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AN ANALYTIC METHOD FOR

STRONG MOTION STUDIES IN LAYERED MEOIAt

H. Engin*, A. Askar**, A.S. Cakmak

Princeton University

Department of Civil Engineering, Princeton, N.J. 08544

An analytic method is presented for calculating strong motion spectra

and response to arbitrary input in layered media. The method is based on
the removal of secular terms at resonance of the equations with polynomial
nonlinearity. The nonlinear effects are introduced by the frequency shifts
calculated from the secular term according to the method by Millman and
Keller. The procedure, through a convenient parametrization of the frequency,

allows one to deal with linear equations. This possibility permits the
extension of the method to multilayer systems by the use of transfer
matrices. The response to an arbitrary input motion is obtained from the
response spectrum in the frequency domain by the use of (Fast) Fourier
Transform. The competitive analytical methods such as Ritz-Kantorowich's,

Krylov-Bogoliubov-Mitrapolsky's and the extension of the Duffing method by
Ablowitz and the present authors lead to nonlinear algebraic equations for
the amplitudes. These methods would therefore be untractable in multilayer
systems as they would require the solution of large coupled nonlinear
algebraic equations. The method developed here is applied to wave amplifi~

cation studies in geotechnical engineering. The constitutive laws are
defined by the Romberg-Osgood relation as a backbone curve along with
hysteretic damping. The scheme here is based on a method appropriate for
nonlinear phenomena and the computational task remains at the order of that
of the linear analysis.
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I. INTRODUCTION

There are a wealth of phenomena such as shifts in frequency, dis

persion due to amplitude, generation of harmonics, removal of resonance

singularities, jump from a state to another ... which are primarily non-

linear in nature. This paper studies the aforementioned phenomena as

it pertains to the forced shear oscillations of an elastic layer with a

nonlinear stress-strain law of polynomial type. Various methods such as

Ritz-Kantorowich [lJ, Krylov-Bogoliubov-Mitropolsky [2J, extension by the

present authors of the classical Duffing solution [3,4] have been used

for the solution of this class of problems. All these methods lead to

nonlinear algebraic equations for the amplitudes of oscillation and would

be extremely difficult to apply to multilayer systems. In fact, the

requirement of continuity in the displacement and stress across the inter-

faces between layers couples the motions of the layers. This would in

the methods in [1-4J lead to rather complicated coupled nonlinear algebraic

equations for the amplitudes of oscillation in the layers. The procedure

here through a convenient parametrization allows to deal with linear

equations. Consequently the continuity requirements across the layer

interfaces lead to linear algebraic equations for the amplitudes. These

linear equations offer the attractive alternative to use a transfer matrix

formalism familiar in the literature in layered media [5J.

The basis of the method is the work of Millman and Keller's [6J.

An analysis of this method and extensive calculations for a single layer

can be found in work by the present authors [3,4J. Nevertheless, the

single layer case is presented here as this solution is needed for the





multilayer system according to the transfer matrix formalism. Once

the amplification spectrum is obtained from the solutions, it can be

used in the same manner as in other methods (see for example the SHAKE

procedure [7J that is widely used in earthquake studies) through a

Fourier analysis for obtaining the response to an arbitrary input.

The motivation for this work was to obtain the strong motion response

of soil layers. Similar problems exist in the finite amplitude vibrations

of laminates, composite plates, water waves in a basin, etc. The nonlinear

stress-strain relation and the corresponding field equations studied in

this paper are:

(1 .1)

Above T is the stress, v the displacement, p the density, Go' Gl
are respectively the linear and nonlinear shear moduli and ~ is the

damping coefficient. The connection between these equations and the

Ramberg-Osgood model for soil under cyclic loading is discussed in Sec. 5.
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2. SPECTRUM OF A SINGLE LAYER

Before going into the solution for a multilayer system, the method

is introduced in some detail for a single layer of thickness d which

is forced sinusoidally with frequency w at x = d and is traction

free at x = O. The problem is defined by the equation (1.1) and the

following boundary and the periodic initial conditions:

T I =0
x=O

vI =a coswt
x=d

v(x, wt) = v(x, wt + 2n) (2. 1 )

Introducing the dimensionless time s and the dissipation coefficient K

s = wt

The equations (1.1) and (2.1) read:

(2.2)

2
G (av + K ~) + AG (~)31 =0o ax 1 axasax x=O

v(x, s + 2n) = v(x, s)

vi =a coss
x=d

(2.3)

Above A = 1 is inserted for ordering the nonlinear terms. With the

expansions

v(x, s; A) = vo(x, s) + AV1(x, s) + ..•

r' _.- ... -.-

(2.4)





and the separation of the terms in the various powers of A in (2.3)t

one has:

and

vol =a coss
x=d

(2.5)

a2v avo 2 a2voLV l = 2p 0
wowl ~- 3Gl (ax)

ai

aV l a2v av
1 + G (~)31 =0 vll =0 (2.6)Go (ax + K asax) 1 ax x=o x=d

The periodic solutions in s are expressed conveniently in complex terms.

Proceeding with Vo t we have:

With (2.7), (2.5) reduces to

(2.7)

(1 + iK)G VI,I = 0
o 0 x=O

1
V I =- a
olx=d 2

(2.8)

ConsequentlYt the solution for the system in (2.8) is readily found to be

A = a/2 cosQo (2.9)





where Qo is a dimensionless wave number defined as:

The shift in frequency is determined by requiring Vo to be orthogonal

to the forcing term for the equation for vl [6b]. This procedure

extracts the secular terms that would otherwise cause the scheme to

~2v 2
o 0 av 2 avo
--2 - 3Gl (~x?) --2) Vo dsdx = 0

as 0 ax

diverge. Thus, the orthogonality condition in (2.6) yields:

2n d

f f (2p"0"1
5=0 x=O

By the substitution of Vo according to (2.7) and the integration over

s , (2.11) yields:

(2.11)

d

4p"0"1 J V01V~1 dx + 3G1
x=O

" ""With the substitution of Vol and Vol from (2.8), the above equation

becomes:

(2.12)

d

J
1 12

---V
[1 - iK 01

x=O

l""'":
(

(2.13)





A rearrangement of (2.13) yields:

d

J
V V* dx =

01 01

o

d

3G 1 ([Q*2 V'2 V*2 + Q2 V*'2V2
1 ~ 6 0 01 01 0 01 01

t2.14)

A convenient expression for wow1 is obtained by introducing the following

definitions:

d2 1
11 = (AA*Q Q*)2 d

o 0

d
r
J(Q:2 V~~ V:~ + Q~ v:~2V61)dx

o

d
2 r I

I = 2__d_--=- (Q2 + Q*2) 1 J V
2 (AA*Q Q*)2 0 0 d 01

00
0

With (2.15), wow1 is found from (2.14) as:

Using the expression for A in (2.9) one has:

(2.15)

(2.16)

(2.17)





With the substitution of Vol given by (2.9), the integrals in (2.15)

read:

1

11 =t f (1 - cos2QoY cos2Q~Y)dY =t (1 - f 2)

o

si n2QoY sin2Q~y dy = 12 1r g2
(1+,1( ) c.

1

13 = f cosQoY cosQ~y dy = f,
o

where y = x/d and

o

(2.18)

(2.19)

Consequently, the wave amplification is expressed parametrically by

(2.9) and (2.17); i.e.

(2.20)





where

It should be noted also that for

(2.21)

lim Qo = lim Q* = qo
K-+O K-+O 0

( / G )1/2 d- p 0 Wo (2.22)

In this case, (2.17) becomes:

with

(2.23)

(2.24)

This result is also obtained by direct solution of (2.3) after setting

K = O. This observation indicates therefore that the solution in (2.17)

is uniformly valid in K.

