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ABSTRACT

A finite element model has been developed to analyze
shells of revolution under dynamic loading with soil-:
structure interaction effects. The model consists of high-
precision rotational shell finite elements, representing
the axisymmetric shell, supported on an equivalent boundary
system, representing the soil medium. The substructure
method is used to model the shell and soil components., In
addition to the seismic analysis capability of the proposed
model, it is also applicable to other dynamic loads such as
wind. The dynamic behaviour of a hyperboloidal cooling tower
shell on discrete supports with a ring footing is studied
using the proposed model. Dynamic properties are studied and

stress analysis is carried out for a variety of soil conditions.



NOI

TABLE OF CONTENTS

Page
Introduction.....coeveeeeens e rscecasanearr s 1
1.1 General....... ceseceenaa P e v easaasaenaen 1
1.2 Review of Past Work..... s e v eesear e 2
1.2.1 Approaches to Scoil-Structure

Interactionl".lll..‘.l‘l'.l'l.. 3
1.2.2 Methods and Techniques.......... 4
1.2.3 Parameters and Applications..... 6
113 Scope andAim.l"Qll‘..ltl‘..l.ll‘..... 8
Basic Formulations for the Soil Model....... 11
201 Introduction'l.’.!..ll'.l...!.ll....... ll
2.2 Displacements and LoadS.cescsosnsvesass 12
2.3 Compatibility EQUALIiONSesevasarscoennas 15
2.4 Constitutive EQUationsS..eeveeseecesnsas 18
2.5 Wave Equations..........icuiiennns eeea 19
2.6 Principle of Virtual Displacements..... 26
Finite Element FormulationS....eeeeeoeonss . 32
3.1 Introduction..l.Q.li‘.."l.'l..ni‘.l.tl 32
3.2 Solid Element Formulations.............. 33
3.2.1 Isoparametric Formulations....... 38

3.2.2 Element Mass and Stiffness
Matrices-.--*--n-.ns.nn...-.n-.ao 40
303 The BoundarieS-‘---o-..-.--........o.... 43

3.3.1 Wave Numbers and Modes of
Propagation...i.seeeieeceeaenns, . 46

3.3.2 Dynamic Stiffness Matrix of

the Energy Absorbing Boundary.... 56

3.4 Total Dynamic Stiffness Matrix of
the So0il Medium...... ettt e eeet et 65



No.

e
LEE

TABLE OF CONTENTS

(continued)
Page
Shell—soilModelliI...’.'D.QC.l!.l'l‘..lll'. 67
4.1 General APPrOAChH.vesciteesastassenoassss 67
4.2 Equivalent Boundary System (EBS).icava. 70
4.2.1 Impedance MatriX.esesoseasoassns 72
4.2.2 The Ring Footing..:.eeuvuuenn ‘e 74
4.3 Computer Implementation......eeueee.. .o - 82
4,3.1 SUBASE Progralf....... s e con g2
4,3.2 SHORSS PrOgra@Messscsosssseaaasvss 86
4.3.3 Scheme of Computation.ecovesssos 88
Parametric Studies and ApplicationSe.ceesves 93
5.1 Introduction......ceevieerecnnenarsnrssas 93
5.2 Parameters Affecting the EBS.ieiireeres 98
. 5.2.1 Effect of the Stratum Depth..... 98
5.2.2 Mesh Size Effectiivieccannessvan 108
5.2.3 Effect of Driving Frequency..... 115
5.2.4 Higher HarmonicCS..uiseeesassnsess 125
5.3 Dynamic Analysis of Shells of

ReVOlULIiON v eatvnsssanssnescansacseseas 132
5.3.1 Free Vibration AnalysSiS..csesss. 139
5.3.2 Response Spectrum Analysis..... . 151
Summary and ConclusionS...vieeeseacsaasss ‘oo 177
Acknowledgement . ee e e e e tanetseennaas ceeee e 182
APPeNdiCeS .. it vt ittt ent ettt aaconcns . 183

Appendix 8.1 High Precision Rotational
Shell Elements.l.'l..'o.ll..Il.‘.‘lﬂl'll'.'. 184
1.1 Geometry of ElementsS.iiieessveensoeas 187

1.2 Displacement Fields....cciiiininnann. 187
.1.3 Element Stiffness and Mass Matrices.. 189



No.

iv

TABLE OF CONTENTS
(continued)

8.1.4 Constitutive Relétionships...........
9.1.5 Element Load Vectors....... eerseseeas

Appendix 8.2 Details of Stiffness Matrix
for an Iscparametric Solid Element.ccssssoas

Appendix 8.3 Listing of SUBASE Program.....

Appendix 8.4 Modifications and Additions
for User's Manual of SHORE-ITII PrograM....a..

Bibliography.o-000..00000no-"oolo.o-oilll'c

Page
191
192
194
200

207

211



10.

11.

LIST OF TABLES

Shape Functions and First Derivatives
for EXpansion VeCtOr .« es s ctassorsoenecsnss

Soil Material PropertieSieciteseneesseesns

ERS Quantities for the Stratum Depth
Analysis (J=l) ..... * 5 » & & 2 w0 % 5 ® P B PSS 5 s g T e E >N

Mesh Size Effect---v-.--.----------..-o.--.

Shell Meridian of the Structure Under
Study..v.......llllll.l...l‘..-..'--. ------

EBS for the Cases 0f Study.evseseeectennnss

it

Maximum Column Forces at 0 0° (Vertical
Ground Motion) ........ t et e ee o anees e v

Maximum Column Forces at 8 = (° (Horigzontal
Ground MOLIiON) ceeiseseroscosonssssusscesss

FPoundation Response to Vertical Ground

D‘Iotion (RSS)---..-.--.GQ. .......... “ 8 e e s
Foundation Response to Horizontal Ground
MOEION (RSS) it iitntttettncenonanoanensnnnes
N, = Component att F.L. (J=1)+cseceecewsns

¢

Page

39

101

102
114

135

138

161

162

164

165

175



10.
11.
12.
13.
14.
15.

16.

17.

i8.
19.
290.

21‘

vi

LIST OF FIGURES

Coordinate System..c.i.civenaen. Cheesenen ‘e

Finite Element Model for the
SoilMediumll-'..'lilI'.DII!I.!.'IIIDI..I

Isoparametric Quadratic Solid Element....
Toroidal Section of the Far Field........

Modal Boundary Stress Vector for the
n_t_}l-Layer."-.-..""O ..... L B B N S B R I

Proposed Model for a Cooling Tower Shell.
Soil Mesh With the Ring Footing‘ % ® 4 % » 9 8
Ring Pooting Cross Section..vicsarecesnns

Equivalent Boundary Stiffnesses....-rcea.

Equivalent Boundary System (EBS) ...ceeaeccas

Flow Diagram for SUBASE Progral.....seeecee..

Cverlay Structure of SHORSS Program......
Computational Schele..icveeierrcrasavacsens
Base Uplift.iserieneescnnsnsnsonnssnnnsanens
Discrete Column AnalySiSescesecesssaseaas
F.E. Mesh for the Time History Analysis
of Two Cycles of a Sinuscidal

AcceleratiOn---..o-...-...--.............

Response Accelerations of 4 Sec. Time
His’tory Analysis- ....... L L B I N L B L I L

F.E. Meshes for Stratum Depth Study......

.

Effect of Stratum Depth on the Frequency...

Effect of Stratum Depth on the

S FNE S S . ¢t ettt st s ss v st atsanannnas e e

Effect of Stratum Depth on the Damping......

Page

13

34
35

47

57
69
71
75
77
83
85
87
89
91
92

95

97
100
104

105

106



No.
22,
23.
24.
25.

26.

27.

28'

29.

30.

31.

32,

33.

34.

35'

36.

37'
38'

39.

vii

LIST OF FIGURES
{continued)

Element Size Effect {(Uniform Layers).......
Mesh Effect (Non-Uniform Layers)..........;
Super~Economical Mesh (B/rogo.l)...........
Foundation Vibration Problem....cceeeveaess

Vertical Displacement for Rigid Circular
Footing on Elastic Half Space...... fer e

Driving Frequency Effect on the
Symmetrical Mode FrequenCieS.ieecesecsaenss

Driving Frequency Effect on the Unti-
symmetrical Mode FrequenCileS..c.ieeeeceeaees.

Driving Frequency Effect on Stiffnesses
in Symmetrical MOdES . eieeeeasrtroerosnonenes

Driving Prequency Effect on Stiffnesses
in Untisymmetrical ModeS...cciieecenanaenns

Driving Frequency Effect on Damping
in Symmetrical ModeS......evvesues neearene

Driving Fregquency Effect on Damping

in Untisymmetrical ModeS...ivevsnrnsareenne

Natural Frequencies of EBS in Higher
FPourier HarmoONicCS e es et o esetseaesanssonsasn

Stiffness Elements in Higher Fourier
Harmonics."h....'.l'....l'iﬁ...-...‘...'.'

Damping Elements in Higher Fourier
HarmonicsS..... et e et e it e s e st a et eeta

Cooling Tower on a Hypothetical
Foundation""'l'.'D.'.".I..!'..I-ll".l'l.

F.E. Mesh Of Case Tl .iteneccnnsersnsonsanas
F‘El Geometry"..’.-..‘O'...IOOOl.l...""'

Sign ConventiOnSOOooococvono.ou.uvo-u-cono.

Page

110
112
116

117

119

121

122

123

124

126

127

129

130

131

133
137
140
141



viii

LIST OF FIGURES
(continued)

No. Page

40. Eigenvalues and Eigenvectors for J=0
(case I).'.l'.‘!.'...'l'.I.'.‘.....l..“.l‘ 142

41. Eigenvalues and Eigenvectors for J=1
(Case I)Qll.l-.ll....ll.‘.l..-........ ----- 143

42. Eigenvalues and Eigenvectors for J=1
(Case II)..--.nn-t ------------ L A L N L RE B S Y S ) 144

43. Eigenvalues and Eigenvectors for J=1
(case III)-li.llI...l.l!-...-.-i.t.-.-..l. 145

44. Eigenvalues and Eigenvectors for J=0
(Case IV)CII!.I-l!!..-.'l!..O...O.llll.ll. 146

45, Eigenvalues and Eigenvectors for J=1
(Case IV)..........-.. -------------------- 147

46. Soil Effect on the Symmetrical
Eigenvectors of a Cooling ToOWer . s evvevssas 148

47. Soil Effect on the Antisymmetrical

Eigenvectors of a Cooling Tower...eeesrewn. 149
48. Horizontal Response SpeCtrUM...seecesneans 152
49. Vertical Response SpeCtrUMescicacveasasosne 153

50. Vertical Response Spectrum Shell

Results (J=0) ciereevnninennnnnnnas ceereann 155
51. N¢—Component, Earthquake Load...cc.eiuann. 156
52. Ng-Component, Earthquake Ioad............. 157
53. M¢—Component, Farthguake Ioad.. . eveeeenens 158
54. Me-Component, EFEarthquake Load...iuecennnns 1538

55. Ring Footing Soil Model for STRUDL
ProOgrame . o cescseensencensa S ererresae e 167

56. Axial Force in the Ring Footing for
Soil Case IT (J=1) it ittt eteeenaancenncnnnsa 169



57.

58.

59'

60.

6l.

ix

LIST OF FIGURES
(continued)

Page
V. Moment in the Ring Footing for Soil

Case II (J=l)..""I'I"Il.l!ll.'l‘lll..‘... 170
H. Moment in the Ring Footing for Soil

case II (J=l)-lln¢|-oaoanngo¢.-1 ----------- - ].71
Torsion in the Ring Footing for Soil

Case II (J=l)l‘...'.!.-..‘...ll.l'll'.I..ll. 172
High Precision Rotational Shell

Eloment GZOUDPS .t eeaestteesosstersnansaitnenns . 185

Rotation of Axes for Cap Element....... e 186






DYNAMIC ANALYSIS OF SHELLS OF REVOLUTION-SOIL SYSTEMS

1. INTRODUCTION

1.1 GENERAL

Recently, considerable effort has been made by re-
searchers to obtain more realistic mathematical models
for thin shells ofvrevolution under dynamic loads. With-
out the foundation interaction in structure response, the
dynamic model, in general, is expected to be inadequate.
It is well known that the response of structures to.dynamic
loads will be influenced by deformability of the foundation.
The significance of foundation interaction in structure
response depends on the properties of the structure relative
to the foundation.

Although a great deal of attention has heen devoted to
nuclear containment structures, dams and multistory buildings
(1,2,3)%, the influence of the surrounding medium on the

dynamic response of large towers and shells of revolution

* The numbers in parentheses in the text indicate references
in the Bibliography.
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has apparently not been studied extensively. For massive
structures like large shells, part of the structure
energy is dissipated into the supporting medium by radiation
of waves and by hysteretic action in the medium itself,
causing in most cases a significant reduction in the structure
response. The importance of this factor increases with
increasing intensity of ground shaking (4). |

In the present report, a numerical method is presented
for the dynamic analysis of axisymmetric shell structures
resting on viscoelastic soil layers over rock of infinite
horizontal extent. The approach used in this research is
tempered by the availability and potential of the high
precision rotational shell finite element model (5,6,7).
With this factor in mind, the authors of this research report
developed a compatible representation of the soil medium with
the existing shell element formulation, suitable for any
type of dynamic analysis.
1.2 REVIEW OF PAST WORK

It is useful to review the existing knowledge of soil-
structure interaction by citing some of the studies carried
out by different authors. One can divide the works into
three general categories: the approaches to soil-structure

interaction, methods and techniques, and parameters and
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applications. Among the last category, there does not
appear sufficient studies on the interaction between the
axisymmetric shells and the foundation system.

Before dealing with each of the above categories, it
is suitable to introduce the work which is cited for the
purpose of assessing the state of the art. A survey of
the soil effect on the design of the nuclear power plants
has been performed by the Ad Hoc Group on Soil-Structure
Interaction (l}. This paper provides some general insight
which may ke useful for the specific problem at hand.
Veletsos (4) outlined a simple, practically oriented pro-
cedure for studying the effects of ground shock and earth-
gquake motions on structure-foundation systems. The pro-
cedure is fairly straight forward and it is believed that
congiderable insight for understanding the general nature
of the problem may be gained from such work. A limitation
of this analysis is that it is only applicable for structures
which may be modeled by a rigid foundation mat supported at
the surface of a homogeneous half-space. An additional
limitation of the procedure is the assumption of a linear
response for the super structure.

1.2.1 Approaches to Soil~-Structure Interaction

The basic alternative approaches to deal with the
soil-structure interaction problem can be divided into com-
plete interaction and inertial interaction analysis (1).

The second approach neglects kinematic interaction and
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basically does not explicitly account for the variation of
the input ground motion with the depth below the surface.
The essential difference between the idealized complete
interaction analysis and the inertial interaction analysis
lies in the treatment of embedded structures. For embedded
structures, the complete interaction analysis is clearly
superior from a theoretical viewpoint, but its principal
limitation is the cost of analysis.

Vaish and Chopra (2) classified the complete inter-
action analysis into a combhined model and a substructure
model. In the combined meodel, the entire structure-soil
medium is modeled as a combined system subjected to an ex-
citation at some assumed or actual boundarv location such
as the soil-rock interface. In the substructure model, the
system is separated into substructures. Then the founda-
tion medium is represented as an elastic half-space and is
interfaced with the structure through a set of common co-
ordinates at the boundary of the structure and the soil.
1.2.2 Methods and Techniques

Numerical technigues, and in particular, the finite
element technique, have usually been used to carry out the
complete interaction analysis, while inertial interaction
analysis has generally been based on analytical solutions.
These scolutions are based on the soil being represented as

a viscoelastic half~space or an elastic half space.
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A complete interaction analysis for circular footings
on layered media is presented by Kausel, Roesset and Waas
(8) using a transmitting boundary to represent the far
field. Dynamic analysis of rigid circular footings resting
on a homogeneous, elastic half space has been carried out
by Luco and Westmann (9). In this work numerical results
for the analytical solution have been presented for the
torsional, vertical, rocking and horizontal oscillations
of the rigid disc.

Various approximate methods of superposition for the
interaction problem have been recently proposed (10,11,12,
13,14). The methods have differed in the way in which modal
damping is calculated, Movak (10), Rainer (12), and
Roesset, Whitman and Dobry (13) assigned weighted values of
damping based on the energy ratio criterion for evaluation
of equivalent modal damping in composite elastic and
inelastic structures ,whereas Tsai (14) calculated the modal
damping by matching the exact and normal modal sclutions
of the amplitude transfer function for a certain structure
location. Bielak (11) assumed that the modal damping can be
approximated based on some simplified soil-structure models
and the appropriate soil properties.

Clough4and Mojtahedi (15) concluded that the most
efficient procedure, in case of non-proportional damping
system, 1s to express the response in terms of undamped
modal coordinates and to integrate directly the resulting

coupled equations.



1.2.3 Parameters and Applications

The actuzl properties of the soil medium play the
primary role in assessing the actual influence of soil-
structure interaction on the structure response. Recently,
Pandya and Setlur (16) have defined four cases which provide
a range of soil properties useful for comparative analysis
and subsequent generalization. It is the opinion of these
authors that soil flexibility or compliance is the most
important parameter in the soil-structure interaction phenom-
enon, and that a given flexibility can be realized by a non-
unique combination of the basic parameters such as soil
depth, shear modulus, etc.

Penzien (17) suggests a system of a non-linear spring
and viscous dashpots to represent the soil model for deter-
mining the soil properties. In this model, Penzien éhoses
a non-linear élastic spring with hysteresis characteristics
to represent the immediate deformation charécteristics of
the soil structure under cyclic loading and a viscous dash-
pot in parallel with the spring, to represent the internai
damping within the soil, while the creep behavior of the
soil is represented by a viscous element in series with the
spring-dashpot combination.

An evaluation of the effects of the foundation damping
on the seismic respénse of simple building-feoundation
gsystems is presented by Veletsos and Nair (1l8). The

supporting medium is modeled as a linear viscoelastic half
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space. This study shows that a consideration of the effect
of energy dissipation by hysteretic action in the soil is
to increase the overall damping of the structure-foundation
system and to reduce the deformation of the structure.

In the approach taken by Scanlan (19), the seismic
wave effect is studied by generalizing the input function
in the time domain so as to account for the travel time of
the passing wave over the plan dimension of the structural
foundation. His study is based on a rigid foundation-soil
spring model and suggests that a passing earthquake may
excite both lateral and rotational displacements even for a
structure which is symmetrical in plan and properties. The
study suggests an inherent self~diminishing feature to esarth-
quake excitation relative to the particular of a given de-
sign.

Akivoshi (20) has proposed a new viscous boundary for
shear waves in a one-dimensional discrete model that ab-
sorbs the whole energy of the wave traveling toward the
boundary. Akiyoshi concluded that the mesh spacing less than
one-sixth the wavelength of a sinusoidal wave should be used
to obtain the allowable numerical solutions. The limita-
tion of the proposed method is that it is restricted to the
case of lumped mass-spring models.

The approaches and methods reviewed above have been

applied to different types of structures. Reference was
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made previously to three papers dealing with the nuclear
containment structures, dams and multistory buildings (1,
2,3). The analysis of a tall chimney, including foundation
interaction, for the effects of gusting wind, vortex
shedding and earthguake is studied by Novak (10). This
study shows that the general trend of the soil-structure
interaction effects is to reduce the response to dynamic
loads. The effect of embedment and the influence of
internal damping is investigated by Rousel (21) for cir-
cular foundation on lavered media. The case of two-
dimensional rigid foundation of semi-elliptical cross-
section is studied by Luco, Wong and Trifunac (22) to ex-
amine the effects of the embedment depth and the aﬁgle of
incidence of the seismic waves on the response of the
foundation. This study shows that rocking and torsional
motion of the foundation is generated in addition to trans-
lation.
1.3 SCOPE AND AIM

The aim of the present investigation is to develop a
more realistic mathematical model for the dynamic analysis
of shells of revolution by including the soil effect as a
new factor which should influence the dynamic behavior of
such structures. With this proposed model, it is possible
to study the effect of the soil condition on the dynamic
response of large towers like reinforced concrete cooling

towers. In addition to the seismic analysis capability of
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the proposed model, it is also applicable to other dynamic
loads like wind forces. This wide capability may provide
better understanding to the dynamic behavior of the axi-
symmetric shells and shell-like structures.

A basic theoretical background is furnished in Chapter
2. In this chapter, the wave propagation equations in
the s0il medium are presented and Hamilton's principle
is specialized and adapted for the specific problem dis-
cussed in this report. The finite element formulations
for the soil model are presented in Chapter 3 in which the
enerqgy absorbing boundary is formulated to represent the
far field. The proposed dynamic model for the shell of
revolution-soil system is presented in Chapter 4, along
with the computer implementation. To examine the equivalent
boundary system (EBS) which represents the soil medium,
a parametric study is carried out in Chapter 5 in which the
effect of the lower boundary and mesh size is examined.
The effect of the driving frequency and the soil model
behaviour in higher Fourier harmonics are studied in the
same chapter. The dynamic behaviour of a cooling tower
shell on a ring footing is studied, with the aid of the
proposed model in Chapter 5. The dynamic analysis includes
dynamic properties and stress analysis study for a variety
of solil conditions. Summary and conclusions of the work

are presented in Chapter 6.
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It is hoped that the present work will provide some
insight to the dynamic behavior of shells of revolution
under wind or seismic loading which may, in turn, aid in
providing a basis for rationally evaluating the footing
option in the list of alternative foundations for large
towers. Considerable economic benefits may be anticipated
from this added option in the form of savings on foundation
costs and reduced internal design forces due to the possible

ameliorating effect of interaction.
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2. BASIC FORMULATIONS FOR THE SOIL MODEL

2.1 INTRODUCTION

A considerable amount of work has been carried out
in recent yvears to obtain improved solutions for the
dynamic response of a rigid circular plate resting on a
stratum or an elastic half space (23-26). In these
studies, analytical or closed form solutions are presented,
with relaxed béundary conditions which seem to introduce
very little error. The solution of this problem is of
great interest for its application in geophysics and engi-
neering, and particularly, for its importance in foundation
and earthquake engineering.

Despite their mathematical elegance, closed form solu-
tions have a major drawback: they apply to ideally elastic,
homogeneous, isotropic half spaces, an abstraction that
seldom approaches reality. Soils are usually non-homoge-
nous; their properties vary with depth; they are stratified
in layers; and underground water adds further complications
to their physical nature. Thus, the analyst must rely on
experimental or numerical techniques.

In the approach used here, the problem is divided into
a number of uncoupled two dimensional problems by repre-
senting an asymmetric lcading or displacement pattern by
a FPourier series about the wvertical axis. Due to the ortho-

gonality of Fourier series, each term in the loading series
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produces a displacement set in the same mode as the pre-
scribed loading or displacement field, so long as the
problem is linear. In the present chapter, the basic
formulation for the wave propagation problem in a layered
medium is presented for # general mode (J > 0). However,
if one considers the foundation to be a rigid concentric
ring footing, only the first two modes in the series are
needed to describe the general motion of the footing acting
on the free surface 6f a soil stratum. These are j = 0
for vertical and torsional excitation {(axisymmetric modes),
and j = 1 for rocking and swaying (antisymmetric modes) .
2.2 DISPLACEMENTS AND LOADS

Let any point in the soil medium be described by the
coordinates r, z,8 as shown in Figure 1. In the cylindrical
coordinate system, the displacements in the radial, wvertical
and tangential directions are denoted by u, w, 8, re-
spectively, while the loads in these directions are denoted
by Pr, PZ and Pe._ They can always be expressed in Fourier

series by

53 oain & ) ains
(uy cosje + uj sinje)

!

0

o
1]

(ag cosje + wl sinje)

=)
1
_MS

0

<
"

Lo } [ N}
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(-Gg sinje + 6; cosif) (2-1)
.
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' AXIS OF SYM.

Figure 1. Coordinate System
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and,

cosjo + 5% sinjg)
a
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L.
urvja
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]
H W
413

8

p_ = (ﬁg cosjf + 53 sinj6)
0 s a

.
!

XK
— _—j 3 4 -j »
Py = Z { Py sinj6 + Py cosjé)
=0 s a
where the modal amplitudes with subscript s, a are re-
ferred to as the symmetric and antisymmetric displacement
(load) components. Equations (2-1) may be rewritten in

matrix form as

_ . - T - -
u u; ug cosjé
= et .
J‘_-
v vl -9 sinj8
L d R . B J

with similar expressions for the loads. An alternative

notation could be
u=3" Getd®
]
w=3 weld?
3

and v = Fet3® (2-3)
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but since the modal amplitudes are complex for complex
moduli, the latter notation is not advantageous.

The negative sign introduced in the sine term for
the tangential components has the effect of yielding
the same wave equations for both the symmetric and anti-
symmetric components (same stiffness matrix in the
finite element formulation).

The displacement vector of Equation (2-2) is written
in partition form to separate the in-plane components
{u,w) from the out-of-plane component (v)}. The modal dis-

placement vector is then

u = {u; § Uy} (2-4)
where u; = {u, wl
and uz = v . (2-5)

2.3 COMPATIBILITY EQUATIONS
The small strain and rotation-displacement relations

expressed in cylindrical coordinates are

= 3u
Crr ar
H—_—@—Wn
&2z 3z
R R -4
€ T T + Y 38
_ u, dw i}
Yor =35z Y 3T (2-6)
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lu, v _¥
r 36 or r
9V 1l ow
3z T T 36

and the Fourier Expansions are

8

rr

«
il

8

22

-y
il
(&

m
@
@
i

-MS

u
]
(=]

.
W E
[

oS
D

]
'tvjs

-
I
[

Yez

Mo

(W
I
(=)

sinjég)

: =3
€ cos3b + ¢
rrg rr,
-4 . - .
(szz cosjo + ezz sinjo)
s a
=3 : 2] aina
(eee cosjt + €38 sinj0)
s a
=3 . ol .
(er cosjfo + vy, sinj#e)
S a
23 ging 4 3 .
( Yres sinjo + Yrea cosjo)

33 inie 4 o .
( Yezs sinjo + Yeza cosje)

where the modal amplitudes are related by

il
o

I
%!

