response was rated between zero and 100 Hz. Maximum·

single-amplitude displacement of the platform was limited to 65 mm.

Further details of performance of the simulator are pres~nted by Otani [20].

A steel reference frame was secured to the simulator platform so

that displacements relative to the base could be measured. Natural fre

quencies of the frame were measured at 50 Hz.

(b) Free-Vibration Test Set-up

The test structures were excited in small-amplitude free vibration by

hanging a weight (45 kg) from a wire which was attached to the story weight

at the tenth level (Fig. A.2). The wire was cut to release the structure

in free vibration. Response was measured with a tenth-level accelerometer

with increased sensitivity.
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A.2 Description of Test Structures

A brief description of the test structures is presented in Sec. 2.1

where nominal dimensions of the structures are shown (Fig. 2.1). Detailed

descriptions of specimen dimensions, story weights, connections and anchorage

of structures at base are presented in this section.

(a) Measured Dimensions of Specimens

Cross-sectional dimensions of each member were measured with a dial

gage precise to 0.03 mm. Widths and qepths of beams and columns were

measured at ends of members and averaged .by story level (Table A.l). A

summary of measured dimensions showed that means of measured values were

essentially the same as nominal values. Dimensions of story heights and

bay widths were also measured and were within a 0.5 mm precision.

(b) Story Weights

Story weights were used to couple wall and frames and to provide

mass for attainment of inertial loads. Nominal dimensions of the story

weights are presented in Fig. A.3 (a). To increase weight and diaphram

stiffness, steel liner plates (51 mm) and No. 11 reinforcing bars were

provided. Embedded bent bars (No.4) were welded to the liner plates

to insure composite action of steel and concrete. Story weights were

cast from a single batch of concrete so that uniformity of weight at

all levels would result. The concrete mix included high-strength

cement and pea-gravel aggregate for high density. Measured weights (in

cluding the weight of all connections and lumped portions of the specimens)

are presented in Table A.2 in terms of mass units. Channel sections (MC3x9)

were welded to the underside of each weight for connection with frames. An
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opening at the center of each mass was provided for penetrations of the wall.

(c) Connections

Stiffnesses of connections used to transfer forces from the story

weights to the frames and wall were established so that natural frequencies

of the connecting system would be beyond the range of estimated third-mode

frequencies of the test structures. Connections were also designed to as

sure negligible resistances to rotatlon within the principal plane of the

frame and wall.

A series of channels (Fig. A.3 (b)) were used to transfer horizontal

and vertical reactions from the story weights to the centnoid of each

frame joint. The channels were attached to the frames with 7/16 inch

diameter bolts that were tightened snugly by hand. Oversized holes in the

channels permitted attachment of the.frames to the story weights with negligi

ble forces applied to specimen.

The wall was connected to the story weights with an qssembly of

steel members that transferred force to the center of the wall (Fig. A.3 (c)).

A ball bearing connection was provided so that rotation within the plane of

the wall could occur with insignificant lateral translation due to slippage.

The IIjacket ll of steel members secured to the wall was prestressed against

the walls of the opening of the story weight with one-inch diameter high

strength bolts. Compression in the bolts was approximately lOkN. Strain

gages were placed on necked-down regions of these bolts to indicate force

being resisted by the wall.

(d) Base Anchorage

Foundation portions of frames and wall were secured to the simulator
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platform with a series of angles (4 inch) and channels (12 inch) that

were stressed heavily during erection of the model structures (Fig. 2.2).

No slippage or uplift of the "foundation was observed during testing as

indicated by uncracked dabs of hydrocal placed at interfaces of members of

the base anchorage system.

A.3 Instrumentation

(a) Measurements

Response of the structures to simulated earthquake motions was.

monitored on forty-eight channels of four analog tape recorders. Measured

response consisted of accelerations, displacements and strain in the

bolts of the connecting system for the wall. A layout of instrumentation

is presented in Fig. A.4 (e). Accelerometers were placed on the frame

connections at each level (Fig. A.4 (c» of north and south frames.

