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ABSTRACT

This report presents the results of eighteen cyclic1 in-plane

shear tests on fixed ended masonry piers having a height to width ratio

of 0.5. These eighteen tests form part of a test program consisting of

eighty single pier tests. Previous reports have presented the results

of forty-five piers having height to width ratios of 2 and 1 and a sub-

sequent report will present the test results of the remaining seventeen

piers.

The test setup was designed to simulate, insofar as possible, the

boundary conditions the piers would experience in a perforated shear

wall of a complete building. Each test specimen was a full scale pier

40 inches high and 80 inches wide. Three types of masonry construction

were used; a hollow concrete block and a hollow clay brick type that

used an 8 inch wide unit, and a double wythe grouted core clay brick,

10 inch thick wall, that consisted of two wythes 3 1/2 inches thick and

a 3 inch grouted core. The variable included in the investigation was

the quantity of horizontal reinforcement. All of the piers were fully

grouted.

The results are presented in the form of hysteresis envelopes,

graphs of stiffness degradation, energy dissipation and shear distortion,

and tabulated data on the ultimate strength and hysteresis indicators.

A discussion of these test results is presented but no definitive

conclusions are offered. These will be included in a final report at

the completion of the eighty tests.
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1. INTRODUCTION

1.1 The Multistory Masonry Building Research Program

A multistory masonry building research program was initiated at

the Earthquake Engineering Research Center in September 1972, and has

continued for the past six years. After an extensive review of the

I , [5,6]* d I' 'h' f 'lterature ea lng Wlt reslstance 0 masonry to earthquakes, lt

was concluded that shear walls perforated by numerous window openings

(Fig. 1.1) were the components of multistory masonry buildings most

frequently damaged in past earthquakes, and it was decided that an

experimental study of the seismic behavior of such components was

necessary.

Two types of structural components can be identified in the shear

wall of Fig. 1.1, the piers and the spandrel beams. In order to study

the pier behavior, a test fixture was designed to subject typical full-

scale double pier specimens to combined static vertical (gravity) and

cyclic lateral (seismic) loads (Fig. 1.2). The results obtained from

h ' h b d b 1[8,9]seventeen suc speclmens ave een reporte y Mayes et a • These

results show significant variations in the pier behavior with the various

test parameters including the type of grouting, types of reinforcement

and the rate of loading. The results were not conclusive and demon-

strated the need for more extensive tests to establish definitive para-

metric relationships.

The cost of the double pier tests, both in money and time, pre-

eluded carrying out extensive parametric variations with the double pier

test setup and, consequently, a single pier test system was designed

*References are arranged in alphabetical order of the authors' names,
and are listed at the end of the text.
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which greatly simplified the investigation (Fig. 1.3). A series of

eighty single pier tests was planned, which included the following test

parameters: type of masonry construction, height to width ratio of the

piers, type of grouting, and amount and distribution of both vertical

and horizontal steel reinforcement. The present report deals with the

experimental results of specimens with a height to width ratio of 0.5.

1.2 Objectives and Scope of the Single Pier Test Program

In determining the strength of masonry piers and panels, the

first step is to evaluate the mode of failure. Because most failures in

past earthquakes have been characterized by diagonal cracks, many

research programs have concentrated on this type of failure mechanism.

. [lJ [3]
Test techn~ques used by Blume , Greenley and Cattaneo and others

induce the diagonal tension or shear mode of failure.
. [15J

Scr~vener ,

the reinforcement once confinement is lost.

Meli[ll], Wi11iams[16] and Priestley and Bridgeman [13] ,however, recog-

nized that there are two possible modes of failure for cantilever piers.

In addition to the shear or diagonal tension mode they recognized that,

for certain piers, a flexural failure could occur. This mechanism is

characterized by yielding of the tension steel of the wall, followed by

a secondary failure at the compressive toe, with associated buckling of

Me1i Ill] described the

flexural failure as similar to that of an under-reinforced concrete beam;

i.e., extensive flexural cracking and strength limited by yielding of

the reinforcement, with failure finally due either to crushing of the

compressive corner or to rupture of the extreme bars.

Because the double pier tests were the first fixed ended piers to

be tested cyclically, the objective of those tests was to determine the

effect of various parameters and compare the results with those already
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known for cantilever piers. Both the shear and flexural modes of

failure were included in that investigation.

One of the main objectives of the single pier test program was

to investigate thoroughly the effects of different parameters on the

behavior shown in the shear mode of failure. It was evident from the

double pier test program that the flexural mode of failure of a fixed

ended pier has desirable inelastic characteristics, although these are

. [14]not as desirable as those obtained by Prlestley for cantilever

piers. Furthermore, it was recognized that for fixed ended piers, with

height to width ratios commonly found in multistory buildings, the

amount of horizontal reinforcement required to induce a flexural mode

of failure is substantially greater than that required by current codes.

Therefore, it was decided to investigate the effects of lesser amounts

of horizontal reinforcement on the shear mode of failure to determine

if desirable inelastic behavior could be obtained.

The eighteen tests reported herein are a part of a total program

of eighty single pier tests; a matrix characterizing the first sixty-

three tests is shown in Table 1.1. The parameters for the remaining

seventeen tests will be selected after an evaluation of these sixty-

three. The test parameters, other than the type of construction and

height to width ratio, include the amount of reinforcement and the

effect of partial grouting. Hollow concrete block piers having height

to width ratio of 2 were not included in the' single pier test program

because such piers were investigated in the original double pier tests.

This report presents the results for piers with a height to width

ratio of 0.5, of which six tests were performed on hollow concrete block

specimens (HCBL), six on hollow clay brick specimens (HCBR) and six on

double wythe grouted core clay brick specimens (CBRC). Previous
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[4,2]
reports presented the results obtained from piers with height to

width ratios of 2 and 1. The results from the series of seventeen

specimens which will complete the proposed research program will also

be presented in a separate report. The organization of the present

1 . "1 h . [4,2]vo ume lS SlIDl ar to t e two prevlous ones • The general background

of the single pier test program has been included in this report in

order to make it as self-contained as possible.



TABLE 1.1

*SINGLE PIER TEST PROGRAM
(Number of test specimens)

TYPE OF
MASONRY DOUBLE WYTHE

HOLLOW CLAY BRICK GROUTED CORE CLAY BRICK HOLLOW CONCRETE BLOCK TOTAL
HEIGHT (HCBR) (CBRC) (HCBL) NUMBER
TO WIDTH
RATIO

2 : 1 9 5 0 14

1 : 1 13 7 11 31

1 : 2 6 6 6 18

*Last 17 tests to be decided after this phase is completed

U1
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2. TEST SPECIMENS

2.1 Design and Construction of Specimens

The overall dimensions of the test specimens discussed here are

shown in Fig. 2.1. The height of all eighteen piers was 40 inches. The

width was 80 inches for the hollow concrete block piers (HCBL) and 78

inches for the hollow clay brick (HCBR) and double wythe grouted clay

brick (CBRC) piers. The thickness was 7-5/8 inches for the HCBL piers,

7-3/8 inches for the HCBR piers and 10 inches for the CBRC piers.

The HCBL panels were constructed from standard two-core hollow

concrete blocks, nominally 8 inches wide x 8 inches high x 16 inches

long, as shown in Fig. 2.3(a). The cored area of each block is approx­

imately 50.6 square inches and the ratio of net to gross area is 58%.

The HCBR piers were constructed from standard two-core hollow

clay bricks, nominally 8 inches wide x 4 inches high x 12 inches long as

shown in Fig. 2.3(b). The cored area of each brick is approximately

57.4 square inches and the ratio of net to gross area is 67%.

The CBRC piers were constructed from two wythes of "solid" clay

bricks nominally 4 inches wide x 4 inches high x 12 inches long as shown

in Fig. 2.3(c). The grouted space between the wythes was 3 inches wide

and was filled after the steel reinforcement had been placed in position.

