AN ANALYTIC METHOD FOR
STRONG MOTION STUDIES IN LAYERED MEDIA
H. Engin, A. Askar, A.S. Cakmak
Princeton University
Department of Civil Engineering
Princeton, N.J. 08544
June 30, 1979
Civil Engng. Res. Rep. No. 79-SM-4
NSF Grant 76-20027
Any opinions, findings, conclusionsor recommendations expressed in thispublication are those of the author(s)and do not necessarily reflect the viewsof the National Science Foundation.

-

17. Document Analysis a. Descriptors

Matrix methods
Equations of motion
Oscillations
Linear algebraic equations
b. Identifiers/Open-Ended Terms

Multilayer systems Wave amplification studies Ritz-Kantorowich Method

Nonlinear algebraic equations
Soil mechanics
Vibrational spectra
(Fast) Fourier Transform
Krylov-Bogoliubov-Mitrapolsky Method Duffing Method

19. Security Class (This Report)	21. No. of Pages
20. Security Class (This Page)	22. Price $A Q$

AN ANALYTIC METHOD FOR
STRONG MOTION STUDIES IN LAYERED MEDIA†
H. Engin*, A. Askar**, A.S. Cakmak
Princeton University
Department of Civil Engineering, Princeton, N.J. 08544

An analytic method is presented for calculating strong motion spectra and response to arbitrary input in layered media. The method is based on the removal of secular terms at resonance of the equations with polynomial nonlinearity. The nonlinear effects are introduced by the frequency shifts calculated from the secular term according to the method by Millman and Keller. The procedure, through a convenient parametrization of the frequency, allows one to deal with linear equations. This possibility permits the extension of the method to multilayer systems by the use of transfer matrices. The response to an arbitrary input motion is obtained from the response spectrum in the frequency domain by the use of (Fast) Fourier Transform. The competitive analytical methods such as Ritz-Kantorowich's, Krylov-Bogoliubov-Mitrapolsky's and the extension of the Duffing method by Ablowitz and the present authors lead to nonlinear algebraic equations for the amplitudes. These methods would therefore be untractable in multilayer systems as they would require the solution of large coupled nonlinear algebraic equations. The method developed here is applied to wave amplification studies in geotechnical engineering. The constitutive laws are defined by the Romberg-Osgood relation as a backbone curve along with hysteretic damping. The scheme here is based on a method appropriate for nonlinear phenomena and the computational task remains at the order of that of the linear analysis.

```
*Presently at Istanbul Technical University, Civil Engineering Faculty,
    Taksim, Istanbul, Turkey.
**Presently at Bogazici University, Mathematics Department, Bebek,
    Istanbul, Turkey.
†Research supported by a grant from the National Science Foundation.
```


I. INTRODUCTION

There are a wealth of phenomena such as shifts in frequency, dispersion due to amplitude, generation of harmonics, removal of resonance singularities, jump from a state to another ... which are primarily nonlinear in nature. This paper studies the aforementioned phenomena as it pertains to the forced shear oscillations of an elastic layer with a nonlinear stress-strain law of polynomial type. Various methods such as Ritz-Kantorowich [1], Krylov-Bagoliubov-Mitropolsky [2], extension by the present authors of the classical Duffing solution [3,4] have been used for the solution of this class of problems. All these methods lead to nonlinear algebraic equations for the amplitudes of oscillation and would be extremely difficult to apply to multilayer systems. In fact, the requirement of continuity in the displacement and stress across the interfaces between layers couples the motions of the layers. This would in the methods in [1-4] lead to rather complicated coupled nonlinear algebraic equations for the amplitudes of oscillation in the layers. The procedure
here through a convenient parametrization allows to deal with linear equations. Consequently the continuity requirements across the layer interfaces lead to linear algebraic equations for the amplitudes. These linear equations offer the attractive alternative to use a transfer matrix formalism familiar in the literature in layered media [5].

The basis of the method is the work of Millman and Keller's [6]. An analysis of this method and extensive calculations for a single layer can be found in work by the present authors $[3,4]$. Nevertheless, the single layer case is presented here as this solution is needed for the
multilayer system according to the transfer matrix formalism. Once the amplification spectrum is obtained from the solutions, it can be used in the same manner as in other methods (see for example the SHAKE procedure [7] that is widely used in earthquake studies) through a Fourier analysis for obtaining the response to an arbitrary input.

The motivation for this work was to obtain the strong motion response of soil layers. Similar problems exist in the finite amplitude vibrations of laminates, composite plates, water waves in a basin, etc. The nonlinear stress-strain relation and the corresponding field equations studied in this paper are:

$$
\begin{align*}
& \tau=G_{0} \frac{\partial v}{\partial x}+\zeta \frac{\partial^{2} v}{\partial t \partial x}+G_{1}\left(\frac{\partial v}{\partial x}\right)^{3} \\
& G_{0} \frac{\partial^{2} v}{\partial x^{2}}+\zeta \frac{\partial^{3} v}{\partial t \partial x^{2}}+3 G_{1}\left(\frac{\partial v}{\partial x}\right)^{2} \frac{\partial^{2} v}{\partial x^{2}}=\rho \frac{\partial^{2} v}{\partial t^{2}} \tag{1.1}
\end{align*}
$$

Above τ is the stress, v the displacement, ρ the density, G_{0}, G_{1} are respectively the linear and nonlinear shear moduli and ζ is the damping coefficient. The connection between these equations and the Ramberg-Osgood model for soil under cyclic loading is discussed in Sec. 5.

2. SPECTRUM OF A SINGLE LAYER

Before going into the solution for a multilayer system, the method is introduced in some detail for a single layer of thickness d which is forced sinusoidally with frequency ω at $x=d$ and is traction free at $x=0$. The problem is defined by the equation (1.1) and the following boundary and the periodic initial conditions:

$$
\begin{equation*}
\left.\tau\right|_{x=0}=\left.0 \quad v\right|_{x=d}=a \cos \omega t \quad v(x, \omega t)=v(x, \omega t+2 \pi) \tag{2.1}
\end{equation*}
$$

Introducing the dimensionless time s and the dissipation coefficient k

$$
\begin{equation*}
s=\omega t \quad k=\zeta \omega / G_{0} \tag{2.2}
\end{equation*}
$$

The equations (1.1) and (2.1) read:

$$
\begin{align*}
& G_{0}\left(\frac{\partial^{2} v}{\partial x^{2}}+k \frac{\partial^{3} v}{\partial s \partial x^{2}}\right)-\rho w^{2} \frac{\partial^{2} v}{\partial s^{2}}+\lambda 3 G_{1}\left(\frac{\partial v}{\partial x}\right)^{2} \frac{\partial^{2} v}{\partial x^{2}}=0 \\
& G_{0}\left(\frac{\partial v}{\partial x}+k \frac{\partial^{2} v}{\partial s \partial x}\right)+\left.\lambda G_{1}\left(\frac{\partial v}{\partial x}\right)^{3}\right|_{x=0}=0
\end{align*} \quad \begin{array}{ll}
v=d & x=a \cos s \\
v(x, s+2 \pi)=v(x, s) \tag{2.3}
\end{array}
$$

Above $\lambda=1$ is inserted for ordering the nonlinear terms. With the expansions

$$
\begin{align*}
& v(x, s ; \lambda)=v_{0}(x, s)+\lambda v_{1}(x, s)+\ldots \\
& \omega(\lambda)=\omega_{0}+\lambda \omega_{1}+\ldots \tag{2.4}
\end{align*}
$$

and the separation of the terms in the various powers of λ in (2.3), one has:

$$
\begin{align*}
& L v_{0} \equiv G_{0}\left(\frac{\partial^{2} v_{0}}{\partial x^{2}}+\kappa \frac{\partial^{3} v_{0}}{\partial s \partial x^{2}}\right)-\rho \omega_{0}^{2} \frac{\partial^{2} v_{0}}{\partial s^{2}}=0 \\
& \left.G_{0}\left(\frac{\partial v_{0}}{\partial x}+\kappa \frac{\partial^{2} v_{0}}{\partial s \partial x}\right)\right|_{x=0}=\left.0 \quad v_{0}\right|_{x=d}=a \cos s \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
& L v_{1}=2 \rho \omega_{0} \omega_{1} \frac{\partial^{2} v_{0}}{\partial s^{2}}-3 G_{1}\left(\frac{\partial v_{0}}{\partial x}\right)^{2} \frac{\partial^{2} v_{0}}{\partial x^{2}} \\
& G_{0}\left(\frac{\partial v_{1}}{\partial x}+\kappa \frac{\partial^{2} v_{1}}{\partial s \partial x}\right)+\left.G_{1}\left(\frac{\partial v_{0}}{\partial x}\right)^{3}\right|_{x=0}=\left.0 \quad v_{1}\right|_{x=d}=0 \tag{2.6}
\end{align*}
$$

The periodic solutions in s are expressed conveniently in complex terms. Proceeding with v_{0}, we have:

$$
\begin{equation*}
v_{0}(x, s)=v_{01}(x) e^{i s}+v_{01}^{*}(x) e^{-i s} \tag{2.7}
\end{equation*}
$$

With (2.7), (2.5) reduces to

$$
\begin{align*}
& L V_{01} \equiv\left(1+i_{k}\right) G_{0} V_{01}^{\prime \prime}+\rho \omega_{0}^{2} V_{01}=0 \\
& \left.(1+i \kappa) G_{0} V_{01}^{\prime}\right|_{x=0}=\left.0 \quad V_{01}\right|_{x=d}=\frac{1}{2} a \tag{2.8}
\end{align*}
$$

Consequently, the solution for the system in (2.8) is readily found to be

$$
\begin{equation*}
v_{01}=A \cos \left(Q_{0} x / d\right) \quad A=a / 2 \cos Q_{0} \tag{2.9}
\end{equation*}
$$

where Q_{0} is a dimensionless wave number defined as:

$$
\begin{equation*}
Q_{0}=\left(\rho /\left(1+i_{K}\right) G_{0}\right)^{1 / 2} \omega_{0} d \tag{2.10}
\end{equation*}
$$