Vertical accelerations were also measured at the tops of the north-east

and south-west columns. Accelerations in the minor direction were measured

at. the tenth level. Displacements were measured with LVDT's 'mounted on the

reference frame and attached to each story weight (Fig.A.4 (d». To

detect torsional motions an additional two LVDT's were placed at the tenth

level and attached to each frame. Strain gages were attached to bolts of

the wall connection which were termed "wall dynamometers" (Fig. A.4 (a».

A four-arm bridge of strain gages was used so that strains resulting

from flexure of the bolt would cancel. Dynamometers at each level were

wired so that an increase in compression of one bolt would add with a de

crease in compression of the other bolt.
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(b) Instrument Ratings

Accelerometers were of two types. Instruments used to measure second

through tenth level accelerations were Endevco Piezoresistive accelerometers.

All other accelerometers were Endevco Q-Flex·s. Manufacturer~ ratings are

listed below.

Piezoresistive Type Q-Flex Type
Parameter Accelerometers Accelerometers

Range ~ 25 g ~ 15 g

Lineari ty 1.0% 0.03%

Frequency Response (5%) 0-750 Hz 0-500 Hz

Natural Frequency 2500 Hz 1000 Hz

Damping 0.7 0.6

It should be noted that precisions of measured data were in most

cases limited by sensitivities of tape recorders and not by precisions of

instruments.

(c) Recording of Data

Accelerations of north frames, accelerations of south frames, dis-

placements and wall forces were each recorded on a separate fourteen track

tape recorder. One channel of each was used to record a common signal (the

simulator input signal) for synchronization. Another channel of each tape

recorder was used to store a signal which activated a digitizing process

for later reduction of data.

Full-scale settings of each channel were established from estimated

response maxima of the structures. Settings were increased between earth

quake test runs. Full-scale settings of channels recording wall forces were
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established conservatively high because of the anticipated accumulation

of residual forces resulting from nonlinear behavior of the structures.

Each channel was calibrated prior to the day of testing. A

physical unit was measured by a particular instrument and recorded on

tape. Accelerometers were pointed towards the floor to provide a standard

calibration of plus and minus 1.0 g. LVDT's were displaced a known amount

equal to the full-scale setting of the first test run. Wall dynamometers

were calibrated by applying a known force to the connection (Fig. A.4 (b))

before erection of the test structure. In addition to theie me~hanical

calibrations a common step voltage was recorded before each earthquake

simulation to serve as an index of the full-scale setting.

(d) Data Reduction

After the day of testing analog data was played back through a

Spiras-65 computer which digitized the records at a resolution of a

thousand points per second. Data was stored on magnetic tapes which

were copied using a Burrough's 6700 system so that the data could be

read by an IBM 360-75 system. Calibration factors and zero levels

were applied to the data which was then stored on a permanent IBM

magnetic tape. Measured response was plotted from this tape using

Calcomp subroutines, and further reduced to give shear and moment

response histories, Fourier-amplitude spectra, filtered records and

spectral-response curves.
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A.4 Fabrication and Erection of Models

(a) Reinforcing Cages

Longitudinal reinforcement (Fig. "A.5) was tied to rectangularly

shaped spirals which were fabricated from 1.8 meter lengths of No. 16

gage wire. The spirals were turned about a mandrel on a lathe and twisted

straight by hand. Reinforcement was soaked in solvent and wiped clean with

acetone to remove grease and dirt. Longitudinal reinforcement was pur

chased in 3 meter lengths to avoid spli~ing. Welding of reinforcing

wire was done only at connection points with anchorage plates. Helical

reinforcement (Fig. 3.12 (a)) which reinforced joints consisted of No. 16

gage wire.

(b) Casting and Curing

Two frames and one wall were cast from the same batch of concrete.