Above, Wo is a convenient nonphysical parameter for expressing the

solution. The connection between this method and a more conventional

method similar to Duffing solution may be seen in Ref. [3,4J. The solu

tion for the amplitude A in (2.9) as a function of the physical para

meter w may be obtained by the elimination (numerical or graphical) of

wo ' Fig. 1 illustrates graphically the elimination of Wo between

10





A(wo) and w(wo) to yield A(w) . These figures and the process of

eliminating Wo are discussed in Section 5b.
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3. MULTI-LAYER SYSTEM

In the preceeding section, the problem of a single layer is

solved. In this section, the solution is extended to a multi-layer

system with (N-l) layers and N interfaces. The displacement and

stresses are taken to be continuous across the interfaces. The nota-

tion is presented in Fig. 2. The boundary conditions are prescribed on

the 1st and Nth face. For the kth layer, the upper face is the

kth interface, and the lower face is the (k_l)st interface. On the

kth interface, the displacement and stress are labelled with the index

k and are denoted respectively as Vk and Tk . For representing the

solution local coordinates are used for each layer such that x = a

and x = dk defi ne the lower and upper faces of the kth interface.

As a preparation for the solution for a multi-layer system, we

first consider a typical layer under arbitrary boundary conditions.

In this case great flexibility is gained by formulating the problem as

an ini,tial value problems in space in the usual manner [5]. To this

purpose the differential equations in (2.8) are still valid while the

boundary conditions for Vol are substituted by:

(3.1)

With this notation the solution replacing (2.9) becomes:

12
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The displacement and stress on the upper face of the kth layer

are obtained by setting x = dk in (3.2). The resulting expressions

are then represented in matrix form as:

~k = ~k . ~k-l

where

(3.3)

cosQo

dk
sinQo(l + iK)G Qo 0

~k =

-(1 + iK)G Qo 0 sinQo cosQo (3.4)dk

Above) the matrix ~k carries the information from the (k_l)st face to

the kth and is commonly called as the IITransfer Ma tri XII [5 J. The

problem for a system with N interfaces (i.e. N-l layers) has 2(N-l)

unknowns. These are determined by the 2(N-2) continuity conditions at

the inner interfaces and the two prescribed conditions, one at each of

the outer faces. However, the transfer matrix method reduces the problem

to the solution of a single equation. In fact, the transfer matrix is

utilized by carrying the information from the face 1 to the face 2 ,

from face 2 to face 3 , and so on until the face N . Thus for the

kth face

X = B • ~l (3.5)_k -k

~::r•. _ ..

:13





where

k = 2, ••• N (3.6)

For k = 2 , the convention ~l = ~ (I, the identity matrix) is adapted.

For k = N in (3.5), in explicit form one has:

=
B" N, Vl

Tl (3.7)

If Vl and VN are the prescribed conditions, Tl is given by the first

of the two equations in (3.7). Similarly, if Vl and TN are the pre

scribed conditions Tl is found from the second of the two equations in

(3.7). Once, the component of X not given as a boundary condition is

determined, the complete solution is generated by (3.3) or (3.5).

The shift in frequency is calculated again along the same reasoning

as in Section 3. The only difference is that Vo and the POE for vl
here are expressed piecewise. Consequently the integral for the inner

product of Vo with the right hand side of the POE for vl has to be

calculated with the corresponding expression in each interval. Thus,

(2.14) is replaced by:

dk dk
N

Pk I
N Glk 2

I
[l-Lk

12 *2
4wowl L Vol ~ldx = 3 L P k GWo Vol Vol

k=2 k=2 ok
0





For a convenient expression of (3.8) let us again introduce the defini

tions in (2.15) where the integrals are evaluated with the appropriate

parameters for each layer and A is substituted with Vk_l . Clearly

in this case Vol has the expression in (3.2) and the values of integrals

are different from those in (2.18). With (2.15) interpreted as above,

(3.8) yields:

For evaluating the integrals in (2.15), let us rearrange the expression

for Vol in (3.2) as:

where

Then Ilk - 13k in (2.15) read (Qo denotes Qok)

1

J
2 * * * 2Ilk = 0 (-5;nQoY+ tk_1c05QoY) (C05QoY + t k_15; nQoY) dy

+ complex conjugate

* * *x(cosQoY + tk_lsinQoy) (cosQoY + tk_lsinQoy)dy

15
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(3.11)





(3.12)

The evaluation of the integrals in (3.12) gives:

(3.13)

where fm and gm(m = 1,2) have the same definitions as in (2.19) and

the remain1ng coefficients hm(m = 1,2) are defined as:

h :=
m (3.14)

It should be noted that the solution for a single layer in (2.17) is

obtained from (3.9) and (3.13) by setting t k- l = 0 and Vk- l =A = a/2cos Qo
Figure 2 presents the amplification results for the multilayer system with

the parameters as indicated in Fig. 2a.

16





4. ARBITRARY INPUT

The result of the preceding sections allow to determine the amplitude

on the surface. Using the frequency-amplitude dispersion relation obtained

with the proper frequency shift, one can obtain by a Fourier Transform

(fast or discrete Fourier Transform) the response to an arbitrary input

given in terms of its Fourier components. A higher degree of approximation

would introduce additional nonlinear effects such as a further correction

on the frequency shif~ generation of higher harmonics and higher order

mode coupling. However these effects are of smaller magnitude than the

shifts in the frequency-amplitude spectrum at the leading order and are

neglected. A theoretical justification for neglecting these higher order

resonances may be found in Ref. [8]. Basically a discrete Fourier Trans-

form requires equally spaced discrete frequencies such as w£ = t~w with

~w being a small increment. The above analysis however is formulated in

terms of the parameters In the calculations therefore, first the

wo~ corresponding to a given wt is needed to be determined. This is

achieved by standard application of the "secant method". In the calcula

tions, the choice of the starting value is facilitated since, the calcula-

tions are done for an increasing set of values for w
t

The converged

solution of wo~ provides a good starting value for the evaluation of

Wo(~+l) . Thus for a forcing at the base as

VI
base == Vl (4.1)

one first finds the response for each frequency w
t

and then recombines

these for obtaining the total response to the prescribed input. Thus

for A(w£) being the amplification factor for the component of the input

*The index t is added Wo of the formulation in the precea:ling sections
to distinguish between the various frequencies.

17





at the frequency w£ ' the response to the forcing in (4.1) becomes:

In doing these calculations it should be borne in mind that since the

amplitudes at each frequency are different, a different order of non-

linearity is induced for each Fourier component. Figures 3 to 6 give

comparisons of the linear and nonlinear responses to a Gaussian and a

(4.2)

real earthquake forcing (N21E component of the 1952 Taft strong motion

record [9J) at the base of single and multilayer systems.

r -.-
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5. DISCUSSION

a. Connection With Soil Mechanics

Several investigators have shown that the relationship between

shear modulous and strain in soils is nonlinear and that the modulus

is a decreasing function of the strain [10]. Among these we adopt the

Ramberg-Osgood constitutive relation as a backbone curve with

G/Gmax = 1/[1 + a(T/Ty)R-l]. Here T = shearing stress; Ty = a yield

or reference shearing stress; and a and R are parameters which

determine the shape of the curve. It is found that for a large variety

of soils the Ramberg-Osgood relationship fits the data quite reasonably

with a = 1 , R = 3 and Ty = 0.4 Su where Su is the undrained

shearing strength [11J. The strain-stress relationship of Ramberg-
2Osgood with a = 1 and R = 3 reads: T/Ty = (GmaxY/Ty)/[l + (T/Ty) J.

To put this equation in a more conventional form, substitute T/Ty

iteratively to get T/Ty = (GmaxY/Ty)[(l + GmaxY/Ty)2/(1 + T/Ty)2J-l

Expanding the (-1) power by the binomial formula, as an approximation

to the Ramberg-Osgood relationship, one obtains:

(5.1)

A simple study shows that the form of G as proposed here is a very good

approximation of the Ramberg-Osgood relationship for a large range of

strains corresponding to T/Ty ~ 1 while also being of convention form

for the applications.

is





At this stage we deviate from the more conventional uses of the

Ramberg-Osgood relation which are in the realm of plasticity theory.

