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PREFACE

This the first in a series of reports on a project under the general
title "Reliability Analysis of Soil Slopes During Earthquakes”. This
study is spomsored by the Earthquake Hazard Mitigation Program of the
National Science Foundation (ASRA) under Grant No. ENV 77-16185. Dr.
Michael Gaus is the program manager of this project of which the first
author is the principal investigator.

Three reports of this series, although not issued simultaneously,
compose a unity in content. These are the following:

(1) Report No. CE-78-5 entitled "A Probabilistic Model for
séismic Slope Stability Analysis", June 1979.

(2) Report No. CE-78-6 entitled "Program RASSUEL - Reliability
Analysis of Soil Slopes Under Earthquake Loading",
December 1978.

(3) Report No. CE-79-1 entitled "Probabilistic Seismic Stability
Analysis - A Case Study', July 1979.

The first of these reports presents the model and discusses its appli-
cability and limitatioms. The second is a document pertaining to the
computer program 'RASSUEL" that has been developed to perform the prob-
abilistic seismic stability analysis; it provides a description of the
varicus functions and options available in the program as well as guide—
lines for its use. Finally, the third report presents the results of a

case study involving the assessment of the safety of a natural slope loca-

iv



ted near Slingérlands, New York.

The authors wish to thank the National Science Foundation for
sponsoring this study. As a Monte Carlo simulation of the failure of
slopes was originally pursued by the first author during his doctoral
studies at Purdue University, he is indebted to Professors M.E. Harr
and J.T.P. Yao for their assistance in formulating the problem. The
help of Messrs. R. Dyvik and G. Nadeau is acknowledged. Appreciation
also goes to Professor R. Dobry for his useful comments. Finally,
special thanks are extended to Mrs, Betty Alix for her excellent typing

of this report.
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ABSTRACT

The present work provides a model for probabilistic stability
analysis of earth slopes under earthquake loading. Significant uncer-
tainties associated with conventional pseudo-static methods of seismic
stability analysis are recognized and probabilistic teels are introduced
for their description and amelioration. Im particular, the proposed method
of analysis accounts for (a) the variability of méterial strength param-—
eters, (b) the uncertainty in the exact location of potential failure
surfaces, and (¢) the uncertainty in the value of the maximum slope accel-.
eration during an earthquake.

The soil material comprising the slope is assumed to be probabilis-
tically homogeneous with strength parameters (¢ and t=tan¢) being iden-
tically distributed random variables with given statistical values. TFoten-
tial failure surfaces are considered to have an exponential shape (log-
spiral), defined with thé aid of three random variables (two geometric
parameters and the frictional strength parameter).

The safety of the slope is measured in terms of its probability»of
failure (pf) rather than the customary factor of safety, The numerical
values of Py are obtained through s Monte Carlo. simulation of failure.

The seismic lead is introduced into the analysis through the maximum
hcrizontal.acceleration(amax) experienced by the slope during an earthguake.
This is assumed to be a random variable, the probability distribution of
which is found to depend on the earthquake magnitude, the type of earth-

quake source considered (i.e., point, line, or area source), the distance

xii



between the source and the site and a number éf regional parameters.
In addition, for the purposes of this study, it is assumed that the
slope is rigid, and therefore, the maximum acceleration of the slope
mass 1s equal to that of the ground.

Two different attenuation relationships are employed to determine

the maximum horizontal ground acceleration and the corresponding results

are compared and discussed.

xiii






1. PROBABILISTIC SEISMIC STABILITY ANALYSIS

1.1 Introduction

Soil slopes, whether naturally formed or mar-made (in the formlof
earth dams, cuts, embankments, etc.), are among the most frequently encount-
ered geotechnical structures. Although much experience has already accumu-
lated about their design and performance, geotechnical engineers still
face considerable uncertainties when they analyze their stability. These
uncertainties reflect the slope’'s loading ﬁonditions, the ground water con-
ditions, the material parameters, the location and shape of the potential
failure surface, the particular method used in the analysis, etec. 'The possi-
bility eof an earthquake renders such analyses even more complicéted.

Conventionally, the safety of soil slopes is measured in terms of a
"factor of safety (Fs)". In general, this factor is arbitrary in scale
since it merely reflects whether a structure is safe (FS > 1), or unsafe
(Fs < 1). A factor of safety of two, for example, does not necessarily
imply that the slope is twice as safe as one with a factor of safety of one.
It simply states that the former is safer than the latter. The confidence
with which one should view the factor of safety is also open to question.
The literature is filled with reports of structures which have failed with
factors of safety greater than one, and others, which have shown a remark-
able success with factors as low as 0.6 [23].