Specimens were cast in the horizontal position with steel forms (Fig. A.5 (a))

consisting of bars screwed to a flat cold-rolled plate. Concrete was placed

by hand, vibrated twice with a stud vibrator (placed against the upper face

of the cages), and hand troweled to a smooth finish. The entire casting

process lasted approximately three hours. Twelve test cylinders (100 x 150 mm)

and ten test prisms (50 x 50 x 200 mm) were also cast from the same batch to

measure material properties at the day of testing. Approximately eight hours

after casting, the steel bars were removed from the forms so that the

specimens could shrink without being restrained.

The specimens were cured under wet burlap for two weeks to prevent warping.

The forms were lifted toa vertical position at the end of this time (Fig. A.6 (a))
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and removed from the specimens. The specimens were left standing in the

temperature- and humidity-controlled laboratory for an additional two

weeks to allow for uniform drring on each face.

(c) Erection of Test Structures

Erection of the test structures followed a standard procedure that

was used for all four structures. The wall was placed first (Fig. A.6 (b))

on the simulator platform, aligned, and secured temporarily with bolts to

the steel plate of the platform. Story wei.ghts were then stacked about

the wall (Fig. A.6 (c)) using collapsible wooden blocks. As each story

weight was placed, the wall connection was secured to the wall and pre

stressed against the sides of the opening of the story weight. A tempo

rary construction cage was erected from steel angles and cables for

horizontal alignment of each story weight. After stacking all ten weights,

each frame was placed on the simulator platform and guided into position

(Fig. A.6 (d)). The base-anchorage system of steel angles and channels was

then installed and secured to the platform. Connection of the frames to

the story weights followed with the wooden erection blocks still in place.

The construction cage and blocks were removed immediately before testing.

A.5 Test Procedures

The entire series of testing lasted approximately eight hours. Before

starting the series, all bolts were checked for tightness and retightened

if necessary. Initial condition of each structure was recorded by marking

cracks with a felt tip pen. Cracks were identified using a fluorescent

liquid and a IIblack light. 1I
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Each test run, of which there were three, consisted of subjecting

each test structure to the following array of motions (as depicted in

Fig. 2.3).

(1) a low-amplitude free vibration using the set-up shown in

Fig. A.2

(2) an earthquake simulation of progressively increasing intensity

for each successive simulation

(3) another low-amplitude free vibration

(4) a low-amplitude steady-state base excitation which varied in

frequency over the range of first-mode frequencies of the structures

The first two test structures were subjected to the steady-state

motions after the third test run only. Crack patterns and widths were re

corded after each test,run.

In addition to recording measurements on analog tape, 16 mm and

video cameras recorded visual observations on motion-picture film and

tape.

A.6 Material Properties

(a) Concrete

Concrete of the model structures was actually a mortar consisting

of coarse Wabash River sand and fine lake sand as aggregate. Cement used

in the mix design was Type III - high early strength so that the specimens

could be lifted from the forms as soon as possible to prevent warping re

s'ulting from unequal shrinkage on formed and finished faces. Mix propor

tions by dry weight were 1.00:0.96:3.83 (cement:fine aggregate:coarse ag

gregate). The water-cement ratio was 0.80. The concrete was mixed in a

one-ton capacity Koehring Cyclo-Mixer.
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Several test cylinders and prisms were cast and cured with the

test specimens for measurement of material properties. Age at testing

(same day as dynamic testing), slump, compressive strength, secant

modulus, modulus of rupture, and tensile strength measurements are

presented in Table A.3. Stress-strain relationships for the concrete

(Fig. A.7 (c» were determined from compression tests of cylinders using

(1) a 1300 kN-capacity Riehle testing machine with a 0.D01-inch mechanical

dial gage, and (2) a 2600 kN-capacity MTS servohydraulic testing machine

with a 12 mm-gage length extensometer. Relationships were essentially

the same for control samples tested by either method.