The shift in frequency is determined by requiring v_{0} to be orthogonal to the forcing term for the equation for v_{1} [6b]. This procedure extracts the secular terms that would otherwise cause the scheme to diverge. Thus, the orthogonality condition in (2.6) yields:

$$
\begin{equation*}
\int_{s=0}^{2 \pi} \int_{x=0}^{d}\left(2 \rho \omega_{0} \omega_{1} \frac{\partial^{2} v_{0}}{\partial s^{2}}-3 G_{1}\left(\frac{\partial v_{0}}{\partial x}\right)^{2} \frac{\partial^{2} v_{0}}{\partial x^{2}}\right) v_{0} d s d x=0 \tag{2.11}
\end{equation*}
$$

By the substitution of v_{0} according to (2.7) and the integration over s, (2.11) yields:

$$
\begin{align*}
4 \rho \omega_{0}^{\omega} 1 & \int_{x=0}^{d} v_{01} v_{01}^{\star} d x+3 G_{1} \int_{x=0}^{d}\left[v_{01}^{12} v_{01}^{\star \prime \prime} v_{01}^{*}\right. \\
& \left.+2 v_{01}^{1} v_{01}^{* \prime}\left(v_{01}^{\prime \prime} v_{01}^{*}+v_{01}^{* \prime} v_{01}\right)+v_{01}^{\star^{\prime} 2} v_{01}^{\prime \prime} v_{01}\right] d x=0 \tag{2.12}
\end{align*}
$$

With the substitution of $V_{01}^{\prime \prime}$ and $V_{01}^{* "}$ from (2.8), the above equation becomes:

$$
\begin{align*}
& 4 \rho \omega_{0} \omega_{1} \int_{x=0}^{d} v_{01} v_{01}^{*} d x=3 G_{1}\left(\frac{\rho \omega_{0}^{2}}{G_{0}}\right) \int_{x=0}^{d}\left[\frac{1}{1-i_{k}} v_{01}^{\prime 2} v_{01}^{* 2}\right. \\
& \left.2\left(\frac{1}{1+i_{k}}+\frac{1}{1-i_{k}}\right) v_{01}^{\prime} v_{01}^{*_{1}} v_{01} v_{01}^{*}+\frac{1}{1+i_{k}} v_{01}^{*^{\prime} 2} v_{01}^{2}\right] d x \tag{2.13}
\end{align*}
$$

A rearrangement of (2.13) yields:

$$
\begin{align*}
& 4 \rho \omega_{0} \omega_{1} \int_{0}^{d} v_{01} v_{01}^{*} d x=3 G_{1} \frac{1}{d^{2}} \int_{0}^{d}\left[Q_{0}^{* 2} v_{01}^{1} 2 v_{01}^{* 2}+Q_{0}^{2} v_{01}^{{ }^{\prime}} 2 v_{01}^{2}\right. \\
& \tag{2.14}\\
& \left.\quad+2\left(Q_{0}^{2}+Q_{0}^{* 2}\right) v_{01}^{1} v_{01}^{* 1} v_{01} v_{01}^{*}\right] d x
\end{align*}
$$

A convenient expression for $\omega_{0}{ }^{\omega} 1$ is obtained by introducing the following definitions:

$$
\begin{align*}
& I_{1}=\frac{d^{2}}{\left(A A^{\star} Q_{0} Q_{0}^{\star}\right)^{2}} \frac{1}{d} \int_{0}^{d}\left(Q_{0}^{\star 2} v_{01}^{\prime 2} v_{01}^{\star 2}+Q_{0}^{2} v_{01}^{\star \prime} 2 v_{01}^{2}\right) d x \\
& I_{2}=2 \frac{d^{2}}{\left(A A^{*} Q_{0} Q_{0}^{\star}\right)^{2}}\left(Q_{0}^{2}+Q_{0}^{\star 2}\right) \frac{1}{d} \int_{0}^{d} v_{01}^{1} v_{01}^{\star^{\prime}} v_{01} v_{01}^{*} d x \\
& I_{3}=\frac{1}{A A^{\star}} \frac{1}{d} \int_{0}^{d} v_{01} v_{01}^{\star} d x \tag{2.15}
\end{align*}
$$

With (2.15), $\quad \omega_{0}{ }^{\omega} 1$ is found from (2.14) as:

$$
\begin{equation*}
\omega_{0} \omega_{1}=\frac{3}{4} \frac{G_{1}}{\rho d^{2}} \frac{A A^{*}}{d^{2}}\left(Q_{0} Q_{0}^{*}\right)^{2} \frac{\left(I_{1}+I_{2}\right)}{I_{3}} \tag{2.16}
\end{equation*}
$$

Using the expression for A in (2.9) one has:

$$
\begin{equation*}
\omega_{0} \omega_{1}=\frac{3}{16} \frac{G_{1}}{\rho d^{2}}\left(\frac{a}{d}\right)^{2} \frac{\left(Q_{0} Q_{0}^{*}\right)^{2}}{\cos Q_{0} \cos Q_{0}^{*}}\left(\frac{I_{1}+I_{2}}{I_{3}}\right) \tag{2.17}
\end{equation*}
$$

With the substitution of V_{01} given by (2.9), the integrals in (2.15) read:

$$
\begin{align*}
& I_{1}=\frac{1}{2} \int_{0}^{1}\left(1-\cos 2 Q_{0} y \cos 2 Q_{0}^{\star} y\right) d y=\frac{1}{2}\left(1-f_{2}\right) \\
& I_{2}=\frac{1}{\left(1+\kappa_{k}^{2}\right) / 2} \int_{0}^{1} \sin 2 Q_{0} y \sin 2 Q_{0}^{\star} y d y=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} g_{2} \\
& I_{3}=\int_{0}^{1} \cos Q_{0} y \cos Q_{0}^{\star} y d y=f_{1} \tag{2.18}
\end{align*}
$$

where $y=x / d$ and

$$
\begin{align*}
& f_{m}=\int_{0}^{1} \operatorname{cosmQ} Q_{0} y \operatorname{cosm} Q_{0}^{\star} y d y=\frac{1}{2}\left[\frac{\sin m\left(Q_{0}-Q_{0}^{\star}\right)}{m\left(Q_{0}-Q_{0}^{\star}\right)}+\frac{\sin m\left(Q_{0}+Q_{0}^{\star}\right)}{m\left(Q_{0}+Q_{0}^{\star}\right)}\right] \\
& g_{m}=\int_{0}^{1} \operatorname{sinmQ} Q_{0} y \operatorname{sinm} Q_{0}^{\star} y d y=\frac{1}{2}\left[\frac{\sin m\left(Q_{0}-Q_{0}^{\star}\right)}{m\left(Q_{0}-Q_{0}^{\star}\right)}-\frac{\sin m\left(Q_{0}+Q_{0}^{\star}\right)}{m\left(Q_{0}+Q_{0}^{\star}\right)}\right] \tag{2.19}
\end{align*}
$$

Consequently, the wave amplification is expressed parametrically by (2.9) and (2.17); i.e.

$$
\left.\begin{array}{l}
V_{01}(0) / V_{01}(d)=1 / \cos Q_{0} \\
\omega=\omega_{0}\left(1+\frac{3}{32} \frac{G_{1}}{G_{0}}\left(\frac{a}{d}\right)^{2} \frac{Q_{0} Q_{0}^{*}}{\cos Q_{0} \cos Q_{0}^{\star}} \frac{1}{\left(1+k^{2}\right)} 1 / 2\right. \tag{2.20}
\end{array}\left(Q_{0}, Q_{0}^{\star}\right)\right), ~ l
$$

where

$$
\begin{equation*}
f\left(Q_{0}, Q_{0}^{*}\right)=\frac{2\left(I_{1}+I_{2}\right)}{I_{3}}=\frac{1-f_{2}+2 g_{2} /\left(1+k^{2}\right)^{1 / 2}}{f_{1}} \tag{2.21}
\end{equation*}
$$

It should be noted also that for

$$
\begin{equation*}
\lim _{k \rightarrow 0} Q_{0}=\lim _{k \rightarrow 0} Q_{0}^{\star}=q_{0} \equiv\left(\rho / G_{0}\right)^{1 / 2} \omega_{0} d \tag{2.22}
\end{equation*}
$$

In this case, (2.17) becomes:

$$
\begin{equation*}
\frac{\omega_{1}}{\omega_{0}}=\frac{9}{32} \frac{G_{1}}{G_{0}}\left(\frac{a}{d}\right)^{2} \frac{q_{0}^{2}}{\cos ^{2} q_{0}} f\left(q_{0}\right) \tag{2.23}
\end{equation*}
$$

with

$$
\begin{equation*}
f\left(q_{0}\right)=\left[1-\frac{\sin 4 q_{0}}{4 q_{0}}\right] /\left[1+\frac{\sin q_{0}}{q_{0}}\right] \tag{2.24}
\end{equation*}
$$

This result is also obtained by direct solution of (2.3) after setting $k=0$. This observation indicates therefore that the solution in (2.17) is uniformly valid in k.

Above, ω_{0} is a convenient nonphysical parameter for expressing the solution. The connection between this method and a more conventional method similar to Duffing solution may be seen in Ref. [3,4]. The solution for the amplitude A in (2.9) as a function of the physical parameter ω may be obtained by the elimination (numerical or graphical) of ω_{0}. Fig. 1 illustrates graphically the elimination of ω_{0} between
$A\left(\omega_{0}\right)$ and $\omega\left(\omega_{0}\right)$ to yield $A(\omega)$. These figures and the process of eliminating ω_{0} are discussed in Section 5b.

