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ABSTRACT

A finite element model has been developed to analyze

shells of revolution under dynamic loading with soil-,

structure interaction effects. The model consists of high-

precision rotational shell finite elements, representing

the axisymmetric shell, supported on an equivalent boundary

system, representing the soil medium. The substructure

method is used to model the shell and soil components. In

addition to the seismic analysis capability of the proposed

model, it is also applicable to other dynamic loads such as

wind. The dynamic behaviour of a hyperboloidal cooling tower

shell on discrete supports with a ring footing is studied

using the proposed model. Dynamic properties are studied and

stress analysis is carried out for a variety of soil conditions.
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DYNAMIC k~ALYSIS OF SHELLS OF REVOLUTION-SOIL SYSTE~1S

1. INTRODUCTION

1.1 GENERAL

Recently, considerable effort has been made by re-

searchers to obtain more realistic mathematical models

for thin shells of revolution under dynamic loads. With-

out the foundation interaction in structure response, the

dynamic model, in general, is expected to be inadequate.

It is well known that the response of structures to dynamic

loads will be influenced by deformability of the foundation.

The significance of foundation interaction in structure

response depends on the properties of the structure relative

to the foundation.

Although a great deal of attention has been devoted to

nuclear containment structures, dams and multistory buildings

(1,2,3)~ the influence of the surrounding medium on the

dynamic response of large towers and shells of revolution

* The numbers in parentheses in the text indicate references
in the Bibliography.
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has apparently not been studied extensively. For massive

structures like large shells, part of the structure

energy is dissipated into the supporting medium by radiation

of waves and by hysteretic action in the medi~ itself,

causing in most cases a significant reduction in the structure

response. The importance of this factor increases with

increasing intensity of ground shaking (4).

In the present report, a numerical method is presented

for the dynamic analysis of axisYmmetric shell structures

resting on viscoelastic soil layers over rock of infinite

horizontal extent. The approach used in this research is

tempered by the availability and potential of the high

precision rotational shell finite element model (S,6,7).

With this factor in mind, the authors of this research report

developed a compatible representation of the soil medium with

the existing shell element formulation, suitable for any

type of dynamic analysis.

1.2 REVIEW OF PAST WORK

It is useful to review the existing knowledge of soil­

structure interaction by citing some of the studies carried

out by different authors. One can divide the works into

three general categories: the approaches to soil-structure

interaction, methods and techniques, and parameters and
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applications. Among the last category, there does not

appear sufficient studies on the interaction between the

axisymmetric shells and the foundation system.

Before dealing with each of the above categories, it

is suitable to introduce the work which is cited for the

purpose of assessing the state of the art. A survey of

the soil effect on the design of the nuclear power plants

has been performed by the Ad Hoc Group on Soil-Structure

Interaction (1). This paper provides some general insight

which may be useful for the specific problem at hand.

Veletsos (4) outlined a simple, practically oriented pro­

cedure for studying the effects of ground shock and earth­

quake motions on structure-foundation systems. The pro­

cedure is fairly straight forward and it is believed that

considerable insight for understanding the general nature

of the problem may be gained from such work. A limitation

of this analysis is that it is only applicable for structures

which may be modeled by a rigid foundation mat supported at

the surface of a homogeneous half-space. An additional

limitation of the procedure is the assumption of a linear

response for the super structure.

1.2.1 Approaches to Soil-Structure Interaction

The basic alternative approaches to deal with the

soil-structure interaction problem can be divided into com­

plete interaction and inertial interaction analysis (1).

The second approach neglects kinematic interaction and
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basically does not explicitly account for the variation of

the input ground motion with the depth below the surface.

The essential difference between the idealized complete

interaction analysis and the inertial interaction analysis

lies in the treatment of embedded structures. For embedded

structures, the complete interaction analysis is clearly

superior from a theoretical viewpoint, but its principal

limitation is the cost of analysis.

Vaish and Chopra (2) classified the complete inter­

action analysis into a combined model and a substructure

model. In the combined model, the entire structure-soil

medium is modeled as a combined system subjected to an ex­

citation at some assumed or actual boundary location such

as the soil-rock interface. In the substructure model, the

system is separated into substructures. Then the founda­

tion medium is represented as an elastic half-space and is

interfaced with the structure through a set of common co­

ordinates at the boundary of the structure and the soil.

1.2.2 Methods and Techniques

Numerical techniques, and in particular, the finite

element technique, have usually been used to carry out the

complete interaction analysis, while inertial interaction

analysis has generally been based on analytical solutions.

These solutions are based on the soil being represented as

a viscoelastic half-space or an elastic half space.
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A complete interaction analysis for circular footings

on layered media is presented by Kausel, Roesset and Waas

(8) using a transmitting boundary to represent the far

field. Dynamic analysis of rigid circular footings resting

on a homogeneous, elastic half space has been carried out

by Luco and Westmann (9). In this work numerical results

for the analytical solution have been presented for the

torsional, vertical, rocking and horizontal oscillations

of the rigid disc.

Various approximate methods of superposition for the

interaction problem have been recently proposed (10,11,12,

13,14). The methods have differed in the way in which modal

damping is calculated, Novak (10), Rainer (12), and

Roesset, Whitman and Dobry (13) assigned weighted values of

damping based on the energy ratio criterion for evaluation

of equivalent modal damping in composite elastic and

inelastic structures ,whereas Tsai (14) calculated the modal

damping by matching the exact and normal modal solutions

of the amplitude transfer function for a certain structure

location. Bielak (11) assumed that the modal damping can be

approximated based on some simplified soil-structure models

and the appropriate soil properties.

Clough and Mojtahedi (15) concluded that the most

efficient procedure, in case of non-proportional damping

system, is to express the response in terms of undamped

modal coordinates and to integrate directly the resulting

coupled equations.
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1.2.3 Parameters and Applications

The actual properties of the soil medium play the

primary role in assessing the actual influence of soil­

structure interaction on the structure response. Recently,

Pandya and Setlur (16) have defined four cases which provide

a range of soil properties useful for comparative analysis

and subsequent generalization. It is the opinion of these

authors that soil flexibility or compliance is the most

important parameter in the soil-structure interaction phenom­

enon, and that a given flexibility can be realized by a non­

unique combination of the basic parameters such as soil

depth, shear modulus, etc.

Penzien (17) suggests a system of a non-linear spring

and viscous dashpots to represent the soil model for deter­

mining the soil properties. In this model, Penzien choses

a non-linear elastic spring with hysteresis characteristics

to represent the immediate deformation characteristics of

the soil structure under cyclic loading and a viscous dash­

pot in parallel with the spring, to represent the internal

damping within the soil, while the creep behavior of the

soil is represented by a viscous element in series with the

spring-dashpot combination.

An evaluation of the effects of the foundation damping

on the seismic response of simple building-foundation

systems is presented by Veletsos and Nair (18). The

supporting medium is modeled as a linear viscoelastic half
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space. This study shows that a consideration of the effect

of energy dissipation by hysteretic action in the soil is

to increase the overall damping of the structure-foundation

system and to reduce the deformation of the structure.

In the approach taken by Scanlan (19) I the seismic

wave effect is studied by generalizing the input function

in the time domain so as to account for the travel time of

the passing wave over the plan dimension of the structural

foundation. His study is based on a rigid foundation-soil

spring model and suggests that a passing earthquake may

excite both lateral and rotational displacements even for a

structure which is symmetrical in plan and properties. The

study suggests an inherent self-diminishing feature to earth­

quake excitation relative to the particular of a given de­

sign.

Akiyoshi (20) has proposed a new viscous boundary for

shear waves in a one-dimensional discrete model that ab­

sorbs the whole energy of the ~vave traveling toward the

boundary. Akiyoshi concluded that the mesh spacing less than

one-sixth the wavelength of a sinusoidal wave should be used

to obtain the allowable numerical solutions. The limita­

tion of the proposed method is that it is restricted to the

case of lumped mass-spring models.

The approaches and methods reviewed above have been

applied to different types of structures. Reference was
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made previously to three papers dealing with the nuclear

containment structures, dams and multistory buildings (1,

2,3). The analysis of a tall chimney, including foundation

interaction, for the effects of gusting wind, vortex

shedding and earthquake is studied by Novak (IO). This

study shows that the general trend of the soil-structure

interaction effects is to reduce the response to dynamic

loads. The effect of embedment and the influence of

internal damping is investigated by Kousel (21) for cir­

cular foundation on layered media. The case of two­

dimensional rigid foundation of semi-elliptical cross­

section is studied by LUco, Wong and Trifunac (22) to ex­

amine the effects of the embedment depth and the angle of

incidence of the seismic waves on the response of the

foundation. This study shows that rocking and torsional

motion of the foundation is generated in addition to trans­

lation.

1.3 SCOPE AND AIM

The aim of the present investigation is to develop a

more realistic mathematical model for the dynamic analysis

of shells of revolution by inclUding the soil effect as a

new factor which should influence the dynamic behavior of

such structures. With this proposed model, it is possible

to study the effect of the soil condition on the dynamic

response of large towers like reinforced concrete cooling

towers. In addition to the seismic analysis capability of
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the proposed model, it is also applicable to other dynamic

loads like wind forces. This wide capability may provide

better understanding to the dynamic behavior of the axi­

symmetric shells and shell-like structures.

A basic theoretical background is furnished in Chapter

2. In this chapter, the wave propagation equations in

the soil medium are presented and Hamilton's principle

is specialized and adapted for the specific problem dis­

cussed in this report. The finite element formulations

for the soil model are presented in Chapter 3 in which the

energy absorbing boundary is formulated to represent the

far field. The proposed dynamic model for the shell of

revolution-soil system is presented in Chapter 4, along

with the computer implementation. To examine the equivalent

boundary system (EBS) which represents the soil medium,

a parametric study is carried out in Chapter 5 in which the

effect of the lower boundary and mesh size is examined.

The effect of the driving frequency and the soil model

behaviour in higher Fourier harmonics are studied in the

same chapter. The dynamic behaviour of a cooling tower

shell on a ring footing is studied, with the aid of the

proposed model in Chapter 5. The dynamic analysis includes

dynamic properties and stress analysis study for a variety

of soil conditions. Summary and conclusions of the work

are presented in Chapter 6.
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It is hoped that the present work will provide some

insight to the dynamic behavior of shells of revolution

under wind or seismic loading which may, in turn, aid in

providing a basis for rationally evaluating the footing

option in the list of alternative foundations for large

towers. Considerable economic benefits may be anticipated

from this added option in the form of savings on foundation

costs and reduced internal design forces due to the possible

ameliorating effect of interaction.
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2. BASIC FORMULATIONS FOR THE SOIL MODEL

2.1 INTRODUCTION

A considerable amount of work has been carried out

in recent years to obtain improved solutions for the

dynamic response of a rigid circular plate resting on a

stratum or an elastic half space (23-26). In these

studies, analytical or closed form solutions are presented,

with relaxed boundary conditions which seem to introduce

very little error. The solution of this problem is of

great interest for its application in geophysics and engi­

neering, and particularly, for its importance in foundation

and earthquake engineering.

Despite their mathematical elegance, closed form solu­

tions have a major drawback: they apply to ideally elastic,

homogeneous, isotropic half spaces, an abstraction that

seldom approaches reality. Soils are usually non-homoge­

nous; their properties vary with depth; they are stratified

in layers; and underground water adds further complications

to their physical nature. Thus, the analyst must rely on

experimental or numerical techniques.

In the approach used here, the problem is divided into

a number of uncoupled two dimensional problems by repre~

senting an asymmetric loading or displacement pattern by

a Fourier series about the vertical axis. Due to the ortho­

gonality of Fourier series, each term in the loading series
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produces a displacement set in the same mode as the pre-

scribed loading or displacement field, so long as the

problem is linear. In the present chapter, the basic

formulation for the wave propagation problem in a layered

medium is presented for a general mode (J ~ 0). However,

if one considers the foundation to be a rigid concentric

ring footing, only the first two modes in the series are

needed to describe the general motion of the footing acting

on the free surface of a soil stratum. These are j = 0

for vertical and torsional excitation (axisymmetric modes),

and j = 1 for rocking and swaying (antisymmetric modes) .

2.2 DISPLACEMENTS AND LOADS

Let any point in the soil medium be described by the

coordinates r, z,e as shown in Figure 1. In the cylindrical

coordinate system, the displacements in the radial, vertical

and tangential directions are denoted by u, w, e, re-

spectively, while the loads in these directions are denoted

by Pr , P z and Pee They can always be expressed in Fourier

series by

00

u = L (u j cosje + -j
sinje)us a

j=O
00

w = L (w j cosje + -j sinje)
j=O

s wa

00

v = ~ (-v j sinj8 + -j cosj8) (2-1)v
J=O

s a
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AXIS OF SYM.

F.L.

---/-----

r

u, Pr

Figure 1. Coordinate System
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and,

00

Pr
L (pj cosje +

-j
sinj e)= P

j=O r s r a
00

P z
L: (pj cosje +

-j
sinj e)= P

j=O Zs za

00

P e = L (-pj sinj8 + P~ cosj e)
j=O

es a

where the modal amplitudes with subscript s, a are re-

ferred to as the symmetric and antisymmetric displacement

(load) components. Equations (2-1) may be rewritten in

matrix form as

u -j -j
cosjeu us a

co

w =L: -j -j
( 2-2)w ws a- - - j=O - - - - -

v
-j -vj sinjev a s

with similar expressions for the loads. An alternative

notation could be

u =2: - ijeue
j

w =2: - ij8\ve

j

and v =L: - ije (2-3)ve
j
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but since the modal amplitudes are complex for complex

moduli, the latter notation is not advantageous.

The negative sign introduced in the sine term for

the tangential components has the effect of yielding

the same wave equations for both the sYmmetric and anti-

symmetric components (same stiffness matrix in the

finite element formulation).

The displacement vector of Equation (2-2) is written

in partition form to separate the in-plane components

(u,w) from the out-of-plane component (v). The modal dis-

placement vector is then

{Ul . uz}U =
- {u, w}where Ul =

-and U2 = v

2.3 COMPATIBILITY EQUATIONS

(2-4 )

(2-5)

The small strain and rotation-displacement relations

expressed in cylindrical coordinates are

au
srr = ar

aw
szz = Zd

£+ 1 av
see = r r ae

au + aw
Yzr = az ar

(2-6)
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1 au + av v
Yre = r ae ar r

av + 1 aw
Y8z = dZ aer

and the Fourier Expansions are

00

Err =
~

(sj cosje + -j sinj8)Errs rra
00

E = L (E j cosje + -j sinj e)Ezz zz ZZaj=O s

00

L -j
cosj~ + -j sinje)Eee = (E ee Eee

j=O 's a
(2-7)

00

=2: -j cosje + -j sinj e)Yzr (Yzr Yzr
j=O s a

00

~
-j sinje +

-j cosj e)Yre = (-Yre Yre
j=O s a

00

Yez = L (-:yj sinje + -j cosj e)ez s
Yez

j=O a

where the modal amplitudes are related by

Err = u,r

-EZZ = W, z

1 6i-jv)Eee = -r
- (2-8)Yzr = u,z + w'r

- 1 - - -
Yre = r(ju-v+rv'r)

Yez = jw/r + v, z
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The above equation may be expressed in matrix form as

S = Au (2-9)

,- -
see' YzrlYre' Yez } (2-10)

and A is the partitioned matrix operator

I
a

0 I 0ar I
I
I

0
a I

0az I
I

1
0

I _ i- Ir r
A = I (2-11)

I

a a I

az ar I 0
I- - - - -

i 0
a 1

r-(-)r ar r

0 i a
r az

It is convenient to write Equation (2-9) in the partitioned

form

I
'AA r U

Sl 1 1 I J 12 1
I (2-12)- -----~-----

S2 jA21
t

A22 U2I
I
I
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2.4 CONSTITUTIVE EQUATIONS

The stresses can be expanded in the same way as the

strains and the modal components of stresses and strains

are related by

a = DE: (2-13)

For cross-anisotropy, D(the constitutivity matrix)

is restricted to be a function of rand z only. In the

present study, only material-with properties not varying

with e will be considered. Matrix D for an isotropic

material is given by

]J

o

o

a

o

o

>"+211

o

\+211
Io I
I

o I
I

\+211 0 \
I

11 I
I

-------------~-----I
I
I 11
I
I 0
I

D =

= [~1_!-~-]
La I D2

(2-14)

~

where \ and 11 are the Lame constants (complex in general) .

They are related to Young's modulus, Poisson's ratio and

shear modulus through
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vE= =(l+v) (1-2v)
2vG

l-2v

E
= 2(1+v) = G (2-15)

The modal stresses is defined by

- {crJ.:crd° =

where 01= {crrr,crzz,aee Ozr} (2-16)

-
{crre,oez}and 02 =

while the true stresses are given by

00

]1: (cr j cr
j

)
[cosje

0'1 =
j=O Is la sinj8

(2-17)
co

-j2: (oj [-SinH]
02 = °2a)J=O 2s cos]6

The partitioning of this matrix into the submatrices D1

and D2 is consistent with that of the stresses and strains,

and it follows that

(2-18)

2.5 WAVE EQUATIONS

The general equations of wave propagation expressed

in cylindrical coordinates are (27)
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u = ![ (;\+211) 2.Q. _11 LCL(rv)
p ar r ae ar

avla-r) ]

W = II (A+2 )2.Q.
p 11 az

11 a au
r dr r(az

a\v) +11 L(~ _ av)]
or r de roe az

ov a a-)+l1-(-(rv)az ar dr
ou)]
ae

(2-19)

where

t:. = volumetric change

= s + s + seerr zz

1 a (ru) + dW + 1 av
(2-20)= - - orr oZ r de

For harmonic excitations with frequency n, the modal

Fourier expansion of Equation (2-19) can be expressed by

i:- [COSjeJ
00

-1 I: [(A+211)t-<u + au i - + dW)=
pn 2 ar - r v

j=O u sinj e j=O r r az

+l1j(jw_ dV) a 1 d (rv) _ E)]+11 oZ (r arr r az r (

COSj e]
sinje

o u au J - oW
[(A+211)az(r + ar - r v + az)

00

= -1 ""pn2 L..J
j=O

~ l-(d(rv) _ ju) _ 11j(j W ov)]
r or ar r r az

00 [ ]

_ cosj e

?=~w sinj e



a . - a- a au -- 1.1-(~ - '" v
z

)+1.1 _(__ aw)]
az roar az ar

co

j=O
[
-Sin: e] =

COS]e
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co

-1 '"'"pS&2 L...J
j=O

fSin~ e]
l COS] e

(2-21)

For an arbitrary j, it follows that

-1 a u au i - dW 1.1 a (a (rv)
w = pS"&2 I(A+21.1)az(r + ar - r v + az) - r dr ar

_ l:d. (i w_ av)]
r r az

a dU aw)]
+ 1.1 a-r(az - ar

av)
az

(2-22)

which shall be called the Modal Wave Equations (MWE).

They are only functions of rand z, with the parameter

j = 0, 1, 2, ..•dependent on the Fourier decomposition of

the loadings or prescribed displacements. The general

solution of ~~E is (28)
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-mze ]

(2-23)

in which H~2) (kr) are second Hankel functions of order j
J

(order of Fourier component), A, B, C are integration con-

stants, k is an arbitrary parameter lwave number), and

.Q. ± Ik2
Q2

= - V2
P

/k 2±
Q2

m = - ;;zVs
(2-24)

and

1
/ A~2~=vp

1 (fr=v s

where v p and Vs are the compression and shear wave

velocities, respectively.
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In the particular solutions given by (2-23), analagous

expressions containing first Hankel functions HJl) (kr)

have been omitted, since they correspond, in combination
iQtwith the factor e , to waves travelling from infinity

towards the origin and thus must be disregarded in accord-

ance with Sommerfeld's radiation principle (29). (Sources

confined to the vicinty of the origin). For this reason,

the index (2) and the argument (kr) in the Hankel functions

will be dropped.

The solution of the modal wave equations may be

written as

u = iQt (f (z) H! + f 3 (z) i H.)e 1 - J r J

kf2(z)H. H2t
'tv = e

J

v = e iQt (f 1 (z) i H. + f 3 (z)H!)
r J J

(2-25)

where H! = d H~2) (kr)
J dr J

and

f 1 ( z) kAe
-9,z mCe-mz= -

f 2 ( z) kCe-mz 9,Ae-9,z= -
f 3 ( z) Be-mz=

(2-26)
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ir2t
Dropping the time dependent term e from (2-25) to-

gether with (2-26) one gets

-Y = HF (2-27)

-where Y is the modal displacement without the time de-

pendent term, and

and

H! 0 i H.
J r J

H 0 kH. 0
(2-28)= J

i H. 0 H!
r J J

In the above equation F is only a function of z while H

is a function of r and the harmonic number j.

Also, expressions for the strains and stresses in

terms of the functions f i will be needed later. Sub­

stituting (2-27) into (2-8) results in
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• 2 • H.
JT H.) + f 3 2(-2 - H!)
r J r r J

Yzr = f{ H! + £2 k H! + £~ i H. (2-29)
J J r J

- it2H! H)
• 2

1 H!Yre = £1 + £3(JTH. + H'~)r ] r r J r ] J

- £' i H. i
Yez = + £2 k H. + £' H!1 r J r J 3 J

and with

~ = (f~ - kf~)k H.
J

the stresses follow as

(2- 30)

-
A~° = 2].lS +rr rr

- A<P° = 2].lszz +zz

°ee = 2].lsee + A~

(2-31)

°zr = ].lY zr
-
° re ].lYre=

°e = ].lY ezz

The modal wave equations (2-22) may be expressed in

matrix form using Equations (2-25) through (2-28) as

H . Z = 0 (2-32 )
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where H is given by (2-28) and Z is a vector depends only

on z

z

(A+2j.1) (kf 2-k 2fd+ll (f~-kf~)+pn2fl

(Ai-2j.1) (f~-kf~)+j.1k(f~-kf2)+pn2f2

j.1(f;-k2f a ) +pn 2 f 3 (2-33)

The above form of MWE is suitable for the finite element

formulations as we will discuss later.

2.6 PRINCIPLE OF VIRTUAL DISPLACEMENTS

In dynamics, the generalization of the principle of

virtual displacements into a law of kinetics by use of

D'Aambert's principle is referred to as Hamilton's

principle. For nonconservative systems, the principle

states that the work performed by the applied external loads

and inertial forces during an arbitrary virtual displace­

ment field that is consistent with the constraints is

equal to the change in strain energy plus the energy dissi­

pated by internal friction during that virtual displacement.

Hamilton's principle shall be specialized and adapted

for the specific problem discussed in this report in

which the coordinate system is cylindrical, and the visco­

elastic constants are complex. By applying two Fourier

transformations, one in the time domain, and one in the e
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coordinate, the principle of virtual displacements for

axisymmetric systems subjected to a general harmonic

excitation shall be developed.

A general form of Hamilton's principle in elasticity

is

8 e:. .o. . dV -f0u· (b. - pu.)dV
~J ~J ~ ~ ~

V

(2-34)

where oe: .. is the virtual strain field corresponding to
~J

the displacement field Qu. which is consistent with the
~

constraints and vanishes at the time to and tl. The

term oe: .. 0 .. represents the change in strain energy as
~J ~J

well as the energy lost due to internal friction. S

corresponds to that portion of the boundary where the forces

are prescribed.

Since the prescribed virtual displacements are ar-

bitrary, a set of displacements can be chosen of the form

~Ui (~,t) = eu. (x) . e(t). l

to 2. t < tl

Oe: .. (x,t) = oe: .. (x) . o(t)
~J l]

(2-35)

where x stands for the coordinate system,

(2-36)
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and 8(t) is the Dirac delta function. Substitution in

(2-34) and integration over the time domain yields

f 8 E. .eJ.. dV - f 0u. (b. - p{;. ) dV - f 8u. p. dA = 0
~J ~J ~ ~ ~ ~ ~

V V S

(2-37)

where eJ ij , b i , u i and Pi are evaluated at the time t.

Alternatively, it is possible to arrive at this

result starting from the equilibrium equations (wave

equation) and the boundary force equations, and constrain-

ing the time variable to remain constant while the virtual

displacements are applied, that is, the real motion is

stopped while the virtual displacements are performed; how-

ever, the inertial forces must be assumed to persist. In

other words, it is assumed that the performance of the

virtual displacements consumes no time (30).

Applying a Fourier transformation (FT) to (2-37) and

defining

eJ .. (Q)
~J

-= FT(eJij(t», bi(Q) = FT(bi(t», Pi(Q) = FT(Pi(t»,

.,

= FT(Ui(t» (2-38)



-29-

yields

(2-39)

where the transformed quantities are in general complex.

For real elastic moduli, the stresses will be real

and in phase with the strains and displacements whereas,

for complex moduli, they will be complex and there will

be a phase lag between these two quantities. The relation

-between the transformed stresses a .. and strains € .. is
lJ lJ

given by equation (2-13).

An alternate form of equation (2-39) is obtained

using integration by parts, resulting in

f O;. (; ... + b. +pS42~.)dV +fo~. (p.-n.;;: .. )dA = 0
l lJ ,J l l l l J lJ

S

(2-40)

which, for arbitrary variations of the virtual displace-

ments oUi yields the body and boundary equilibrium

equations. Using the stress-strain relation, the term

in parenthesis in the first integral becomes the wave

equation, which shall be useful later on. switching now

from tensor to matrix notation and dropping the superscript

~with the implicit understanding that the applied forces

(displacements) are harmonic, equation (2-39) becomes
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(2-41)

For a cylindrically orthotropic (cross anisotropic)

material, integration w/r to 6, with dV = rdrd6dz, and

using

2II

JCsin m6 sin n6 d6
o

for m=n~O

otherwise

2IIf cos
o

2III sin
o

me cos ne d6 = 0

{

IT for m=n~O

= 2IT
O

for m=n=O
otherwise

for any values of m and n

yields for the principle of virtual displacements

(2-42)

where the superscript bar refers to the Fourier modal

amplitude. Similarly, by substituting Equation (2-32)

into Equation (2-40), we find

(2-43)
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-* -o = {n,o .. } are the projection of the modal
J ~J

stresses on the unit outward boundary

normal nj

H." Z = the modal wave equation (2-32).