The bricks have a core (hollow) area slightly less than 25% of the gross

area. The Uniform Building Code definition of a "solid brick" is one

with 25% or less coring.

The piers were constructed on 0.75 inch thick steel plates as

shown in Fig. 2.2. A similar plate was added on top of the pier after

the grout was poured. Both plates had holes to permit anchorage of the

vertical steel reinforcement and keys to provide an adequate shear
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transfer between the masonry pier and the steel plate. The plates also

had welded bolts and holes to anchor the pier to the test rig.

All the eighteen piers were fully grouted. The series of tests

was planned to determine the effect of the quantity of horizontal steel

reinforcement on the strength and deformation properties of the piers,

as shown in the test program (Table 2.1). Details of the reinforcing

bar arrangements are shown in Fig. 2.4(a) for the HCBL piers and in

Fig. 2.4(b) for the HC~R piers and the CBRC piers. The actual position

of the vertical reinforcement is indicated in Fig. 2.1. When horizontal

reinforcement was used, the bars were evenly distributed over the

height of the pier.

2.2 Material Properties

Table 2.2 shows the mechanical properties of the materials used

in the construction of the test specimens. The specimens used to

determine the material properties are shown in Fig. 2.3(a),(b) and (c).

The tests of the single masonry units followed the ASTM C67-73

specification[lO] and were based on three samples for each test.

The joint mortar was specified as standard ASTM type M (i.e., 1

Cement: 1/4 Lime: 2 1/4-3 Sand, by volume), with a minimum compressive

strength of 2500 psi at 28 days. The grout was specified as 1 Cement:

3 Sand: 2 G, where G refers to 10 rom maximum size local gravel. Because

the specimens were not constructed or grouted at the same time, the

mortar and grout strength varied according to normal workmanship. A

minimum of three samples of both mortar and grout was taken from each

batch used during construction.

ASTM A615 Grade 60 steel was specified for both the vertical and

horizontal steel reinforcement. Three samples of each bar size were

tested to determine the properties listed in Table 2.2.
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Six prisms for uniaxial compression tests and three square panels

for diagonal tension tests were constructed from the same mortar and

grout used in each set of wall panels. Three of the six prisms had a

height to thickness ratio of 5 and the other three had a height to

thickness ratio of 2. All prism tests were performed at a loading rate

of 100,000 lb/min. (Fig. 2.5). The compressive strengths are shown in

Table 2.2.

The square panels were tested as shown in Fig. 2.6 at a loading

rate of 20,000 lb/min. The ultimate load for the square panel tests is

also shown in Table 2.2. The square panels corresponding to the HCBR

piers do not appear in Table 2.2 and Fig. 2.3(b) because they were

accidentally broken before the test.

The mortar, grout, prism and square panel samples were cured

under the same normal atmospheric conditions as the piers; also the

prism and square panel tests were performed during the tests of the

corresponding piers.



TABLE 2.1

TEST PROGRAM

specimen
Test Grouting I Reinforcing Steel

Pier General Characteristics I Frequency Full (F)Designation (cps) Solid(S) I Vertical I Horizontal

Masonry type: Hollow Concrete Block HCBL-l2-1 0.02 F 3#7 No
Pier height: H = 40 in -2 0.02 F 3#7 1#5
Pier width: D = 80 in -3 0.02 F 3#7 2#5
Pier thickness: 7.625 in -4 0.02 F 3#7 3#5
Gross section area: 610 in2 -5 0.02 F 3#7 4#5
Bearing load: 32 kip -6 0.02 F 3#7 4#6 I ......
Bearing stress: 52 psi tv

Masonry type: Hollow Clay Brick HCBR-12-1 0.02 F 3#7 No
Pier height: H = 40 in -2 0.02 F 3#7 1#6
Pier width: D = 78 in -3 0.02 F 3#7 2#6
Pier thickness: 7.375 in -4 0.02 F 3#7 3#6
Gross section area: 575.25 in2 -5 0.02 F 3#7 4#6
Bearing load: 32 kip -6 0.02 F 3#7 5#7
Bearing stress: 56 psi

--
Masonry type: Double Wythe Grouted

Core Clay Brick CBRC-12-l 0.02 S 3#7 No
Pier height: H = 40 in -2 0.02 S 3#7 1#6
Pier width: D = 78 in -3 0.02 S 3#7 2#6
Pier thickness: 10 in -4 0.02 S 3#7 3#6
Gross section area: 780 in2 -5 0.02 S 3#7 4#6
Bearing load: 39 kip -6 0.02 S 3#7 5#7
Bearing stress: 50 psi
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TABLE 2.2

MATERIAL PROPERTIES

(Average values. Number in parenthesis indicates the
standard deviation as percent of average value)

MASONRY HCBL-12 HCBR-12 CBRC-12

Masonry unit gross 1878 5816 9422
compressive strength (psi) (5%) (6%) (4%)

Masonry unit net 221 466 303
tensile strength (psi) (14%) (19%) (24%)

Mortar compressive 5530 3460 4903
strength (psi) (26%) (24%) (29%)

Grout compressive 3890 3890 3785
strength (psi) (3%) (3%) (4%)

Prism (2:1) compressive 3604 3589 2948
strength (psi) (9%) (7%) (11%)

Prism (5:1) compressive 2988 2838 2876
strength (psi) (13%) (15%) (3%)

Ultimate load of 155.0 - 186.3
square panel (kip) (4%) (11%)

STEEL REINFORCEMENT No. 5 bar No. 6 bar No. 7 bar

Yield strength (ksi)
69.6 67.3 80.3
(4%) (1%) (11%)

Ultimate strength (ksi)
109.8 108.6 125.4
(4%) (1%) (9%)

Modulus of elasticity (ksi) 28700 28800 28800

Yield strain (in/in) 0.00243 0.00234 0.00279
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FIG. 2.2 CONSTRUCTION OF TEST SPECIMENS
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FIG. 2.5 PRISM TEST
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3. TEST EQUIPMENT AND PROCEDURE

3.1 Test Equipment

The test equipment shown in Figs. 3.1 and 3.2 permits lateral

loads to be applied in the plane of the piers in a manner similar to

which a floor diaphragm would load the piers during earthquake excita­

tion. It consists of two 20 feet high, heavily-braced reaction frames

supporting a horizontally acting hydraulic actuator; a mechanism cap­

able of applying vertical bearing loads similar to the gravity loads

experienced by the piers in an actual structure; a bottom beam composed

of a concrete base and a wide flange steel beam which provides anchorage

to the test floor and suitable connection holes to the bottom plate of

the specimen; and a top beam fabricated from two wide flange, steel

beams as shown in Fig. 3.2. The top and bottom beams simulate the

action of the spandrel beams in actual masonry construction; they are

connected by two steel columns located 10 feet 7 inches apart, which

prevent rotation of the top beam and thus provide approximate fixed­

fixed end conditions during the test.

The maximum load which may be developed by the horizontal actuator

is 450 kips, using a hydraulic pressure of 3000 psi. Either displace­

ment or load can be controlled with this actuator.

A vertical load up to 160 kips can be applied to the pier through

the springs and rollers shown in Fig. 3.2. The Thomson Dual Roundway

Bearings connecting the springs to the top of the panel allow the panel

to move freely with minimal friction force. The coefficient of friction

of bearings is purported to be 0.007.

An additional vertical, compressive load results from the char­

acteristics of this test setup. As significant lateral displacements
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are imposed on the top beam by the hydraulic actuator, the constraint

provided by the side columns forces the top beam to move in a circular

arc. The vertical component of this motion is opposed by the axial

stiffness of the pier, resulting in a compressive load being applied

to the pier. The significance of this additional, cyclic varying com­

pressive load on the test results is discussed in Chapter 5.