3. MULTI-LAYER SYSTEM

In the preceeding section, the problem of a single layer is solved. In this section, the solution is extended to a multi-layer system with $(N-1)$ layers and N interfaces. The displacement and stresses are taken to be continuous across the interfaces. The notation is presented in Fig. 2. The boundary conditions are prescribed on the $1^{\text {st }}$ and $N^{\text {th }}$ face. For the $k^{\text {th }}$ layer, the upper face is the $k^{\text {th }}$ interface, and the lower face is the $(k-1)^{\text {st }}$ interface. On the $k^{\text {th }}$ interface, the displacement and stress are labelled with the index k and are denoted respectively as V^{k} and T^{k}. For representing the solution local coordinates are used for each layer such that $x=0$ and $x=d_{k}$ define the lower and upper faces of the $k^{\text {th }}$ interface. As a preparation for the solution for a multi-layer system, we first consider a typical layer under arbitrary boundary conditions. In this case great flexibility is gained by formulating the problem as an initial value problems in space in the usual manner [5]. To this purpose the differential equations in (2.8) are still valid while the boundary conditions for V_{01} are substituted by:

$$
\begin{equation*}
\left.v_{01}\right|_{x=0}=\left.V_{k-1} \quad\left(1+i_{k}\right) G_{0} v_{o l}^{\prime}\right|_{x=0}=T_{k-1} \tag{3.1}
\end{equation*}
$$

With this notation the solution replacing (2.9) becomes:

$$
\begin{equation*}
v_{01}=v_{k-1} \cos \left(Q_{0} x / d_{k}\right)+\frac{d_{k} T_{k-1}}{(1+i k) G_{0} Q_{0}} \sin \left(Q_{0} x / d_{k}\right) \tag{3.2}
\end{equation*}
$$

The displacement and stress on the upper face of the $k^{\text {th }}$ layer are obtained by setting $x=d_{k}$ in (3.2). The resulting expressions are then represented in matrix form as:

$$
\begin{equation*}
{\underset{\sim}{X}}_{X_{k}}={\underset{\underline{A}}{k}} \cdot{\underset{\sim}{x}}_{k-1} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& \underset{\sim}{x}{ }_{k-1}=\left(V_{k-1}, T_{k-1}\right) \quad \underset{\sim}{x}=\left(V_{k}, T_{k}\right) \\
& \underline{A}_{k}=\left[\begin{array}{l}
\cos Q_{0} \\
\frac{-(1+i \kappa) G_{0} Q_{0}}{d_{k}} \sin _{0}
\end{array}\right. \tag{3.4}\\
& \left.\frac{d_{k}}{\left(1+i_{k}\right) G_{0} Q_{0}} \sin Q_{0}\right] \\
& \cos Q_{0}
\end{align*}
$$

Above, the matrix \underline{A}_{k} carries the information from the $(k-1)^{\text {st }}$ face to the $k^{\text {th }}$ and is commonly called as the "Transfer Matrix" [5]. The problem for a system with N interfaces (i.e. $N-1$ layers) has $2(N-1)$ unknowns. These are determined by the $2(\mathrm{~N}-2)$ continuity conditions at the inner interfaces and the two prescribed conditions, one at each of the outer faces. However, the transfer matrix method reduces the problem to the solution of a single equation. In fact, the transfer matrix is utilized by carrying the information from the face 1 to the face 2 , from face 2 to face 3 , and so on until the face N. Thus for the $k^{\text {th }}$ face

$$
\begin{equation*}
{\underset{\sim}{X}}_{\mathrm{X}}=\underline{-B}_{k} \cdot{\underset{\sim}{X}}_{1} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\underline{B}}_{k}=\underline{\underline{A}}_{k} \cdot \underline{\underline{B}}_{k-1} \quad k=2, \ldots N \tag{3.6}
\end{equation*}
$$

For $k=2$, the convention $\underline{B}_{1}=I$ (I, the identity matrix) is adapted. For $k=N$ in (3.5), in explicit form one has:

$$
\left[\begin{array}{l}
V_{N} \tag{3.7}\\
T_{N}
\end{array}\right]=\left[\begin{array}{ll}
B_{11, N} & B_{12, N} \\
B_{21, N} & B_{22, N}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
\\
T_{1}
\end{array}\right]
$$

If V_{1} and V_{N} are the prescribed conditions, T_{1} is given by the first of the two equations in (3.7). Similarly, if V_{1} and T_{N} are the prescribed conditions T_{1} is found from the second of the two equations in (3.7). Once, the component of X not given as a boundary condition is determined, the complete solution is generated by (3.3) or (3.5).

The shift in frequency is calculated again along the same reasoning as in Section 3. The only difference is that v_{0} and the PDE for v_{1} here are expressed piecewise. Consequently the integral for the inner product of v_{0} with the right hand side of the PDE for v_{1} has to be calculated with the corresponding expression in each interval. Thus, (2.14) is replaced by:

$$
\begin{align*}
& 4 \omega_{0} \omega_{1} \sum_{k=2}^{N} \rho_{k} \int_{0}^{d_{k}} v_{01} v_{01}^{*} d x=3 \sum_{k=2}^{N} \rho_{k} \frac{G_{1 k}}{G_{0 k}} \omega_{0}^{2} \int_{0}^{d_{k}}\left[\frac{1}{1-i_{k}} v_{01}^{\prime 2} v_{01}^{*_{2} 2}\right. \\
& \left.\quad+2\left(\frac{1}{1+i_{k}}+\frac{1}{1-i_{k}}\right) v_{01}^{1} v_{01}^{*^{\prime}} v_{01} v_{01}^{*}+\frac{1}{1+i_{k}} v_{01}^{*^{\prime}} 2 v_{01}^{2}\right] d x \tag{3.8}
\end{align*}
$$

For a convenient expression of (3.8) let us again introduce the definitions in (2.15) where the integrals are evaluated with the appropriate parameters for each layer and A is substituted with V_{k-1}. Clearly in this case V_{01} has the expression in (3.2) and the values of integrals are different from those in (2.18). With (2.15) interpreted as above, (3.8) yields:

$$
\begin{equation*}
\omega_{0} \omega_{1}=\frac{3}{4} \sum_{k=2}^{N} \frac{G_{1 k}}{d_{k}}\left(V_{k-1} V_{k-1}^{*} Q_{o k} Q_{o k}^{*}\right)^{2}\left(I_{1 k}+I_{2 k}\right) / \sum_{k=2}^{N} \rho_{k} d_{k} V_{k-1} V_{k-1}^{*} I_{3 k} \tag{3.9}
\end{equation*}
$$

For evaluating the integrals in (2.15), let us rearrange the expression for $v_{o l}$ in (3.2) as:

$$
\begin{equation*}
v_{01}=v_{k-1}\left(\cos \left(Q_{o k} x / d_{k}\right)+t_{k-1} \sin \left(Q_{o k} x / d_{k}\right)\right) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{k-1}=\frac{T_{k-1}}{V_{k-1}\left(T+i k_{k}\right) G_{o k}} \frac{d_{k}}{Q_{o k}} \tag{3.11}
\end{equation*}
$$

Then $I_{1 k}-I_{3 k}$ in (2.15) read $\left(Q_{0}\right.$ denotes $\left.Q_{o k}\right)$:

$$
\begin{aligned}
& I_{1 k}=\int_{0}^{1}\left(-\sin Q_{0} y+t_{k-1} \cos Q_{0} y\right)^{2}\left(\cos Q_{0}^{\star} y+t_{k-1}^{*} \sin Q_{0}^{\star} y\right)^{2} d y \\
& \\
& +\quad \text { complex conjugate } \\
& I_{2 k}=\frac{4}{\left(1+k^{2}\right)} / 2 \int_{0}^{1}\left(-\sin Q_{0} y+t_{k-1} \cos Q_{0} y\right)\left(-\sin Q_{0}^{\star} y+t_{k-1}^{*} \cos Q_{0}^{\star} y\right)
\end{aligned}
$$

$$
\begin{equation*}
I_{3 k}=\int_{0}^{1}\left(\cos Q_{0} y+t_{k-1} \sin Q_{0} y\right)\left(\cos Q_{0}^{*} y+t_{k-1}^{*} \sin Q_{0}^{*} y\right) d y \tag{3.12}
\end{equation*}
$$

The evaluation of the integrals in (3.12) gives:

$$
\begin{align*}
I_{1 k}= & \frac{1}{2}\left[\left(1+t_{k-1}^{2}\right)\left(1+t_{k-1}^{* 2}\right)-\left(1-t_{k-1}^{2}\right)\left(1-t_{k-1}^{* 2}\right) f_{2}-4 t_{k-1} t_{k-1}^{*} g_{2}\right. \\
& \left.-2 t_{k-1}\left(1-t_{k-1}^{*}\right) h_{2}-2 t_{k-1}^{*}\left(1-t_{k-1}^{2}\right) h_{2}^{*}\right] \\
I_{2 k}= & \frac{1}{\left(1++_{k}^{2}\right) 7}\left[\left(1-t_{k-1}^{2}\right)\left(1-t_{k-1}^{* 2}\right) g_{2}+4 t_{k-1} t_{k-1}^{*} f_{2}\right. \\
& \left.-2 t_{k-1}^{*}\left(1-t_{k-1}^{2}\right) h_{2}-2 t_{k-1}\left(1-t_{k-1}^{* 2}\right) h_{2}^{*}\right] \\
I_{3 k}= & f_{1}+t_{k-1} t_{k-1}^{*} g_{1}+t_{k-1} h_{1}+t_{k-1}^{*} h_{1}^{*} \tag{3.13}
\end{align*}
$$

where f_{m} and $g_{m}(m=1,2)$ have the same definitions as in (2.19) and the remaining coefficients $h_{m}(m=1,2)$ are defined as:

$$
\begin{equation*}
h_{m}=\int_{0}^{1} \sin m Q_{0} y \cos m Q_{0}^{*} y d y=\frac{1}{2}\left[\frac{1-\cos m\left(Q_{0}+Q_{0}^{*}\right)}{m\left(Q_{0}+Q_{0}^{*}\right)}+\frac{1-\cos m\left(Q_{0}-Q_{0}^{\star}\right)}{m\left(Q_{0}-Q_{0}^{*}\right)}\right] \tag{3.14}
\end{equation*}
$$

It should be noted that the solution for a single layer in (2.17) is obtained from (3.9) and (3.13) by setting $t_{k-1}=0$ and $V_{k-1}=A=a / 2 \cos Q_{0}$. Figure 2 presents the amplification results for the multilayer system with the parameters as indicated in Fig. 2a.