To overcome the shortcomings associated with the conventional analysis,
geotechnical engineers have suggested the use of more rational approcaches

to design, based on probability theory and reliability analysis [e.g., 20,21,



41, 511. In particular, probabilistic slope staﬁility‘analysis has
been putrsued by Wu and Kraft [50],‘Matsuo and Kuroda [28], Catalan
and Cornell [11], Vammarcke [44] and Alonso [1], among others.

A probabilistic formulation of the slope stability problem is based
on the recognition that both the available resistance {R) and the driving
load (S) along a poténtial failuré.surfacé are random variables.

The difference between R and S is also a random variable often called the

safety margin SM (i.e., SM = R - S). Failure of the slope occurs when

its safety margin SM receives a negative value; i.e.,
"Pailure" = {SM = R ~ § < 0]

The probability of the occurrence of this event is equal to the probability

of failure Ps of the slope. Thus,

pg = P[Failure]l = P[SM < Q] (1-1)

where P[ ] denotes the probability of the occurrence of the event in
brackets.

The complement of the probability of failure is called the relis=
ability R of the slope. Hence,
R=1-p; - (1~2)

if fR(R) and fS(S) represent the probability demnsity functions of the
resistance R and loading.s, respectively, the expression for the probability
of failure becomes [20]

o]

pe = | E(8) £(8) ds (1-3)

where Ek( ) is the cumulative distribution of the resistance R.



In the case where the density functions of both the resistance
and the loading receive simple analytical eﬁpressions (e.g., uniform,
exponential, normal, lognormal, etc.), the probability of failure may
be determined by performing the integration indicated in Equation (1-3).
In Table 1 are given the analytical expressions for the probability of
failure Pe for some frequently employed empirical distributions for the
capacity of a structure C (its resistance) aﬁd the demand D (the
applied loading) [ 4]. If, onvthe other hand, the ekpressions for the
density functions for the resistance and loading are complicated (as
is often the case in actual geotechnical situatioms), the integration ..
indicated in Equatien. (1-3) is.not easy to accomplish analytically. " In
this case, solutions must be obtained numerically'or”by nsing-some

simulation technique.
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1.2 Description of Failure Surfaces

The shape of the surface along which soil slopes fail is most fre-
quently assumed to be of a planar or circular cylindrical form. Differ-
ent shapes, however, have also been emplovyed in the past. Collin {141
introduced cycloidal surfaces to analyze the stability of soil slopes
while Rendulic [33] and Frhlich [18] assumed that slopes slide along
paths having the shape of a logarithmic spiral. The same mode of failure

was later employed by other investigators.[e.g., 17]. Furthermore, the

sliding block type of failure has-also been cﬁnsidered'flO,BO], especially
when well defined zones exist within the soil profile. Finally, irregu-
lar shapes have been introduced by assuming failure surfaces to be composed
of line segmenté with inclinations to the horizontal following a Fibonacci
sequence [10].

In a stochastic description of the development and propagation of
failure surfaces inside slopes composad of particulate materials, it was
found {6 ] that the most probable failure path followed an exponential law.
More recently, & generalized limiting equilibrium method was applied by
Baker et al [ 8] to the evaluation of the stability of soil slopes using
the calculus of variations. In this formulation of the problem, the shape
of the failure surface and the distribution of the normal stress along
this surface were left as variables to be determined by the mathematical
(as opposed to trial and error) minimization of the factor of safety. It
was subsequently concluded that the most critical failure surface had the

- form of a logarithmic spiral.



In the present study, it 1s assumed that the failure surface, created
interior to a soil slope during an earthquake, has an exponential shape

(log spiral) expressed in the form (Figure 1)

r = r  exp (-8¢g) (1-4)
where r = the radius of the spiral,

T, = the initial radius (value of r for 8 = Q),

8 = the angle between r and T and

t = tan¢, where ¢ = soil strength parameter.

The location in the interior of the slope mass of a potential failure
surface, as given by Egquation (1-4) and illustrated in Figure 1, depends
on the following three factors:

(1) the position along the slope boundary of the initiatiom
point (point A),
(2) the location of the center of the log spiral (point 0), and

(3) the numerical value of the ¢-parameter of soil strength.

In general, the point of initiation of the failure surface is not
known in advance. Studies on the development and propagation of failure
surfaces in elastic slopes have indicated that the most likely point for
the initiating of failure is the toe of ‘the slope [34]., Failure surfaces
initiatien at specified points on the ground surface (along the base of

the slope) have also been used [10]. In the present study, the assumption

is made that failure surfaces pass through the toe of the slope.
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The center of the log spiral may be expressed in polar coordinates
by means of two variables, ho and 60 (Figure 1). Introducing h = rocoseo

into Equation (1-4), the latter receives the form

h
0

= cost_ exp (-0t) (1-53)

The uncertainty around the exact location of the center 0 of the log
spiral can be accounted by considering its polar coordinates ho and