Y =ur'z+wr

S e
€gp = ¢ (u=3V)

r

- _l,.= = =
Y = r(ju v+rv,r)

= Jw/r + v,z

(2-7)

(2-8)
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The above eguation may be expressed in matrix form as

—

e = Au (2-9)

- — — bt - I — — -
where £ = {Err’ €,,7 Egg7r Yopr! Vg Yez} (2-10)

and A is the partitioned matrix operator

} !
9 |
5T 0 | 0
]
i
3 |
0 T | 0
|
1 0 b3
r | r
A = i (2-11)
j
3 3
7 3 | 0
: Foos 1
% 0 | I3e ()
!
%
-4 8
0 r : 3z

It is convenient to write Eguation (2-9) in the partitioned

form

_ - _ o 1r _ -
= A 1 jA u
£ 11 ; 12 1

—— = e ——— ———— (2—12)
€2 JA21 : Az g

]
" . - ! dJL _J
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2.4 CONSTITUTIVE EQUATIONS
The stresses can be expanded in the same way as the

strains and the modal components of stresses and strains

are related by

Q¢
i

o

M

(2-13)

For cross—anisotropy, D{(the constitutivity matrix)
is restricted to be a function of r and z only. In the
present study, only material-with properties not varying
with 6 will be considered. Matrix D for an isotropic

material is given by

s A AR e e e o ——— ——— e — —— — — — —

~—- (2~14)

where A and y are the Lame constants (complex in general).
They are related to Young's modulus, Poisson's ratio and

shear modulus through
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3 vwE - 2vG&
(1+v) (1-2v) 12V
_ E = -
I YOE=TYS =G (2-15)

The modal stresses is defined by

g = {01:02}
where 51= {-O"rrrgzzlaee EZI'} (2-16)
and 52= {Ereraez}

while the true stresses are given by

_ o cosjo
o1 = §: (Ggs Gia)
3=0 sinj®
_ - (2-17)
92 = £20 (928 24/ .
cosjt

The partitioning of this matrix into the submatrices D;
and D; is consistent with that cf the stresses and strains,

and it follows that

D_1 £

Q
=
i

- (2=-18)
Do €2

Q
o
]

2,5 WAVE EQUATIONS
The general egquations of wave propagation expressed

in cylindrical coordinates are (27)
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au aw

1 A _ B3 _,3 ..__ -
p{(l+2u)3r p 88(8r(rV) )+ az(az )]
A | 94 _ M 9 . _ W .11_9__32’...__
w = SlO+2n) = = = 57 (az 5t T 30 (550 z) 1
c_ 1 134 _ 5 13w _ v, 3 _ 5u
v = SU+2n s 55 = u5g(E 53 az)+“ar(ar(r") 560
(2-19)
where
= yvolumetric change
= Err + ezz + 866
_ . 13w | dw 13y -
- r or tszt T 3 (2-20)

For harmonic excitations with frequency &, the modal

Fourier expansion of Equation (2-19) can be expressed by

8

_ | cosj®b
u

520 sini®

= _}cosis
W

;:; sinj 8

1 s G, 88 iz,
ph2 ;Z% (O gz(s + 52 - £V + 53)
TSNS A TN S A 1 ¢s RO I ek
r-r Az 8Z'r or r 5in3e
3 i = 3w
—1 [(A+2p) (—+§%-%v+%)
- . - 16
o ﬁ__a(rv) =y - M3 d = 3w cos)
T r 3r' °r ju) TlEw - 331

sinj®
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® -sinj8 1 o= = et =
O 1.4 _a.‘}._ A _B_W’_
v . ph2 z: [(A+2u) r(r + Ir lf + Sz)
cos)h 3=0
j=0
_ 0w _ 8%y, 3 3T _ aw,, [SRI°
LA T G il + .
cos]jb
(2-21)
For an arbitrary j, it follows that
= o =1 a_u  du_ 3z, 3w 38 _ 3w
u = piz [(A+2u)ar(r + r r v+ z) tu r(az ar)
wa_ ,3(xv) =
* r 9z ( ar )]
- _ -1 8 3w _ iz, dw _wd B(xv) _ .=
W= pi2 I(A+2u)az r + or r Vv * z) r or ( 3r Ju)
TS RS 1 2
r (r k Bz)]
3 = =L i, 8w _iv, dw, _ 8 = _ v
v = pQhe [(A+2“)?(r + r r + Bz) H Bz(r w 9z
3 ,0u  Bw
+ U sz - =) ]
dr ‘3z axr (2-22)

which shall be called the Modal Wave

Equations (MWE) .

They are only functions of r and z, with the parameter

j =10, 1, 2,...dependent on the Four

ier decomposition of

the loadings or prescribed displacements. The general

solution of MWE is (28)
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= it -0z -mz 32 i) ; (2) -
a2 = et I {kAe -mCe )——135————-+ % B H (kr)e sz

.

v = M ek ™ -1ae ™M)k 1) (k) )
- 0t -2z -mz.9 .. (2) ang)(kr) -
v =el [ (kAe ~mCe )% Hj (kr) + B ——l—gf——— e mz}

(2-23)

in which Héz)(kr) are second Hankel functions of order j
(order of Fourier component), A, B, C are integration con-

stants, k is an arbitrary parameter (wave number), and

(2-24)

and

<IH
i
o

where vp and vy are the compression and shear wave

velocities, respectively.



-23=

In the particular solutions given by (2-23), analagous
expressions containing first Hankel functions Hgl)(kr)
have been omitted, since they correspond, in combination
with the factor eiﬂt, teo waves travelling from infinity
towards the origin and thus must be disregarded in accord-
ance with Sommerfeld's radiation principle (29)} (Sources
confined to the vicinty of the origin). For this reason,
the index (2) and the argument (kr) in the Hankel functioné
will be dropped.

The solution of the medal wave egquations may be

written as

e (! + 2 ()] By

H

W = kfa (2)H, ot (2-25)
- _ ift 3, .
v =e (fl(Z)rHJ + fS(Z)Hj)
o= 3 5 (2)
where Hj ST Hj (kr)
and
£,(3) = kAe-gz - mce M2
-mz -9z
£:(2) = kCe - LAe (2-26)
£,(2) = Be ™% |
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Dropping the time dependent term eJ‘Qt from (2-25) to-~

gether with (2-26) one gets

(o}
f

HF (2-27)

where Y is the modal displacement without the time de-

pendent term, and

P = {fl, £a, £3}

and
o l .
R 0 P
H = 0y 0 (2-28)
iy, '
Hy 0
L. -

In the above equation F is only a function of z while H
is a function of r and the harmonic number j.

Also, expressions for the strains and stresses in
terms of the functions fi will be needed later. Sub-

stituting (2-27) into (2-8) results in

. H.
u 1 v
£, Hj + £3 - (Hj )

rr r

™1
It
h
o
o
o

Z3
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™1
i

H‘n + 2 + H-
S S L1 _ g1
68 fl(r re Hj) + 5 pOE Hj)

e = £ HJ 4 £2 K HI 4 £ %—Hj (2-29)
T,y = fi %LQHJ! -8+ fg(%;ﬂj - %Hj& + 1Y)
Vo, = 1 $Hy+ £k gH + £} R
and with
3= (£) - KEK H; (2-30)

the stresses follow as

Grr = 2uerr + 2\
O,y = 2uezz + Ad
086 = 2“688 + Ad

(2-31)

Opgr = WYzr

at

Y g
bz = Wyz
The modal wave equations (2-22) may be expressed in
matrix form using Equations (2-25) through (2-28) as

#H-2 =20 (2-32)
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where H is given by (2-28) and Z is a vector depends only

on 2z
Zy (A+2y) (kfi—szl)-f-u(f'{-kf;)ﬂmzfj
z = z2| = J(A+2u) (£3-kE]) +uk(£]-kE,) +pQ%E,
Z3 u(£45-k2£,) +pQ?f, _ (2-33)

The above form of MWE is suitable for the finité element
‘formulations as we will discuss later.
2.6 PRINCIPLE OF VIRTUAL DISPLACEMENTS
In dynamics, the generalization of the principle of
virtual displacements into a law of kinetics by use of
D'Aambert's principle is referred to as Hamilton's
principle. For nonconservative systems, the principle
states that the work performed by the applied external loads
and inertial forces during an arbitrary virtual displace-
ment field that is consistent with the constraints is
equal to the change in strain energy plus the energy dissi-
pated by internal friction during that virtual displacement.
Hamilton's principle shall be specialized and adapted
for the specific problem discussed in this repor£ in
which the coordinate system is cylindrical, and the visco-
elastic constants are complex. By applying two Fourier

transformations, one in the time domain, and one in the ©
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coordinate, the principle of virtual displacements for
axisymmetric systems subjected to a general harmonic
excitation shall be developed.

A general form of Hamilton's principle in elasticity

is
t, ‘
4[' [J[ ssijgijdv —Jrﬁui(bi—pui)dv ~J[.6uipidA]dt =
tot"v v S ’

(2-34)

where 6€ij is the virtual strain field corresponding to
the displacement field Gui which is consistent with the
constraints and wvanishes at the time t, and t;. The

term éeij o represents the change in strain energy as

ij
well as the energy lost due to internal friction. S
corresponds to that portion of the boundary where the forces
are prescribed.

Since the prescribed virtual displacements are ar-

bitrary, a set of displacements can be chosen of the form

Su, (%,t) a&i (x) « §(t)

teo <t < ta

f
o
m

J
oo
Z

Seij(x,t)

{2-35)

where x stands for the coordinate system,

X = {®x1, X2, X3) (2-36)
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and &(t) is the Dirac delta function. Substitution in

(2-34) and integration over the time domain vields

fs‘éijcij av -f aﬁi (bi—p{ii)av —f su; p;dA =0
\' A\ S
(2-37)

where Oij’ bi' u, and p; are evaluated at the time t.

Alternatively, it is possible to arrive at this
result starting from the equilibrium equations {(wave
equation) and the boundary force egquations, and constrain-
ing the time wvariable to remain constant while the virtual
displacements are applied, that is, the real motion is
stopped while the vixtual displacements are performed; how-
ever, the inertial forces must be assumed to persist. In
other words, it is assuﬁed that the performance of the

virtual displacements consumes no time {(30).

Applying a Fourier transformation (FT) to (2-37) and

defining
554 (@) = FT(o,5(£)), by (@) = FTb; (1)), p;(Q) = FT(p;(t)),
u (R) = FTlu; (£)), -029,(2) = FT(u, (t)) (2-38)
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yields

~ ~ _ o~ ~ z-v _ ~ ~ _
[Zéeijgij av f Sui(bi+p9 ui)dV f Py GuidA = 0
v s

{(2-39)

where the transformed gquantities are in general complex.

For real elastic moduli, the stresses will be real
and in phase with the strains and displacements whereas,
for complex moduli, they will be complex and there will
be a phase lag between these two guantities. The relation
between the transformed stresses Eij and strains gij is
given by equation (2-13).

An alternate form of equation (2-39) is obtained

using integration by parts, resulting in

- - . - _
gféui(cij,j + bi +08 ui)dV +./;6ui(pi njUij)dA 0
(2-40)

which, for arbitrary variations of the virtual displace-
ments 6ui yields the body and boundary equilibrium
equations. Using the stress-strain relation, the term

in parenthesis in the first integral becomes the wave
equation, which shall be useful later on. Switching now
from tensor to matrix notation and dropping the superscript
~with the implicit understanding that the applied forces

(displacements) are harmonic, equation (2-39) becomes
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JréaTch —Jr SuT(b+p92u)dV —Jf 6qudA =0 (2-41)
v A S

For a cylindrically orthotropic (cross anisotropic)

material, integration w/r to 6, with dVv = rdrd6dz, and

using
20
_ I for m=n#0
J/;ln mo6 sin nd 4o = (smn-ame Sne)H = -
0 0 otherwise
21 I for m=n#0
fcos me cos nf a6 = (§_ +§ & )M = )21 for m=n=0
0 0 otherwise
2l

I
o

vlpsin md cos ne d4de for any values of m and n
0

yields for the principle of virtual displacements

-/:/‘SET D £ rdrdz —jfpﬂz GETGrdrdz

- f su pras (2-42)
s

where the superscript bar refers to the Fourier modal
amplitude. Similarly, by substituting Equation (2-32)

into Equation (2-40), we find

ffaGT-H-z-rdraz + faET(f;-a*)rds =0 (2-43)



~31-

where © = {njgij} are the projection of the modal

stresses on the unit outward boundary

normal nj

]

HeZ the modal wave equation (2-32).

Eguation (2-43) is preferable over equation (2-42)
or (2—-41) when using the principle of virtual displace-
ments to define the eigenvalue problem for the visco-
elastic energy absorbing boundary since it does not re-.

guire a cumbersome integration of products of the Hankel

functions over the coordinate r.
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3. FINITE ELEMENT FORMULATIONS

3.1 INTRODUCTICN

Numerical technigques have been used successfully in
the stress analysis of many complex structures. In
particular, the finite element technique has been the
major tool for analyzing different types of structures
such as solids of rewvolution (31,32) and shells of re=~
volution {5,6,7,33,34). These two classes of structures
are of special importance in modelling the axisymmetric
shell-soil system. The use of highly efficient rotational
shell finite elements to model the superstructure suggested
that the scil medium be represented in a similar manner.
A main problem in this case is to account for the proper
boundary conditions at the edges of a finite domain which
will not introduce undesirable reflections of waves into
the region of interest., A possible soclution is to place
the boundaries at a substantial distance from the footing if
there is internal dissipation of energy in the soil. This
approach requires a very large number of elements and is
therefore expensive.

This chapter presents the finite element model used
to represent the scil medium where axisymmetrical isopara-
metric quadratic solid elements with transmitting vertical

boundaries placed directly at the ocuter edge of the structure
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are employed (Figure 2). With the energy transmitting
boundary, the finite element region is reduced to mini-
mum, resulting in a high order sophisticated model with
comparatively few elements as has been the continuing
objective in previous investigations at Washington Univer-
sity.

The formulation of the rotational shell elements is
presented elsewhere (6,7,35), and for completeness, the
outlines of the derivation of these highly efficient ele-
ments 1is presented in Appendix 8.1.

3.2 SOLID ELEMENT FORMULATIONS

The core region of Figure 2 is modelled by means of
axisymmetric isoparametric quadratic solid elements. For
each nodal circle there are three degrees-of-freedom;
two of them are in-plane, u and w, while the third, v, is
out-of-plane. These in-plane and out-of-plane degrees-of-
freedom are separated in the formulations of the element
stiffness and mass matrices. The name "isoparametric”
derives from use of the same interpolation functions to
define the element shape as are used to define the dis-
placements within the element (36).

if ¢ denotés the expansion vector for the isopara-

metric formulation, see Figure 3.,
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In vector notation

where r
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o
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rg,.--rn}

Zz,...Zn}

(3-1)

number of nodes per element.

(3-2)

(3-3)

Using the same expansions for the displacements,

where

and

512

Q1

{u1,uz,-..,1

n

(3-4)

,wl,wz,...,wn,vl,vz,..,,vn}

(3-5)
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In equation (3-4), @T is called the expansion matrix.

From (2-10) and (3-4), one can write

- - ™)
)
u:
i 7] ™ ar T N
- i 2
€1 Aijs : Ay ¢T u,
4x]1 x2 X -
it ==‘_;i_%__ﬁjh ¢T i
€2 Az | Azz ¢T %2
| 2x1 | 2><21| 2x1 ] ] : (3-6)
6x1 6%3 3x3n | W,
Vi
V2
v
n
L »
3nx1l
or e = B u
o
i ‘ -
b | bia
4x2n } 4xn
i
where B = B (3-7)
b2 } baa
2x2n 2%xn
L ! a
6%X3n
Substitution into equation (2-42) gives
LT T 2 T -
E cuO{II(B DB-pfl<%Q )uordrdz—féprds} = 0 {3-8)

elements

For the kEE element, the consistent mass matrix Mk’ the

stiffness matrix Kk and the load vector P, are defined as:

k
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My = f[p3%" rdrdz

IIBTDB rdrdz

=
I

P, = [OP rds

3.2.1 Isoparametric Formulations

(3-9)

For quadratic elements, the total number of nodes

per element n equals to eight and the shape functions

¢; = 9, (i=1,...,8) may be chosen as functions of
dimensionless coordinates £ and n. In Table 1 the
expressions for gy gi,E and gi,n are given.

The Jacobian is defined by

1
Ea
T3
91,:92,293,294,£95,2%,£97,298,¢ r,
Jac = r5
glmg2,ng3:ﬂg4 rﬂg5 rﬂg6rng7rng8rn r6
Ly
Tg
B .
8 8
Yo, _—
i:ll,i i g;ll,ﬁ i
or Jac = 3] 8
Zgi,nri Zgi,nzi
i=1 i=1

The inverse of the Jacobian IJ is, then, given by

IJi:1 IJi1»
IJ

IJzr IJ22

the

N N N N N N N
|

0 ~ o O > W N+

N

(3-10)



Table 1. Shape Functions and First Derivatives
for Expansion Vector

94

94,k

gi:n

- Z(1-8) (1-n) (1+€+n)
T(1-£2) (1-n)
1
T(1+E) (1-n) (E-n-1)
$(1+g) (1-n2)
T(LHE) (1+n) (E+n-1)
S(1-£2) (1+n)
1
TU-E) (1+n) (n--1)

$(1-€) (1-n?)

F(1-n) (26+n)
-£(1-n)
F11-n) (26-n)
Z(1~n?)

1
Z(l+n)(2£+n)
=& (1+n)
T(1+n) (26-n)

—%(lﬂnz)

$(1-E) (2n+E)
1

~5{1-£%)

1

F(1+E) (2n-E)

-n{1+g)

. |
7(1+8) 2n+)
1
§C1*52)
T(1-£) (2n-¢)

~n{1-£&)

_68—



where

and

where |Jac| is the

of equation (3-10).

IJ,

1T,

IJz

IJ:2
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(3-11)

determinant of the Jacobian matrix

The inverse of the Jacobian is

necessary for the transformation from r~z coordinates

to £-n natural coordinates,

3.2.2 Element Mass and Stiffness Matrices

IJ1,

IJz»

(

(

)rg

) rg

+ IJ12 -

+ IJa2, °

(

),

n

(3-12)

Using partitioned form of the B, D and ¢ matrices

we get:



-41-

where mg, g = Slodes rdrdz (3-13)
I
X, E K,
and Kk = ‘—T_—;—_— -
K3 ! Ks
24x24

where Ky = ff(b?llel1+bngzbz1)rdrdz

S {bY.Dib;2+bs1Dsbs,) rdrdz

A
[0
i

K: = [/ (by,Dsbs2+brsDibi,) rdrdz (3-14)

From (3-7), the submatrices bii, b1z, bz and b,, are

given by (See Appendix 8.2).

gl r 2 'g8,r 0 0 vovun 0
0 0 - 0 g g P |
by = 1,z 2,2 8,z (3-15-a)
gl/r gz/r """ gg/r 0 O ...... 0
Lgl,z 92,z 98,z 91,r 92, """9g,4
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-

glga-. --glga

Jz29s3 gz29s

2
3eoeseJ3Ge

0 Devenen ..0
a O 0..... ..0
biz =
91 g2se-++s:9s
0 0. vess0
by, = i g1 Ygz2s-+-+-93
r
0 1) S 0
rg—-(g ) re=(g
‘ gr 'Y1/x er ' 2/r
bap =
gl,Z gz,z
T .
and ¢¢$  is given by:
g% g192
9291 g2
9391 G392
T . .
9o~ = ,
gsd gsgz

2x8

8x8

(3-15-b)

(3-15-¢)

(3-15-d)

(3-16)
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With RG defined as

8
RG = Q. N (3-17)
i=1 ‘
1 1
and /S ( )rdrdz = Jr Jr( YRG det Jac dZdn (3~-18)
-1 -1

the mass matrix Mk and the stiffness matrix K, are ob-
tained for a general Fourier harmonic j; however, Mk
is independent of j as one can see from equations (3-13)
and (3-16).

The integration in each element is carried ocut by
means of four points Gaussian integration with the dimen-
sionless coordinates &, n. 8ince in the Gaussian quadra-
ture scheme, there are no points on the boundary of the
elements, no problems are encountered with the singularity
of the integrand of the symmetry axis (r=0) for those
elements adjacent to it.

The details of the isoparametric formulation for the
element stiffness matrix is presented in Appendix 8.2._
3.3 THE BOUNDARIES

It is assumed that the finite element region has a
fixed lower boundary, which may be true if we are dealing
with a stratum over rock of infinite horizontal extent.
The lower boundary location factor will be studied in

case of a deep stratum or half space.
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Now, for the total mass matrix M, total stiffness
matrix ¥, and the total load vector P we have the

following equation
(K - @2 M)u =P (3-19)

where u stands for the total nodal displacements.

The above equation needs to be modified to include
the effect of the far field on the stiffness of the core
region. This can be achieved by considering the equili-
brium of the vertical boundaries of the core region. If
the core region of Pigure 2 is removed and replaced by
equivalent distributed forces corresponding to the in-

"ternal stresses, the dynamic equilibrium of the far-field
will be preserved. Since no other prescribed forces act

on the far-field, the displacements at the boundary and

at any other point in the far-field will bhe uniquely de-
fined in terms of these boundary forces. The relation
between these boundary forces and the corresponding bhoundary
displacements is the dynamic boundary matrix to be added

to the total dynamic stiffness matrix of equation (3-19).

For a consistent boundary (8), it is always possible
to express the displacements in the far-field in terms of
eigenfunctions corresponding to the natural modes of wave
propagation in the stratum. The general solution to the
problem is given by Equation (2-23) where k is an undeter-

mined parameter of the wave number. In an unbounded medium,
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any value of k, and thus any wave length, is admissible;
for a layered stratum, however, only a discrete set of
values of k (each one with a corresponding propagation
mode) will satisfy the boundary condition. At a given
frequency, I, there are thus, an infinite but discrete
set of propagation modes and wave numbers k, which can

be found by solving a transcendental eigenvalue problem.
For each eigenfunction one can determine the distribution
of stresses up to a multiplicative constant, the partici-
pation factor of the mode. Combining these modal stresses
SO0 as to match any given distribution of stresses at the
boundary, one can compute the participation factors and,
correspondingly, the dynamic stiffness function relating
boundary stresses to boundary displacements.

The solution of the actual transcendental eigenvalue
problem for the continuum problem is difficult and time
consuming requiring, in general, search procedures. A
discrete eigenvalue problem can be obtained by substituting
the actual dependence of the displacements on the =z
variakle, as giVen by Equations (2~25) and (2-~26), by an
assumed expansion consistent with that used for the finite
elements. The result is an algebraic eigenvalue problem
with a finite number of eigenvectors and eigenvalues, forx

which efficient numerical solutions are available.
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3.3.1 Wave Numbers and Modes of Propagation

Consider the toroidal section of the far-field limited
by two cylindrical surfaces of radii r, and ry, as shown
in Figure 4. The stratum is discretized in horizontal
layers, the interfaces of which match the nodal circles
of the finite element mesh in the core region. For the
nth layer there are three nodes i, i+l, i+2, for the ith

node the three degrees of freedom are:

X; = {x1, %2 Xs}i (3-20)
The exact values for these three nodal displacements

are given by FEgquation (2-25),

~and for the layer number n,

X = X1 KXo Xzt X1 X, X H
n { 1lr 211 31 1l+1l 21+l' 3i+l

X } (3-21)

i+27 ¥2ippr *3

i+2
Approximate solution for the nodal displacements may be

obtained using the same expansions as for the coordinates

and displacements in the finite element region
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F. = N X, (3-22)

where

2
I

[9:T,921,931] 4,4 (3-23)

in which I is a 3x3 identity matrix, and g; represents

the expansion ccefficients. For a guadratic expansion,
1 .
g = %(nz-n), g, = 1-n? and g; = F(n?+n) (3~24)
Combining Equations (3-20) to (3-24) yield

Uapp_ = N Uon | (3-25a)

i

the approximate nodal displacements
for the nth layer

and ' i
X]_i H] + ro Xgi Hj

kXZi Hj
J '
vy O
X101 B3 T T Fsi41 By
UO = {3~25b)
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Using the same basic procedure for the finite element
formulation as previously employed, an approximate
solution is obtained by substituting the displacement
expansion intc the expression of the principle of wvirtual
displacements (2-43), integrating over the region, and
reguiring the result to vanish for an arbitrary du.
Substituting the above approximate displacements in

(2-43) and summing over the L layers yields

=T =T - =% =T ,= =%
du «H+Z-rdrdz + Jr Su” (p~c Jrds + deu (p~c )rds
n=], ' a
o 1
-— [— - -
+ chuT(p-G yrds +f5uT(p—o*)rds] =0
S5 S 3 _ (3-26)

In the above equation, consistent nodal forces 50 and p;
are applied at each of the boundaries Ty and r, such that

the integrands over So and s; vanish

1l

=1

fu

,Q, -
> s3T5 = [ sulpras §a°5" rds]
L o 0
SO SO ‘

{3-27)

N

§4°B,

it
i

]
1]
=

~m— —T %
fﬁu prds féu‘c rds]
Sa S
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with no external prescribed forces acting at the layer

interfaces;

%

n=1

in which

From Equations (2-29%9),

or

>, [jj@ﬁT H o3 rdrdz-—Jf 575 rds -

pi(£]+k£;)

5

HeZ:F

where Z; is an operator matrix

&3}
N

u{(f{+kf2)Hjt + 2 H £4)

kHj{(l+2p)f5-Akf1}

S2
g g for s
oz Bz} © 2
- cez} for s,

(2-30) and (2-31)

11

r

j__ ' L]
z Hyrfy HID

—T %
f Pt rds]r- 0
S3

(3-28)

(3-29)

(3-30-a)

{(3-30-b)

{(3-31)
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The wave equation H+Z, Eguation (2-32), may be written

as;

in which 2Z; is an operator matrix

52 3

2 - 2 -—
pR+Ue—gr = k* (A+2u) K (A+u) =

2 R2-uk 2+ (A+2u)
_ 2 PR —uk*+ (A+2u) 2—5
7, = k (X+u)az 9z?2
i 0 0
With du = H-N+6X and F = N+X, Equation (3-28)

T,.T

N T

H H(.Z-1

E Sl

In the above equation,

Ty - g = A
in which i =1, 2, 3 and k =1, 2, 3.
Also, in Equation (3-34);

N'H™H = AN® and N''H'H = AN'T

’

(3-32)

82

2_, 2 o
Pl -uk +uazzJ

{(3-33)

becomes

-— m .
~Z25)NXdz - fﬁXTN'*HZQNXdZ rdr)= 0
2

(3-34)

where
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[ |
H, 0 H2| {
| l
0 Hi, 0 | 0 | Y
1 l
HE, O Hil }
_______ S R
‘ I
lHl D Hzi
- |
B = 0 10 H: 0 i 0 (3-35)
I
[Ha Q0  Hiy
_____ _}.__.____..ﬂ._.l._,_,__._.___.
{ {Hy, 0 H,
{
0 lf 0 io H: O
! I
H, 0 H
i | |2 '
i 3 = H!Z + (H? @l
in which H, zq (r) ;
H, = 24 #! H.
z r 3
H; = kZH%
3

Factoring out the H matrix, which is independent of z,

from Equation (3-34) and rearranging the equation yields
h

2 r hn n
> sxT [f ﬁrdr] [fNT(El-Eg)Ndz -f N’Tizmdz]x =0
n=1 r 0 0
Q

{3-36)
r
For an arbitrary 6X and with Jr Hrdr # 0 (non singular
r
o
matrix) which is the same for all layers in the case of

vertical boundaries, the following equation must hold:
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) ) hn hn
T = =, \ T
J N (Z2,-Z))Ndz - N'"Z;Ndz |X =0 (3-37)
n=1 <70 0
and with
h 4 2 -1
dz = b.-.._.
A 9i9% 30{ 2 16 2
-1 2 4
i -3 4 -1
h 1
f 9;9dz =% | 4 0 4 (3-38)
0
1 -4 3_J
- -
h 7 -8 1
1
and Jf gigédz = I -8 16 -8
0
l "'"8 7.,J
equation (3~37) becomes
L
— 2 ] -
Zl (1s1_ - X?[A] ) {x} = 0 (3-39)

in which
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0.4h2%p0? 0.2h2p02 -0.1h2pQ? )
+7u0 0 0 +gp D 0 0 N 0 0
2 ~2 2.n2 _ 2 2
0.4hnp§2 0 0 0.2h%pQ 0.1h? 0@
+7 (A+2u) +8 (A+2u) = (A+2u)
2 2 2 2 - 2 2
0.4hnpﬂ 0 0 EéZhan 0 0 E.lhnpsz
+7u H U
1.6h%p0?2 0.2h2pn?2
+16url 0 0 +8u n 0
2 2 2 2
l.6hnp9 0 0.2hnpsz 0
+16 (A+2u) +8 (A+2u)
SYM. 1.6hZp0?% 0.2h2pQ?
+16u" 0 0 +8u
0.4h%p02
+7u n 0 0
2 2
0.4hnp9 0
+7 (A +21)
0.411;’“1;)92
+7u
-

(3-40-a)
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For the whole stratum, the assembled matrices of (3-40)

leads to
(S=k2A)X = 0 (3-41)

which is an eigenvalue problem in ki, the wave number of
the propagation mode Xy The order of this eigenvalue
problem is 62, where 2% is the total number of layers in
the stratum.