4. ARBITRARY INPUT

The result of the preceding sections allow to determine the amplitude on the surface. Using the frequency-amplitude dispersion relation obtained with the proper frequency shift, one can obtain by a Fourier Transform (fast or discrete Fourier Transform) the response to an arbitrary input given in terms of its Fourier components. A higher degree of approximation would introduce additional nonlinear effects such as a further correction on the frequency shift, generation of higher harmonics and higher order mode coupling. However these effects are of smaller magnitude than the shifts in the frequency-amplitude spectrum at the leading order and are neglected. A theoretical justification for neglecting these higher order resonances may be found in Ref. [8]. Basically a discrete Fourier Transform requires equally spaced discrete frequencies such as $\omega_{\ell}=\ell \Delta \omega$ with $\Delta \omega$ being a small increment. The above analysis however is formulated in terms of the parameters $\omega_{0 l}{ }^{*}$. In the calculations therefore, first the $\omega_{0 l}$ corresponding to a given ω_{ℓ} is needed to be determined. This is achieved by standard application of the "secant method". In the calculations, the choice of the starting value is facilitated since, the calculations are done for an increasing set of values for ω_{ℓ}. The converged solution of $\omega_{0 \Omega}$ provides a good starting value for the evaluation of $\omega_{0}(\ell+1)$. Thus for a forcing at the base as

$$
\begin{equation*}
V_{\text {base }} \equiv V_{1}=\sum_{\ell=-L}^{L} a_{\ell} e^{i \omega_{l} t} \tag{4.1}
\end{equation*}
$$

one first finds the response for each frequency ω_{ℓ} and then recombines these for obtaining the total response to the prescribed input. Thus for $A\left(\omega_{\ell}\right)$ being the amplification factor for the component of the input

[^0]at the frequency ω_{l}, the response to the forcing in (4.1) becomes:
\[

$$
\begin{equation*}
v_{\text {top }}=\sum_{\ell=-L}^{L} a_{l} A\left(\omega_{\ell}\right) e^{i \omega_{l} t} \tag{4.2}
\end{equation*}
$$

\]

In doing these calculations it should be borne in mind that since the amplitudes at each frequency are different, a different order of nonlinearity is induced for each Fourier component. Figures 3 to 6 give comparisons of the linear and nonlinear responses to a Gaussian and a real earthquake forcing (N21E component of the 1952 Taft strong motion record [9]) at the base of single and multilayer systems.

5. DISCUSSION

a. Connection With Soil Mechanics

Several investigators have shown that the relationship between shear modulous and strain in soils is nonlinear and that the modulus is a decreasing function of the strain [10]. Among these we adopt the Ramberg-Osgood constitutive relation as a backbone curve with $G / G_{\text {max }}=1 /\left[1+\alpha\left(\tau / \tau_{y}\right)^{R-1}\right]$. Here $\tau=$ shearing stress; $\tau_{y}=$ a yield or reference shearing stress; and α and R are parameters which determine the shape of the curve. It is found that for a large variety of soils the Ramberg-0sgood relationship fits the data quite reasonably with $\alpha=1, R=3$ and $\tau_{y}=0.4 S_{u}$ where S_{u} is the undrained shearing strength [1]]. The strain-stress relationship of RambergOsgood with $\alpha=1$ and $R=3$ reads: $\tau / \tau y=\left(G_{\max } \gamma / \tau_{y}\right) /\left[1+(\tau / \tau y)^{2}\right]$. To put this equation in a more conventional form, substitute $\tau / \tau y$ iteratively to get $\tau / \tau_{y}=\left(G_{\max } \gamma / \tau_{y}\right)\left[\left(1+G_{\max } \gamma / \tau_{y}\right)^{2} /\left(1+\tau / \tau_{y}\right)^{2}\right]^{-1}$. Expanding the (-1) power by the binomial formula, as an approximation to the Ramberg-Osgood relationship, one obtains:

$$
\begin{equation*}
\frac{\tau}{\tau_{y}}=\frac{G_{\max }}{\tau_{y}} \gamma\left[1-\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} \gamma^{2}\right] \quad \frac{G}{G_{\max }}=1-\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} \gamma^{2} \tag{5.1}
\end{equation*}
$$

A simple study shows that the form of G as proposed here is a very good approximation of the Ramberg-0sgood relationship for a large range of strains corresponding to $\tau / \tau y \simeq 1$ while also being of convention form for the applications.

At this stage we deviate from the more conventional uses of the Ramberg-Osgood relation which are in the realm of plasticity theory. Our analysis uses the Ramberg-Osgood relation as the backbone curve and the damping is introduced through a linear term in the strain rate, as is experimentally suggested [10]. Thus we take:

$$
\begin{equation*}
\tau=G_{\max } \gamma\left[1-\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} \gamma^{2}\right]+\zeta \frac{\partial \gamma}{\partial t} \tag{5.2}
\end{equation*}
$$

For the cyclic loading with $\gamma=\gamma_{0} \cos \omega t$, the fundamental part of the stress (i.e. the part in the stress with the frequency ω) is:

$$
\begin{equation*}
\tau=\gamma_{0} G_{\max }\left[1-\frac{3}{4}\left(\frac{G_{\max }}{\tau}\right)^{2} \gamma_{0}{ }^{2}\right] \cos \omega t-\gamma_{0} \zeta \omega \sin \omega t \tag{5.3}
\end{equation*}
$$

For soils it is observed that the nature of the damping is hysteretic and thus is independent of the frequency of oscillation. It is known that the choice $k=\zeta \omega / G_{\max } \quad(\kappa=$ constant $)$ provides a reasonable description of the damping [7]. The compliance is obtained by substituting $\cos \omega t$ and $\sin \omega t$ in (5.3) by their complex representation. For $G=|G| e^{i \delta}$, (5.3) yields:

$$
\begin{align*}
& |G|=G_{\max }\left\{\left[1-\frac{3}{4}\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} \gamma_{0}^{2}\right]^{2}+\kappa^{2}\right\} 1 / 2 \\
& \delta=\tan ^{-1}\left\{\kappa /\left[1-\frac{3}{4}\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} \gamma_{0}^{2}\right]\right\} \tag{5.4}
\end{align*}
$$

It is seen that $|G|$ decreases nonlinearly with the strain while the phase angle increases with it as is observed in the experiments [10].

Introducing the definitions

$$
\begin{align*}
& G_{0}=G_{\max } \\
& G_{1}=-\left(\frac{G_{\max }}{\tau_{y}}\right)^{2} G_{\max } \tag{5.5}
\end{align*}
$$

one obtains the equations in (1.1) studied above.
It may be taught that our model may be adequate for the description of soil behavior in general. However the use of backbone curves along with a hysteretic damping has proven as a successful model for the behavior in soils under cyclic loading $[12,13]$. In this spirit bears resemblances to the soil model used by Seed and co-workers [7]. Our analytical method of calculation is one appropriate to nonlinear phenomena. While equivalent linearization the procedures are iterative, ours are not. More critically, at each iterative step of the equivalent linearization calculations, the backbone curve is not followed but provides only a means to determine the end point of the straight line drawn from the origin in the (τ, γ) space to the state reached at the end of the deformation. In our calculations, however, the nonlinear path on the backbone curve in the (τ, γ) space is followed.
b. Discussion of the Calculations

Figure 1 illustrates the basic idea in the calculation procedure. For a clear description of the effect of nonlinearity, let us consider first the case with no dissipation. In this case the spectrum for the amplification in the displacement as well as those for the velocity, acceleration and the energy have singularities due to the term $1 / \cos q_{0}$ as $q_{0} \equiv \sqrt{\bar{\rho}} \bar{G}_{0} \omega_{0} d \rightarrow(2 n+1) \pi / 2$. For the linear analysis $\omega=\omega_{0}$ so that the same singularities exist in the frequency w. However, for the nonlinear

1

1

1

1

1

1

1

1
analysis q_{0} or equivalently ω_{0} are merely convenient parameters and the pair of equations $A=A\left(\omega_{0}\right)$ (Figure la) and $\omega=\omega\left(\omega_{0}\right)$ (Figure 1b) are the parametric expressions for the physical relationship $A=A(\omega)$. The desired response of the system is expressed by the relation $A=A(w)$ which is obtained by the elimination of ω_{0} between $A\left(\omega_{0}\right)$ and $\omega\left(\omega_{0}\right)$. In Figure 1, the points a_{0} and a_{0}^{\prime} are the values corresponding to $\omega_{0}=\Omega_{0}$ and $\omega_{0}=\Omega_{0}^{\prime}$. The frequencies $\Omega=\omega\left(\Omega_{0}\right)$ and $\Omega^{\prime}=\omega\left(\Omega_{0}^{\prime}\right)$ are seen to be smaller respectively than Ω_{0} and Ω_{0}^{\prime} due to the "softening" of the material with increasing amplitude. The points a and a^{\prime} on the $A(\omega)$ curve are obtained respectively by simply carrying the points a_{0} and a_{0}^{\prime} to correspond to the values Ω and Ω^{\prime}. We thus see that the nonlinearity bends the linear response curves to the left and removes the singularity. The analysis can certainly be persued to evaluate the higher harmonics. However the neglect of the higher harmonics are of a smaller consequence than those due to the frequency shifts.