90 to be random variables receiving values within specified intervals;

i.e.,
h . <h <h
o,min — o — o,max
8 . <8 <8
o,mn — ‘0 — 0,max
where h . ¢] ._and h and & are the minimum and maximum
o,min, o,min o ,max o, max

values that can be received by ho and SO, respectively. Taking advantage

of previous experience with log spiral failure surfaces [18,33], the

limiting values of ho and BO may be taken empirically to be ho,min = Q,
= = "'l . = ' L -
o, max 3h and eo,min Bt =w/3, eo,max g', where 8 t/2-8, and h

and 8 are the height and angle of the slope, respectively.
Furthermore, random variables hO and 60 are assumed to follow the gen-—

eral beta distribution expressed in the form [20]

' x
f{x) = Ax(xﬁxmin) (xmax-x) S S < x < X (1-6)

where X Trepresents ho or §



X . s X are the minimum and maximum values of x
min’® “max
respectively,

o, Bx are the parameters of the beta distribution,

P(aX+BX+2) 1

T4 7 » 2nd
F(a_+1)T(8 +1) (x - x X X
max min

T'( ) is the gamma function.

Parameters o and Bx of the beta distribution can be obtained in

terms of the statistical values of x as follows [20]:

~2
@ = —=— (1 - x)~(1 + %)
®
A
ux + 1
where x = (x - xmin)/(xmax - Xmin)’ and
-~ 2 2
Vv = Ux/(xmax min)

In the subsequent applications of Equation (1-6), it will be
also assumed that ho and 80 are symmetric arcund their mean values

{(i.e., a = BX);



1¢-

According to the procedure presented above, for a fixed value of
the strength parameter t (=tan¢), the locations of the failure surface
depend only on the-values of the two geometric parameters h  and 6 .
As an example, in Figure 2 are shown failure surfaces corresponding to
characteristic values of ho and 60. The slope considered has a height

h = 30 ft and angle 8 = 30°, while the t parameter is taken equal to

ot
f

= 0.58 (4 = 30°).
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FIGURE 2. FAILURE SURFACES FOR CHARACTERISTIC VALUES

OF THE CENTER COORDINATES hO and 80.
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1.3 Mean Failure Surface

lLet r, ho, 60 and t, appearing in Equation (1-5), be denoted by vy,

X1s X, and X35 respectively. Equation (1-53) may then be rewritten as

%1

CosX

y =% (x1$X23X3) =
2

exp(—8x3) (1-7

in which X5 %, and X, are independent random variables.

If the mean values and standard deviations of random variables X
i=1,2,3, are known, then an approximate expression for the mean wvalue
'§ of function y can be obtained by using a methed developed by Rosenblueth
[35]. To illustrate this‘method;-consider first that y is a function of
a single variable x, the skewness éoéfficiéﬂt’of which is unknown or nil.
Rosenblueth .showed that ;'may'be oEtained as the average of two. point esti-
mates of y(x): one for x = X + c# and, another,'for X=x - dx,'where §
and o are the mean. value and standard deviation of x, respectively,

Thus, in the case of a function of one variable, y is approximately equal to

T i % F 40 ) = 2{y(Ero ) + y(F-0 )]
21=1Yi —'x LY X y b4

Similarly, the mean value §-of the function given by Equation (1-7)

is egual to

3
T L y.(xte , xto , x to_ ) (1-8)
-3, (21 71 My %y 2 Xy 3 Xq

where the eight point estimates of y correspond to the eight

possible combinations of the values Xi = X, i'OX ., 1=1,2,3. That is,
: i

the first term in the summation on the RHS of Equation (1-8) is

vy = y(x1+c¥x s x2+o ) Kpto ), the second term is Yy = y(xl+ox , x2+0 ,

1 Xpo 3% 1 Xy
x - Gx }, the third term is yé = y(§i+ax ,'E —Gx s §'+0X ), and so on.

3 1 2Ry 3
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As an example, consider a slope of a height h = 20 ft. and angle
B = 45° (Figure 3). The material strength parameter t(=tan¢) is
assumed to have a mean value t = 0.58 (¢ = 30°) and a coefficient of
variation Vt = 15%. In Table 2 are listed the mean values (Ei), standard

deviatiouns (cx } and the points of evaluation (E; j_cx ) of the random
1 i
variables x., i = 1,2,3, The center of the failure surface that corres-
i

ponds to (Ei + ch, ;é + GXZ) is shown in Figure 3 as point O++. Similarly,
, and O_H have coordinates (§i+0 s gé-c ), (gi—c s

points O , O
+ - %y X, Xy

-+

x40 ) and (x. -o ,;I—c ), respectively. Two failure surfaces correspond
2 Xy 1 X, 2 %,
to each center depending on the value of the strength parémeter x3: one,

for x, = X, + 0_. and, another, for x, = x, - ¢_ . The mean failure sur-
3 3 X 3 3 X
3 3
face (with its angle at 0), obtained using Equation (1-8), is shown in
Figure 3.
If, on the other hand, in determining §-the variations of X5 %, and