Our analysis uses the Ramberg-Osgood relation as the backbone curve and

the damping is introduced through a linear term in the strain rate, as

is experimentally suggested [lOJ. Thus we take:

For the cyclic loading with y = yocoswt , the fundamental part

of the stress (i.e. the part in the stress with the frequency w) is:

(5.2)

For soils it is observed that the nature of the damping is hysteretic

and thus is independent of the frequency of oscillation. It is known

that the choice K= ~w/G (K = constant) provides a reasonablemax
description of the damping [7 J. The compliance is obtained by substi-

tuting cOSwt and sinwt in (5.3) by their complex representation.
i6For G = IGje ,(5.3) yields:

It is seen that IGI decreases nonlinearly with the strain while the

phase angle increases with it as is observed in the experiments DO].

20
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Introducing the definitions

Go = Gmax

G
Gl = -t max)2G (5.5)

T maxy

one obtains the equations in (1.1) studied above.

It may be taught that our model may be adequate for the description

of soil behavior in general. However the use of backbone curves along

with a hysteretic damping has proven as a successful model for the behavior

in soils under cyclic loading [12,13]. In this spirit bears resemblances

to the soil model used by Seed and co-workers [7J. Our analytical method of

calculation is one appropriate to nonlinear phenomena. While equivalent

linearization the procedures are iterative, ours are not. More critically,

at each iterative step of the equivalent linearization calculations, the

backbone curve is not followed but provides only a means to determine the

end point of the straight line drawn from the origin in the (T,y) space

to the state reached at the end of the deformation. In our calculations,

however, the nonlinear path on the backbone curve in the (T,y) space is

followed.

b. Discussion of the Calculations

Figure 1 illustrates the basic idea in the calculation procedure. For

a clear description of the effect of nonlinearity, let us consider first

the case with no dissipation. In this case the spectrum for the amplifica

tion in the displacement as well as those for the velocity, acceleration

and the energy have singularities due to the term llcos qo as

q = I ~ w d ~ (2n + 1)TI/2. For the linear analysis w = Wo so that
0

0
0

the same singularities exist in the frequency w. However, for the nonlinear

21





analysis qo or equivalently Wo are merely convenient parameters and

the pair of equations A= A(wo) (Figure la) and w = w(wo) (Figure lb)

are the parametric expressions for the physical relationship A= A(w) .

The desired response of the system is expressed by the relation A = A(w)

which is obtained by the elimination of Wo between A(wo) and w{wo) .

In Figure 1, the points ao and a~ are the values corresponding to

Wo = Qo and Wo = Q~. The frequencies Q = w(Qo) and QI = w(Q~) are

seen to be smaller respectively than Qo and Q~ due to the "softening"

of the material with increasing amplitude. The points a and a l on the

A(w) curve are obtained respectively by simply carrying the points ao
and a~ to correspond to the values Q and QI • We thus see that the

nonlinearity bends the linear response curves to the left and removes the

singularity. The analysis can certainly be persued to evaluate the

higher harmonics. However the neglect of the higher harmonics are of a

smaller consequence than those due to the frequency shifts.

When damping is present, the preceeding analysis basically remains

the same. For this latter case, at resonance, the two branches with

vertical asymptote in the linear analysis join. The amplitude though

finite, is nevertheless large. The same bending of the curves occur as

a result of the softening according to the nonlinear analysis. The

result of this process is a lowering of the amplification and consequently

nonl inear softening exhibits itself as a sort of further effective damping

of the waves. Figures 2b-e show the amplification coefficient for a

single and multilayer system without and with hysteretic damping.

For the arbitrary input, the amplification results of the

calculations are displayed in Figures 3 to 6. In these figures the

22





results of the linear analysis are also given for comparison. Results

are presented for a single layer (Figure 3 and 4) and a multilayer

system (Figure 5 and 6). In Figures 3 and 5 the input motions at the

base rock are taken as the Gaussian function: V(0,t)=Aexp(-(t-to)2/o2)

with A=20cm, a = 1 sec. and t = 5 sec.; while in Figures 4 and 6o
the input motions at the base rock are taken as the record of an earth-

quake (N21E component of the 1952 Taft strong motion record [9J.) For

observing the effect of the nonlinearity, the amplitudes are augmented

respectively by the factors 3/2 and 5/2 in Figure 3b and 3c as compared

to that for Figure 3a; and similarly by the factors 2 and 4 in Figure 4b

and 4c as compared to that for Figure 4a. Figures 3(a ' , b l
, c l

) and

4 (aI, b l
, c l

) are the amplitudes at the top of the layer in the Fourier

transform domain. Figures 5 and 6 show the response of the multilayer

system in Figure 2a for the input motions used in Figures 3 and 4. In

all of the figures it is seen as expected, that the softening due to

nonlinearity has decreased the amplitudes from those of the linear

analysis. The effect is, again as expected, more pronounced with increasing

amplitude. In all of the above calculations, the damping coefficient

K is taken as 0.1 .





c. Concluding Remarks

The scheme presented here is based on a method appropriate for non

linear phenomena. It is non iterative and the computational task is of

the same order as for the linear analysis. The only additional price is

the evaluation of the frequency shift which requires only a summation as

in Eq. (3.9). The scheme from this viewpoint is expected to be several

times faster than iterative methods such as the one used in SHAKE [7]

or the direct integration of the nonlinear equations in the original

coordinates [14] or characteristic coordinates such as CHARSOIL [11]. Due

to the unavailability of appropriate multidimensional constitutive laws
the calculations here have been kept to one dimensional studies. However

the method is applicable in higher dimensions and irregular geometries

when coupled with numerical procedures in the spacial coordinates for any

problem involving nonlinear partial differential equations with analytic

nonlinearities. Because the procedure extracts the dominant nonlinear

effect through a convenient parameterization of the frequency, the

computational effort is kept at the level of that of the linear analysis.
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APPENDIX

GAUSSIAN MOTIONCAO*EXP(-(T-TO)**2» AND REAL EARTHQUAKE MOTION.
If JKl EQUALS 1,2,3 T~E INPUT CORRE5PONDS RESPECTIV(LY TO
HARMONIC, GAUSSIAN PULSE AND REAL EARTHQUAK£ MOTIONS. REMEMBER
THAT YOU MUST CHANGE SOME OIMEN5IONS ACCOROING TO THE NUMBER
Of THE LAYERS OR THE NUMBER OF THE POINT5 WHICH ARE USED IN TH(
fOURIER TRANSfORM. THE I'?ROGRAM HAS THREE SUBROUTINES:
(FfTP),TRANS, AND SHIFT. FFTP CALCULATES FOURIER TRANSFORM OF A
GIVEN TIME DEPENDENT FUNCTION OR INVERSE FOURIER TRANSfORM. TO GET
REAL FOURIER TRANSFORM COEFFICItNTS OF A GIVEN TIME DEPENDENT
FUNCTION, YOU MUST USE THE COMPLEX CONJUGA n Of THE COEFFIeI ENl S
GIVEN BY FfTP, AND MULTIPLY THEM WITH THE TIME INCREMENT<DT). THUS
YOU CAN USE THE HALf Of THE COEFFICIENTS(l TO NIZ). TO GET INVl RSE
FOURIER TRANSFORM fROM KNOWN fOURIER COEffICIENTS, YOU MUST DIVIDE
THE COEFfICIENTS BY THE PERIOD TIMf T. THE SUBROUTINE "TRANS"
CALCULATES THE fOURIER COEfFICIENTS AT THE TOP USING TRANSFER MAT
RICES FOR A GIVEN MOTION AT THE BOTTOM.
THE SUBROUTINE "SHIFT" CALCULATES THE fREQUFNCY SHIfT ACCOROING TO
THE UNDERLYING THEORY.
******************************************************************