Each pier was constructed on a 0.75 inch thick steel plate and

had a similar plate on top, as discussed in Section 2.1. This allowed

the piers to be moved into place before each test and bolted to the

bottom and top steel beams. Prior to the bolting process, hydrostone

was placed between the surfaces of the plates and beam flanges as well

as between the top plate and the top brick course of the pier.

3.2 Loading Sequence

Each pier was subjected to a series of displacement controlled,

in-plane shear loads. The full sequence of loading consisted of sets

of three sinusoidal cycles of loading at a specified actuator displace­

ment amplitude. The specified amplitude was gradually increased; the

full loading sequence is given in Table 3.1. After each stage, (one

set of three sinusoidal displacements at the same amplitude), the walls

were visually inspected and the crack pattern identified and photo­

graphed. The sinusoidal cycles were applied at a frequency of 0.02

cycles per second throughout the test program.

The test of each pier had a duration of 2-1/2 to 3 hours. The

test was usually terminated when the shear strength of the pier had

dropped below one third of the maximum shear strength. All of the tests

were carried out under a constant primary bearing stress between 50 and

56 psi. Additional cyclic vertical compressive loads were developed
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during the test, as described in Section 3.1, and discussed further in

the following chapters. All the piers tested were subjected to a

maximum input displacement amplitude ranging from 0.50 inch to 0.80

inch.

Because of the flexibility of the reaction frame and other load

transferring devices, the lateral displacement actually experienced by

the pier was always less than the actuator input displacement, this

difference being smaller towards the end of the test when the pier

stiffness had attained its lowest values. There was also a slight

difference between the maximum loads developed during the push and pull

half cycles due to the different types of stress placed on the bolting

system and to the different pier stiffnesses associated with non­

SYmmetric crack patterns.

3.3 Instrumentation

The total horizontal load applied by the hydraulic actuator, as

well as the vertical forces developed by the side columns, were measured

using pre-calibrated load cells. Each pier was instrumented as

indicated in Fig. 3.3.

DCDT's (direct current differential transformers) HI' H2 and H3

were attached to an external reference frame in order to measure the

lateral deformation of the pier during each sequence of loading. The

difference between HI and H3 was used to indicate the relative lateral

deflection of each pier. DCDT's Dl , D2 , D3 , and D4 measured the

changes in distance between points along the diagonals of the pier and

were used to indicate the shear distortion of the pier as defined in

Fig. 3.4. DeDT's VI and V
2

were also attached to the external reference

frame and measured the rotation at the top steel beam. This provided
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a measurement of how well the side columns prevented the rotation of

the top section of the pier.

Finally, strain gages were attached by epoxy glue to the

vertical reinforcing bars at the bottom section of the pier, in order

to measure the steel strain at the sections that were expected to crack

first during a test.

3.4 Data Acquisition and Data Processing

Two different data acquisition systems were used during the test

program. The main one consisted of a high speed scanner able to handle

up to 25 channels of information, and the corresponding tape recording

system (Fig. 3.5). All the data were acquired and stored on tape after

being scanned at a rate of I point per second per channel. (No higher

rate was necessary because of the low frequency used to run the test).

Three computer programs were used to read the original tape data, to

input the calibration values and geometrical data of each pier and to

reduce the response data to their final presentation in computer plots.

The second data acquisition system was used to monitor the pro­

gress of the test and to act as a back-up system in case of any failure

in the main system. It consisted of a direct writing oscillograph

(visicorder) and was used only to record the most important data; namely,

forces at the actuator and side columns, actuator stroke and lateral

displacement of the pier. This second data acquisition system proved

to be extremely useful in detecting occasional malfunctions of the

actuator or the instruments attached to the piers and provided excellent

visualization of the behavior of the piers as the test progressed.
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TABLE 3.1

LOADING SEQUENCE

INPUT DISPLACEMENT
STAGE* AMPLITUDE

(in)

1 0.005

2 0.010

3 0.015

4 0.020

5 0.03

6 0.04

7 0.06

8 0.08

9 0.10

10 0.14

11 0.18

INPUT DISPLACEMENT
STAGE* AMPLITUDE

(in)

12 0.22

13 0.26

14 0.30

15 0.35

16 0.40

17 0.45

18 0.50

19 0.55

20 0.60

21 0.70

22 0.80

23 0.90

*Each stage consists of three sinusoidal cycles at the amplitude shown
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FIG. 3.2 OVERVIEW OF SINGLE PIER TEST
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4. TEST RESULTS

4.1 Introduction

The experimental results for the eighteen piers having a height

to width ratio of 0.5 are presented in the form of hysteresis loops,

hysteresis envelopes, stiffness degradation properties, energy dissipa­

tion characteristics, and relative shear distortion. In addition, a

sequence of photographs of the successive crack patterns is given for

each test. An explanation of how each of the graphs was obtained and

the meaning of the terms used above is included in Section 4.3. The

complete presentation of the figures and photographs has been arranged

by test numbers and is included in Appendix A. In order to show the

relation between the sequence of the crack pattern photographs and the

diagrams showing the results, a black dot has been drawn on each of the

graphs and next to the corresponding picture of the crack pattern. The

loading stage individualized by the black dot generally corresponds to

the stage at which the first major diagonal crack occurred.

In addition, data on the ultimate strength and hysteresis

indicators for each test are listed in Table 4.1. A discussion of the

modes of failure observed follows in Section 4.2 and a discussion of the

test results is presented in Chapter 5.

4.2 Modes of Failure

Three modes of failure were observed during this series of tests:

a shear mode, a combined shear and sliding mode and a combined flexural

and sliding mode. The initial crack pattern was similar in all cases:

early horizontal (flexural) cracks at the bottom corners of the piers,

which later either became diagonal (inclined) cracks (HCBL piers) or
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continued horizontally through the bottom courses of the specimens

(HCBR and CBRC piers).

The shear mode of failure occurred in tests HCBL-l2-l, 2, 3, 6,

HCBR-l2-2, 3, 4 and CBRC-l2-6, and is illustrated in Fig. 4.l(a). This

mode of failure is characterized by major diagonal cracks in both

directions that finally destroy the moment resisting mechanism when the

diagonal crack runs through the compression toe of the pier. Strength

degradation occurs because of crushing and grinding along the diagonal

cracks.

The characteristics of the shear mode of failure depended on the

type of masonry construction. In the case of the HCBL piers, a family

of diagonal cracks developed in both directions with none of these

cracks involving by itself the whole width of the pier. After the

first major diagonal crack occurred, the lateral load strength of the

pier appeared to be carried by diagonal compression struts bounded by

the diagonal cracks. This shear resistance mechanism has also been

observed by Park and paulay[l2] in squat reinforced concrete shear

walls. In all the HCBL piers that had a shear mode of failure, the

final failure was prompted by the buckling of these compression struts

which led to the formation of a diagonal crack that completely separated

the top from the bottom of the pier (Fig. 4.la). In some of the cases

(particularly HCBL-12-6) this final failure was quite explosive and

accompanied by a sharp strength degradation. In the case of the HCBR

piers, the diagonal cracks usually involved the whole width of the pier

with a horizontal segment above the midheight section (Fig. 4.la). The

final failure occurred when the diagonal crack destroyed the com­

pression toe of the pier. In some cases (HCBR-l2-3, Fig. 4.la) the

failure crack included both diagonal and horizontal branches.
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The combined shear and sliding mode of failure occurred in tests

HCBL-l2-4, 5 and ~BRC-12-1, 2 and 3 and is illustrated in Fig. 4.1(b).

In this case the diagonal cracks developed in a pattern similar to that

of the shear mode of failure specimens. However, the final failure

mechanism was due to sliding through a bell-shaped path determined by

two side, diagonal cracks and an horizontal branch at the top course

of the pier. Even though there was crushing and grinding along the

side diagonal cracks, typical of a shear failure, the sliding of the

top of the pier relative to the bottom part was the feature that con-

trolled the response of these piers, as will be explained in Chapter 5.

