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ABSTRACT 

It is shown that the method recommended by the Nuclear Regulatory 

Commission to be used to combine spectral response in the case of closely 

spaced modes is unnecessarily conservative for certain systems. Closely 

spaced modes arise in structures from symmetry and where there is a light 

appendage with a frequency close to one of the natural frequencies of the 

structure 0 In the former case, the closely spaced modes do no't interact 

and the Nuclear Regulatory Commission Guide is reasonable. The latter case, 

that is when there are closely spaced modes where interaction occurs as in 

the example of light appendages and in torsionally unbalanced buildings, 

must be treated by consideration of the interacting system. The approach 

proposed here is that the modes that are not closely spaced be treated by 

modal analysis and the closely spaced modes, in the case of two closely 

spaced modes, be treated as a coupled two-degree-of-freedom system. 

If this is done, the beat phenomenon, the most important characteristic of 

the interaction between the two closely spaced modes, is evident, as is the 

associated result that the peak response of the coupled system is developed 

much later than the peak responses obtained in the individual modes by 

standard analysis. It is shown that the square root of the sum of the 

squares procedure underestimates, as expected, the response for undamped 

and very lightly damped systems; but for damped systems, the square root 

of the sum of the squares method can be extremely conservative. It follows 

that the other methods specified by the Nuclear Regulatory Commission for 

closely spaced modes must be even more conservative. 
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INTRODUCTION 

Response spectrum modal analysis continues to be the most widely 

accepted method for the seismic analysis of complex structural systems. 

The procedure whereby a representative maximum value of a particular 

response for design can be obtained from that response in the individual 

modes is outlined in the Nuclear Regulatory Commission Guide [11. The 

method established for combining modal contributions is the well-known 

square root of the sum of the squares procedure [1], which is valid only 

so long as none of the modal frequencies are closely spaced. In the case 

of closely spaced modes, some studies (see reference 1) have suggested 

that when the square root of the sum of the squares procedure is used, 

the response can be significantly underestimated. Many methods have been 

proposed whereby the response when closely spaced modes exist can be 

combined. All such methods yield results that are greater than those of 

the square root of the sum of the squares method. 

Closely spaced modes arise primarily from geometrical effects-­

such as symmetry in buildings--and when the natural frequency of an 

appendage is close or equal to one of the natural frequencies of the 

structure. Light equipment is an obvious example of the latter, but 

closely spaced modes also arise in the case of slightly eccentric 

buildings wi-th a torsional frequency close to a lateral frequency. 

The important dis,tinction between these two classes is that in the first, 

the geometrical case, there is no interaction between the closely spaced 

modes while in the second there is. 

In treating geometrically closely spaced modes it is essential that 

the initial condi-tions for each mode and the resolution of the ground 

motion into the specifi.c modes be known. In general this cannot be known 

for seismic loading. The best that a designer can do with available data 

is to treat each closely spaced mode as he would any other mode and to 

use the square root of the sum of the squares procedure. Since the modes 

do not interact, -chis will at worst underestimate the result by a factor 

of 12 . 

Closely spaced modes where interaction occurs, as with light 

appendages o:c torsionally unbalanced buildings, must be treated by consid­

eration of tl1e interacting system. Our approach is to treat the modes 
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that are not closely spaced by modal analysis and then to treat the 

closely spaced modes, in the case of two closely spaced modes, as a 

coupled two-degree-of-freedom system. If this is done, the beat 

phenomenon, which is the most important characteristic of the interaction 

between the two closely spaced modes, is evident. This is associated 

with the fact that the peak response of the coupled system is developed 

much later than the peak responses obtained in the individual modes by 

standard analysis. It will be shown that the peak values are very sensi­

tive to the degree of damping and that the square root of the sum of the 

squares procedure underestimates, as expected, the response of undamped 

and very lightly damped systems; but for damped systems the square root 

of the sum of the squares procedure can yield extremely conservative 

results. It follows that the other methods specified by the Nuclear 

Regulatory Commission for closely spaced modes must be even more conser­

vative. This is not to say that conservatism in design is bad, but only 

to point out that in matters of safety, rational assessment of the margin 

of safety is the essential point. 