DATA fOR EACH LAYER
JJ=NUMBER OF LAYERS PLUS 1
RO=DENSITY<GR/CH3)
D=THICKNESS or LAYERCCM)
ZETA=DAMPING RATIO
GO= MAXIMUM SHEAR MODULOUS(DYN/C~Z)
G1= NONLINEAR ELASTICITY COEfFICIENTCDYN/CM~)
fACT=(GO/TY)**2 WHERE TY IS TtlE YIELD SlRES~
N IS THE NUMBER Of DISCRETE f&EQUENCIES FOR CASE JKl=l AND IS THE
NUMBER OF DISCRETE TIME INTERVALS FOR CASES JKL=2,3. OUR EXPERI
ENCES SHOW THAT N=ZOO,400,(400-~OO) RESPECTIVELY FOR CASES JKL=1,2
,3 ARE GOOD CHOICES fOR THE PARAP'ETE.RS Of THE SYSTE'4 STUDIEO HfRE.
******************************************************************

DEFINITIONS OF PHYSICALLY RELEVANT PARAMETERS
A(I) ARE THE FOURIER COEFFICIENTS OF INPUT ~OTION AT BED-ROCK.
B(!) ARE THE INVERSE fOURIER TRANSfORM COEfFICIENTS OF RESPONSl AT
THE TOP fOR LINEAR AND NONLINEAp CASES.
A11CI) IS THE fOURIER COlFfICIENT Of RESPONSE AT THE SURfACE fOR
LINEAR CASE.
AZZ(I) IS THE fOURIER COEffICIENT or RESPONSE AT THE SURfACE fOR
~g~1~~E~~ l~fEtoURIER COEffICIENT OF RESPONSE AT J TH INTERFACl
fORACI>.
RR(I) IS THE HODULOUS or ACI).
R11CI) IS THE HODULOUS OF Al1<I).
RZ2(I) IS THE HODULOUS Of A2Z(I).
00(1) IS THE INPUT DISPLACEMENT AT THE BED-ROCK. 
011(1) IS THE DISPLACEMENT AT TH£ TOP fOR LINEAR CASE.
OZ2(I) IS THE DISPLACEMENT AT THE TOP fOR NONLINEAR CASE.
ALL DISPLACEMENTS ARE IN CM.
J=JJ IS THE SURfACE

~ Y01(J) IS THE fOURIER COEffICIENT Of STRESS AT J TH INTERFACE IN
C DYN/CM2 fOR ACI).
C
C ******************************************************************
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PI=3.14159265
JJ=5

PARAMETERS FOR INPUT DATA
READ INPUT DATA
FACT=25C1000.
READ 10,(O(J),RO(J),GOCJ),ZETA(J),J=2,JJ)

10 FORMAT(4E15.4)
N=400
T IS THl PERIOD IN SECONDS.
T=100.
DT IS THE STEP SIZE OF THE TIME.
DT=T IN
DQ IS TH[ STEP SIZE OF THE FREQUENCY.
OQ=2.*PI/T -
R IS THE IMAGINARY NUMBER I.
R= CO. ,1. )
00 20 J=2,JJ
Gl(J)=-FACT*GO(J}
PRINT 3(1 ,DeJ},ROCJ),GOCJ},G1CJ),ZETACJ}

30 FOR~ATC5X,5E14.6)
20 QQ(J)=OeJ)*CDSQRTCROCJ)/CGOCJ)*Cl.+R*ZETACJ»»

JKL=1,2,3
******************************************************************
JKL=3
******************************************************************
IFCJKL.Nl.1) GO TO 40
N2= N
A0= 1(1.
AO IS THE AMPLITUDE OF HARMONIC ~OTION
00 35 I=1,N2

35 AeI)=AO/2.
GO TO 50

40 IFeJKL. NE.Z) GO TO 60
NE IS THE EFFECTIVE NUHBE~ OF THE DISCRETE POINTS fOR NONINfINITE
SIMAL AMPLITUDES IN INPUT. IT MUST BE CHANGED ACCORDING TO THE
VALUE OF DT SO THAT EXPONENTIAL BECOMES LESS THAN 10.**C-69).
NE=lOO
DO 70 I=l,NE

.-
AO=10.
TO= 5.
T1=(1-1. )*DT
T2=-(Tl-TO>**2

70 A(I)=AO*OEXP(TZ)
GO TO 8('

60 CONTINUE
NK IS THE NU~BER QF THE EARTHQUAKE DISPLACEMENT DATA.
NK=100
READ 90,C OO(I),I=l,NK)

90 FORMA TC lor8. 4)
DO 100 I=l,N

100 ACI>= OD(!>
80 CONTINUE

N1=:U 2+ 1
N2= N/2-1

FAST FOURIER TPANSFORM or INPUl MOTION
ACI> ARE THE FOURIER TRANSFORM COEFFICIENTS OF THE INPUT FUNCTION.
CALL FFTP(A,N,IWK,"K,LL)
DO 110 I=l,N
AC I>=OT*OCONJGO(I»

110 RR(I)=OSQRT«OREAL(A(I»)**2+(OI~AG(A(I»)**2)
50 CONTINU[

******************************************************************
LINEAR CASE
***********************************************.******************
JJ= 5
DO 120 I=2,N2
OHO= (1-1. >*OQ
CALL TR~NS(I,JJ,OMO,Q',Q,R.ZETA,D,GO,A~X01,Y~1)
Ri1(I )=DSQRT«(OREALeX01CJJ»)**2+(OIMAG(X01eJJ»)**2>
Fll<I)=OM

12~ A11CI)=XQ1CJJ)
IF(JKL.EQ.1> GO TO 130

C
C INVERSE TRANSFORM fOR THE LINEAR CASE
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l40

l50

LoO
L30

00 140 I=l,Nl
B< I )=Al1< I )/T
DO 150 I=I,N2
BCN1+I)=oCONJG(BCNI-I»
CALL ffTP(B,N,IWK,~K,LL)

DO 160 I=l,N
Til IS THE TIME.
Til (1)= oT*C 1-1.)
011< I )= BC I)
CONTINUE

THE END Of THE LINEAR CASE
*********.********************************************************

190

180

"210
170

220

230

******************************************************************
NONLINEAR CASE

ITERATIONS fOR DETERMINING OMC CORRESPONDIN(, TO A GIVEN OM.
KK 15 THE MAXIMUM NUMBER Of ITERATIONS.
KK=99
00 170 I=2,N2
OM= (1-1. )*DQ
K=l
OQ 1= OQ
THE FIRST VALUE Of OMO fOR ITERATION IS TAKfN TO BE OM.
OMO=OM
CONTINUE
CALL SHIFTCI,JJ,OHO,QQ,Q,R,ZETA,O.GO.A,X01.Y01.B111,B112,

IBI21,B122,OM1,Gl,RO)
F IS THE DIffERENCE BETWEEN THE FREQUENCIES IN THIS AND PREVIOUS
STEP S.
F= OMO+O MI-OM
ERR=O.OCI
ERR IS THE TO~ERANCE OF THE ERRGR Of OMC
IFCDABSCf).lT.ERR) GO TO 180
IFCK.EQ.l) GO TO 190
IfCK.GT.KK) GO TO 180
IfCF*AAA.GT.O.O) GC TO 190
DQl =- DQ 1/2.
AAA=F
K=K+l
OMO=OMO+DQl
GO TO 200
CONTI NU (
A22 CI )= XO 1 ( J J )
R22CI)=DSQRT«CPREAl(XOICJJ})}**2+(DIMAGCXOICJJ}})**2))
PRINT 2l0,I,K,OM .. OMO.F .. A<I ),AI1C 1),A22( I>
FORMAT<2X,2I4.2X'2F8.2,2X,7E12.~ )
CONTINUE
IF(JKl.[Q.l} GO TO 260
THE INVERSE FOURIER TRANSFORM fOR THE NONlI~EAR CASE
00 220 I=l,Nl
BC I )=A22C I lIT
00 230 !=1,N2
BCNl+I}=DCONJGCBCNl-I)}
CALL FFTPCB,N,IWK,WK,LL>
00 240 !=l,N