(b) Reinforcement

Reinforcement for the model structures consisted of No. 13 gage (frames)

and No.2 gage (wall) annealed and processed, bright-basic wire. The wire

was purchased from Wire Sales Company, Chicago, in 3 meter lengths. Anneal

ing of the wire was done at the factory in coil form which resulted in

very uniform properties along the length of the wire. Stress-strain rela

tionships were measured for plain and knurled wire at strain rates of 0.001

and 0.005 strain per second. Relationships presented in Fig. A.7

are from measurements at a strain rate of 0.005 strain per second for

knurled No. 2 gage wire and plain No. 13 gage wire. A summary of wire

testing is presented in Table A.4.

Because design of shear reinforcement was based on conservatively

high safety factors, only a few samples of No. 16 gage wire were tested.

Yield stress of shear reinforcement was nominally 750 MPa.
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A.7 Cyclic-Load Test of Wall Specimens

(a) Test Set-up

The test set-up (Fig. 4.2 (b)) consisted of a 110 kN-capacity

MTS servohydraulic ram mounted on a 480 mm wall of the foundation

of the structural research laboratory. The ram applied lateral loads

slowly through a controlled displacement program to the cantilevered

specimens. Specimens were fixed to a stiff concrete test floor with

prestressed angles similar to those anchoring the ten-story walls.

(b) Instrumentation

Measurements included applied loads and resulting displacements

of the specimen at each level (Fig. 4.4 (b)). Displacements were measured

electronically using LVDTls and mechanically using O.OOl-inch dial gages.

Signals from the load cell and LVDT's were input to a VIDAR data adquisition

system for punching on paper tape and later plotting on a Calcomp device.

Rotation of a bar attached to the specimen 51 mm above the base was also

measured to indicate the concentration of curvature near the base.

Complementary measurements using O.OOOl-inch dial gages indicated negligible

uplift or slippage of the foundation beam.

(c) Fabrication

Procedures for fabricating the wall specimens were identical with those

of the ten-story walls.

(d) Test Procedures

Each specimen was displaced through a history (Fig 4.3 (c) and (d))
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that was monitored with an x-y plotter which signaled load and displace

ment. Specimens were subjected to displacements beyond yield for the

first cycle and progressively increasing displacements of subsequent

cycles. Crack patterns and widths were recorded throughout the duration

of testing.

(e) Material Properties

Reinforcement was from the same stock as reported in Sec. A.6.

Concrete was mixed using the same design a~ reported in Sec. A.6, and

had essentially the same strength and stiffness characteristics.



Table A. 1 Summary of Measured Gross Cross-Sectional Member Dimensions

(a) Test Structure FW1

Dimensions, mm.
Level North Frame South Frame Wallor Beams* Co1umns** Beams ColumnsStory

t4ean Std. Dev. . Mean Std. Dev . Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
WI DTHS

10 38.0 0.5 38.4 0.4 39.3 0.4 39.1 0.4 38.8 0.2
9 38.7 0.3 38.7 0.3 39.3 0.6 39.2 0.3 38.8 0.1
8 38.7 0.2 38.5 0.4 39.1 0.8 39.1 0.3 39.2 0.0
7 38.7 0.2 38.7 0.4 38.9 0.3 39.0 0.5 38.9 0.1
6 38.6 0.1 38.6 0.3 39.0 0.2 39.3 0.3 38.9 0.2
5 38.7 0.4 38.5 0.2 39.2 O. 1 39.4 0.3 38.8 0.0
4 38.7 0.3 38.6 0.5 39.2 0.5 39.3 0.4 38.5. 0.1 w
3 38.9 0.7 38.6 0.5 39.7 0.1 39.6 0.6 38.3 0.1 0'\

w
2 38.4 0.4 38.4 0.4 39.4 0.3 39~5 0.6 38.3 O. 1
1 38.3 0.4 38.2 0.8 39.2 0.6 38.9 0.8 38.6 0.0