When damping is present, the preceeding analysis basically remains the same. For this latter case, at resonance, the two branches with vertical asymptote in the linear analysis join. The amplitude though finite, is nevertheless large. The same bending of the curves occur as a result of the softening according to the nonlinear analysis. The result of this process is a lowering of the amplification and consequently nonlinear softening exhibits itself as a sort of further effective damping of the waves. Figures $2 b-e$ show the amplification coefficient for a single and multilayer system without and with hysteretic damping.

For the arbitrary input, the amplification results of the calculations are displayed in Figures 3 to 6 . In these figures the
results of the linear analysis are also given for comparison. Results are presented for a single layer (Figure 3 and 4) and a multilayer system (Figure 5 and 6). In Figures 3 and 5 the input motions at the base rock are taken as the Gaussian function: $V(0, t)=\operatorname{Aexp}\left(-\left(t-t_{0}\right)^{2} / \sigma^{2}\right)$ with $A=20 \mathrm{~cm}, \sigma=1 \mathrm{sec}$. and $t_{0}=5 \mathrm{sec}$.; while in Figures 4 and 6 the input motions at the base rock are taken as the record of an earthquake (N21E component of the 1952 Taft strong motion record [9].) For observing the effect of the nonlinearity, the amplitudes are augmented respectively by the factors $3 / 2$ and $5 / 2$ in Figure $3 b$ and $3 c$ as compared to that for Figure 3 a ; and similarly by the factors 2 and 4 in Figure 4 b and $4 c$ as compared to that for Figure $4 a$. Figures $3\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ and $4\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are the amplitudes at the top of the layer in the Fourier transform domain. Figures 5 and 6 show the response of the multilayer system in Figure 2a for the input motions used in Figures 3 and 4. In all of the figures it is seen as expected, that the softening due to nonlinearity has decreased the amplitudes from those of the linear analysis. The effect is, again as expected, more pronounced with increasing amplitude. In all of the above calculations, the damping coefficient κ is taken as 0.1 .

c. Concluding Remarks

The scheme presented here is based on a method appropriate for nonlinear phenomena. It is non iterative and the computational task is of the same order as for the linear analysis. The only additional price is the evaluation of the frequency shift which requires only a summation as in Eq. (3.9). The scheme from this viewpoint is expected to be several times faster than iterative methods such as the one used in SHAKE [7] or the direct integration of the nonlinear equations in the original coordinates [14] or characteristic coordinates such as CHARSOIL [11]. Due to the unavailability of appropriate multidimensional constitutive laws the calculations here have been kept to one dimensional studies. However the method is applicable in higher dimensions and irregular geometries when coupled with numerical procedures in the spacial coordinates for any problem involving nonlinear partial differential equations with analytic nonlinearities. Because the procedure extracts the dominant nonlinear effect through a convenient parameterization of the frequency, the computational effort is kept at the level of that of the linear analysis.

```
    DIMENSION F11(401),R11(401),R22(401),RR (401),A(401),T11(401),
1011(401),D22(401),DD (401),WK(4C1),1WK(401),B(401)
2,X01(5),Y0115),Q(5):QQ(5),A11( 401):A22(401)
1,D(5),RG(5),GO(5),G1(5),ZETA(5),B111(5),B112(5),B121(5),B122(5)
    LOGIICAL LL(401)
    COMPLEX*16 A,B,ZAO,ZA1,ZA2,ZA3,ZA4,AK2,Q日,Q,OC,OK,01,02,S,SC,
1S1,S2,C,CC,C1,C2,AI1,A12,AA,AAC,BE,ABC,XO1,YO1,B111,B112,B121,
2B122,QQ2,A11,A22,A1,A2,A3,A4,A5,A7,AB,R,F1
    REAL*8PI,F,AAA,RO,D,GO,G1,ZETA,T1,TC,DT,T2,OQ,DQ1,FACT,OM,OMO,OM1
    EQUIVALENCE (IWK(1),WK(1),LL(1))
    CALL INDUMP
    THIS PROGRAM CALCULATES THE RESPONSE AND THE DISPLACEMENTS AT THE
    TOP OF THE SOIL LAYER OR LAYERS FOR A GIVEN INPUT MOIION AT THE
    BED-ROCK. IN ITS PRESENT FORM DATA FOR THREE KINDS OF INPUT MO-
    TIONS AFE INCLUDED. THESE ARE HARMONIC MOTION(AO*COS(W*T)).
```

GAUSSIAN MOTION(AO*EXP(-(T-TO)**2)) AND REAL EARTHQUAKE MOTION. IF JKL EQUALS $1,2,3$ THE INPUT CORRESPONDS RESPECTIVELY TO HARMONIC, GAUSSIAN PULSE AND REAL EARTHQUAKE MOTIONSE REMEMBER THAT YOU MUST CHANGE SOME DIMENSIONS ACCORDING TO THE NUMBER OF THE LAYERS DR THE NUMBER OF THE POINTS WHICH ARE USED IN THE FOURIER TRANSFORM. THE RROGRAM HAS THREE SUBROUTINES:
(FFTP), TRANS, AND SHIFTE FFTP CALCULATES FOURIER TRANSFORM OF A GIVEN TIME DEPENDENT FUNCTION OR INVERSE FDURIER TRANSFORM TO GET REAL FOURIER TRANSFORM COEFFICIENTS OF A GIVEN TIME DEPENDENT FUNCTION, YOU MUST USE THE COMPLEX CONJUGATL OF THE COEFFIEIENIS GIVEN BY FFTP, AND MULTIPLY THEN HITH THE TIME INCREMENT CDT O THUS YOU CAN USE THE HALF OF THE COEFFICIENTS(1 TO N/2). TO GET INVI RSE FOURIER TRANSFORM FROM KNOWN FOURIER COEFFICIENTS, YOU MUST OIVIOE
 RICES FOR A GIVEN MOTION AT THE BOTTOMO THE SUBROUTINE SHIFTO CALCULATES THE FREQUENCY SHIFT ACCORDING TO THE UNDERLYING THEORY.

DATA FOR EACH LAYER
$J J=N U M B E R$ OF LAYERS PLUS 1
RO=DENSITY(GR/CM3)
D=THICKNESS OF LAYER (CM)
ZETA= DAMPING RATIO
GO = MAXIMUM SHEAR MODULOUS (DYN/CNZ)
G1 = NONLINEAR ELASTICITY COEFFICIENT (DYN/CME)
FACT=(GO/TY)**2 WHERE TY IS THE YIELD STRESS
N IS THE NUMBER OF DISCRETE FREQUENCIES FOR CASE JKL=I AND IS THE NUMBER OF DISCRETE TIME INTERVALS FOR CASES JKL=2,3. DUR EXPERI ENCES SHOW THAT N $=200,400,(400-800)$ RESPECTIVELY FOR CASES JKL=1,2 . 3 ARE GOOD CHOICES FOR THE PARAMETERS OF THE SYSTEM STUDIED HE RE