200

240

250

o22(I}=BCI}
PRINT 250,(TIlCI),ooCI),DllCI),D22<I),!=1,N)
fORMATC5X,4E14.4)

THE END OF NONLINEAR CASE
******************************************************************

DISPLACEMENT CURVES
CAL L OF IPS 1( T11 , 011, N ,01, 10. )
CALL OFIPS2(Tl1,022,N ,12)
CALL DFIPS2(Tl1,oo ,N ,01)

260 CONTINUE

RESPONSE CURVES
fl1Cl)=O.O
RR(l>=A(l)
RI1Cl)=RRC1)
R22(11=RRC1)
CALL oFIPSICF11,Rl1,NZ .. Ol,10.>
CALL OflPS2(Fll,R22,N2.12)
CALL DFIPS2Cfl1,RR .. NZ,Ol)
STOP
END
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SUBROUTINE TRANS(I,JJ,OMO,QQ,Q,R,ZfTA,D,GO,A,X01,Y01>
DIMENSION Q(S),QQ(S),O(S),GO(S),ZETA(S),Bl11(S),B112(S),B121(S),

1B122(S),X01(S),Y01(S),A(401)
REAL*8D,GO,OMO,ZETA
COMPLEX*16Q,QQ,QK,QC,rl,R,B111,B112,B121,B122,X01,Y01,S,C,A
DO 10 J=2,JJ
Q(J)=DMO*QQ(J)

QK=Q(J)
QC=DCONJG(QK) -
F1=D(J)/(GO(J)*(1.+R*ZETA(J»*QK)

INITIAL VALUES OF THE TRANSFER MATRRIX ELEMENTS

B111<1 )=1.0
8122<1 )=1.0
B112<1 )=0.0
8121<1 )=0.0

TRANSFER MATRICES

5=CDSIN(QK)
C=CDCOS(QK)
B111(J)=SI11(j-1)*C +8121(J-l)*Fl*S
B112(J)=BI12(J-l)*C +B122(J-1)*Fl*S
B121(J)=-Bl11(J-l)*S IF1+B121(j-l)*C
8122(J)=-8112(j-!)*S /rl+B12Z(j-1)*C

10 CONTI~'Wf
XOl(I)=A(I)
YOl(1)=-XOl(I)*BI21(Jj)/B122(JJ)
00 20 J=2,JJ
XOI (J)= 8111 (J )*XOI <1 )+B112 (J )*y" 1<1)

20 Y01(j)=8121(J)*X01(1)+B122(J)*Y~(1)
RETURN
EIW

zs





~c·d·,

IW~(KT+1)

WK

A

N

IWK

LL

RAO=2*PI C30=COS(PI/6)
DETERMINE THE SQUARE FACTORS OF N

ffTP(A,~,IWK,WK,LL)

I Wj';. ( 1 ), WK ( 1 ), Z0 C2 ), 1 1 ( 2 ), Z2 ( 2 ) , Z3( 2 ), 1 4( 2 )
Ll, LLCl )
A(N),1AO,1Al,ZA2,1A3,ZA4,AK2
CM,SM,C1,C2,C3,S1,S2,S3,C30,RAD,WK,AO,A1,A4,B4,FFTP031I
A2,A3,BO,81,82,83,ZERO,HALf,ONE,TwO,10,Z1,Z2, frTP032(
Z3,Z4 . fFTP033(
( ZA 0, Z0 ( 1 ) ) , ( 1A 1, Z1C 1 ) ) , ( ZA2, Z2( 1 ) ) , ( ZA3 , Z3( 1) ) FfT PO 351
, ( A0, 10 ( 1 ) ) , ( 80 , Z0 ( 2 ) ), ( A1,1 1( 1 ) ) , ( B1, Z1C 2) ) , r FT PO 3b l

( A2, 12 ( 1 ) ), (B 2, 12 (2) ), ( A3, 13 ( 1 ) }, (B 3,1 3( 2 ) ), f f T PO 37l
(1A4,14<1 »,( Z4(1 ),A4),(Z4(2),84) FFTP0381
RAD/6.283185307179586DO/, FFTP0391
C30/. 8&60254(, 378t.4386DOI f FTP0401
ZERO,HALr,ON[,TwQ/O.ODO,C.500,1.00J,2.0DO/ FFTP043

• EQ. 1) GO TO 9005 rfTP045
FFTP046
fFTP0471
ffTP048
FFTP049
fFTP050
FfTP052
rfTP053
FfTP054
FFTP055
r FTP056
rFTP057
ffTP058
frTP059
FF1P060
FfTP061
FFTP062
FfTP063

DETERMINE THE REMAINING fACTORS Of N FfTP064
rFTP065
fFTP066
FfTPOb7
rFTP068
fFTP069
fFTP070
frTP071
FFTP072
FFTP073
FfTP074
fFTP07S
FfTP076
frTP077
FFTP078
rFTP079
FfTP080
ffTP081
FfTPOE2
ffTP083
FFTP084
ffTP085

fUNCTION
USAGE
PARAMETERS

SUBROUTINE
DIMENSION
LOGI CAL
COMPLX* 16
DOUBLE PRECISION

*
* EQUIVALENCE
*
*
* DATA
* DATA

IF CN
K = N
M = 0
J = 2
JJ = 4
Jf = 0
IWK(l) = 1

5 I = K/JJ
IF (I*JJ .NE. K) GO TO 10
M = M+l
IwKCM+1) = J
K = I
GO TO 5

10 J = J + 2-
If (J • [Q. 1.,) J = :3
JJ = J .• J
If (JJ .LE. K) GO TO 5
KT = M

J = 2
15 I = K / J -

IF (I*J .NE. K) GO TO 20
M = M + 1
IWK(M+1> = J
K = I
GO TO 15

20 J = J + 1
If (J .[Q. 3) GO TO 15
J = J + 1
If(J.LE.IO GO TO 15
K = 1 WK ( M+ 1 )
If (IWKCKT+l) .GT. IwK01+1}) K =
IF(KT.LE.O) GO TO 30
KTP = K T + 2
DO 25 I = 1,KT

J = KTP • 1
M = M+1
IWK(~+l> = IWKeJ)

25 CONTINUE
30 HP = M+ 1

frTPog2orfTp··--------O-----.-LIBRARY l----·······-----···----··-··---··--·--·fFTPO 30
ffTP0040

• TO COMPUTE THE fAST FOURIER TRANSFORM OF A fFTP005C
DATA VECTOR. FfTPOC60

- CALL FFTP(A,N,IWK,WK,LL) FFTP007C
• COMPLEX VECTOR Of LENGTH N WHICH CONTAINS ON FFTP008Q

INPUT THE S&QUENCE OF DATA TO BE FFTP009C
TRANSFORMED. ON OUTPUT A CONTAINS THE FfTP010C
fOURIER COEffICIENTS. FfTP011C

- N IS THE NUMBER OF DATA POINTS TO BE TRANS· FfTP012(
FORMED. N MAY BE ANY POSITIVE INTEGER. ffTP013C

• WORK VECTOR Of LENGTH 6*N+150. FfTP014C
(SEE PROGRAMMING NOTES FOR fURTHER DETAILS) FFTP015C

- SAME WORK VECTOR AS IWK. ffTP016(
(SEE PROGRAMMING NOTES) FfTP017t

- SAME WORK V[CTOR AS IWK. fFTP018C
(SEE PROGRAH~lNG NOTES) ffTP019(

PRECISION • SINGLE/DOUBLE ffTP020C
LANGUAGE • FORT~AN FfTP021(

-._.-----•••• _._.-.- ••••• _•••••••••••••_•• _••••••_.----_···· __ ·····--·ffTP022C
LATEST REVISION • NOVEMBER 10, 1975 ffTP023(