DEPTHS

10 37.9 0.3 50.8 0.4 38.0 0.5 50.8 0.5 204.0
9 38.5 0.3 50.7 0.5 38.1 0.3 50.7 0.5 203.7
8 37.9 0.5 50.5 0.5 38.2 0.1 50.7 0.4 203.2
7 37.9 0.5 50.8 0.7 38.2 0.5 50.6 0.5 202.2
6 37.9 0.3 50.8 0.6 38.2 0.4 50.6 0.6 203.2
5 38.2 0.3 50.5 0.8 38.0 0.4 50.6 0.9 203.2
4 37.9 0.5 50.7 0.4 38.2 0.3 51.1 0.5 202.9
3 38.0 0.7 50.7 0.6 38.3 0.1 50.8 0.7 202.7
2 38.2 0.4 50.6 0.4 38.3 0.8 50.7 0.8 202.2
1 38.0 0.6 50.6 0.5 38.2 0.6 50.7 0.6 201.9

*Samp1e Size = 6
**Samp1e Size = 8



Table A.l (contd.) Summary of Measured Gross Cross-Sectional Member Dimensions

(b) Test Structure FW2

Level Dimensions, mm.
or North Frame So·uth Frame WallStory Beams* Col umns** Beams Columns

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev: Mean Std. Dev. Mean Std. Dev.

WIDTHS
10 38.8 0.3 39. 1 0.6 39.3 0.3 39.2 0.3 38.7 0.4
9 39.0 0.3 39.3 0.5 39.2 0.4 39.1 0.3 38.9 0.3
8 39.4 0.4 39.4 0.6 39.1 0.3 38.9 0.4 39.4 0.5
7 39.1 0.8 38.9 0.2 39.2 0.4 39.0 0.5 39.1 O. 1
6 38.7 0.6 38.9 0.7 38.8 0.2 39.4 0.9 39.1 O. 1
5 39.0 0.5 39.2 1.1 39.7 0.4 39.5 0.3 38.9 0.5 w
4 38.8 0.4 38.9 0.4 39.6 0.3 39.3 0.3 39.1 0.0

O"'l
~

3 39.2 0.3 38.9 0.3 39.0 0.4 38.9 0.3 39.0 0.4
2 39.1 0.4 39.0 0.4 39.2 0.3 39 .. 0 0.4 38.7 0.0
1 38.7 0.2 38.6 0.5 39.4 0.4 39. 1 0.4 38.8 0.3

DEPTHS

10 37.8 0.6 50.6 0.4 38.3 0.3 50.8 0.3 204.2
9 38.4 0.2 50.6 0.5 38.3 0.1 51.0 0.5 203.7
8 38.3 0.2 50.5 0.6 38.2 0.2 51.1 0.5 203.7
7 38.2 0.7 50.8 0.6 38. 1 0.3 51.0. 0.5 203.5
6 38. 1 0.4 50.4 . 0.4 38.3 0.1 51.1 0.5 203.5
5 38.4 0.3 50.5 0.5 38.4 0.2 51.1 0.5 203.7
4 37.8 0.4 50.7 0.4 38.1 0.4 51.1 0.2 204.0
3 38.0 0.3 51.0 0.3 38.3 0.2 51.1 0.3 203.5
2 38.3 0.4 50.7 0.2 38.4 0.1 51.1 0.3 203.7
1 37.9 0.4 50.7 0.5 . 38.2 0.4 51.2 0.3 203.5

*S amp 1e S; ze = 6
**Samp1e Size = 8



Table A.l (contd.) Summary of Measured Gross Cross-Sectional Member Dimensions

(c) Test Structure FW3

Level Dimensions, nnJ.

or North Frame South Frame WallStory Beams* Columns** Beams Columns
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