X, were neglected while their point estimates were taken to be equal to

their mean values, the corresponding expression for y would be

Y = y(x),%,,%,) (1-82)

Thus, for the case of the slope examined in the above example, v

would be reduced to
v 2 y(30,15,0.58) = 31.06 exp(-0.586)

This expression for §'is also shown in Figure 3 from which it can be
seen that“§’1ies very close to the mean failure surface obtained using

Equation (1-8).
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TABLE 2,

STATISTICAL VALUES AND POINTS OF EVALUATION

OF THE THREE RANDOM VARTABLES ho’ 60 and t.

Random Variable Mean Value Standard Deviation — —
X, X, o) X,+0 X,=0
i i X, i . i 'x,
i 1 i
x, ) 30 10.50 40.50 19.5
(£r)
X, (=80) 15 5.25 20.25 9.75
(degrees)
% {=t) 0.58 0.087 0.667 0.493
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1.4 Resisting and Driving Forces Along Failure Surfaces

The static forces acting on a differential element along the
failure surface are shown in Figure 4. The weight dW of a slice of

width dx is equal to
dw = ym(z-w) dx + Yo ¥ dx (1-9)

where Y = the total unit weight of the soil above the
water table,
¥ = the saturated unit weight,
z = the distanée from the failure surface to
the slope boundary, and
w = the distance from the failure surface to

the water table.

The location of the water table is defined by the dimensionless

parameter T, expressed as [9]

'(1—10)

u
T = e
u Ym(z—w)+ysw

where u is the pore water pressure at the failure surface (assumed hydro-
stéticx and z, w, Y and Y, are defined in Equation (1-9). The distance

w from the failure surface to the water table is found from Equation (1-10)
as

- 'm z
Yy uoy + ru(Ym‘YS)

where Y, 1s the unit weight of the water.
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The normal and tangential (to the failure surface) components of the

weight dW are denoted by de and dTw’ respectively, and are eqgual to

aN dW cos §
W

(1-11}

dT
W

dW sin &

where § (¥igure 4) is the slope of the failure surface.

In the present study, the additional load on the slope due to
an earthquake will be introduced in terms of the maximum value of the
acceleration a at the site of the slope. Furthermore, it will be assumed
that the magnitude of the vertical component (with an upward direction)
of the maximum acceleration is equal to two~thirds of that of the hori-
zontal component (with a direction away from the slope) [43]; and that
both act on the slope mass simultanecusly. Thus, the angle o between
the maximum acceleration a and the horizontal direction is equal to
33.7° (o = 33.7°).

Because of the.uncertainties involved in determining the maximum
acceleration, the latter will be considered as a random variable the
statistical characteristics of which will be examined in detail in Section
2 of this report.

The components of the earthquake loading along the normal and tan-

gential direction of the failure surface are equal to

#

dN
eq

dW - a « sinl{-{a + &§)]
(1-12)

dT

eq dWw a cos(a + §)
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By combining Equations (1-11) and (1-12), the values are found of the
total normal (dN) and tangential (dT) forces acting on the differential

segment of the failure surface; i.e.,

dN dN + dN
W e

q
(1-13)

dT = dT__ + 4T
W e

q
If the resisting and driving forces along dL (Figure 4) are denoted

by dR and 48, respectively, one has

ds = a7t (1~14)

dR = dN « t + ¢ + dL
where ¢ and t are the two strength parameters of the soil material.
The failure surface given by Equation (1-5), may be expressed

in Cartesian coordinates as follows:

Id

x(8)

il

M
1t

T, 31n60 + L exp(net)31n(e—80)

i

y{(8)

4
]

a — . (- -
T 088 - T exp{~8t)icos(d 60)

The length dL of a differential element along the failure surface is
equal to
9 2 1/2
dL = {[x'(®)1° + [¥'(&)1°} ds (1-15)
where x'(8) and y'(8) are the derivatives of x(8) and y(€) with

respect teo €; i.e.,

x'(8)

i

r exp(-@t)[cos(avso) —tsin(@—@o)]
(1-16)

[

v'(©) r exp(~6t)[+sin(8—80) + tcos(e—eo)]



20

Equations (1-15) and (1-16) are combined to yield
2 1/2
dL = dL(hO,eo,t) = roexp(“et)(l + t7) 48 (1-17)
Consequently, the total length L of the failure surface is equal to
L H 9 1/2
L=fdu=/ v+t d8 ‘ (1-18)

o] [¢)

where ¥ is given by Equation (1-4), and 6, is the upper limit of

H
angle 9 (Figure 1) and corresponds to the terminal point of the failure
surface along the slope boundary. After the integration indicated by