FfTP024(
fFTP026(
FfTP027(
FfTP051(
FFT P025(
ffTP0281
FFTP029(





ffTPOE6(
fFTPOe71
ffTPOB8(
ffTP0891
ffTP0901
ffTP091 'ffTP0921
ffTP0931
ffTP0941
ffTP095 1

ffTP096 1

fFTP097'
ffTP0981
FfTP099 1

ffTPI001
ffTPI011
FfTPI02,

FFTPI04
ffTPIC5
FfTP1Ci6
ffTPI07
fFTPl08
FfTpI09
FFTPll0
FFTPll1,
FFTP112
fflPl13
FfTPl14
fFTP115
ffTP116
ffTPl17
ffTP118
ffTP119
ffTP120
f fT P 121
ffTP122
f fT P12 3
ffTP124
fFTPl~~

fftbl29
ffTP130
FfTP131
FfTP132
FfTP133
FfTP136
f fT P13 7
ffTP138
ffTP139
FfTP140
fFTP141
ffTP142
fFTP143
FfT Pl4 4
ffTP145
FfTP146
ffTPl47
FfTPl48
ffTP149
ffTP150
FfTP151
ffTP152
ffTP155
f fT P 156
ffTP157
ffTP158
ffTP159
FFTP160
FfTP161
FFTP162
FfT P 16 3
FfTpl64
FfTP165
ffTP166
FfTP167
ffTPl68
ffTPl69
ffIP170

31

fACTORS Of 2~ 3, AND 4 ARE
HANDLED SEPARATELY.

12+ 1
KD2
K02
KD2

If CKf GT. 4) GO TO 140
GO TO (7S,75,90,115), Kf
KO = KB + I SP
K2 = KO + I SP
If {ll> GO TO 85
KO = KO - 1
If (t<O .LT. KB) GO TO 190
/(2 = K2 - 1
ZA4 = A(K2+1)
AO = A4*Cl-S4*Sl
BO = A4"Sl+B4*Cl
ACK2+l) = A(KO+l)-ZAO
A(KO+l) = ACKO+l)+ZAO
GO TO 80

IC = HP.l
10 = IC+MP
ILL = IO+MP
IRD = ILl+MP+l
ICC = I RO+MP
ISS = ICC+MP
ICK = I SS+MP
15K = ICK+K
ICF = ISK+K
ISF = ICF+K
lAP = ISF+K
/(02 = (K-l)
IBP = lAP +
lAM = IBP +
IBM = I AM +
MMl = H-l
1= 1

35 l = MP - 1
J = IC - I
lLC!LL+L) = C!WK{J-l) + IWKeJ» .EQ. 4
IF C.NoT. lLCILL+L» GO TO 40
I = I + 1
L = L - 1
LLCILL+L) = .FALSE.
I = I + 1
IF{I.LE.MMl) GO TO 35
LL{ILL+l) = .EALSE._
LLCILl+HP) = .fALSE.
IWK(IC) = 1
I .. K( 10) = N
DO 45 J = 1, M

K = IkK(J+l>
IWK(IC+J) = IWKCIC+J-l) * K
IWI'\( IO+J) = IWKCID+J-l) I K
WKC!RO+J) = RAD/IWK(IC+J)
Cl = RAD/K
IF (1'\ .LE. 2) GO TO 45
WK(ICC+J) = OCOSeCl)
WK(I5S+J) = OSIN(Cl)

CnNTINuf
M'" _ M
IF {LL(ILL+M» MM = H - 1
IF (MM .LE. 1) GO TO 50
SM = IWI'i(IC+MM-Z) .. wKcIRO+M)
CM = DCOSe$M)
SM = OSINCSH)

50 KB = 0
/(N = N
JJ = 0
1=1
C1 = ON f
51 = ZERO
Ll = .TRUE.
If (LL(ILL+I+l» GO TO 60
KF = IWI'i<1+1>
GO TO 65
KF = 4
I = 1+1
ISP = I ~KCIO+I)
IF (Ll> GO TO 70
51 = JJ .. WK(IRD+I)
Cl = OCOS(SI)
SI = OSIN(Sl)

,it 0

':55

:80

70

75

60
,;65

,45





85 KO = KO - 1
IF (KO .LT. KB) GO TO 190
K2 = K2 - 1
AK2 = A(K2+1)
A(K2+1) = A(KO+1 )-AI<2
A(KO+l) = A(KO+1)+AK2
GO TO 85

90 IF (Ll) GO TO 95
C2 = Cl * Cl - 51 * 51
52 = Tw 0 * C1 * 51

95 JA = KB + 15P - 1
KA = JA + KB
IK8 = K8+1
IJA = JA+1
DO 110 II = IKB,IJA

ffTP1710
fFTP1720
FFTP1730
fFTP1740
FfTP1750
fFTP1760
FfTP1770
FFTP1780
rfTP1790
FFTP180iJ
FFTPIE10
rFTP182C
FFTP1830
F fT P 18 4 0
ffTP185C

100

105

110

115

120

125

130

KG = KA - II + 1
K1 = K(I + I SP
K2 = K1 + ISP
ZAO = A(KO+1)
IF (Ll) GO TO 100
ZA4 = A(Kl+1)
A1 = A4*C1-84*51
Bl = A4*51+B4*C1
ZA4 = ACK2+1)
A2 = A4*C2-84*52
82 = A4*52+B4*C2
GO TO 105
ZA1 = A(K1+1>
ZA2 = A(K2+1}
A(KO+1) = DCMPlXCAO+Al+A2,BO+B1+B2)
AO = -HALF * (Al+A2) + AO
Al = (AI-A2) * C30
80 = -HALF * (B1+B2) + BO
B1 = (BI-B2) * C30
A(K1+1) = DCMPlX(AO-Bl,B8+ A1 )
A(1<2+1) = DCMPlX(AO+91,B-Al>

CONTINUE
GO TO 190
IF (ll) GO TO 120
C2 = C1 * C1 - 51 * 51
S2 = TwO * C1 * 51
C3 = C1 * C2 - 51 * 52
S3 = 51 * C2 + C1 * 52
JA = KB + ISP - 1
KA = JA + KB
IKB = K8+1
IJA = JA+1
DO 135 II = IKB,IJA

1<0 = KA - II + 1
K1 = I< 0 + I SP
K2 = 1<1 + ISP
I< 3 = K2 + 15P
ZAO = A(KO+1)
IF (ll) GO TO 125
ZA4 = A(K1+1)
Al = A4*C1-B4*51
B1 = A4*51 +B4*C 1
ZA4 = A(K2+1)
A2 = A4*C2-B4*52
82 = A4*52+84*C2
ZA4 = A(1I:3+1>
A3 = A4*C3-84*53
83 = A4*53+84*C3
GO TO 130
ZA1 = A(K1+1)
ZA2 = A<t<2+1>
ZA3 = A(1<3+1)
A(1<0+1) = OCMPlXCAO+A2+A1+A3,BO+82+Bl+B3)
A(K1+1) = DCMPLX(AO+A2-AI-A3,BO+B2-S1-B3)
A(K2+1) = DCMPLX(AO-A2-Bl+B3,BO-B2+A1-A3)
A(K3+1) = DCMPLX(AO-A2+BI-B3~80-B2-A1+A3)

fFTP186C
FFTPle7C
FrTP188r
FFTP189C
FFTP190C
f fT P19l(
FFTP192C
FFTP193C
FfTP194(
FFTP195(
FfTP196~
FFTP197(
FFTP198(
FFTP199(
FFTP200(
rfTP2C2(
FFTP2031
FFTP204(
FFTP2C5(
FFTP2C6/
ffTP207(
rfTP210(
FfTP211(
FfTP212~
ffTP2131
ffTP214l
FFTP2151
ffTP2161
FFTP2171
ffTP218 1