\~IDTHS

10 38.5 0.6 39.0 0.5 39.2 0.5 39.2 0.3 37.6 0.7
9 39.0 0.5 39.0 0.8 39.0 0.3 39.3 0.4 37.6 0.4
8 39.0 0.6 39.0 0.5 39.3 0.2 39.2 0.6 38.2 0.2
7 39.4 0.6 39.3 0.5 39.2 0.4 39.2 0.5 38.4 0.4
6 39.5 0.4 39.4 0.6 39.5 0.3 39.5 0.3 38.2 '1.3
5 39.5 0.4 39.5 0.5 39.4 0.4 39.4 0.3 38.7- 0.2
4 39.6 0.2 39.4 0.6 39.3 0.3 39.4 0.4 38.1' 0.4 w

0'1

3 39.5 0.4 38.9 0.5 39.7 0.3 39~3 0.4 38.4 0.4 c.n

2 39.0 0.2 39.2 0.4 39.3 0.4 39.8 0.5 38.2 0.2
1 39.1 0.2 39.4 0.5 39.4 0.6 39. 1 0.4 38.1 0.4

DEPTHS

10 38.0 0.6 51.2 0.3 38. 1 0.8 50.9 0.5 203.2
9 38.9 0.3 51.2 0.4 38.5 0.3 51.1 0.4 202.9
8 38.4 0.5 51.1 , 0.3 38.4 0.4 50.9 0.5 203.2
7 38.5 0.2 51. 3 0.3 38.4 0.3 51. 0 0.4 203.2
6 38.4 0.2 51.3 0.4 38.4 0.3 51.1 0.6 202.4
5 38.3 0.4 51.1 0.3 38.3 0.3 51.0 0.3 203.2
4 38.4 0.3 51.2 0.3 37.8 0.2 51.2 0.4 202.7
3 38.1 0.7 51. 1 0.3 , 38.4 0.2 51.1 0.2 203.5
2 38.3 0.6 51.2 0.4 38.4 0.2 50.9 0.4 203.2
1 38.0 0.4 51.1 0.3 37.9 0.4 51.0 0.6 202.7

*Sample Size = 6
**Sample Size = 8



Table A.l (contd.) Summary of Measured Gross Cross-Sectional Membe~ Dimensions

(d) Test Structure FW4

Dimensions t lT111.

North Frame South Frame Wall
Beams* Columns** Beams Columns

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev,; Mean Std. Dev.

WIDTHS
10 39.1 1.1 38.8 0.8 39.7 0.7 39.8 0.6 37.6 0.0
9 38.8 0.8 38.6 0.5 . 39.5 0.9 39.6 0.9 37.7 0.2
8 39.0 0.6 38.8 0.8 39.6 0.7 39. 1 0.8 38.0 0.2
7 39.2 0.6 38.8 1.0 39.3 0.2 39.3 1.0 38.4 0.4
6 38.7 0.2 39.0 0.4 40.0 0.6 39.6 0.7 38.2 0.5
5 39.1 0.9 38.6 0.7 39.6 0.3 39.3 0.6 37.8 0.7
4 38.5 0.7 38.9 0.4 39.5 0.5 39.5 0.6 38.4 0.4 w

~

3 38.9 0.3 38.6 0.4 39.5 0.6 39.2 0.7 38.4 0.0 ~

2 39.0 0.4 38.9 0.4 39.7 0.4 39.0 0.5 38.6 0.0
1 39.0 0.3 38.9 0.6 39.1 0.4 38.8 0.5 38.7 0.2

DEPTHS

10 38.9 0.4 50.4 0.5 39.1 0.7 50.5 0.8 203.5
9 38.4 0.5 50.9 0.5 38.2 0.4 50.4 0.7 202.9
8 38.9 0.4 50.6 0.4 38.3 0.4 50.5 0.6 202.7
7 38.4 0.4 50.3 0.7 38.2 0.5 50.6 0.5 202.4
6 38.6 0.6 50.7 0.7 38.0 0.3 50.5 0.3 202.7
5 38.3 0.2 50.8 0.4 38. 1 0.4 50.7 0.8 202.4
4 37.8 0.5 50.6 0.6 37.8 O. 1 50.7 0.4 202.7
3 38.3 0.4 50.6 0.5 38.0 0.3 50.5 0.2 202.7
2 38.2 0.4 50.5 0.3 38.1 0.4 50.5 0.3 203.2 --
1 37.8 0.5 51.1 0.8 38.8 0.9 50.8 0.4 202.9

*Samp1e Size = 6
**Samp1e Size = 8



Table A.l (contd.) Summary of Measured Gross Cross-Sectional Member Dimensions

(e) Composite Summary

Dimensions, mm.