Equation (2-43) is preferable over equation (2-42)

or (2-41) when using the principle of virtual displace-

ments to define the eigenvalue problem for the visco-

elastic energy absorbing boundary since it does not re-

quire a cumbersome integration of products of the Hankel

functions over the coordinate r.
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3. FINITE ELEMENT FORMULATIONS

3.1 INTRODUCTION

Numerical techniques have been used successfully in

the stress analysis of many complex structures. In

particular, the finite element technique has been the

major tool for analyzing different types of structures

such as solids of revolution (31,32) and shells of re­

volution (5,6,7,33,34). These two classes of structures

are of special importance in modelling the axisymmetric

shell-soil system. The use of highly efficient rotational

shell finite elements to model the superstructure suggested

that the soil medium be represented in a similar manner.

A main problem in this case is to account for the proper

boundary conditions at the edges of a finite domain which

will not introduce undesirable reflections of waves into

the region of interest. A possible solution is to place

the boundaries at a substantial distance from the footing if

there is internal dissipation of energy in the soil. This

approach requires a very large number of elements and is

therefore expensive.

This chapter presents the finite element model used

to represent the soil medium where axisymmetrical isopara­

metric quadratic solid elements with transmitting vertical

boundaries placed directly at the outer edge of the structure
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are employed (Figure 2). With the energy transmitting

boundary, the finite element region is reduced to mini­

mum, resulting in a high order sophisticated model with

comparatively few elements as has been the continuing

objective in previous investigations at Washington Univer­

sity.

The formulation of the rotational shell elements is

presented elsewhere (6,7,35), and for completeness, the

outlines of the derivation of these highly efficient ele­

ments is presented in Appendix 8.1.

3.2 SOLID ELEMENT FORMULATIONS

The core region of Figure 2 is modelled by means of

axisymmetric isoparametric quadratic solid elements. For

each nodal circle there are three degrees-of-freedom;

two of them are in-plane, u and w, while the third, v, is

out-of-plane. These in-plane and out-of-plane degrees-of­

freedom are separated in the formulations of the element

stiffness and mass matrices. The name "isoparametric"

derives from use of the same interpolation functions to

define the element shape as are used to define the dis­

placements within the element (36).

If ¢ denotes the expansion vector for the isopara­

metric formulation, see Figure 3,
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Figure 2. Finite Element Model for the
Soil Medium
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Figure 3. Isoparametric Quadratic
Solid Element
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n
r = L <p.r.

.1.1.

i=l

n
z = L: <p . Z.

1. 1.

i=l

where n = number of nodes per element.

In vector notation

(3-1)

(3-2)

,,,here r o = {r 1 , r2, ••• r n }

(3-3)
Zo = {z 1 , Z 2, .•• zn}

Using the same expansions for the displacements,

where

(3-4 )

u =

and <p T (3-5 )
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In equation (3-4), ~T is called the expansion matrix.

From (2-10) and (3-4), one can write

UI

U2·
I </>T .:.

E 1 Al 1 I A 1 2 un
4xl 4x2 I 4xl .,.,

---- =
_____ L _____ </> ... WI

I
</>T -

E:2 A2I I A22 W2
2xl 2x2 I 2xl · (3-6)

I .:.
6xl 6x3 3x3n Wn

VI

V2·
.:.
v n

3nxl

or E = B u
0

where B =

I
bII I b 12

4x2n I 4 xn
I- - - - - - --\---------

b21 I b22
2x2n I 2 xn

I

(3-7)

substitution into equation (2-42) gives

~ CU~{ff(BTDB-P~2~~T)uordrdZ-f~prds}= 0
elements

(3-8)

For the kth element, the consistent mass matrix Mk , the

stiffness matrix Kk and the load vector Pk are defined as:
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Mk = ffp1>1>T rdrdz

Kk = ffBTDB rdrdz (3-9 )

Pk = f1>P rds

3.2.1 Isoparametric Formulations

For quadratic elements, the total number of nodes

per element n equals to eight and the shape functions

~. = g. (i=l, •.• ,S) may be chosen as functions of the
~ ~

dimensionless coordinates ~ and n. In Table 1 the

expressions for gi' gi,~ and gi,n are given.

The Jacobian is defined by

Jac =

r l zl

r 2 z2

r 3 z3

r 4 z4

r S Zs
r 6 z6

r 7 z7
r g Zg

or Jac =

8

~g. ;:-r.
. 1 ~,s ~
~=

g

"'g. r.£...i ~,n ~
i=l

8

"'g. ;:-z .£- ~, s ~
i=l

8

"'g. z.£...i ~,n ~
i=l

(3-10)

The inverse of the Jacobian IJ is, then, given by

[ IJ
ll

IJ
12JIJ =

IJ 21 IJ 22



Table 1. Shape Functions and First Derivatives
for Expansion Vector

i g. g. t,; gi,n1 1,

1 1 1
1 - -(1-0 (l-n) (l+t,;+n) /f(l-n) (2t,;+n) /f(1-t,;} (2n+O

4

1 -t,;(l-n)
1

2 2(1-t,;2) (l-n) . --(1-t,;2 )
2

1 1 1
3 -(l+EJ (l-n) U>n-1 ) -(l-n) (2t,;-n) "4{1+0 (2n-t,;J

4 4
I

~(1+f,;) (1-n 2)
1

w
-n (l+i;l \0

4 -(1-n 2) I2

1 1 ~(1+0 (2n+SJ5 /f(1+~) (l+n) (~+n-1) :r{l+n) (2~+n)

6 ~ (1- t,; 2) (1+n) -t,; (l+n) ~(1.,..t,;2)

1 ~(l+n) {2i;-n}
1

7 -(1-f,;) (l+n) (n-t,;-lJ -{l-O (2n-EJ
4 4

8 1 (1-0 (1-n 2) _1 (l-n 2) -n {1-S}
2 2
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where

and

IJ 21 =

1J22 =

(3-11)

where IJacl is the determinant of the Jacobian matrix

of equation (3-10). The inverse of the Jacobian is

necessary for the transformation from r-z coordinates

to ~-n natural coordinates,

( ), r = IJ 1 1 • ( ), ~ + IJ 1 2 • ( ), n

(3-12 )

) , z = IJ 2 1 • ( ), ~ + IJ 2 2 • ( ), n

3.2.2 Element Mass and Stiffness Matrices

Using partitioned form of the B, D and ~ matrices

we get:

m

o

o

o

m

o

o

o

m
24><24
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ffpepepT rdrdz (3-13)

I

Kl I K2I
I

and Kk = ----,----
K~

I
I K3
I

24 x24

where T T
Kl = ff(bllDlbll+b21D2b2l)rdrdz

T T
K2 = ff(bllDlbl2+b21D2b22)rdrdz

T T (3-14)K3 = ff(b22D2b22+bl2Dlbl2)rdrdz

From (3-7), the submatrices b ll , b l2 , b 2l and b 22 are

given by (See Appendix 8.2) 0

gl,r g2,r ••••• g 8 0 0 ..... 0,r

0 0 ..... 0 gl,z g 2 00.. g8
b 11 = ,z ,z (3-15-a)

gl/r g2/r o
•••• ·gS/r 0 o...•.• 0

gl,z g2 o. 000. g8 gl,r g2,r o
• 00<]8,4, z , z

4x16
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o o...•.... 0

-;= -.J..
r

o o. •. • . . • . 0

g 2· •••••• g 8

(3-1S-b)

o O•••••••• 0

4x8

gz •..... g a

o. . . . . • . 0

o o..•••• 0 ]

g 2· •••• g a

2x16

(3-1S-c)

gl,Z g ••••••••• g2,Z a,z

(3-1S-d)

."
and ¢¢. is given by:

gy gIg2 glg3 •••• glgS

g2gI g~ g2g3 g2gS

2
g3g1 g3g2 g3··· •• g3ga

¢¢T =
(3-16)

• 2
gagl gag2 gag3' . ga

8x8
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With RG defined as

8

~=E
i=l

g.r.
1 1

(3-17)

1 1

and ff( )rdrdz = ~ ~ ( )RG det Jac d~dn
-1 -1

(3-18)

the mass matrix Mk and the stiffness matrix Kk are ob­

tained for a general Fourier harmonic j; however, ~1k

is independent of j as one can see from equations (3-13)

and (3-16).

The integration in each element is carried out by

means of four points Gaussian integration with the dimen-

sionless coordinates ~,n. Since in the Gaussian quadra-

ture scheme, there are no points on the boundary of the

elements, no problems are encountered with the singularity

of the integrand of the symmetry axis (r=O) for those

elements adjacent to it.

The details of the isoparametric formulation for the

element stiffness matrix is presented in Appendix 8.2.

3.3 THE BOUNDARIES

It is assumed that the finite element region has a

fixed lower boundary, which may be true if we are dealing

with a s~ratumover rock of infinite horizontal extent.

The lower boundary location factor will be studied in

case of a deep stratum or haJf space.
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Now, for the total mass matrix M, total stiffness

matrix K, and the total load vector P we have the

following equation

(K - n2 M)u = P (3-19)

where u stands for the total nodal displacements.

The above equation needs to be modified to include

the effect of the far field on the stiffness of the core

region. This can be achieved by considering the equili­

brium of the vertical boundaries of the core region. If

the core region of Figure 2 is removed and replaced by

equivalent distributed forces corresponding to the in-

·ternal stresses, the dynamic equilibrium of the far-field

will be preserved. Since no other prescribed forces act

on the far-field, the displacements at the boundary and

at any other point in the far-field will be uniquely de­

fined in terms of these boundary forces. The relation

between these boundary forces and the corresponding boundary

displacements is the dynamic boundary matrix to be added

to the total dynamic stiffness matrix of equation (3-19).

For a consistent boundary (8), it is always possible

to express the displacements in the far-field in terms of

eigenfunctions corresponding to the naturalr.nodes of wave

propagation in the stratum. The general solution to the

problem is given by Equation (2-23) \vhere k is an undeter­

mined parameter of the wave number. In an unbounded medium,
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any value of k, and thus any wave length, is admissible;

for a layered stratum, however, only a discrete set of

values of k (each one with a corresponding propagation

mode) will satisfy the boundary condition. At a given

frequency, n, there are thus, an infinite but discrete

set of propagation modes and wave numbers k, which can

be found by solving a transcendental eigenvalue problem.

For each eigenfunction one can determine the distribution

of stresses up to a multiplicative constant, the partici­

pation factor of the mode. Combining these modal stresses

so as to match any given distribution of stresses at the

boundary, one can compute the participation factors and,

correspondingly, the dynamic stiffness function relating

boundary stresses to boundary displacements.

The solution of the actual transcendental eigenvalue

problem for the continuum problem is difficult and time

consuming requiring, in general, search procedures. A

discrete eigenvalue problem can be obtained by sUbstituting

the actual dependence of the displacements on the z

variable, as given by Equations (2-25) and (2-26), by an

assumed expansion consistent with that used for the finite

elements. The result is an algebraic eigenvalue problem

with a finite number of eigenvectors and eigenvalues, for

which efficient numerical solutions are available.



-46-

3.3.1 Wave Numbers and Modes of Propagation

Consider the toroidal section of the far-field limited

by two cylindrical surfaces of radii r o and r l , as shown

in Figure 4. The stratum is discretized in horizontal

layers, the interfaces of which match the nodal circles

of the finite element mesh in the core region. For the

nth layer there are three nodes i, i+l, i+2, for the ith

node the three degrees of freedom are:

(3-20)

The exact values for these three nodal displacements

are given by Equation (2-25),

x. = H • F
1 i

and for the layer number n,

(3-21)

Approximate solution for the nodal displacements may be

obtained using the same expansions as for the coordinates

and displacements in the finite element region
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F. = N X.
~ ~

(3-22)

(3-23)

in which I is a 3x3 identity matrix, and gi represents

the expansion coefficients. For a quadratic expansion,

(3-24)

Combining Equations (3-20) to (3-24) yield

(3-25a)

= the approximate nodal displacements
for the nth layer

and
Xl' H~ + L X3 . H.

~ J r o ~ J

kX2 . H.
~ J

L Xl . H. + X3 . H~
r o ~ J ~ J

xl i + l H~ + L
x3i+l H.

J r o J
Uo =

n kX 2i +l H.
J

L xl i +l
H. + x 3i +l

H~
r o J J

x l i +2
H~ + L X3i +2 H.

J r o J

kX2 i +2
H.

J

L Xl i + 2
H. + X3i + 2

H!
r o J J

n

( 3-25b)
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Using the same basic procedure for the finite element

formulation as previously employed, an approximate

solution is obtained by substituting the displacement

expansion into the expression of the principle of virtual

displacements (2-43), integrating over the region, and

requiring the result to vanish for an arbitrary Qu.

Substituting the above approximate displacements in

(2-43) and summing over the t layers yields

t

E
n=l f -T - -*+ QU (p-a )rds

Sl

f -T - -*+ au (p-a )rds +J ouT cii-C;") rds ] = 0

S3 (3-26)

consistent nodal forces -In the above equation, Po and Pl

are applied at each of the boundaries r o and rl such that

the integrands over So and 51 vanish

t rdS]L [ -~- f -T- f -T-*ou-p = oU prds = oU a
n=l o 0

So s (3-27)0

.,Q;

rdS]L [ -T- f oiiTprds f -'i'-*ou l P! = = ou-a
n=l

51 81
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with no external prescribed forces acting at the layer

interfaces:

-T-*au cr rds -f oUTO·rdsJ= a
S3

(3-28)

in which

{Orz'
-

°ez} forcr zz ' 82
-*
a = (3-29)

-{cr - cr ez } forrz' cr zz ' S3

From Equations (2-29), (2-30) and (2-3l)

- 11{(f!+kfz)H! i H.f;}cr +rz J r J

0* -
kHj{(A+211)f~-Akfl}= cr zz = (3-30-a)

- 11 { (f ~ +k£ 2) i H.+f; H! }O"ez r J J

or 0* = H'Z2'P (3-30-b)

\vhere Z2 is an operator matrix

d 11k 011 az
Z2 = -Ak {A+211)-~z 0 (3-31)

0 0
d

11 az
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The wave equation H'Z, Equation (2-32), may be written

as;

-W = H • Zl • F

in which Zl is an operator matrix

o

o

(3-32)

o o

(3-33)

With OU = H'N'OX and F = N'X, Equation (3-28) becomes

,Q,

I:
n=1

(3-34 )

In the above equation,

N' = oN
az = [g! 1.]

J. J.

in which i = 1, 2, 3 and k = 1, 2, 3.

Also, in Equation (3-34);

and
- 'T'HN'-, where
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I :
HI 0 H21 I

I I
o H3 0 I ° I 0

I I
H2 0 HII I

___ - 1 1 _

:HI 0 H21
I° ,0 H30 1 0
I I
IH2 0 HII

--- ----f------I- - ----
I IH I 0 H2
I I

o I a 10 H3 0
I I

I I H2 0 HI
I I

(3-35)

in which HI = H! 2 + (i) 2 H:
J r J

H2 = II H! H.
r J J

H3 = k 2H:
J

-Factoring out the H matrix, which is independent of z,

from Equation (3-34) and rearranging the equation yields

[ f
hnT _ _ fhn

T- ]
ON (Zl-Z~)Ndz - 0 N' Z2Ndz X = 0

(3-36)

rl

For an arbitrary oX and with JC Hrdr f 0 (non singular
r o

matrix) which is the same for all layers in the case of

vertical boundaries, the following equation must hold:
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t

L
n=l -I

a
(3-37)

and with

h= 30

4

2

2

16

-1

2

-1 2 4

1 -4 3

-3 4 -1

-4 a 4
(3-38 )

h 7 -8 1

~ gigkdz 1 -8 16 -8and = 3h

1 -8 7

equation (3-37) becomes

in which

t

L:
n=l

( [5] - k 2 rA] ) {X} = a
n n (3-39)



O.4h 2pQ2
0 0

O.2h 2 pQ2
0 0

-O.lh 2pQ2 0 0+7]Jn +8]J n n-]J

O.4h 2pQ2
0 0

O.2h 2 pQ2 -O.lh2 pQ2
n n n

+7 (A+2]J) +8 (A+2]J) -(A+2]J)

o 4h 2 pQ2 a 0
O.2h 2pQ2

0 0
-O.lh2pQ2• n

+8]J n n
+7]J -]J

1.6h2pn 2
0 a o.2h 2pn 2

0+16]Jn +8]J n

1.6h2pQ2
0

O.2h 2pn 2
01 I

n n
[S] =- +16 (A+21.1) +8 (A+21.1)n 3hn SYH. 1.6h2pQ2 O.2h2pQ2

+161.1 n 0 0 +81.1 n

O.4h 2pQ2
0 0+71.1 n I J

U1

O.4h 2pQ2
~

0
I

n
+7 (A+21.1)

O.4h 2pQ2
+7]J n

(3-4 a-a)
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For the whole stratum, the assembled matrices of (3-40)

leads to

(3-41)

2which is an eigenvalue problem in k i , the wave number of

the propagation mode X.. The order of this eigenvalue
~

problem is 6~, where ~ is the total number of layers in

the stratum.

3.3.2 Dynamic Stiffness Matrix of the Energy Absorbing

Boundary

i.e.

Consider Equation (3-27) with ds = dz and r =

of

Q.

,?;h
the nodal

h
n

= r o J NTa* dz] for an arbitrary variation

o
displacements. But

h

~
TT-* dzt'l a

5
(3-42)

a. =
5

-*
as =

where p = the nodal forces for the 5
th propagation mode

5

the participation factor for the 5
th

propagation mode

the s th modal b d t toun ary s resses vee or
(Figure 5)

=
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Therefore, from Equations (2-31) and (2-29)

2.11H'~-Ak2H.
J J

(llH ~) *-J oZ

d(AkH. )~
J oZ

llkH.
J

o

=

o

o

o

s

o

o

o

o

o

o

o

f'
1

f'
2

f'3

= -[s]{f} - [T]{f'} (3-43 )

where;

81 = 21lH'.' - A-k 2H.
J J

S2 = 2f.l L (H! - L H.)
r o J r o J

S3 = llk H!
J

.L H!
. 2

S4 = f.l (H'! - + J.T H.) (3-44)
J r o J r o J

T1 = AkH.
J

T2 = llH'.
J

and T3 = 1l L H .
r o J
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With {f}

where

s =

= [N]{X} and {fl} =

s

s

s

[N '] {X}

-and T =

T

T

T

(3-45 )

(3-46)

which leads to the following equation for the nodal forces

in the sth mode:

h

P s = a r ([ f NTNdz] S + [
iii 0 0

(3-47)

Matrices Sand T may be simplified by taking advantage

of the property of Hankel functions (37)

1 '2
H'~ = - - H! - [k 2

- L.]H,
J r J r2 J

H! = k H - i H.
J j-l r J

which yields

(3-48)
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8 = k 2 81 + k82 + 83

and (3-49)
T = kT1 + T2

with

\+2]1 0 0 H. 0 0
J

81 0 ]1 0 0 -H. 1 0 (3-50a)= J-
0 0 ]1 0 0 H.

J

-2 0 2j· -H. 1 0 0J-

82 = 1L 0 j 0 0 H. 0 (3-50b)r o J
2j 0 -2 0 0 -H. 1J-

1 0 -1 H. 0 0
J

83 2]1j (j+1)
0 0 0 0 -H. 1 0 (3-50c)

r 2 J-
0

-1 0 1 0 0 H.
J

0 -\ 0 -H. 1 0 0J-
T1 = ]1 0 0 0 H. 0 (3-50d)

J
0 0 0 0 0 -H. 1J-

0 0 0 H. 0 0
J

and T2 = -1:2 -1 0 1 0 -H. 1 0 (3-50e)r o J-

0 0 0 0 0 H.
J
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Defining the modal vectors XAs and XEs

where
{XAi T T T

XAs = XAz· ... XAi .· .XA2.Q,}

{XBi' T T T
XBs = XBz ...• XBi ••· XB 2.Q,}

H. Xl
J

{XAi}s = -H. 1 XzJ-

H. X3
J

i

-H. 1 XlJ-

{XBi}s
= H. Xz

J

-H. 1 X3J-
i

and the boundary load vector Pbs as

(3-51)

= a r {[A]{XA} k 2 + [G]{XB} }ks 0 s s s s

(3-52)

the nodal load vector for the whole stratum assembled

from Ps for each discrete layer where matrices A, E and

G are formed from the layer matrices An' En and Gn in a

similar fashion as in the eigenvalue problem.

An is the matrix given by Equation (3-40-b)
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and

2(j+l)g.g 0 -2(j+l)g.g
1. m 1. m

,
0 -r g.g'rogigm o 1. m

-2(j+l)g.g 0 2(j+l)g.g
1. m 1. m

3x3

9x9
(3-53)

>"r
-j.lgigm

o ,
jgigm2 gigm

j.lr
.iH.o ,

0-2- gigm 2 gigm

jgigm 0 -j.lgigm
3x3

9x9
with i = I, 2, 3

m = I, 2, 3

Adding up the contributions of each mode gives for the

boundary load vector

69-

Pb =~ a r {[A]{XA} k 2 +[G]{XB} k +[E] {XA} }LJl s 0 s s s s s
s=

or

In (3-54)

(3-54)

[XA] = [{XA} 1 {XA} 2· •• {XA} s ••• {XA} 69-] 69-x69­

[XB ] = [{ XB h {XB h . . . {XB } s • • • {XB } 6 9-] 69- x 6 9-
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[K 2] and [K] are diagonal matrices with k 2 ands
k on the main diagonal respectivelys

(s=l to 69-)

and {CI.} = { CI. 1, CI. 2, CI. 3, ••• ,CI. S ' ••• ,CI. 6 9- }

The modal participation factors {CI.} are the only unknown

vector in the RHS of Equation (3-54). The next step,

then, is to calculate the boundary displacement vector in

terms of the modal participation factors, and to relate

the boundary load vector to the boundary displacement

vector to form the boundary matrix.

At any particular node i, the displacement vector is

given by

9-

u. = {;lCl.S
H(s)X. (s) (3- 55)

J. J.

9-
UI sLor u i = CI.

s=l s uJs
UKs

i

H! (k r )Xl (s)+ L H. (k r )X3 (s)
J S 0 r o J s 0

where

i

= ksH j (ks r o )X2 (s)

kHj (ksro ) Xl (s) +Hj (ksro ) X3 (s) .
1
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Therefore

u

-w

v

=

i

uI( 1) uI (2) .•. uI (s) .•. uI (6 i)

uJ (1) uJ (2) • . . uJ (s) . . . uJ (6i )

uK(l) uK(2) .•. uK(s) .•• uK(6i)

(3-56)

Defining {ub }6ixl as the boundary displacement vector,

and with ui as a general nodal vector, {ub} may be

written as

hill] 1

[uu] 2

[uu] .. ~

[uu] 22

{cd = [uu]· {a} (3-57)

The dynamic stiffness matrix of the energy absorbing

(3- 5 8)

boundary Rb is defined through the following relation:

(3-59 )
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Substituting (3-58) into (3-54) for {a} and equating the

resulting RES to the lliIS of (3-59) for an arbitrary ub '

it follows that

l1, = r o [[A] [XA] [K 2 ) + [G) [XBj [K) + [E) [XA) ] [UU)-1

(3-60)

3.4 TOTAL DYNAMIC STIFFNESS MATRIX OF THE SOIL MEDIUM

Consider the boundary load vector of Equation (3-59)

as an external load vector acting with negative sign on

the finite element region, Equation (3-19) becomesi

and by increasing the size of Rb by adding zero rows and

columns to match the dimension of K and M, one can get

or

= p

where K is the total dynamic stiffness matrix of thec

soil medium,

(3-62 )
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Equation (3-61) may be solved by the conventional

numerical methods to obtain the nodal displacements.

Although neither the total dynamic stiffness matrix of

Equation (3-62) nor the formula of Equation (3-61) is

going to be used in its present form in the structure­

soil system of the next chapter, these are very useful

in checking the finite element model of the soil medium

and the effectiveness of the vertical energy absorbing

boundaries. The checking of the model presented in this

chapter is part of the parametric study which is to be

carried out later.
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4. SHELL-SOIL MODEL

4.1 GENERAL APPROACH

One of the most challenging points in the soil-structure

interaction problems is the interface between the soil

medium and the structure. For rotational shells-soil

system, the problem becomes more complicated as the number

of degrees of freedom in the shell side is not the same as

those in the soil side at the cornmon nodal points connecting

the structure model to the soil. Furthermore, the soil

model is essentially a three dimensional problem, whereas

the shell model is a two dimensional model. Apart from

the geometrical difficulty, one must overcome the problem

of dealing with two different materials, where the soil

model is frequency dependent while the shell model is not.

Also, the soil material has no tensile capacity which may

cause uplift of the shell structure under the effect of

major earthquakes or wind loads.

To overcome the difficulty of the connection problem,

one may take advantage of the physical properties of the

structure components and the overall behavior of the system.

As an example, if the shell is founded over ring footing,

the assumption of a rigid footing in the radial and vertical

direction may simplify the connection problem, although the

ring footing may be flexible in the circumferential direction.