FfTP2191
rfTP2201
rfTP2211
fFTP222 1

FF1P2231
rfTP224 1

FF1P225
FfTP2261
FfTP227
FFTP228,
fFTP229
fFTP230 ,
fFTP231'
FfTP232
FFTP233
FfTP234
ffTP235
FfTP236
FFTP237
FFTP238
fFTP239
ffTP240
fFTP241
fflP242
FFTP243
FFTP244
ffTP249





135

140

145
150

155
160

CONTINUE
GO TO 190
JK = KF - 1
KH = JK/2
K3 = IWKCIO+I-1)
KO = KB + ISP
IF (Ll) GO TO 150
K = JK • 1
wK(ICF+l) = Cl
WK<ISF+1> = 51
DO 145 J = 1,K

WKCICf+J+1) = WKCICf+J) * C1 - WK(ISF+J) * 51
WK<ISF+J+1) = WKCICF+J) * 51 + "'KCISF+J) * C1

CONTINUL
IF (KF .EQ. JF) GO TO 160
C2 = WK(JCC+I)
WK<ICK+l> = C2
WKCICK+JK) = C2
52 = WK CI SS+ I )
Io/K(15K+1) = 52
WKCISK+J/'(> = -52
DO 155 J = 1,KH

K = JK - J
WKCICK+K) = WKCICK+J) * C2 - WK(ISK+J) * S2
wKCICK+J+1) = WKCICK+K)
WK<! SK+J+1) = WKC ICK+J) * S2 + WKCISK+J) * C2
WKCISK+K) = -wKCISK+J+l)

CONTI NU[
Kf) = KO· 1
K1 = KG
K 2 = K·j + K3
ZAO = AC!\(1+1)
A3 = ACt
B3 = 80
1)') 175 J = 1,KH

K1 = K1 + ISP
K2 = r2 - ISP
IF ell) GO TO 165

FfTP250(
FFTP251C
f fT P252C
ffTP253C
FfTP254C
f fT P255(
ffTP25&C
ffTP257(
ffTP258(
ffTP259C
ffTP2&O(
f fT P26t(
ffTP262(
ffTP263(
FfTP2641
ffTP2&5(
fFTP266(
ffTP267(
FfTP2681
ffTP2691
ffTPZ70l
ffTP2711
ffTP272:
FfTP2731
ffTP27 41
ffT P 275
FfT P 276 '
FfTP2771
ffTP278
ffTP279
ffT P 280
ffTP281
ffTP282
ffTP283
fFTP284
ffTP2SS
fFTP286

165

170

175

180

185

190

K = KF - J
ZA4 = ACK1+1)
Al = A4*WKCICF+J)-B4*WKCI5F+J)
81 = A4*wKCISf+J)+B4*WKCICF+J)
ZA4 = ACK2+1)
A2 = A4*wK(ICf+K)-B4*WKCISF+~)
82 = A4*WK(ISF+K)+B4.WKCICf+K)
GO TC 1?f.J
ZAl = A(Kl+ll
ZA2 = A(K2"'1)
WK(IAP+J) = Al + A2
WKCIAH"'J) = A1 - A2
~K(IBP+J) = 81 + 82
WK(IBM+J) = 81 • 82
A3 = Al + A2 + A3
B3 = 81 + 82 ... 83

CONTINUE
A(KO+l) = DCMPLXCA3,83)
Kl = KO
K2 = KO + K3
DO 185 J = 1,KH

Kl = ":'1 ... ISP
KZ = K2 • I SP
J~ = J
Al = AO
81 = 80
AZ = ZERO
82 = ZERO
DO If\O I\: = 1,KH

A1 = Al + WK( IAP+Il;) * WK(JCK+JK)
A2 = A2 + WK(IAM+K) * W~(ISK+JK)
81 = Bl + IoIK(lBP+K) * WK<ICK+JK)
82 = 82 WKCIBM+I() * WK(ISK+JK)
JI< = Jt< J
If (JK .GE. KF) JK = JK - Kf

CONTINUE
A(Kl+1) = OCMPLXCA1-B2,B1+A2)
A(K2+1) = OCMPLXCA1+B2,BI-A2)

3~NI~~~;GT. KB) GO TO 160

I F ( I .GE. MM ) GO TO 195= I + 1

r --
33

ffTP2e7
ffTP288
ffTP2€9
ffTP290
ffTP291
ffTP292
fFTP293
ffTP294
ffTP295
ffTP296
FfTp297
ffTP298
FfTP299
FfTP3CO
ffTP301
FFTP382
ffTP3 3
FfTP304
fFTP306
fFTP307
fFTP30e
ffTP309
ffTP310
rfTP3\1
f FT P 3 2
fFTP313
F FT P314
FfTP315
fFTP316
f fT P 317
FfTP3le
fFTP3l9
fFTP320
ffTP321
FFTP322
ffTP323
fFTP321j
ffTP32~

ff~~~~~
ff~e33C
fflP33]
FFTP332. ...





GO TO 55 FFTP333('
195 1 = MM FFTP334C

Ll = .FALSE. FFTP335C
KB = Iw!«ID+I-1> + KB FFTP336(
IF (KB • GE. K N) GO TO 215 fFTP337C

200 JJ = IWK( lC+I-2> + JJ fFTP338C
IF CJJ • LT. IWKClC+I-1» GO TO 205 FFTP339C
I = I - 1 fFTP340C
JJ = JJ - lwKCIC+l> FfTP341C
GO TO 200- FfTP342C

205 If CI • NE. MM> GO TO 210 FfTP343C
C2 = C1 ffTP344C
C1 = CM * C1 - 5M * 51 ffTP34S(
51 = 5M * C2 + CM * 51 FfTP346C
GO TO 71,; fFTP347C

210 IFCLLCILL+I» I = I + 1 f F T P34 8C
GO TO 55 ffTP349(

215 I = 1 ffTP350(
JA = KT - 1 FFTP351CKA = JA + 1 FFTP352(
IFCJA.LT.l) GO TO 225 FFTP353~DO 220 II = 1, J A FFTP354(

J = KA - I I FFTP355CIwK(J+l) = IWK( J+1) - 1 FFTP3~·6(
I = IWK(J+1) + I FFTP357(

220 CONTINUE FfTP358C
THE RESULT IS "'Ow PERMUTED TO fFTP359(
NOFiMAL ORDER. FFTP360(

225 IF ( KT • LE. 0) GO TO 270 fFTP361(
J = 1 ffTP362(
I = 0 fFTP363(
KB = 0 fFTP36~(230 K2 = lWK( IO+J) + KB ffTP36 \
K3 = K2 fFTP366(
JJ = lio/K(lC+J-1) FFTP3671JK = JJ FFTP368i
KO = KB .. JJ FFTP369(
ISP = Ihf<;(IC+J) - JJ FfTP370:

235 K = KO + JJ ffTP3~1(240 ZA4 = A (K(I+1) fFTp3 2(
ACKO+1) = A(K2+l> FftP373(A(K2+1) = Z.A.4 Ff P374(
KO = KO + 1 ffTP375~
K2 = K2 + 1 ffTP376(
IF (KO • LT. K) GO TO 240 ffTP3771
KO = KO + IS P fFTP378(
K2 = K2 + ISP ffTP379:IF 0.0 • LT. K3) GO TO 235 ffTP380~
IF (KO • GC. 1<:3 + I SP ) GO TO 245 FfTP381:K0 = KI) - hK<ID+J) + JJ FFTP382(GO TO 235 FFTP383(