Nominal Nurrber of Mean Maximum Minimum Standard
Samples Deviation.

Beam Depth 38. 1 480 38.2 39.9 37.1 O.A

Beam Wi dth 38.1 480 39.1 40.6 37.3 0.4

Co 1umn Depth 50.8 640 50.8 51. 8 49.3 0.5

Column Width 38.1 640 39.1 40.4' 37.9 ·0.5
w
0">

Wall Depth 203.2 40 203.1 204.2 201.9 0.3 '-J

Wall Wi dth 38.1 80 38.5 39.2 37.1



368

Table A.2

Measured Story Masses

Level ~1ass (kg)

10 461

9 464

8 463

7 466

6 464

5 465

4 465

3 462

2 465

1 460
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Table A.3 Measured Properties of Concrete

Parameter Test Structure
FWl FW2 FW3 FW4

Age at Tes ti ng (days) 84 65 30 27

Slump (mm) 57 102 64 64

Compressive Strength, f' (MPa)'c
Mean 33.0 42.1 32. 1 33.8
Standard Deviation 2.4 1.0 5.1 1.5
Number of Coupons 10 9 7 10

Secant Modulus*, Ec(x 103 MPa)
Mean 18.6 23.0 20.2 19. 1
Standard Deviation 1.4 2.5 3.2 1.2
Number of Coupons 10 9 7 10

Modulus of Rupture, f r (MPa)
Mean 6.7 7.4 6.5 6.5
Standard Deviation 0.8 0.8 0.6 . 0.6
Number of Coupons 7 7 7 12

Tensile Strength, fsp' (MPa)
Mean 3.6 4.0 3.2 3.2
Standard Deviation 0.2 0.3 0.7 0.6
Nurrber of Coupons 4 4 5 6

*Measured at a compressive stress = 20 MPa
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Table A.4 Measured Properties of Reinfcrcement

Wire Strain Nunt>er Yield Stress Ultimate Stress
Type Rate of fy (MPa) f u

(MPa)
(l/Sec. ) Coupons

Mean Std. Dev. .Mean Std.. Dev•

. No. 13 gage

Plain 0.001 10 351 10 368 13

0.005 10 358 5 373 4

Knurled 0.001 4 350 4 370 4

0.005 5 360 4 379 5

No. 2 gage

Plain 0.001 5 330 5 351 11

0.·005 10 345 8 371 7

Knurled 0.001 5 338 6 325 5

0.005 10 340 4 366 3

/
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(a) (contd.) Story Weights (c) Wall Connection

(b) Frame Connection

Fig. A.3 (contd.) Test-Structure Components
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(c) Accelerometer

(d) l vor IS

Fig. A.4 (contd.) Instrumentation
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Typical Dynamometer
Measures Force Act ing
on Wall at Each Level

Typical Accelerometer
Measures Vertica I
Aceelerat ion

(e) Layout of Instrumentation

Fig. A.4 (contd.) Instrumentation
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(a) Forms

(b) Frame Reinforcement

Fig. A.5 Fabrication of Specimens
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(c) Anchorage of Column Reinforcement at Base

(d) Anchorage of Wall Reinforcement at Base

Fig. A.5 (contd.) Fabrication of Specimens
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(a) Lifting Frames from Forms

(b) Placing Wall on Simulator Platform

Fig. A.6 Erection of Test Structures
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(c) Stacking Story Weights

(d) Attaching Frames to Story Weights
Fig. A.6 (contd.) Erection of Test Structures
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