Also, the separation between the foundation and the soil
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may be considered only with the first two Fourier har­

monics (J=O and J=l) as the higher harmonics correspond

to local deformations which cannot cause total uplift of

the superstructure. However, the uplift problem may be

neglected altogether for certain types of shells when the

non-structure elements are tied to the foundation, adding

to the overall stability. For example, at the bottom of

the cooling tower shells the water basin and the fill

structure may be tied to the ring footing (38).

In this chapter the connection model is presented and

the shell-soil model is explained. The approach presented

herein is restricted to shell structures modeled by axi­

symmetric elements and founded over concentric ring footing.

The computer program used in calculating the connection

model is explained and a flowchart is provided. For

obvious reasons the connecting model is named the Equivalent

Boundary System (EBS). The EBS is frequency dependent and

must be updated for each Fourier harmonic. To account for

the possibility of foundation uplift, an iterative pro­

cedure is presented in which the problem is run again after

modifying Fourier coefficients of EBS according to the

angle of separation.

In Figure 6 the proposed model is given for a cooling

tower shell.
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* HPRS = High- Precision Rotational Shell
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COLUMNS
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r------ REGION MODEL APPROACH

* CONTINUOUS BOUNDARYA HPRS ELEMENTS
Ir------

B HPRS ,elEMENTS SUPERPOSITION

r--------

C OPEN ELEMENT SU PERPOSITION

< f-------
D BOUNDARY ElE- SUPERPOSITION

MENT

E EQUIVALENT BOUN- CONTINUOUS BOUNDARY
DARY SYSTEM

+

T
w

-.L

Figure 6. Proposed Model for a
Cooling Tower Shell
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4.2 EQUIVALENT BOUNDARY SYSTEM (EBS)

In the previous chapter the total dynamic stiffness

matrix K of Equation (3-62) is of order 3n by 3n wherec

n is the total number of nodes in the finite element mesh.

When only one degree of freedom per node on the axis of

symmetry is not restrained (vertical displacement) and

with the lower boundary fixed, the order of the total

stiffness matrix Kc will drop to n by n, where

n = 3n - 3m - 4i

in which

m = number of nodes at the lower
boundary

t = number of layers.

Since the prime degrees of freedom are those at

( 4-1)

the foundation level (in Figure 7, node number 1 to node

number m), one may reduce the problem by carrying out

the well known condensation procedure to get

* * *K u = P
c

where

*
_ I

K = KII - K I2 K 22 K21
C

*P = PI

*U = Ul

(4-2)

(4-3)

and Kll, Kl2, K2l, K22, UI and PI can be obtained from

the original matrices Kc ' u and P of Equation (2-61).
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Figure 7. Soil Mesh with the
Ring Footing
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K I KIlnlxnl I I2 n l xn2
I
I-------------

UI nl P Inl

(4-4)

where ni = 3m - 2 and n2 = n - ni'

In Equation (4-3), P* is taken equal to PI since

P 2 is assumed to be a null vector (no external loads could

be applied at the nodes inside the soil stratum).

4.2.1 Impedance Matrix

The impedance matrix is the dynamic stiffness to be

added to the superstructure matrices to complete the

structure-soil dynamic model. It is, thus, composed of

the dynamic stiffness coefficients corresponding to the

common degrees of freedom between the superstructure and

the soil model. In Figure 7 these degrees of freedom are

associated with nodes m-2, m-l and m.

Using Equation (4-2) with the RES all zero's except

for the value at one of the common d.o.f. which is set to

unity and solving for u*, the flexibility matrix F can be

obtained. The impedance matrix Ks is obtained by inverting

the flexibility matrix F

(4-5)
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The above method is the conventional approach to

obtain K , however, there is an alternative approach ins

which one may make use of the condensed stiffness matrix

K; by simply inverting K~ and then eliminating the columns

and rows not corresponding to the common d.o.f. to form F.

Equation (4-5) may be used, then, to obtain K •s

In general, the resulting impedance matrix Ks will be

a complex matrix even for an elastic soil medium. This is

because of the radiation of the waves toward infinity.

While the real part of the impedance matrix represents

the soil stiffness elements at the common degrees of

freedom (nodes m-2, m-l and m in Figure 7), the imaginary

part represents the part of the damping corresponding to

the radiation at the energy transmitting boundary. In

the case of complex Lame' constants for the soil material,

the imaginary part of the impedance matrix represents

both radiational damping in the far field and the viscous

damping in the viscoelastic soil material. The viscous

damping is due to the phase angle between the stress and

strain vectors in the soil.

In the following section the connection problem between

the soil medium and the shell foundation is formulated. The

frequency dependent stiffnesses of the impedance matrix

(the real part of Ks ) are used to formulate the stiffness

elements of the EBS. The damping elements of the EBS are
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computed from the imaginary part of Ks plus a linear

combination of the stiffness and mass elements of the

EBS (proportional damping). Here, the proportional damping

matrix represents the material damping for the elastic

soil medium.

4.2.2 The Ring Footing

Consider the cross section of Figure 8 to be the con­

centric ring footing supporting the shell which may have

an open element (columns) atop the footing. The ring

footing is modelled as a shell element with a constant

radius (cylindrical element) with the same shell theory

assumptions of no deformation in the normal direction and

linear deformations in the meridional direction, which

imply that the footing lower boundary has the property of

being rigid. This property does not contradict the physi­

cal nature of the problem in which the ring footing is

rigid relative to the soil, i.e., the line FED must remain a

straight line after deformation (Figure 8). It should be

noted here that the area bounded by the straight lines AC,

CD, DF and FA is the area which will be considered in the

finite element formulations.

To introduce the soil effect at the ring footing base

level, the following factors must be considered:
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i. The six degrees of freedom at the base

edges D and F must be eliminated and, at

the same time, the rotational d.o.f. at

E must be formed from the eliminated

degrees of freedom; in other words, the

nine d.o.f. should be lumped in five

d.o.f. at the midpoint of the footing base.

ii. The contact stress between the soil and

the footing may be compressive or shear

stress, but not tensile stress.

iii. As this is a dynamic problem, not only

the stiffness of the soil has to be con­

sidered, but the damping and inertial

effects of the soil have to be taken

into account as well.

The nine stiffness elements of Figure 9 are obtained

from the impedance matrix by considering each stiffness ele­

ment on the main diagonal as a linear spring in the corres­

ponding direction. Once these stiffness elements are

computed, the rest of the connection model can be formulated,

with the aid of the rigid base assumption and with factors

(i) and (ii) in mind, by solving for the resultant in the

five degrees of freedom at the central point E.
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Ku=K1+ K4 + K7
•l<.w= K2 + KS+ Ka

Ky =K3 + K6 + K9

KO= [K2+KS] B/2

K<j)= rK3 + K9] B/2

Figure 9. Equivalent Boundary
Sti~~nesses
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K
U = K1 + K4 + K7

Kw = K 2 + K~ + Ka

K
V = K 3 + KG + Kg (4-6)

Ke
B (K 2 + K. a)= 2

K~
B

(K3 + K g)= 2

In the connecting model of Equation (4-6) only force

continuity between the shell footing and the soil elements

are satisfied while the kinematic continuity may not be

satisfied due to the rigid base assumption. However, this

problem of incompatibility may be ignored as the analysis

is not a combined type of analysis. In the combined

finite element models, the kinematic continuity at the

points between adjacent elements is necessary and sufficient

for the convergence of solution, which is not the case here.

It may be of interest to compare the connection model

just described in this section and a recent research study

carried. out by Karadeniz (39). The model presented in

Karadeniz's work is the alternative to the approach chosen

herein where two dummy nodes are added to the last node

in the shell model to match the dimensions of the adjacent

solid element. These dummy nodal points are connected to

the shell by horizontal weightless arms. In that model,

at the point of connection between the shell and solid
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elements, only the kinematic continuities are satisfied

as stated by Karadeniz. While the the model used by

Karadeniz is suitable for combined finite element analysis,

it necessitates the modification of the last element in the

shell in a way which complicates the dynamic analysis of

the shell if the substructure model is to be used, as in

the present analysis. This complication arises from the

presence of three nodal points at the shell base, one real

and two dummy; furthermore, a transformation for the dis­

placements as well as for the input base motion due to the

geometrical discontinuities is required. Moreover, adding

two dummy nodes increases the size of the problem while the

rotational degrees of freedom at all three nodes are still

indeterminate.

Proceeding with the present connection model and in con­

sideration of factor (iii) as discussed earlier, an approach

for calculating the inertial effects which is similar to

that used in deriving the stiffness elements is used,

whereby the elements on the diagonal crthe condensed mass

matrix are considered as lumped masses in the corresponding

degrees of freedom, and the resultant in the five degrees

of freedom at the central point E of Figure 9 are evaluated

as follows:

ffi
U = ml + m4 + m7

~ = m2 + ms + rna

~ = m3 + ms + mg
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( 4-7)

= (m3 + mg)· B/2

The damping system is formulated from the imaginary part

of the impedance matrix Ks in a way similar to the

stiffness elements of the EBS as discussed previously.

The resulting dampers in the five degrees of freedom

of point E (Figure 9) represent the complete damping

system in the case of a viscoelastic material but only

the radiation damping at the energy transmitting boundary

for an elastic soil material. For the latter soil case

the material damping needs to be considered as well and

one possible approach is to construct a proportional
/

damping matrix from the final stiffness elements and the

corresponding lumped masses, such that

d. = C m. + CIK.
J. 0 J. J.

where

( 4-8)

and

Co = 2 W'IWS(~IWS-~swd/(ur~-wf)

CI = 2(~SWS-~IWI)/(~~-w~)
( 4-9)

In Equation (4-9), WI and ws are the lowest and the

highest frequencies of the system (see Figure 8), ~l

and ~5 are the corresponding damping ratios. Due to the

uncoupling between the five degrees of freedom at point E,

the frequencies WI to Ws may be calculated from the simple

relation
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( 1/2
W· = K./m.)

1. 1. 1.

It should be noted here, that Ws and ~s are used in

(4-10)

forming Co and CI of Equation (4-9) instead of W2 and ~2

due to the fact that the band of w. is limited as will be
1.

seen later and in most cases WI and W2 are very close in

value which may cause numerical instability while cal-

culating Co and Clo

The complete damping system for the elastic soil

system is the sum of the material and radiation damping

d. = d. + C.
1. 1. 1.

(4-11)

where

- =' {C C¢} (4-12)C. u' Cw' Cv' C 8'J.

= the radiation damping of the soil
medium

and

Cu = CI + Clf + C 7

Cw = C2 + Cs + C a

Cv = C3 + C6 + Cg (4-13)

C = :(C2 + C a) B/2

C = (C 3 + Cg)B/2

where - -CI to Cg are the main diagonal elements for the

imaginary part of matrix Ks of Equation (4-5)
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Figure 10 gives the translational and the rotational

stiffnesses, lumped masses and damping elements at the

midpoint of the footing base. These are the modal values

and they are expressed in Fourier series in the e direction.

4.3 COMPUTER IMPLEMENTATION

In an attempt to use SHORE-III program (40) after

introducing the necessary modifications to some subroutines,

the authors of this report have developed a computer program

(SUBASE), in which the Equivalent Boundary System for a

rotational shell is computed. The EBS is to be supplied

as input for the modified SHORE-III program. This approach

has the advantage of reducing the computer storage area

as SHORE-III requires 300K in high speed storage to solve

a normal size problem. Furthermore, by this approach, the

dynamic analysis capability of SHORE-III program which

includes the consideration of the effects of wind, earth­

quake, and blast loading in deterministic sense is unaltered.

4.3.1 SUBASE Program

The SUBASE program is designed to develop the stiffness,

mass and damping elements which represent the soil medium

under a ring footing supporting shell of revolution. It

has the capability of analyzing layered strata over actual

or assumed rock of infinite horizontal extent. The program

is limited, however, to soil materials with real modulii

(no phase angle between the stress and strain vectors) and

with cross-anisotropy, i.e., the constitutivity
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System (EBS)
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matrix is restricted to be a function of the radius from

the axis of symmetry of the shell and the depth from the

foundation level.
,

The SUBASE program is a new development. It is

written in FORTRAN IV language and has been implemented

on an IBM 370/145 computer. The program requires 300K in

high speed storage and the single precision is used in the

calculations.

As can be seen from the flow diagram for SUBASE,

shown in Figure 11, the Equivalent Boundary System is ob-

tained, harmonic-wise, for a given excitation frequency Q

through the following steps:

a - Input Data

The input data for geometry, nodal locations, material,

number of layers, control data, etc. are read and additional

data are generated.

b - Generation of Element Matrices

Corresponding to the current harmonic, the stiffness

matrix and the mass matrix for each element are generated.

c - Generation of Layer Matrices

For each harmonic, the layer matrices, required for

the eigenvalue problem of the wave propagation problem in

the far-field, are generated.

d - Eigenvalue Solution

For each harmonic, the wave numbers and the mode

shapes for the propagating wave are obtained.
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e - Assembly of Global Matrices

The boundary matrix, together with the matrices of

the F.E. region, form the dynamic stiffness matrix of

the stratum.

f - Equivalent Boundary System

For each harmonic, the equivalent stiffness elements,

mass elements and damping elements at the lower five degrees

of freedom of the ring footing are calculated and printed

out.

A complete listing of the program is given in Appendix 8.

3. The listing contains further details about the program

through the heading comments in each subroutine.

4.3.2 SHORSS Program

The SHORSS program is a finite element program for

the linear static and dynamic analysis of axisymmetric

shells (and shell-like structures) and plates. The dynamic

analysis includes the soil effects which are introduced

with the aid of SUBASE program. It is an extension of

the static and dynamic analysis program SHORE-III (41).

The SHORSS program is written in FORTillU~ IV language

and has been implemented on an IBM 370/145 computer. It

has the same storage area as SHORE-III and the overlay

structure shown in Figure 12 must be used for running the

program. All the details about the program as well as the

flow diagr~~ are omitted here since they are almost the same

as those describing SHORE-III program (35,40). However, the
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necessary modifications to the User's Manual of SHORE-III

are given in Appendix 8.4.

4.3.3 Scheme of Computation

In this section the overall scheme of the analysis

is described. The master flow chart of the computation is

presented in Figure 13. In this model the computation

for the displacements and stresses in a shell of revolution

sUbjected to a general loading (static or dynamic loading

which may be symmetrical, antisymmetrical or with any

distributed pattern around the axis of symmetry of the

shell). The simplest case of loading is the static loading,

in which no soil effect should be considered in the

analysis; however, the load may be complicated and requires

a Fourier series expansion to carryout the analysis har­

monicwise. The SHORSS program, with a fixed lower boundary,

becomes SHORE-III program in this case.

In case of dynamic analysis, the problem becomes more

involved and the soil effect becomes an important factor

for a more realistic model. With the aid of the SUBASE

program the equivalent boundary system (EBS) can be cal­

culated and introduced at the foundation level, then the

analysis is to be carried out harmonicwise using the

SHORSS program. To account for the possibility of founda­

tion uplift the stresses at the foundation level should be

checked and any net tensile stresses will correspond to

uplift; however, the dead load stresses as well as the
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effect of any non-structural elements tied to the shell

foundation must be included in calculating the net

tensile stress at the soil-foundation interface. If the

separation zone is significant, the analysis should be

carried out again with new EBS with zero stiffnesses,

masses and dampers in the separation zone. The modification

may be done by expanding the new EBS in Fourier series and

the resulting modal values should then be introduced to

the ring footing. The analysis is completed if the re­

sulting separation angle, Figure 14, is the same as in the

previous cycle.

For any type of analysis, static or dynamic, the

local stresses near the base, for shells with column

supports, need to be corrected. The superposition techni­

que is to be used. The solution is composed of the con­

tinuous boundary case and a self-equilbrated line load

case, both of which are represented in Fourier series,

Figure 15. The necessary computer program to evaluate the

Fourier coefficients is developed by the authors of this

report, SHORe program, and is described and listed else­

where (42). As the ring footing is in the vicinity of

the discrete supports the correction should be carried out

at both sides of the discrete supports. It should be

noted here that FORIT program is capable of evaluating

the Fourier coefficient for any loading distribution, but

not for the particular case of self-equilibrated line load.
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5. PARAMETRIC STUDIES AND APPLICATIONS

5.1 INTRODUCTION

The influence of the geometry and material properties

of a soil stratum on the response of a shell of revolution

founded atop the stratum and sUbjected to forced excitations

will be studied in this chapter. The main objectives are:

to check the applicability and accuracy of the model pre-

sented in the previous chapter; to present results for

cases for which no known analytical solution exists; and

to assess the importance of the soil on the shell response

to dynamic loads.

The study is divided into two main sections: the first

is the study of the soil model which may be examined through

the equivalent boundary system and the second is the

dynamic analysis of shells of revolution in which the soil

effect on the dynamic response is discussed. In the first

section, the soil model study, dimensionless analysis is

used throughout and the results are plotted against the

non-dimensional excitation frequency a o ' where

(5-1)

in which Q is the excitation frequency, r o is the radius

of the energy absorbing boundary and Vs is the shear wave

velocity in the stratum.
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In order to check the applicability and effectiveness

of the energy absorbing boundary based on the theory pre­

sented in Chapters 2 and 3, a time history analysis is

carried out for two cycles of a sinusoidal ground accel­

eration applied at the lower boundary of the finite element

region of Figure 16. The sinusoidal ground acceleration

has a maximum amplitude of 20% g and a frequency equal to

10 radians per second. To perform the time history

analysis, numerical integration is needed which, in turn,

depends on the highest period of the system and requires

the evaluation of the eigenvalues of the finite element

model. However, one may sometimes avoid a time consuming

eigenvalue analysis by choosing a most accurate uncon­

ditionally stable numerical integration scheme. Among the

different numerical schemes, such as the Newmark S method

(43), Wilson e method (44) and the direct step-by-step

integration method (45), the Ne~~ark method was found to be

the most stable method by Wilson and Bathe (45). The

accuracy of the integration increases by decreasing the

time step 6t. For large values of 6t, the errors in period

are increased and the percentage amplitude decay also is

increased. From Wilson and Bathe's Analysis (46), the

Ne~~ark technique proved to be the only one which gives no

errors either in the period or in amplitude alternation

for S = 1/4.
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For J = 1, the dynamic analysis is carried out using

two models which are the same except for the vertical

boundaries. The first model has an energy absorbing

boundary which is represented by the boundary matrix Rb

of Equation (3-60) while the second has a roller boundary,

which alows the nodal points along the vertical boundary

to move freely in the vertical and circumferential direc­

tions. Numerical computations herein are conducted using

the Newmark method with S = 1/4 and a time step of 0.005

sec.

The three components of the response accelerations of

node 4 u, wand v are given in Figure 17. This particular

node is chosen because of the importance of its nodal de­

grees of freedom when computing the EBS. In Figure 17 the

response accelerations show that, in contrast to the un­

damped response in the model with a roller bound~ry (solid

lines), the model with an energy absorbing boundary pro­

duced a damped response (dotted lines). This indicates that

the energy absorbing boundary, which is developed in

Chapters 2 and 3, absorbs the energy of the waves. Further,

it is indicated in Figure 17 that the response of the roller

boundary model builds up around t = 2.5 sec.; thus, it

follows that the roller vertical bounary produces reflected

waves.

The above numerical illustrations provide a check on

the applicability and the effectiveness of the energy ab­

sorbing boundary.
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5.2 PARAMETERS AFFECTING THE EBS

In this section the convergence of the finite element

solution which is used in the equivalent boundary system

calculation is evaluated. To evaluate the convergence of

the F.E. solution, two parameters should be studied; the

first is the effect of the lower boundary location which

is assumed to be totally fixed and the second is the mesh

effect. The natural frequencies, stiffnesses and damping

of the EBS are then studied for a range of the excitation

frequency Q. Also, the EBS quantities for the higher

Fourier harmonics are compared to those for the first two

harmonics (J = 0 and 1), in order to extrapolate the

values of the soil constants for the very high harmonics

and to assess the usefulness of the present theory in ob­

taining solutions for a general harmonic, which is a quite

new development.

5.2.1 Effect of the Stratum Depth

The depth of the stratum for a given ring footing

dimension, influences the results for the stiffnesses and

damping of the EBS since the dynamic response of the nodes

at the foundation level is significantly influenced by the

natural modes of vibration of the stratum as well as by

reflections at the rock-soil interface.

To evaluate the convergence of the EBS quantities for

the case of a very deep stratum, six meshes with the same
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element size throughout the mesh were considered. Figure

18 gives the dimensions of the six meshes which start

with a shallow stratum and end with a very deep one.

Table 2 gives the soil material properties which are used

with all meshes. With the vertical boundary radius

r o = 80 ft. and the dimensionless frequency a o=5.0, 0 is

calculated from Equation (5-1) and it is found to be

53.36 radians per second.

The results for the six meshes are summarized in

Table 3 in which the natural frequencies, stiffnesses and

damping of the EBS are presented. Also, the dimensionless

w/w, K/K and DID are plotted in Figures 19 to 21 against

the depth ratio H/r , where W, Kand Dare the EBS
o

quantities for the very deep stratum which may be con-

sidered to be the half-space solution as the reflections

at the rock-soil interface are expected to be very small.

The percentage damping ratios ~l and ~5 are assumed to be

5% and 10% respectively.

The approximate CPU time in the IBM 370 computer

to run the SUBASE program is 5 seconds per layer per

harmonic for each driving frequency. However, only one

Fourier harmonic is used in the analysis (J = 1) for a

single driving frequency (0 = 53.36 radian per second).

The results given by Table 3 and Figures 19,20 indi-

cate the importance of the stratum depth factor for the
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Table 2. Soil Material Properties

Soil Properties

All Finite Elements

All Layers

Units: K, Ft and Sec.

A

3738.0

3738.0

]J

2492.0

2492.0

p

0.003419

0.003419

ao

5.0

5.0

v s

853.74

853.74

V
p

1599.71

1599.71

I
I-'
o
I-'
I



Table 3. EBS Quantities for the Stratum Depth Analysis (J=l)

All units are: Kips, Ft and seconds



Table 3 (continued)
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natural frequencies and stiffnesses. On the other hand,

the damping elements are less sensitive to the depth factor

as one can notice from Table 3 and Figure 21. It is in­

teresting to notice that the error in the stiffness elements

as the stratum gets shallower is proportional to the square

of the error in the corresponding natural frequency. This

is because the mass elements did not change with the change

of the lower boundary location. It is also interesting to

notice that at some depth ratio (H/ro ~ 3) the error in the

five components of the EBS became very close to each other

and, morover the EBS quantities at such depth ratios approach

the half-space solution which is represented here by the

depth ratio HIRo = 9.

The insensitivity of the damping elements to the stratum

depth suggests that the damping is mainly due to the radia­

tion of the waves horizontally in the far-field and that the

vertical radiation of the waves is not a major factor.

However, the reflected waves on the rock-soil interface for

the shallow strata (H/ro < 3), caused the damping to de­

crease by about 15% as may be observed from Figure 21.

It may be noted from Table 3 that the EBS components

which correspond to the rotational degrees of freedom

(8 and ¢) are more sensitive for the stratum depth. This

may be due to the reflection of the waves on the lower

boundary which tends to redistribute the response at the
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foundation level, mainly affecting the rotational com­

ponents. This explanation is consistent with the results

since for deep strata (H/ro ~ 3), there is no predominant

sensitivity of the different components of the EBS.

The study of the stratum depth presented in this

section suggests some useful guidelines which may help to

reduce the size of the parametric study. One very im­

portant finding is that the stiffness elements are the

most sensitive of the EBS components; as a result, the re­

maining parametric studies may concentrate on the stiffness

elements only. Also the study reveals that the assumption

of fixed lower boundary at a depth H = 3ro is reasonable

for most practical uses. This means that the dynamic in­

fluence region is defined through this study which brings

forth the idea of a dynamic pressure bulb.

5.2.2 Mesh Size Effect

The dynamic pressure bulb is a generalization of the

concept of a pressure bulb as defined in statics, in the

study of pressure distributions under footings. It repre­

sents the zone of influence under the footing which affects

its dynamic response and beyond which coarser finite elements

may be employed without significantly influencing the

dynamic behavior of the system. It is desirable, in order

to ensure the efficiency and economy of the finite element

solution, to use larger elements away from the zone of

influence provided that such a zone exists.
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Earlier studies on the finite element method applied

to dynamic problems indicate that the size of the largest

element in a system should be smaller than a certain

fraction, usually 1/8 to 1/10, of the shortest wave length

that is expected to be reasonably reproduced. In the case

of a layered system and particularly for a deep one, it is

often economically unfeasible to cover the whole depth with

a fine mesh and it becomes necessary to investigate the

possibility of using narrower (longer) elements with in-

creasing depth away from the dynamic pressure bulb. At the

same time, it is of interest to check the rate of conver-

gence towards the continuum solution as the mesh is refined.

To evaluate the convergence of the finite element

solution with decreasing element size, four meshes with a

depth ratio H/ro = 3 were considered: coarse, medium, medium­

fine and fine. Soil material properties used in the analysis

are those presented in Table 2. The four meshes along with

the results are shown in Figure 22. Only the dimensionless

stiffness elements K/Gro are plotted against the element

size ratio t/A, where t is the longest element dimension in

the mesh, and A is the shear wave length, which is obtained

from the relation (27).

A =
2IT r Wo (5-2)

with W= the fundamental frequency of the
soil stratum.
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For the present analysis w was considered to be the average

frequency of the EBS with a very deep stratum (w = w =av

33.68 rps) as considered in the previous section.

In Figure 22 the continuum solution could be extra­

polated by the intersection of the curves with the vertical

axis (t/A = D). The results indicate that the largest

element dimension in the mesh should not exceed A/6 for

satisfactory results in case of a uniform mesh. Also, it

may be noticed that the rate of convergence for the five

components is approximately the same and that it is very

slow for element size ratio less than 1/8.