245 K3 = IW!<:(IO+J) + K3 fFTP3e4,
IF ( K3 - KB • Gt. IWKCID+J-1» GD TO 250 fFTP385 1
K2 = K3 + J!C; ffTP386(
JK = JK + JJ fFTP3e7(
KO = K3 - IwK<IO+J) + JK fFTP3e8(GO TO 235- ffTP389,

250 IF (J .GE. KT) GO TO 260 FfTP390(K = IWKCJ+1) + I FfTP391(J = J + 1 FFTP392(
255 I = I + 1 FFTP3S3(

HIKCILL+f4 = J F FT P3 91t(IF (1 .l • K ) GO TO 255 FFTP3951GO TO 23(' FFTP3961
260 KB = K3 FfTP3971

IF ( I • LE• 0) GO TO 265 FfTP3981
J = IWKlILL+I) FfTP399 1

I = I - 1 FfTp400!
GO TO 23C F fT PItO 11

265 IF (t(B • GE. N) GO TO 270 FFTP4C2
J = 1 FfTP403,GO TO 230 FFTP4C4'270 JK = IWKC!C+KT) fFTP405,
ISP = IwK(IO+KT) FFTP406'M = M - KT r FT P4() 71
KB = I5P/JK-2 fFTP408'IF (KT • GE. !'l-1 ) GO TO 9005 rfTP409
ITA = ILL+KB+1 FfTP410'ITS = I TA+ JK r· ---

34L FfTP411IOMl = 10-1 fFTP412'IK T = K T+ 1 FfTP4130
1 t-I = M+ 1 FfTP4140





frTP4150
fFTP4160
ttT P 417C
fFTP418C
fFTP419C
f fT P4200
ffTP421C
rfTP422C
ffTP423C
FFTP424C
ffTP4250
f fT P426C
frTP427C
fFTP428C
FfTP429C
FfTP430C
FFTP431C
ffTP432C
fFTP433(
fFTP434(
fFTP435(
FFTP436(
FFTP437(
FFTP438<
FFTP439(
FFTP440(
fFTP441(
FFTP4421
FFTP443(
FFTP444(
FFTP445l
FFTP446(
FFTP4471
FFTP4481
FFTP449(
FFTP4501
rFTP451~

FFTP452l
FFTP453l
FFTP4541
FFTP4551
FFTP4561
FFTP4571
ffTP458:
ffTP459~
FFTP460 1

fFTP461 '
FFTP4621
fFTP463,
FfTP464
fFTP466
FFT P 467
fFTP468
FfTP469
FFTP470'
FfTP471
FFTP472
FFTP473
FFTP474

THE PERMUTATION CYCLES
GREATER THAN OR EQUAL

REORDER A FOLLCWING THE
PERMUTATION CYCLES

DO 275 J = IKT,IM
IWK(JDM1+J) = IWK(IDM1+J)/JK

CONTI NUL
JJ = 0
00 290 J = 1,KB

K = KT
JJ = IWK(IO+K+l) + JJ
IF (JJ .IT. IWK(IO+K» GO TO 285
JJ = JJ - IWK(ID+Kl
K = K + 1
GO TO 280
IWK(ILL+J) = JJ
IF (JJ .EQ. J) !WK( ILL+J) = -J

CONTINUr
DETERMINE
OF lENGTH
TO TWO.

DO 300 J = 1,KB •
IF (IWW;<IlL+J) .lE. 0) GO TO 300
K2 = J
K2 = IABS<IwK(IlL+K2»
If (K2 .[Q. J) GO TO 300
IWK(ILL+K2) = -!WK(ILL+K2)
GO TO 295

CONTINUE

275

280

300

285

290

295

I = 0
J = 0
KB = 0
K~I = N

305 J = J + 1
IF (1WK<ILL+J) .LT. 0) GO TO 305
K = I WK ( ILL + J )
KO = JK * K .. KB

310 ZA4 = A(KO+I+l)
wK(1TA+J) = A4
WK(ITB+I> = B4
I = I + 1
If <I .LT. JK) GO TO 310
I = 0

315 K = -IWK(ILL+K)
JJ = KO
KO = JK * K + K8

320 A(JJ+I+l) = A(KO+I+1)
I = 1+1
If <I .LT. JK) GO TO 320
I = 0
IF (K .NE. J) GO TO 315

325 A(KO+I+1) = OCMPLXOIK(ITA+I),WKCITB+I»
I = I + 1
IF (I • LT. J K) GO 10 325
I = 0
IF (J .LT. K2) GO TO 305
J = 0
KB = KB + ISP
IF (KB .LT. KN) GO TO 305

005 RETURN
END

DATA FOR THE SOIL LAYERS

.1364(+06 0.2500[+01 0.1125[+12 0.1000E+00

.1174E+06

.4910[+05

.4600E+05

DATA FOR

0.2400[+01 0.5290(+12
0.2350[+01 0.4369£+12
0.215(J[+01 O. &395[+ 11

THE REAL EARTHQUAKE MOTION

0.10CO[+00
0.1000E+00
0.1000£+00

.
.79 -.555 -.305 -.056 .2(\ 3 .396 .593 .889 1.23 1.557
.854 2. 136 2.375 2.599 2.851 3.108 3.294 3.413 3. 64~ 3.811
016 4.202 4.279 4.234 4.. 279 4.471 4, &65 4.837 5.033 5.045.• 778 4.347 3.607 2.532 1.142 -.249 -1.454 -2.409 - 2 341 -1.897-1.289 ~. 697 -.281 -~.534 -.859 -. ~ 1 -,555 -.333 -. 4 -.63

-.595 -.612 -.683 -.786 -.97 -I 8 -. 351 -.162 -.231 -.655
-3.235 - 3.131 -3.036 -3.214 -3.265 -2.845 -2.739 -2.615 -1. 956 -I. ~4 8- 3.622 -4.042 -3.4B -2.992 -2.389 -1.42 -t. 737 -.835 - • ~2 9 - • 93-1.205 -1.94 -2.397 • 2. 174 -1.849 -1.4 -C.G07 -.586 -1.4 2 -2.366

?~ 521 -2.049 -1.753 -2.056 -2.094 -2._.062 -2.282 -2.568 -2.n 5 -2.832
35
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FIGURE CAPTIONS

Figure 1 Elimination of Wo between A = A(wo) and w = w(wo) for

obtaining A = A(w)

Figure 2 Amplification spectra (a) Parameters p ,Go and layer thicknesses

d for the multilayered system, (b, c) Amplification spectrum for

the lowest layer; (d, e) Amplification spectrum for the multi layer system

Figure 3 Response of a single layer to the Gaussian input motion at
2 2its base as v = A exp(-(t-to) /a) with a = 1 sec., to = 5 sec.

The parameters for the layer are those of the top layer in

Figure 2a and K = 0.1. (a', b' , c ' ) are the Fourier amplitudes

corresponding to cases (a, b, c).

Figure 4 Response of the single layer system to the earthquake forcing

applied at its base. The parameters for the layer are those of

the top layer in Figure 2a with K = 0.1 The input motion is

the first 100 time intervals of the Taft 1952 earthquake [9J.

The amplitude of the motion is taken as (a) the actual value

(b) two times the actual value (c) four times the actual value.

(ai, b' , c ' ) are the Fourier amplitudes corresponding to cases

(a, b, c).

Figure 5 Response of the multilayer system in Figure 2 w with K = 0.1
2 2to the Gaussian input motion at its base as v = A exp(-(t-to) /a )

with 0=1 sec., to = 5 sec. (ai, b' ) are the Fourier amplitudes

corresponding to cases (a, b).

Figure 6 Response of the multilayer system in Figure 2a with K = 0.1 to the

earthquake forcing applied at its base. The input motion is the

first 100 time intervals of the Taft 1952 earthquake [9J. The

amplitude of the motion is taken as (a) the actual value (b) two

times the actual value; (ai, b') are the Fourier amplitudes

corresponding to cases (a, b).
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