The physical explanation for this result is that the beat phenomenon 

involves an energy transfer between the two elements of the system. In the 

case of an undamped, perfectly tuned system, the energy transfer is complete, 

i.e., maximum response in one element is accompanied by zero response in the 

other. This energy transfer takes time; the beat period which controls 

the energy transfer is inversely proportional to the difference between 

the two closely spaced frequencies. The phenomenon can be interpreted 

geometrically in terms of the eigenvectors of the modes. The components 

of these modes can be thought of as vectors in a generalized state space. 

The components that represent the appendage are initially 1800 out of 

phase and those of the structure are in phase. As the motion continues, 

the equipment components rotate and eventually align, while the structural 

components become out of phase. As the vectors rotate~ the resultant for 

the equipment increases and if the system is undamped, attains a maximum 

when they are aligned. In the damped case, the peak values of the vectors 

will first increase and then diminish as they rotate and the resultant 

will achieve its maximum before they line up. Thus, it is important in 

the damped case to determine the time at which the maximum of the resultant 

occurs. In terms of this analogy, the square root of the sum of the squares 
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procedure assumes that the peak values of both of the vectors are attained 

simultaneously when they are at 90°. The absolute sum method assumes that 

this occurs when they are lined up. The method described here evaluates 

the position at which the resultant actually attains its maximum. 

ANALYSIS OF EQUIVALENT TWO-DEGREE-OF-FREEDOM SYSTEM 

We consider here a general system that contains a light subsystem 

or appendage whose natural frequency is close or equal to one of the fre­

quencies of the main system. Closely spaced strongly interacting modes 

frequently occur in such systems. An equivalent two-degree-of-freedom 

model, in which the natural frequency w of each element is identical 

as is the modal damping factor S when each element is treated as a 

separate system, will be analyzed to determine the contribution of closely 

spaced modes to the response of the .composite system. One element of the 

two systems will be taken to be much more massive than the other; the former 

will be termed the structure and the latter the appendage. The equations of 

motion of the combined system are: 

where 

and 

and 

[: :J I ~ I + + 
[

k -k ] 

-k k+K 

.. 
-u 

g 

x,X are the relative motion of the appendage and the structure 

u the ground acceleration. 
2 

For perfect tuning we have K = w M 

(1) 

g 2 
k = w m = YK where Y is the ratio m/M . For equal damping in the 

appendage and the structure taken separately, c = yc ; we take c = 2Swm • 

The eigenvectors CPl' CP2 and the eigenfrequencies wI' w
2 

of the 

undamped system are: 

1 -1 

CPl ;y CP2 
+/Y 

and (2) 

WI (1- yl/2/2 )W w2 
1/2 (l+y /2)w 

where the first component is associated with the equipment and the second 

with the structure. In these results terms of order y ,y3/2 have been 

neglected in comparison with terms of order 
1/2 y . We use these modes to 
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represent x,X 

!:l ql¢1 + q2¢2 (3) 

where 

.. 2 I .. 
ql + 213w

I
qI + wIql 

2yl/2 
u g 

(4) 

and 

.. 
+ 2 13w2

q2 + 
2 I 

U q2 w
2Q

2 2yl/2 g 
(5) 

The acceleration response of the appendage is thus: 

X (t) = <II (t) - <I2 (t) (6) 

where 
t 

ql (t) 
I I J 

.. 
(t) -l3w (t-T) 

2yl/2 
u e 1 sinw

l 
(t-T)dT 

W g 
0 

(7) 

and 

I 
t 

-sw (t-T) 1 J 
.. 

(t) Q2 (t) 
2yl/2 w u e 2 sinw

2
(t-T)dT 

0 
g 

(8) 

The peak acceleration predicted by the square root of the sum of the squares 

procedure and the above is: 

Ixlsrss = 
max 

2y 

1 2 2 1/2 
1/2 {SA (WI'S) + SA (W2 ' 13) } (9) 

If WI is very close to W
2 

' then we may neglect the difference between 

the response spectra, especially if averaged or smoothed spectra are used: 

Ixl srss 
max 

I 
-- SA (w , S) 
I2Y 

The group me-thod of reference 1 becomes in this case the absolute sum 

method and yields 

I 
- SA (w , 13) 
.;y 

12 Ixl srss 
max 

(10) 