In order to investigate the possibility of using larger

elements with increasing depth, another four meshes are

considered with same soil properties and depth ratio as

those used in the convergence study. Knowing the continuum

solution for the EBS from the convergence study, the errors

in the finite element solution of the four meshes are cal-

culated and plotted against the ratio lOD/n, where n is the

total number of elements in a mesh, Figure 23. Also, the

four meshes used in the study are shown in the same figures.

It is interesting to notice that the mesh with twenty

elements produced results with error as small as 0.7% of

the continuum solution, although elements with dimensions

equal to A/4 are used. Also, the results presented indicate

that only negligible differences are noticed between the two
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meshes with twenty eight and forty elements. These results

for the economical (non-uniform meshes) and those for the

uniform meshes used in the convergence study are tabulated,

for the purpose of comparison, in Table 4. This table in-

dicates that the four meshes with non-uniform elements pro­

duced very close results for most practical applications.

Based on the studies of the finite element meshes, it

is concluded that the zone of influence under the footing,

which may be called the pressure bulb, is about 1.5 rando

within this zone the size of the elements have an effect on

the dynamic behavior. However, it should not be inferred

from this conclusion that it is permissible to completely

suppress the lower (long element) portion, as this results

in increased values for the stiffness element due to the

reflections of the waves on the assumed rock-soil interface,

as discussed in the previous section. From this it is felt

that the elements between the pressure bulb and the assumed

lower fixed horizontal boundary may exceed the limitation

~/A < 1/6 (say). At the same time, the limitations on the

size of the finite elements within the dynamic pressure bulb

must be enforced.

It should be noted here that the geometry of the

foundation, which is a ring footing, affects the mesh size

and the elements refinement near the foundation level. As

the ratio Biro' the ratio of the base width to the radius



Table 4. Mesh Size Effect
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of the energy absorbing boundary gets smaller, the dynamic

pressure bulb may be confined to the ring footing vicinity

with elements near the axis of symmetry having less effect.

In such extreme cases, the zone of influence will take a

toroidal shape below the ring footing and, consequently,

more economical finite element meshes may be used with

large elements away from the footing, radially towards the

axis of symmetry and downwards away from the dynamic pressure

bulb towards the lower boundary. Large towers, like rein-

forced concrete cooling towers, often have a large base

diameter which results in small Biro ratios and possible use

of the super-economical mesh like that shown in Figure 24.

5.2.3 Effect of the Driving Frequency

After the mesh size and the lower boundary location

have been established it is useful to compare the present

model results with existing elastic half space results. Due

to the limitations of the half space solution, only a few

cases of axisymmetric problems have been solved; one of

these is the dynamic analysis of a rigid circular footing on

an elastic half space (47). In this paper the axisymmetric

vertical footing is considered and the vertical displacement

o of the footing is calculated from the relation (see Figure

25) .

p .
o = 0 F l.ntK e (5-3)
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in which Po and n = the amplitude and frequency, respectively,

of the exciting force; t = time; and K = the static spring

constant. It may be shown that

4Gro
K = l-v (5-4)

The dimensionless quantity P, herein designated the dis-

placement function is a function of Poisson's ratio v

and the dimensionless frequency ratio a o •

The rigid circular plate is idealized by a row of

massless finite elements of very high rigidity (10 6 times

higher than that of the stratum). The equivalent value for

the force amplitude in the finite element model is taken

P /2ITr and is concentrated along the founction edge, seeo 0

Figure 26. Also, in the same figure, the displacement in

the w direction is plotted against the dimensionless fre-

quency ratio a o ' for Po = 1.0 K, r o = 10', G = 2492 K/Ft 2

and v = 1/3.

The results of the finite element model with an energy

absorbing boundary show good agreement, especially in the

lower frequency range in which the shear wave velocity A

becomes longer and the element size ratio ~/A becomes

smaller. The results for the same problem as carried out

by Lysmere and Kuhlemeyer (48) are qlso plotted. It can be

seen that the present model with only 10 elements gave

results comparable to those of Lysmere and Kuhlemeyer for
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which 64 elements were used. This provides a check for the

correctness of the present model and suggests its appli­

cability for very deep stratums.

To study the effect of the driving frequency on the EBS

components, the frequency ratio ao is considered for the

range a o = 1.0 to 2IT (8) with the first two Fourier har­

monics (J = 0 and J = 1). The super-economical mesh of

Figure 24, with Hlro = 2.5, Biro = 0.1 and r o = 100 feet,

is chosen to represent the soil medium. The natural fre-

quencies of the EBS are plotted against the driving frequency

ratio for the symmetrical and untisYmmetrical nodes in

Figures 27 and 28. It can be seen that the translational

mode frequencies are less sensitive to the change of ao than

the rotational mode frequencies. Further, it can be noticed

that the five frequencies have a limited band for a given

driving frequency ratio, especially for a > IT. For this
o -

reason the smallest and largest values of ware considered

in forming the proportional damping matrix as discussed in

Chapter 4.

Figures 29 and 30 show the dependence of the stiffness

elernent~ on the driving frequency. It is also noticeable

that both translational and rotational stiffnesses are very

sensitive to the change of a o ' The sensitivity of the

stiffness elements may be explained by examining Equation

(3-62), where the second and third terms of the ~qS of

the equation are functions of the driving frequency ~.
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It is interesting to notice from Flgures 29 and 30 that

for a given value of a o either J = 0 or J = 1 gives maxi­

mum stiffness value, but not with both Fourier harmonics.

This observation suggests the importance of a sensitivity

study to the EBS components for a range of Fourier har­

monics.

Similar observations maybe applied to the damping

element~ in Figures 31 and 32. In these figures the average

effect of a o on the two harmonic behaves similarly to that

in Figures 29 and 30. However, the damping elements are

less dependent on the excitation frequency than the stiff­

ness elements which is expected since the proportional

damping matrix.contains the mass matrix which is independent

of the excitation frequency. This conclusion agrees with

the results presented in References 8 and 49.

5.2.4 Higher Harmonics

For earthquake analysis, the first two Fourier har­

monics are sufficient to carry out a complete dynamic analysis

of the structure; thus the EBS components for J > 1 are not

required with the usual earthquake type of loading. However,

the EBS components for the higher harmonics are needed when

the dynamic loading distribution in the circumferential angle

e has a general shape. Wind force is one dynamic load which

requires more than the first two Fourier harmonics to be

fully represented. A typical design wind pressure distribution

for circular towers is presented in Reference 50, along with
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the corresponding Fourier coefficients. Such a circum-

ferential distribution of wind pressure may be represented

by,

00

L
j=O

A. cosj8
J

The Fourier coefficients A., for the first eight harmonics,
J

are generally sufficient for the analysis (51). It is worth

noti~g that the very high Fourier harmonics associated with

the self-equilbrated correcting line loads of Figure 15

are required in any type of dynamic or static analysis of

discretely supported rotational shells (42); however, as

these loads are self-equilbrated-local forces, the static

analysis of such loads is sufficient and, therefore, there

is no need to compute the EBS components for these very

high harmonics. Thus, only the first eight or even the

first six harmonics need to be considered in this section to

study the behavior of the natural frequencies, stiffnesses

and damping elements of the soil system in higher Fourier

harmonics (J = 0,1, ... 5). These higher Fourier harmonics

are also needed if a non-uniform earthquake excitation is

to be considered.

In Figures 33 to 35 the results of the first six Fourier

harmonics are shown. The same mesh of Section 5.2.3 is

used and the excitation frequency ratio a o is taken equal to

5.0. It is interesting to notice that the EBS, for J > 1,
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are approximately constants for the u, v and ¢ components,

while the wand e components (vertical and rocking) show

more variation as shown in Figures 33, 34 and 35. This

observation may be useful in reducing the size of the

problem if the stiffnesses and damping elements of the

higher harmonics are considered to be independent of the

Fourier number J and suggests a helpful procedure to de­

termine the EBS components for J > 1 with the aid of one

harmonic No J, (J ~ 2). By comparing the stiffness and

damping elements in Figures 34 and 35, we find that the

damping is less dependent on the harmonic number J than the

stiffness elements. Again, this is because of the mass

elements, which is independent of J, and are contained in

the damping, see Equation (4-8).

5.3 DYNAMIC ANALYSIS OF SHELLS OF REVOLUTION

The main aim of this research has been to develop a

more realistic mathematical model for rotational shells hy

including the soil effect in the dynamic model of such

structures. Further, it is desired to assess the importance

of the new component of the model, the surrounding soil

medium, on the dynamic behavior of this class of structures.

The structure under study is the reinforced concrete

cooling tower shell shown in Figure 36. The tower is assumed

to have a shallow foundation in the form of a ring footing

with the ratio Biro < 0.1. The shell meridian consists of
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three curves with slope continuity at the junction points

(nodal points #4 and #7). The equations of the shell

meridian are given in Table 5.

In the present study, the following three soil and

one rock founded (fixed base) cases are considered. These

cases were selected to provide a wide variation of site

conditions and also to permit the establishment of trends

in the structural response as suggested by Pandya and

Setlur (16).

The soil consists of 500 ft. of uniform medium

sand with 75 percent relative density. The

value of the shear modulus coefficient (52) is

taken as 1827 K/ft 2 with the value of Poisson's

ratio as 0.35. This case is representative of

a soft to intermediate soil condition.

To study the effect of a stiff and shallow soil

condition, the soil depth was reduced to 250 ft.

The soil is assumed to be dense sand and gravel

with G = 2675 K/ft 2 (52) and Poisson's ratio as

0.4. This case is representative of an inter­

mediate to stiff soil condition.

CASE III. This case is formulated such that fundamental

frequency of the soil layer is close to that

of the structure. Strong amplification due to

resonance effects, if present, would show up.



Table 5. Shell Meridian of the Structure Under Study

Nodes
Shell Type Equation

From To

HP #1 1 4 z2-123.68377 r 2 + 27587.5165 r - 1536846.5 = 0

HP #2 4 7 z2-9.40153 r 2 + 1302.5923 r - 25462.9 = 0

CONE 7 10 0.3z - r + 87.2112 = 0

I
I-'
w
01
I
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The soil is assumed to be stiff clay with

depth of 600 ft. The values of the shear

modulus coefficient and Poisson's ratio are

taken as 2315 K/ft 2 and 0.4 respectively.

The structure is directly founded on com­

petent rock and, therefore, the soil structure

interaction effect is negligible. This case

represents an important convergence point for

the solution technique.

The super-economical mesh of Figure 24 is considered

to model the first and the third cases. Because of the

shallow soil condition of Case II, a special finite element

mesh is presented in Figure 37 to represent the soil medium.

The EBS of the three cases are computed using the

SUBASE program with a driving frequency Q = 12.3441 rad./sec.

(the fundamental frequency of the shell on a fixed foundation)

for the antisymmetrical mode (J = 1). Also, the EBS of

CASE I is recalculated for a driving frequency Q = 32.7485

rad./sec., which is the fundamental frequency of the structure

on a fixed foundation for the symmetrical mode (J = 0). The

values of the EBS are presented in Table 6 along with the

soil frequencies for the four cases. Although the values

of the EBS of CASE IV are not required, they are shown in

the table for completeness.

It should .be noted that the coordinate system of Figure

10 is not same as the coordinate system used in the shell
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Table 6. EBS for the Cases of Study

Soil EBS*
Case J Compo u W v e !jl

K 51114.6 80012.8 70410.4 469832.0 784321. 0

0
D 6320.7 8532.3 3245.7 58692.2 32003.7
M 100.2 91.0 84.3 798.9 201.4

I Ul 22.6 29.7 29.0 24.3 62.6

K 9882.5 58204.8 7780.0 787732.0 289741. 0

1 D 2000.9 898.8 2145.7 8936.0 12342.7
M 100.2 91.0 84.3 798.9 201.4
OJ 9.9 25.3 9.6 31.4 38.0

K 301375.0 912368.0 217140.0 8667110.0 5617950.0

II 1 D 727.1 742.2 574.1 7336.0 6532.8
M 126.4 96.8 90.2 883.5 268.8
OJ 49.0 97.5 49.2 98.8 145.5

K 15268.7 82403.0 15365.3 1025780.0 4210990.0

III 1 D 1972 .3 821.3 2008.0 8785.7 11135.8
M 100.4 91. 0 84.3 798.9 201.4
OJ 12.1 30.1 13.5 35.8 144.5

K 0> 0> 0> 0> 0>

IV - D 0 0 0 0 0
M 0 0 0 0 0
OJ 0> 0> 0> 0> 0>

*Units: Kip, Ft, sec.
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analysis, see Figures 38 and 39, and the input data must be

supplied to SHORSS program after transforming the components

in u direction to w direction and vice versa.

5.3.1 Free Vibration Analysis

To investigate the soil effect on the dynamic properties,

free vibration analysis of the shell of Figure 36 with the

four soil cases is carried out using the SHORSS program.

The first three modes of vibration are considered in each

case for the antisymmetrical Fourier mode J = I (horizontal

vibration). For J = 0 (vertical vibration), only the first

and fourth cases are considered for the first three modes

of vibration, as those are the extremes of the soil condi­

tions.

The results of the study are given in Figures 40 to 47.

In Figures 40 to 45 the computer output of the eigenvalue

analysis of the lowest two frequencies are given along with

the corresponding normalized eigenvectors for the four cases.

A comparison between the first three eigenvectors of vibration

(vertically and horizontally) for the first and fourth cases

can be held from the plotted modes in Figures 46 and 47.

The change in the fundamental frequency is only in the

band of 5% of the fixed base frequency for both vertical and

horizontal vibration as shown in Figures 40 to 45. The small

change in the fundamental frequency fcrthe interactive system

makes any further approximation in the EBS using the resulting

interactive frequencies unnecessary. On the other hand, the

decrease in the frequency of the second mode reaches 25% of

the fixed base case (Case IV) for J = 0 and J = 1. The
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RESULTS OF EIGENVALUE ANALySIS FOR MODE NO. 1

EIGENVALUE. LAMDA = 0.1007b533E-02

CIRCULAR FREQUENCV= 0.31502457E 02 (RAD./SEC)

CVCLIC FREQUENCV 0.5C137758E 01 (CvCLES/SEC)

ErGEN~ECTOR NC.= 1

NOOE NUM8ER U V

1 1.0COCOO

2 0.'H!4922

3 0.932968

4 0.845691

5 0.63"1444

6 0.429466

7 0.249"1C6

8 0.167460

9 O. C<;84 72

10 0.09"1033

RESULTS OF EIGENVALUE ANALYSIS FOR MODE NC. 2

\oj aETAlPHI) BETAlTHETA)

0.101994 -0.000131

0.108281 -0.000178

0.100328 -0.000007

-0.023218 0.000563

-0.129421 -0.000876

-0.098668 -0.000982

-0.053173 -0.000828

-0.062370 -0.000140

-0.066892 -0.000369

-0.061315 -0.000386

EIGENVALUE, LAMDA = 0.79845404E-03

CIRCULAR FREQUENCY= O.35389542E 02 (RAD./SEC)

CVCLIC FREQUE~CV C.56324253E 01 (CYCLES/SEC)

EIGEN~ECTOR NC. = 2

NODE NUMBER U V w BET A(PIi I I 8ETAlTHETAl

0.049781 0.005275 -0.000001

2 C.048848 0.005721 -0.000003

3 C.045643 0.005348 0.000012

4 C. C40275 -0.001478 0.000054

5 0.027966 -0.006056 -a.OOOO 11

6 0.015705 -0.003952 0.000086

7 0.CC5593 -o.00Q460 0.000154

8 0.002352 -0.221105 0.0 L3642

9 -0.010634 1.000000 0.098528

10 -0.013856 -0.406408 0.0"18832

Figure 40. Eigenvalues and Eigenvectors
for J = 0 (Case I) .
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RESULTS OF EIGENVALUE ANAL yst 5 FOR MODE NO.

EIGE!'lVALUE. LAMOA -= 0.71325339E-02

CIRCULAR FREQUENCV= 0.118401l9E 02 (RAD./SEC)

CYCLtC FREQUENCV 0.18845100E 01 (CYCLES/SEC)

EI GE NVEC TOR NO.=

NODE NUMBER U V II BETA(l'tiII BETA( THETA)

1 0.124014 -0.965083 1.000000 0.001768 0.ceC.317

2 0.124346 -0.868164 0.899629 0.G02G37 0.COC2Q7

3 0.125937 -0.750468 0.778350 0.0024'H 0.C00267

4 0.156602 -0.617706 0.623203 0.002664 0.ceC060

5 0.189184 -0.416068 0.391046 0.001681 -0.CCOC90

6 0.143129 -0.278687 0.268689 0.000904 0.cecee5

7 0.083647 -0.199219 0.201477 0.000634 0.ceC070

8 0.053765 -0.170953 0.162710 0.001397 O.CCCCle

q 0.029512 -0.111183 0.110519 -0.000568 0.CCCC52

10 0.028489 -0.111558 0.118683 -0.000560 0.CCCC47

RESULTS OF EIGE~VALUE ANALYSIS FOR ~OOE NO. 2

t IGE'lVALUE, LAMDA -= 0.4525639lE-02

CIRCULAR FREQUENC Y-= 0.14864831E 02 (RAO./SECI

CVCL IC FREQUENC y 0.23658133E 01 (CYCLES/SECI

EI GENVEC TOR 11.0. " 2

NODE 'lUMBER U V II BETA(Pl;II BETAlTHETA)

0.402561 -0.929145 1.000000 0.004063 o.cooses

2 0.400645 -0.711271 0.772668 0.004"27 0.COC526

3 0.393141 -0.466283 0.516339 0.004950 0.COC436

4 0.385017 -0.208014 0.205424 0.005019 -o.ecee23

5 0.ZQqzC3 0.16585 \I -0.227103 0.003153 -0.C00521

6 O. l79C6'l 0.416401 -0.481978 0.001710 -0.CCC~46

7 0.088382 0.561387 -0.630089 0.000319 -0.CCC'i4C

8 0.056026 0.653323 -0 .103627 -0.003427 -0.C00401

9 0.027734 0.1>70246 -0.746116 0.007086 -0.COO724

10 C.028707 0.686182 -0.846031 0.001019 -0.CC064C

Figure 41. Eigenvalues and Eigenvectors
for J = 1 (Case I)
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RESULTS OF EIGENVALUE ANALYSIS FOR ~ODE NC.

EIGENVALUE. LAMOA : 0.69194660E-02

CIRCULAR FREQUENCY: O.12021640E 02 (RAO./SEC)

eyel Ie FREQUENC Y : 0.19133043E 01 (CYCLES/SEC)

EIGENVECTOR NO.= 1

NODE NUM8ER U V w BETACPtilJ BETAI THETA)

1 0.140465 -0. 'l63007 1.000000 0.001895 O.CC03Z£:

2 0.14Q682 -0.858935 0.892190 0.C02H1 0.OC03C4

3 0.141790 -0.733636 0.762919 0.002637 0.C00211

4 0.170226 -0.593197 0.598411 0.002802 o.ceeeSI

5 0.1'l5731 -0.380398 0.359148 0.00 1780 -0 .ceo 120

6 0.145501 -0.234851 0.2221'51 0.000959 -o.ccccn

1 C.083C54 -0.149759 0.148782 0.000628 0.CC0032

8 0.052613 -0.116457 0.107601 0.001102 -O.OCC013

9 0.024312 -0.037500 0.034946 0.000833 -0.cee028

10 0.024261 -0.036487 0.023088 0.000839 -0.CCC01'l

RESULTS OF EIGENVALUE ANALYSIS FOR ~OOE NC. 2

EIGENVALUE, LAMOA = 0.32805044E-02

CIRCULAR FREQUENCY= O.17459412E 02 (RAO./SEC)

CYCLIC FREQUENCY C.21181542E 01 (CYCLEs/seC)

E I GE NVEC TOR 1\0.= 2

'lODE "lUM8ER U V W 8ETACPk II BETAlTHETA)

0.544516 -0.904702 1.000000 0.005272 0.CCC74C

2 0.540423 -0.623414 0.703271 0.005718 0.eeoe3S

3 0.524717 -0.309035 0.370914 0.006308 0.CCC497

4 0.4e9152 0.015826 -0.027983 0.006223 -0.CC0142

5 0.327507 0.460040 -0.547342 0.003460 -0.CCC1<;9

6 0.162145 0.721639 -0 .817148 0.001448 -o.ccoess

7 C.057494 0.834824 -0.942160 -0.000694 -0.CCC8£:6

8 C.028826 0.900239 -0.985862 -0.006274 -O.CCO£:13

9 C.CCCC36 0.399523 -0.485680 -0.009753 -O.COC1~C

10 -C.CCCC64 0.406724 -0.345179 -0.009865 -O.CCC22O

Figure 42. Eigenvalues and Eigenvectors
for J = 1 (Case II)
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RESULTS OF EIGE~VALUE ANALYSIS FOR MODE NC.

EIGE'lVAL"UE. LAMDA = 0.71198605E-02

CIRCULAR FREQUENC Y= 0.11851253E 02 ( :UD./SECI

CYCLIC FREQUENCY = 0.18861866E 01 (CYCLES/SEC)

EIGENVECTOR NC. =.

"'ODE "lUMBER U V w 8ETACPHIl BETAITHETAI

0.125714 -0.%4890 1.000000 0.001172 0.000309

2 0.126035 -0.861231 0.898855 0.002041 0.C002S9

3 0.127578 -0.748758 0.7767'58 0.002501 0.000258

4 0.158020 -0.615220 0.620663 0.002667 0.000050

5 0.18<;900 -0.412'>60 0.393173 0.001687 -0.OCOIC2

6 0.143988 -0.274253 0.263918 0.000899 -o.coccoe

7 0.083698 -0.194210 0.196054 0.000622 0.000C56

8 C. C537H -0.165401 0.156987 0.00 1355 -0.CCCC02

9 O. 028470 -0.104221 0.103242 -0.000439 0.CC0034

10 0.028396 -0.104445 0.109428 -0.0001031 0.CCCC31

RESULTS OF EIGE~VALUE ANALYSIS FOR MODE NO. 2

EIGE'IVALUE. LAMD" = 0.44562295E-02

CIRCULAR FREQUENCY= 0.14980152E 02 (RAO./SEC I

CYCL IC FREQUENCY 0.23841667E 01 (CYCLES/SEC)

EIGENVEC TOR NO.= 2

~WOE IIjUMBE~ U V W 8ET.UPHII BETAITHETAI

0.410103 -0.927992 1.000000 0.004127 0.CCC5<;"

2 C.4ceC9" -0.7067'H 0.769098 0.004494 0.C005:33

3 0.400240 -0.458217 0.508899 0.005021 0.000441

4 0.3<;0838 -0.196455 0.193501 0.005084 -0.COC026

5 0.301345 0.181620 -0.244714 0.003181 -0.C00533

6 0.178944 0.433903 -0.501019 0.001715 -0.C00561

7 0.087440 0.578745 -0.649472 0.000289 -0.C00556

8 O. 055151 0.670608 -0.722904 -0.003545 -0.C00415

9 0.026675 0.670690 -0.749073 0.006445 -0.000713

10 0.027622 0.687110 -0.839817 0.006373 -0.C00634

Figure 43. Eigenvalues and "Eigenvectors
for J = 1 (Case III~
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RESULTS OF EIGENVALUE ANALYSIS FOR ~OOE NC.

EIGENVALUE, LAM04 : 0.'l3242'lQZE-03

CIRCULAR FREQUENCY: C.32748535E 02 (RAO./SEC)

CyCLIC FREQUENCY 0.521Z0'l62E 01 (CYCLES/SEC)

EIGENVECTOR f\C. =

NOOE NUMBER U V

1 I.CCCCCO

Z 0.<;83676

3 0.n74n

4 0.833184

'5 0.612174

6 0.3<;CCC8

7 0.201447

8 a.1l63'l7

'l C.CC1222

10 c.o

RESULTS OF EIGENVALUE ANALYSIS FOR MOOE NC. 2

II eET A(P" (J 6ETA<TtiETA I

0.103296 -0.000103

0.110498 -0.000146

0.102794 0.000051

-0.025291 0.000658

-0.125589 -0.00086'l

-0.086023 -0.000908

-0.035353 -0.000550

-0.027112 -0.000178

0.000072 0.000040

0.0 0.0

EIGENVALUE. LAMOA : 0.45404444E-03

CIRCULAR FREQUENCY: 0.46'l30023E 02 (RAO./SEC)

CYCLIC FREQUENCY 0.746'l1515E 01 (CYCLES/SEC)

EIGENVECTOR NC.= 2

:-.lOOE NUMBER U V

C.041706

2 C.040280

3 0.035458

4 C.027547

5 C.OI0783

6 -0.004524

7 -0.C1565'l

8 -C.C346'lS

9 -0.CC0315

10 C.C

II 8ETAtPIIIl BETAITHETA)

0.004900 0.000049

0.006091 0.0000'l9

0.005462 0.000218

-0.002940 0.000518

-0.00nI6 0.001064

-0.025900 0.004119

-0.121383 0.016784

1.000000 -0.009449

-0.00003'5 -0.000409

0.0 0.0

Figure 44. Eigenvalues and Eigenvectors
for J = 0 (Case IV)
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RESULTS OF EIGE~VAlUE ANAl~SIS FOR ~ODE ~C.