3.3.2 Dynamic Stiffness Matrix of the Energy Absorbing

Boundary
Consider Egquation (3-27) with ds = dz and r = X
l.e‘
L hn
Tk . . .
2: [PO =X, ~/. N o dz] for an arbitrary variation
n=1 0
of the nodal displacements. But
h
75 a
P_ = a_r_ f NTG, dz (3-42)
0
where PS = the nodal forces for the SER propagation mode
ay = the participation factor for the s-JE-}l
propagation mode
—_
Oy = the sEll modal boundary stresses vector
(Figure 5)
= Ao m0, 0 mOg Y

zr
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Therefore,

where;

and

L

-

2uH"-2k?H.
H 3 ] (

3
(uﬂé)gg

Zu%*(Hé-Hj/rO)

o]

-[s1{£f} -

[fry{£'}

il

2uH§ ~ Ak
2u i {(H!
I, 3

H!
uk :

L (HY ~ =—

3j r

-~58-

(2-29)
3 dgr-
AkHj e ZUrO(Hj Hj/ro) £,
, g 2.
ukH3 (uron)Bz £;
H .
W __1 l_ 2
0 u(Hj ro+(r ) HJ) fS
- — - - - -
£, 0 T 0 f;
fg - Tz O T3 f;
L £s 0 0 0 £!
(3-43)
2
Hjl
- ._._H)
ro 3
vy A
Hj + 2 Hj) (3-44)

from Equations (2~31) and
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with {£f} = [N]{X} and {£f'} = [N']1{x}
T ¥ T . = T .=
N g = (N°NS + N*N'T)x (3~45)
where |
S FT
S = S and T = T
S T
- ~ 9x9 | - T9x9
(3-46)

which leads to the following equation for the nodal forces

in the sth mode!

h h

P. = qa.r ([jf NTNdz1§ + [ ./.NTN'dz]f)X (3-47)
S & O 0 0

Matrices S and T may be simplified by taking advantage

of the property of Hankel functions (37)

| | S l 2 2
T = _H! - -— \
H] T Hi Ik i;]Hj

'_ = N - ) H- 3_
By =k Hy_g % 3 (3-48)
Hap =~ H

which vields



and

with

S1

S2

f’i]‘r:'

532287 (3+1)

Cr

Tl =

and T2 = -

o 5.

il
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k% 81 + kS2 + S3

kTl + T2
Tr
A+20 0 0 Hj
0 0 0
0 9 u L 0
1T
0 j 0 0
23 0 -2 0
T [~
1 0 -1 Hj
0 0 0 0
~1 0 1 0
0 =2 o -Hj_l
U 0 0 0
0 0 OJ 0
0 0 0 H
-1 0 1
0 0 0 0
] e

(3~49)

(3~-50a)

(3-50b)

(3-50c)

(3-504)

(3-50e)
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Defining the modal vectors XAS and XBS
where
T T T T
}{AS = {XA] XAZ“"XAi"'XAz,Q,}
_ T T T T
xB, = {XB7 XBz....XBJ...XBzg}
= 1 p- -
H, X
H. b4
3 1.
— i §
r— - » -1
-Hj_l X1
{XBi}s Hj X,
RER B A B
] gl e =l l
and the boundary load vector P as

Pbs = asro{[A]{XA}Sk; + [G]{XB}S}kS

bs

+ [El1{xa} }

(3-51)

(3-52)

the nodal load vector for the whole stratum assembled

from PS for each discrete layer where matrices A, E and

G are formed from the layer matrices An, En and Gn in a

similar fashion as in the eigenvalue problem.

;N 1s the matrix given by Equation (3-40-Db)
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- -
hn 2(j+l)gi9m 0 -2(j+l)gigm
= I u—l ! - !
En JC ré ro9:m 0 *5%19m
-2(j+l)gigm 0 2(]"'“1)*3]»_<3‘nl|
- : - 3x3
e
9%x9
{3-~53)
and [~ 7
. Aro -
1ﬁn T T 5 ig;n jgigm
G ='/‘ Z uxr :
n r o ' U
0 © 7~ 91 l? 919m 0
jgigm 0 “H9; %
- - 3x3
- = 9x9
with i= 1, 2, 3
m= 1, 2, 3
Adding up the contributions of each mode gives for the
boundary load vector
64
_ 2
Py, = ;locsrof [A]{xA} _ki+[G] {xB}_k_+[E] {xa}_ }
or
P, = T, [[A1[XA]{K?1+[G] [xB] [K]+[E] [xalj{c} (3-54)
In (3-54)
[XB] = [{XB}l{XB}z...{XB}S...{XB}6QJ]6QX6£
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[K2] and [K] are diagonal matrices with k; and

ks on the main diagonal respectively
{s=1 to 621)

and {OL}= {C’.IJ O’.z, Q'SI"'IU' ,.o-,ual}

S
The modal participation factors {a} are the only unknown
vector in the RHS of Equation (3-54). The next step,
then, is to calculate the boundary displacement vector in
terms of the modal participation factors, and to relate
the boundary load vector to the boundary displacement
vector to form the boundary matrix.

At any particular node i, the displacement vector is

given by
L
u; = géaus H(s)Xi(s) (3-55)
2
ul
s
i = s uJS
uKs
i
) i
ul Hj(ker)X1(s)+ T Hj(ksro)Xs(s)
where
uJS = kSHj (ker)XZ (s)
ukKk j___ [}
I s_ . ] ron (kSrO)X1(S)+Hj(ksro)X3(S) ;
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Therefore
o
u wI(1l) uI(2)...ul(s)...ul(6L) G2
7l = luwr) w@...ure)...uT62) ds = [l o}
v ukK{l) uK(2)...uK(s)...uK(62) .
| Ji L 43 “s%

(3-56)

Defining {ub}szl as the boundary displacement vector,
and with u; as a general ncdal vector, {ub} may be

written as

- . '
[uul
[ﬁh]z
uy = : {a} = [Gal:{a} (3-57)
[uul .,
: 1
[aul, ,
" IR
{a} = (@™’ u, (3-58)

The dynamic stiffness matrix of the energy absorbing

boundary Rb is defined through the following relation:

Py = Rb uy, (3-59)

’
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Substituting (3-58) into (3-54) for {a} and eguating the
resulting RHS to the RHS of (3-59) for an arbitrary Uy s

it follows that

Ry = I, [[A] [xA] [K?] + [G]([XB] (K] + [&] [xzx]] [au] ™

(3-60)

3.4 TOTAL DYNAMIC STIFFNESS MATRIX O THE S0OIL MEDIUM
Consider the boundary load vector of Equation (3-59)
as an external load vector acting with negative sign on

the finite element region, Equation (3-19) becomes;

— 2 - -
(K Q°M)u P Rbub

and by increasing the size of Ry by adding zero rows and

columns to match the dimension of K and M, one can get'

(K - Q°M+R)u = P (3-61_
or

Kcu =P
where Kc is the total dynamic stiffness matrix of the
soil medium,

K. =K - Q°M+R (3-62)

C




-66—~

Equation (3-61) may be solved by the conventional
numerical methods to obtain the nodal displacements.
Although neither the total dynamic stiffness matrix of
Equation (3-62) nor the formula of Equation (3-~61) is
going to be used in its present form in the structure-
soll system of the next chapter, these are very useful
in checking the finite element model of the scil medium
and the effectiveness of the vertical energy absorbing
boundaries. The checking of the model presented in this
chapter is part of the parametric study which is to be

carried out later.
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4. SHELL-SOIL MODEL

4,1 GENERAL APPROACH

One of the most challenging points in the soil-structure
interaction problems is the interface between the soil
medium and the structure. For rotational shells-soil
system, the problem becomes more complicated as the number
of degrees of freedom in the shell side is not the same as
theose in the soil side at the common nodal points connecting
the structure model to the soil. Furthermore, the soil
model is essentially a three dimensional problem, whereés
the shell model is a two dimensicnal model. Apart from
the geometrical difficulty, one must overcome the problem
of dealing with two different materials, where the soil
model is freguency dependent while the shell model is not.
Also, the soil material has no tensile capacity which may
cause uplift of the shell structure under the effect of
major earthguakes or wind loads.

To overcome the difficulty of the connection problem,
one may take advantage of the physical properties of the
structure componénts and the overall behavior of the system.
As an example, if the shell is founded over ring footing,
the assumption of a rigid footing in the radial and vertical
direction may simplify the connection problem, although the
ring footing may be flexible in the circumferential direction.

Alsoc, the separation between the foundation and the soil
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may be considered only with the first two Fourier har-
monics (J=0 and J=1) as the higher harmonics correspond
to local deformations which cannot cause total uplift of
the superstructure. However, the uplift problem may be
neglected altogether for certain types of shells when the
non-structure elements are tied to the foundation, adding
to the overall stability. For example, at the bottom of
the cooling tower shells the water basin and the £ill
structure may be tied to the ring footing (38).

In this chapter the connection model is presented and
the shell-scil model is explained. The approach presented
herein is restricted to shell structures mocdeled by axi-
symmetric elements and founded over concentric ring footing.
The computer program used in calculating the connection
model is explained and a f{lowchart is provided. For
obvious reasons the connecting model is named the Equivalent
Boundary System (EBS). The EBS is frequency dependent and
must be updated for each Fourier harmonic. To account for
the possibility of foundation uplift, an iterative pro-
cedure is presented in which the problem is run again after
modifying Fourier coefficients of EBS according to the
angle of separation.

In Figure 6 the proposed model is given for a éooling

tower shell.
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4.2 EQUIVALENT BOUNDARY SYSTEM (EBS)

In the previous chapter the total dynamic stiffness
matrix Kc of Equatioh {3~62) is of order 3n by 3n where
n is the total number of nodes in the finite element mesh.
When only one degree of freedom per ncde on the axis of
symmetry is not restrained (vertical displacement) and
with the lower boundary f£ixed, the order of the total

stiffness matrix KC will drop to n by n, where

n=3n - 3m - 4% {4-1)

in which

m = number of nodes at the lower
boundary

% = number of lavers.

Since the prime degrees of freedom are those at
the foundation level {in Figure 7, node number 1 to node
number m), one may reduce the prohlem by carrying out

the well known condensation procedure to get

K u=p (4-2)
where
* -1
K, = K11 —- K12 Kz2 K21
*
P = P, (4-3)
*
u = 11

and K;;, K12, K21, K22, u; and P; can be obtained from

the original matrices Kor U and P of Eguation (2-61).
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|
Kitnixnl | “'2nlxn2 Yin1 Pin1
|
e e e ] = -
| (4-4)
|
K21pn2%n1 } K22/ 5xn2 Y242 Pana
| . " - | -
where n; = 3m - 2 and n, = n - n.

In Equation (4-3), P* is taken equal to P; since
szis assumed to be a null vector (no external loads could
be applied at the nodes inside the soil stratum).

4.2.1 Impedance Matrix

The impedance matrix is the dynamic stiffness to be
added to the superstructure matrices to complete the
structure~soil dynamic model. It is, thus, composed of
the dynamic stiffness coefficients corresponding to the
common degrees of freedom between the superstructure and
the so0il model. In Figure 7 these degrees of freedom are
associated with nodes m-2, m-1 and m.

Using Equation (4-2) with the RHS all zero's except
for the value at one of the common d.o.f. which is set to
unity and solving for u*, the flexibility matrix F can be
obtained. The impedance matrix K. is obtained by inverting

the flexibility matrix F

K, = F (4-5)
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The abhove method is the conventional apprcach to
obtain Ks, however, there is an alternative approach in
which one may make use 0of the condensed stiffness matrix
K; by simply inverting K; and then eliminating the columﬁs
and rows not corresponding to the common d.c.f. to form F.

" Equation {4-5) may be used, then, to obtain Ko

In general, the resulting impedance matrix KS will be

a complex matrix even for an elastic soil medium. This is -

because of the radiation of the waves toward infinity.

While the real part of the impedance matrix represents -
the soil stiffness elements at the common degrees of
freedom (nodes m—-2, m—-1 and m in Figure 7), the imaginary
part represents the part of the damping corresponding to
the radiation at the energy transmitting boundary. In
the case of complex Lame' constants for the soil material,
the imaginary part of the impedance matrix represents

both radiational damping in the far field and the viscous

damping in the viscoelastic soil material. The viscous
damping is due to the phase angle between the stress and
strain vectors in the soil.

In the following section the connection problem between
the soil medium and the shell foundation is formulated. The
frequency dependent stiffnesses of the impedance matrix
{the real part of Ks) are used to formulate the stiffness

elements of the EBS. The damping elements of the EBS are
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computed from the imaginary part of Ks plus a linear

combination of the stiffness and mass elements of the

EBS (proportional damping). Here, the proportional damping

matrix represents the material damping for the elastic

soil medium.
4,2.2 The Ring Footing

Consider the cross section of Figure 8 tc be the con-
centric ring footing supporting the shell which may have
an open element (columns) atop the footing. The rihg
footing is modelled as a shell element with a constant
radius (cylindrical element) with the same shell theory
assunptions of no deformation in the normal direction and
linear deformations in the meridional direction, which
imply that the footing lower boundary has the property of
being rigid. This property does not contradict the physi-
cal nature of the problem in which the ring footing is
rigid relative to the soil, i.e., the line FED must remain a
straight line after deformation (Figure 8). It éhould be
noted here that the area bounded by the straight lines AC,
CD, DF and FA is the area which will be considered in the
finite element formulations.
To introduce the soil effect at the ring footing base

level, the following factors must be considered:
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’.._____ 8/2 > B/2 ——pi

Figure 8. Ring Footing Cross Section
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i. The six degrees of freedom at the bhase
edges D and F must be eliminated and, at
the same time, the rotational d.o.f. at
E must be formed from the eliminated
degrees of freedom;_in other words, the
nine d.o.f. should be lumped‘in five
d.oc.f. at the midpoint of the footing base.

ii. The contact stress between the soil and
the footing may be compressive or shear
stress, but not tensile stress.

iii. As this is a dynamic problem, not only
the stiffness of the soil has to be con-
sidered, but the damping and inertial
effects of the soil have to be taken
into account as well.

The nine stiffness elements of Figure 9 are obtained
from the impedance matrix by considering each stiffness ele-
ment on the main. diagonal as a linear spring in the corres-
ponding direction. Once these stiffness elements are
computed, the rest of the connection model can be formulated,
with the aid of the rigid base assumption and with factors
(i) and {ii) in mind, by solving for the resultant in the

five degrees of freedom at the central point E.
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.Ku = K; + Ky + K7

KW = Kz + Ks. + KB

KV = K3 + K¢ + Kq (4-6)
B

KB = 5 (KZ‘ + KS)
B

ch =3 (K3 + Ky)

In the connecting model of Equation (4-6) only force
continuity between the shell footing and the soil elements
are satisfied while the kinematic continuity may not be
satisfied due to the rigid base assumption. However, this
problem of incompatibility may be ignored as the analysis
is not a combined type of analysis. In the éombined
finite element models, the kinematic continuity at the
points between adjacent elements is necessary and sufficient
for the convergence of solution, which is not the case here.

It may be of interest to compare the connection model
just described in this section and a recent research study
carried.out by Raradeniz (39). The model presented in
Karadeniz's work is the alternative to the approach chosen
herein where two dummy nodes are added to the last node
in the shell model to match the dimensions of the adjacent
solid element. These dummy nodal points are connected to
the shell by horizontal weightless arms. In that model,

at the point of connection between the shell and solid
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elements, only the kinematic continuities are satisfied

as stated by Karadeniz. While the the model used by
Karadeniz is suitable for combined finite element analysis,
it necessitates the modification of the last element in the
shell in a way which complicates the dynamic analysis of
the shell if the substructure model is to be used, as in
the present analysis. This complication arises from the
presence of three nodal points at the shell base, one real’
and two dummy; furthermore, a transformation for the dis-
placements as well as for the input base motion due to the
geometrical discontinuities is required. Moreover, adding
two dummy nodes increases the size of the problem whiie the
rotational degrees of freedom at‘all three nodes are still

indeterminate.

Proceeding with the present connection model and in con--
sideration of factor (iii) as discussed earlier, an approach’
for calculating the inertial effects which is similar to
that used in deriving the stiffness elements is used,
whereby the elements on the diagonal < the condensed mass
matrix are considered as lumped masses in the corresponding
degrees of freedom, and the resultant in the five degrees
0of freedom at the central point E of Figure 9 are evaluated

as follows:

m._=m; + my, + My
u

m =Im + m + m
W 2 S 8

m = m3 + mg + mg
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my (my + mg)*B/2 ' (4-7)

(mz + Mg ) 'B/2

m

¢

The damping system is formulateﬁ erm the imaginary‘part
of the impedance matrix KS in a way similar to the
stiffness elements of the EBS as discussed previously.
The resulting dampers in the five degrees of freedom
of point E (Figure 9) represent the complete damping
system in the case of a viscoelastic material but only
the radiation damping at the energy transmitting boundary
for an elastic soil material. For the latter scil case
the material damping needs to be considered as well and
one possible approach is to construct a proportional

Y,

damping matrix from the final stiffness elements and the

corresponding lumped masses, such that

\

dl = Coml + ClKl (4"‘8)
where
Co = 2 wiws (E1s~Esw1)/ (wi-nl)
\ (4-9)
and C: = 2(Esws-&1w1)/ (wi-w?)

In Equation (4-9), w; and ys are the lowest and the
highest frequencies of the system (see Figure 8), ]

and &5 are the corresponding damping ratios. Due to the
uncoupling between the five degrees of freedom at point E,

the frequencies w; to ws may be calculated from the simple

relation
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It should be noted here, that Qs and &5 aré used in
forming CO and C; of Equation (4-9) instead of w, and &,
due to the fact that the band of w4 is limited as will be
seen later and in moét cases w; and w; are very close in
value which may cause numerical instability while cal-

culating Cs and C;.

The complete damping system for the elastic soil

system is the sum of the material and radiation damping

di = di + Ci (4-11)
where
c; = {Eu, C,r Cyr Cyr c¢} (4-12)
= the radiation damping of the soil
medium
and
Cu = Cy + Cy, + C>
CW = Cy + Cs + Cgq
C, =0Cs + Cs + Cs (4-13)
¢ = (Cz + Cqa)B/2
C = (Cs + Cq)B/2
where C, to Cy are the main diagonal elements for the

imaginary part of matrix K, of Equation (4-5)
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Figure 10 gives the translational and the rotational
stiffnesses, lumped masses and damping elements at the
midpoint of the footing base. These are the modal values
and they are expressed in Fourier series in the 8§ direction.
4.3 COMPUTER IMPLEMENTATION

In an attempt to use SHORE-III program (40) after
introducing the necessary modifications to some subroutines,
the authors of this report have developed a computer program
(SUBASE), in which the Equivalent Boundary System for a
rotational shell is computed. The EBS is to be supplied
as input for the modified SHORE-III program. This approach
has the advantage of reducing the computer storage area
as SHORE-III requires 300K in high speed storage to solve
a normal size problem. Furthermore, by this approach, the
dynamic analysis capability of SHORE-III program which
includes the consideration of the effects of wina, earth-
quake, and blast loading in deterministic sense is unaltered.
4.3.1 SUBASE Programn

The SUBASE program is designed to develop the stiffness,
mass and dampihg elements which represent the soil medium
under a ring footing supporting shell of revolution. It
has the capability of analyzing layered strata over actual
or assumed rock of infinite horizontal extent. The program
is limited, however, to soil materials with real modulii
(no phase angle between the stress and strain vectors) and

with c¢ross-anisotropy, i.e., the constitutivity
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matrix is restricted to be a function of the radius from
the axis of symmetry of the shell and ;he depth from the
foundation level.

The SUBASE program is a new developﬁent. It is
written in FORTRAN IV language and has been implemented
on an IBM 370/145 computer. The program requires 300K in
high speed storage and the single precision is used in the
calculations.

As can be seen from the flow diagram for SUBASE,
shown in Figure 11, the Equivalent Boundary System is ob-
tained, harmonic-wise, for a given excitation frequency @
through the following steps:

a - Input Data

The input data for geometry, nodal locations, material,
number of layers, control data, etc. are read and additional
data are generated.

b - Generation of Element Matrices

Corresponding to the current harmonic, the stiffness
matrix and the mass matrix for each element are generated.
¢ - Generation of Layer Matrices

For each harmonic, the layer matrices, required for
the eigenvalue problem of the wave propagation problem in
the far-field, are generated.

d - Eigenvalue Solution
For each harmonic, the wave numbers and the mode

shapes for the propagating wave are obtained.
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e ~ Assembly of Global Matrices

The boundary matrix, together with the matrices of
the F.E. region, form the dynamic stiffness matrix of
the stratum.

f - Equivalent Boundary System

For each harmonic, the egquivalent stiffness elements,
mass elements and damping elements at the lower five degrees
of freedom of the ring footing are calculated and printed
out.

A complete listing of the program is given in Appendix 8.
3. The listing contains further details about the program
through the heading comments in each subroutine.

4.3.2 SHORSS Program

The SHCORSS program is a finite element program for
the linear static and dynamic analysis of axisymmetric
shells (and shell-like structures) and plates. The dynamic
analysis includes the soil effects which are introduced
with the aid of SUBASE program. It is an extension of
the static and dynamic analysis program SHORE-III (41).

The SHORSS program is written in FORTRAN IV language
and has been implemented on an IBM 370/145 computer. It
has the same storage area as SHORE-III and the overlay
structure shown in Figure 12 must be used for running the
program. All the details about the program as well as the
flow diagram are omitted here since they are almost the same

as those describing SHORE-III program (35,40). However, the
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necessary modifications to the User's Manual of SHORE-III
are given in Appendix 8.4.
4.3.3 Scheme of Computation

In this section the overall scheme of the analysis
is described. The master flow chart of the computation is
presented in Figure 13. In this model the computation
for.the displacements and stresses in a shell of revolution
subjected to a general loading (static or dynamic loading
which may be symmetrical, antisymmetrical or with any
distributed pattern around the axis of symmetry of the
shell). The simplest case of loading is the static loading,
in which no soil effect should be considered in the
analysis; however, the load may be complicated and requires
a Fourier series expansion to carryout the analysis har-
monicwise. The SHORSS program, with a fixed lower boundary,
becomes SHORE-III program in this case.

In case of dynamic analysis, the problem becomes more
involved and the soil effect becomes an important factor
for a more realistic model. With the aid of the SUBASE
program the equivalent boundary system (EBS) can be cal-
culated and introduced at the foundation level, then the
analysis is to be carried out harmonicwise using the
SHORSS program. To account for the possibility of founda-
tion uplift the stresses at the foundation level should be
checked and any net tensile stresses will correspond to

uplift; however, the dead load stresses as well as the
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effect of any non-structural elements tied to the shell
foundation must be included in calculating the net

tensile stress at the soil-foundation interface. If the
separation zone is significant, the analysis should be
carried out again with new EBS with zero stiffnesses,
masses and dampers in the separation zone. The modification
may be done by expanding the new EBS in Fourier éeries and
the resulting modal values should then be introduced to
the ring footing. The analysis is completed if the re-
sulting separation angle, Figure 14, is the same as in the
previous cycle.

For any type of analysis, static or dynamic, the
local stresses near the base, for shells with column
supports, need to be corrected. The superposition techni-
que is to be used. The solution is composed of the con-
tinuous boundary case and a self-equilbrated line load
case, both of which are gepresented in Fourier series,
Figure 15. The necessary computer program to evaluate the
Fourier coefficients is developed by the authors of this
report, SHORC program, and is described and listed else-
where (42). As the ring footing is in the vicinity of
the discrete supports the correction should be carried out
at both sides of the discrete supports. It should be
noted here that FORIT program is capable cf evaluating
the Fourier coefficient for any loading distribution, but

not for the particular case of self-equilibrated line load.
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5. PARAMETRIC STUDIES AND APPLICATIONS

5.1 INTRODUCTION

The influence of the geometry and material properties
of a soil stratum on the respénse of a shell of revolution
founded atop the stratum and subijected to forced excitations
will be studied in this chapter. The main objectives are:
to check the applicability and accuracy of the model pre-
-sented in the previous chapter; to present results for
cases for which no known analytical solution exists; and
to assess the importance of the soil on the shell response
to dynamic loads.