(ll) 

On the other hand, if we combine the two expressions for 
1/2 

ql ' q2 ' retain 
1/2 

terms of order y , and assume that 13 is of the same order as y , 

we obtain 
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w It -(3w(t-T) 
1/2 u (T) e {sinWl (t-T) - sinw

2
(t-T)}dT 

2y 0 g 
t 

_2_ w I U (T) 
2yl/2 0 g 

~/2 w Itu (T) e-SW(t-T){sinn(t-T)COSW(t-T)}dT 
y 0 g 

where n = (yl/2/2)W • 

The kernel of the convolution, i.e. the Green's function of the 

response, is 

w -Bw. 
- 1/2 e slnnt coswt 

y 

(12) 

(13) 

which represents a damped beat motion with a beat frequency n that is 

very much less than the basic frequency w. Thus, there are many oscil­

lations of the system within a single beat period, T = 2n/n • 

u(t) 

where 

e 

When the term sinn (t-T) in eq. (12) is expanded, we obtain: 

w { It.. -(3w(t-T) 2 
-1/2 cos(nt-e} ( u (T)e cOSW(t-T)COSnTdT) 

y 0 g 

t 
+ ( J u (T)e-SW(t-T)cOSW(t-T)sinnTdT)2}1/2 

g 

-1 
tan 

o 

o 

o 

t 
I u (T) COSnT e -(3w (t-T) cosw (t-T) dT 

g 

t > 

I ·· ( ). -SW(t-T) u T SlnnT e cosw (t-T) dT 
g 

(14) 

It is a characteristic of the beat phenomenon that the peak response is 

achieved after many cycles of motion and thus the maximum acceleration of 

the appendage occurs after t = tl ' the termination of ground motion. 

Further, we are interested in situations where the ground motion has 

prescribed finite duration and in those frequencies w for which the 

maximum response of a single-degree-of-freedom oscillator, i.e. the response 

spectrum, is achieved late in or after the termination of ground motion. 

These frequencies correspond to peaks in the response spectrum of a seismic 

ground motion. Design spectra that reflect the probabilistic nature of the 

input correspond closely to the peaks of actual spectra and thus presuppose 
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late-occurring maxima. When ground motion is caused by a blast of short 

duration, it is likely that the maxima of equipment response will be 

achieved after the ground motion has ended. Under these assumptions, 

ntl = 2TIt
1
/T and Swt, which is of the same order as nt, are both 

very much less than one, and u
g 

= 0 , t > t
l

. Thus the first integral 

in eq. (14) can be approximated by: 
t 

I .0 -Sw(t-T) 
u (T)e cosw(t-T)dT 

o g 

and the second neglected since sinnt will be bounded by nt
l 

• 

Thus, for ntl « 1 

x(t) 

and t > t , we have 
1 

wsinnt It.. -Sw (t-T) 
1/2 U (T)e cosw(t-T)dT 

y 0 g 

When the parameters yl/2 and S are small, this result may be 

(15) 

interpreted in the following way: for t > tl ' the above expression can 

be written in the following form: 

X (t) 
2 0 Q 

W s~nnt -~wt (_ 111) e Acos wt r 
2n 

where 

A 2 + A2)1/2 
(AI 2 

t 

I 1.. Swt 
u (t) e coswt dt 

o g 

t 

I 1.. Swt. d u (t) e Slnwt t 
o g 

and 

'1' 

The response indicated by the above is illustrated in Figure 1. The terms 

A and '1' are constants independent of t for t > tl ' and Acos(wt - '1') 

is a rapidly varying function of time. The term 

2 
w -Swt. 
2n e s~nnt 

is a slowly varying envelope curve whose maximum value must be determined. 

The maximum value of this envelope curve is attained at time t*, expressed 

by 

tannt* = 
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The value of t* is thus 

t* (arctann/Sw)/n 

For lightly damped systems and light equipment, in general t*» tl . 