EIGENVALUE. lAMOA = 0.65626837E-02

CIRCULAR FREQUENC ~= 0.12344095E 02 CRAO./SEC)

CYCLIC FREQUENC ~ 0.19646254E 01 (CYCLES/SEC)

EIGENVEC TOR NO. ,. 1

NODE NUMBER U V W 8ET A (PH f) BETA /THETA)

0.150540 -0.960994 1.000000 04001964 0.COO~25

2 0.150597 -0.852253 0.8e7208 0.002252 0.ee001

3 0.151097 -0.721275 0.751923 0.002737 o.ceeut

4 0.117272 -0.574626 0.579734 0.002905 o.eeeC~3

5 0.195715 -0.353469 0.331573 0.001818 -0.COCI45

6 0.139890 -0.203930 0.191523 0.000948 -0.ecCC';3

7 c.on887 -0.118482 0.118339 0.000581 0.eoeOI2

8 0.042228 -0.086644 0.078310 0.001037 -0.eeCC33

9 0.OC0441 -0.000243 0.000070 04000004 -0.CCOOI2

10 0.0 0.0 0.0 0.0 0.0

RESULTS OF EIGENVALUE ANAL~SIS FOR MOOE NC." 2

EIGE'lVALUE. LAMOA ,. 0.26967025E-02 .

CIRCULAR FREQUENCY: C.19256175E 02 (RAO./SEC)

CYCLIC FREQUENC Y 0.30648136E 01 (CYCLES/SEC)

EIGEN'IECiOR /'<0.= 2

~OOE NUM8ER U V W eET AC?H I) 8ETAlTHEiA l

1 -0.589482 0.831117 -0.936211 -0.005665 -0.eoe814

2 -0.583910 0.531823 -0.617660 -0.006L29 -0.eCC684

3 -0.563248 0.197905 -0.261878 -0.006708 -0.cee5Il

4 -0.512021 -0.142429 0.162207 -0.006475 0.cee2IO

5 -0.314635 -0.586070 0.684786 -0.00 3205 0.eeC9C7

6 -0.l35211 -0.81.5325 0.923880 -0.000899 0.eeC971

7 -0.033480 -0.877660 1.000000 0.00L770 0.CCC951

8 -C.011863 -0.905033 0.968144 0.010239 0.e00574

9 C.CC0181 -0.002618 0.000959 0.000223 c.ccee~8

10 0.0 0.0 0.0 0.0 0.0

Figure 45. Eigenvalues and Eigenvectors
for J = 1 (Case IV)



-148-

H----+-O.OOl

CASE-I
CASE-IV

w

0- MODE # 1

u

'T 580..37

.,.580.37'

.0.0'

u w
b- MODE # 2

r580.37

" 0.0'

,
I
I
I
I
I
I,

I
I
I
I
I
I

u

I,
1

w

C - MODE # 3

Figure 46. Soil Effect on the Symmetrical
Eigenvectors of a Cooling Tower



-149-

.580.37

,
0.0

u v

---- CASE-I

- CASE-IV

w

1 0.003
I
I

,
I

0.00033

a-MODE # 1

}

-0.008

I
I
I
I
I,
I
I
I

w

1.0

vu

\
I
\
\
\
I

\
I,

0.0

b- MODE #2

0.0'

u v

I

\
\
, 0.019

c- MODE # 3

Figure 47. Soil Effect on the Antisymmetrical
Eigenvectors of a Cooling Tower



-150-

change decreases as the soil gets stiffer as one may notice

by comparing the frequencies of the four cases for the hori­

zontal vibration results.

For the soft to intermediate soil case (Case I), the

interactive eigenvectors of the second mode are drastically

different than the fixed case (Case IV) for both vertical

and horizontal vibrations, whereas there is not much

difference between the eigenvectors of the first mode for

the two soil cases. A similar but less predominant in­

fluence of the soil on the interactive eigenvectors is seen

in Case II (the stiff-shallow soil case). The eigenvectors

of Case III are very similar to those of Case I. This may

be attributed to the combined effect of the soil depth and

the shear modulus producing very similar compliances for

the first and third soil cases.

In spite of the insensitivity of the first mode of

vibration to the soil effect, the lower region of the shell

is expected to be relieved when these eigenvectors are to

be used in calculating the stresses. This is due to the

less severe changes in the eigenvectors near the base for

the interactive modes as compared to the fixed base modes.

However, a bigger gain will accrue from the second mode of

vibration which is expected to reduce the stresses near the

base dramatically due to the smoothing of the eigenvectors

at this region as can be observed from Figure 47b. The soil

flexibility has little effect on the third modes, but the
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small energy in this mode makes it inconsequential when

calculating the stress resultants and stress couples in

the shell. As expected, the overall flexibility of the

shell increases with decreasing soil stiffness as shown

by the comparison of the eigenvalues of the first three

cases to the stiff base case (Case IV). These reductions

in the modal frequencies may increase or decrease the

internal stresses when the response spectrum analysis is

carried out, according to the peaks of the spectrum.

This study shows that the soil flexibility or com­

pliance is a very important parameter in the soil-structure

interaction phenomenon and that a given flexibility can be

realized by a non-unique combination of the basic parameters,

e.g., soil depth, shear modulus. This observation is in

agreement with the conclusions of Pandya and Setlur (16).

5.3.2 Response Spectrum Analysis

To assess the importance of soil-structure interaction

on the stress resultant and stress couples in the shell, a

response spectrum analysis is carried out using the SHORSS

program with the same EBS of the four cases given in Table 6.

The structure-soil systems for the four cases are sUbjected

to a horizontal response spectrum with 20% g ground accelera­

tion (Response Spectrum, Figure 48). The soft to intermediate

soil case (Case I) and the fixed base case (Case IV) are

subjected to 13% g vertical ground acceleration, Figure 49.

A damping ratio of 5% is considered for the first three modes
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of vibration in all cases. The high intensity of the ground

motion is chosen for the purpose of approaching the case

of foundation uplift, if present.

The stress resultants and stress couples at e = 0°

for the shell are given in Figures 50 to 54. It can be seen

that the fixed base or stiff soil case produces resultant

forces which envelope all soil cases, except for u~ com­

ponent where the soft soil case (Case I) is the critical case.

Therefore the site parameters are indirectly accounted for,

except for N~, when fixed base condition (Case IV) is used.

No significant amplification due to suspected resonance

effects is seen in the stress resultants and stress couples

for Case III. This is due to the fact that the rocking and

swaying motions tend to suppress the response of the

structure at the fundamental frequency of the fixed base

structure. This observation is in accord with the

Pandaya and Setlur results (16).

The increase in the meridional stress resultant N~ as

the soil stiffness decreases can be explained by comparing

the u-component of the eigenvectors in Figures 46 and 47 for

the soft and stiff soil cases. It can be seen that the u-

displacement in the lower half of the structure increases

as the soil stiffness decreases, which brings about the

higher values of N~ for the soft soils compared to the stiff

soils. Although the shell thickness may not be affected by
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this higher meridional stress, special attention should be

directed to the adequacy of the vertical steel in the lower

half of the shell.

As predicted in the previous section the reduction of

the square root of the sum of squares (RSS) stress re­

sultants and couples in the responses as the stiffness of

the soil decreases is due mainly to the second mode of

vibration as can be observed from Figures 52 to 54. This

reduction, which is of the range of 20 percent of the fixed

base solution, may reduce the thickness of the shell as

well as the horizontal steel in the shell and thereby may

cut considerably in the structure cost.

The axial forces, bending moments and twisting moments

in the columns are calculated using SHORSS program at e = 0°.

Tables 7 and 8 show these responses for the four cases. FOr

the vertical ground motion the effect is mixed, while the

axial forces are reduced for the soft soil case (Case I), the

moments for the same case are increased compared to the

fixed base case (Case IV), see Table 7. It may be

seen from Table 8 that there is a sharp decrease in the axial

forces and bending moments as the soil stiffness decreases.

The decrease in the bending moment may be attributed to the

smoothing of the second mode shape (Figure 47b) in the lower

region, whereas the 15 percent reduction of the axial forces

may be due to the reduction in the total base shear as a

result of a smaller input motion.



Table 7. Maximum Column Forces at 8 = 0° (Vertical Ground Motion)

Bending Twisting
Axial Force(K) Mornent(K.ft) Moment (K.ft)

Mode Fixed Case I Fixed Case I Fixed Case I

1 351.8 256.3 17.1 13.5 0.19 -0.25

2 9.9 -1.8 47.0 79.9 -0.76 -3.44

3 32.3 -24.0 5.9 92.7 -0.17 3.08

RSS ±352.0 ±256.5 ±50.1 ±126.0 ±0.80 ±4.65

I
I-'
0'\
I-'
I



Table 8. Maximum Column Forces at e = QO(Horizontal Ground Motion)

------
Axial Force (K) Bending Moment (K.ft) Twisting Moment (K.ft) --_._----Mode Case I Case II Case III Fixed Case I Case II Case III Fixed Case I Case II Case III Fixed

1 539.7 592.9 543.3 826.8 160.2 88.8 153.6 160.5 -14.4 -1.7 -13.1 -6.1

2 -450.1 -364.4 -451.2 -141.3 166.5 143.4 157.9 615.1 -30.3 7.8 -28.6 -17 .2

3 0.2 -42.2 1.1 -19.6 1.0 398.8 9.4 17 .5 -0.1 16.4 -0.3 -0.1

RSS ±702.2 ±697.2 ±706.2 ±838.9 ±240.3 ±432.9 ±220.5 ±636.0 ±33.7 ±l8.2 ±3l.5 !lB.2

I
I-'
m
tv
I
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The twisting moment in the columns increases as the

soil stiffness decreases. However, the values of the

twisting moments are not large enough to be a controlling

factor in the column design as can be seen from Tables 7

and 8.

The response of the concentric ring footing for the

vertical and horizontal ground motions is given in Tables

9 and 10 respectively. The results presented in these

two tables are the complete solution which consists of the

continuous boundary solution and self-equilibrated correction,

see Figure 15. In the self-equilibrated correction, the

SHORC program is used to calculate the Fourier coefficients

for the loads and the resulting self-equilibrated loads are

applied as line loads at the top of the beam which is

modeled as two rotational shell elements. The highest har­

monic number used in expanding the self-equilibrated loads

was 440. The lower boundary of the footing consisted of

static springs with zero masses and damping, i.e., the

correction is carried out as static self-equilibrated forces

as explained in Section (4-3-3) using SHORSS program.

Table 9 shows that the soft soil case (Case I) gives

higher values for the axial force and bending moments,

vertically and horizontally, compared to the fixed base

case (Case IV). The values of the fixed base response are

unrealistically small due to the restriction imposed by the



Table 9. Foundation Response to Vertical Ground Motion (RSS)

Sign Convention:

Axial Force: (+ve) for tension

Bending Mom.: (+ve) for tension in bottom or inside fibers

Torsion: (+ve) clock-wise rotation



Table 10. Foundation Response to Horizontal Ground Motion (RSS)

±4340.5

±7699.3

(K.Ft)

Field

Torsion

Col.

±7762.0

±3767.7

±64.4

±911.6

(K.Ft)

Field

1I. Moment

Col.

.;: 809.2

V. Moment (K.Ft)

Col. Field

±I0953.2 fl1837.4

±157.9

±1805.7

Axial Force (K)

Col. Field

±l52.4

±1867.40°

90°
Case I

I s011-c-::-3
1
:,

Case II
0°

90°

±l385.0

±14l.6

±l361.6

±150.7

nol.O ±50l3.l ±4897.6

±9226.3

I
I-'
0"\
01
I

±5988.1

±4703.8

±8100.4

±1l200.6

±6946.2

±8ll7.7

±1l207 . 0±7.2

±62.8

±1l8.1

±839.6

:;:6.7

:;: 752.5

+ 30.8

:t llO . O I I
±700.5 t715.9

±745.7 +699.0

±47.7 :;:50.6

±9817.4 +10911.1±169l. 8±175l.10°
Case III

l
------r~~i :;:~-::---~-~:~::~--
Case IV 1_

________ 90° Lt_23~~ ±27.~ I I I I

'fhe sign convention as in the vertical ground motion, Table 9
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fixed boundary assumption. However, the torsional moment

for the fixed base case is higher than that for the soft

soil case, which could be due to the same reason discussed

in connection with the axial force and bending moments

response in the footing. Similar observations could be

made for the results shown in Table 10. The three cases of

soil structure interaction give responses for the axial

forces and bending moments sharply higher than the fixed

base response, while the torsional moment gets smaller as

the soil becomes softer. The convergence to the fixed base

results, as the soil gets stiffer, is evident from Table 10.

Incidentally, the values presented for the vertical moment

are computed from Ne results along the footing depth, since

the vertical bending moment corresponds to the rotational

degree of freedom about the normal axis which is neglected

in shell theories (50).

The analysis of the ring footing is repeated for the

intermediate to stiff soil case (Case II) using the RSS of

the column reactions given in Table 8. The STRUDL-II pro­

gram (53) has been used for computing the forces and dis­

placements at different nodal points along the circumference.

The ring footing with the soil is modeled as a space frame

with six degrees of freedom per nodal point, Figure 55. The

bearing stiffness and the horizontal frictional stiffness
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of the soil are modeled by axial members with the same

stiffness of the corresponding soil component such that:

for vertical members

EA
LV = (Bearing Stiffness) x Nodal point spacing

and for horizontal members

EAh = (Avg. Frictional Stiffness)x Nodalr o point spacing

The connection between these axial members are designed to

allow for only axial forces in the soil model by releasing

the other five degrees of freedom at the start of each

member (U2 to U6 in Figure 55). The release is done on

the local level for the member with Ul parallel to the

member axis.

The results of the space frame analysis are presented

in Figures 56 to 59 for the axial forces and the moments.

On the same figures the ring forces at e equals 0°, 4°, 40°,

45°, 86° and 90°, using SHORe and SHORSS programs/are

plotted for comparison.

It may be seen from Figures 56 to 59 that the rotational

shell element model gives smaller response than that obtained

using space frame model with straight elements. This may be

due to the approximation used to expand the self equilibrated

forces in Fourier series modes for the rotational element

model. This approximation might underestimate the actual
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forces from the columns on the ring footing and, as a

result, produce smaller ring forces, especially the axial

force and torsion, Figures 56 and 59. The difference of

the results may be explained by comparing the lower

boundaries of the footing in the two models. While the

boundaries are continuous in the axisymmetric element

model, program, they correspond to a point bearing (dis­

crete) boundary in the space frame model. Furthermore, the

use of straight elements in STRUDL program is expected to

increase the bending moment in the ring footing which can

be observed from Figures 57 and 58.

From the results the big difference between the re­

sponse of the two models around the second node is notice­

able. The disagreement could be due to the deviation of

the first two elements in the space frame model from the

equation of the circle since node number 2 is shifted in

the x-direction such that the global value of the x-coordinate

of node number 2 becomes zero to allow the boundary con­

dition at the first node to be parallel to the global axes.

These boundary conditions at the line of symmetry (z = 0),

which allow for the rotation about the z-axis, are

responsible for the unrealistic zero torsion at e = 0°,

see Figure 59.

In spite of the above boundary, geometry and loading

differences in the two models used for the analysis, the
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results are fairly close and give some confidence in both

models while eliminating the possibility for gross errors.

As mentioned in Chapter 4, the model is correct only

after a check for the foundation uplift is carried out.

This check could be performed at the continuous boundary

result level without the need for the self-equilibrated

correction. This is because the overall behavior of the

foundation is shown from the continuous boundary results

alone, which may then be combined with the dead load

results to check against the possibility of foundation

uplift.

To check against foundation uplift, the N~ component

of the stress resultants is computed at the foundation level

for D.L., factored by 0.9 and then added to the unfactored

earthquake response. The results are tabulated in Table 11.

It can be seen from Table 11 that the net stress at

the F.L. for all cases is compression and no uplift occurs

for the severe 20% g spectrum used in the analysis. However,

we can see that the softer the soil the more likely the uplift

to occur. To investigate this possibility more closely the

vertical component of the earthquake may be included. The RSS

of N~ at the foundation level for the vertical and horizontal

ground motions for Case I is computed and the net value for

N~ is found by combining the resulting RSS value of N~ with

the factored D.L. value. The net value of N¢ is computed

from the equation:



Table 11. N<p Component at F.L. (J = 1)

Case I Case II Case III Case IV

D.L. 0.9(D.L.)
EQ Net EQ Net EQ Net EQ Net

-77.8 -70.0 64.8 -5.2 59.2 -10.8 61.9 -8.1 58.3 -11.7

Uni ts .• K/ft.

I
I-'
--.)

Ul
I
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N (net)· = (N 2 + N 2 ) 1/2 - 0.9 N¢ (5-5)
¢ ¢h ¢v d

where

N¢h = N¢ at the F.L. due to horizontal ground
motion

N¢ = N¢ at the F.L. due to vertical ground
v motion

and N¢ = N¢ at the F.L. due to the dead load
d

For Case I N¢(net) is computed from Equation (5-5), with

N¢ = 29.8 K/ft, and the resulting value of N¢(net) is
v

found to be a tensile stress of 1.3 K/ft which can cause

uplift. However, N¢(net) is probably too small to cause

a real uplift as this net stress could be counteracted by

the soil friction on the sides of the footing.
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6. SUMMARY AND CONCLUSIONS

A numerical method to determine the response of axi­

symmetric shell structure soil systems to arbitrary non­

axisymmetric dynamic loads was developed and applied to

some particular cases. The method carried out with finite

element analysis using high-precision rotational shell

elements to represent the axisymmetric shell and isopara­

metric solid elements with an energy transmitting boundary

to represent the soil medium. The connection problem between

the three dimensional soil medium and the two dimensional

shell-elements is solved by introducing a frequency dependent

dynamic boundary system at the common degrees of freedom

between the shell foundation and the underlaying soil. The

Fourier expansion technique is used in the finite element

analysis. The soil model components were computed at the

fundamental frequency of the shell structure without the

soil system for the free vibration and the response spectrum

analysis, whereas the dominant driving frequency of the

time history excitations (54) should be used with the time

history analysis which has not been carried out.

It was shown that the size of the finite element mesh

is controlled throughout the dynamic pressure bulb by the

shortest shear wave length and that such bulb exists through

a depth of one and half times the footing radius. The

influence of the lower boundary on the soil model components
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is significant only for depths less than three times the

footing radius due to the reflections of the waves on the

assumed rock-soil interface which tends to increase the

stiffness elements and decrease the damping elements (con­

vergence to the fixed base cases). Based on the dynamic

pressure bulb study an economical finite element mesh for

the soil medium was suggested for use with shells having a

small Biro ratio.

The sensitivity study of the equivalent boundary system

to the driving frequency showed that the stiffness elements

are more sensitive than the damping elements, and among the

different components, the rotational dnes are the most sensitive

to the driving frequency. A similar conclusion may be drawn

for the sensitivity of the EBS to Fourier harmonic nmaber J.

It is also concluded that the EBS components are fairly inde­

pendent of the harmonic number J for J > 1, which suggests a

useful procedure to determine the EBS components for J > 1

with the aid of a single harmonic number (J > 2) analysis.

The free vibration analysis of a cooling tower on a

shallow foundation showed that the overall flexibility of

the shell increases with the decrease of the soil stiffness

and consequently, gives a reduction in the inertial forces

on the shell. The study also revealed a dramatic change in

the second mode of vibration as the soil gets more flexible.

This relieves the lower region of the shell (column supports

in cooling towers) from the high stresses which often occur
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when the soil interaction is neglected. It is concluded

from this study that the soil flexibility or compliance

is a very important parameter in the soil-structure inter-

action phenomenon and that a given flexibility can be

realized by a non-unique combination of the basis paramaters.

This finding is in agreement with Pandya and Setlur con-

elusions (16).

The importance of the soil-structure interaction on the

stress resultants and the stress couples in the shell was

shown by response spectrum analysis of the cooling tower used

in the free vibration analysis. It was shown that the fixed

base or very stiff soil case produces resultant forces

which envelope all soil cases, except for N~ component. The

reduction, which is of the range of 20% of the fixed base

solution, may permit reduction of the shell cross section

and the horizontal steel in the shell resulting in a con-

siderable cost savings. Perhaps, the segment in the shell

structure most affected by soil-structure interaction are

the column supports as may be seen from Tables 7 and 8.

The saving in the stresses may reach 50% for certain soil

flexibilities.

The analysis of the concentric ring footing, which has

not been studied previously so far as the authors can deter-

mine, showed a tremendous twisting moment on the footing

which increases with increasing the soil stiffness. On the

contrary, the axial force and bending moments increase with
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decreasing the soil stiffness. With the present model,

the footing can be analyzed as a ring resting on a con­

tinuous elastic foundation, bringing forth the axial

forces and the torsion which were not possible to obtain

with the continuous beam over point support model used

before. Confidence in the ring footing response is es­

tablished by comparing the present model results to the

results of a space frame model.

The possibility of foundation uplift increases with

increasing the soil flexibility. In the design earthquake

considered here, uplift could occur only if the two com­

ponents of the ground motions were considered simultaneously

(vertical and horizontal components). However, the net

tensile stress after adding the dead load effect is too

small to cause a real uplift as shown in the analysis.

The free vibration and the response spectrum analysis

for the shell of revolution-soil system may be adequate

for linear analysis under uniform earthquake excitation.

However, the damping ratio for the response spectrum

should be chosen such that the radiation damping in the

far field is represented. The relationship between this

damping ratio and the radiation damping needs further

study. Further investigations are also required to

study the relationship between the damping ratio and

the viscous damping where complex Lame constants of the

soil material are used.
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The effect of non-uniform earthquake excitation may

yield further reduction in the structure response due to

the inherent self-diminishing feature to this type of

earthquake excitation as suggested by Scanlan (19).

Time-history analysis may be necessary with non-uniform

earthquakes and for better understanding to the damping

phenomenon of soil-structure system. These two topics

need further investigation as well.
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8. APPENDICES
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APPENDIX 8.1

High Precision Rotational Shell Elements

In this appendix, the outlines of the derivation of

the high-precision rotational shell finite elements is

presented. These may be classified into four main groups:

curved rotational elements, cap elements, plate elements

and special open type elements (see Figure 60).

For the shell elements, the strain-displacement re­

lationships used in the formulation include the effect of

transverse shear deformations. In forming the element

stiffness and mass matrices, displacement fields of

arbitrary order, i.e., linear to sixth order, can be used,

and because only Co continuity is required to be satisfied,

the extra coefficients in quadratic and higher order dis­

placement-fields are eliminated by kinematic condensation

at the element level. Proportional damping is assumed

and the damping matrix is arrived at through a linear com­

bination of the condensed stiffness and mass matrices.

To overcome the singularity problem in the case of a

cap element, R = 0 and R' = ~ at the center, a suitable

rotation of the coordinate axes into the R-Z system as

shown in Figure 61 is considered (6).

In case of the open type elements, the displacement

fields are taken as Hermetian polynomials. The stiffness

and mass matrices are formed by distributing the properties

of the individual members around the circumference.
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8.1.1 Geometry of Elements

The geometry of a general rotational shell element

is shown in Figure 38. Points on the meridian of the

element are defined in terms of the non dimensional para-

meter s such that:

(8.1.1)

where

L = the length of the meridian of element "i"

= J
l / 2

+ (dR) 2 dZ
dZ (8.1.2)

in which zi and zi+l = the nodal stations for element i.

The above equation must be evaluated numerically. In

order to arrive at the terms of the element matrices in

explicit forms, definitive geometric parameters, like

l/R¢, l/R, cos¢, etc. are expressed by fourth degree

Lagrangian polynomials (41) which satisfy the value of

these parameters exactly at five equidistant points along

the meridian, inclUding the ends.

8.1.2 Displacement Fields

Each displacement component shown in Figure 39 is

considered a product of the meridional and circumferential

fields. The meridional field is a polynomial in s and the

circumferential field is represented by a finite Fourier

series. For a typical harmonic
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{n j (s,8}} = f8J{oj(s}

where

and

{oj (s}} = {u
j

(s) v
j

(sO \V
j

(s) Sl (s) S~ (s) }

-1 -Z -3 -4 -5= {d (S) d (S) d (S) d (S) d (S)}

In Equation (8.l.4),

gj (8) = cosj8 for j > 0

= -sinj8 for j < 0

gj (8) = -sinj8 for j > 0-
= cosj8 for j < 0

and in Equation (8.l.5)

ai(s) = an interpolation polynomial

(8.1.3)

(8.l.4)

(8.l.5)

m.
1

=2:
k=l

(i=l, ... ,s) (8.l.6)

where Nk are the shape functions, as defined below

1'1 1 = (l-s)

Nz = s

N
k

= sk-2(1_s) for k > 2

(8.1.7)
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Also,

-i
d 1 = the displacement at s = 0

-kd z = the displacement at s = 1

For further details see Reference (35).

8.1.3 Element Stiffness and Mass Hatrices

On substituting the assumed displacement fields into

the strain-displacement relationships the following ex-

press ions are obtained:

The membrane strain components,

mz

{e:} = :E [E~ E~ E~ E~ ... ]{~rj],n[j]}
j=-ml

mz

= :E [G~]{~[j],n[j]}

j=-ml

The curvature components,

mz
{X} = L [x~ x~ x~ x~ •••• ]{~[j],n[j]}

j=-ml

(8.1.8)

=
rnz:E [G~] {ll [j] ,n[j]

j=-ml

(8.1.9)

The transverse shear strain components,

rnz

{yj} = L[Y~Y~ Y~ y~ •••• ]{~[j],n[j]}
j=-ml

mz

= L[G~]{~[j],n[j]}

j=-ml
(8.1.10)
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where

{e:}

{X}

{yj}

{~j,nj}

{~j}

{n j }

= {E:<jl e:e E:<jle}

= {X<jl Xe X<jle}

= {yj yj}
<jl e

= re.J {~j , nj }
J

{ j j j j j
= Uo vo wo B<jlo Beo

= {a? b? c? d? e?

Expressing

[G~ ]

[G~]

[G~]

(8.l.ll)

where 5

M = 2 + .L: (2+ni ), and
i=l

n. = the number of internal nodal variables
1

for the ith field

The matrices Ej x~ and y~ contain the shape functioni' 1 1.