DEFINITIONS OF PHYSICALLY RELEVANT PARAMETERS
A(I) ARE GHE FOURIER CDEFFICIENTS OF INPUT MOTION AT BED-RDCK.
THE TOP FOR LINEAR AND NONLINEAF CASES.
AII(I) IS THE FOURIER COEFFICIENT OF RESPONSE AT THE SURFACE FOR
LINEAR CASE THE FOURIER CDEFFICIENT OF RESPONSE AT THE SURFACE FUR
NONLINEAR CASE FOURIER COEFFICIENT OF RESPONSE AT J TH INTERFACE
FOR A (I):
RR(I) IS THE MODULOUS OF A(I).
R11(I) IS IHE MODULOUS OF AII(I).
R22(I) IS THE MODULOUS OF AZ2(I).
DO(I) IS THE INPUT OISPLACEMENT AT THE BED-FOCK.
D11(I) IS THE DISPLACEMENT AT THE TOP FOR LINEAR CASE
D22(I) IS THE DISPLACEMENT AT THE TOP FOR NONLINEAR CASE.
ALL DISPLACEMENTS ARE IN CM.
J=JJ IS THE SURFACE
YOI(J) IS THE FOURIER COEFFICIENT OF STRESS AT J TH INTERFACE IN
OYN/CMZ FOR ACI

```
    PI=3.14159265
    JJ=5
    PARAMETERS FOR INPUT DATA
    READ INPUT DATA
    FACT=250000.
    READ 10,(D(J),RO(J),GO(J),ZETA(J),J=2,JJ)
    FORMAT(4E15.4)
    N=400
    T IS THL PERIOD IN SECONDS.
    OT\IOO. THE STEP SIZE OF THE TIME.
    OT =T/N
    DQ IS THE STEP SIZE OF THE FREQUENCY.
    DQ=2•*PI/T THEGANARY NUMBER I*
    R=(0.,1.)
    DO 20 J=2,JJ
    G1(J)== FACT*GO(J)
    PRINT 30,D(J),RO(J),GO(J),GI(J),ZETA(J)
    30 FORMAT(5X,5E14.6)
    QO(J)=D(J)*CDSQRT(RO(J)/(GO(J)*(1* +R*ZETA(J))))
    JKL=1,2,3
    ##**************************************************************************)
    JKL=3
    *********************
    N2=N
    A:J=10.
    AO IS IHE AMPLITUDE OF HARMONIC MOTION
    00 35 I =1.N2
    35 A(I)=AO/2.
    40 IF(JKL.NE.2) GO TO 60
    NE IS THE EFFECTIVE NUMBER OF THE DISCRETE POINTS FOR NONINFINITE-
    SIMAL AMPLITUDES IN INPUTS IT MUST EE CHANGED ACCORDING TOTHE
    VALUE OF DT SO THAT EXPONENTIAL BECOMES LESS THAN 10E**(-69).
    NE=100
    DO 70 I=1,NE
        AO=10
    TO=5.
    T1=(I-1: % *DT
    70 A(I)=AO*DEXP(T2)
    GOTC 8C
    NKNISNUEHE NUMBER IF THE EARTHQUAKE DISPLACEMENT DATA.
    NK=100
    READ 90,( DD(I),I=1,NK)
    90 FORMAT(10F8.4)
    OO 100 I=1,N
    100 A(I)= DO(I)
    8O CONTINUE
    N1= N/2+1
    N2=N/2-1
        FAST FOURIER TPANSFORM OF INPUI MOTION
    A(I) ARE THE FOURIER TRANSFORM COEFFICIENTS DF THE INPUT FUNCTION.
    CALL FFTP(A,N,IWK,WK,LL)
    DO 110 I=1,N
    A(I)=DT*DCONJG(A(I))
110 RR(I)=DSQRT((DREAL(A(I)))**2+(DIMAG(A(I)))**2)
    5O CONTINUE
```



```
    LINEAR CASE
    JJ=5
    00 120 I=2,N2
    OMO=(I=1.)*OQ
    CALL TRANS(I,JJ,OMO,OG,Q,R,ZETA,D,G0,A,XO1,Y01)
    R11(I)=DSQRT(((DREAL(XO1(JJ)))**2+(DIMAG(XO1(JJ)))**2)
    F11(I)=0M
    120 A11(I)=X01(JJ)
    IF(JKL.EQ.1) GOTO 130
    INVERSE TRANSFORM FOR THE LINEAR CASE
```

```
    DOLI40 I=1,N1
    DO 150 I=1,N2
150 B(NI+I)=DCONJG(B(NI-I))
    CALL FFTP(B,N,IWK,WK,LL)
    00 160 I=1.N
    T11 IS THE TIME.
    T11(I)=DT*(I-1.)
    D11(I)=B(I)
    CONTINUE
        THE END OF THE LINEAR CASE
```



```
    ****************t#***t****************************************************)
    NONLINEAR CASE
    ITERATIONS FOR DETERMINING OMO CORRESPONDING TO A GIVEN OM.
    KK IS THE MAXIMUM NUMBER OF ITERATIONS.
    KK=99
    OO 170 I=2,N2
    QM=(I-1*)*OQ
    K=1
    OQI=OQ
    THE FIRST VALUE OF OMO FOR ITERATION IS TAKEN TO BE OM.
    OMU=OM
200
    CONTINUE
    CALL SHIFY(I,JJ,OMO,QQ,Q,R,ZETA,O,GC,A,XO1,YO1,B111,B112,
    1B121,B122,OM1,G1,RO)
    F IS THE DIFFERENCE BETWEEN THE FREQUENCIES IN THIS AND PREVIOUS
    STEPS.
    F=OMO+OM1-OM
    ERR=O.OCI
    ERR IS THE TOLERANCE OF THE ERRCR OF OMC
    IF(DABS (F).LT.ERR) GO TO 180
    IF(K.EQ.1) GO TO 190
    IF(K.GT.KK) GO TO 180
    IF(F*AAA.GT.0.0) GCTO 190
    DQ1=-DQ1/2.
1 9 0
    AAA=F
    K=K+1
    OMO=OMO+DQ1
    GO TO 200
180 CONTINUE
    A22(I)= XO1(JJ)
    R22(I)= DSQRT(((CREAL(XOI(JJ)))**2+(DIMAG(XOI(JJ)))**2))
    PRINT 210,I,K,OM,OMO,F,A(I),A11(I),A22(I)
210 FORMAT(2X,2I4,2X,2F8.2,2X,7E12.4)
    CONTINUE
    IF(JKL.EQ.1) GO TO 260
    THE INVERSE FOURIER TRANSFORM FOR THE NONLINEAR CASE
    DO 220 I=1,N1
    B(I)=A22(I)/T
    OO 230 I=1,N2
230 B(N1+I)=DCONJG(B(N1-I))
    CALL FFTP(B,N,IWK,WK,LL)
    DO 240 I=1.N
240 D22(I)=B(I)
    PRINT 250,(T11(I),DD(I),D11(I),D22(I),I=1,N)
250 FORMAT(5X,4E14.4)
    THE END OF NONLINEAR CASE
    DISPLACEMENT CURVES
    CALL DFIPSI(T11,D11,N,01,10.)
    CALL DFIPS2(T11,O22,N,12)
260 CONTINUEESZ(TII,DD,N:O1)
    RESPONSE CURVES
    F11(i)=0.0
    RR(i)=A(i)
    R11(1)=RR(1)
    CALL DFIPS1(F11,R11,N2,01,10.)
    CALL DFIPS1(F11,R11,N2,01,
    CALL DFIPSS(F11,RR,N2,O1)
    STop
    END

SUBROUTINE SHIFTCI,JJ, OMO, QQ, Q,R,ZETA, D, GO, A, X01, Y01, B111, B112, 18121, B122, OM1,G1,RC)
OIMENSION Q(5), QQ(5), D(5), GO(5), ZETA(5), B111(5), B112(5), B121(5),
1B122(5), XO1 (5),YO1(5), A(401),RO(5),G1(5)
REAL* \(8 D, G 0, Z E T A, O M O, O M 1, Q Q 1, R D, G 1\)
COMPLEX*16Q,QQ,QQ2,QK, GC, R, B111, B112,B121,B122,X01,Y01,S,C,
\(1 A, Q 1, Q 2, S 1, S 2, C 1, C 2, S C, C C, A I 1, A I 2, B B, B B C, A A, A A C, A 1, A 2, A B, A 4, A 5\), 3A6:A7,A8
CALL TRANS(I,JJ,OMO,QQ,Q,R,ZETA,D,GO,A,XO1,YO1)
INITIAL VALUES OF THE INTEGRALS
AI \(1=0.0\)
AI \(2=0.0\)
\(0010 \mathrm{~J}=2, \mathrm{JJ}\)
\(Q(J)=O M O * Q Q(J)\)
\(Q K=0(J)\)
\(F 1=0(J) /(G O(J) *(1-+R * Z E T A(J)) * Q K)\)
\(Q C=D C O N J G(Q K)\)
\(Q 1=Q K+Q C\)
\(S=\bar{C} O S I N(Q K)\)
\(S 1=C D S I N(Q 1)\)
\(S 2=C O S I N(02)\)
\(C=C O C O S(O K)\)
\(C 1=C O C O S(Q 1)\)
\(\mathrm{C} 2=\mathrm{CDCOS}(02)\)
\(S C=D C D N J G(S)\)
\(C C=D C D N J G(C)\)
\(B B=Y 01(J-1) * F 1\)
\(B B C=D C O N J G(B B)\)
\(A A=X 01(J=1)\)
\(A A C=D C O N J G(A A)\)
\(Q Q 2=3 * * G 1(J) * Q K * Q K * Q C /(4 * * D(J) * * 3)\)
QQ1 = RO (J) *OMO*D(J)
\(A 1=B B * B B=A A * A A\)
\(A 2=B B C * B B C-A A C * A A C\)
\(A 3=4 * * A A * B B * A A C * B B C\)
\(A 4=2\). \(\# A A * B B\)
\(A 5=2 \cdot A A C * B B C\)
\(A T=A A * A A+B B * B B\)
\(A 8=A A C * A A C+B B C=B B C\)
\(A I I=A I I+Q Q 1 *(S I *(A A * A A C-B S * B B C) / O 1+S 2 *(A A * A A C+B B * B B C) / 62+(1-C 1)\)
\(1 \pm(A A * B B C+B B * A A C) / Q 1+(1-C 2) *(B B * A A C-A A * B B C) / Q 2)\)
\(A I 2=A I 2+Q Q 2 *(Q K *(S I *(C I *(A 3-A 1 * A 2)+S 1 *(A 1 * A 5+A 2 * A 4)) / Q 1+\)
\(1 S 2 *(C 2 \star(A 3+A 1 * A 2)+S 2 *(A 1 * A 5=A 2 * A 4)) / Q 2)+Q C *(A 7 *(A 8+S C *(-C C *\)
\(2 A 2+A 5 * S C) / Q C)+A B * S *(A 1 * C-A 4 * S) / G K+S 1 *(C 1 *(-A 1 * A 2+A 4 * A 5)+S 1 *\)
\(3(A 1 * A 5+A 2 * A 4)) /(2 * * Q 1)+S 2 *(-S 2 *(A 1 * A 5-A 2 * A 4)=C 2 *(A 1 * A 2+A 4 * A 5)) /\)
4(2.*日2))
10 CONTINUE
FREQUENCY SHIFT
OMI=DREAL(AI2)/DREAL(AII)
RE TURN
END
SUBROUTINE TRANS (I,JJ, OMO, OQ,Q,R,ZETA,D,GO,A,X01,Y01)
    DIMENSION Q(5), QQ(5), D(5),GO(5),ZETA(5), B111(5),B112(5), B121(5),
    1B122(5), X01(5),Y01(5), A(401)
    REAL \(=80, G 0,0 M 0\), ZETA
    COMPLEX \(\# 16 Q, Q Q, Q K, Q C, F 1, R, B 111, B 112, B 121, B 122, X 01, Y 01, S, C, A\)
    DO \(10 \mathrm{~J}=2 \mathrm{JJ}\)
    \(Q(J)=0 M O * Q Q(J)\)
    \(Q K=Q(J)\)
    \(Q C=O C O N J G(O K)\)
    \(F 1=D(J) /(G O(J) *(1-+R * Z E T A(J)) * Q K)\)
    INITIAL VALUES OF THE TRANSFER MATRRIX ELEMENTS

    TRAISFER MATRICES
    \(\mathrm{S}=\mathrm{COSIN}(0 \pi)\)
    \(C=\operatorname{CDCOS}(Q K)\)
    \(B 111(J)=B 111(J-1) * C+B 121(J-1) * F 1 * S\)
\(B 112(J)=B 112(J-1) * C+B 122(J-1) * F 1 * S\)
    \(B 121(J)=-B 111(J-1) * S / F 1+B 121(J-1) * C\)
    B122 (J) =-8112 (J-1)*S /F1 + B122 (J-1)*C
10 CONTINUE
    \(X_{0} 1(1)=A(I)\)
    Yo1 (1) \(=-x 01(1) * B 121(J J) / B 122(J J)\)
    \(0020 \mathrm{~J}=2, \mathrm{JJ}\)
\(20 \begin{aligned} & X O 1(J)=B 111(J) * X 01(1)+B 112(J) * Y n 1(1) \\ & \mathrm{YOL}(J)=B 121(J) * X 01(1)+B 122(J) * Y Y 1(1) \\ & \\ & R E T U R N\end{aligned}\)
    END