The combined flexural and sliding mode of failure was present

in tests HCBR-12-1, 5, 6 and CBRC-12-4 and 5. In all of these cases

the horizontal (flexural) cracks run continuously through the bottom

courses of the piers and the final failure occurred when a sliding

motion developed along this horizontal crack. A number of diagonal

cracks (HCBR-12-6) or none of them (HCBR-12-l) had developed by the time

the sliding failure occurred (Fig. 4.lc). In particular, the failure

observed in specimen HCBR-12-6 was of the same type as that reported by

. 1 [14] . h' t'l tPr2est ey 2n 2S can 2 ever tes s. It must be noted that none of

the HCBL piers developed a continuous horizontal crack through the

bottom course and therefore, none of them presented this type of

failure.

From a comparative point of view, the crack patterns presented

in Appendix A show that the HCBL piers were the specimens that

developed the largest number of diagonal cracks and the least number of

horizontal cracks; the HCBR piers developed peculiar corner diagonal

cracks that did not participate in the final failure mechanism; and

the CBRC piers developed the largest number of horizontal cracks,
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sometimes through the bottom three or four courses of the piers, and

exhibited the least number of major diagonal cracks.

The readings obtained from the strain gages placed at the

bottom sections of the side vertical reinforcing bars (Fig. 3.3)

indicate that the tensile stresses in these bars increased with

increasing values of the lateral load, until the ultimate load was

attained. In some of the tests these side vertical bars showed

yielding strains for a few stages around the ultimate load, while in

the rest of the tests they never attained the yield condition. This

strain pattern appears to be independent of the mode of failure

exhibited by the pier.

Knowing the tensile strain, and therefore the tensile stress, in

the extreme vertical bar, it is possible to find the stress in the

central reinforcing bar, by considering the distribution of forces

indicated in Fig. 4.2. If a section along the bottom cross section of

the pier is considered, the moment equation about 0 will permit finding

the stress at the bottom section of the central bar, provided both the

moment of the resultant of the compressive forces in the masonry and

the moment of the force at the reinforcing bar closest to 0 are

neglected. The results of such analyses show that the central vertical

bar at the bottom section of the pier was usually in compression, some­

times with values very close to the yield stress. Even though the

assumptions used to compute this stress lead to overestimation of the

compressive stresses in the central bar, it is clear that the design

objective of avoiding tension yielding in the central reinforcing bar

was accomplished.

The same moment equation about the corner point 0 may be used to

locate the actual position of the resultant of the compressive forces
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along the bottom section of the pier, when the forces developed by

both the central bar and the side bar closest to 0 are included in

that resultant. This analysis indicates that the resultant was usually

located in the pier, within 5 to 10 inches from point 0, at the time

the maximum lateral load deve~oped. This result verifies the observa­

tion that the compressive toe in squat piers is wide enough to carry

a significant shear, thus requiring an ultimate lateral load larger

than that required to produce the first major diagonal crack.

4.3 Load-Displacement Characteristics

As mentioned above, Table 4.1 summarizes the strength and

hysteresis characteristics of the piers and Appendix A presents the

test results for each of the specimens. The correspondence between

the photographs of the crack patterns and the diagrams showing the

results is indicated by a black dot drawn on each of the graphs and

next to the corresponding crack pattern.

The details of the derivation of each of the figures in Appendix

A are discussed in the following sections.

a) Hysteresis Loops. (Shear Stress vs. Lateral Deflection Diagram) •

This graph was obtained by plotting the gross shear stress

against the relative lateral displacement of the pier for the

duration of the test. (Since all the piers were fully grouted, the

gross shear stress is equal to the net shear stress.) The gross

shear stress was computed by dividing the measured horizontal force

by the gross (or net) cross section area of the pier (the thickness

multiplied by the width), as indicated in Table 2.1 (610 in
2

for

the HCBL piers, 575 in
2

for the HCBR piers and 780 in
2

for the CBRC

piers). The relative lateral displacement was computed from the
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difference between the lateral deflections at the top and bottom

of the pier (HI - H3 as defined in Fig. 3.3). In the case of the

piers that failed in a combined shear and sliding mode of failure,

(HCBL-12-4, 5 and CBRC-12-I, 2 and 3), the DCDT at the top of the

pier (HI) did not record the horizontal motion of the top portion

because the bell-shape crack always developed above HI' Therefore,

this reading was obtained from the actuator stroke by using the

following procedure. First, the flexibility of the reaction frame

at the level where the actuator reacts was measured; a linear,

elastic behavior of the reaction frame was detected at all load

levels, with a flexibility coefficient of 0.0003007 in/kip. Then,

the horizontal displacement at the top of the pier was obtained by

subtracting the lateral displacement of the reaction frame from

the actuator stroke, and the resulting value was plotted against

HI for the seven tests which did not exhibit combined shear and

sliding failure. This plot showed a consistent linear relation

between the measured HI and the value calculated from the actuator

stroke, the actuator load and the reaction frame flexibility, for

the whole range of displacements, (the measured HI was always 95%

of the calculated value). The plot was then used to obtain HI for

the failure stages of the tests that displayed a combined shear and

sliding failure, using the readings from the actuator stroke and

the actuator load.

b) Hysteresis Envelopes

The hysteresis envelope was determined from the hysteresis loops

by averaging the absolute values of the three extreme positive and

the three extreme negative forces (or gross shear stresses) and the
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corresponding absolute values of the relative lateral displacement,

for each stage of the test at a given input displacement. One

point on the hysteresis envelope was obtained for each stage of 3

cycles of loading. The average lateral displacement given by the

hysteresis envelope is always less than the input displacement, as

explained in Section 3.2.

The black dot indicated on this graph generally corresponds to

the stage at which the first major diagonal crack occurred, as

observed in the corresponding photographs. This shear crack

usually developed during the first of the three cycles that com-

prised each stage of loading.

The maximum strength obtained from the hysteresis envelope is

indicated in Table 4.1 under "average ultimate shear force or

stress". The "peak ultimate shear force or stress" values that

appear in Table 4.1 were obtained from the average maximum force

(stress) developed in anyone cycle of loading. The average value

is always less than the peak value, varying from 94% to 97% of the

peak value. The compressive load at ultimate indicated in Table

4.1 corresponds to the maximum axial compressive load developed

during each of the tests. This maximum value always occurred at

the same time as the peak ultimate shear force, and was computed

from the readings of the load cells located in the vertical columns

plus the bearing load applied prior to each test (Table 2.1).

The last two columns of Table 4.1 correspond to hysteresis

indicators obtained from the hysteresis envelopes and defined in

Fig. 4.3. The level of 0.70 P used to define these indicators,
u

where P is the maximum strength indicated by the hysteresis
u

envelope, was arbitrarily chosen. Indicator hI tells how much the
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pier deviated from its initial, theoretical stiffness, and indicator

d2 gives an indication of the deformation capability of the pier.

The initial theoretical stiffness of the pier was computed assuming

that the piers were fixed against rotation at both the top and

bottom. The moment of inertia was calculated using the gross,

uncracked section, neglecting the effect of steel reinforcement;

the modulus of elasticity was taken from the measured values (Fig.