N. and are given in (41).
1

The element stiffness matrix for the jth harmonic

becomes

II1

= L f f
o -II

(8.1.12)
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The kinematically consistent mass matrix (35) corres-

ponding to any harmonic is expressed by

1

em] = TIL f [Gm] T [Hm] [Gm] Rds

°
8.1.4 Constitutive Relationships

(8.1.13)

The relationship between the force resultants and

the strain components are expressed by

{N} = [H]{E} - {Nt} (8.1.14)

"tvhere

{N} = {N <p' Ne' Ne <p' f1 <P' Me '. M<pe' Q<P' Qe }

{E} = {E<p" Ee , Ee<p' X<p' Xe , ~<pe' Y<p' Ye}

[H] = the ( 8x8) elasticity matrix

and

{Nt} = the initial stress-resultants and

stress-couples due to thermal

effects

= {Nt<p' N
t8

, 0, Mt<p' Mte , 0, 0, O}

For an isotropic shell material (50) ,

h/2

Nt ¢ Nte = Eo. f T(~) d~= I-v
-h/2

h/2

Mt<p Hte = Eo. f T(~)t,;d~ (8.1.15)= I-v
-h/2
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where

a = the coefficient of thermal expansion

T(~) = the temperature difference from the

reference value for any point located

at a distance ~ from the middle surface.

The constitutive relationships for the open type

elements is presented in (35).

8.1.5 Element Load Vectors

The consistent load vector (35) for an element due

to distributed loads, j j and fj acting along the <1>,f<l>' fe' ~

e, and ~ directions corresponding to harmonic j is ex-

pressed as
1

{pj} = Lf [Gm] T [Gf ] {F j }Rdss s

where °
[Gm]

~ ~ ~ ~

= [nl'n2'n3'n4' •... ]

n· = [N. , N. , N. , 0, 0]
J. J. J. J.

[Gf ] = [n 1 , n2]

n· = II [N. , N. , N. , 0, O}
J. J. J. J.

N = (l-s)

N2 = s

{F j } {f~l'
j j j j

f~2}= f e 1 ' f~l' f<l>2' f e2 ,s

(8.1.16)

The consistent load vector due to the thermal effect is

expressed as

1

fa [Gj]T[H t ] [Gt]ds) {T j ] (8.1.17)



where
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= {T
j T~60' ~ 0 T~ }

~l

[Ht ] = a matrix contains the material constants
8x2

and the shell thickness

[Gt ] = a matrix of the shape functions

2x4

The details of Ht and Gt are given in Reference (41).
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APPENDIX 8.2

Details Of Stiffness Matrix For An

Isoparametric Solid Element

This appendix presents the details of the 24X24

stiffness matrix components of a quadratic isoparametric

solid element for a general Fourier harmonic J. The

shape function ~i and first derivatives are given in

Table 1 , which are chosen to represent the element geo-

metry as well as the displacements within the element.

From Equations (3-6) to (3-9), using the partitioned form

of B, D and ~ matrices one can get

( 8-2~1)

(bilDlb1 2+bIlD 2b 22)

l6x8

8x16

I
I
I

-- ------- ---- - - - ---
T T TI m '1'

(bllDlb12+b21D2b22) I (b~2D2b22+b12Dlb12)

I
I

T T
(bllD 1bll+b 21 D2 B21)

16x16

24x24

= the stiffness matrix of the kth element~

and with Equation (2-11) we can write
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ag
bIn = --l2 b1m = 0ar

ag(Q.-8)
b 2n = b2s = 0 b2Q. = dZ

gn -jg (s-16)
b 3n = , b 3 Q. = 0 b3s =r r

3g 3g(Q.-8)b4n = n
b4Q. = b 4s 0az =dr ,

b Sn =
jgn

bSQ. 0 b ss
a (g(s-16», = = r -r ar r

b 6h = 0 b 6Q. = ; g(Q.-8), b 6s = ag(s-16),
3z

(8-2-2)
where

(n = 1, ••. ,8)

(m = 9, ••• ,24)

(Q. = 9, ••• , 16)

(8 = 17, ... ,24)

Using the above values of the B matrix in Equation 8.2.1

yields,
I
I -K11 I K1 Z

*
T T b Z1

I
(8.2.3)b 11 01 b 1 1 + b Z l Oz = ---1----

-", -K1z I Kz Z

I 16x16

- - -where each of KI1, KIZ and K22 are submatrices of order

*
KZ3

(8.2.4)
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*
-T 1KZ1

8x16

(8-2-5)

* bIz Dz b zz + b'fz Dl bIZ = P<3~
8x8

(8-2-6)

In Equations (8~2-3) to (8-2-6) the elements of the sub-

matrices are defined as:

-K 12mn

K 22mn

-
K33mn =

(8-2-7)

\V'here (m = 1, ... , 8), and (n = 1" .. , 8)
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Now, the element stiffness element Kk can be written as:

rdrdz

and with the transformation of Equation (3-12) together

with (3-17), the submatrices of Equation (8-2-7) can be

expressed in terms of the natural coordinates ~ and n,

as follows:

(:\+2]1) (IJ 1 l 9 C + IJ 12 9 ) (IJ11 9 C + IJ12 9 )m,,,, m,n n,,,, n,n

A
+ ~G[gm(IJll 9 c + IJ 12 9 )+g (IJ1l 9 c+ IJ 12 9 )]

r" n,s n,n n m,s m,n

(8-2-9)

-
K12mn = :\(IJ 21 g. c + IJ 22 9 ) (IJ l1 9 c + IJ 12 9 +g )n,,,, n,n m,,,, m,n m/RG

+ ]1(IJ 21 9 c+ IJ 22 9 )(IJll 9 c+m,,,, m,n n,,,,

(8-2-10)
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(IJ 11 g . ~ + IJ 12 g ) - j(A+2~) gm gn
m, '" m, n (RG) 2

(8-2-11)

(A+2~) (IJ 21 g ~ + IJ 22 g ) (IJ 21 g ~ + IJ 22 g )m,,,, m,n n,,,, n,n

+ ~ (IJ 11 g ~ + IJ 12 g ) (IJ 11 g ~ + IJ 12 gn, n)m,,,, m,n n,,,,

g (IJ 2. 1 g ~ + IJ 2 2 g n)n m,,,, m,11

(8-2-12)

(8-2-13)

(8-2-14)

In the above equations IJ 11 , IJ12/ IJ21 and IJ22 are

defined by Equation (3-11), and;
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(m = 1, ... ,8)

(n = 1, ... ,8)

The final stiffness matrix Kk is obtained by sub­

stituting Equations (8-2-9) to (8-2-14) in Equation

(8-2-8), and with Equation (3-18), one can write

- - I -
K11 I K12 I K13

mn mn I mn
----L--- ------
-T - I -
K12 I K 23 I K23mnl mn mn

--T --j--T ---1-::---
K13 n I K23 n I K 33

m I m I mn

RGdet.Jacdsdn

24X24

(8-2-15)

(m = 1, •.. , 8) and (n = 1, ..• , 8 )

The integration in the above equation is carried out by

means of four points Gaussian integration with the natural

cooredinates S, n.
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APPENDIX 8.3

Listing of SUBASE Program

INPUT DAU Nor."Ofit$

MAtN PROGAAM CO',. 'NO OATA GENERA-ftON t

LIMITAUONS

IUR 11 O.
00 77 t .. l,NL
UlU .. UlU .. AMUfl1

7'1 Jtl~ .. fUR .. RUf It
OM - "'0 * SQRTlU1U/R1Rt I RO
lZI • O.

PRtNr our THE Dan "'NO 'we cEHlJ:,reo OA'"

~1I t.Jl NOOE HUM8ER OF ELEMENT t SURfiNG FROfII THE UP"!1t
lEFT CORNER IN CLOCK".51!! DIRECTION

00 100 • * I.NI,.
Nl" • II-U-.3.NCOl. .. 21
00 '0 J • l.HCOI,.
JJ .. J - 1
I{ • fI-U.HCOI. .. J
00 80 l • it 8
ll. • t. - 1
NICK.") • 'UN" L
IFtt. • eo • 41 NlCK.LI • "UK.Ll .. 2..NtOl - J
IF'" • eo • ~I 'nf~,ll - IUIK,f.' • HNCOL
lFll .. Gf • " NIIK.I.' • 'nUt.I.L) - 1

80 .,..t. •eo • 8J IflfX.l' • ~lC.,l' - IJilCOI. .. J - 11
"'N • N1Ut.21
IFIJ • GT • \I GO fa .,
l,1 • N"k,l)"I • "tn.,a'
'tOU.l.lt. 1
",OCI,.l.JI • L
HOI\.8.1' • 1
NOel,.S. J) • 1

tALL COOECNft.HE.1rf\.,H8,NUfltI
CAl.l rOfA,lINUH.HCl,Hf.,HJF ,IU..,OM,RO./'fO!)

RJ CK.lt O.
JtxfX,1' .. o.
"xlK,lIt .. o.
JtxU,21 11 RCOlllJ l.
RXCK.61 • RCOltlt Z.
GO ro 8.

11'11111(,11 If R.COltJJJ
11111'..11 .. RCOltJJ'
RlfK," .. RCQltJJI
RxIK.ZI .. IRCOt.tJJI .. IICOt.(JII I Z.
_UIC.b' .. "XU.Z.

86 RXCK.l' .. RCOI.fJ'
RXf..... -"COLU'
Rxt"'" .. ItCOLIJ,
lXlft." • Ztx
ZX(It,ll • UJI
ZXfK,3' UX
lXCK,4' ZlX" HI II 2 ..
%XIK.8' U:C «> He II 2:.
lxU.Jl • llX .. HtU
lXu: .. 61 .. lLX to HC II

90 Unc.7t 11 UK .. HUI
100 LZX • lXlIc.11

REAOC5.Z~t OltllJ.DRU)

'WIll THE I TH. v. eOUHO&R., NOOI! NUMBER CI"1 .at G. LEVEll

00 ." t • I,*.
K· ......COL
DO "'.. J .. 1, Z
L • f '-LI • % • J
lit _ J .. ~

.,. NY'll" lU,.'

." CONrtNUE
HOi - IfN - z.fifCQl
00 96 I .. 1'401,1'4"
00 96 J ~ l.l

" .....OI ..J. ~ 1
1tlZ - l • Hl

wRnEI6,66) Oflt.AO
wRnEU.. 106t
wRI n!(6. 1011 NJF"lfl,NCOl,Hoe,NN.HI,MCl
Wilt lTet6.10l!ll CRCct. I Jl.I.',HCOl'
MRn~(6.109'

wRtT£t6.10l!l) u ....., I I,AUII ),AMUIU .'-I.M\,)
W. nef'.lOql
"'11: Uff6.t081 UtAMOA •• I.RUEIII.AMtIE 111,1-, ,HE'
.... lfe.6.1091
WRITe ••• IOU OiltClItORf21
wRITEI6.106t
Wit ITEU, 1011 liNt (. ,J I ,J·l, 8I,I-t,HE f
..... ITE!6, 10lfl
WR. tT'E (6,1071 CNvC I J, l.t,/'(t.21
NRITEf6,109'
... " ITEr 6.1071 «(NOII.J I,J,.t, 31,1-' ,HNI
wRlrEU.106.
WA trEt., L081 URlt J.J ).lXf' .JJ ,J- hal •• -I.HEJ

%00 lolA: IT!16. 666'
SlOP

R..1tft.JltUCI,JI toRe THe A.ADIAl ANO THE AXUI,. caORor"A·fES ow: NOO~ J
INEI-E"!:Nr I

l' FORMArI16"1
25 FOltM,uUFtD.O'
)'5 FORM'" ".4Fl0 ..01
06 I=Q""AH UH, 1'1,/11111/11110., 'OIf'GA .' ,FIZ.6.1.011. "0 -' ,'''.4/11 ,

106 FlJRMAfllHl,2X II I
101 FORMAJ(/Z"'"
lOS FQR"Uft8F15.6'
10lf FlJItMUtllll'lC," I
666 FOR'UrclHl,ZX.1111111l1l1l11l1l1l1l1l" ..6X,' ••• SToP ...·!l1I111

"'111111 I
1000 FORMAftlHt,ZX,/lftllIIlIIlIlIlIl1l4U.'.- 'iUeAse """U,' ---­

'-1//1'5X.'EOII. BOt,lNOAR,l SYSTe" OF THE $Ue:-6ASE'I"tJl.'FQIt OYH"'''IC A
sHUtSIS OF SHellS OF Qi€VQLurrO'PIIII111u,'pqOOR.lJIIlJIED "" OS""'. EI.-
ISlotAFEe'lI"eJl.'FEB. 117B' 1/ I

c
c

c
c
c

c
c
c
c

c
c
c
c

c
c
c

G

C
C

OF 'THE NODE t IN 1'ME THREE DIRECTIONS J
FOIl U
FOR W
FOIl Y

FREE
F .JleD

FR (QUAHe., OF mE' e xc ITt HG "'OTt ON

coue NO.
J • I

2
l

NO 11 0
I

OIHfNSIQNLESS FIotTOR FOR THE IltPUJ FREauE"'Y

THE ourER RAOIUS 0' 'HE 1-1H. CGlUII'''

HOf Idl

UIU • a.

a.

oelll./t.

.0

Il 00 5 ... 1,Ntf
aOSJ-l,J

'i NOll,J' .. 0

"'.......UM HW"8EJI OF ElE.NEHtS IS ~o

'",xlf'tVM NU"BER OF lAyERS IS b
.,,,un"'l "tUMEIil O'F COlUHNS 'N 'HE F.E. MESH 1$ 4

tDHM"" E"1124.2" •• SHt( 24.2"1 ,AAI ... ·U.AOI ",en •.aI19,'" ,AS ....... ,
, UAt lao, 16) • .lODI 16. )&ot .. AEE f 16.. 361 .AQQI ]6,J61 .ASS I ]6,36',
I ItSSf 16, 361. YI 36.361,l f 36,361 .JiG' )6' .Hlt36) ,ElJ6J,DD"61.
S IUI2 ... 8,,:XI2', 8 .....\.AMOAI 2'. ,A""-IE 1141 .RUEU41 ,Al ... 16I,RUt6',
I RCa"141,AMU161,H161 ,OR121 ,SMIICJO.1901 ,HOI80,)1 ,HI120.81,
" /'ty( lZl,HItSf361''''_UO,~41

W'UTEt6.1DOOt
1tE.al'.Z~' AO.

RoEA015.lS) "4J',Nt..HCO\.,HOE
IF C "tl • GT • 60. OR • NCO\. • lif ._ 41 GO TO ZOQ
REIOC5 • .z., I (RCOllll, I_ "HeOt»

AL .....O•• IJ.AMUet tt.RUIII1 ARE THI! M"rElllAl. ,ltOPERflES 0' ELENE'" I

.u.AtlJ."~UII).AUU) AAE THE HAlERU.\. PROP1I!ltTIES OF LAYER I
HI II THE THICKNESS OF lAYER t

/tfOfE .... IF TWO OR I'II)A.E eLEMEHfSU.alEItSI WI 'H succeSSIVI! NUMBeRS
HAVE THI: SAME pqOPl!RUES • ONLY THQSE OF THE t='ltSf OF
THE'" HeeD ra Be GIVEN. wITH ,k, to"ST ElE.-ENPSrc.Jif'Elt-Sf
Pt':OPfRfteS MUST uw.,s 8EEN Gt __EN.

DRIlhDRUl 'HE PERCENTAGE o... tJrfG IUfrooF THE FlRsr TWO HoDes

J • 0
~ I1EAOn,}~1 I.AlAlllO... 'tl.AMU!CII,Auelll

L • J
J • J • 1
K 11 t - 1
IF'fJ • EO • Nf) GO ro ~

IFfJ • EO • I} GO ro ~

DO -8 .... J,.:
ALAMO'IfU • At..U4DAIlJ
aMUf'flt. ,,.uEtll

" RuEPU RUEU.)
J • I
IFlt • l' HE) GO '0 4

NJf TOUL NUMl!IElt OF ,OURIEIl "."'''0''''5
If\. TOUl NUMBEIt OF L" ..eJtS
HC~ NUMBER all COlU.Ot$ IN I'ME FINITE ele~Nf MIESH
NOI! p'UPfr OUT ".tiMIETeR IF HOE • 0 ·HO (Nfe'UHO'.f "E5UllS

TO HE "UNfED OUT

n",_rQUL NUMS!R Oil ",ooE5 , HE-TOTAL PfU"8ER Of etEIlI!NrS
Nc,l_FlItsr CO,.MQN NOOE BETWE'Efrt THE SOu. ANO fHe FQUffOUIOM
RO THE' VERT!C.l.L BQUNO....., IUOtUS

..........................................................•.......
sua's! IS " 5PICI1L l'ROCA.lM fO ee USEO IN SHELLS OF ,lI,fYOI.UTJOIf-$O'l
sYsrEM 1400el.. uNOER ov,.,.. tC LOAOS

...................................................................PRQGAAfIIMEO 8Y as.."" HOU$fAFA fL-$H'~Ef ••• FEB. 14Jf8

NN • f]-NCm. • Z,*"l • 2*HCDI, • 1
HE • "4COt. * t~l

IF f /rte , liT • zot GO 1'0 200
He 1- 2~COl. - I
ItO ,. ReOl f HCOlI

R'UO 'M! ELEMEMfS aHO THE lAY;ERS PttOPE_TtES

9 J 11 0
10 REAOU,J51 r,At.Altl.,I,"'Utt".UIII,Htl)

L • J
J • J .. 1
It • ( ... 1
(FIJ • EO • o'ft. J 00 TO 12
IFfJ • EO • It GO ro to
DO 11 It • J,1t
AlAIN •• UAILJ
AMUtN' 11 AMUtl)
RUCHI • RUCL)

11 H'NI Hfl)
J • I
1Ft •• I.' NI.' (".0 TO 10

c
c
c
c
C
C
C
C

c
C
C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



-201-

ENO
SUBROUTINE CODEfNN.l'CE,NL.N6.NUft'..................................................................
THIS SU8ROUTINE GENERA,es THf, CONJROt.ING INTeGERS FOR SUBROUTINE
lorAL

NL2 • 2 • Nt.
00 II J • hNLZ
Jl • CJ .. I} - ] +
JZ - I J -' I} • 3 •
n-CJ .. 11-3.
NRSIJlJ • fNVtJt - Jl - 3 • CJ .. 2'
NRSCJ2) • NRSIJIt • 1
HIt$IJ31 • NRSIJtJ + Z

11 CONTINUe

EO .), 'K - -1 ..
eo .. 41 "'N • -1 ..

G46. • .'OOO*C 1.00-.....AU.' 1.00.'TI
GXl61 .-a•• c1.. 00."YI
GVl61 ••5000., 1.. 00-ax*,,11

GUI ••2500-' 1 .. 00-"'XI*f I.OO.... YI.U.,-.I-l .. OOI
GX 111 ...2500*C 1.. 00+Ayt*t Z.. OO.'.-''''
G"Inl ••2500*'1.00-U:I*C Z.OO.AT- ... II

GU) - .SOOO.U .. Oo-A •• *' 1.00-Ay.aYI
GIIII .-.sooo*, 1.00-.'......
GY181 • -Ayet 1 .. 00--- ... U

GUo I - .5000.'1.00••1'*1 I.OD-AY••'"
;et41 •• '000.( 1.00-a'.A')
GY(41 .·"".C 1.00+.XI

GU, - .. '000*' 1..00-A••AXI-( 1.. 00-AY'
GJtIZI .-'.-11.00-1..,.
''fUt .-.5000*.1.00-A.*II'

Gil' - .2,ooe'1.QO• .,XI*Cl.oo-.n-Ul-AY-l.OOI
GXfll .2'00*C 1.Oo-AY)*CZ.. OO*,U-AY)
GYU' .Z5~' leOo.aU*I2.00.""-AII

;f'l - .,2500*11.00....... ' 1.00••n*u....."-1 .. OO.
GXtSI ...2500.( i.oa..n.u.oo ,)
GV&51 ••2500*( 1.00.'U.CZ.OO••Y XI

, ... 1 ..

'Jl - 0 ..
""2 • 0 ..
lJ3 • o.
"014 • O.
Rt _ o.
IF C 1 • Eg .. 2. OR •
IF I 1 • EO .. ) .. 01\ •
U: • aM • 0.5113'021
loY • " ... 0.51735021

Gf 1J --.2500*C,1 ..OG-ax.-c I.Oo-AY,., 1.00."X+""
Glilt 1 t - .Z500-11.0G-AVI*C 2 .. 00-,..+,IY.
G'fC 1) * .2'00*' 1.00-alJ*12.00*.'+A11

TOUL HUM8!:. OF NDOES
TOUt. HUM8ER OF EU"fNrs
TOtAl "OMBe_ OF LAYE"S

NN
N(....

K • I
DO a I • l,NN
008J-l.l
IFINDIt.JJ • EO • 01 CO TO 9
NOlt.JI • 0
GO to •

'I NOII • .I' • Ie.
K • Ie. • 1

a CONT 'HUE

CALCULAtiON Of BOUNQARY COOE 'UjM!leRS

COMt'Otf e'H t 240.241. SMU24.2'tl.IAC '." ,6019,91 ....£19,91 ....$19.9 ••
, AUllfJ. 36.,&00( )6, 3bf,A!E 130.3" ,AOQU6,Jot,ASS 1)6.)61 ..
" RS$U6, 361,YI 36,)'''Z1 :36.36& ,HOt36I,Hl 1)61 .EU6J.ODU'h
, Roll: 12.,., f .zxt 2'4, 8J ,ILA",O&. 20ft 1 .ANtIE (Zltl,AUE 124) ....L... 161.RU....
S RCOL f 41.'''tJ( bh"16J ,ORUt. SMU90.190,,"OtsO,3J .Hl 120,1',
, NYI12I,HRSI361.MPtZD,241

C
C
C

c
c
c
c
c
c
c
C
C
C
C

RE-TURN

C
t CALCULATION OF 8ANO wlDnt
C

C
C CAlCULATlmt OF CODE NUMBER.S
C

H6 - 0
DO IS N • l.NE
00 10 I - 1. e
J - I • 8
K • I • 16­
l.. • Itlt .. , It
""N~ It- NOlL. U
MPU•• JJ - HOU•• Z'
MPlft.K' - HDlt..]'

10 CONTlNU(

11:0- "I(
DO 104 lit - 1••
~K • KO • K

OfiIltJJ' - O'UJJI • CM.S*GIJ.*GIKI

"J - 0
ItK • 0
00 tOl J • 1.8
JO _ JJ

DO 10) k - J.e
JJ • .10 • K -CJ-U

00 101 J - 1,,,
AJI - AJI • GlfJI .. RI(N.JI
AJZ' - AJ2 • GXCJI * lXIN.J'
AJ) ., "'J) • GYtJI * RXUt,JI
AJIt • U4 • GYIJI • Zx".. JI
RG - R' • Gut .. RXUhJI

101 CO"T IHUE
DETJ'C - AJ 1 • "'J4 -lJ2 _ AJ3
GSfF • RG * OfTJac
'M&S - RUEtHI .. CSTF
AtJf l' - "'J~ I DfT"AC
A1JUJ --",.,2 / en"ac
AIJ,)I --AJ3 I DU"ac
AlJ(4J - "'Jl I OEfJac

OS"IKI0.0541I(KI + GSTF_C"_UIJClI*CXCKI + AlJI4t*G"U'leUIJU'*
, GlU, .. AIJ(ll.G'f'CJI .. GCJIIRC) .. PZ.UIJBJ.GJleJI .'1.11'"
S -CYlJII-UIJIII.GXIKI • A.JUt-GTeKII'

1Ft AJ • EQ • o. I GO TO lOS
OS5IK10.OS5U.1t I + G5TF*tc AJ*PZI"CI.fC( JI'" AI JU"CXC kl • AIJI4 I-

, CYU.III - I"J*PlI"GI-GIKI*CAtJIJJ*cxIJI + "' ••HUeCYCJllt

DS6(KKI-OS6C-KKI .. G5TF*CUJ.'2/RC-'.CfJI-UIJUI-CXOO • AIJCZU
, (;YIK. - CtKlIRGI - UJ-Pt/RGI*GIKI.UIJCU*CxtJ, • IIJI21
I -CYUII - IAJ*P3IR.C·.21.CCJ'*GIKJI

CO ro 104
10' OS50, ItK I • 0 ..

DS61Kki • O.
104 COIt"NUE
10Z CONTINUE
tOO COLlif tNUE

00 18 I - 1,24
00 18 J - l,24
EMIII.J' - Q.