```

 85
 KO=KO ELI
 KB) GO
 GO
 TO
 1 9 0
 K2 = K2 - K 1
 AK2=A(K2+1)
 A(KO+1)=A(KO+1)+AK2
 GO TO 85
 9 0

```

```

 IF (L1) GOCO 9S
 IKB=KB+1
 IJA}=JA+
 DO 110 II=IKB,IJA
    ```

```

100 EA1 = A (K1+1)
105 A(KO+1)= DCMPLX(AO+A1+A2,B0+B1+B2)
AO= -HALF* (A1 +AL) + AO
A1 = (A1*AL)* C30
B0=-HALF*(B1+B2) + BD
B1 = (B1-B2)* * C30
A(K1+1)=DCMPLX(AO-B1,BO+A1)
110 CONTINUE
115
~~
G% TO190
JA=
IC2
(L1)GOTO 12O
S1

```

```

 = KE+1
 135II= IKB,IJA
 KO=KA -IKBOIJA
 K
 KI
 ZAO = A(KO+1)
 IF (LI) GO TO 125
 ZA4=A(K1+1)
 A1=A4*C1-B4*S1
 B1 =A4*S1+B4
 A2=A4*C2-B4*S2
 B2 = A4*S2+B4*C2
 ZA4=A(K3+1)
 A3=A4*C3-B4*S3
 B3=A4*S3+B4*C
 GO TO }13
 125
130

```
135 GOTTO 190
135 GOTTO 190
\(\begin{aligned} 140 & \\ K K & =K F=1 \\ K H & =J K / 2(10+I-1) \\ K 0 & =K B+I S D\end{aligned}\)
\(\begin{aligned} 140 & \\ K K & =K F=1 \\ K H & =J K / 2(10+I-1) \\ K 0 & =K B+I S D\end{aligned}\)
    IF (LI) GOTO 150
    IF (LI) GOTO 150
    \(k=j k-1\)
    \(k=j k-1\)
    \(W K(I C F+1)=C 1\)
\(W K(I S F+1)=S I\)
    \(W K(I C F+1)=C 1\)
\(W K(I S F+1)=S I\)
    DO \(145 \mathrm{~J}=1, \mathrm{~K}\)
    DO \(145 \mathrm{~J}=1, \mathrm{~K}\)
        \(W K(I C F+J+1)=W K(I C F+J) * C 1=W K(I S F+J) * S 1\)
\(W K(I S F+J+1)=W K(I C F+J) * S I+W K(I S F+J) * C 1\)
        \(W K(I C F+J+1)=W K(I C F+J) * C 1=W K(I S F+J) * S 1\)
\(W K(I S F+J+1)=W K(I C F+J) * S I+W K(I S F+J) * C 1\)
145 CONTINUL
145 CONTINUL
    \(I F\)
\(C 2\)
\(=\)
\(=\)\(K K(I C C+I)\)
    \(I F\)
\(C 2\)
\(=\)
\(=\)\(K K(I C C+I)\)
    \(W K(I C K+1)=C 2\)
    \(W K(I C K+1)=C 2\)
    \(W K(I C K+J K)=C 2\)
    \(W K(I C K+J K)=C 2\)
    S2 \(=W K(I S S+I)\)
    S2 \(=W K(I S S+I)\)
    \(W K(I S K+1)=52\)
    \(W K(I S K+1)=52\)
    \(W K(I S K+J K)=-52\)
    \(W K(I S K+J K)=-52\)
    DU \(155 \mathrm{~J}=1, \mathrm{KH}\)
    DU \(155 \mathrm{~J}=1, \mathrm{KH}\)


        \(W K(I C K+K)=W K(I C K+J) * C 2-W K(I S K+J) * S 2\)
        \(W K(I C K+K)=W K(I C K+J) * C 2-W K(I S K+J) * S 2\)
        \(W K(I C K+J+1)=W K(I C K+K)\)
\(W K(I S K+J J)=W K(I C K+J) * S 2+W K(I S K+J) * C 2\)
        \(W K(I C K+J+1)=W K(I C K+K)\)
\(W K(I S K+J J)=W K(I C K+J) * S 2+W K(I S K+J) * C 2\)


\(155 \mathrm{CONTINUI}-1\)
\(155 \mathrm{CONTINUI}-1\)


    \(K 2=K D\left(\begin{array}{l}K 3 \\ Z A D= \\ A(K O+1)\end{array}\right)\)
    \(K 2=K D\left(\begin{array}{l}K 3 \\ Z A D= \\ A(K O+1)\end{array}\right)\)
    \(A 3=A C\)
    \(A 3=A C\)
    \(B 3=B 0\)
    \(B 3=B 0\)
    गु \(175 \mathrm{~J}=1\), KH
    गु \(175 \mathrm{~J}=1\), KH


        165
        165

    FFTP287
        \(K=K F-J\)
\(Z A 4=A(K I+1)\)
\(A 1=A 4 * W(I C F+J)=B 4 * W K(I S F+J)\)
\(B A=A 4 * W K(I S F+J)+B 4 * W K(I C F+J)\)
        \(Z A 4=A(K I+1)\)
\(A 1=A 4 * W(I C F+J)=B 4 * W K(I S F+J)\)
\(B I=A 4 * W K(I S F+J)+B 4 * W K(I C F+J)\)
        \(Z A 4=A(K I+1)\)
\(A 1=A 4+W K(I C F+J)-B 4 * W K(I S F+J)\)
\(B I=A 4+W K(I S F+J)+B 4 * W K(I C F+J)\)
    \(2 A 4=A(K 2+1)\)
        \(A 2=A 4 * W K(I C F+K)-B 4 * W K(I S F+K)\)
        \(B 2=A 4 * W K(I S F+K)=B 4 * W K(I S F+K)\)





175
    CONTINUE
A(KO 1 )

    D0 \(185 \mathrm{~J}=1, \mathrm{KH}\)
        \(K_{1}=K_{1} \pm I S P\)
\(K_{2}=K_{2} \pm I S P\)
        \(K_{K}={ }^{2}\)
\(A_{1}=A O\)
        \(A 1=A O\)
\(B 1=B 0\)
        \(B 1=B 0\)
\(A 2=2 E R O\)
\(B 2=2 E R D\)
00180
        \(A 2=2 E R O\)
\(B 2\)
00
\(=180 R K\)
1
    \(A(K O+1)=D C M P L X(A 3, B 3)\)
        \({ }_{A 1}^{180}={ }_{A 1}=1, \mathrm{KH}\)
        \(A 1=A 1+W K(I A P+K) \neq W K(I C K+J K)\)
        \(A 2=A 2+W K(I A M+K) * W K(I S K+J K)\)
\(B 1=B 1+W K(I B P+K) * W K(I K+J K)\)
\(B 2=B 2+W K(I B M+K) * W K(I S K+J K)\)

            \(K F) J K=J K=K F\)
            CONTINUE
            \(A(K 1+1)=O C M P L X(A 1-B 2, B 1+A 2)\)
\(A(K 2+1)=D C M P L X(A 1+B 2, B 1-A 2)\)

\footnotetext{

}
\(I^{F}=\left(1+{ }_{1}{ }_{1} E \cdot M M\right)\) GO TO 195
32
FFTP287
FFTP288
FFIP289
FFP290
FFTP291
FFTP292
FFTP293
FFTP294
FFTP295
FFTP296
FFTP 297
FFTP298
FFTP299
FFTP3CO
FFTP302
FFTP 304
FFTP
FF
FF
FFT
FFTP309
FFTP310
FFTP
FF
FFTP
FFTP 13
FFTP
F
\begin{tabular}{l} 
FFIP \\
FFTP 16 \\
\hline
\end{tabular}
FFTP 18
FFTP319
FFTP321
FFTP323
FFTP324
FFTP32
FFIP
FTP
220 CONTINUE
THE RESULTEIS NOW PERMUTED TO
NOFMAL ORDER.
    IF (KT.LE. O) GO TO 270
    \(J=1\)
\(1=0\)
\(K B=\)
\(K 2=\)
230

\section*{continue}
```

195

```
195
200
```

200

```


```

 GO TO \(200-\)
    ```
    GO TO \(200-\)
205 IF (I .NE. MM) GOTO 210
205 IF (I .NE. MM) GOTO 210
    \(C 2=C 1\)
\(C 1=C M * C 1-S M * S 1\)
\(S 1=S M * C 2+C M * S 1\)
```

 \(C 2=C 1\)
 $C 1=C M * C 1-S M * S 1$
$S 1=S M * C 2+C M * S 1$

```


```

215

```
215
    KA \(=K T+1\)
    KA \(=K T+1\)
    IF (JA.LT: 1 ) GO TO 225
    IF (JA.LT: 1 ) GO TO 225
    DO \(220 \mathrm{KII}=1 . J A\)
```

 DO \(220 \mathrm{KII}=1 . J A\)
    ```


    K2 \(=I W K(I D+J)+K B\)
\(K J=K 2 K(I C+J-1)\)
\(J J=I W K K\)
\(J K=J J\)
\(K 0=K B+J J\)

235
    0
    \(A(K O+1)=A(K 2+1)\)
\(A(K Z+1)=Z A 4\)
    \(K_{0}=K_{0}+1\)

    \(K 0=K 0+I S P\)
\(K 2=k 2+I S P\)
\(I F(K 0 . L T . K\)