2.6, reference [2],for the HCBL piers, Tables 2.3a and 2.3b,

reference [4], for the HCBR and CBRC piers, respectively), and

Poisson's ratio was assumed to be 0.15. Further discussion on the

correlation of the theoretical stiffness and the measured stiffness

is presented in Chapter 5.

c) Stiffness Degradation

A cyclic definition of the stiffness, as indicated in Fig. 4.4,

was used to measure the stiffness of the piers throughout each

test. The three cyclic stiffness values obtained from each stage

of loading were averaged and plotted against the average gross

shear stress and the relative lateral displacement, as defined for

the hysteresis envelope plot.

d) Energy Dissipation

The energy dissipated per cycle of loading was expressed in

terms of a dimensionless ratio EDT. EDT is defined as the ratio of

the energy dissipated to the total stored strain energy per cycle

and is diagrammatically shown in Fig. 4.4. The three EDT values

obtained for each stage of loading were averaged and plotted against

the average relative lateral displacement.
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e) Shear Distortion

The values of the shear distortion 0 were calculated as
s

indicated in Fig. 3.4. The absolute values of 0 corresponding to
s

the three extreme positive and three extreme negative forces were

averaged for each stage of the test, and plotted against the

respective average relative lateral displacements (total deforma-

tion of the pier), as given by H
l

-H
2

(Fig. 3.3). The plot shows

how much of the total deformation of the pier is due to shear

distortion as defined in Fig. 3.4. Since the instruments used to

measure the diagonal deformations were usually removed two or three

stages before the end of the test, the number of stages used to

plot this graph is usually smaller than the number used for the

previous graphs.



TABLE 4.1

PIER CHARACTERISTICS AND TEST RESULTS

(Gross cross section of wall: HCBL piers = 610 in
2

; HCBR piers = 575
. 2
~n CBRC piers 780 in2 )

Test Grouting Vert. reinf. steel Horizontal reinforcing steel Ratio of Average Average Peak Peak cornpressive Bearing Hysteresis Indicators
Frequency Full (F) Total Area Ultimate Ultimate Ultimate Ultimate Load at Stress at

Specimen Partial(P) No. of A
vs

No. of Yield
p = ~s

of Steel to Shear Shear Shear Shear Ultimate (2) Ultimate
Solid(S) Bars p =- Bars Strength ~s f hy

Gross Area Force Stress Force (1) Stress
h

l
d

2
v A h A

of Wallg g
(cps) (ksi) (kip) Pv + Ph (kip) (psi) (kip) (psi) (kip) (psi) (in)

HCBL-12-1 0.02 F 3#7 0.0030 No - - - 0.0030 189.1 310 200.3 328 118.5 194 4.0 0.35

-2 0.02 F 3#7 0.0030 1#5 69.6 0.0005 21.6 0.0035 201.5 330 211.7 347 122.0 200 2.9 0.35

-3 0.02 F 3#7 0.0030 2#5 69.6 0.0010 43.2 0.0040 242.5 398 251.4 412 148.5 243 3.8 0.39

-4 0.02 F 3#7 0.0030 3#5 69.6 0.0015 64.7 0.0045 209.9 344 218.6 358 129.4 212 2.6 0.45

-5 0.02 F 3#7 0.0030 4#5 69.6 0.0020 86.3 0.0050 220.2 361 228.0 374 130.9 215 3.6 0.49

-6 0.02 F 3#7 0.0030 4#6 67.3 0.0029 118.4 0.0058 252.0 413 261. 7 429 143.0 234 3.5 0.37

HCBR-12-1 0.02 F 3#7 0.0031 No - - - 0.0031 208.7 363 220.8 384 101.2 176 4.6 0.46

-2 0.02 F 3#7 0.0031 1#6 67.3 0.0008 29.6 0.0039 182.7 318 191.0 332 86.0 149 4.0 0.34

-3 0.02 F 3#7 0.0031 2#6 67.3 0.0015 59.2 0.0047 211.8 368 . 220.8 384 114.1 198 4.5 0.45

-4 0.02 F 3#7 0.0031 3#6 67.3 0.0023 88.8 0.0054 245.8 427 255.3 444 142.4 248 4.5 0.42

-5 0.02 F 3#7 0.0031 4#6 67.3 0.0031 118.4 0.0062 223.8 389 232.7 404 100.7 175 3.5 0.30

-6 0.02 F 3#7 0.0031 5#7 80.3 0.0052 240.9 0.0083 251.4 437 259.0 450 128.0 223 5.3 0.47

CBRC-12-1 0.02 S 3#7 0.0023 No - - - 0.0023 190.4 244 197.2 253 83.9 108 3.6 0.30

-2 0.02 S 3#7 0.0023 1#6 67.3 0.0006 29.6 0.0029 186.3 239 194.8 250 98.9 127 3.6 0.38

-3 0.02 S 3#7 0.0023 2#6 67.3 0.0011 59.2 0.0034 207.9 267 217.3 279 117.1 150 3.5 0.48

-4 0.02 S 3#7 0.0023 3#6 67.3 0.0017 88.8 0.0040 227.1 291 235.0 301 96.1 123 3.3 0.24

-5 0.02 S 3#7 0.0023 4#6 67.3 0.0023 118.4 0.0046 183.0 235 192.3 247 109.8 141 4.5 0.31

-6 0.02 S 3#7 0.0023 5#7 80.3 0.0038 240.9 0.0062 207.3 266 216.1 277 110.7 142 3.6 0.28

(1) Peak value among averages of extreme values developed during anyone cycle

(2) Average of values at extreme shear forces that produced the peak ultimate shear force

(3) Piers with a combined shear and sliding failure

(4) Piers with a combined flexural and sliding failure

(3)

(3)

(4)

ol::>
tv

(4)

(4)

( 3)

(3)

(3)

(4)

(4)
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40"FOR HCBl PIERS

39"FOR HCBR,CBRC PIERS

NO (SPRING FORCE)

II

36"FOR HCBl PIERS

39"FOR HCBR,CBRC PIERS

76"FOR HCBl PIERS

c

P (LAT. FORCE)

57"

75"FOR HCBR,CBRC PIERS

FIG. 4.2 FORCES ACTING ON THE PIER
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LOAD

HYSTERESIS
ENVELOPE

d2 DISPLACEMENT

DEFINITION OF HYSTERESIS INDICATORS hI AND d
2

COMPUTATION OF INITIAL STIFFNESS K
o

L = height of pier

E = modulus of elasticity

E
G = 2(1+V) shear modulus

D = width of pier

t = thickness of pier

L D t I A E K
O

SPECIMEN
(in

4
) (in

2
)

V

(in) (in) (in) (ksi) (kip/in)

HCBL-I2 40 80 7.625 325,333 610.00 1140 0.15 5,776

HCBR-12 40 78 7.375 291,652 575.25 2450 0.15 11,655

CBRC-12 40 78 10.00 395,460 780.00 1720 0.15 11,095

FIG. 4.3 DEFINITION OF HYSTERESIS INDICATORS AND COMPUTATION
OF INITIAL STIFFNESS
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FORCE

t7ZZI = 8

d I DEFLECTION

ENERGY DISSIPATION RATIO:

EDT= DISSIPATED ENERGY
TOTAL STORED ENERGY

= A
A+B

PIER STIFFNESS:

K = I~ -P2 1

Id, -d21
~ ,~ ,d l ,d2 MUST BE TAKEN

WITH THEIR OWN SIGN

FIG. 4.4 DEFINITIONS OF ENERGY DISSIPATION RATIO AND PIER STIFFNESS
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5. DISCUSSION OF TEST RESULTS

5.1 Introduction

The test results presented in Appendix A and Table 4.1 are

discussed in this chapter with reference to the two parameters that

were varied during these eighteen tests, namely, the type of masonry

construction and the amount of horizontal reinforcement. Other para-

meters, such as the initial bearing stress, the cyclic frequency, the

amount of vertical reinforcement and the type of grouting, which were

varied in previous pier tests[8,4,2], were held constant during these

eighteen tests. Nevertheless, it must be noted that the test results

were also influenced by the modes of failure exhibited by the piers,

as described in Section 4.2, and this variable will be considered in

the following discussion.

It is also important to note that the results presented herein

were obtained from a particular loading sequence.

1 d · h b d' d . 1 [8]oa lng sequence as een lscusse prevlous y •

The choice of this

Other types of load

sequences will be used in some of the additional seventeen tests that

complete the single pier test program.

When considering the results of these eighteen tests on 1:2

piers it is important to realize that conclusions which appear valid

for these tests may not hold for tests on piers with other height to

width ratios. The complexity of the problem requires the completion of

the test program (eighty tests) before valid conclusions concerning an

adequate design of masonry structural elements can be made.