IS SMlct,JJ • 0 ..
K • 0
00 tq I - 1.8
itO _ It

OO19J-I,8
It • I{D of J ... t 1-11

OSlCJJJ-OSIIJJI • CSTFIIJ"'.U1J411*GXCJ' + A1JUI*GytJ'''''''IJll'.
I GIIK) + AlJIZ".C,tkl' • fPl/RCH.'GIJ •• UIJtt ••GIUO +
, AlJIH.GYU.)) + GUO*UIJfU*GICJI .&IJI?I-GYfJUI • PZ.
, IAIJUI*GIIJI • A.IJCIt.-GTfJll-UrJU'.G'Cno • AIJI4J*CYCl(1
S I • UJ'''G •••2.P2*GCJleGCKJI

DS2IJJJ-OSZIJ;'n • GSJF-fP).UJJ.))*C;C'J' ... JJ'4'-G'rIJ".CUJot-
I GXfKI .. AIJI~I.GYfKt' • PZ*UIJC,t_CXCJI • AIJIZ'*GYCJU.C
S "'IJI I ,.GXUlJ • "'IJUt-'YfKII • UJ/RGI ••Z.PZ.CUJ.GflO'

OS lCJJ J-OS3tJJ I + CSTF*. C&J/"GI.*1*GI JI.GfK' ."3 • P2.' lA IJt1J*GX CJ
, ) • AIJUI-GYIJII*UIJC3I-t;XflO + AlJlltt.CYIKII • UlJetl-
S ClUJ. ,UJl2t.CYC.1I - C1JI/RGI.UIJUI-GIt .. 1 • A(JUJ-
S GYIKJ - Gu'.,IItCIlI

103 CONTINUE

C
C AII:I:'" OMIJJI IS TO BE usfO IN STD~ING 'HE )6 INDEPfNDENT ELE"E5TO

C OF rHE ".SS flfAT«U
c AlUla., D$1IJJI TO ARllta., DSblKKI "'RE TO 8E useo IN STORING THe "'aD
C INOEPENDENT ELEMeNts OF THE STIFFNESS MaTRU
C

DIMENSiON ... IJUI,OMI '61.DSte l6J .DS2C lb' ,OS]( 161 ..OS4(64 J ,055164 I.
5 OSblb~"GI8I.GI( 81,G'tt 8J

COM"ON EMl124. 24', SMl( 24.Zo\' 10. '.,I.IDt 9,91 , ...eI'hlllll ,AS '9, 9 I,
S ""'.413b, 36hlnDf 36.36J u t36.3bl.AgOll,..l61 .1$5(16.361.
I ltSSU6.l6J.YI36, 36hZfl6.361.HOU6t.111 U61.eU61,DDU61,
, IUI2ilrt•• I, lXc Z4.81"lAMOI( Z'" .AMUe f241.RUE 124, I ,AlAC61.RUf61,
S ReOl lit ...."UI bl,H16),DJt f 2' ,S"I 190.t90I,NOtBO,ll.Nl (20,81,
J ~V'12.,N.S'36"""'1l0.l41

nus SU8ROUTINE GeNERATES THE COHSIST"NT MASS MATRU AND THE ST9FF e
MURU FOR THE 'fIif-tH .. ELEMENT 14-POIfiITS GAUSS INTEGRAlIO.iIt

16 FOItMUUH1.4X. 'NO OF NODES IS·,14.3X.·NO OF ElEillENTS l$'.14.3X.
l·ftO OF l"'YERS IS',HII,5x,'HAtF B'NO WIDTH IS',H.lX.'NO OF UNfltHDW
INS IS', 14111 I

(NO
SUBROUT INE ELMHTlN.JA I

JACOB,AN

DO 100 I • 1. it
AM • 1.

N EL EM EN T NUM8ER
JA H",R:MOH I C NU"ftER

&J - JA
PI - ALAMOAIN'
Pl _ AMUftNI
P3 • PI • 2 .. - P2
DO 98 I - 1,36
OM II I • 0 ..
051111 - 0 ..
OS2fli • o.9' OS). U - 0 ..
009"1·1. ...
05~(l1 - 0 ..
OS5111 • O.

'9 OS61 I 1 • 0 ..

..AX. 0
"I" - 1000
00 11 I - 1,24
IFf"P'''. I' .. EO 0) GO TO II
IF'"PC''' I) .. LE "AXI GO TO 12
"AX. "PIN. r I

12 IFfM"H. (J .. Gt: MIHI GO TO 11
"tH - "PIN. n

11 CONTINUE
N81 _ "AX -flUN
IF'Nel • GT .. JrrfBI H8 _ N8l

13 CD1f1'NUf
NlJ - He • 1
NO.. _ MAl
WItITEC6.161 NN.NE.Nl.N8.NUN

C
C
C
C
C
C
C
C
C
C



11 AAAII,K' - U2 III ,KJ .. Ul a 111+2,«.1
21 ...... I ..K' --UI 111.0
31 "'II.KI • U3 • IU"2,1O , U2 • Zll.,o
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EMlthJl .. OJltOt,l
EMlf .+8,J+U • [)M(KJ

EMUI •• 6,J ••6) .. 0''1'"
Stue hoi' .. DSlllU
$Ml( '+8,.1+&' .. 0521KI
5Mlt .+16,J+l6J • DSJflO

19 tONriffUE
• • 0
DO 20 r .. 1,8
CD -I(

DO 20 J .. 1.'
.:: • itO .. J
StUII.J+U .. O$4f1t,
SMa 1.+11..1+16) • 0$'110
SMlChJ'16J .. OS'.K)

20 CQNTJNUE
DO 21 I .. 2,24
0021J-l.1
IFtJ • EO • IJ GO TO Zl
e"ltI.JJ .. EMltJ.fl
$".0 • .11 .. $"1(.1.1)

ZI tONTINue
RUURff

END
SUBROUTINE FACTOR' ",W, .'IVoT, $.N.IFl.AGJ

DlN£NSJOH .. 'N.N .....UhNJ.IJllvartNJ.SI".
'FlAC .. 1
INITIALIZE 'h.PIVOT,S
00 10 I .. l,N
.PIYOT" ... I
ROW"" .. O.
DO l J .. l,N
we 1• .1 I .. A.I.JI

9 ROW..U- .JItAJClIIitOWfUX.AeSIW(I.JIII
IFIROW"AX.EO.O.» Go TO 'fqq

10 $(,J .. ROW"'''''
GAUSS El.IMllliIATlDN WITH SCALED 'AarUL PIvOTING.
N"1 .... - 1
'FIN"l • fQ .. 01 RETUfitN
00 20 .... 1.N"1
J ••
..PI" I( .. 1
lP .. IP1VOJllltl
COl".U .. ABSIW.IP,Ktl/SlIP)
00 11 J .. ICPl,H
IP • 1'1yOT11i
t"lttO" • AeSlwf ",'ttl/Sf IP'
.FUWIKOV • Lf • COl.""" GO TO 11
to'-"AX - ANIKDY
J • I

11 tONriNUE
IFttOl"U.EO.O. J GO TO q,q

·t
IPet - ("VaTU)
,It'VQrfJ' • '''(vDftKJ
(Ptvaf Ut I - "'1{
DO 20 t • K'I,"

fP. 'PlyOTll'
Nfl,..«, • NIIP.Ka/wfJPK.K)
RATJO • -WI (P,X 1
DO 20 J • KP1,N

ZO "IIP • .IJ • RaTIO-WfIPK ... J • WIIP,.IJ
IFht (P,NI • EO • 0•• GO TO 9q9
RETURN

9.9 lFLaG - 2
lIIETUll:frt
END
Sul\ltOUTtNE FAltIJF,Hl.OM,ItD.flIO!)

t
C
C THI$ SUBltOUfUle GENe"AUs THE FA. fIELD EFFECT ON 'tole FE RIGID..
t

tOMMON EM. (24, 24). S"ll2lt,Z4.,AAt 9," ,40(9,9, ,I.E 19,91,AS 19,9),
S. 4,"'136, 361. "OOf 36. 361 .AEEI36.361 .AOQ(J6.')6""SSCl6,36I,
S RoSS 136, 36" YI 36.)6IeZ t)6.361.,HOU61 ,HI 1361 ,E 1361 ,DOU6t,
, RX124, 81. ZX124,e, ,.\"."'OAI 241 ,,tHUE (2"1 ,RU£f2(,;1 , Al,t(6) ,RUf6"
I RCOL 141 ,A"UlfIol ,HI 61 ,ORt z" SMI190,1901,H0t80,31 ,HI 120," ,
, 'tytlZ',NRS06l,MPUO,Z4J

NT-NLa6
DO 1 I • I,NT
00 2 J - !tifT
AAAC I.JI • O.
ADOrt, J. - O.
AEECI,JI • O.
ASSI ..J. - O.
00 I !'t - I,Nl
CAll l YRUF,N,O... ,ao)
NJIIII • N .. 1
00 3 IC ... ~

IF"'... EO • Nl • AND EO .. 1t GO TO ..,
t • N"1 ••• K
DOll-!,9
IFI ... EO • Nl ••"0 • l GE 11 GO TO 3
J - .,.Hl • 6 .. L
••", t.JI A"AU,JI. IlAU"Lf
AOOt J.JI - ADO'I,JI .. "OU,lt
AEEfl,JI. "'EElhJI to "EfK,lJ
"'SSII.J) - .SSII.Jt to ASIK.lJ

3 CONT IHUE
1 CONf'NUE
.., 00 5 I • Z,NT

II • I - I
00 tj J - 1.11
A.... ll.JI - "'."IJ,II

5 lS5CI,JI _ lSSIJ •• t
DO 12 I • I.NT
00 22 J • "'''11

22 lOQCI,J .......... 'I.JJ
CALL I NV I NTI
00 6 1 • 1,NT
DO 6 J • !tNT
'fII,JI • O.
00 7 ,., • l,tH

7 Yfl,J) • YII,JJ • AA"IJ.Kl • ASStK,J.
6 COI'tT IHUE

CALL TREOZ()6,NT, Y.DO,E.II
CAll fQl2Ub,HT.DO,E,l,IERIt'
IF CIERR .N-e .. 01 GO TO 99
DO • I • I,'"
DO 9 J - l.N'
AAA' I.J' • O.
ASScl,J' • O.

Y'fltJI - O•

CAlL HMU.Un.RD'
'F IJF • EO • 11 GO TO U
DO Uk • L,Nt
Il • Z
DO It I • l,NT
IFI I • NE • III lID fO 10
U-U.)
ASSIJ.It. - ltJ.l() • Htllel

"'U,K' • ZtI,lO • HOllt'
GO fO 11

10 ASS.hlltl $ Z,ItU • HOtlO
"·II.KI • ztltKl • H1IICI

II CONTINUE
12 tONflNUE

GO fO IT
U 00 16 IC - itNT

Il • Z
DO U I • I.HT
IF I I • "E • III GO TO 14
'2 • Il .. 3
olSSII,KI - lll,IC:1 • HOUI

YII.It) • ltl,lC' a HUU
GO TO 15

14 ASSII.KI· l (J,tc:.1 Hilltl
YO,K' - lIt,lt' HOIK 1

IS COfU tNUE
16 CONTlffUE

11 IF (NOE • EO • 01 GO TO 18
DO " 1 • 1."'
Wanet6, 506' I,OOII'.HOI I1.HII J I
wit IfE 16,4611 U I,J I ,4$511 • .1 I, YlI,JI.J_l,NfI

• CONTINUE

18 UJ • .IF
ItO • NTll
DO 21 X • 1.Nr
x- aBSIOOllt'l
S. SORJtJl)
KU - 0
VI • -S • HUK'
U2· S. HOIK I
UJ. HlfK. I RO
00 21 KK • ltNU
DO 20 JU - 1,3
I - ItU • IU
If 'JF .. EO 11 eo TO 19
IF flU. HE ZJ &"AChKI • VI. Ztl,K'
(F IIU • EO 21 ,,,AII,KI - U2 a 111,K.
GO TO ZO

l' IF flU .. EO
IF (IV. EO
IF IIU • EO

20 CONTINUe
KU - KV • 3

21 COffTJHU!
CALL INVeNT'

DO 23 I • 1.,,'
00 23 J • l,NT
lll.Jl. D.
00 Z! ll. • 1,NT

2l lll,oI) • lll.J •• AOOfl,XI • ASSt".JI

00 24 J - 1,"'
00 20\ I • I,Hl"

24 Il1.JI • lfl.Jl a ODCJI • aD

DO 25 I • !tNT
DO 25 J • hNT

25 RSSII,J' • 1ll,JI

DO 26 J • "NT
00 26 J - 1,NT
ztltJJ. O.
DO Z6 Ie. • L,NT

26 11S.J, • lll.JI • aOOU,lO • 'fU,.11

DO 27 J • I,NT
DO 21 I • l,NT

Zl ZtI.JI • lIl,J). soan "aSloOIJII •• 51.0

00 28 I • ltNt
00 Z8 J • 1t"1

28 RSSt J.J) • ".5S' J.J} • It I,Jt

00 29 I - leNT
00 29 J - ItNT
ZI r.J) - o.
DO 29 K - "NT

29 lIltJ) -UI.J' • 'EEU.K) • lSStll.,JI • ItO

DO 30 r • l,NT
00 ]0 J • 1,NT

30 «SSf It .... - RSSI t.J' • It "J,
DO 31 t - ltNT
00 31 J • I,NT

]1 lll,J' • RSS( I,Jl

00 3Z I • 1. NT
00 12 j t I,NT
RSSCJ.J' • o.
00 32 l( • !tNT

32 RSStl,JI • RoS511,JI .. l(ItJJ • &AI.IK.Jl
DO 33 I • 2,NT
Ie. • I - I
00 33 J • l,K

33 RSSC I,J' • RSSIJ.ll
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IF (MOE. EO • OJ GO fO 100

100 CONTINUE

'"1$ sue.OUfINE C'LCUf.AnS TtiE FACTORla.. OF AN INUGER M

ENO
SUP-DUTINE Fcruc,''''

THIS SU8ROUHNE GE'-fltAf£S THE LAYERS MATRICES

THE O"OE1t OF THE MAl1t1X '0- 8E tNYE":lEO

OU,eNSlOl'$ AIIZ,61. AlNV'1296'. BU61, IPIVOH16.
COMI'tON EMI &24, 241. SMtl24t.241.A.' ',91.AOt '.9J .A!, •• 9) • .as,9,91.

I "AI 36, 361,ADDI ']6, 3ftl,AfE t )&, 361 ....QOU&.161.ASSI3&.361,
S RSS U&. 36', YI ]6,1."U 36.)61.HOI36' ,HI 061.E 1161 ,UDt36h
S RX( 2.... e I ,ZIU4.81.U..MOAUO\I, .."UEU....RUEtZ .. t ....LAI6J ,RUt61.
S RCQlI4 •• IMUI 61tH' 6J.DRI 21 .$"1190,1901 ,NOUO.3"'H IZO.8 ••
S NYflZ),NRSI]6 .."Pt20.241

NSO • N • ·N
DO 10 J • 1.N
DO 10 I • I,N
It. • N * IJ-I f • I

10 "U.J • AIAII ,J I
CALI. FACfOJ:tU.A.IPIVOr,8,N.IFLAG'
GO fO 120.11 I, IFI.AG

11 WRllEC6.61U
GO TO I

:0 00 21 I • 1...
21 lit II • o.

IeEe; • 1
00 30 J • 1,"
8CJ I • 1..
CALL suaSTu.8.AINVC tlfGl.l~IVO...NI
StJI • O.

30 IIEG • 18EG' + N
00 40 J • 1.H
00 40 I • It"
~ • H- • (J-It • 1

itO AAAI1,JI • AJNYIKI
1 RETURN

THIS SUBROUTINE CALCUlATES THE INVERSE OF ... GIVEN "URIO

u .• AHUt,..
XI' • HINI
XC • ULAINI + 2.00*,MUtNfI
XO. (AlAINI • "MutN"
l'E • ULAtH' - AMUIN"
XF 1Il ItU'Nt • OM • 011
KG ••HurN' • KtHI I Il.

611 FOItM""IH1.5X,·MUItII. IS SINGut..,,·)
ENO
SUBROUIINE IHV$IN'

DIKENS ION KP (165.,KRC US),K( 11651
(OMNON eMil 24, 21t1. S"I t 24.241 ,'" 9. 91.AO.9,9, rAEC lh91.AS"'J.'I.

• A,UOe..36J,AOOI36,.JfrI.AEEOe.,36•• AOOf ),..361 ,ASSU6,3."
I _SSU6, 361. V( ]6, 36' rZ 13th 36) .HOI 36) .HII361 ,en6) ,DOt 361.
I It.x124.S1.UU4,8t .Al"MOA.Zltl .A"'UE(2"'" .AUE(241 • .alI16hRUI6 ..
, 'teOl 14I,AMUf.".HI6ItOttt %1 ,$MI1.0,1'01 ,NnUO.1I,NI (20.8',
:l NVI12J.NRSf36hMPUO."U

DO 5 I • hN
5 KPt 1I • 0

DO 45 I • 1,N
T • O.
00 20 J • 1.H-
IF IKPIJ1 • EO • II GO 10 20
DO 15 K • 1,N
IF fKpt .. , - 1) 10.15,60

10 IF IT • tiE • ASSC$MfJ.K'JJ GO '0 15
IR - J
It • l(
I _ aes. SMI J.K 1 I

15 CON"HUE
ZO CON'IHUE

KPIlCI a tt:PClCJ • 1
IF (IR • eg • lei GO TO 10
00 25 l • 1.N
T • $MI JR,.L I
SM' IR.L' • '#Itt lC,l I

25 S'U.C.1.1 • T
lOKRIIIalR

Kef I) • Ie
, • SMllt,Iel
SMut. Ie) • 1.
00 3'5 l • 1,H

35 SM( It... ' _ SMllt.l' I T
DO ",,5 M • 1.N
IF 1M • eo • leI GO TO 45
, • S#lIIfM.1CI
SMt",I(1 • O.
DO 40 l • hN

40 SMUh" I • SMIM.L I - SM'IC.U • 1
45 CONTINUE

DO 55 I • I,N
J-N-t+l
IF UlRlJI • EO , K.CIJI. GO TO 55
K • tt:RfJ.
L • K.CI.JJ
OOSOH"l,~

1" • SJlUM,K I
S""M,KI • SMIM.lI

SO SMIM.LJ • T
55 CON' HIDE
60 RETuRN

eNO
SU8RDUTiftE LyRtJF.N.OM.1lt1

COfO'ON EMI12~,l" I. S"1124.141.AI(9,,1 .AO(9, 91 .Ae ,., tt,A$ n,91.
I "IAI)ft.161.AOOI 36,361 .AU. f 36. 361 • .1.001 ]6, 1&' ,&$SI )6. 361,
S RSS 136, 361,"116, )6. ,lI36. 36 ••H01361 ,HI t]61 ,Et)6' .non6'.
s Rtf 2 ..... 8' • lltI14,a .....U"oAI 241 • .a"'UE 124 I .RUU24t "AlAl61.IlUUh
, RtOL 141 .. AfIilIUI 6J .Ht 6 I .nR 121 ,SM( 190.1901 .N0I80, 31.Nl f20.8I,
, NV'121,HRSf36J,"PI20,24'

JF HARMONIC NUMfteR
N LAYER HUM8ER
OM FRIOUA,.C., OF THE E'XClTtNG MOflON
R F.e. RIGI.,.. IUUIUS

t
t
t
t
t
t
t
C
t

• 1"-C05'S-2.3561''''''01
-0*SI,,(5-2.3561944'Ot I

• SQRTtZ.00/U*3.H15.265411. (P.SIHCS-%.J561944'OI
+O*CD5ts-Z. J56194490) I

* IP.eOSt S-.1853Cf8l6)4J
-O-SIN(5-. 785lCf816,4J'

• SO"T(2.00/(5-3.. 1415'26541). (P"S'N' S-. 7853981634'
'O*COSI S-.18'3'1'6341'

RETURN
ENO
SU8RQUTlHE IHVINI

DO 100 JA - 1.2
J • JA - 1
DO 90 I • 19M'
I_ "'S'OOllil
S • SORTU' • ItO
, • I,
g • o.
IFIJ.EQ.IlGOTOSO
DO ""0 KK • 2.8,2
It • ItK • 1
It.... 2.... - 1
KQ- ZaK • 1
l • KI/2
$M- 1-1. , ••l
Fr>- I.
DO 10 N • 1.IP,2
AN • ~

10 FP • FP • AN.AN
FO • 1.
fF I KO • EO • l' GO YO )0
DO 20 N • i.KO,Z,... ,..

20 FO • FO • ANa,..
30 tAl-L FtY IKIt. AP I

'''LL Jeff .. , AU I
,. • P • $H. FP / UP • ce.OO-S•••ttKI
O. O. SN - FQ I lAO • le.aO.SleeKI

40 cOJItr IHUE
8J • SQttTn.OOIfS*1,."'1592654U

•e,
•Hotll • SORTfBJ••Z • SY••Zt

IF 18J • LT • 0.1 HOU I • -HOI II
GO rO 90

SO DO eo Kit • 2.1,2
l • KIt/Z - 1
SIP l-l.I-.l
It • KK - I
I(p. Z_KJIt • 1
Kg- 2-I(K .. I
FP. 1.
M • I(P .. 2
DO 60 ... hKP,2
AN • N
IF IN. LT. M1 FP • FP • AN.AN
IF IH • GE • "t FP a FP _ AN

bO CoPtT I!'IfUE
FO • I.
M • KO - 2
00 70 III • I.KO,2
AN • ,.
IF f,. • IT • MI FQ • FQ • "N.AM
I F I ~ • GE • M1 FQ • FQ • AN

10 Co-., INUe
CALL FtT tKK, AP I
C...... FCTfK ....g t
p • P + Sit • FP I UP • U.*S'.*I(K'
o • 0 • SH • FQ I lAO * 1S••St ••KI

80 COfff lHOE
BJ • SORTf2.00IfS.3....-1S926S4Jf

•ey
•Hletl • SORf18J••l + SY••21

IF 18J • l1 .0.1 HlIl1 • -Hilli
'0 CO'" tHlJE

THIS SUBROUtiNE CALCUlATES HANKEL fUNCTIONS FOR THE "AVE HU""5R

NT TOtAL NO. OF THE W"Ve NUMBERS
ItO "AOtUS OF THE' VeRnCAL 80UNDARIES

Nit • 1
IF IN. LE • II GO TO 2
00 1 I • l.N

INN-NNe.
Z AM • Nff

ItEfU_..
EN!)
SUeltOUT INE HNKL Ud ,RO)

COflIMQN EMil 24,24), SKU 24,2" ....... 9,9. ,"DC •• 91 ,AE19,9' '''S'If,er. t

S "A,U )6, 3'" AOO( ]6, 36,,"eEU6, 16' ,AgQU6,16' ,"'SS ne., ) •• ,
I R551 3fu )6h vneu )6.,ZIl.,)6) ,HOn6),HI 1361 ,EU6),DD()ft"
, RXC24, '1, UI 24,e, ,ALAMOA' Z",,) .. AMtIE 12ltl ,RUECZ'" ,ALAI6' ,IU".,
S RCOlI41,AMUl 61.MI ft),DR (2) ,S'U 190.1901 ,NOnO,3I,1'I1 IZO,81,
, NV1UhHltS136J.""UO.2ltl

WR ITEt b, q61
"RUE", 66H ',,"sse t.,JI.J-l.Jrft l,l-I,Nl1

.,. FOJl"""'2U. letS. 7'
5. FQRM"IIHt.,.,'MOOE tfO,',I',5X,'EIGEH"atUf .·,nS.l,5I,'tta-',Et5.?

St sa. 'NI_- ,E15. 711IZ"•• 'EIGENVECTOR' .a~. 'XA' ,ua, ',(8'/1/ I
•• FORMat ('4.,6£15.7'
76 FO.."~TUH.. 51.·]ER. IS GJ ZERO ,'0 STOP')
'6 FORMATISH1.51,,'eoUHO••V STJFFNESS "'-"RtX'/I11 )

GO 10 lOa
99 WRITe.ft.761

100 RUURN

t
t
t
t
t
t
t

e
t
e
t



tllNflNUE

• 2' GO TO ),
I O.4aO-X,,_XS*XF - 1.000_.'" I 13.00-.81
I O.IOO-.S.XI!I*XF + 8.000_XA' I (1.00*X81
i-0.l00*18*."-.' -U I I 11.00_181
( 1."00-X8*X8.IF -16.OOO*IA' I 13.. 00*X8'

AEU.1I ••11: _at I 3.75
...ell.31 - -AEll.ll
,UU.l' - AEll.)1
AEn.)) • AEtitlJ

PO 1 I • 2f'
fl; a f - 1
00 7 J a 1.1(
ASI •• JI • ASIJ ...