Equation (1-18) is performed, it is found that

ho 1 1/2
E;gg;'(l + ;59 [exp(-GHt) + 1] {1-19)

The total resisting and driving forces, R and S, respectively,
can be found through an integration of Equations (1-14); i.e.,
L
R=J dR
0

L (1-20)

s=/[ das
0

fhe developments presented above were concerned with failure sur-
faces originating at the‘toe of the slope. It is possible, however, that
a discontinuity (e.g., a relic slip surface) already existed in the in-
terior of the soil mass. Since its length Ly can be of any size between O
and L, the probability density function of Ld can be assumed uniform in
the interval (0,L), where L is given by Equation (1-19). Along L. the c-~

d

parameter of strength is zero while t is assumed constant and equal to its mean
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value t. The option to account in this mamner for a possible initial
discontinuity is available in the computer program RASSUEL (see
Section 1.6)[5].

The integration of Equations (1-14) requires comsideration of the
relative position along the failure surface of three characteristic
points. These are shown in Figure 5 (as points I, C and S). There are
six possible arrangements of the three points (Figure 6), if a failure
surface terminates at the boundary behind the crest of the slope; and
two arrangements, if the'surface ends on the slope (i.e.; in this case,

there is no point C).
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1.5 Variability of Soil Strength Parameters

The uncertéinty in the numerical values of soil strength may
be attributed to the following three reasons:

(a) The limited information about actual subsurface conditions,

(b) Measurement or "engineering' errors, and

{(¢) The inherent variability of soil itself.

The last is by far the most important cause of uncertainty. On the
basis of results obtained from a large number of tests on natural soils,
it was found [25] that the inhgrent variability of soil was so great that
the effects of test imprecision may be overwhelmed. Research studies
have been recently undertaken with an objective to quantify this un-
certainty and describe the spatial wvariation of soil strength and strength
parameters [2,24,45]. |

To account for the variation in the numerical values of soil strength
parameters, geotechnical engineers have considered them to be random vari-
ables and have proposed probabilistic models for their déscriptioﬁ. Thus,
Lumb [27] found that the two strength parameters {c¢ and t) followed a2 nor-
mal distribution. This conclusion was drawn from his study on a large
amount of test data from soils of the area of Hong Kong (namely, a soft
marine clay, a residual silty sand, an alluvyial sandy clay and a residual
clayey silt). Additional studies of frequency distributions of soil
properties [i.e.,37,40,etc.] came to- support Lumb's conclusion that

strength parameters are normal-like variates.
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In a more recent work, however, Lumb [26] found that the c-parameter
of strength followed more closely a beta rather than a normal distribu- |
tion, and that only its central portion could be approximated as a normal
variate. The use of the beta distribution for modelling soil strength
parameters was also suggested by Harr [20] who, recognizing the versatility
of the beta model, recommended its use to obtain approximations for many
geotechnical data sets whose measures must be positive and of a limited
‘range (in contrast to normal variates that receive values between -« and
=),

In compliance with the above findings, the present study assumes
that strength parameters ¢ and t (=tan$) are random variables following

the beta (or, Pearson's type 1) distribution, given by Equation (1-6).
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1.6 Probability of Failure

In Section 1.4, the resisting and driving fdrces along a potential
failure surface of a soil slope have been expressed as integrals of
functions containing 2 number of random variables (Equations 1-20).

As it was stated in the Introduction, use of a numerical scheme is necessary
in order to determine the probability of failure Pt of a structure if

its load and resistance are not simple analytical functioms (such as those
appearing in Table 1). Im this study, the numerical values of pe are
determined through a Monte Carlo [19,36] simulation of failure. A flow
chart indicating the operations that led to the probability of failure

is given in Figure 7.

The Monte Carlo simulation of failure involves (a) the generation of
failure surfaces by selecting values of three random variables: two geo-
metric parameters (ho and 60) and strength parameter t (=tané), and (b)
the calculation of the total resistance R and driving force S (acting
along the generate failure surface) by selecting values from two addi-
tional randeom variables: strength parameter ¢ and slope’'s maximum horizon-
tal acceleration a oz’ 1f this procedure is repeated N times and the
event "failure" (i.e., R < 8) occurs M times, then the probability of
failure Pe is close to the relative fregquency M/N, provided.that N is

large enough [32]: i.e.,

2

Pg &



INPUT

I. Expressions of resistance R-and loading S in terms of the
random variables.

II. Probability density functions of the following random variables:

(a) maximum ground acceleration (amax)

(b) strength parameters (c and t)

(¢) geometric parameters (h,, 8))

!