The values of sinnt and exp(-Swt) when the envelope achieves its 

maximum are 

where 

sinnt* 

-Swt* 
e 

-K 
e 

K (arctan~)/~ 

= yl/2/2S 

It follows that 

Ixl - Ix(t*) I max -

= 

n 

(16) 

(17) 

In order that this estimate of the peak acceleration be useful for 

design purposes, it is necessary that the second factor in braces be inter­

preted in -terms of a ground response spectrum. To this end, we recognize 

that the integral is, to the order of S, the relative velocity response 

history, evaluated at time t* , of a lightly damped single-degree-of-

freedom oscillator of frequency wand damping factor S subjected to 

the ground acceleration ii (t) . 
g 

At some time during the ground motion 

or shortly after it ceases (so that t« t* ), the absolute value of the 

relative velocity will attain its global maximum denoted as Iv(t) I • 

The relative velocity response at t* , denoted as v(t*) , can be thought 

of as that which would occur in a single-degree-of-freedom system (subjected 

to the ground acceleration 

beginning at time tt>t
l

) 

u (t) ) as a consequence of free vibration 
g 

where the absolute value of the relative velocity 

of the oscillator attains its first local maximum Iv(t) I after the end of 

the earthquake. This instant of time t is equal to t if t occurs 

after the end of the ground motion; otherwise, 
A _ 

t > t . In any event, 

t « t*. Thus, we can write: 

Iv(t*) I Iv(t) le-Sw(t*-t) I cosw(t*-t) I 
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where I vet} I < Iv(t.} I . It then follows that 

t* 
Iv(t*}I If'· -SW(t*-T) - .u (T}e COSW(t*-T}dTI 

o g 
A 

I A -Sw(t*-t) A 

vet} Ie Icosw(t*-t) I 

< I ~ I -Swt*(l-t/t*) vet) e 

~ Iv(f) Ie 
-Swt* 

A 

since t/t* « 1 . From this we obtain the approximate result 

Iv(t.} I 

We recognize that Iv(t} I is the relative velocity response spectrum 

SRV(w , S} for a lightly damped single-degree-of-freedom oscillator of 

frequency wand damping factor S subjected to the ground acceleration 

ii (t) 
g 

Thus, an estimate of the maximum equipment acceleration is: 

with the value of 

wi sinnt*le-
K 

1/2 SRV(w, S} 
y 

sinnt* from eq. (16), we obtain the final estimate: 
-K 

e WSRV(w,S) 

(Y+4S2) 1/2 
(18) 

The derivation gives the result naturally in the form of the relative velo­

city spectrum, but design information is generally provided in the form of 

a pseudo-velocity spectrum. However, the pseudo-velocity response spectrum 

is nearly equal to the relative velocity spectrum for systems with moderate 

or high frequencies and differs only for very low-frequency systems [2]. 

Thus, for most cases, SRV in eq. (18) can be replaced by SV' the pseudo­

velocity response spectrum. 

We recall that 

This estimate can be written in the alternative form: 

-K 
e 

/ 
SA (w , (3) 

(Y+4S2) 1 2 
(19 ) 
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Similarly, for the relative displacement: 

-K 
e 

2 1/ SD (w , 8) 
. (y+48) 2 

(20) 

For ground motion of very short duration compared to the period of the 

tuned mode, such as that caused by blast loading, the interpretation in 

terms of a pseudo~velocity response spectrum is not strictly correct. From 

eq. (17) we see that if u ('r) 
g 

is nonzero for a time 

compared to 2TI/w , the terms in the integrand other than 

that is short 

u do not change 
g 

significantly over the duration of 

It follows that: 

u and can be evaluated at T = 0 • 
g 

The appropriate interpretation of the integral in the above is Sv(w,O) 

so that for such cases the estimate of the peak acceleration is given by: 

-K 
e W 

2 1/2 Sv<W, 0) 
(y + 48 ) 

Ixl = max 

These results have been derived for the precisely tuned system with 

equal damping in both elements. Analogous results have been presented for 

tuned undamped systems in [3]; and for slightly nontuned undamped systems 

in [4]; and for tuned and nontuned systems with different damping factors 

in each element in [5] and [6], and their application to nuclear plants in [7]. 