1 "Ut..I1 - .'U.I)

JotAt HUMAEA: OF UHltNOWNS
FIRST COMMON "DOE "UMBER BeJWEEIf 'HE SOIL AND rHE
FQUNOA"OJlf
JOUt NUM8ER OF ELEMENTS
TOUL Nv..8ER OF FOURIER: H"'AfiItONICS
TOUl NUMfJER. OF lAYEItS
FJtlQUANCV OF THE EXCI flNG MOJlOfril
JHE VER.TlCAl ROUNDAAY R""IUS
PRI"' OUT " ...RAMeTER IF HOE • 0 NO IHfERMla.., RUUlrs
'0 8£ Pit INTED OUf

NUN
Ntl

NE
NJF
Nt.
0"o.
NOE

13 00 22 I(K - 1.24
IFIMPIN.KK I • eo • 0) GO TO 22
t • M~tN.If:K I
00 23 I(J .. 1.24
IFIMPIN.KJI • EO • 0) GO to 23
J • MPIN.KJI
$Mrl.JJ .. SMlt.JI • S"lIIl:K.ItJI - fM1IKK"KJI • Dill • 0"

23 CONT INUIE
22 tONTINUE
17 tOJilfTINUE

(FIJA • EO • 01 EAtl a lO.E-~

IFIJ•• G' • OJ eAt I ,. la.E-IO
IfCNOE • EO • 01 GO TO 15
WUTE46.6.,_
"'_IT E16.661' ISM Ct oJ I.J-l.N.,."I,.-1 ,HU~t

15 tALL FAA. tJ.... Nl.OM.RO.NOEI
Nr • 6 • NL
00 20 KK ...NT
00 20 I(J - 1.NT
I - NRSUK)
J _ NRStl(JI
SMII.JJ a S""'I.J) • RSSCI(K.KJI

20 CONT IHUE
DO 18 I • 1tNUN

18 IF U"Ul.t' • tT • 0.1 SMCt.1I ...s,..et.1J
00 19 I _ 2.NUN
IMI a 1 - 1
DO 19 J .. I.IHI

19 S"I1.JI • SMIJ.IJ
IF INOe • EQ • Ot GO TO 24

IfN' • lCN' I WI".".
• • N
DO 20 NPlflttt 5' 2.N
lI:'l • k
IC. • K - 1
jp • IPlWOflK'
SUN,. O.
DO n J .. ItPI.N

19 SUM - WIIP.J '.I(J) SUM
20 XCKla lUl(l - SUfO WC IP.KI

RETURN
ENO
SUBllOUTINE TotAlCNUJrt.NC1.NE ,N.I' .Nt ,-OM.RO.NOEI

D'''EHS ION WfN.N 1.81N •• IUN•• lttIVOTe H'
IFI" .. Gt • U GO JO 10
XIII .. 8111 I wl1.11
RETURN

10 Ir .. I' I"OT 11 I
IU •• 8eltt.
DO l' I( - 2.N
IP • 'PIYOJlIC.)
1("1 - K - 1
SUM • O.
00 lo\ .I • l,K"1

14 SUM. Me IP,J) • xtJI + SUM
IS·XIK) - eCI" - SUM

no 17 N - I.NE
CALL ElMNftN• .JA.
IF IHlIN.)t • NE • NYU)) GO to 1)
8N" Raitt.)' .. RXtN.lJ
DO 12 I- 1.1'S
II - .. + I
0012J-t.15
.,IJ .... J

12 AAAI I.JI .. £MIII1.JJI
CALL INYIU)
00 Ill. 1,9
0011.,1-1.15
OfIt"f hJI .. o.
00 11 K • 101'5
Kilt _ , • K

11 O""(I.JI • OflllMfJ.JI + EfIIIll1.KKI • UAII(.J'
DO to 1 • I.Q
00 10 J • 1.9
AMMII.JI - o.
DO 10 I( • 1.15
KI( _ , + K

10 IM"ll.J) ... "MMII.J) - Df'MCI"K) • !MIUIC..JI
0091-1,9
009J-l.9

9 AM"' •• JI _ .M",I.JI • EMlIl.JI

C""'CUllt ION OF 10'61. $t IFFNESS Nt '''II

THIS SUeftOUl IHE GI:NeRAn~s THE JOUl DVlftNIC StiFFNESS "URn OF
THE SOiL MODel

OUU!NSJON SSt 125.251 ...."'"' 9. QI.O"MC 'h15' .STIFF". , ..."'ASS 15 1 .0aMPC'H
COMMON EM,. 2". 2"'. Silt U 24.241.6"1 ~h 91 .60"'." .'Et'.'ll .AS (~.'cH.

, A,UUi&. )6' .AOOC )6.)&I,AEe 136.36) ,AQ04 36.)61 .A$SU6.)6 ••
, RSSI 36. 361. Y136. J61.lI1fh3't .H01361 .H! 1)61 • EI361.n0f361.
, RI( 2~. 11.11124,81 .AlA"'OA' 2~t ...."Uef24. ,IItUeU"1 .4.. AI6, "RUt61.
, RCOl(4) .IIMUC6J .HUI.ORC2I.SN, 1'0.1 '901 ,NDI80,)1 ,Nt flO,8 ••
, NVI12J.NRsn6hMPUO.241

DO t4 JF • ltNJF
J'" - Jf - 1
wRtTel6.bOI JA

00 I" 1 • I.NUN
DO 16 J - "NU"

16 SMII.J' _ O.

t
C
t
t
t
t
C
t
t
C
t
t
t
C
t
t
t

- 7.000."C' I 1).00.'81
+ a.ooo-xC J I C).OO••I!U

-xc I I 13.00-X81
-16.000••Cl I 13.00.X8.

EO.' J Fe _ I.
!Q.2J FC .. -41.00 I ].
eO.)1 Fe.. 1.00 I ).
tg. lJ Fe .. 4.00 I ).
EQ.21 FC" o.
eo.). Fe .. - .... 00 l.
EO.II Ft.. 1.00 3.
EO.21 Fe.. ".00 ) ..
EO.3) Fe - -1.

.IIG0105
".00-"·.1/)0.00
Z.00U".X8' )0 •

-X'.Xe130.
16.00-U*XftI)O.

00 • I • 1,3
oot J • '"11 • (f-II · · I
12 • 0-11 · • 2JI . IJ-l t · · I
J2 • IJ-I) · • 2J3. IJ-II · • 3

IF 0 EO • I. AND. J
IF II EO I. AND J •
IF II EO I. AND J •
IF II EO 2. AND J
IF II EO • 2. "NO. J •
IF II EO 2. AND. J •
IF II EO 3. ANO J •
IF II EO • 3. '''0 • J .
IF II EO 3. AND J

AOI1.1I • -KG I ).15
AOII.)1 • -lJ • ADUd)
A012.21 .. ADCl.31 I 2.

lOU.l' - .011. U
"013.11 - AOll.))

"'0111.J21 .. Fe. XH I 2.
"OCl2.JlJ a-FC • U. I 2.
AEflZ.JII ... ,::C • XI( I 2.
AEf 12.J3J .-AEf I2.Jll

9 CONTINUE

RETURN
END
SUBROUtiNE sUeSJtW.B.X.IPIYOT.N'

00 a 11 - 1.3
00 8 J 1 - 1.3
u-n+)
n-Il·6
J2-Jl+3
J3 • Jl + 6
'OIIl.JZ) • AOIU.JII I 2.
A£fll.J%' .. AElIl.JII I 2.
ADf IltJ.U a-AOf U.JlI , ...
AEt Il.J3t --AEIIl.Jlt I 4.
AOI12.J2) _ 4•• AOI tl.J1I
AEII2.J21 ...... AEfll.JII
AOtl2.J31 • AOlll.JZI
...ef IZ.J31 ....ec 11.JZI
lOt I3.J)) ,. &0111.Jl1
AEIE1.J3J • I.EllltJlI
AOI12.JU Aut Il.J2J
AeOZ,JlI .elll.J21
AOI13• .IZI • AOC '''J21
'E( n.J21 11 .E( 1l.JZt
AOCn.JlI • AOIU.J)I

8 'eI13.JlI • AEtll.J3)

IFlI • EO
A.II.I ••
... II.J) ­
••U.K) ­
,tU.J ••
GO fO &

5 AAII. It- ... oo*_e.xa/3D ..
lAC I.J) a 2.00_XC*X8130.
tAII.ICI· -XC-IBnO.
AatJ.J) • 16.00*lC*XI130.

& A.IJ.K} • Aall.JI
'AIK.K I •••11. I J

XH ....l"'"U
IJ • JF
xl • HI"' - 'lJ + 1.001 J It
XK • XJ • X... I It
DO I 1 • 1.Q
DO 1 J • 1.9
....... 1• .1' • a..
"'OlhJ' • a.
aECl"Jl • Q.

1 tSf"Jt • Q.
00 2 I • it)
J • I + 3
... I + 6
IFIJ • eo
ASll.11 •
Io$U.J' ..
A$(I.I( I lit

aSCJ.JI •
GO 10 "

3 6S II. I» • I a.400.xR.XS_xF
tSIt.JI • t a.200.,t8*1&••F
ASII.IO • 1-0.IOoa,t8*.S*XF
tstJ,J I • ( 1."OO.x8*xe*Jt:F

4 IoSIJ.lCt • AS«ltJJ
ASII(.I(I a &Slltl)

..611,2) • X8*xE/2.
""Cl.5. - -2.00_U*.O/!.
AAU.II • 18.XO/6.
6"12.4' • -AAC .. 'I
."12.1) • - .... e1.1l
A"e".... AAI" ,."'''5.ft • "AU.4)
"n.8) • -AA'1.21

t

t
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EIJI - 0.5E ZO
EIJtlK-J

• eCJtI SlUt .. £1.11

WRlTf.6.6.)
wRlleC6.66)' tSMI l.JI .J-l.JtUNJ. J-l.Jf\IH1

CDNOENSAUOIt OF TWE STlFF"IeS$ H' 'a IX

24 "11 • HRSUI
NZZ • 'fUN - "Ill
DO 30 I • l,N11
DO 30 J • l,Nl1

30 $$LIJ.Jt • SMIl,JI
00 U 1 • 1,"11
00 48 J • 1.3ft .
It • "Ill • J
L • PH I • J • 36
" • 1lt11 • J • 72
U ....11 • J .. loe
U.- Nll • J + 144
If fit 0 GT • HUft) GO TO .1
"'A(J •.,It • SMfl,,(J
IF (l • GT • HUH) ;0 TO ~.

AOOII.JI. SMel,ll
IF 1M .. GT • NUIlU GO TO 4'
AEE'I.JI • SHe I.,.,
IF UK • GT • HUH' GO to 41
AQQII.J' • SMtl.KKI
IF ILL. GT • ",,"I GO TO 48
&$$lt.JI. SH'I.lLJ

.1 CONTINUE
DO 31 I • 1.Nl2
It • N11 .. I
00 31 J • I.H22
La'fll'J

31 SM.I.JI • S"Ck.LI

CALL JNVSCN221

DO le9, II • I.NZ2
I • NZZ .. J t .. 1
I( • Nil • 1
DO 49 JJ • l.N21
.I • NZl .. .,IJ 'Co I
l. -Nil .. J

1tt9 5Il1CK.l) • SMt1.J'
00 50 I • 1.M11
00 50 .I • l.HIl

~O SMtl.JI. SSLtl.JI
DO 51 I • 1."11
0051.1-1.36
I( • N11 • .I
L • Nil. J .. 16
M • Nll • J .. 7Z
..ft- Nil • .I + 108
Ll- Nil • J • H4
IF IK • C;7 • NUNt GO TO 51
5"1"1(1 • "'.fI.JI
IF IL • GT • HUMI GO TO 51
SMCI.LI. &00(1 • .11
If fM • GT • HUN) GO TO 51
SM(I.M'. aEEII.Jt
If IKIIl. G7 • NUN I GO 10 51
SM. I.ttl( 1- AOOf I.JI
If ILL. GT • HUM' GO TO 51
$JIIlf I.LL I- .SSI1 ••11

51 CONTtNUE
DO 31 I • I.H11
JJ - I
00 32 J • I.H%2
na'ifll·J
SMI.r.JJI. O.
00 32 K • 1.H22
Kit .. Nil + K

3l SMCrr.JJI • S"III.JJI • SMlt.JUU • &........ .11
DO J3 I • I,Hll
DO )) J • 1.N11
SSltt.JI • o.
DO 33 K - 1.N22
Itk • NU .. K

3) SSI.Cl.JI - SSLII.Jt - SIlIIKIt." • S'UJ.KItI
00 HI. l.N11
00 H J • I.N11

)ft SSl.I1.JI - SSLCI.Jl • 5MII.Jl
.F'NOE • eo • O. GO TO .....

WRUEC~.~31
00 ]~ I • ltN11

JS NR1JEUh6UISSLtl.JJ.J-l, .. l1J

l"'EDENCE "An IX

"'4 ~S,& • l"el - 11 • ., - 1
If tNel • eo • II "SU •
ftCOM - JIll .. NSTl • I

00 36 I • 1."22
00 36 J • 1.Jt2Z

16 IAACI ••,I) - O.
00 37 I • 1.H11
00 31 J • 1,"11

31 &AA,r • ..I) - SSLII.J)
C'LL INVIMIII
00 11 I • I.IUl
00 38 J • 1• .'''111
SSl.CI ••U - A"'CI.JI

.,. A"AC 1••.11 - o.
/II • ~CQM

00391.t,...
39 A'AC I.U • 1.0

CAL'" LEQT1C.( SSL,....,..".A.,..".O. WA.IERI

00 4,0 I -1,"
00 ,,"0 J - 1.'"
,sse 1••.11 - R!J.LU". r•.1»

.0 OMMU.JI ••1,IljAG"'.If.J.' 10"

'IIIRtTEU.641
WA nEt 6.69.. I IMM( t .J) .J-l •."4COMt. r-l.HCCMI

C
C
C
C
C

c

c

WAneI6.65.
"'IUTei6••~H CSSLI %.JJ.,sal.HCOlit•• t-t,ICCIit.

STIff•• MASS 'NO a'''PING If THE LOlH!R fIVE Oaf fOR THE RI," FOOTING

00 41 t • 1.3
J 11 t 3
I( • I .
STIFF( 11 • 4SSCl.1I ASSfJ.• JI AS$UC..KI
DAMP' U • OMMltt.1t DfltMCJ.JJ O"M(~.J(I

Itt ....SSltl ......"Ct.ll "M'J.,JI ",,(1(... )

STIFF44. - 1ASS' 2.21 .. ASSt '.a. J • S'" I Z.01""'''. • 10""12,2) • 0"''''(8.81 J • 8" , 2.
""""S$I41 - tIMJI4f2.ZJ ••"JI4U,a. J • 8111 I Z.
STIFF' 5' • IASSI3.J. to ASSI9.9' J • 8111 I Z.
0"''''.(5) • (01ll"13,31 .0II1II"('9.9)' .8" I Z.
AJUSst5•• ""'Ul.3) • A""19.911 • 8... I 2.
00 "2 1 • t,5

<Z DOli •• SQRflSflFfl1l I 'MUSil 11

...ill11'6.671
W"n~(6.•••1 C-'~Of. ~~ ': 1~~.5'

00 Ie) I • It.5
43 un - DDCf)

" • 0
DO 45 I • 1.'
SMAl • 0.5E ZO
00 "'6 J - 1. 5
'FtJ • EO • Nt
IF tsM'L .. (;T
IF U"'I. • (;1

.,60 CONUNUE
10 ••
DOC l' • S"'l

le5 CONTINUE

ODS. 1001'51 • 00"" • CODI" .. 00111 J
CO - 2•• COOII'-OOC5I1 • IODI51.0R(11 - OOtll-ORIlII I DOS
Cl· 2.'. IODI51.0lUZ) - DOfU.ORllIl I DOS
00 le7 I • It,

Ie" D&MPI'I • CO • "MASStl) • Cl. STIFF II'
WR I 11 f 6. flOO,
WJltIlEl6.611JISflFFllhl_t..5.
W"'fI6.ttOU
WRITE«6.'8U AM"SSII a. )-1, 51
"RIT£t6.60ZJ
Wa.nEl6.fl8, (OAMPI".I.l.S'

14 CONtiNUE

~erURN

FORMa, $TAT!M.ENtS

fiO FOR"UUH1.llIllIlIl/llllfIlIlIlIlItOX,· ••• HARMONIC HO·.n.' •••• ,
'441.'-----, I

61 FORMAftlHt.2X.·TOTAL STlFF'tESS MURU OF THE SOil MODEl',11I
oil

62 fOJl:MAHIHh2X.'STlFFNESS "ATRU OF THe FUtilE eLfMt'tT CORP.1I1/1
6) FORMlTClHl.ZX. 'CONDENSED STIFFNESS MATRIX OF THE SOH "OnE!.'.III,.
60. FORMAJ(IH1.2X•• CONDENSED 'USS MATRIX A1' ntE COflllflllON OEGREES O. F. 'I
"II I

" FO"MUIIH1.2J1i."MPEOENCE STIFffrtESS M.UIl·1I1I ,
606 FDRMUClzx.8E13.bl
67 fORMIf(lHl.3X.·NUUR'l FftEOUfNCJES OF THE SOll.·IIIIIOX.·U·.14X,·1I·

S.I"X, ''1' .1ZX. I TH1T A' • lUI.. 'FAY' J
61 FORM.lTCII2X,5El,.7J
., FORfllUC2J1i,.Ellt.71111

600 FOI""A1'4/II"/'''., 'STIFfCNES$ES OF THE EOUIYALEN1' SPRINGS ••••
601 'FORMUClIIII1I4Jl:,'EOUIVAlENT MASSES Of THE sall ••• ' I
.02 fORMAJIIIIII1I4X,'EOUlvalEN' oaMPING ELEMENtS OF THE SQll ••• 0

EMO
SUBROUTINE TOL2INM.JC.D.E,I.JERRI

INTEGER I.J.K.L.M.H.I l.1.1.NM·...ML.IEltR
ltEAl DU... EINI.ZINM.N)
REA" 8.C.F.G.H.P,R,S
REAL SOAt.leS.SIGN
REAL MACHE'

•••••••• ,utKt:P IS " ""'CHINE DePENOENT P&RAME'T!R SPECIfYING THE
RUlrtY! PRECIStON OF FlO.TlMG POINT .... IT"M£nC •••• ••0.

"ACHEP - 6.

IERR • 0
IF CN .EO. 11 GO TO 1001

00 100 1 - Z.N
100 EII-1I • Elll

F - o.
8 • o.
EU" • o.

00 2ltO l • I,N
J • 0
H - MICHEP • ueSIOlL1l • 'eSllElllll
IF C& .Lt. HI 8· H
• ••••••• lOOK FO~ SMAl.l SUB-OtAGONAl. ELEMENt ..
DO 110 ,. • L.N
IF UBSIEIM)) .lE.- AI GO TO 120
•••••••• E'NI IS ALWAYS Zf~O. SO THERE rs NO EXIT THROUGH TH&

BOlTOM OF THE lOOP .
ltD CONTINUE

120 IF '''''.EO. L I GO TO 220
130 IF CJ .EO. 501 GO TO 1000

J • J • 1
•••••••• FORM SHIFT ••••••••
II • l .. \
G • DIU
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P a IOClU - GJ I 12.0. EIUJ
Il a SOilT.,., • 1.0)
DIU - Ell J I fP • SIGN.R,P' J
HaG'" OIL)

00 140 , • l1,H
i40 O' U • O( U - H

00 2,,0 J * i.&.
ZtJ, II a ZU.JI I H
C • 0';

t. •••••••• FORM Elf"!Nf OF ,,"u ••••••••
00 180 II. • i"J

180 C .. G + lIJ••O • Ultkl

f a F ., H
•••••••• OL tRANSFoa"AJ1OH ••••••••
p, - tUJlU
C • 1.0
S • 0.0
MML • " - L
•••••••• FOIt 1_14-1 STEP -1 UNTIL l DO - ••••••••
DO 200 '1 a l."Ml
I • ,.. .. It
Gae-ElII
... a C .. ,
IF IAaS"••LT. AIiSCEIiUt GO to 150
'-fillIP
" • SQU Ic.e • 1.0J
EIl+iJ - s.p.a
SaC I It
e - 1.0 I R
CO 10 J60

150t·P/£IJ'
R • SORlie.., ., 1.0)
E'''U • S • ECIt ."
S • 1.0 I "
cae. S

1bO P • t • Dct l' - S • G
Of"U .. H • 5 .. Ie • G • S • 01l)J
......... FORM YECJOR ••••••••
00 180 K .. 1.,.
" • ZII"l+lI
l.(K .. I+U - So. lUC.,U • C" H
llK,It. t. I.K,1l - S. H

180 CONU,..UE

200 CONTINUE

.1ft I • J • 1
IF (1,.•\.1. JPU GO to 220

00 lOO K • JPltL
lOO G. G • ZllIt.J, • ZI ••KI

•••••••• FORM ELEMEN' Of P ••••••••
120 £1.11 • G I H

F .. f • EfJI .. ZCI,JI
2ltO CON'IHUE

HH • F I IH + HI
•••••••• FOttN REDUCED,. ••••••••
DO 260 J • I.L
F • 11ltJ.
G .. £1.,1. - HH • f
EUI .. Ii

00 260 K - hJ
llJ.Kt • ZCJ.KJ - F • euo - G .1Cl.KI

260 CONT IHUE

290 01. J • H
JOO C.OMt l HUE

320 D(l) If o•
Eo'll .. o.
•••••••• ACCUf4ULAflON Of TRANSfORMATION .... TRICES ••••••••
DO ~OO I • l.H
l • I - 1
IF 10C" .EO. 0.' GO TO 180

00 360 J - l.l
C • O.

EILI-S·p
OIL. * C • I'
SF UIlS.EILJ J .GI. 8t eta TO 110

220 DIU. OILJ • F
2~O CONT (HUE

........ ORDER elGENVllUes ANO EIGENVECJORS ••••••••
00 300 II * 2,N
I • It - 1
•• I
I' a Din

00 )~O It • hL
)1t0 G. G • UI.KI • UK.JJ

00 )60 K • 1.L
1IK-,.u • ZIK,J) ... G • 11K,,,

360 CONl1NUE

JlO DIU. ZU."
111. ... 1.0
IF (L .LT. II GIl TO ~QO

DO 260 J • • 1.H
If IOIJ' .GE. '1 GO TO 260.
• • J
P • OlJ1

260 CONf tHUE.

00 400 J • hi.
ZlI ••U a o.
lU,1I • O•

ftOO COM' JillIuf

SOO C~JINUE

IF (K .,EO. 11 GO 10 300
OUt) a OU)
DC I •• P

AETURN
ENO

DO 180 J • 1.N
I' • Ie",. J I

ZlJ,IJ • llJ.K)
ZIJ.K I .. P

280 CONt 'Hue

300 CONIIHU!

TREDZCNM.", A.D • .e. Z I

GO TO 1001
SIH ERROR - NO COH¥£RGEHCE TO AN EIGENVALUE AFfER 50
itERATIONS •••••••

C
C

1000 IERR - L
1001 RETURN

END
suaROuTINE,,
"HEGER 1.J.K.L .... 11 ...M.JPI
RElL lINM,N •• O'N) ,EeN. ,1 (NH,HI
RElL f.G.H.HH.SCALe
REAL SQRt ....as" SIGN

DO 100 I • i ...

00 100 J • 1.1
ZII.Jl • AlI.J.

100 CONT IHUE

IF IN .EQ. II CO TO )20
•••••••• FaR I • N STEP -1 UNTIL 2 DO - ••••••••
00 300 I' • 2.N
1*"·2-11
l .. I - 1
H • o.
SCALE. o.
IF IL .Lt. 2. GO TO 130
......... Sc. ...lE l\OW iALGOl lOl 'HEN NOf NEEDEOI ••••••••
00 120 II. • l.l

120 SCALE * SCALf + l8SUll.KIJ

IF iSC"'! .HE. o.) co TO 140
130 ef,} • {(I.LI

'0 fa Z9D

140 DO 150 I( • I.L
HI.II.) • l,I.KI I SCUE
H" H • lCI.~J • lfl.K)

ISO COliTlHUE

F • lCl.LJ
G • -SlGNfSOR'.HJ.FI
Ell. - SCALE. C
H-H-F·(i,
lll.U-F-G
F - o.
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APPENDIX 8.4

Modifications and Additions For User's Manual

Of SHORE-III Program

In this appendix, only the necessary modifications

and additions to the user's manual of SHORE-III program

(40) are presented to make it applicable for SHORSS

program. To introduce the soil effects in the form of

the Equivalent Boundary System, modifications to number

of subroutines in SHORE-III are carried out. These sub-

routines are: DATAl, DATA2 , ESOT, GLMX, LISTID and SOLV

(see the overlay structure in Figure 12). These modi-

fications necessitate the input data to be changed in

some sections of the twelve data sections of SHORE-III (40).

However, new limitations are introduced as a result to the

new options in SHORSS program. These limitations are

given in this appendix as well.

INPUT DATA

Given below are the modifications and additions to

the input data of SHORE-III to suit SHORSS:

B. Problem Control Card

The format of Problem Control Card will be as follows:

...... UnCHANGED .....

Columns

1-5

6-40

41-45

Format

I5

I5

Entry

Number of finite elements to
be used (Maximum 47)

1 or 0, refers to EBS
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The flag 1 in the ninth field signifies that the

soil effect is to be considered in the analysis and the

equivalent boundary system values should be supplied for

each harmonic. Otherwise, no EBS to be supplied and

SHORSS becomes SHORE-III program in this case. It should

be noted that the soil effect is limited to the dynamic

analysis only, therefore, columns 41 to 45 should be left

blank in static analysis problems.

D. Nodal Point Cards

If columns 41-45 in the problem control card are not

left blank no geometric constraints at last node are re­

quired. Thus, it is necessary to leave columns 16 to 45

blank for the last nodal point card.

I. Loading Information Cards

As the EBS components must be supplied for each

Fourier harmonic they are introduced in this section. Thus,

for each harmonic, there shall be one title card, the

'load title card', followed by a control card, the 'loading

control card', followed by three cards,'the EBS cards' if

columns 41-45 in the problem control card are not left

blank. These cards are followed by the loading cards as

usual.

The format of the first card of the EBS cards, the

stiffness elements card, for each harmonic will be as

follows:



Columns

1-15

16-30

31-45

46-60

61-75

Format

E15.6

E15.6

E15.6

E15.6

E15.6
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Entry

Fourier coefficient for the
stiffness element in u­
direction at e = 0°
(or e = 90°)

Fourier coefficient for the
stiffness element in v­
direction at e = 90°
(or e = 0°)

Fourier coefficient for the
stiffness element in w­
direction at e = 0°
(or e = 90°)

Fourier coefficient for the
stiffness element in S¢
direction at e = 0°
(or e = 90°)

Fourier coefficient for the
stiffness element in Se
direction at e = 90°
(or e = 0°)

The format of the second and third cards are like

the first card except the entry will be the damping

elements in the second and the mass elements in the third.

However, the mass elements for all Fourier harmonic are

the same, it is necessary to supply the mass card for each

harmonic.

OUTPUT

The only change in the output format of the program is

in the program title printout at the beginning of the out-

put, SHORSS title instead of SHORE-III title, and a

statement to be printed with the nodal point constraints

to describe the type of the boundary at the shell base.
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SYSTEM CONTROL CARDS

The image of system control cards used to run SHORSS

from permanent file (WU650E.SHORSS) at Washington

University Computing Facility, using an IBM 370 computer,

is the same as those given in Appendix A of Reference (40)

except the first two cards should be replaced by:

//SHORSTST JOB (65587,1466,20) ,'OSAMA', CLASS=N, TIME=20

//A EXEC FORTRAN,LIBRARY='W0650E.SHORSS' ,PROGRAM=SHORSS
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