Select a random variable from each of the distributions f<f—

Calculate the values of the driving force S and :
Repeat
resistance R letting the random variables take

N times

the values found above

Yes M times

No N-M times

OUTPUT

Probability of Failure
M
Pe T X

FIGURE 7. FLOW CHART OF THE OPERATIONS INVOLVED IN DETERMINING

THE PROBABILITY OF FAILURE

27
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The present probabilistic seismic stabiiity analysis has been
incorporated into a computer program called RASSUEL., A description
of the program and its capabilities together with guidelines for its
uge is given in a separate report [ 5]. The flow‘chart for program

RASSUEL is shown in Figure 8.



@ READ DATA AND QPTION

[PRINT DATA AND O

PTIONS SPECIFIED

GENERATE TABLES OF CUMULATIVE DEISTRIBUTIONS
FOR _HO,THETAO,PHI, AND C

GRAPHICS ¢ IES DRAW SLOPE GEOMETRY]

NO

: ) ‘
R=1,M=0

SELECT VALUES FOR: ACC,PHI,THETAO,HO,C
FROM CUMULATIVE DISTRIBUTIONS

-ON SLOPE

STABILITY ANALYSIS
FOR SLOPE FAILURE.
FIND R AND S

FATLURE SURFACE TERMINATYON

STABTLITY ANALYSTS
FOR CREST FAILURE.
FIND R AND S

[CALCULATE SM=R-3|
3

{IF SM < 0,M=M+1]

PRINT K,H0,TAETAO,PHL,C
- ACC,L,SM,SF

N0

ON UPPER BOUNDARY--

29

SURFACES

DRAW A SAMPLE OF EAJ:LUREi

|

=N 7

' YES
[COMPUTE PF=M/N__ |}

CALCULATE MEAN VALUE AND COEFFICIENT
OF VARTATION FOR SM,SF, AND L

SORTING ?

NO

YE

S _.[S0RT SM,SF, AND L}

[PRINT RESULTS|

FIGURE 8, FLOW CHART FOR PROGRAM 'RASSUEL'




2. STATISTICAL DESCRIPTION OF SEISMIC PARAMETERS

2.1 Introduction

From an engineering point of view, one is interested in ome or
more parameters that reflect ground metion characteristics rather than
in the details of an earthquake record. Examples of such parameters
are the maximum value of the ground acceleration, velocity or displace~
ment, the spectral ordinates, the duration of the earthquake, ete. In
the model presented in the previous section, the effect of an earthquake
on the stability of soil slopes was introduced through the maximum value
of the horizontal acceleration (amax) experienced at the site of the slope.
There are many factors which affect the numerical values of 3 ax and
they may be divided into three categories [22]; namely, (2) source factors
(e.g., location and dimension of source, stress conditions at the source,
radiation pattern, etc.), (b} travel path (e.g., geometric spreading of
waves, energy absorption, inhomogeneities of medium, etec.), and (c) local
conditions (e.g., subsurface conditions, topographic variations, etc.).
Although considerable research effort is underway aiming at an improved
description of each significant factor, the available information is uti-
lized in the current -state-of~the-art through a2 limited number of repre-
sentative parameters from each category.. Thus, the earthquake magnitude is
employed to represent the source factors, the distance between source

and site of interest reflects the travel path and local conditions are

accounted through a number of reégional parameters. In addition, the

" maximum acceleration of the slope mass is assumed to be identical to

that of the ground (rigid body assumption).

30
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Many relationships have been proposed over the years to provide
the maximum horizontal ground acceleration (amax) as a function of the
earthquake magnitude (m);the'distance'(ﬁ) between source and site, and
the regional parameters. TIdriss [22], in his presentation of the state-—
of-the-~art of ground motions, made‘reference to thirty-two such rela-
tionships that cover the period between 1956 and 1978. Predicted values
of a x are different for different relationships; and this disagréement
in the results is often quite large, especially for sites close to the
earthquake source.

In view of the inherent uncertainties in available attenuation rela-
ticnships, any prediction for the maximum ground acceleration must be
based on a statistical formulation of the problem. Thus, in the present
study, a ox will be considered as a random variable and its frequency and
cumulative distributions will be derived. The dependence of the latter
on regional and othexr parameters will be also investigated. Finally, as
one of the objectives of this study is to provide a stability analysis
for soil slopes located in the seismic enviromment of the State of New
York, regional parameters will receive values pertinent to this part of

the country.
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2.2 Earthquake Magnitude

The empirical formula most commonly employed to yield the number
of earthguakes nﬁ exceeding a certain magnitude m is Richter's log-

linear relationship [16] expressed in the form
1og‘nm = a = bm | (2-1)

where a and b are regional constants.