5.2 Modes of Failure

Once the modes of failure exhibited by these squat piers have

been identified, it is interesting to speculate about the reasons behind
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the development of each of these modes. One conclusion that is

apparent from the test results is that the amount of horizontal rein­

forcement does not appear to have any influence on the mode of failure

obtained. The type of masonry construction and the cracking pattern

developed prior to failure are the variables that seem to dictate the

final type of failure.

None of the HCBL piers developed a continuous horizontal crack

along the bottom courses of the pier and consequently, none of them

displayed a combined flexural and sliding mode of failure. There is

no apparent reason to explain why two of the piers displayed combined

shear and sliding failures and four of them showed typical shear

failures. The crack patterns were similar in all of the cases and the

mode of failure became evident only at the end of the test.

The HCBR piers did not develop any side, diagonal cracks; there­

fore, they did not exhibit the combined shear and sliding type of

failure obtained with the HCBL and CBRC piers. Three of the HCBR piers

had a shear failure and the other three a combined flexural and

sliding; these last three piers developed different numbers of shear

cracks before the sliding failure through the bottom course of the

pier: HCBR-12-6 had many diagonal cracks, HCBR-12-5 had only one and

HCBR-12-1 had no diagonal cracks at the time of the sliding failure.

The CBRC piers developed the three modes of failure; however,

unlike the other piers, they clearly showed a preference for horizontal

cracks. Also fewer diagonal cracks developed during the tests.

The ultimate strength associated with the three modes of failure

proved to be about the same; this can be seen from the hysteresis

envelopes shown in Figs. 5.1, 5.2 and 5.3. since the mode of failure
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with the lowest ultimate strength will determine the mode of failure

of a particular pier, there is no clear way to predict the modes of

failure experienced by these squat piers. Section 5.3 presents the

experimental sliding failure strengths of the piers as a function of

the axial compressive stress. The ultimate shear strength is also

discussed in Section 5.3.

Finally, it is important to recognize that in the case of an

actual multistory masonry structure, for a pier to have a sliding type

of failure it is necessary that all the lateral load resisting elements

located at the same story level experience a sliding failure. From

the results obtained for these squat piers it is clear that this type

of failure is less likely to occur than a shear type of failure.

5.3 Lateral Load Strength

The lateral load strength of the piers is discussed at two

levels: the strength developed by the piers at the time the first major

diagonal crack occurs, which has been labeled shear crack strength; and

the maximum or ultimate strength developed by the piers during the

tests. It must be noted that in the tests of the piers with height to

width ratios of 1 or 2 the shear crack strength always coincided with

the ultimate strength and no reserve of strength was available after

the first major diagonal crack occurred.

5.3.1 Shear Crack Strength

The shear crack strength of the piers (average of extreme values

for the cycle where the first major diagonal crack occurred), is

indicated in Table 5.1 and has been identified by a black dot on the

hysteresis envelopes shown in Figs. 5.1, 5.2 and 5.3. The average shear

crack strength is 225 psi for the HCBL piers, 362 psi for the HCBR piers
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and 250 psi for the CBRC piers. When comparing the previous values for

the different types of masonry, it should be noted that the average

compressive stresses at the shear crack strength values were 98 psi,

145 psi and 117 psi for the HCBL, HCBR and CBRC piers, respectively.

The results of Table 5.1 also show an increase in shear crack

strength with increasing amounts of horizontal reinforcement in the

case of the HCBL and HCBR piers, although there exists some inconsist­

ency (HCBL-12-4) in the trend observed. In the case of the double

wythe grouted core clay brick piers (CBRC) there is no relation

between the shear crack strength and the amount of horizontal rein­

forcement.

5.3.2 Ultimate strength

The average ultimate strength is shown in Table 4.1 and Figs.

5.1, 5.2 and 5.3. The average values for each series of six piers are

359 psi, 384 psi and 257 psi for the HCBL, HCBR and CBRC piers, respec­

tively. Consideration of the bearing stresses concurrent with these

values is required if a meaningful comparison is desired. As in the

case of the shear crack strength, there seems to be a positive cor­

relation between amount of horizontal reinforcement and ultimate

strength. However, this correlation is less consistent than before

because of the different modes of failure experienced by the piers.

Table 5.1 presents a comparison between the peak ultimate shear

strength (peak value among averages of extreme values developed during

anyone cycle) and the shear crack strength. The last column of Table

5.1 indicates that the reserve strength that was available after the

first major diagonal crackoccurredwas larger for the HCBL than for the

HCBR piers, (this reserve was almost negligible for the CBRC piers).
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However, it must be noted that the shear crack strength of the HCBL

piers was significantly less than that of the HCBR piers.

The experimental sliding strength of the piers, as a function

of the axial compressive stress, is presented in Figs 5.4 and 5.5,

which show the complete cyclic response of the piers after the sliding

failure began to develop. If the loading portions of the curves are

considered, the average ratios between the shear stress and the bearing

stress are 2.64 (HCBR) and 2.54 (CBRC) for the piers exhibiting a com­

bined flexural and sliding failure (Fig. 5.4). The same ratios for the

piers that had a combined shear and sliding failure (Fig. 5.5) are 1.85

(HCBL piers) and 2.29 (CBRC piers).

5.4 Inelastic Behavior

The hysteresis envelopes (average maximum force-deflection

curves) are used as a frame of reference to discuss the inelastic

behavior of the piers. The question of what can be considered a

desirable hysteresis envelope has been discussed in reference [8],

pp. 68-70, in qualitative terms. It is appropriate to recall that the

usefulness of the hysteresis envelopes is that they provide visual com­

parisons of ductility and ultimate strength; however, they give no

indication of the energy dissipated per cycle, and consideration of

this parameter in conjunction with the ultimate strength, the defor­

mation capacity and a comparison of crack patterns at equal displace­

ments is necessary to evaluate completely the inelastic characteristics

of the pier behavior.

Figures 5.1, 5.2 and 5.3 show the changes in the hysteresis

envelopes as the amount of horizontal reinforcement varies. At the

same time, these figures also show how the inelastic behavior is

affected by the mode of failure experienced by the piers.
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As the amount of horizontal reinforcement increases, the piers

show a trend towards a higher ultimate strength and higher ultimate

deformation capacity, although this trend is nonuniform since some

piers show less desirable inelastic behavior than a similar pier with

significantly less horizontal reinforcement. The influence of the

horizontal reinforcement is also obscured by the mode of failure of

the piers. Piers displaying a combined shear and sliding mode of

failure show a larger qeformation capacity than piers exhibiting a

shear or a combined flex9ral and sliding type of failure, since the

bell-shaped sliding crack, typical of the combined shear and sliding

failure, leaves a healthy bottom portion of the pier, which continues

to take load when the sliding crack closes. This effect leads to an

elasto-plastic hysteresis envelope before the load finally drops off

because of a transfer of load deterioration along the bell-shaped

crack.

The discussion presented above is quantitatively expressed by

the hysteresis indicators shown in the last two columns of Table 4.1.

While hysteresis indicator hI shows a nearly constant value (3.4 for

the HCBL piers, 4.4 for the HCBR piers and 3.7 for the CBRC piers),

hysteresis indicator d
2

shows significant increases for the piers that

exhibited a combined shear and sliding mode of failure (from 0.37 inch

to 0.47 inch in the case of the HCBL piers, and from 0.28 inch to 0.39

inch in the case of the CBRC piers). It is also interesting to note

that the hysteresis indicator d2 shows a general increase from the CBRC

type piers, to the HCBL, and finally to the HCBR type piers.