The study is divided into two main sections: the first
is the study of the soil model which may be examined through
the equivalent boundary system and the second is the
dynamic analysis of shells of revolution in which the soil
effect on the dynamic response is discussed. 1In the first
section, the soil model study, dimensionless analysis is
uged throughout and the results are plotted against the

non-dimensional excitation frequency agr where

a = —2 (5-1)

in which @ is the excitation frequency, r, is the radius
of the energy absorbing boundary and Vg is the shear wave

velocity in the stratum.
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In order to check the applicability and effectiveness
of the energy ahsorbing boundary based on the theoxry pre-
sented in Chapters 2 and 3, a time history analysis is
carried out for two cycles of a sinusoidal ground accel-
eration applied at the lower boundary of the finite element
region of Figure 16. The sinuscidal ground acceleration
has a maximum amplitude of 20% g and a frequency equal to
10 radians per second. To perform the time history
analysis, numerical integration is needed which, in turn,
depends on the highest period of the system and requires
the evaluation of the eigenvalues of the finite element
model. However, one may sometimes avoid a time consuming
eigenvalue analysis by choosing a most accurate uncon-
ditionally stable numerical integration scheme. Among the
different numerical schemes, such as the Newmark B method
(43), Wilson & method (44) and the direct step—hy-step
integration method (45), the Newmark method was found to be
the most stable method by Wilson and Bathe (45). The
accuracy of the integration increases by decreasing the
time step At. For large values of At, the errors in period
are increased and the percentage amplitude decay also is
increased. From Wilson and Bathe's Rnalysis (46), the
Newmark technique proved to be the only one which gives no
errors either in the period or in amplitude alternation

for g = 1/4.
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For J = 1, the dynamic analysis is carried out using
two models which are the same except for the vertical
boundaries. The first model has an energy absorbing
boundary which is represented by the boundary matrix Ry,
of Equation (3-60) while the second has a roller boundary,
which alows the nodal points along the_vertical boundary
to move freely ih the vertical and circumferential direc-
tions. Numerical computations herein are conducted using
the Newmark method with B = 1/4 and a time step of 0.005
sec.

The three components of the response accelerations of
node 4 4, W and V¥ are given in Figure 17. This particular
node is chosen because of the importance of its nodal de-
grees of freedom when computing the EBS. In Figure 17 the
response accelerations show that, in contrast to the un-
damped response in the model with a roller boundary (solid
lines), the model with an energy absorbing boundary pro-
duced a damped response {(dotted lines}. This indicates that
the energy absorbing boundary, which is developed in
Chapters 2 and 3, absorbs the energy of the waves. Further,
it is indicated in Figure 17 that the response of the roller
boundary model builds up around t = 2.5 sec.; thus, it
follows that the roller vertical bounary produces reflected
waves.

The above numerical illustrations provide a check on
the applicability and the effectiveness of the energy ab-

sorbing boundary.
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5.2 PARAMETERS AFFECTING THE ERS

In this section the convergence of the finite element
solution which is used in the eqguivalent boundary system
calculation is evaluated. To evaluate the convergence of
the F.E. solution, two parameters should be studied; the
first is the effect of the lower boundary location which
is assumed to be totally fixed and the second is the mesh
effect. The natural frequencies, stiffnesses and damping
of the EBS are then studied for a range of the excitation
frequency . Also, the EBS gquantities for the higher
Fourier harmonics are compared to those for the first two
harmonics (J = 0 and 1), in order to extrapolate the
values of the soil constants for the very high harmonics
and to assess the usefulness.of the pfesent theory in ob-
taining solutions for a general harmeonic, which is a quite
new develcpment.
5.2.1 Effect of the Stratum Depth

The depth of the stratum for a given ring footing:
dimension, influences the results for the stiffnesses and
damping of the EBS since the dynamic response of the nodes
at the foundation level is significantly influenced by the
natural modes of vibration of the stratum as well‘as by
reflections at the rock-soil interface, |

To evaluate the convergence of the EBS quantities for

the case of a very deep stratum, six meshes with the same
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element size throughout the mesh were considered. Figure
18 gives the dimensions of the éix meshes which start
with a shallow stratum and end with a very deep one.
Table 2 gives the soil material properties which are used
with all meshes. With the vertical boundary radius

r, = 80 ft. and the dimensionless frequency ao=5.0, @ is
calculated from Equation (5-1) and it is found to be
53.36 radians per second.

The results for the six meshes are summarized in
Table 3 in which the natural frequencies, stiffnesses and
damping of the EBS are presented. 2Also, the dimensionless
w/W, K/K and D/D are plotted in Figures 19 to 21 against
the depth ratio H/ro, where w, K and D are the EBS
guantities for the very deep stratum which may be con-
sidered to be the half~-space sclution as the reflections
at the rock-soil interface are expected to be very small.
The percentage damping ratios £, and §£; are assumed to be
5% and 10% respectively.

The approximate CPU time in the IBM 370 computer
to run the SUBASE program is 5 seconds per layef per
harmonic for each driving frequency. However, only one
Fourier harmonic is used in the analeis (F = 1) for a
single driving frequency (2 = 53.36 radian per second).

The results given by Table 3 and Figures 19,20 indi-

cate the importance of the stratum depth factor for the
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Table 2. Soil Material Properties

Soil Properties A u p a0 Vs vp
All Finite Elements 3738.0 2492.0 0.003419 5.0 853.74 1599.71
All Layers 3738.0 2492.0 0.003419 5.0 853.74 1599.,71

Units: K, Ft and Sec.

~T0T-



Table 3. EBS Quantities for the Stratum Depth Analysis (J=1)

u v
H/r0

© Kx10° Dy10? Kx10% Dy10°® Ry108 Dy10®
1.5 49.318 22.654  11.913  51.837 34.046  9.443  40.751 18.184 6.951
2.25 40.816 16.262  13.514  39.623 19.082 10.524  31.465 10.630 7.661
3.0 38.434 14.064  14.210  35.502 16.132 11.381  27.975 8.568 8.354
3.75 36.223 12.785  14.851  33.446 13.872 11.652  26.370 7.771 8.631
4.5 35.713  12.341  15.003  32.705 13.370 11.800  25.987  7.428 8.722
9.0 34.012 11.215  15.233  31.698 12.554 12.061  25.478  7.081 8.916

All units are:

Kips, Ft and seconds

-¢0T~



Table 3 (continued)
6 ¢

H/ro
w K108 Dx103 w Re10° Py10?
1.5 54.071 186.979 31.744 81.188 138.286 27.074
2.25 37.443 83.128 36.124 55.864 75.859 30.541
3.0 32.697 66.711 38.411 53.007 60.398 33.347
3.75 30.810 58.372 39.787 50.599 54.841 34.450
4.5 30.515 55.870 40.012 49.740 51.217 35.117
9.0 29.483 52.118 40.971 47,735 48.318 35.512

All units are: Kips,

Ft and seconds

-€0T~-
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natural frequencies and stiffnesses. On the other hand,

the damping elements are less sensitive to the depth factor
as one can notice from Table 3 and Figure 21. It is in-
teresting to notice that the error in the stiffness elements
as the stratum gets shallower is proporticnal to the square
of the error in the corresponding naturai frequency. ‘This
is because the mass elements did not change with the change
of the lower boundary location. It is also interesting to
notice that at some depth ratic (H/rO = 3) the error in the
five components of the EBS became very close to eaqh other
and, morover the EBS quantities at such depth ratios approach
the half-space solution which is represented here by the
depth ratio H/RO =9,

The insensitivity of the damping elements to thehstratum
depth suggests that the damping is mainly due to the radia-
tion of the waves horizontally in the far-field and that the
vertical.radiation of the waves is not a major factor.
However, the reflected waves on the rock-soil interface for
the shallow strata (H/rO < 3), caused the damping to de-
crease by about 15% as may be observed from Figure 21.

It may be noted from Table 3 that the EBS components
which correspbnd to the rotational degrees of freedom
(6 and ¢) are more sensitive for the stratum depth. This
may be due to the reflection of the waves on the lower

boundary which tends to redistribute the response at the
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foundation level, mainly affecting the rotational com-
ponents. This explanation is‘consistent with the results
since for deep strata (H/rO > 3), there is no predominant
sensitivity of the different components of the EBS.

The study of the stratum depth presented in this
section suggests some useful guidelines which may help to
reduce the size of the parametric¢ study. One very im-
portant finding is that the stiffness elements are the
most sensitive of the EBS components; as a result, the re-
maining parametric studies may concentrate on the stiffness
elements only. Also the study reveals that the assumption
of fixed lower boundary at a depth H = 3ro is reasonable
for most practical uses. This means that the dynamic in-
fluence region is defined through this study which brings
forth the idea of a dynamic pressure bulb.

5.2.2 Mesh Size Effect

The dynamic pressure bulb is a generalization of the
concept of a pressure bulb as defined in statics, in the
study of pressure distributions under footings. It repre-

sents the zone of influence under the footing which affects

its dynamic response and beyond which coarser finite elements

may be employed without significantly influencing the
dynamic behavior of the system. It is desirable, in order
to ensure the efficiency and economy of the finite element
solution, to use larger elements away from the zone of

influence preovided that such a zone exists.
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Earlier studies on the finite element method applied
to dynamic problems indicate that the size of the largest
element in a system should be smaller than a certain
fraction, usually 1/8 to 1/10, of the shortest wave length
that is expected to be reasonably reproduced. In the case
of a layered system and particularly for a deep one, it is
often economically unfeasible to cover the whole depth with
a fine mesh and it becomes necessary to investigate the
possibility of using narrower (longer) elements with in-
creasing depth away from the dynamic pressure bulb. At the
same time, it is of interest to check the rate of conver-
gence towards the continuum solution as the mesh is refined.

To evaluate the convergence of the finite element
solution with decreasing element size, four meshes with a
depth ratio H/rO = 3 were considered: coarse, medium, medium-
fine and fine. Soil material properties used in the analysis
are those presented in Table 2. The four meshes along with
the results are shown in Figure 22. Only the dimensionless
stiffness elements K/GrO are plotted against the element
size ratio L/A, where % is the longest element dimension in
the mesh, and A is the shear wave length, which is obtained

from the relation {(27}.

20 r @
e}

A= —g (5-2)

with w= the fundamental frequency of the
soll stratum.
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For the present analysis w was considered to be the average
frequency of the EBS with a wvery deep sfratum (w = aav =
33.68 rps) as considered in the previous section.

In Figure 22 the continuum solution could be extra-
polated by the intersection of the curves with the vertical
axis (/A = 0). The results indicate that the largest
element dimensicon in the mesh should not exceed A/6 for
satisfactory results in case of a uniform mesh. Also, it
may be noticed that the rate of convergence for the five
components is approximately the same and that it is wvery
slow for element size ratio less than 1/8.

In order to investigate the possibility of using larger
elements with increasing depth, another four meshes are
considered with same soil properties and depth ratio as
those used in the convergence study. RKnowing the continuum
solution for the EBS from the convergence study, the errors
in the finite element solution of the four meshes are cal-
culated and plotted against the ratio 100/n, where n is the
total number of elements in a mesh, Figure 23. Also, the
four meshes used in the study are shown in the same figures.

It is interesting to notice that the mesh with twenty
elements produced results with error as small as 0.7% of
the continuum solution, although elements with dimensions
equal to A/4 are used. Also, the results presented indicate

that only negligible differences are noticed between the two
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meshes with twenty eight and forty eiements. These results
for the economical (non-uniform meshes) and those for the
uniform meshes used in the convergence study are tabulated,
for the purpose cf comparison, in Table 4, This table in-
dicates that the four meshes with non-uniform elements pro-
duced very close results for most practical applications.

Based on the studies of the finite element meshes, it
is concluded that the zone of influence under the footing,
which may be called the pressure bulb, is about 1.5 r, and
within this zone the size of the elements have an effect on
the dynamic behavior. However, it should not be inferred
from this conclusion that it is permissible to completely
suppress the lower {long element) portion, as this results
in increased values for the stiffness element due to the
reflections of the waves on the assumed rock-soil interface,
as discussed in the previous section. From this it is felt
that the elements between the pressure bulb and the assumed
lower fixed horizontal boundary may exceed the limitation
L/A < 1/6 ({say}). At the same time, the iimitations on the
size of the finite elements within the dynamic pressure bulb
must be enforced.

It should be noted here that the geometry of the
foundation, which is a ring footing, affects the mesh size
and the elements refinement near the foundation level. As

the ratio B/ro, the ratio of the base Width to the radius



Table 4. Mesh Size Effect
Stiffness Ratio K/Gr0
Parameter u w v 6 ¢
_13/8 115.81 125.39 75.28 460.03 368.75
4 n
E . Bdlua 70.63  80.72  46.88 327.67 300.28
wESH Heliyg 57.46  66.21  37.89 282.90 262.31
G-+ M@ ~ 0=
SHnK 25 [1/16 55.80 62.09 36.03 280.11 261.08
E_|1/40 55.80 62.09 36.03 280,12 261.10
S oli/28 55.97 62.28 36.07 280.87 261.69
5 Em|1/20 56.32  62.59  36.38 281.90 262.16
L= /12 60.91  66.68 38,51 309.42 274.00
£ |
=

AN
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of the energy absorbing boundary gets smaller, the dynamic
pressure bulb may be confined to the ring footing vicinity
with elements near the axis of symmetry having less effect.
In such extreme cases, the zone of influence will take a
toroidal shape below the ring footing and, consequently,
more economical finite element meshes may be used with
large elements away from the footing, radially towards the
axis of symmetry and downwards away frcmlthe dvnamic pressure
bulb towards the lower boundary. Large towers, like rein-
forced concrete cooling towers, often have a large base
diameter which resulté in small B/rO ratios and possible use
of the super-economical mesh like that shown in Figure 24,
5.2.3 Effect of the Driving Frequency

After the mesh size and the lower boundary location
have been established it iS useful to compare the present
model results with existing elastic half space results. Due
to the limitations of the half space solution, only a few
cases of axisymmetric problems have been sclved; one of
these is the dynamic analysis of a rigid circular footing on
an elastic half space (47). In this paper the axisymmetric
vertical footing is considered and the vertical displacement
§ of the footing is calculated from the relation (see Figure

25).

Fe (5-3)
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in which Py and = the amplitude and frequency, respectively,
of the exciting force; t = time; and K = the static spring

constant. It may be shown that

— O —
K== (5-4)

The dimensionless guantity F, herein designated the dis-
placement function is a function of Poisson's ratio v
and the dimensionless frequency ratio a,-

The rigid circular plate is idealized by a row of
massless finite elements of very high rigidity (10° times
higher than that of the stratum). The equivalent value for
the force amplitude in the finite element model is taken
PO/ZHrO and is concentrated along the founction edge, see
Figure 26. Also, in the same figure, the displacement in
the w direction is plotted against the dimensionless fre-
quency ratio a_, for P = 1.0 K, r = 10', G = 2492 K/Ft?
and v = 1/3.

The results of the finite element model with an energy
absorbing boundary show good agreement, especially in the
lower frequencylrange in which the shear wave velocity A
becomes longer and the element size ratio %/A becomes
smaller. The results for the same problem as carried out
by Lysmere and Kuhlemeyer (48) are also plotted. It can be

seen that the present model with only 10 elements gave

results comparable to those of Lysmere and Kuhlemeyer for
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which 64 elements were used. This provides a check for the
correctness of the present model and suggests its appli-
cability for very deep stratums.

To study the effect of the driving freguency on the EBS
components, the frequency ratio a, is considered for the
range a, = 1.0 to 2 (8) with the first two Fourier har-
monics (J = 0 and J = 1). The super-economical mesh of
Figure 24, with H/rO = 2.5, B/rO = 0.1 and ry = 100 feet,
is chosen to represent the s0il medium. The natural fre-
quencies of the EBS are plotted against the driving fregquency
ratio for the symmetrical and untisymmetrical nodes in
Figures 27 and 28. It can be seen that the translational
mode freguencies are less sensitive to the change of a, than
the rotational mode frequencies. Further, it can be noticed
that the five frequencies have a limited band for a given

driving frequency ratio, especially for a_ > . For this

o
reason the smallest and largest values of o are considered
in forming the proportional damping matrix as discussed in
Chapter 4.

Figures 29 and 30 show the dependence of the stiffness
elements on the driving frequency. It is also noticeable
that both translational and rotational stiffnesses are very
sensitive to the change of a,- The sensitivity of the
stiffness elements may be explained by examining Equation

(3-62) , where the second and third terms of the RHS of

the equation are functions of the driving frequency .
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It is interesting to notice from»Flgures 29 and 30 that
for a given value of a, either J = 0 or J = 1 gives maxi-
mum stiffness value, but not with both Fourier harmonics.
This observation suggests the importance of a sensitivity
study to the EBS components for a range of Fourier har-
monics.

Similar observations may be applied to the damping
elements in Figures 31 and 32. 1In these figures the average
effect of a, on the two harmonic behaves similarly to that
in Figures 29 and 30. However, the damping elements are
less dependent on the excitation frequency than the stiff-
ness elements which is expected since the proportional
damping matrix contains the mass matrix which is independent
of the excitation frequency. This conclusion agrees with
the results presented in References 8 and 49.

5.2.4 Higher Harmonics

For earthguake analysis, the first two Fourier har-
monics are sufficient to carry out a complete dynamic analysis
of the structure; thus the EBS components for J > 1 are not
required with the usual earthquaké typé of loading. However,
the EBS components for the higher harmonics are needed when
the dynamic loading distribution in the circumferential angle
® has a general shape. Wind force is one dynamic load which
requires more than the first two Fourier harmonics to be
fully represented. &2 typical design wind pressure distribution

for circular towers is presented in Reference 50, along with
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the corresponding Fourier coefficients. Such a circum-
ferential distribution of wind pressure may be represented

by,
Z: A, cosj®
j=o0

The Fourier coefficients Aj’ for the first eight harmonics,
are generally sufficient for the analysis (51). It is worth
noting that the very high Fourier harmonics associated with
the self-equilbrated correcting line loads of Figure 15
are required in any type of dynamic or static analysis of
discretely supported rotational shells (42); however, as
these loads are self-equilbrated~local forces, the static
analysis of such loads is sufficient and, therefore, there
is no need to compute the EBS components for these very
high harmonics. Thus, only the first eight or even the
first six harmonics need to be considered in this section to
study the behavior of the natural frequencies, stiffnesges
and damping elements of the soil system in higher Fourier
harmonics (J = 0,1,...5). These higher Fourier harmonics
are also needed if a non-uniform earthquake excitation is
to be considered.

In Figures 33 to 35 the results of the first six Fourler
harmonics are shown. The same mesh of Section 5.2.3 is

used and the excitation fregquency ratio a._. is taken egqual to

o
5.0. It is interesting to notice that the EBS, for J > 1,
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are approximately constants for the u, v and ¢ components,
while the w and 6 components (vertical and rocking) show
more variation as shown in Figures 33, 34 and 35. This
observation may be useful in reducing the size of the
problem if the stiffnesses and damping elements of the
higher harmonics are considered to be independent of the
Fourier number J and suggests a helpful procedure to de-
termine the EBS components for J » 1 with the aid of one
harmonic No J, (J > 2). By comparing the stiffness and
damping elements in Figures 34 and 35, we find that the
damping is less dependent on the harmonic number J than the
stiffness elements. Again, this is because of the mass
elements, which is independent of J,‘and are contained in
the damping, see Equation {(4-8).
5.3 DYNAMIC ANALYSIS OF SHELLS OF REVOLUTION

The main aim of this research has been to develop a
more realistic mathematical model for rotational shells hy
including the soil effect in the dynamic model of such
structures. Purther, it is desired to assess the importance
of the new component of the moael, the surrounding soil
medium, on the dynamic behavior of this class of structures.

The structure under study is the reinforced concrete
cooling tower shell shown in Figure 36. The tower is assumed
to have a shallow foundation in the form of a ring footing

with the ratio B/rO < 0.1. The shell meridian consists of



~133~

C
T 1 16" v (580,37}
T : _____
2L O
T B =
‘f 4 THROAT: 2 —o—r x (420.00)
S \
N 1
e
o.
= O
6
x |7
3
> 42" COLs 48'¢
" N {6012)
g i e 80 DIAG. > ovesl
(® ()
‘L A . R.FOOTING S
O AR
i | [
R b e et et
] |
1  SOIL MEDJUM
JSSS SUUEVNNS HUVN YOO H
‘ ', A

Figure 36. Cooling Tower on a Hypothetical
Foundation



-134~

three curves with slope continuity at the Jjunction points
(nodal points #4 and #7). The eguations of the shell
meridian are given in Table 5.

In the present study, the following three soil and
one rock founded (fixed base) cases are considered. These
cases were selected to provide a wide wvariation of site
conditions and also to permit the establishment of trends
in the structural response as suggested by Pandya and

Setlur (16).

CASE I. The soil consists of 500 ft. of uniform medium
sand with 75 percent relative density. The
value of the shear modulus coefficient (52) is
taken as 1827 K/ft? with the value of Poisson's
ratio as 0.35. This case is representative of
a soft to intermediate soil condition.

CASE II. To study the effect of a stiff and shallow soil
condition, the soil depth was reduced to 250 ft.
The soil is assumed to be dense sand and gravel
with G = 2675 XK/ft? (52) and Poisson's ratio as
0.4. This case is representative of an inter-
mediate to stiff soil condition,

CASE III. This case is formulated such that fundamental
frequency of the soil layer is close to that
of the structure. Strong amplification due to

resonance effects, if present, would show up.



Table 5. Shell Meridian of the Structure Under Study
Nodes
Shell Type Equation
From To
HP #1 1 4 22-123.68377 r? + 27587.5165 r - 1536846.5 =
HP #2 4 7 z2-9.40153 r? + 1302.5923 r - 25462.9 =

-GET~
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The soil is assumed to be stiff clay with
depth of 600 £t. The values of the shear
modulus coefficient and Poisson's ratio are
taken as 2315 K/ft® and 0.4 respectively.

CASE IV. The structure is directly founded on com-
petent rock and, therefore, the soil structure
interaction effect is negligible. This case
represents an important convergence point for

the solution technique.

The super-economical mesh of Figure 24 is considered
to model the first and the third cases. BRecause of the
shallow solil condition of Case II, a special finite element

mesh is presented in Figure 37 to represent the soil medium.

The EBS of the three cases are computed using the
SUBASE program with a driving frequency f = 12.3441 rad./sec.
(the fundamental frequency of the shell on a fixed foundation)
for the antisymmetrical mode (J = 1). Also, the EBS of
CASE I is recalculated for a driving frequency Q& = 32.7485
rad./sec., which is the fundamental frequency of the structure
on a fixed foundation for the symmetrical mode (J = 0). The
values of the EBS are presented in Table 6 along with the
soil frequencies for the four cases. Although the values
of the EBS of CASE IV are not required, they are shown in
the table for completeness.

It should be noted that the coordinate system of Figure

10 is not same as the coordinate system used in the shell
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Table 6. EBS for the Cases of Study
Soil EBS* _
Case J | Comp. a w v ) ¢
K 51114.6 80012.8 70410.4 469832.0  784321.0
o| D 6320.7 8532.3 3245.7 58692.2 32003.7

M 100.2 91.0 84.3 798.9 201.4
[ 22.6 28.7 29.0 24.3 62.6

I
K 9882.5 58204.8 7780.0  787732.0 289741.0

1| D 2000.9 898.8 2145.7 8936.0 12342.7

M 100.2 91.0 84.3 798.9 201.4
w 9.9 25.3 9.6 31.4 38.0
X 301375.0 912368.0 217140.0 8667110.0 5617950.0

- 11D 727.1 742.2 574.1 7336.0 6532.8
M 126.4 96.8 $0.2 8383.5 263.8
w 49.0 97.5 49,2 98.8 145.5
: 15268.7 82403.0 15365.3 1025780.0 4210990.0

11T 1 D 1972.3 321.3 2008.0 8785.7 11135.8
M 100.4 91.0 84.3 798.9 201.4
W 12.1 30.1 13.5 35.8 144.5
K -3 e «© -3 Lo
D 0 0 0 0 o

ol -t u 0 0 0 0 0
W (> o« o o o

*Units: Kip, Ft, sec.
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analysis, see Figures 38 and 39, and the input data must be
supplied to SHORSS program after transforming the components

in u direction to w direction and vice versa.

5.3.1 Free Vibration Analysis

To investigate the soil effect on the dynamic properties,
free vibration analysis of the shell of Figure 36 with the
four soil cases is carried out using the SHORSS program.

The first three modes of vibration are considered in each
case for the antisymmetrical Fourier mode J = 1 (horizontal
vibration). For J = 0 (vertical vibration), only the first
and fourth cases are considered for the first three modes
of vibration, as those are the extremes of the so0il condi-
tions.

The results of the study are given in Figures 40 to 47.
In Figures 40 to 45 the computer output of the eigenvalue
analysis of the lowest two frequencies are given along with
the corresponding normalized eigenvectors for the four cases.
A comparison between the first three eigenvectors of vibration
(vertically and horizontally) for the first and fourth cases
can be held from the plotted modes in FPigures 46 and 47.