The natural legarithm of n_can be obtained from. Equation (2-1) as
1in n = (lnlO)(lognm) = (1ni0) (a-bm)
from which one has than n_ is equal to

n = exp{ (In10) (a-bm) ] = exp{a-1nl0)exp(~bm-1nl0)
or,
n_ = 10%exp (-Bm) ' (2-2)
where 8 = b InlO.
For Equation (2-2) to gain engineering significance, lower and
upper limits for magnitude m have to be imposed. Thus, if m and m,
denote the lower and upper limits of m, respectively, Equation (2-2)

becomes

= a-blo- 2-3
.lognm a b(m:mo) , m o<m<m (2-3)
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From Equation (2-2}, one has that the expected number of earthquakes

(nm ) with magnitudé greater than the assumed lower bound (mo) is equal
o
to

— a — —
nmb 107 exp( Smb) (2-4)

The ratio of n over m_ signifies the probability with which the
o
earthquake magnitude M is greater than m [42]; i.e.,

n_ a .
P[M > m] === = L0 exp (~fm)

. a
™ 10 exp(—me)

= exp[-B(m-m )1, m < m (2-5)

The cumulative density function F(m) of the earthquake magnitude m is

equal to

F(m) = P[M < m] = 1 - P[M > m]

Introducing Equation (2-5) into the above expression, it is found that

F(m) = 1 - exp{—B(m—mo)] (2~6)

A normalizing factor is required so that F(m) becomes unity when m
receives its maximum value m, - If this factor is denoted by k, from

Equation (2-6) one has

F(ml) = k{1l - exg[-B(ml—mo)}} =1

or, -1
k= {1~ exp[-B(ml~mo)]} (2-7})

Thus, F(m) may be written as
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0 m < m
F(m) =( kil-exp[-8(m-m )1} , m <m<m (2-8)
1 ml' < m

where k is given in Equation (2-7).
The probability density function f£(m) of the magnitude m can be
found by forming the derivative of Equation (2-8) with respect to m.

Thus, one has

0 _ m < LR
f(m) ={gk exp[—B(m-mo)], mo<m< (2-9)
0 m1 <m

where k is given in Equation (2-7).

In the case of New York State, the lower and upper limits of the mag-
nitude m have been found [31] to.be equal to 2.0 and 6.3, respectively.
For the Neortheastern United States, the values of the B parameter varies
between 1,35 and 1.54 [31]., 1In Table 3 are given the values of the B
parameter for various seismic regions of the United States, while the
world-wide range of values for B is between 1.61 and 2.88 [46].

The mean value and variance of the earthquake magnitude m are given

by the following expressions:

<o

| m = f mf (m) dm

w (2-10)
Var(m) = f (mQE)zf(m)dm.

-G

where f(m) is the probability demsity function of m, given by Equation
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TABLE 3. VALUES OF B~PARAMETER FOR VARIOUS SEISMIC REGIONS (after [461])

SEISMIC REGION g COMMENTS
Southern New England 2.19(+0.12) 1800-1959; 135 events
New Jersey 2.17
Central Mississippi River 2.00(+0.25) 1833-1972; 250,000 kn?
Valley —
North and Central America 2.26 1963-1968
Southern California 1.94 1934-1963; 10,126 events
296,000 km®
California 2.07
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(2-9). Substituting the latter into Eguations (2-10) and perform—.

ing the indicated integrations, it is found that

it

m k[mo + -é— =(m, + 18'-) EXP[-B(m1~mO)]}
(2-11)

exp[-B(ml—mo)]} + %‘1 -2

it

Ll

Var {m) kimi-m

In Figures 9 and 10 are shown the probabiiity denisity function and
cumulative distribution of m, respectively, for a value of the B~parameter
equal to 1.35, 1.5, and 2.5.

In Appendix A are given the expressions for the probability density
function and -cumulative distribution of the earthquake magnitude for the
case of a log-quadratic frequency-magnitude relationship. Such a relation-
ship appears to best represent available seismic data for New York State
and it is studied in detail in the third report of this series, RPI

Report No. CE-78-7.
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2.3 Maximum Horizoantal CGround Acceleration

The most frequently used attenuation relatiomships are expressed
in the following form [16]:

a . =b e’ (R+b,) (2-12)

where & is the maximum acceleration ( in cm/sec), m is the earth-
quake magnitude, R is the distance between source and site (in km) and
bl,bz,b3 and b4 are regional parameters. Values that have been>proposed
fof thése parameters are listed iﬁ Table 4.

Comparisons made between observed and computed values qf ground
motien parameters have indicated that their ratio follows closely a log-
normally®-distributed random variable. Denoting the latter by ¢ and
introducing-it-into Equation (2-12), one has

bzm —63

& oy = bl e (R + bh) £ (2-13)

The logarithm of £ has been found to have a mean value equal to zero

{(1ne=0) and a standard deviation (Ulné) between 0.5 and 1.0 [29,31]

In general, three types of earthquake sources can be distinguished,
namely, (a) a point source, (b) a line (or, fault) source, and (c) an
area source, ‘These are shown schematically in Figure 11.