    GOTO 235


My
- オin
FFTP335
FFTP
FFTY
FFTP
FFTP 39
FEIP340
FFTP3420
FFTP3446
FFIP 3456
FFTP347
FFTP3490
FFTP 351 C
FFTP353:
FFTP 3548
FTP 355

245

270
            \(I S P=I W K(I D+K T)\)

    IT \(\left.{ }^{(K T A}=1 L L+K B+1\right)\) GOTO 9005
    \(I T B=I T A+J K\)
    IDMI \(=K I D-1\)
    \(I M=M+1\)

```

 DO275 J = IKT,IM
 IWK(IDMI+J)'= IWK(IDMI+J)/JK
 275 CONTINUE
JJ
JJ=IWK(ID+K+1) + JJ
IF(JJ.LTOIWK(ID+K)) GO TO 285
JJ=JJ=IWK(ID+K)
KO= TM + + % 1
285 { IWK(ILL+J)=JJ
29 CONTINUE
DETERMINE THE PERMUTATION CYCLES
TO TWO.
DO 300(IWK=(1LLL+J) .LE, 0) GO T0 300
295
K2 = J IABS(IWK(ILL+K2))
IF (KZ.EQ: J)GOTO 300
IWK(ILL+KZi)=-IWK(ILL+K2)
300 CONTO FO 295
300 CONTINUE

```

```

290 CONTINUE
OF LENGTH GREATER THAN OR EQUAL
T0 300
295

```

REORDER A FOLLOWING THE
PERMUTATION CYCLES
\(\mathrm{j}=\)
\(\mathrm{K}_{\mathrm{B}}=\)
\(\mathrm{K}^{2}=\)
\(K N=\)
\({ }_{K}^{I F}=(I W K(I L L+J) \cdot L T \cdot 0)\) GO TO 305
\(K_{K 0}=I W_{K}(I L L+J){ }_{K}{ }_{K}\)
\(3102 A 4=A(K O+I+1)\)
\(W K(I T A+I)=A 4\)
\(W K(I T B+I)=B 4\)
\(\frac{1}{I}=\left(\frac{1}{I}+L \frac{1}{T}=J K\right)\) GO TO 310
\(315 K=-I W K(I L L+K)\)
\(J J=K O\)
\(K 0=J K\)
\(A(J+1+1)^{2}\)
320

\(\left.\frac{1}{1}=(1) \cdot L T \cdot J K\right) G 0 T 0320\)
\({ }_{A}^{I F}\left(K(K+1+1)={ }^{(K)}{ }_{D C M P L X}{ }^{\text {GO }}\left(W K^{3} 15(I T A+I), W K(I T B+I)\right)\right.\)
325
\(\frac{I}{I}=\left(\frac{1}{I}+\frac{1}{1}, J K\right)\) GO 10325
\(I_{F}=0\)
\({ }_{J}^{I F}=(J \cdot L T \cdot k 2)\) GO TO 305
\(K B=K B+I S P\)
IF (KB.LT. KN) GD TO 305
005
END
FFTP4150
FFTP4170
FFTP4188
FFTP4190
FFTP4200
FFTP421C
FFTP422C
FFTP423C
FFPP4240

\section*{305}
\(\rightarrow\)

\(\qquad\)

\section*{REFERENCES}
[1] a. Bojadziev, G.N., and Lardner, R.W., "Monofrequent Oscillations in Mechanical Systems Governed by Second Order Hyperbolic Differential Equations with Small Non-Linearities", Int. J. of Nonlinear Mech. Vol. 8. p. 289, 1973.
b. Bojadziev, G.N., and Lardner, R.W., "Second Order Hyperbolic Equations with Small Non-Linearities in the Case of Internal Resonance," Int. J. of Nonlinear Mech., Vol. 9, p. 397, 1974.
c. Bojadziev, G.N., "Nonlinear Vibrating Systems in Resonance Governed by Hyperbolic Differential Equations," Int. J. of Nonlinear Mech., Vol. 11, p. 374, 1976.
[2] Minorsky, N., "Nonlinear Oscillations," Van Nostrand, Princeton, N.J., 1962.
[3] a. Ablowitz, M.J., Askar, A., Cakmak, A. and Engin, H., "Resonant Vibrations of Nonlinear Continuous Systems I: Nondamped case," Int. J. Nonlinear Mech. (to appear).
[3] b. Engin, H., Ablowitz, M.J., Askar, A. and Cakmak, A., "Resonant Vibrations of Nonlinear Continuous Systems II: Damped and Transient Cases," Int. J. Nonlinear Mech. (to appear).
[4] Engin, H., Askar, A and Cakmak, A.S., "An Assessment of Poincare's Method for Nonlinear Oscillators and Improvement of its Range of Validity," submitted Int. J. Non-Linear Mech., in press.
[5] Pestel E.C. and Leckie F.A., "Matric Methods in Elastomechanics, Introduction to State Vectors and Transfer Matrices," McGraw-Hill N.Y., (1963) Chapter 3.
[6] a. Millman, M.H. and Keller, J.B., "Perturbation Theory of Nonlinear Boundary Value Problems", J. Math. Phys., 10, 342, (1969).
b. Keller, J.B., and Ting, Lu., "Periodic Vibrations of Systems Governed by Nonlinear Partial Differential Equations", Comm. Pure and Applied Math., 19, (1966).
[7] Seed, H.B., and Idriss, I.M., "Influence of Soil Conditions on Grounds Motions During Earthquakes", Journal of the Soil Mechanics and Foundations Division, ASCE, 95, 99, (1969).
[8] Witham, G.B., Variational Methods and Applications to Water Waves, in Hyperbolic Equations and Waves, ed. M. Froissart, Springer Verlag, Berlin, (1970).
[9] Chen, A.T.F., "Applications of Stress-Strain Relations in Nonlinear Ground Motion Analysis," U.S. Geological Survey Report USGS-GD-76-016.
[10] Krizek, R.J., and Franklin, A.G., "Nonlinear Dynamic Response of Soft Clay in Vibration Effects of Earthquakes on Soils and Foundations," ASTM STP 450, Am. Soc. Testing and Materials, (1969).
[11] Streeter, V.L., Wylie, E.B., and Richart, F.E., "Soil Motion Computations by Characteristics Method," Journal of the Geotechnical Engineering Division, ASCE, 100, 247, (1974).
[12] Idriss, I.M., Dobry, R., and Singh, R.D., "Nonlinear Behavior of Soft Clays During Cyclic Loading," Journal of the Geotechnical Engineering Division, ASME, 104, 1427, (1978).
[13] Dobry, R., and Athanasiou-Grivas, D., "Stress-Strain Relation for Soils Under Earthquake Loading," Rep. No. 78-2, Dept. Civil Eng., Resselear Polytechnic Institute, Troy, N.Y., 12181 (1978).
[14] Joyner, W.B., and Chen, A.T.F., "Calculation of Nonlinear Ground Response in Earthquakes," Bulletin of the Seismological Society of America, 65, 1315, (1975).

Figure 1 Elimination of \(\omega_{0}\) between \(A=A\left(\omega_{0}\right)\) and \(\omega=\omega\left(\omega_{0}\right)\) for obtaining \(A=A(\omega)\).

Figure 2 Amplification spectra (a) Parameters \(\rho, G_{0}\) and layer thicknesses d for the multilayered system, (b, c) Amplification spectrum for the lowest layer; (d, e) Amplification spectrum for the multi layer system

Figure 3 Response of a single layer to the Gaussian input motion at its base as \(v=A \exp \left(-\left(t-t_{0}\right)^{2} / \sigma^{2}\right)\) with \(\sigma=1 \mathrm{sec} ., t_{0}=5 \mathrm{sec}\). The parameters for the layer are those of the top layer in Figure \(2 a\) and \(k=0.1\). ( \(a^{\prime}, b^{\prime}, c^{\prime}\) ) are the Fourier amplitudes corresponding to cases ( \(a, b, c\) ).

Figure 4 Response of the single layer system to the earthquake forcing applied at its base. The parameters for the layer are those of the top layer in Figure \(2 a\) with \(k=0.1\). The input motion is the first 100 time intervals of the Taft 1952 earthquake [9]. The amplitude of the motion is taken as (a) the actual value (b) two times the actual value (c) four times the actual value. ( \(a^{\prime}, b^{\prime}, c^{\prime}\) ) are the Fourier amplitudes corresponding to cases ( \(a, b, c\) ).

Figure 5 Response of the multilayer system in Figure \(2 w\) with \(k=0.1\) to the Gaussian input motion at its base as \(v=A \exp \left(-\left(t-t_{0}\right)^{2} / \sigma^{2}\right)\) with \(\sigma=1 \mathrm{sec} ., t_{0}=5 \mathrm{sec} .\left(a^{\prime}, b^{\prime}\right)\) are the Fourier amplitudes corresponding to cases ( \(a, b\) ).

Figure 6 Response of the multilayer system in Figure \(2 a\) with \(k=0.1\) to the earthquake forcing applied at its base. The input motion is the first 100 time intervals of the Taft 1952 earthquake [9]. The amplitude of the motion is taken as (a) the actual value (b) two times the actual value; ( \(a^{\prime}, b^{\prime}\) ) are the Fourier amplitudes corresponding to cases (a, b).




FIGURE 2a
\[
40
\]


FIGURE 2b

1

1

1

1

1

1


FIGURE 2c


FIGURE 2d


FIGURE 2e


FIGURE 3a


FIGURE 3b


FIGURE 3c


FIGURE 3a'


FIGURE \(3 b^{\prime}\)


FIGURE 3c'


FIGURE 4a


FIGURE 4b


FIGURE 4c


FIGURE 4a'
53


FIGURE 4b'
54



FIGURE 5a


FIGURE 5b



FIGURE 5b'


FIGURE 6a


FIGURE 6b

1

1

1


FIGURE 6a'


FIGURE 6b'```


[^0]:    *The index $\&$ is added $\omega_{0}$ of the formulation in the preceeding sections to distinguish between the various frequencies.