The change in the fundamental frequency is only in the
band of 5% of the fixed base frequency for both vertical and
horizontal vibration as shown in Figures 40 to 45. The small
change in the fundamental frequency far the interactive system
makes any further approximation in the EBS using the resulting
interactive frequencies unnecessary. On the other hand, the
decrease in the frequency of the second mode reaches 25% of

the fixed base case (Case IV) for J = 0 and J = 1. The
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RESULTS OF EIGENVALUE ANALYSIS FOR MODE NG = 1
EIGENVALUE, LAMDA = Q.1CC78533£-02
CIRCULAR FREQUENCY= G,315024578 02 [RAD./SEC)
CYCLIC FREQUENCY = 0.5C137758£ Ol (CYCLES/SEQ)
EIGENVEC TOR NC.= 1
NODE NUMBER U ‘ ) W BETA(PHI)
t 1. CCocoe 0.101994 -0.000131
2 0.904922 0.108281 '~0.000178
3 C.932988 0.100328 =-.00000a7
4 Ca 845691 ~0.023218 0000563
1] C.8639444 -0.129421 -0.00087&
& Ca 429466 -0.098668 -Q.000982
7 €.2499C6 -0.053773 -0.000828
8 0. 147460 -0.062370 ~0.000140
3 0. 58472 ~0.066892 -0.5600169
10 €. £99033 -0.061315 ~0.000386
RESULTS OF EIGENVALUE ANALYSIS FOR MQDE NC. = 2
EIGENVALUE, LAMDA = (,78845404£-03
CIRCULAR FREQUENCY= 0.35389542€ 02 (RAD./SEC)
CYCLIC FREQUENCY = 0.56324253E 0l (CYCLES/SEC)
EIGENVECTOR NC.= 2
NODE NUMBER u v W BRETA(PHIY}
1 . 049781 0.005275 -0.000001
2z C.C48848 G.005721 =-0.304303
3 . 045643 0.605348 0.006012
4 £.C40275 -0.001478 0.000054
5 C.027968 =0 . 004056 -0.000011
3 C.L1570% ~-0.003952 0.000086
7 ¢.££5593 -0.009460 04000754
8 CaC023%52 ~0e221705% 0.013642
9 -C.C10634 1. 000000 0.098528
10 -C.0138%6 Q4406408 0.098832
Figure 40. Eigenvalues and Eigenvectors

for J = 0 (Case

I)

BETA(THETA)

BETA{THETA)
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RESULTS OF EIGENVALUE ANALYSIS FOR MODE NO. = 1

EIGENVALUE, LAMDA = 0.71325339E-02
CIRCULAR FREQUENCY= 0.11840719E 02 ({(RAD./SEC)
CYCLIC FREQUENCY = 0.18845100E 01 {CYCLES/SECQ)

EIGENVEC TOR NQ.= 3

NODE NUMBER U v W BETALPHI) BETALTHETA)
1 0. 124014 =-04985083 1.000000 0.001763 8.CCE3L7
2 C.124346 ~0.868164 0.899629 04002037 0.C0C257
3 G.125937 -0, 750468 0.778350 0.002497 0.CCC267
4 0.1%566C2 -0.617706 0.623203 04002664 Q.CCCCEC
5 C.189184 =0.416068 0.397046 00015687 -0.£50CS¢G
6 0.143729 -0.278687 0.268689 0000904 0.CCcees
7 C. 083847 -0.1949219 0.201477 0.0008634 g.CCCO7C
B C.0537465 ~3.170953 0.162710 0.001397 ¢.CGCCCLC
3 0.028572 -0,111183 G.110519 -0.000568 0.CCCCS2

‘10 C. Q28489 -0.111558 0.118683 -0.000560 0.CCLC4T

RESULTS OF EIGEMVALUE ANALYSIS FOR MODE NCQ. = 2

EIGENVALUE,s LAMDA = 0.45256391E~-02
CIRCULAR FREQUENCY= (.14844833€ 02 (RAD./SEC)
CYGLIC FREQUENGY = C.236%581338 01 {CYCLES/SEC)

EIGENVECTOR NC.= 2

NODE NUMBER U v W BET A{PHI) BETAI{THETA)
1 C.402563 -0.929145 1000000 04004063 g.CCrses
2 0. 400645 -0.711271 0.772668 0.004427 0.CCCS2¢
3 0353141 =0.466283 0.516339 0.004950 C.CCCa3é
4 £.385C17 ~0.208014 3.205424 0.005019 -0.0C0L023
3 0.2992C3 0.165859 -0.227703 0.003153 -0.Ccceszl
[ 0;17906q : 0.416403 -0.481978 0.001710 -0.CCCE44
7 0. 0883827 2.561387 ~-2.630089 0.000319 -0.0CCH4C
8 Q0.0560286 0.653323 -0.703627 ~Q0.003427 ~0.CCc4Cl
9 C.027734 0.670246 ~Q«746116 0.007086 -0.L0CT724
10 C.028707 C. 686782 ~-0.846037 C.00701L9 -0.CCCE4C

Figure 41. Eigenvalues and Eigenvectors
for J = 1 (Case I)
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RESULTS OF EIGENVALUE ANALYSIS FOR MGDE NC. = 1

{RAD. /SEC)

CYCLIC FREQUENCY = (0.191233043E Ol (CYCLES/SEC)
EIGENVECTOR NQ.= 1
NODE NUMBER u v LB
1. Ce 140465 -0.963007 1.0006000
2 C. 140682 -0.858935 0.892190
3 0.141790 =0.733536 0.762919
4 0.170226 -0.593197 0.598411
5 0.195731 -0.380398 0.359148
6 Ce 145501 ~0+234857 0-?22151
7 C.C83054 =0.149759 0.148782
8 0.052613 ~0s116457 0.107601
9 C. 024312 =0, 037500 0.034946
19 Q.024261 -0.036487 0.023088
RESULTS OF EIGENVALUE ANALYSIS FOR MODE NC. = 2
EIGENVALUEY LAMDA = (.328L5044E-02
CIRCULAR FREQUENCY= (0.17459412E 02 (RAD./SEC)
CYCLIC FREQUENCY = (.27787542E Q1 {CYCLES/SEC!
EIGENVEC TOR NO.= 2
MODE NUMBER U v W
1 Ca544578 ~0.904702 1.000000
2 C.540423 ~0.623414 0.703271
3 Ca526717 ~0.309035 0.370914
4 C.489152 Q. 0t5826 ~0.027983
5 0.327507 0.460040 ~0.547342
& 0.182145 0.721639 -0.817148
7 C.057494 0.834824 ~0.942160
] €.028826 0.900239 -0.985862
9 C.5GLEC3S Ce399523 -0.485680
10 ~0.LCCCs4 0.406724 -0.345779

BETA(PHI)
0.0018%85
0.002171
04002637
0.002802
0.001789
0.000959
0.000628
0.001102
0000333

0.000839

BRETA{PHI)
0.005272
0.005718
0.006308
0.006223
0.0303440
0.001448

~0.000694
-0.006274
-0.009753

-0.009865

Figure 42. Eigenvalues and Eigenvectors

for

J =1 {(Case II}

BETAITHETA}
0.CCC22¢
0.CCCACH
g.C0C271
C.CCCCS1
-g.CCC12¢0
-0.CCCC31

d.CCCC22
~-C.CCLC12
-g.CCCC28

-Q.CCCC19

BETA{THETA}
0.CCCT4C
G.CC0é38
C.0GLasT

~0.CCC142
~0.CCLT55
-0.c0C858
-0.CCCBES
-0.CCC&73
~0.(CCleC

~0.CCC22¢
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RESULTS OF EIGENVALUE ANALYSIS FOR MODE NQ. = 1

EIGENVALUE, LAMDA = 0.71198605E-02
CIRCULAR FREQUENCY= 0.118S1253€ 02 (RADa/SEL)
CYCLIC FREQUENCY = 0.18861864€ QL (CYCLES/SEC}

EIGENVECTOR NC.= i
NGDE NUMBER u ¥ W
i 0. 125714 ~0.964890 1.000000
2 04126035 ~0.867231 0.898855
3 0.127578 -0.T48758 0.7T6758
4 0.1580290 -0.6152290 0.620663
5 0. 1899G0 -0.412460 0.393173
-] 0.143988 ~0e274253 0.263918
7 0. 083698 =0.194210 0. 196054
8 €. 053779 -0.165401 0.156987
9 0.028470 -0.104221 0.103242
10 0.028396 =04 104445 0.109428

RESULTS OF EIGENVALUE ANALYSIS FOR MODE NQ. = 2.

EIGENVALUE, LAMDA = 0,44562295€8-Q2
CIRCULAR FREQUENCY= 0.14980152€ 02 (RAD./SEC)
CYCLIC FREQUENCY = 0.23841667€ 01 {CYCLES/SEC)

EIGENVEC TOR NQo= 2
NODE NUMBER ¥ v W
1 0.4101C3 -0.927992 1.000000
2 C.40B809% -0. 706791 0.769098
3 0.4£0240 -0.458217 0.508899
4 0.390838 -0.196455 0.193501
5 $.3C1345 C. 181620 ~0.24471%
5 . 0. 178944 0.433903 -0.501019
7 C.087440C 0.578745 -0.649472
8 ‘ 0.055151 0. 670608 ~0.722904
3 0.026675 0. 670590 ~0.749073
10 £.027622 0.687110 ~0.839817

BET ALPHI)

0.001772

0.002041

Q.0025G1

04002667

0001687

0.000899

0.000622

0.001355

=0.300439

~0.000431

BETA{PHI)

0.004127

Q004494

0.00%021

0.005084

0.003181

0.001715

0.000289

=0.0003545

0006445

0.006373

Figure 43. Eigenvalues and Eigenvectors
for J = 1 (Case III]

BETA(THETA}
0.CC03CY
0.£00289
0.cQc2s58
0.£CCC50

-0.cco1c2
-0.c0c0C8
0.CCCCS6
~G.LCCCC2
0.CC0C34

0.CCCC21

BETA{THETA)
0.LCC954
0.0£C%523
Q.CC0441

~0.6CC026
-0.L0C533
-0.CCC5¢61
-0.€0055¢
-0.CCCa15
~0.CCCT713

=-Q0.00C634
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RESULTS OF EIGENVALUE ANALYSIS FOR MQODE NC. =

EIGENVALUE, LAMDA = Q.93242992E-03
CIRCULAR FREQUENCY= C.32748535€E 02
CYCLIC FREQUENCY = 0.521209862E 01

EIGENVECTOR
NODE NUMBER u
1 1.CCCCCO
2 0.5836746
3 04327492
4 C. 8233184
5 Ce 612774
[} 0.38£C0C8
7 Ca201447
3 0.116387
9 C.CC1222
10 (.0

{RAD
(cYc

hCo 2

N}

RESULTS OF EIGEMVALUE ANALYSIS FOR MODE NG. =

EIGENVALUE, LAMOA = 0.45404444E=03
CIRCULAAR FREQUENCY= (.46930C23E Q2
CYCLIC FREQUENCY = 0.74691515E 01

EIGENVEC TOR
NOUDE NUMBER ]
i C.0417C6
2 €. 040280
3 C.035458
4 Ca027547
5 t.01C783
& -C.CC%524
7 ~0.015659
g -C-C34695
9 -C.CCC315
10 t.C

{RAD
(cye

NC.=

)

« /3EQ)

LES/SEC)

1

W

0.103296

0.110498

0.102794

-0.025291

-0.125589

-0.086023

-0.035353

=0.027112

0.000072

0.0

- /SEC)

LES/SEC)

2

L]

04004300

0.006091

0.005462

-0.002940

~0.009216

-0.025900

-C.121383

1.000000

~0.000038

0.0

BETA(PHI)
-Q3.000103
=~0.000146

0.0000%1
0.000458
-Q.000849
=Q.000908
~-0.00Q¢550
-0.00G178
0.000040

0.0

BETA(PHI
0.008049
0.000099
0.000218
0.000%18
0.001064
0.004119
0018784

=0.009449
~-0.000409

0.0

Figure 44. Eigenvalues and Eigenvectors

for J

=

0 (Case 1IV)

BETA(THETA}

BETA(THETA)
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RESULTS OF EIGENVALUE AMNALYSIS FOR MQDE NCG. = 1

EIGENVALUE, LAMDA = (0.65626837e-02

CIRCULAR FREQUENC Y= 0.123440958 02 {(RAD./SEC)
CYCLIC FREQUENCY = 0,19646254E 01 (CYCLES/SEC)

EIGENVEC TCR NC. = L

NODE NUMAER ‘ u \) W BETAIPHI) BETAL{THETA)
1 C.15Q54¢C =0.960994 1.000000 0.001964 0.CCC225
2 C.150597 ~0.852253 0.887208 - 0.002252 0.CCC3C1
3 C.151097 -0.721275 0.751923 0.002737 0.CCC2E¢
4 C.177272 ~0.5T74626 0.579734 Q.002908 g.CCCc23
5 C. 195715 ~0.353469 0.331573 0.001818 -(0.CE6C145
[} f.1338%C ~0.2903930 0.191523 0,000948 ~Q.CCCCE3
7 . t.C13887 -0.118482 0.118339 0.000581 g.cccglz
8 0042228 -0. 086644 0.078310 0.001037 - =0l.0CCC33
3 C.CLCaal -0.000243 0.00G070 0000004 -0.0CCC12
10 0.0 .0 0.0 0.0 0.0

RESULTS OF EIGENVALUE ANALYSIS FOR MOUODE NQ. = 2

EIGENVALUE, LAMDA = 0.269567025E-02
CIRCULAR FREQUENCY= (.152567758 Q2 (RAD./SEC)
CYCLIC FREQUENCY = C.3C648136E Q1 (CYCLES/SEQ)

EIGENVECTOR NCas= 2

NOOE NUMBER U v W SET a{PHI] BETA{THETA)
1 —-0.589482 0.831177 -3.936211 =-0.005646% ~0.0CC814
2 -Q.583910C 0.531823 ~0.617660 -0.306129 -0.CCCER4
3 ~0.563248 0. 197905 -0.261878 ~-0.006708 ~0.CCC811
4 -Q.512021 -0.142429 0.162207 -0.006475 0.CCC21¢C
5 ~C. 3148635 =0.586070 0.684786 -0.003208% C.CCC3CT
6 -Q0e135211 -0.815325 0.923830 -3.000899 0.CCC971
7 -C.033480C ~0. 8775660 1.000000 0.30i77C J.CCC957
8 -C.C11863 -0. 903033 0.968144 0.010239 0.CCC574
9 | g.CCelsl -0.002618 0.0009%59 0.6000223 C.CCCC28
10 C.0 0.0 0.0 .0 0.C

Figure 45. Eigenvalues and Eigenvectors
s for J = 1 (Case IV)
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change decreases as the soil gets stiffer as one may notice
by comparing the freguencies of the four cases for the hori-
~zontal vibration results.

For the soft to intermediate soil case (Case I}, the
interactive eigenvectors of the second mode are drastically
different than the fixed case (Case IV) for both vertical
and horizontal vibrations, whereas there is not much
difference between the eigenvectors of the first mode for
the two soil cases. A similar but less predominant in-
fluence of the soil on the interactive eigenvectors 1is seen
in Case II (the stiff-shallow soil case). The eigehvectors
of Case III are very similar to those of Case I. This may
be attributed to the combined effect of the soil depth and
the shear modulus producing very similar compliances for
the first and third soil cases.

In spite of the insensitivity of fhe first mode of
vibration to the soil effect, the lower region of the shell
is expected to be relieved when these eigenvectors are to
be used in calculating the stresses. This is due to the
less severe changes in the eigenvectors near the base for
the interactive modes as compared to the fixed base modes.
However, a bigger gain will accrue from the second mode of
vibration which is expected to reduce the stresses near the
base dramatically due to the smoothing of the eigenvectors
at this region as can be observed from Figure 47b. The soil

flexibility has little effect on the third modes, but the
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small energy in this mode makes it inconsequential when
calculating the stress resultants and stress couples in
the shell. As expected, the overall flexibility of the
shell inéreases with decreasing soil stiffness as shown
by the comparison of the eigenvalues of the first three
cases to the stiff base case (Case IV). These reductions
in the modal frequencies may increase or decrease the
internal stresses when the response spectrum analysis is
carried out, according to the peaks of the spectrum.

This study shows that the soil fle#ibility or com-~
pliance is a very important parameter in the soil-structure
interaction phenomenon and that a given flexibility can be
realized by a non-unique combination of the basic parameters,
e.g., soil depth, shear modulus. This observation 1is in
agreement with the conclusions of Pandya and Setlur (16).
5.3.2 Response Spectrum Analysis

To assess the importance of soil-structure interaction
on the stress resultant and stress couples in the shell, a .
response spectrum analysis is carried out using the SHORSS
program with the same EBS of the four cases given in Table 6,
The structure-soil systems for the four cases are subjected
to a horizontal response spectrum with 20% g ground accelera-
tion (Response Spectrum, Figure 48). The soft to intermediate
soil case (Case I) and the fixed base case (Case IV) are
subjected to 13% g vertical ground acceleration, Figure 409.

A damping ratio of 5% is considered for the first three modes
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Figure 48. - Horizontal Response Spectrum
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Figure 49. Vertical Response Spectrum
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of vibration in all cases. The high intensity of the ground
motion is chosen for the purpose of approaching the case
of foundation uplift, if present.

The stress resultants and stress couples at § = 0°
for the shell are given in Figures 50 to 54. It can be seen
that the fixed bhase or stiff soil case produces resultant
forces which envelope all soil cases, except for N¢ com-
ponent where the soft soil case (Case I) is the critibal case.
Therefore the site parameters are indirectly accounted for,
except for N¢, when fixed base condition (Case IV) is used.

No significant amplification due to suspected resonance
effects is seen in the stress resultants and stress couples
for Case III. This is due to the fact that the rocking and
swaying motions tend to suppress the response of the .
structure at the fundamental frequency of the fixed base
structure. This observation is in accord with the
Pandaya and Setlur results (16).

The increase in the meridional stress resultant N¢ as
the soil stiffnesé decreases can be explained by comparing
the u=-component of the eigenvectors in Figures 46 and 47 for
the soft and stiff soil cases. It can be seen that the u-
displacement in the lower half of the structure increases
as the soil stiffness decreases, which brings about the

higher values of N, for the soft soils compared to the stiff

¢
soils. Although the shell thickness may not be affected by
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this higher meridional stress, special attention should be
directed to the adequacy of the vertical steel in the lower
half of the shell.

As predicted in the previous section the reduction of
the square root of the sum of squares (RSS) stress re-
sultants and couples in the responses as the stiffness of
the soil decreases is due mainly to the second mode of
vibration as can be observed from Figures 52 to 54. This
reduction, which is of the range of 20 percent of the fixed
base scolution, may reduce the thickness of the shell as
well as the horizontal steel in the shell and thereby may
cut considerably in the structure cost.

The axial forces, bending moments and twisting moments
in the columns are calculated using SHORSS program at_e = 0°.
Tables 7 and 8 show these responses for the four cases. For
the vertical ground moticn the effect is mixed, while the
axial forces are reduced for the soft soil case (Case I), the
moments for the same case are increased compared to the
fixed base case (Case IV), see Table 7. It may be
seen from Table 8 that there is a sharp decrease in the axial
forces and bending moments as the soil stiffness decreases.
The decrease in the bending moment may be attributed to the
smoothing of the second mode shape (Figure 47b) in the lower
region, whereas the 15 percent reduction of the axial forces
may be due to the reduction in the total base shear as a

result of a smaller input motion.



Table 7. Maximum Column Forces at ©® = 0°(Vertical Ground Motion)
Bending Twisting
Axial Force (K) Moment {K.ft) Moment (K. ft)

Mode FPixed Case 1 Fixed Case I Fixed Case I

1 351.8 256.3 17.1 13.5 0.19 -0.25

2 9.9 -1.8 47.0 79.9 -0.76 -3.44

3 32.3 -~24.0 5.9 92.7 -0.17 3.08

RSS +352.0 t256.5 £50.1 x126.0 (.80 +4.65

~19T~



Table 8. Maximum Column Porces at 0 = 0°(Horizontal Ground Motion)

Axial Force (K)

Bending Moment (K.ft)

Twisting Moment (K.ft)

Mode Case I Case II Case III rixed Case 1 Case IT Case IIX Fixed Case I Case II Case III Fixed
i 539.7 592.9 543.3 826.8 160.2 88.8 153.6 160.5 ~14.4 -1.7 . -13.1 -6.1
2 ~450.1 ‘~-364.4 ~-451.2 -141.3 166.5 143.4 157.9 615.1 -30.3 7.8 ~28.6 -17.2
3 0.2 -42.2 1.1 -19.6 1.0 398.8 9.4 17.5 -0.1 16.4 -0.3 -0.1

RSS £702.2 £697.2 +706.2 +838.9 | +240.3 +432.8 $220.5 +636.0 +33.7 +18.2 t31.5 r18.2

-Z9T~



-163-

The twisting moment in the columns increases as the
soil stiffness decreases. However, the values of the
twisting moments are not large enough to be a controlling
factor in the column design as can be seen from Tables 7
and 8.

‘The response of the concentric ring footing for the
vertical and horizontal ground motions is given in Tables
9 and 10 respectively. The results presented in these
two tables are the complete solution which consists of the
continuous boundary soluticn and self-equilibrated correction,
see Figure 15. In the self-equilibrated correction, the
SHORC program is used to calculate the Fourier coefficients
for the lcads and the resulting self-equilibrated loads are
applied as line lcads at the top of the beam which is
modeled as two rotational shell elements. The highest har-
monic number used in expanding the self-equilibrated loads
was 440, The lower boundary of the footing consisted of
static springs with zero masses and damping, i.e., the
correction is carried out as static self~equilibrated forces
as explained in Section (4-3-3) using SHORSS program.

Table 9 shows that the scft soil case (Case I) gives
higher values for the axial force and bending moments,
vertically and horizontally, compared to the fixed base
case (Case IV). The values of the fixed base response are

unrealistically small due to the restriction imposed by the



Table 9. Foundation Response to Vertical Ground Motion (RSS)

Soil Case Axial Force V. Moment H., Moment Torsion
(K) (K.ft) (R.£t) » (K.ft)
Col. +269.7 £387.0 Ill?.l £207.3
Case I -
Field £270.2 +436.6 +120.3 £172.9
col. +47.6 +68.2 ¥20.4 +575,1
Case 1V -
Field £47.3 +69.8 £27.5 +491.2

Sign Convention:

Axial Force:

Bending Mom, :

(+ve) for tension

(+ve) for tension in bottom or inside fibers

Torsion: (+tve) clock-wise rotation

=791~



Table 10. Foundation Response to Horizontal Ground Motion (RSS)

-G9T~

50il Case Axial Force (K) V. Moment (K.Ft) H. Moment (K.Ft} Torsion (K.Ft)

[ ] co1.  rield col. Field col. Field Col. . Field

0° | +1867.4 +1805.7 +10953.2 711837.4 F809.2 t911.6 +3767.7 +4340.5

case T 90° +152.4 o 1152.9 *715.7 F731.6 ¥ 32.7 t64.4 +*7762.0 $7699.3
o 1+1385.0 11361.6 +6705.0 37007.8 §620.7 t701.0 15013.1 £4897.6

rase T 90° +141.6 $150.7 1682.3 $695.9 724.1 +54.9 +*9267.4 +9226.3
0° 1£1751.1 +1691.8 +9817.4 F10911.1 F752.5 +839,6 | +4266.1 +4703.8

Case 111 90 +146.7 £152.2 £700.5 $715.9 F30.8 t62.8 +8117.7 +8100.4
| | +392.4  <388.8 +745.7 3699.0 $110.0 £118.1 16936.2  £5988.1

Case 1V 90° £23.0 £27.7 £47.7 +50.6 £6.7 7.2 £11207.0 +11200.6

The sign convention as in the vertical ground motion, Table 9
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fixed boundary assumption. However, the torsional moment
for the fixed base case is higher than that for the soft
soil case, which could be due to the same reason discussed
in connection with the axial force and bending moments
response in the footing. Similar observations could be
made for the results shown in Table 10. The three cases of
soll structure interaction give responses for the axial
forces and bending moments sharply higher than the fixed
base response, while the torsional moment gets smaller as
the soil becomeé softer. The convergence to the fixed base
results, as the soil gets stiffer, is evident from Table 10.
Incidentally, the values presented for the vertical moment

are computed from Ne'results along the footing depth, since

the vertical bending moment corresponds to the rotational
degree of freedom about the normal axis which is neglected
in shell theofies (50).

The analysis of the ring footing is repeated for the
intermediate to stiff soil case (Case II) using the RSS of
the column reactions given in Table 8. The STRUDL-II pro-
gram (53) has been used for computing the forces and dis-
placements at different nodal points along the circumference.
The ring footing with the soil is modeled as a space frame
with six degrees of freedom per nodal point, Figure 55. The

bearing stiffness and the horizontal frictional stiffness



*Y
: 3 61

— o
X
63 123 -
SIS S S S
ELEVATION ' '
9:00%4{ ----- 6 =180°

K |

~L9T-

Detail A PLAN

Figure 55. Ring Footing Soil Model for STRUDL Program



-168-

of the so0il are modeled by axial members with the same
stiffness of the corresponding soil component such that:
for vertical members

EA
~Ez = (Bearing Stiffness) x Nodal point spacing

and for horizontal members

EAh

T = (Avg. Frictional Stiffness)x Nodal
o

point spacing

The connection between these axial members are designed to
allow for only axial forces in the so0il model by releasing
the other five degrees of freedom at the start of each
member (u, to us in Figure 55). The release is done on
the local level for the member with u; parallel to the
member axis.

The results of the épace frame analysis are presented
in Figures 56 to 59 for the axial forces and the moments.
On the same figures the ring forces at € equals 0°¢, 4°, 40°,
45°, 86° and 90°, using SHORC and SHORSS programs ,are
plotted for comparison.

It may be seen from Figures 56 to 59 that the rotational
" shell element model gives smaller response than that obtained
using space frame model with straight elements. This may be
due to the approximation used to expand the self equilibrated
forces in Fourier series modes for the rotational element

model. This approximation might underestimate the actual
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forces from the columns on the ring footing and, as a
result, produce smaller ring forces, especially the axial
force and torsion, Figures 56 and 59. The difference of
the results may be explained by comparing the lower
boundaries of the footingvin the two models., While the
boundaries are continuous in the axisymmetric element
model, program, they correspond to a point bearing (dis-
crete) boundary in the space frame model. PFurthermore, the
use of straight elements in STRUDL program is expected to
increase the bending moment in the ring footing which can
be observed from Figures 57 and 58.

From the results the big difference between the re-
sponse of the two models arocund the second node is notice-
able. The disagreement could be due to the deviation of
the first two elements in the space frame model from the
equation of the circle since node number 2 is shifted in
the x-direction such that the global value of the x-coordinate
of node number 2 becomes zero to allow the boundary con-
dition at the first node to be parallel to the global axes.
These boundary conditions at the line of symmetry (z = 0),
which allow for the rotation about the z-axis, are
responsible for the unrealistic zero torsion at 6 = 0°,
see Figure 59.

In spite of the above boundary, geometry and loading

differences in the two models used for the analysis, the
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results are fairly close and give some confidence in both
models while eliminating the possibility for gross errors.

As mentioned in Chapter 4, the model is correct only
after a check for the foundation uplift is carried out.
This check could be performed at the continuous boundary
result level without the need for the self-equilibrated
correction. This is because the overall behavior of the
foundation is shown from the continuous boundary results
alone, which may then be combined with the dead load
results to check against the possibility of foundation
uplift.

To check against foundation uplift, the N, component

¢

of the stress resultants is computed at the foundation level

for D.L., factored by 0.9 and then added to the unfactored

earthquake response. The results are tabulated in Table 11.
It can be seen from Table 11 that the net stress at

the F.L. for all cases is compression and no uplift occurs

for the severe 20% g spectrum used in the analysis. However,

we can see that the softer the soil the more likely the uplift

to occur. To investigate this possibility more closely the

vertical component of the earthquake may be included. The RSS

of Nq|> at the foundation level for the vertical and horizontal

ground motions for Case I is computed and the net value for

N¢ is found by combining the resulting RSS wvalue of N¢ with

the factored D.L. value. The net value of N, 1s computed

o

from the eguation:



Table 11. N - Component at F.L. (J = 1)

¢
Case I Case 11 Case III Case IV
D.L. 0.9(D.L.)
EQ Net EQ Net EQ Net EQ Net
-77.8 -70.0 64.8 | -5.2 59.2| ~-10.8 61.9| -8.1 58.3| -11.7

Units: K/ft.

~SLT-
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Ny (net) = (N2 + n2 y1/2 2 0.9 N, (5-5)
h v d
where
N¢ = N¢ at the F.L. due to horizontal ground
h motion
N¢ = N¢ at the F.L. due to vertical ground
v motion
and N¢ = N¢ at the F.L. due to the dead load
d

For Case I N¢(net) is computed from Equation (5-5), with

N¢ = 29.8 K/ft, and the resulting value of N, (net) is

o)

v
found to be a tensile stress of 1.3 K/ft which can cause
uplift. However, N¢(net) is probably too small to cause

a real uplift as this net stress could be counteracted hy

the soil friction on the sides of the footing.
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6. SUMMARY AND CONCLUSIONS

A numerical method to determine the reséonse of axi-
symmetric shell structure soil systems to arbitrary non-
axisymmetric dynamic loads was developed and applied to
some particular cases. The method carried out with finite
element analysis using high-precision rotational shell
elements to represent the axisymmetric shell and isopara-
metric solid elements with an energy transmitting boundary
to represent the soil medium. The connection problem'between
thelthree dimensiocnal soil medium and the two dimensional
shell-elements is solved by introducing a frequency dependent
dynamic boundary system at the common degrees of freedom
between the shell foundation and the underlaying soil. The
Fourier expansion technique is used in the finite element
analysis. The soil model components were computed at the
fundamental frequency of the shell structure without the
soil system for the free vibration and the response spectrum
analysis, whereas the dominant driving frequency of the
time history excitations (54) should be used with the time
history analysis which has not been carried out.