When different damping factors in the two elements of the system 

are considered, closely spaced modes still arise. The conventional modal 

approach, in which undamped modes are used, then presents problems. If the 

dampings in the two elements of the system differ, then in a strict sense 

conventional modes are coupled. If the argument is used that the damping 

will be sufficiently light not to couple the modes, then it is necessary to 

specify the modal damping factors 8
1 

and 8
2 

for the two modes of the 

combined system and there is no rational way to determine these. In 

references 5 and 6, Laplace transforms and residue theory are used; the 

peak response for the closely spaced modes is obtained by consideration of 

the contribution from the corresponding closely spaced poles in the transform 

space. This approach is equivalent to the use of complex modes. The result 
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for the non tuned system where the damping factors of the structure and 

appendage differ is: 

Ixl max = 
-K 

'e (w+Q 13+B) 
2 1/2 SA 2 ' 2 

,(y+~ +4/3B) 

where w, (3 and rt I B are the structural frequencies and the damping 

factors for the appendage and main system when considered separately. 

The detuning parameter ~ is given by: 

~ 
rt - w 

w 
Here 

K (arctan1:;>/1:; 

where 
2 «(3 - B)2)1/2/«(3 + B) 1:; = (y + ~ -

COMPARISON OF ESTIMATES 

(21) 

(22 ) 

(23) 

(24) 

The three estimates of peak acceleration developed in the previous 

section are: 

Ixl
srss 
max 

_1_ SA (w , (3) 

/2Y 

Ixl
asm 1 

(3) - SA (w , max IY 
-K 

Ixl
new e 

SA (w , S) 
max 

ly+4(32 

We note immediately that if S ~ 0 , the square root of the sum of the 

squares estimate will be low by a factor of /2 ; the absolute sum estimate 

and the new estimate are identical. However, the estimates differ for 

nonzero damping. We introduce an overestimation ratio 

R 
Ixl

asm 

Ixl
new 
max 

Since K is given by: 

1/2 1/2 
K = arctan ~ / Y2(3 

(25) 

the overestimation ratio can be expressed in terms of the single parameter 
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Yl/2/26 ( . 2) F~gure • The result has been evaluated for several values of 

y as a function of 6; the resulting curves are shown in Figure 3. Clearly, 

for all values of y , the overestimation parameter and thus the conservatism 

of the regulation steadily increase with 6. If we fix y and decrease 

S such that 

we find that 

and 

which indicates that R > 1 for all nonzero 6. 

On the other hand, if we fix 6 and decrease y such that 

1/2 
~ -+ 

26 
o 

we find that K -+ 1 and R -+ (26/yl/2)e which demonstrates that for light 

appendage cases, which correspond to very closely spaced modes, the response 

can be greatly overestimated. 

We have performed a numerical experiment using a standard structural 

analysis program, TABS [8J, to compute the response of a light appendage 

in a structure. The structure analyzed was a ten-story reinforced concrete 

frame building investigated in reference 9. The appendage is a single­

degree-of-freedom oscillator attached to the top floor. The mass of the 

appendage was selected to provide a mass ratio of 0.001 with respect to 

the effective mass of the first mode of the building (see reference 5). 

The response of the appendage was calculated by using TABS to evaluate the 

eleven-degree-of-freedom system consisting of the structure and the 

appendage. The program computes the natural frequencies and mode shapes 

and then computes the time history in each mode. Two cases of damping 

were considered, undamped and 2% of critical damping in all modes. The 

response for several earthquakes, including the El Centro 1940, Pacoima 

Dam, and Taft ground motions, was computed in this way. 

Results were obtained for appendage frequencies varying from 0 to 

25 radians per second, which cover the first three frequencies of the 
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structure. Typical results are shown in Figures 4 and 5 for the Taft 

earthquake with 0% and 2% of critical damping, respectively. The program 

can also be used to compute peak response from response spectrum estimates 

for each mode which are combined by the square root of the sum of the 

squares method. The results in this case correspond to the square root of 

the sum of the squares estimate given in this paper. For appendage fre­

quencies close or equal to structural frequencies, the TABS procedure 

would, under Nuclear Regulatory Commission Regulation 1.92, be replaced 

by the absolute sum. Since the response, when the appendage is tuned to 

the first mode, is dominated by the tuned system, the prediction of TABS 

should be multiplied by 1:2 to yield the absolute sum result. 