5.5 Stiffness Degradation

All the piers suffered substantial stiffness degradation when

subjected to gradually increasing lateral displacements. Table 5.2
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summarizes this effect and shows two types of results. The first is

a comparison between the theoretical initial stiffness and the maximum

stiffness measured during the early stages of the test. The theoretical

initial stiffness has been computed in Fig. 4.3 and the assumptions

used are indicated in Section 4.3(b). The measured value is always

smaller than the theoretical value and it ranges from 75% to 99% of

the theoretical value for the HCBL piers, from 49% to 94% for the HCBR

piers and from 55% to 94% for the CBRC piers. The differences between

theoretical and measured initial values are significantly smaller than

those obtained for single piers with height to width ratios of 1 and

2[2,4]. This fact supports the hypothesis that these differences are

due to the flexibility of the boundary conditions at small lateral

displacements, because the width of these piers is almost twice that

of the previous single piers, and the same horizontal displacement at

the top is related to a smaller rotation and a better reproduction of

a fixed rotation condition at the top of the pier. An excessively

large value was measured for the initial stiffness of specimen

HCBL-12-6, probably caused by an improper measurement of the lateral

displacement of this particular pier, and it has not been included in

Table 5.2. Even though the hysteresis envelope of HCBL-12-6 looks

normal (Fig. 5.1), any small error in the measurement of very small

displacements may have led to an erroneous stiffness measurement.

The second set of results presented in Table 5.2 is a comparison

of the measured stiffnesses of all piers at applied shear stresses of

50 psi, 75 psi, 100 psi, and 150 psi, and the percentage decreases in

stiffness at these stress levels with respect to the maximum initial

measured value. If specimen HCBL-12-6 is not considered, the average

percentage decreases at 50 psi were 5%, 11% and 22% for the HCBL, HCBR
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and CBRC piers, respectively. The same average percentage decreases

at 100 psi were 20%, 28% and 39%. It should be noted that the first

visible cracks appeared at stress levels of 66 psi, 100 psi and 62 psi

for the HCBL, HCBR and CBRC piers, respectively, (average values for

each series of six specimens).

All the stiffness degradation results were obtained with dis­

placement increments that gradually increase. Later tests will deter­

mine if the type of degradation observed is similar under a more random

type of loading sequence.

Figures 5.6, 5.7 and 5.8 present the stiffness degradation curves

for different amounts of horizontal reinforcement for HCBL, HCBR and

CBRC piers, respectively. It is difficult to visualize any relation

between the amount of vertical or horizontal reinforcement and the

rate at which the stiffness degrades.

5.6 Energy Dissipation

The effects of horizontal reinforcement and mode of failure

on the EDT ratio are shown in Fig. 5.9 for the HCBL piers, Fig. 5.10

for the HCBR piers and Fig. 5.11 for the CBRC piers. It can be con­

cluded from these graphs that the energy dissipation capacity of the

piers seems to be independent of the amount of horizontal reinforcement.

Likewise, the mode of failure of the piers seems to have little influence

on the EDT ratio, except that the piers exhibiting the combined shear

and sliding mode of failure show a smaller energy dissipation rate when

compared with piers that had the shear or the combined flexural and

sliding mode of failure.

As with stiffness degradation, investigation of the energy dissipa­

tion characteristics of the piers under a more random load sequence is

important before analytical models based on the results are formulated.
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5.7 Effect of Compressive Load on Inelastic Behavior

The additional compressive load imposed by the side columns

during the tests has been mentioned in Section 3.1 and has been

discussed and analyzed in detail in Section 5.6 of reference [4].

There is no indication at all, that the present piers changed

their mode of failure because of the additional compressive load

developed by the test setup, although this was the case for some of

the piers with height to width ratio of 2 or 1. The maximum bearing

stress developed by the piers reached values varying from 150 psi

(CERC piers), to 250 psi (HCBL and HCBR piers), which were significantly

smaller than the maximum bearing stresses obtained with the more slender

pier tests. Nevertheless, it is expected that the additional bearing

stress, (in excess of the initial bearing stress of 50 psi), contributed

to an increase of the ultimate strength of the piers exhibiting either

a shear or a sliding mode of failure.

Since these squat piers never experienced the beginning of a

flexural mode of failure, (Section 4.2), it is not possible to repeat

the analysis performed for the piers with other height to width

ratios [4,2] to obtain the amount of the horizontal load that can be

associated with the additional compressive load developed by the test

setup.

5.8 Correlation Between Square Panel and Pier Critical Tensile
Strengths

This analysis is presented in Table 5.3; it is discussed in

more detail in reference[9]. The purpose of this investigation is to

evaluate an alternative and more appropriate test procedure for

determining the code allowable shear strength of masonry walls.
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Currently, the code allowable shear strength is based on the compressive

strength of a masonry prism.

The square panel critical tensile strength has been determined

from a study made by Blume [1] , who proposed the expression shown in

Table 5.3. The ultimate load P was taken as the average value obtained

from three square panel tests for each type of pier, as indicated in

Table 2.2. The square panel test results for the HCBR piers were not

available, as explained in Section 2.2. Therefore, the correlation is

presented for the HCBL and CBRC piers only.

The critical tensile strength of the piers has been computed at

the neutral axis of the pier sections, following the simple beam theory

for a section under combined flexure, shear and axial force. A

parabolic distribution of shear stresses over the cross section has

been assumed. The piers developed their first major diagonal shear

crack before the ultimate strength was attained, as mentioned in

Section 5.3. The shear crack strength (lateral load required to

develop the first major diagonal crack), and its corresponding com­

pressive load (Table 5.1) have been used to evaluate the pier critical

tensile strength.

In spite of the squatness of the piers, the results shown in the

last column of Table 5.3 indicate that the pier critical tensile

strength has been accurately estimated. In fact, the correlation

obtained is better than that obtained for piers with larger height to

width ratios (Tables 5.2 and 5.3 in references [2] and [4],

respectively). A comparison between the square panel test and the prism

compressive test to predict the shear strength of masonry walls will be

presented in a future report containing the overall results of the

single pier test program.
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5.9 Other Test Results

The last graph in the test results (Appendix A) is a comparison

between the relative lateral displacement of the piers, as measured by

HI -H2 (Fig. 3.3) and the percentage of this displacement that can be

attributed to shear distortion as defined in Fig. 3.4. These results

reflect the amount of diagonal cracking present at each stage of the

test, and corroborate the observation presented in Section 4.2 that the

number of diagonal cracks developed during the tests increased from the

CBRC piers, to the HCBR piers, to the HCBL piers.

It is also interesting to comment on the shear distortion

presented by the specimens HCBR-12-1, CBRC-12-4 and CBRC-12-5 toward

the end of the tests. These piers had a combined flexural and sliding

failure. When sliding began to occur through the bottom course of the

specimens, most of the lateral displacement took place at the bottom

course of the piers and HI -H2 began to decrease compared with previous

stages. Nevertheless, the percentage of shear distortion continued to

increase.

For these squat piers, the flexural and shear components of the

deformation used to compute the initial stiffness (Fig. 4.3) are in

the ratio of 1:11. The greater importance of the shear deformation of

these piers in comparison with the importance of the shear deformation

of piers with larger height to width ratio [2,4) is reflected in the

larger amount of shear distortion exhibited by the squat piers.

Finally, it is appropriate to report on how well the test rig

reproduced the fixed end condition at the top of the pier. There are

two measures of the rotation of the top section; one is an absolute

measure obtained with the instruments placed at the top of the pier,

(DCDT'S V
l

and V2 in Fig. 3.3), and the other is the computation of the
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location of the inflection point from the forces acting on the pier.

The results of these measurements during the early stages of the tests

show that the absolute rotation of the top spandrel was confined to

values smaller than 0.008°; however, these rotations are very small

compared to the precision of the instruments and no valid conclusions

can be drawn from them. On the other hand, the position of the

inflection point throughout the tests never rose more than 12 inches

(30% of the pier height) from the mid-height section of the pier.