It was shown that the size of the finite element mesh
is controlled throughout the dynamic pressure bulb by the
shortest shear wave length and that such bulb exists through
a depth of one and half times the footing radius. The

influence of the lower boundary on the so0oil model components
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is significant only for depths less than three times the
footing radius due to the reflections of the waves on the
assumed rock-soil interface which tends to increase the
stiffness elements and decrease the damping elements (con-
vergence to the fixed base cases). Based on the dynamic
pressure bulb study an econcmical finite element mesh for
the soil medium was suggested for use with shells having a
small B/rO ratio.

The sensitivity study of the equivalent boundary system
to the driving frequency showed that the stiffness elements
are more sensitive than the damping elements, and among the
different components, the rotational ones are the most sensitive
to the driving frequency. A similar conclusion may be drawn
for the sensitivity of the EBS to Fourier harmonic number J.
It is also concluded that the EBS components are fairly inde-
pendent of the harmonic number J for J > 1, which suggests a
useful procedure to determine the EBS components for J > 1
with the aid of a single harmonic number (J > 2) analysis.

The free vibration analysis of a cooling tower on a
shallow foundation showed that the overall flexibility of
the shell increases with the decrease of the soil stiffness
and consequently, gives a reduction in the inertial forces
on the shell. The study also revealed a dramatic change in
the second mode of vibration as the soil gets more flexible.
This relieves the lower region of the shell (column supports

in cooling towers) from the high stresses which often occur
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when the soil interaction is neglected. It is concluded
from this study that the soil flexibility or compliance

is a very important parameter in the soil-structure inter-
action phenomenon and that a given flexibility can be
realized by a non-unigue combinétion of the basis paramaters.
This finding is in agreement with Pandya and Setlur con-
clusions (16).

The importance of the soil-structure interaction on the
stress resultants and the stress couples in the shell was
shown by response spectrum analysis of the cooling tower used
in the free vibration analysis. It was shown that the fixed
base or very stiff soil case produces resultant forces

which envelope all soil cases, except for N, component. The

b
reduction, which is of the range of 20% of the fixed base
solution, may permit reduction of the shell cross section
and the horizontal steel in the shell resulting in a con-
siderable cost savings. Perhaps, the segment in the shell
structure most affected by soil-structure interaction are
the column supports as may be seen from Tables 7 and 8.

The saving in the stresses may reach 50% for certain soil
flexibilities.

The analysis of the concentric ring footing, which has
not been studied previocusly so far as the authors can deter-
mine, showed a tremendous twisting moment on the footing
which increases with increasing the soil stiffness. On the

contrary, the axial force and bending moments increase with
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decreasing the so0il stiffness. With the present model,
the footing can be analyzed as a ring resting on a con-
tinuous elastic foundation, bringing forth the axial
forces and the torsion which were not possible to obtain
with the continuous beam over point support model used
before. Confidence in the ring footing response is es-
tablished by comparing the present model results to the
results of a space frame model.

The possibility of foundation uplift increases with
increasing the soil flexibility. In the design earthguake
considered here, uplift could occur only if the two com-
ponents of the ground motions were considered simultaneously
(vertical and horizontal components). However, the net
tensile stress after adding the dead load effect is too
small to cause a real uplift as shown in the analysis.

The free vibration and the response spectrum analysis
for the shell of revolution-soil system may be adequate
for linear analysis under uniform earthquake excitation.
However, the damping ratio for the response spectrum
should be chosen such that the radiation damping in the
far field is represented. The relationship between this
damping ratio and the radiation damping needs further
study. Further investigations are also required to
study the relationship between the damping ratio and
the viscous damping where complex Lamé constants of the

soil material are used.



-181-~

The effect 0of non-uniform earthquake exditation may
yield further reduction in the structure response due to
the inherent self~diminishing feature to this type of
earthquake excitation as suggested by Scanlan (19).
Time-history analysis mayrbe necessary with non-uniform
earthgquakes and for better understanding to the damping
phenomenon of soil-structure system. These two topics

need further investigation as well.
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APPENDIX 8.1

High Precision Rotational Shell Elements

In this appendix, the ocutlines of the derivation of
the high-precision rotational shell finite elements is
presented. These may be classified into four main groups:
curved rotaticnal elements, cap elements, plate elements
and special open type elements (see Figure 60).

For the shell elements, the strain-displacement re-
lationships used in the formulation include the effect of
transverse shear deformations. In forming the element
stiffness and mass matrices, displacement fields of
arbitrary order, i.e., linear to sixth order, can be used,
and because only C° continuity is reguired to be satisfied,
the extra coefficients in quadratic and higher order dis-
placement-fields are eliminated by kinematic condensation
at the element level. Proportional damping is assumed
and the damping matrix is arrived at through a linear com-
bination of the condensed stiffness and mass matrices.

To overcome the singularity problem in the case of a
cap element, R = 0 and R' = » at the center, a suitable
rotation of the coordinate axes into the R-Z system as
shown in Figure 61 is considered (6).

In case of the open type elements, the displacement
fields are taken as Hermetian polynomials. The stiffness
and mass matrices are formed by distributing the propertieé

of the individual members around the circumference.
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N g—

Figure 6l. Rotation of Axes for Cap Element
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8.1.1 Geometry of Elements

The geometry of a general rotational shell element
is shown in Figure 38. Points on the mefidian of the
element are defined in terms of the non dimensional para-

meter s such that:
0
S-i (e.1.1).

where

I, = the length of the meridian of element "i"

Ziy1l L
= f [l + ( ) ] az (8.1.2)
Z

in which 2z, and Ziv1 T the nodal stations for element i.
The above equation must be evaluated numerically. In
order to arrive at the terms of the element matrices in
explicit forms, definitive geometric parameters, like
l/R¢, 1/R, cosd, etc. are expressed by fourth degree
Lagrangian polynomials (41) which satisfy the wvalue of
these parameters exactly at five equidistant points along
the meridian, including the ends.
8.1.2 Displacement Fields

Each displacement component shown in Figure 39 is
considered a product of the meridional and circumferéntial
fields. The meridional field is a polynomial in s and the
circumferential field is represented hy a finite Fourier

series. For a typical harmonic
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{03 (s,8)} = lo] {B7 (s) (8.1.3)
where
o] = [g?ce) g2(o) g2 (8 (o) gl(o]
(8.1.4)
and
Ble)l = (wls) vis0 wiis) 83(s) 8l(s)}
-1 -2 -3 -k .‘ -5 (8-1.5)
= {d (s) d (s) d (s) d (s) 4 (s)}
In Eguation (8.l1.4}),
gj(e) = cosjé for j > 0
= -s5injo for j < 0
§j(6) = =-3injo for j > 0
= cosjb for j < 0
and in Equation (8.1.5)
dt(s) = an interpolation polynomial
m.
l L]
= > & (i=1,...,5) (8.1.6)
k=1
where Nk are the shape functions, as defined below
N, = (l"‘S)
(8.1.7)

N, = 8

N sk—z{l-s) for k > 2
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a% = the displacement at s = 0
a% = the displacement at s = 1

For further details see Reference {35).

8.1.3

Flement Stiffness and Mass Matrices

Cn substituting the assumed displacement fields into

the strain-displacement relationships the following ex-

pressions are obtained:

The membrane straln components,

Ma

tet} = Y 18] 5] BY md...100 03,0030

=
m2
> 1edita 03,001 © (8.1.8)

J=-m,

The curvature components,

x} = ):[xl x) xd %3100 097,000

j=-m

m2 » 3 2

> 1ed1alil oldl (8.1.9)
j=-m, |

The transverse shear strain components,

ma

vy = Z[y?-yg 7 YE-~--]{A[j]fﬂ[j]}

j=-m;

> edra il B (8.1.10)

J=-m



-190-

where

{e}
{x}
vy = od v

- {Aj,Qj} = [‘ejj {Aj,ﬂj}

I
ey
m
M

il
——
>
-
=<
« <D
¢
=
D
[

Jv _ rwd o1 3 Q3 L3 3,3 .0 23 L3
{A } - {uﬁ v WO B(bo Beo ul Vl wl B‘bl Bel}
{09} = {ad bl <] a & al bl cJ..... }
Expressing
1631
J_ 3
G’ = [G3] [ejj (8.1.11)
J
G
(631
gxM
where ’ 5 |
M=2+ 2: (2+ni), and
i=1

n. = the number of internal nodal variables

for the ith field

]
i

The matrices Ei, xg and y: contain the shape function
Ni and are given in (41).
The element stiffness matrix for the jth harmonic

becomes

I

l >
K9] = T f f 16317 1] 167 1rRa6as (8.1.12)
D -I
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The kinematically consistent mass matrix (35) corres-

ponding to any harmonic is expressed by

1
[m] = IL ,/; (¢™ T 5™ (6™ rds (8.1.13)

8.1.4 Constitutive Relationships
The relationship between the force resultants and

the strain components are expressed by

{n} = [H]{e} - {m.} (8.1.14)
where
{e} = {eq, €o7 €7 X7 Xgv X7 Yor Ye}
[H] = the (8x8) elasticity matrix
and
{Nt} = the initial stress-resultants and
stress—-couples due to thermal
effects
= {Ntd), Ntet Or Mt(b’ Mter 0: O, O}
For an isotropic shell material (50),
h/2
BEa
N,, =1N_, = 37— T(g)dE
t t§ 1-
? Vodno
h/2
M, =M, = 28 f T(E) £dE (8.1.15)
té t8 1-v e

-h/2
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where

a = the coefficient of thermal expansion

T (&)

the temperature difference from the
reference value for any point located

at a distance & from the middle surface.

The constitutive relationships for the open type
elements is presented in (35).
8.1.5 Element Load Vectors

The consistent load vector (35) for an element due
to distributed loads, fg, fj, and fg acting along the ¢,
9, and § directions corresponding to harmonic j is ex-

pressed as

1

{Pg} = Lf [Gm]T{Gf]{Fg}Rds (8.1.16)
where 0

[G™] = [M1sM2snarmuren..]

ﬁi = [N, N;, N;, 0, 0]

651 = (A1, 7l

R, = IIN, &, 8, 0, 0]

N = (l-s)

N, = s

wdy = ael o6l 6L 6L, 1)

The consistent load vector due to the thermal effect is

expressed as
1

{P%} = IL{ J/. [Gj]T[Ht][Gt]ds){Tj} (8.1.17)
0
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where.

Jv 2 g J b j

(ly = (el o, 12, Tl

[Ht] = a matrix contains the material constants
8x2

and the shell thickness

[Gt] = a matrix of the shape functions

2x4

The details of Ht and Gt are given in Reference (41).
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APPENDIX 8.2

Details Of Stiffness Matkrix For An

Iscoparametric Sclid Element

This appendix presents the details of the 24x24
stiffness matrix components of a quadratic isoparametric
solid element for a general Fourier harmonic J. The
shape function o, and first derivatives are given in
Table 1 , which are chosen to represent the element geo-
metry as well as the displacements within the element.‘
From Equations (3-6) to (3-9), using thé partitioned form

of B, D and % matrices one can get

- —

frl
(b?iD1b11+bngszl) | (b?1D1b12+b§1D2b22)
. 16x16 | 16x8
o ff |
T (8—2-1)

|
l

8x16 | 8x8
|

24x24

= the stiffness matrix of the kth element.

and with Egquation (2-1l1l) we can write



b - a_g_n .
1n ar !
b2n = b2s =0
g
U £
b3n r !
b, = Sy
4n 3z ’
Jg
_ n
bSn I !
bﬁh = ( ’

where

(n = l,.}.,8)

(m = 9...,24)
(’Q'= 9]1.1,16)
(s = 17,...,24)
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1m

2%

32

42

5%

64

It

i) -
 9(2-8),

Using the above values of the B matrix

yields ’

* b?l D; b;; + bgl

-jg(s=16)
3s r

ds

5s or r
b - 89g(s-16)
6s 3z
(8-2-2)

in Eguation 8.2.1

D bgl‘ I i D (8.2.3)

l6x1l6

where sach of Ky, Ki2 and K,, are submatrices of order

8x8.

* b?l Dy, bay + b?l

b]_z = —_—— = (8.2.4)

16%8
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P T p =T . =T
* (b3 Dz bya + b1y Dy bia) 7 = [K13: KzJ (8-2-5)

8x16

T T =
* bza Dz bys + biz D1 by = [Kai (8-2-6)
8x8

In Equations (8-2-3) to (8-2-6) the elements of the sub-

matrices are deflned as:

=
]

1lmn (A+2u)[gm,r 9n,r ¥ Im gn/r]

A
+ (9 In,e ¥ 9n Im,r) T M9,z 9

Z n,z

r iz g g,

KlZmn A[gn,z(gm,r + gm/%)] + ugm,z gn,r

- - . . l

Ky amn jugm(qn/ﬁﬂ,r - gn[kgm'r+(k+2u)gm/%]

z = ' iy

Ksomn (A+2u)[gm,z gn’z] + u[gm'r gn'r] (D) 9, 9,

- _ i ]

K23mn Wy gm gn,z r Agn gm,z

K = (A+2p) ()2 + uf (EE) r(ig) r + )
33mn M)Ay Im n HLT ™7 r '/ gm,z gn,z

(8-2~7)
where (m=1,...,8), and (n=1,,..,8)
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Now, the element stiffness element Kk can be written as:

B
Klll Ki2 | Kis
Kk = ff E?g f Rgz ; Eza rdrdz (8?21"8)
___—ﬁ-———“#___—
_T _T —
K13l KzaI K33
[ J

and with the transformation of Egquation (3-12) together
with (3-17), the submatrices of Equation (8-2-7) can be
expressed in terms of the natural coordinates & and n,

as follows:

(A+2n) (TJ;, I, ¢ + IJ;2 gm,n)(IJll 9, + IJ12 9y, )

Kllmn n

A
Ea[gm(IJll I,z + IJ,2 gn,n)+gn(IJ11 gm,£+ IJ:2 gm,n)]

+

+ u(IJdq; gmlg + Ida2 gm,n) {(IJ21 gn'g + IJ22 gn’n)

J 42 -
Kiomn = M (IJ21 9,z + IJ32 gn,n)(IJll I, £ + IJ:» gm,n+gm/RG)
+ u(IJ,, gm,E+ IJs, gm,n)(IJll gn'€+ IJ1, gn,ﬂ)

(8-2-10)
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= B AJ
Kysmn = &g In (P11 I, 2" Ldi2 In,

- - Ad .
n " In/rg) T RE In

(0 +
(1J1, gm}g + IJ:, I ) - (At+2u)

N (RG) 2 m n

(8-2-11)

Koomn = (A+21) (IJ,, m, £ + IJ;, gm,n)(IJ21 Iy, £ + IJ22 gn,n)

+ u{Id, In, € + IJ;. gm,n)(IJ11 In, ¢ + Idiz2 g )

n,n
+ (%E)zu 9, 9, (8-2-12)
I?23mn = %% I (121 In,2 * L322 gn,n) - %%'
9p(TT21 G ¢ + T2z 9y ) (8~2-13)
Rygmn = (250 OW2Wgy 9, + ul(Ider gy , + W22 gy )

+ + +
(132, Ip, e ¥ 122 g, ) (IT:1: I, g ¥ TJ12 9

i m,n

= 9p/re) (1911 9, ¢ + T2 g = 9 /RG)]  (8-2-14)

n,n

In the above equations IJ;:1, IJi12, IJ2: and IJ,2 are

defined by Equation {3-1l), and;
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{m =1,...,8)
n=1,...,8)

The final stiffness matrix Ky is obtained by sub-
stituting Equations (8-2-9) to (8-2-14) in Equation

{8-2-8), and with Equation (3-18), one can write

r—— E - i_ =
K K | K
llmn E l2mn | 13
IS I SR, _
el g i I'g
Kk =Jr Jr 12mn | 23mn Q 23mn RGdet.Jacdfdn
-1 -1 _JF___MT*;T.___.+ -
K13 K23 | X33
mn | mn
| |
24x24
(8~2-15)
(m=1,...,8 and (n=1,...,8)

The integration in the above equation is carried out by
means of four points Gaussian integration with the natural

cooredinates &, 1.
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APPENDIX 8.3

Listing of SUBASE Program

SUBAS
SYSTH

PRIGR.

Aenumsscepens

E §5 & SPICIAL PROGRAM TD BF USED IM SMELLS OF REVOLUTIDN-SCIL
M MODEL YNOER GYMAMIC LOaADS

AMNED 8Y 0OSAMA MDUSTAFA EL-SHAFEE ... FE8. 1973

MALN
1NPYT

10
NJF
Ly
NCOL
MOE
Ao
AL ANO

ALALT
HITY

NOTE

orfy)

LImeT

PROGRAM ( DATA AND DATA GENERATIOM )

DATA NOTATIONS

DIHENSIONLESS FACTOR FOR THE INPUT FREQUENCY

TOTAL NUMBER OF FOURIER HAAMONICS

TOTAL NUMBER OF LAYERS

NUMBER QF COLUNNS EN THE FINITE ELEMENT MESH

PRINT CUT PARAMETER  IF MOE » 0 NO INTERMIOTAT RESULTS
TO RE PRIMTED OuT

n THE OQUFER RADIUS OF IME =M. COLumwn
4111, AMURTT1RUELIT]  ARE THE MATERIAL PROPERTIES OF ELEMENT |

YednutE a0t ARE THE MATERTAL PROPERTIES QW LAYER |
THE THICKNESS DF LAYER I

san {F THO OR MORE ELEMENTS{LAYEAS) WITH SUCCESSIVE NUMBERS
HAVE THE SAME PROPERTIES . ONLY THOSE OF THE FIRST OF

THEM NEED TQ BE GIVEM , wilM THE LAST ELEMENT'S(LAYER*S]

PROPERTIES HUST ALMAYTS JEEM GIVEN.

+0R121  THE PERCENTAGE DAMPING RAT[C OF THE FIAST TWO MQDES

ATI0MS sevns

MAXIAUM NUMBER 0IF ELEMENIS 5 20
MAXIMUM NUMBER OF LAYERS 1S & -
NAXTHUMA NUMRER O COLUMNS IN THE F.E, MESH IS &

CONMON ENLIZ84 240 o SHIC 24,240 340100 ADI,9) A8 L9, 93 ,45{ 970,

-anme e

ARA1I30, 3814400036, 361 30EE{ 384360 ,2G0(36, 380 ,a551 364381,
R35126, 3604 136,300, 21300380 01265, H1138) cEF362,001782,
RX(Z6e8Y 4 IXTT00 A1 (ALANOATZA) CANHE 2] JRUET24) L ALATO I, RUTAS,
ACTL 141, AR08 L HEB) OREZ) L SMI190, 1901 . NO(B0. 3D HE120.80.
NYEU2) NRSE34) N0 {20424}

WRITEL6e 106D

READC
READT
IF

READ(

HHaf

8.25F ACQ .,
3013 NIFE. ML NCOL L NOE
NL . G

T ., 4. JR , NCDL . ST . &} GO TO 200
50250 1RCOLIL) . TagoNCOLY

OYAL NUMSER OF NODES , NEwTOTAL NUMBER OF ELEMENMTS

MCLlwFIRSS COMMON NOQE BETWEEM THE SOIL AND THE FOUNDATION

L0 ]

L
NE «
F 1
NC 1=
RO

READ

4 READ

e

J
R
1
d
x

Tenps

IF1y
Fid
o0 3
AL AHD

m
>
o

“ae

(Fia
ey
oo L

THE VERTICAL 3OUNDARY RADIUS

TIONCDL = 2)4NL » 2enCOL » |
NCOL * NE

NE . GT , 20) GO (O 290
2eHCOL -

RCOLINCOL !

THE ELEMENTS AND THE LAYERS PROPERTIES

54353 DL ALAMUAL 1Y, ANUELT ) RUELT)
+ 1
- § ‘

« EQ < NE) 6O O %

+ B « I} 6O fO &
N K

ALNE & AL AMOALL)

~ - ARUEIL)

' B RUEILY

« LT . NE) GG 7O &

54350 [LACALED cAMUL L. AUETF AtL)

K3

-

« EQ « NL} GO 50 12
« €0 . Y GO O 19
LA 11 3

ALALNY = ALA(L)
AMUINY ¢ AMUIL)Y

RUINE
LY HINF
1 =1
1Rt

LUIE N

12 0o %
0Q 5

5 NOt{.
am

Uity =

. AUILY
- HIL)

« LF . ) 60 TO 10

EN) COUE NO. OF TME NODE { IN THE THREE DIRECTIONS |
4= FOR U
2 FOR W
3 FOR v
NG = O FREE
1 FIXED
T = Loon
4= a3
Jdr a0
FRIQUANEY OF THE EXCITTING mOTION
9.

Han

LT

an

oon

[1Xal

Saon

RIR = 0.
00 TT P o= LeNL
YLD = Ut + AMUTRY

T RIR 2 RIR o RULND
QM = AD + SQRTIVIU/RIRY 7 RO
2 e 0a
NERTo 42 NOOE NUMBER OF ELEMENT ! STARTING FROM THE UPPER

LEFT CORMER IN CLOCRWISE DIRECTION

00 100 [ & 1.ML
NIN = {(=1)wi3shcoL + 27
D0 90 S = f.NCOL
dard-1
K o= fl=tyewcot » 4
D0 30 L = |y8
Lot =
ML{KL) = NN+ o,
IFfL o EQ o &) NRIKGL) w MI{R4L) » ZSNCQL = J
1E(L & EQ . 5) MITR.L) » MLIKGL) + 3*mCOL
1FIL - GT o 57 HEIReL) « NUIX4LL) = L

80 IFIL . ED . 8) MIIK.L) o NUIRGL) - (NCOL + J - 11
NN = N1(K,2)
(FtJ « GT . 11 GO TO 43
Ll = NLIK. 1)
L9 = HUin, 8)
NO(LI. L w
“0iLied v 1
HO1LB. 2} =
ND(LAL3)

REATeJdIaTX(Y,J) ARE THE RADIAL AND THE AXLAL COORDIMATES OF NOOE o
IN ELEMENT T

AX(KalY * 0.
AXAKTH » Qe
RX(K 8D » Q.
AXIK.2) % RCOLGLY /7 24
RX{Ke&] = RCOLILY /7 2.
GO o A8

93 RX{K+1) % RCOL(IJD
RALKTY = RCOL{JSD
REAX.8) & RCOLIJJ)
RR(Ke2) v (REOLLJID » RCOULIMN 7 24
Rgixesh o AX(K, 2H

86 Ax1K«30 ¥ RCOL(J?D
AX(Ke4) = ACOLIN
RAARe3) & RCOL{JID
13K k) = 2IX
XY = 22X
INEK.3) % 22X
IR 8] = 22X o WEE) / 2.
INIRoBY » ZZX & HUID 7 2,
IXIRF) = 22X » MElM
IXIedd = IZX + WD

90 IXIKeT) * 2ZIX + HUID

190 IIx = IXIK.7)
READ(S. 231 OR{11,0R¢2)

neily THE | TH. Y. BOUNCARY NOOE NMUMBER {121 AJ G. LEVEL}

a0 9% I » [eNL
K = | & NCOL

94 AVIL) T MUK,
9% CaMTINUE

NDL « NN < ZeNCOL
O 99 1 * NOL.NN
03 3 J = 13
NDi1ed] & 1

M2 2= M

PRINT QUF THE DATA ANO THE GENERATED DATA

WRITELBL 66D OMe AT

WRETELS: 106)

WRITENSe LOTY NIF o NL ¢ NCOL (NOE» NNy NE | NC L
WRITEES, 108 1{RCOR (T Vo [=14nCOL)

WRITE( &y 109D

WRITELSs iOSMIALATRIGRUTT YL AMUTT Y Tl oNLY
WRITEIS: 1090

WRITE 6y LORD{ALANDAL 13 AU vAMUETE] (I=i (NED
WRITEY6, 109}

WRETE(S. 1081 ORILILOREY

ARITE(By 104)

WRITELS, 20714 (NLL T+, 0" LaBha It NE]
wRITE 64 1091

WRITEESy LQTI{NVIID, [xLoNL2)

WRITEESs 101

WRITE Oy LOTICIMOE 4310 d= s TR 1NN
WRITE &, 106}

MALFE Gs LOBICIRNETS 2D, X1 T,0) v dmha Bl Enl NEY

CALL CODE{NM.ME.NL (NS, NUNY
CALL TOTALINUMINCLoNE (NJF ML o OM RO NOE )

200 HRITE1Ly G656}
S10P

FORMAT STAaVEMENF

LS FORMATI16151

2% FORMATI9FL0.00

35 FDANAT{ (3,48 10,01

&8 FORMATEINE. 2Ro 2720 FHPI0K ' UMEGA =2 (FL12.84 100,140 =1 PALA/77 )
106 FRRMAFCLNL,2X 7/ 1}

107 FORMAF (226134

108 FORMATE/EF1S,6)

109 FORMATL/ 7y /5X," . 1
668 FORMANLIMU 2R 2/ 7FFL I TSI AELLRILIF2PI0QNL 048 STQR  wand /147 1F
SLEIIEENE

LODD FORMATS XML 2o 7 /77 L PLFRPLEILFIINTR 0% SUBASE emdfad),! e=evans
$=17/ V5K, "EQV. BOUUNDARY SYSTEM OF THE SUS=AASE"//V{X, 'FOR DYNARIC &
SHALYSIS DF SHELLS OF REVOLUSION®//7//38%, 'PROGRAMMED BY OS8ME EL-
SSHAFEES //aBX. ‘FEB. LT8¢ /7
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Exp
SUBRDUTINE CODETNNNEsNL o NBNUN)

TH1S SUBRDUTINE GERERATES THME CONTROLING INTEGERS FOR SUSROUTINE
TOrFaL

N TOEAL MUMBER OF NODES
NE TOTAL NUMBER OF ELEMENTS
LY TOTAL MUMBER OF LAYERS

COHMMON EMLU24s 2414 SH1126,2430A19,9) ADI9, 91 +AE19,21,4519:91,
AAAE36e 361+ ADD( 64300 ¢ AEE{36436) ¢ AUGI26¢30) 4ASSLR0e D0,
RESE360361.Y136436)270364351,HO136) HLI36) 2E1361+0D(361,
REI2608FeIN1 70+ 81 oALAMDRL 241 JANUE (26 ) «RUEL2A) cALALS o RUIS )
ACOL (435 AMULST I &IsOREZHeSMIL1904 1901 ¢ NDEBD,2) ¢ K1E20481,
NY(12)4NRSTI6 ¢ MPE20s24)

P

LIRS

00 8 | = NN

008 J* 1.3

IFINDIled) . EQ - 03 GO TQ 9
NDI1,3) = O

G0 fo &
9 NDilsJ} s X
XwKk+l
& CONT INVE
CALCULATION OF BOUNDARY CODE NUMBERS
N2 = 2"*M
00 18 4 = 1,ML2
Ji = (3~ 11 & 34 )
J2 st - 1) * 32
J3 a (J =11 &3+ 3
NRSUJLY v (NVEJY = 3} & 3 & (-2
NRS(J2) ®» NRSI31) ¢ 1
NRS(J3} « NRSEILD » 2
18 GONYINUE

CALCULATION OF CDDE NUMBERS

NG = O

DO 13 N s JeNE

00 10 { = 1.8

dx ] eB

Kw { ¢ 18

LI LIRS

MPON. |} = NDEL.1}
« MPINGJY = NDIL. 2}

NEENK) = NDIL43Y
10 COMT TMUE

CALCULATION OF BAND WIDTH

HAR = O

Hin = 1000

0D i1 I & 1,268

1FiMPIN.I) - EQ . 0! GD TO 11

TE{MP{Ns 1} . LE . MAX) GO TO 12

MAX = MPINI)
12 IF(mPIN. L) o

MiN = MPUINGT}
11 Convinve

NBL = MAX =MiN

TFIMBL - GT . NB) N8 = N8I
13 COwrINvE

Np = NE . ]

MNUN = MAX

WRITE{6: 161 NNoNE.NL o NB.NUN

GE « MINV GO 1O Kl

AETURN

16 FORMATIIHIo4X,"HO OF NOODES IS°,T4,3X."N0 GF ELEMENTS [5',1443X,
$7NM0 OF LAYERS 1S%, 167/, 5%, "HALF BAND MIDTH 15 ,1%.3%, N0 OF UNENOW
NS ISV lerss )

END
SUBRDUT INE ELMMTIN,JIA)

THIS SUBRDUTINE GENERATES YHE CONSISTANT MASS MATRIX AND TME SYOFF E

MATRIX FOR THE ‘N=TH. ELEMENT Fe=POINTS GAUSS INTEGRATION)
N ELEMENT NUMBER
9 HARMON IC HUMBER

DIMENSION ATJ{4)oOMEY6),DS1036),D52(361,053¢36),056(641.0551841+

s DS81641,GIBY.GXE8),56Y18)

COMMON EMLI24v 241 s SMAT2%42%) e AAE T« T +ADT T2 TN AECT T pdS 19010
AdA136) 361v ADDI 26,361 +AEE(386, 361 ,A00030,06] JAS513042610,
RASS51364 36 e¥T384380 2360360 4HOU36) vHII36) B30 140D1361,
RX{24e 81 IX12%0 83 cALAMDAT 28 JANUE (261 (RUEL2%) , ALAIS 1 ,RUTEY
RCOL Lahr ANULS) (ME6)DRT2) 4 SME190,2901,MD180,33,K1€20,8),
NVELZIHRSEIG ) «MPI20e 241

e

« JA

= ALAMDAINE
PZ s AMUEIN)

® Pl ¢+ 2.%P2
DD 98 | = [,
oMrIy = Oe
O5tek) = Q.
0S214) = 0.
0S311) = G
DO 99 1 a Lyé4
DS4t1) *» Q.
OEsSel) -~ 0.
US&LLY = B.