From Figure 4, for the undamped case, the TABS time history result 

when the appendage is tuned to the first mode is 7.5. The TABS spectrum 

result (SRSS) is 5.9, which implies an absolute sum method prediction of 

8.34. The new estimate, derived using the method described here, is 8.3. 

Thus, we see that to the degree of accuracy possible here, the absolute 

sum method and the new estimate yield the same result and are more accurate 

estimates of the time history result than is the square root of the sum of 

the squares estimate. 

For the 2% damped system, the TABS time history computation is 1.80. 

The TABS spectrum result (SRSS) is 4.67 from which the absolute sum method 

estimate would be 6.60. The overestimation ratio of the absolute sum method 

from this is thus 6.60/1.80 = 3.67. The new estimate predicts a response of 

1.77 and an overestimation ratio of 6.60/1.77 = 3.73. It is interesting to 

note that for y = 0.001 and 8 = 0.02 I the overestimation ratio R I 

from eq. (25), is 3.76. 

A damping factor of 2% is low for nuclear plants (see Newmark [10] 

for typical damping factors in nuclear plants) and thus it is clear that 

the degree of conservatism through the use of Regulation 1.92 will be very 

much. higher than that indicated in these numerical experiments. 

RELATIONSHIP TO FLOOR SPECTRUM METHOD 

In many cases the floor spectrum method is used to predict the 

response of light appendages. The response at the appendage attachment 

point is computed from the ground motion and then the response of the 
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appendage as an isolated subsystem subject to this motion is computed. 

This is precisely equivalent to analyzing the combined system, assuming 

the mass ratio y 

l'x'l fs 
estimate 

max 

to be zero. Thus, we can obtain the floor spectrum 

directly from the estimate given in eq. (19) by letting 

y + O. The estimate thus obtained is: 

Ixl fs 
max 

= (e -1/213 ) SA (W , 13) 

which can be compared to the current estimate: 

-K 
e 

2 1/2 SA(W' 13) 
(y+413 ) 

and which becomes, for yl/2/213 + 0 where 

1 2 
-1 3(y /413 ) 

e e 

Thus, the floor spectrum method yields an accurate estimate if y« 4132 • 

If we use the general formula, eq. (21), for a nontuned system and 
1/2 retain the assumption that y , ~ , 13 I B are all bounded by £, 

where £« 1 , it can be established that a sufficient condition for the 

validity of the floor spectrum method is: 

y « ~2 + 413B 

This result is at first surprising in that intuition would suggest that 

the floor spectrum method would be valid if y« 1 , but this shows that 

in lightly damped, nearly tuned systems a much more restrictive constraint 

is operative. This indicates the dangers inherent in the naive application 

of the floor spec·trum method. 

It is also worth noting that the results indicated in Figures 3 and 4 

are for the perfectly tuned case and for 13 = B. This suggests a further 

conservatism in the Regulation 1.92. Closely spaced modes are therein 

defined to be those whose frequencies differ by not more than 10% of the 

lower frequency. For mass ratios less than 0.01, a spread of 10% indicates 

a nonzero detuning parameter ~. This parameter plays an important role 

in the new estimate in its general form as given in eqo (21), and provides 

a significant reduction in the peak response which will increase the over-
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estimation ratio R. Regulation 1.92 does not distinguish between tuned 

and non tuned systems provided that the frequencies differ by not more than 

10%; the regulation thus incorporates a further conservatism. If B t B , 

the general form of the new estimate can yield even higher values of the 

overestimation ratio if 

> 2 
Y + s 

The rational analysis of the interacting system has demonstrated 

that Regulation 1.92 is excessively conservative in its estimation of the 

maximum response of equipment, appendages, components, and piping systems 

for realistic values of mass ratio, damping, and detuning. Its conserva­

tism arises from the neglect of the essential physics of the coupled system. 

It may further be noted that the validity of the floor spectrum method is 

questionable for lightly damped systems, but that, even when valid, it is 

unnecessarily complicated, requiring as it does that an expensive time 

history analysis of the main structure be carried out. When only a design 

spectrum is available, a series of spectrum-consistent ground motions must 

be generated; this itself is a matter of some controversy. The estimate 

here yields -the floor spectrum result directly from the design spectrum 

with no computations needed other than those that define the structural 

properties and appendage properties separately. 
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