TABLE 5.1

COMPARISON OF SHEAR CRACK STRENGTH AND ULTIMATE STRENGTH
(Average of extreme values during anyone cycle considered)

Grouting Initial Vertical Horizontal Reinforcement Shear Crack Strength Compressive Peak Ultimate Shear Compressive
Specimen Full (F) Bearing Reinforcement Stress at Stress at

Peak u1t. ShearSolid(S) Stress Shear Crack Ultimate
Shear Cr. StrengthNo. Bars No. Bars A

hs
f

y Force Stress Force Stress

(psi) (kip) (kip) (psi) (psi) (kip) (psi) (psi)

HCBL-12-1 F 52 3117 - - 121. 7 200 85 200.3 328 194 1.65

-2 F 52 3117 1115 21.6 125.4 206 86 211. 7 347 200 1.69

-3 F 52 3117 2115 43.2 130.9 215 83 251.4 412 243 1.92

-4 F 52 3117 3115 64.7 159.1 261 127 218.6 358 212 1. 37 *
-5 F 52 3117 4115 86.3 137.9 226 106 228.0 374 215 1.65 *
-6 F 52 3117 4116 118.4 148.9 244 102 261.7 429 234 1. 76

HCBR-12-1 F 56 3117 - - Did not have a shear crack 220.8 384 176 - **
-2 F 56 3117 1116 29.6 183.6 319 125 191.0 332 149 1.04

-3 F 56 3117 2116 59.2 202.1 351 150 220.8 384 198 1.09

-4 F 56 3117 3116 88.8 204.7 356 143 255.3 444 248 1.25

-5 F 56 3117 4116 118.4 226.8 394 154 232.7 404 175 1. 03 **
-6 F 56 3117 5117 240.9 225.7 392 153 259.0 450 223 1.15 **

CBRC-12-1 S 50 3117 - - 197.2 253 108 197.2 253 108 1.00 *
-2 S 50 3117 1116 29.6 194.8 250 127 194.8 250 127 1.00 *
-3 S 50 3117 2116 59.2 214.6 275 138 217.3 279 150 1.01 *
-4 S 50 3117 3116 88.8 Did not have a shear crack 235.0 301 123 - **
-5 S 50 3117 4116 118.4 179.8

I
231

I
116 192.3 247 141 1. 07 **

-6 S 50 3117 5117 240.9 187.5 240 94 216.1 277 142 1.15

* Piers with a combined shear and sliding failure

** piers with a combined flexural and sliding failure

0'
I-'



TABLE 5.2

EFFECT OF SHEAR STRESS AND STEEL REINFORCEMENT ON STIFFNESS DEGRADATION

Grouting Vertical Horizontal Theoretical Measured Stiffness at 50 psi Stiffness at 75 psi Stiffness at 100 psi Stiffness at 150 psi
Full (F) Steel Steel Initial MaximumSpecimen SoUd(S) Reinforcement Reinforcement Stiffness Initial

Stiffness Measured Percentage Measured Percentage Measured Percentage Measured Percentage
Decrease Decrease Decrease Decrease

(kip/in) (kip/in) (kip/in) ('O) (kip/in) ('O) (kip/in) ('O) (kip/in) ('O)

HCBL-12-1 F 3#7 No 5776 4353 * * 4209 3 3549 18 2955 32

-2 F 3#7 1#5 5776 5096 4927 3 4504 12 3882 24 3286 36

-3 F 3#7 2#5 5776 5546 5423 2 4913 11 4780 14 3723 33

-4 F 3#7 3#5 5776 5693 5588 2 4855 15 4446 22 3450 39

-5 F 3#7 4#5 5776 5098 4471 12 4182 18 3976 22 3131 39

-6 F 3#7 4#6 5776 - - - - - - - - -
HCBR-12-1 F 3#7 No 11655 8874 7131 20 6169 30 5418 39 4450 50

-2 F 3#7 1#6 11655 7367 6951 6 6650 10 5848 21 4802 35

-3 F 3#7 2#6 11655 10902 9227 15 8107 26 6369 42 4501 59

-4 F 3#7 3#6 11655 8585 7978 7 7622 11 6659 22 5120 40

-5 F 3#7 4#6 11655 7957 7579 5 6662 16 6320 21 5191 35

-6 F 3117 5117 11655 5751 4937 14 4700 18 4408 23 3756 35

CBRC-12-1 S 3117 No 11095 6971 6841 2 5719 18 5020 28 3839 45

-2 S 3117 1#6 11095 9642 7061 27 5851 39 4716 51 3469 64

-3 S 3#7 2116 11095 6152 6031 2 5670 8 4932 20 3985 35

-4 S 3117 3116 11095 9456 7163 24 6449 32 5423 43 4503 52

-5 S 3117 4116 11095 10443 6300 40 5253 50 3887 63 2762 74

-6 S 3#7 5117 11095 6907 4533 34 5392 22 4819 30 3714 46

* Maximum initial stiffness obtained after 50 psi

'"l'-l



TABLE 5.3

CORRELATION BETWEEN SQUARE PANEL AND PIER CRITICAL TENSILE STRENGTH
(Average of extreme values during anyone cycle considered)

SQUARE PANEL(l) PIER(2)

Blume's Shear Compressive Shear Bearing Critical
Ultimate Side Formula Crack Load at Cross Crack Stress at Strength

0

P 0
0
tcr

specimen Load Area ,= -- 0
tcr

=0.734, Force Shear Crack Section Stress Shear Crack 0 tcr ' --
/2A °tcr

P(kip) A(in
2

) (psi) (psi) P(kip) N(kip) A(in
2

) i (psi) ~ (psi) (psi)

HCBL-12-1 155.0 244 449.2 329.7 121.7 51.8 610.0 199.5 84.9 259.8 1.27

-2 155.0 244 449.2 329.7 125.4 52.6 205.6 86.2 268.2 1.23

-3 155.0 244 449.2 329.7 130.9 50.6 214.6 83.0 283.1 1.16

-4 155.0 244 449.2 329.7 159.1 77 .3 260.8 126.7 333.0 0.99

-5 155.0 244 449.2 329.7 137.9 64.8 226.1 106.2 290.1 1.14

-6 155.0 244 449.2 329.7 148.9 62.1 244.1 101.8 318.8 1.03

CBRC-12-1 186.3 360 365.9 268.6 197.2 83.9 780.0 252.8 107.6 329.2 0.82

-2 186.3 360 365.9 268.6 194.8 98.9 249.7 126.8 316.5 0.85

-3 186.3 360 365.9 268.6 214.6 107.9 275.1 138.3 349.3 0.77

-4 186.3 360 365.9 268.6 Did not have a shear crack - - - -
-5 186.3 360 365.9 268.6 179.81 90.5

I
230.5 116.0 292.6 0.92

-6 186.3 360 365.9 268.6 187.5 73.6 240.4 94.4 316.5 0.85

Q'\
W

Assuming a parabolic distribution of shear stresses

° I 2 (0)20
tcr

= - ;f + \!(1.5') + ;

(2) Pier Critical Tensile Strength

P

/2A
0.73400

tcr
0,

00
tcr

Blume's formula:

If edge pressure 0
c

(1) Square Panel Critical Tensile Strength

P 0c Ivt (p)2 2o 582 - - - + - ~ 849 - + °• A 22' A c

°c
N
A

applied compressive stress

, P
A

average shear stress
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APPENDIX A

CATALOG OF TEST RESULTS

The experimental results for each test are arranged on three

pages containing six photographs of the successive crack patterns and

six graphs obtained from the data collected during the test. These

graphs include~he hysteresis loops, the hysteresis envelope, stiffness

degradation, energy dissipation and amount of shear distortion as

compared with total deformation.

In order to show the relation between the photographs of the

crack patterns and the diagrams showing the results, a black dot has

been drawn on each of the graphs and next to the corresponding picture

of the crack pattern. The dot generally corresponds to the stage at

which the first major diagonal crack occurred.

Details on how each of the diagrams was obtained are presented

in Chapter 4.
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