?

JACOB AN

00 100 I = 1,%
AR = 1.

aAOnn on

)
103 CDNTINUE
<

AN = 1.
AGL = 0.
A2 » 0.
Ad3 = 0.
46 = 0o
ARG = 0.
18 T = €0 420 OR . 1 . EQ .3) AW = =},

t

U1 ¢ € a3a OR W
AR e AN > 057735027

* AN ® 0,57T735Q27

1 » EQ %) AN % =l.

€=y 25008 1eOD=AX S 1, 00=AYI&{],00eAXAY]
GRUIE & 22500%( LaQD-AYISI2.00%AXAYE
GY{l) = 2900%(1.00=AX)e{2,.CG0%AYeAX)

*= J500D%¢(l. 00*1!!&‘!'([ 00=AY)
GRE2) s=AXS{],00=RY
Gre2) s=.5000%t1. no-nxcnl!

GE3) & ~2%00P{LE004AXIS| 1.00=-AYIRIAN=AY=].00}
GXU3) 7 «2300*{),00-AY)v(2,.00%AX=AY)
BY§3) = 25008 L.00eaR)n(2.000AY=AX)

Gla) = .35000%(1+00sax)*L 1. 00=AY=AY}
GXt4) » .S000% (L. D0=ATSAY}
GYiar »=AY=s(1.,00+A%}

CI31  ® 2500w 1.0042X)9{ 1, 00+8YI[AX4AY=].00)

GXIS) = 25000 (.00eAy) @2, 000AKeAY)
GYes)

«23000 1 1. DD#AXIS{ 2. CORAYSAX)

«S0004{ LaD0=ansAXIS (], 00eAY)
AN 1.0084Y}
«50008¢ L. 00-Axsa X

«2900% 5 1.00-AX) 941 00+AY I *IAY-AX-1.00}
250081 1.004AY )% 2, J0AX=AY]
« 5008 [ 1.00=AXIN{ 2. D0®AY=AX]

40005 (1. 00=AX) (1. 00=AYaAY)
S00D*(1.00~AYwAY)
GYea) = =Ays(l.00=ax}

DD 101 J * 1.8

AJy = AJL + GX{J) = RN, I}

AJ7 = A4Z + GREJD B Z2XUINGJD

Add v AJD s GYLI) * RXIMLD

Ao = A)4 o GYLJIF & 2¥iwed)

NG = RG + Gid? ¢ RAINS?
10!

-
o
o
x
-
F 3
4
-

DETJAC = AJ) & AJé =242 & AJI

GSTF = RG * OETJAC

BHAS = RUEIN) ® GSTE
ALJLE] » ass /7 DETIAC
AlJgz) w=AdE / DETaaC

AYJES) a-4)3 7 DETSAC
Atotal = ASL /7 DETIAC

ARRAY DM(JZ} IS 10 BE USED [N SYORING FHE Y6 INDEPENDENT ELEMESTO
OF Fuf maSS MATRIX

ARRAY OSItJJ] TO BARAY D35(XK} ARE TO BE USED IN STORING THE 300
IMOEPENDENT ELEMENTS NOF THE STIFFNESS MATRIX

Jd = 0

XK = ¢

DO 102 J % 1.8

J0 . 2

0D 103 K = Jo8
s JD 4K -03-0)

DMLII) = DMLII) + GMASHGLIIEGIK}

OS1¢JL1s0SINIY) & GSTRSIPIS(ALI(LIIOGRIJ) o A1IERI4GY{JNIS(ATINLIS
GXIK] + AIJEZIWGPIR)D + (PL/RGISIGIDI*EIRISIL)SGRIN] +
ATJEZIRGYIN) ) o GIRIREALSLISGX(I) «ALI2I*CYIIIIE » P2w
CARJIIIPGRIDY & ALJUQIOGYIJYISEAT U3 IOGXIRY » A Jl&)9GY{K)
Yoo {AQARGIen2ep 220Gl ysGiN) Y

-

D521J21%0S20J07 © CSTFRIPISIAIIENINGIILY ¢ ALHAIPCYLN IPLALILIF®
GXIK] o ALJGAIAGYINT) o PIEIALICLIEXLT) » Ajgi21eGyigi bt
11 ATJTIIPEXRTR) 4 ATJC2POCYIXID + (AJIRGIO¥20PZaG{S)#GIND)

DSILHIINDSIJJI ¢ GSTFS{{AS/RGI®NIFGIJISGIKI®PI » PIa( (AL JEIIOGXLY

14 RISIAIRGYCIIIRCATIIIIPGXRIRD + ALIIADPSGYIRIT + (ALQULIY
§ GXES) & ALJI2¥oGYId] = GIIN/RGISTATI(IIOGEER) o ALI(2)e
GYIK] -~ GIX}/RGH)}

RO = XK
02 104 X = 1.8
KK = KD + K

D54 (KKI=DSAIKKE & GSTFO{ALIa{ATI(INOCKIKE o ATJIADNGY(K)In(ATJiLI*
] GX1J) + ALJU2I8GYRI} ¢+ GIII/AG] + P2RiATJITINSRRII] +AIILA}
s SGYLJIIPEAIJUIIOGXEKD + ALJUZIGYINIT)

1F { &3 + £G « O« | GO TO 105
DSilKKllﬂSSllll * GSTROUIRI*P2Z/RGIAICIIIVIAL JUDIACKRIR) = AlJl4)*
CYIRIIY = PAJSPL/RGISCIKIS{ATII(IISGRIIY + ALIIGIOGY LI

DS‘(KK!'DSOIK(’ o GSTRE{CAJSPZ/RGIFGIINIALALJIIINGRIK) o AlJ{2)0
(24

K) = GINFZRG) = CAJPPY/RGISGIRISIALIMLI®GXLS) + AKJL2)
TGYLSIY = tAI*PI/RGH*2I*GII*GIK))
GO 10 104
105 DSSIKK] = Q.
Dse(kk) = Q.

104 CONT INUE
102 COMTINUE
100 CDNT INUE
0o 18 1 = 1,24
00 18 b = l.2%
EMLCLe ) = G
18 SML(G.d} » O.
X =g
Bo 19
KD = x
00 19 t = 1,8
X » XD + . -

1 = LyB

L=ty
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2

-
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-

=202~

EMET1.43 » DMIKE
Enlibeg, go8) = DM(K}
EMLIF416,J4158) + DMIKS
SMLIT«2) *» DSLIK}

SKEq 148,5+8) = DS2iK}
SMIT1+16,0416) » DSVIRY
CONT INVE

X s 0

Do 20 | *= 1.8

XD = K

00 20 4 = 18

K =KD o {
SHL{TedelF = DS&IR)
SM1if*8, 0408} = DS
SM1{Ts fr1b) = DSSIKY
CONT JNUE

D0 21 | = 2424

B0 21 4 = 1.0

IF13 o €9 « 1) GO TO 21
EME{Ted) = EMIEOD)
SML{ied} v SALLJLID
CONT 1NUE

RETURN

EnD
SUBROUTINE FACTOR(Ae B,y IPIVOT. SeNaIFLAG)

DIMENSION AiNeNIoW{NoNT o IPIVOTINGSTH}
(FLAG *= |

INET AL IZE w» IPIVOT, S

00 10 1 = l,x

irtvotirs = I

ROWMAX = 0.

DO 3 4 = 1.N

wiled) = ALD4dY

ROWMAXS AMAXTERONMAXABSINIL,SIY])
LEtROWMAXEQ.G. } GO TO 999

10 S{1) = RDwMax

GAUSS EL IMINATIDN WITH SCALED PARTIAL PIVOTENG.
NNt = N = )

TFINME . EQG . D) RETURN

DD 20 X & 1.NML

Jd=x

L e K s ]

1P« 1PIVOIIK}

COLMAK = ABSUIW(IP4KEI/SLIR)

DO §1 1 % RP1.N

P« tPIvOT ()

AWIROY = ABSENTIP,RII/ZSEIDY
(FlawixgY . LEf - COLMAR) GO TO L1
COLMAX = AWEKOY

Ja

rL CONTINUE

20

999

2z

~

>

~

o~

_ IFLCOLMAKLEQ.Ds) GO 10 999

1Pk = [PIVOTLsY

IPIVATIS &« IPIVOrIX)
IPIvatix) = 1ox

DD 20 | = KPLIN

P = IPLIVOTILY

MIIP.K] = WEIPKI/UIIPK.KY
RATIO = =W(1F,X)

S0 20 J = KPLleN

WP J) = RATIO™WEIPK,.J) » WIIF ]
TFIWITPsN) . EQ . Q.) GO TO 999
REFURN

RFLAG = 2

AETURN

END
SUBROUTIME FARTJIF.NL 4 DReRDNDE)

THIS SUBROUTINE GENERATES THE FAR FIELD EFFECT ON THE FE RIGION

COMMON ENLI26, 261 SMEN2442400AA19491,A009,90 +ABLD 491+ 85(9,9)5
ARAE36, 3612400360361 0AEEI30,3561 (A00(I64I8)4A55(36,367,
RESU364361¢Y¢8362361.21364381+H0136),H1(261,E(363,001363,
AXE240BY s 2XT 740 8) ¢ ALAMDATZE) AMUE {24) JRUEI26 4, ALAIS ], RUCS),
RCOL 141+ ANUIGHAHIG) sORTZ) 4 SMI L0 1900 oWDEB0.3 ) o NE£2008 >
NYEL12)NRSTIG) (MPE20424)

e ..

NT = NL » &

B0 2 I s 1.NT

0O 23 9 Lenv

AdACTed) = Q4

A0D(Tedt & O

AEELL.d) = 0.

AS5i1.y) = 0,

UD I N & LleNL

CALL LYRLIJF.NoOM.AQ)

NME = N = |

DG 3 K & .9 A
IF(W . EG . NL . AND . & o« EQ . 1} GO TO 4
I x NML & & + K

bo 3L = 1,9
lFlN.EO.KL.AND.L.GE-
Jw NML & 6+

T CO Yo 3

AbA(1ed) = lllil-Jl * AAER,LY
ADDIT+J) = ADD{I,J} » ADIK,L)
AEE(1+J) « AEE([sJ) + AFIK,L)
ASSEH.J) = ASSULIWJ) * ASIK,LY
CONT INUE

CONTINLE

00 5 | = Zent

= 1=-1

00 5 J = (o0}

AARLLs 1 » ARMISH D)
ASSEled) = ASSIULTH
00 22 I = I,NT

DO 22 5 = 14WNT
RORCIed) = ARAIL.)
CALL INV{INTY

00 6 L = 1.HT

00 6 J = LNT

¥ifedd = 0.

00 T r = [.NT

YULed) = Yilau) o AAALTLK) & ASSI%. S}
13

CONT IHY

11
12

1y

13
16

17

19

20
2

44

2

-

2

2%

26

21

28

29

EL

31

3

&~

CALL TRED2(36aNT+ Y, DD.E,2)
CALL TOL2€364NT+DD,Ee2, EERR)
IF {[ERR .NE. O) GO TO 9%
00 9 [ o 1,80
DO 9 4 = ) NT
AAA[loJ) = O
ASS1fadr = Do

YtlsJ) = Gu

CALL HNRLINTRO)

IF (JF o EG - 1} 6D O 1)

DO 12 K = LoNT

12 s 2

o0 il 1w

FLl . R! . lll G0 10 o

12 = 12 + 3

ASSE1eK) = 211eK)
Yilek] = 211X}

2 10 11

ASSITeR) = Il3sK)
YiTok] & 2UE4K)

CONT INUE

CONT INVE

&0 0 17

DD 186 K = [.NT

» NIIKE
& HOIKT

* HOIR)
*® HiIK}

GO 10 1+

ASS{ERY = 2L1.%) = HOUR)
YIEk) = 20LXD & HilR)

G0 10 1%

ASS{EvKY = 271.K1 * HIIK)

TUIRE & T1[4K) & ROIK)
LOMT INVE
CONT ENUE
I (NQE . €EC . O) GD 10O 1o

DD B T a 14NT
WRITEL6: 5811, 0DE11,HOCT1.HICT)

WRITEIS¢ 44 (2t 1 d1aASSIL ) e ¥ T2} dnl NTY
CONT FNUE

Yyi =« JF

N e NI/3

D0 2L X = l.NT

X % ABSIDO{K})

5 * SORTIR)

kU = ¢

Ul s ~5 ® HLINY

u2 = 5 % HOEX?

Ul =« HIIKY 7 RD

00 21 KK = leNU

00 20 1V = 1,3

1 = KU ¢ U

IFIJF . EQ . L CO TO LY
IF I8 . NE = 21 AAR(].K)
AbAL LK)

s U o ZETLKD
= U2 * Lil,.xt

AdRi L.k
ARRIT4K)
ABRLT4K)

. Y2 >
il ¢
- U3 v

TIT W}

CONT tNue
KU = KU + 3
CONT InuE
CALL InvINT)

0O 21 I = {.NT

r
Illed] & lll-.l) + ABQUI.KE * ASS(X.d

Do 2% ) = hl"
0O 24 1 » 1N
Ilsdy = lIIch & pDiJ) s RO

DO 25 1 = 1.NT
DO 23 J = LsNT
RSSI4ad3 = 200D

00 26 | * 1.NT

00 24 J = JNT

ZUEed} = O.

BD 26 X = [4NT

Ltiedl = 10Lad) » AODLILK) & YEX,0)

DO 27 J = LeNT
0O 27 I = L4NT
Ziled) » FfIed3 * SQRTC ABS{DDEIIIF * RO
f0 28 [ =
DO 26 4 = 1N
R5513.4) = ﬂ!S”'Jl « M

lvlﬂ

DO 29 1 = L.NT

00 29 J = [+NT

711431 = D.

00 29 K = Q.NT

TU0ed) = ZCTod} + AEETI.KE * ASSIR.J} * RO

00 30 [ = Lenl
D0 30 § & 14NT
RSS{L 1 = RESULedT » LU

D0 31 1 = 1.NT
00 31 0 = L4NT
IUTyJr = R55{1431

DO 32 1 s LyNT

00 32 4 = 1.NT

RESUIoat = O.

DD 32 K & J.NT

RSSE1adl = RES(I,JY & 20141 » ARk(KsJb
DO 33 1 w 2.NT

£=1-1

DG 33 0 = Lk

RSS[Ratt = RSSIJ-I’

I(14KE & U3 8 2M1s24K)
Ltl=2,K} ¢ U2 » ftlexy



a

Ooono

Aannonoo

-203-~

IF (NOE . EC . O} GO TQ 100

WREITEL6496)
WRITELGs B TVINSSIEadlo Jula WY}, I0i,NTE
G} o 100
99 WRITEibe 781
100 RETUAN
«b FORMAL1/21Xy3ELS.T)
S5 FORMAT IM1o 5K *MODE ND.*»15¢5Ks *EIGENVALUE 27 E1SaT+5K, oH0ms £25,T
Ba5%s *HI®! JELSeT// /24K, E1CENVECTOR 4 BX o P XAV 13X, FXBY 7S/ )
b FORMAT (/AR 6ELST)
T6 FORMAT{IMI. 5K *TERR IS GT ZERQ  .ec $T0P )
96 FORMAT{ LW, 5Ki *BQUNDARY STIEFNESS MATRIX*///77 )
Eno
SUBROQUT INE FCTTN,AR)
THIS SUBROUTINE CALCURATES THE FACTORLAL OF AN INTEGER x
"I
fF 1 N aLE o 1) GO TD2
060 1t » 2.
1 K8 = NN s |
2 AM & NN
RETUAN
END
SUEROUT INE MWL INE+RO)
THIS SUBROUTINE CALCULATES WAMKEL FUNCTIOMS FOR THE WAVE NUMBIR
Nt TOTAL WO. OF THE WAVE NUMBERS
LI RADIUS DF THE YERTICAL BOUNDARIES
COMMDN EML(24, 2415 SMLE24,20) 5 0A89,91,A019:9) 4AE19,90,4519,9},
% ARA{ 360 J&TvADDT 360 JED +AFE 1364 36] AQTTI64I6) +AS5(3064 3610y
3 RES1361 301 Y1362 3004 21304301 oM0(36) K1 1301 ,£L35),00(36),
' RXC24e8) g 2X1240 Bl oALANDATZE] »AKYE (263 4AUELZN I, ALAIST L RUTS ],
] RCOL 14 b BMUSO) oM &1 sDR 121 «SRE190e1900 +NO(B0-3) 401 1204810
+ NYEL2) o MRSEIE) JHPE20,24)

00 100 Ja ¢ 1.2
J=Ja e
DO 90 | = L.NT
A = asSipociN)
$§ « SORTIX} ® RO
LI I
9= 0.
IE i) « EQ - 1) GD 10 30
00 0 XK = 2,8.2
£ e RR e}
KPes 29EK -~ 1
K@= 2ex = |}
L= K&/2
SHE (=1.0%eL
Ll d T8
DD 10 ¥ = L.RPy2
AN = N
IC FR 2 EP * pNeAN
Q= 1.
IF (K@ « EO - 1] GO o 30
D0 20 N v LeKQ,2
AN = N
20 FQ = £Q o awain
30 CALL FCTIRKAR)
CALL FCTIKo AU
Poa P s Sk s FP/ (AP & (B,0085)as8K)
B = 04 SN®FQ 7 1AD & (B.00057%8K)

40 CONT INVE
BJ = SQRTIZ,00/1582. 1415926543} & (RSCS( 5=, 7053921634)
t ~DPSINIS~. 725398163409
B8Y = SQRTI2.C0/(3%3.141502654)3 & (PeSIN(S-,TE53981636)
s +0eCOSIS=. TATIOB1634))

MO{I) = SQRT{RJSw=2 + BY®2)
IF @B 4 LT « Ox) HOLL) = =uO(1)
g 1o 90
50 DO 80 KK o 2+8,2
L= XKS2 = [
SHE (=] 0wt
K= K = |
KPs 2%KX + 1
KQw 28xK =~ 1
EPs 1.
Mo gp -2
DO 80 N = [4KP,2
U]
1P IN . LT « N} FP = FP w aAN®AN
IF IN o GE . M) FP s FP & AN
40 CONT INUE

BC TO N * 1.KG+2
AN = N
1F IN . [T « M) FQ = FQ & AN®AR
IE (N o GE « M1 FQ = FO » AN
70 CONTINUE
GALL FTTIKK.aP}
CALL FCTIK.AQ)
PP s SNEFP /AP &
Q@ * 04SN FQ/ AD
80 CONTINUE

[E LI 1 3)
th. 05198}

8J ® SORT{Z.0071583.1415926541) ¢ {PICOSIS=2. 3561944900
s =0eSINtS-2.3561944901 )
ay *  SQRTIZ.00/t583.141592654)1 & IReSIN(S=2,2561 344900

s +0PCOSIS~23551044700 1
HI(1) = SQRTIBJ=e2 & BY¥ee2)
BF BJ o LT « Dol HLIT) = ~HELI}
90 CONT tNUE
100 CONT INUE
RETURN
L1

SUBROUTINE INVINY
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TMIS SUBROUTINE CALCULATES THE INVERSE OF A GIVEN WATR{O

N THE OROER OF THE MATRIX TQ BE INVERYED

DIMENSLON ALL2961, AINVIIZ96). BE3LI, IPTVQTEIS}

CONRON EMIL284 2400 SML020, 240 319490 cADT 0, 91, AE19, 92, AS19,97,
AMAT 6. I6) o ADDI 36,381 yATELI69 3480 pAQQ036,363 4ASS(36,38),
RESE36y 3630 ¥I360381,2130:36).M00381,HE1381.E1361+00E361,
AX{24s ) e 2X42A0 8 s ALAMDA L ZH) g AMUE (24} o RUEL24) s ALALS] ,RUTED,
REOL 41 s AMULS) oM G 1 DRIZE ¢ SMIL0,190) «MOLAQ.IINEIZD6B)y
NVELIZ)oHRST35}APC20424 )

NSG o N s &

DO 10 J = 1,8

DO 10 [ = 1,N

Ko Nw ty-11 4+ 1
ME) = daaill.0
CALY, FACTORUAs A, IPIVOT 4B ,N, IFLAG)
G0 TO (20.1L). IFLAC
WRITEib 011}

GO TO 1

00 21 [ = LN

Btl} = 0.

IBEG * |

DO 3% J = {.N

Aty .,

CALL SUBSTIALB,AINVI IBEGILIPEVOT AT
Bt = Q,

IBEG = IBEG + N

00 40 J » Lon

DO 40 | = Len

L LAY A ]
AMCLv ) = AINVIX)
RETURN

FORMAT (IMLe 5X) 'HATRIX 15 SINGULAR®)
END
SUBRQUTINE InNvSIN)

DIMENSION KPi10S) RR(I6ST,RCI1OS}

COMMON EM1L26,260,3M1124,260 yAA{S¢91,4089,9) JAEL19+9)4AS1%49),
AMAL 30y 361400036, 3530 AEET 3643604001 16436) yASSE26436)
RS51304 360, Y136, 380, 2130.38),M0036) ,HLL36) 4+E(360,00436),
RX1244B5oZXI26081pALAMOAI24) o ANVET24) oRUET24) ¢ ALATA} AUISE,
RLOL IS 1o AMUL 61 s HIB) ORE2) < SMILI0L190) 4 NDLB0+3) +K1K20,80.
NVEL21aNRS1361 o MP {20, 243

0O 35 |1 = 1en

Li4ILI

DO 45 1 » 1N

T = 0.

B0 20 J & feN

IF tRPIJ) . EC . 1) GO TO 20
DO L5 K u |+N

IF tEPIR] =~ 1) 10.15.80

IF (T . GE . ABS{SMILX))) GO TO 13
R =4

<

K=K

T a ABSISM{JeR1}

CONT LHUE

CONT IMUE

KPOICH = KPLICY + 1

IE (IR L g0 , IC) GO YO A0
00 25 L x 1N

T = SMitR.LI

SMIER,L} = SMUICHL!
S5M1iCeLY = T

KR(T) = IR

KCEI) = 3¢

T e SHLIC,ICT

SM{IC.IC) = L.

DO IS L % 1M

SMIICL) = SMUIC,LE 7/ T

BO 45 M x 1,8
IF th . €0 .
P s SHINLIC)
SMIMICT » Q.
00 40 L = LN
SHIMel) & SMIM,L} - SMUIC,LE * T
CONT INVE

DO 55 1 & Lok

Jew- 141

1F (KRES) . EQ . KC1J)) GO TO 5%
X = XRID)

L= KCidd

D0 30 M = LN

T & SMIN.K)

SHIMK) = SHIM.L)

SMiMeL) = T

CONT INUE

RETURN

IC) GO TD 4%

END
SUBROUTINE LYRCJIF,MyON R}

ITHES SUBRQUTENE GENERATES THE LAYERS MATRICES

JF HARMONIC MUMBER

N LAYER NUMBER

on FRIQUANCY OF TRE EXCYTING mOTION
R F.Be RIGIOW RALTUS

COMMON EMLEZ6, 2900 SMITI4 . 280 cARET 29 hADE O, 51 AELS, T1 4 ASTD, 81,
AAAT 36,360 ADDE36, 363 AEE L6361 A00138,36) 4235136361,
RS5I36e 3632 ¥YI36301421364360HI1361,M1036).E036):00¢36),
REE242BFeZX124: 83 +ALAMDAL 240 LAKUE (24}, RUBIR4) ALAIS) JRUILD,
RCOL 141+ ARUTSY ¢HEB) (OREZoSHILIT.190) s NDTBO.31,N1E20,8)
NVI121+NRST361.APL20. 241

AMUINE

N

{ALAIR) « Z.00&AMUING)
LALAENY ¢+ BMULNE)
{ALAIN) = AMU(N}Y
RUCNE * OM * OM

AMUINE & HINI f R

=
=]
usNanuw



-
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*

)
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=204~

xH = lLllNl DIMENSTON WiINNIBINTLXINIS IPEVOTING
X o= tFIN « 6T o 1} 80 19 10
I Nle . li 41,000 £ ® XE1) = Biy) 7 silel)
A% = X4 o® XA/ RETURN
B0 1 1« 1,9 te tr e [PIVOTIT)
001 48 1.9 Z{1) = BLIP}
NONTEN S 00 13 K = 2oN
ADE1,J2 = 0. 1P = [PIVOTIK)
AEiL:d} = Q. XN] = K =
A5{1ed} = 0. Sym = 0.
oo 2 l.- Le3 00 14 J = Lexmi
i ARSI
IPIl . €0 . 20 oo to 3 ¢ ' sun
ASULeI) = { Q.4Q0SXASXBOXE = 7.0004XA) / {3,00%K8) NS = KIHE /7 MEIPoNT
ASCIsd1 = | U.200*XBEXBRXF + B.COOOXA) 7 [3,.000x8) K e N
ASELeK) = (=0, 100aKBeXASXE =Xk} / (3.00%x81 D0 20 NPINK = 24M
EEI:BJ: ¢ { LabODOXDEIBOXF =15.0000%A) / 13, 006X8} L1 L 3
. £ = -
ASIEsT) & { 0.4Q06XA&XBAXE - T.0008xC} /7 (3,00%x8} ie .K,,‘§°,|'|
AS1isd) ® { 0.ZOO®XBERBEXF &+ 3.000eXC) /7 {3.009X8) SUN = 0.
AS[14%) = (=0.]00%XBeXBeKE ~KC! / {3.00ex3) 00 19 J x KPi,N
ASLdpdT % { LlebODSXASKASYF «~]15.0004xC1 7 {3.008X8) 19 SUNM = WIIPLJIPZLID & SUM
ASEJLK) » ASTLeJ1 : 20 X(KI= IKEK) = SUME £ WOIPaK)
ASLKeK) & AS(Iy 1} RETURN
IF{l . &0 1) GO Te § .
AAll,E) M ."uo.“.ls’;ﬂ'oo - c SUBROUTINE TOTAL (MUNSNC L. NE 2 NIF o NL yOR4RO s NOE }
AAlI=d) = 2.00eXa*XR/30. [
AR LK) = =XKA®XS /30,
P 16.00_!.=x3130' E ;:;ssa?:.ggzlrz GEWERATES THE TOTAL DYNAMIC STYIFFNESS MAIRIX OF
¢a to &
AA{T 1) = 4,000xCexB/30. g
AA{l.d) ®  2.008XCSXB/30.
et iyt N FIRST COMGY HOGE NWBCA BETWEEN 1
AA{Js ) = 16.004XCoXB/30, < FOUNDATION ® € N FHE SOIL AND The
::::-ll = halld) [4 NE TOTAL NUMBER OF ELEMENTS
WK o= aRlLL D) g ::F ;g;:t :3:osu 9F FOURLER marmoMITS
RER OF LAYERS
CONT INuE g :: ::é@gé:srcDF THE ExCITING mOTION
- AL BOUNDARY RADIYS
:::t:;: - 12:3551;-u013. N g NGE :;l:; 331n¥‘3‘353’" IF NOE & O NO INTERNIDIAT RESULTS
AALL.3) * XBXD/6. c €D 0y
:::i‘:: : :::::.:: DIRENSIOR SSLUZ59 2300 AMM( S, 9}, DM, 151, 5TIFFISE,AMASSES) LOAMPLS)
Aniara) » BAi1s8) COMMON EMRC240 261y SMIC24,24) 0A 19094 9ADC+9) JAEL9,9) +AS (94904
AALELT) » Ancia) 3 ARA{364 361 14001 36, 361 1 AEE 1364361 14001 36436 4455 1360 361 4
P A A » RSST36, 351, ¥136,36)12138¢38) JHOLI6H M (360, 1365« NDI381
3 RXL2%2 810 2AC250 BT o ALANDAI 6] JANUETZ61 oAU L2461 9 ALALS ) 1 RULB) o
POTI = 2.9 g RLOL L4 ) 5 AMUCGI s MES) sDRL 212 SMIL90.1901oNDTB0.I sN1 120,81
L c s NVI12)oNR5T36)eMPL 20y 240
00T 4 = Lar D 14 JF =
ASTEed) » AS{de1) ga : J: - 1"“J'
AM1Ta 21 = AALJe1} WRITE(6,60) JA
4
ADLIsL} & =XG 7 3,75 00 16 | = l.nun
AD(L.3) = -KJ * ADIY, 1D 08 16 J = 1.NUN
ADEZ+Z) = ADCLe3) 7 2. 16 SA(L.F1 » O,
AD€3:3) = 201140} : €
ADT3¢ (1 = ADULeN} DO 1T N = L+NE
CALL ELNNTINLIAF
AEfle]ll ¥ XK ®Xf / 3.75 TF tH1{Ns3) + NE « NVI1}) GO YO 13
AE(1.3]1 = ~AE{1.1} BW = RXN(3t - RKCN.1)
AE(3 1) = AE(E. D) 0Q t2 1 = L¢l$
AEE3, 9} * RE(1.1) t1 =96t
B0 12 4 * 1.15
DD & 11 = |,3 4 =9 e *
DO 8 JL * 1.3 12 AMARLIGd) & EMEITL.A0)
12 =11 + 3 CALL INVIL3)
13 = 11 ¢ 6 00 11 1 « 149
J2 = 4l o+ 3 00 11 4 8 l.1%
i3 = Il ¢ & oMMt L+ d} = 0.
ADITL.d2) = ADEEL<d1) 7 2o 00 1t K 3 115
AENI1ad2) = AE{1DeJ1) / 2. KK v 9 &K
AD(L5:d3) =-aDE11aJd1} / 4o 11 DMME[yg) » DMMLTL ) + EMBE1LRKD * BAAIK,J
AELFE.d3) ==AElIledl} / 4. 00 10 1 7 1.9
AQI B2, 82) 2 4. % ADEILLUE) D0 10 J = 19
AEC12,32) » 4. ® AECELeJE} ANME1ad) 3 0.
ADE12493) = AD(IL.J2) 00 10 X = W15
AETI12,J3) = AER11.J21 XK = 3 s K
ADU13,03) =« aOtil 1) 10 AMMEL.0) » AMMEl.d) = DMMET KD * EMI(KNLJ)
AE(13,33) « AE[Riedl) : 00 9 1 = 149
AD1§2.J1) = ADETL4320 00 9 ¥ = 19
AE{I24J1) w AE{11442) 9 AMMA [od% « &MM{f.d) + EMRCLLO)
ADUL2¢d2) = AQCFLed2) <
AE{13.J2) » AELLL4JZ) 14 CALCULATION OF TOTAL STIFFMESS NATRIX
ABL§3.91) = ADILL.4Y) [
AEL13,J17 » AE(TL.d3} £3 D0 22 RK = Ly24
IFIMPINGKK) . EQ o OF GO TO 22
00 9 1 = 1,3 1 = MPIN,KK)
080 2 3w 1,3 . 00 23 KJ = ke24
[} = fl=1) = % &} IFIMPINLKS) « EQ « 0V GO 'O 23
12 s {1=1} & 3 ¢ 2 J x MPUNLKSD
1t e -1y v 3 4 SMIT.J] & SMETed]  »  SMEKKGRJ) = ENLEKKGKJI) 9 DN & ON
42 = [Jel) = 3 & 2 23 CONT INUE
J3 2 (J-13 ¥ 3 ¢ 3 22 CONTINUE
1T CONTINUE
IF (1 <« EQ o d. ANO . J . EG.13 FC = 1. 1E1JA « EQ . 0) EATL = 10.E-09
[F (1 o EB « 1. AND o 3 o EQ.2F FC = =4.00 / 3. IF(JA » GF « 0) EAJ] = 10.E<10
TF (T . BQ . 1. AND . J . EQ.3) FC = 1,00 / 3, LF(NOE . EQ . OF GO YO 13
JF ] « EQ o 2. AND o« J o EQs 1] FT = 4.00 / 3. WRITEIG,62)
EE {1 o EQ o 2o AXD o 4 - EQo21 FC = O, WRIFENGeSENLISMETod 1o dm NUNY 1= NUNS
1P €1 o BO o 2. AND o & « EQ.3) C = ~4.00 / 3, 15 CALL FAR JhyNL ON ROWNOE!
1F §1.2 EQ « 3. AND . J o EQel} FC & 100 7 3o NT = & ¢ NL
1F (1T o EQ o 3¢ AND + J o EQe2) FC = 4,00 / 3. 0n 20 KK = 1.NT
IF Il . €0 , 3, AND , J , EQ,3} FC & =1, 0O 20 KJ = L4NT
1% NRSIKKD
ADIIL,dZ) » FL » XN / 2. 3= RS (KD
AD(E2,J1) s=fC & X& 7 2. SMIL,J) = SMELeJ) *+ RSSIRK.KJ?
AET12.d1) a=FC * XK 7 2o 2¢ CONTINUE
AE{12,)3) =eABl12,J1) DO 18 1 = leNUN
CONT INUE I8 IF ESMET, 11 o LT o 0.1 Smit,I) = =SKif,i}
00 19 1 = 24NUN
RETURN Ml a1 -1 .
END 00 19 J = L.IMl
SUBROUT INE SUBSTIM. By Xy IPIVOT,N? 19 SMI1,J) & SMId, I
IF {NGE ., £0 . 0} GO FO 24
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WRITE(S 601 LISHTILI LI ImlHUNT, Enl e NUN)

CONCENSATION OF IWE STIFFNESS MATRIX

N1t = NRSII)

H2Z = MUN - NIL

0 30 t = L+NiL

00 30 J % 1.NI1
SSLil+db = SMEl4J)
00 &8 1 = L4NL1 .
D0 48 J = 1.38

X & NIt ¢ )

L e NIL ¢S e 38

M= Ll » 3 s 72

XXs NIt ¢ 5 ¢ 108

Li= ML 2 s Das

IF 1K . GT . NUN) GO 10 8
AMATIdt ® SMITuRE

IF (L + GT . NUN) GO TO 48
A00ETedi & SMEfyL]

TF IR . ©F o NUND GG TO 43
AEE(IoJE » SMEL4M)

IF (KK . G . NUN1 GO TD 48
AQU(T.JY = SMEL.KK}

FF IEL « GT . NUN) GO 1O 43
ASS{led} = SMUL.LL]

CONT INUE

00 31 1l = J.NZ2

® o= Wil e |

B0 3t J w [.NZ7
L= R
SMLELJ) = SMIKeL)

CALL INYSINZZE

00 99 11 » l.NZ2
I = 22 = J1 + }
X o® NIf ¢+ 1

0D 49 44 = 1.,M22

4w NZT - J) e |
L ® NI1 ¢+ 3
IMER.L) = SMIL, 20
00 50 1 = l.ui]
00 5C 2 = 1.NEL
SUEEsd) v SSLEL.JY
B0 51 I # [.NI1
00 SL & = 1,38

K =s N1 + )

L= NIl * a2+ 36
noa ML)l e 3. T2
KEs %1l + J + (08
Ll= HIL » J » [4e

IF X o GF o NUNY GD FO 51
SMEI.K) = Akail.Jd)
P AL« GT . NUN) GO To %1
SHEL.L) & ADOIL. Y
IF W . ST . WuNi GO TO 51
SMEleM} » AEE{I,J)
IF KK 6T o NUN) GO TD 51
SHET.EK)s ADGIL.J)
1F i1l GE « NUNJ GO ¥D 51
SMETILLY= ASSLLed)
CONT INUE
D0 32 1 = l.mit

1

SMUIT,dJ) & B

00 32 K » 1.H22

XK = NiL + K

SMETI.JJ1 ® SRIT1e3J) & SMIT.RKI & AMAIK,J}
0¢ 33 1 = Lendt

0C 33 1 = l.Nt1

SSLTtedt = 0.

D0 33 X = 1,822

XK = Wil + K

SSLIted) = SSLET.J) = SMIXK.ID * SNCJLKKD
DO 34 I & 1.Np!

DU 3% J = 1.NIL

SSL1Ls a3 = SSLUTdY » SMET.H)

IFINDE + EQ . G} GO TD 44

WRITECHe63)
00 1% | e 1,NI1
MRITECS. 66 ) (SSLIT . JPeuml,NILY

IMPEDEMCE MAIRIX

M5TA & THCI - 12 ® 3 = |
IF INCL . EQ0 . 1) nSTa » |
HCON = MLL -~ NSTA ¢ )

00 14 [ » Lon22

00 36 J = L.,422
ARAL1.J) = Qo

00 37 1 = lLeMil

6a 3T 4 = f.n11
ARALT4d) = SSLETLd)
CALL INVINLL}

00 38 I = Llenll

00 34 5 = L.n1)
SSLILed) = akatI ol
ARA(T4d) = O,

4 ® NCOM

GO 39 I = L.»
SAALTAIY = 1.8

CALL LEQTICISSLsMoMeAAd,MyMs0,3As1ER)

CO 40 [ = L.»

DO 40 ) = LM

ASSETed) » REALCAAACL,JH)
OMMCEad) = AIMAGLAAL{I,J it 7 Om

WRITE{bebd)
WATTE(SeLFTLIANME T, ), Ju] JNCON) o Tu] . 5COM)

-205-

N

afonn

ae

onon 6 on

oa

o non

oA

WREITEL 4445)
WRATEC Gy SN SSLI Lo JY e Jnl s HCON) L[l JHCTMS
STIFF. + MASS ANO DAMPING AT THE LOWER FIVE OOF FOR THE RING FOOTING
00 41 [ = 1.3
42l e
X = 1 +4
STIFFUI) = ASSUEe{) + ASSUJeJ) + ASS{X.X)
OANPELY = OMMEELIT » GENE ) JF « DAN{X,K)
Rf AMASSIT) w AMM{I.1) » ANN{J.JT ¢ AMMIR,X)
STIFF(AY = (ASS0242) » ASS(8.81) « 3w / 2,
DAMPLAS = (ONMEZ,2) +» DMMCB,8)) & 8% / 2.
AMASSIA) ® CAMME2,2) + ANMEB,3}) % BW /7 2,
STIFRLS) = (AS5(3.3) + ASS(9,9F) *» Auw / 2.
CAMP (3] = (DNME3,3) e OMM(9,9)) = dx / 2.
ARASSIS) = [Aunt!.:) ¢ ARNEG, L) & 8W /7 2,
0Q 2 L =
42 ODHI) = !G!NST“NH 7 AMASSEENY
WALTEL 6,472

WRITE{ 6y 6811004 L1y t1o5)

00 43 t = 1.9
43 EEIY = DOUY)

LI

00 4% | = 145

IFtS o EG . M) B{J) = G.5E 20

1F ESMAL o GT « ECJFI KR = )

UE (SMAL . GT o E(JI? SNAL & ECJI
45 CONTINUE

LIRS

OD{Lt = SMAL
45 CONTINUE

00S » (DDES) + DOTLIE & LOO45) - DOULY)

CO = 2. « (OD{LI=DO(ST) » {ODISIPOR(Y! - DOL1FODRIZI} / DOS
€L & Z2.-0 (DOISISOR{ZY - DDLEISOR(LIY / ODS

DG 47 1 = {.9%

4T DAMPEL) = CO o AMASSTE) + C1 * SVIFFCIF
WARITEL 6. 600}
WRITELO, 6B ISTIFFC LT, in1.S)
WRITEESe 608}
WRITE(S. 6B (ANASSIL ) 0nte)
WRITEEH,602) -
WRITELLebBT (DAMPIT)e 121,51}

16 CONTTHUE

RETURN

FORMAT STATEMENTS .....

(1] ﬂ)ll!ltCIHI-IllIIII!IIIIIIIIIIIIIII&DX."" HARMONEIC NO*wl3.* emeey
3hd)y t e ———————t  }

51 FORMATIIH1.2X.*TOTAL STIFFNESS MATRIXZ OF THE SOIL MODEL®.//7
1 74)

62 FORMATSIH1 2N "STIFFNESS MATALX OF THE FINITE ELEMENT CORE®.////1

63 FORMATULMIL2X. *CONDENSED STIFFMESS MATRIX OF THME SOIL MODEL®./2/7)

&4 FORMAT{1M142%, *CONDENSED WASS MATR[X AT TWE COMMON DEGAEES Q. F.'/
LYY

6% FORMAT(IML. 2K, * IMPEDENCE STIFFNESS MATRIXS /77

&b FORMAT(/2%,8E13.51

67 FORMAT (1ML« 33X, *NATURAL FIEOUEMCIES OF THE SOIL*/7/710X. U [4X, %W
$o KtV L2Xe P THITAY  LIX,IFAY?

68 FORMATC//2XySE15.7}

69 FORMAP(2X,9EL4,7/7/)

G00 FORMATI//FF1724%, *STIFFNESSES OF THE EQUIVALENT SPRINGS oo 1

601 FORMAFSZ/77777/4K: *EQUEVALENT MASSES UOF THE SOIL oo’

602 FORMATL//272774%, *EQUIVALENT DAMPING ELEMENTS OF THE SOIL «ea® )

ERD
SUBROUTINE TQL2ENMeHoDeE 2y IERR)

INTEGER ledoKoloMoNelEal 1oNN.MML . LERR
REAL DINIEIN). ZENM, N}

REAL BeCaFeGeMaPeRy S

REAL SORT, ABS,SIGN

REAL MACHEP

sereenes MACHEP IS A MACHINE DEPERDENT PARAMETER SPECIFYING THE
RELATIVE PRECISION OF FLOATING POINT ARITHMETIC asséneQe
MACHEP = 6.

1ERR = O
IF IR JEQ. 13 GO ¥O 001

00 100 | = 24N
100 EIF-1) *+ E(1)

f s 0.
8 = O
EiN) = O,

OD 2*0 Lom 1N

H - nlanP - ll!SlDiLl) * ABSLELLIY)

[F §8 LT, H} B =

seeeanss LGOK FOR SHILL SUB=DIAGONAL ELEMENT #addises

DO 110 M = LuN

IF (ABSU{EIM)}) LLE. A) GO ID 12¢

ssesveer EINF 1S ALWAYS ZERC, SO THERE IS NO EXIT THROUGH THE
BOITRN OF THE LODP aesassas

110 CONFINUE

120 IF (® .50, L} 6O 10 220

130 LF {J .£Q. 301 GO TO 1000
do= o).l
seeseses EORM SHIFT ssssswee
L=t o+
6 = DALY
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PoE o DILL) = 63 / 12,0 & EILY) t
R & SOREIPSP + 1.0

4 o= Lk

Bl = EILJ P = SIGNIR.PY) Ltledi 7 1
H= g -0l

e 3 ;on ELENENT OF Avu swssowrs
00 140 § = L1 . 0D 180 K

140 DI1) = Oék] = H 180 ¢ = G » LIJ.«J * LK)

< [4
FaFtH JPE e 3

4 QL TRan Atica » [LIRTN -Ll. JPI! 90 10 220
LR 1LY c

00 200 X = yPlll
200 G o G ¢ QUK S * 2(]4K)

N - [4 .- #¢ FORM ELEMEKT GF P sevasese
c . ruu taMel STER =t UNTIL L DO == dbieasss . FREH G /H
00 200G BI e 1gMML Ff o F ¢ Bl & 2143}
I=an=~u 240 CONTINUE
@=C*ED c
HuCspP nH o« F 7 (H o+ HY
LF lllS(Pi .LT. ABS{ELL)I) GO TO 150 4 Poaneses FORN REDUCED 4 sseswoes
€ & Eti} 0O 260 J o L
A= snnllc-c + 1.00 F o Z2tled)
Etlel) o SsPeR G & Eid) =~ HH & F
SaL/JR E1J) » ¢
€= 1.0/ R <
G0 I0 }&GC 00 260 K = 1,4
150 C = p /7 E(I} . ZideK) ® Z{deKk) =~ F * EIKS = & # I(14K)
R = SQAVICSC + 1.0} 260 CONTINUE
EfldL) = s » E{l} » R <
$ = 1.0/ 295 Ot = K
CaC*sS 300 CONTINUE
160 P = C * D{E) = 5 = ¢ <
Oflel) o H + § & {C & 6+ 5 & DENIE 320 D(1) = O,
C sresen¥® FORM VELTOR *eeversy EL1) » Q.
00 180 K = LA c wasvemns ACCUMULATION OF TRANSFORMATION MATRICES esssssa
Hos RiKel+l) DO 500 1 a Lun
ik Eei) = S 0 IaK.IY + C o W Le =]
IRy j) & C & 2iKel) = S o 1 FE (D61 .BQ. Osl GO TG 38O
180 CONT INUE c
¢ 00 380 4 = L
200 CONTINUE G = 3.
< . L
EfL) = S & P X 00 340 K = oL
GIL) =« C®p 340 G & G + l(l-K) * ItKed)
P (ABSIE(LI) +GT. &) GO TO 130 c
220 DIL) a DL} + F DO 380 K = L.
240 CONT Inu€ Ii%edt & ZIKyj) = G 8 ZEXy D)
< BROER €16 UES AmD €I TORS 360 COMTINUE
00 300 i1 & 2.N [4
I =01 =4 380 DLEY * Itic D)
K= | TiLa 17 = Llo0
P =012 IF (L «LT. 13 GO TD 500
c c
D0 260 J * Jl.N 00 400 4 » L,
IF iDi2l «GE. P) GO TO 260 Iil.d1 » 0.
L] e I} = Qo
P = Ot} 400 CONT INUE
260 CONTINUE [
c . ' 500 CONTINVE
1F (% JEQ. 1} GG 10 300 c
DIk} = DI1) - RETURM
oily = P END
4
DO 208G 4 & LoN
P oIgdetd
Lbdo i) # 214K}
Iidoky = P
2680 CONTINUE
4
304 CONTiwUE
[+
G0 10 1001
[4 *essenes SET ERAOR -~ MO COMVERGENCE TD AN EIGENVALUE AFTER 50
< ITERATIONS » wwpess

t000 JERR = |
1001 RETURN
END
SUBROUTINE TREDIMMNeheDsEsZ)

4

C
INTEGER [odekaloMr LI NHaPL
REAL ACNMpHI,OfMIeEINT 2 (NMN]
REAL Fulo oM, SCALE
REAL SQRT.ABS,SIGN

4
00 100 I = LN

[4
0D 100 J = Lot
2ilsdy = Al d)

100 CONTINUE
c

IF in LEQ. i} GO TO 320

[ sensenss FOR | = N STEP =i UNTIL 2 DO ==sesessus
00 300 It = 2.N
T eN 2« ]

L al-1}
H* 0.
SCALE = 0O,
IF (L «tfs 2} GO TD 130
c seasemer SCALE ROW 1ALGOL VOL FHER NOT NEEDED) vesewsws

00 120 K = Lol
120 SCALE = SCALE » ABS(2E1.K1}

IF (SCALE .ME. D) GO TO 140
130 E4f) = Z(latd
o 10 290

340 08 50 X & Lot
Z11,K) = 21i,K} 7 SCALE
Hxnelilen) * L{1.K)
I50 CONTINUE

Fa2ileld
G * ~SIGNISOREIHILF)
ELEY = SCALE » ¢
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APPENDIX 8.4

Modifications and Additicons For User's Manual

Of SHORE-III Program

In this appendix, only the necessary modifications
and_additions to the user's manual of SHORE-III program
(40) are presented to make it applicable for SHORSS
program. To introduce the soil effects in the form of
the Equivalent Boundary System, modifications to number
of subroutines in SHORE-III are carried out. These sub-
routines are: DATAl, DATAZ, ESOT, GIMX, LISTID and SQOLV
(see the overlay structure in Figure 12). These modi-
fications necessitate the input data to be changed in
some sections of the twelve data sections of SHORE-III (40).
However, new limitations are introduced as a resultlto the
new options in SHORSS program. These limitations are
given in this appendix as well.

INPUT DATA

Given below are the medifications and additions to
the input data of SHORE-~III to suit SHORSS:

B. Problem. Control Card

The format of Problem Control Card will be as follows:

Columns Format Entry
1-5 I5 Number of finite elements to

be used (Maximum 47)
6-40 e ewase s JWCHANGED.. ...

41-45 15 1 or 0, refers to EBRS
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The flag 1 in the ninth field signifies that the
soil éffect is to be considered in the analysis and the
equivalent boundary system values should be supplied for
each harmonic. Otherwise, no EBS to be supplied and
SHORSS becomes SHORE-III program in this case. It should
be noted that the soil effect is limited to the dynamic
analysis only, therefore, columns 41 to 45 should be left
blank in static analysis problems.

D. Nbdal Point Cards

If columns 41-45 in the problem control card are not
left blank no gecmetric constraints at last node are re-
quired. Thus, it is necessary to leave columns 16 to 45
blank for the last nodal point card.

I. Loading Information Cards

As the EBRS components must be supplied for each
Fourier harmonic they are introduced in this section. Thus,
for each harmonic, there shall be one title card, the
'load title card', followed by a control card, the 'loading

control card', followed by three cards,'the ERS cards' if

columns 41-45 in the problem control card are not left
blank. These cards are followed by the loading cards as
usual.

The format of the first card of the EBS cards, the
stiffness elements card, for each harmonic will he as

follows:
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Columns Format Entry
1-15 E1S5.6 Fourier coefficient for the

stiffness element in u=-
direction at 8 = 0°
{or 8 = 90°)

16~30 E15.6 Fourier coefficient for the
, stiffness element in v-
direction at & = 90°
{or © = 0°)

31-45 El5.6 Fourier coefficient for the
stiffness element in w-
direction at 8 = 0°

(or ¢ = 90°)

46-60 El5.6 Fourier coefficient for the
stiffness element in B¢
direction at 8 = Q°
(or 6 = 90°)

61-75 El5.6 Fourier coefficient for the

stiffness element in R
directicon at & = 90°
(or 68 = 0°)

8

The format of the second and third cards are like
the first card except the entry will be the damping
elements in the second and the mass elements in the third.
However, the mass elements for all Féurier harmonic are
the same, it is necessary to supply the mass card for each
harmonic.
ouTPUT

The only change in the output format of the program is
in the program title printout at the beginning of the out-
put, SHORSS title instead of SHORE-III title, and a
statement to be printed with the nodal point constraints

to describe the type of the boundary at the shell base.
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SYSTEM CONTROIL, CARDS

The image of system control cards used to run SHORSS
from permanent file (WUES0OE.SHORSS) at Washington
University Computing Facility, using an IBM 370 coméuter,
is the same as those given in Appendix A of Reference (40)

except the first two cardé should be replaced by:

//SHORSTST JOB (65587,1466,20), '0SAMA", CLASS=N, TIME=20

//A EXEC FORTRAN,LIBRARY='WU650E.SHORSS"' ,PROGRAM=SHORSS
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