A point source represeunts the fundamental case in seismic risk
analysis. A line source is used for the seismic description of a region

where a fault has been clearly identified, When this is not the case,

#A variable is log-normally distributed, if its natural logarithm is
normally distributed.



TABLE 4. VALUES OF THE COEFFICIENTS OF THE ATTENUATION

RELATIONSHIP
COEFFICIENT

bl b2 b3 b4 Reference
-196Q ‘ 0.8 2.0 0.0 50
1260 0.8 2.0 0.0 31,42
1350 0.58 1.52 0.0 31,42
* 1100 0.5 1.32 {25.0 31,42
1230 0.8 2.0 0.0 31
2000 0.8 2.0 | 0.0 31
*1.183 1.15 1.0 0.0 16,31
1200 0.8 2.0 0.0 29

*Values suggested for the Northeast United States

40
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or when the data and other informatiqn available are very limited, a
description of the earthquake soﬁrce as an area source may be consider-
ed. In the case where the source is located at a distance from the
site greater than two times the focal depth h, the shape of the source‘_
is not important [15]. Thus, the shape fbr the area source is assumed
to be circular with iﬁé'ceﬁtar.on the site,and earthquake occurrences are
taken aé uniformly disﬁributed over this area. As a result, any earth-
quake that may occur outgside the defined circular area is considered
to have a negligible effect on the slope.

In Appendix B are given the analytical expressions of the prob-
ability distributions of the maximum acceleration for the three types

(i.e., point, line and area) of earthquake source.
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2.4 Probability Distribution of the Maximum Horizontal Ground

Acceleration (Point Source)

From Equation (2-10), one has that a = a (m) is a monotonic
max max
function of magnitude m, the probability density function of which
is given by Equation (2-9). Using the concept of transformation of

variables [20], the distribution of & ax can be obtained as

CE(m)
fa_ ) = ——————v0o _ (2-14)
max
da (m)
I max l
dm
da (m)
where a substituted for m in £ (m), and L,l%?i___‘ is the absolute
‘ max m dm

value of the derivative of 3 ax with respect to m. The latter is found
from Equation {2-12) to be equal to

_b3

da {m) bzm(R+b4) b

‘max
dm

| = blbze 2% max (2-15)

Combining Equatioms (2-9), (2-14) and (2-153), it is found that

-k
f(amax) - b, a

exP{-B(mrmd)}
max ' ’

Solving Equation (2-12) for m and substituting into the above expression,
one has that the probability demsity function of the maximum horizontal

ground acceleration is equal to

o a
exp[-B(%—-Rn max - mb)]_ (2-16)

-k 1
£(a ) = b a =b3
max 2 bI(R+b4)

max
, 2
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The range of wvariation of 3 ax 2T be found by introducing the lower

and upper limits of magnitude m into Equation (2-12). ‘Thué,

b.m -b b.,m ~b
270 3 271 3
ble (R+b4) <A i_ble (R+b4) {(2-17)

The two attenuation relationships that have been suggested for

the Northeastern United States (Table 4) are as follows:

0.5m

= 1100 2" g5y L-32

w
[

max (Case 1) (2-18)

= 1.183 el.l5mR-l._0

[
§

- (Case 2) (2~19)

where m is a random variable_the frequency distribution of which is
given by Equation (2-9).

In Figures 12 and 13 are shown the frequency and cumulative distri-
butions of 3 ax found using Equation (2-18) (Case 1) and in Figures 14
and 15 are shown the same quantities that correspond to Equation (2-19)
(Case 2).

When the error term ¢ is considered, the expressions of the atten~

uation relationships given by Equations (2-18) and (2-19), become

= 1100 &2 M(reps5)1-32, (Case 1) (2-20)

]
|

max

l.lSmR—l.OE (Case 2)

1.183 e (2-21)

a
max

where ¢ is log-normally distributed with median and standard devia-

tion equal to 1.0 and 0.5, respectively.
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In Figures 16 and 17 are shown the frequency and cumulative dis-
tribution of amax that correspond to Eguation (2-20) (Case 1) while in
Figures 18 and 19 are shown the same quantities that correspond to

Equation (2-21) (Case 2).
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2.5 Statistical Values of Maximum Horizontal Ground Acceleration (Point

Source)
The exact values of the mean a and variance Var(a )} of the
. max max

maximum horizontal acceleration are equal to

fa f(a ) da
nax max max max

(2-22)

i

) £( ) da

Var(a h) a
max max max

j(amax-amax

where £{(a
T

ax) is given by Equation (2-16), and the limits of the integratiomns

are given by Equation (2-17).

A convenient and yet accurate way to obtain the statistical values
of 3 oy is to apply the Monte Carlo technique using Equation (2-12}.
This procedure involves the selection of a large number of values for
the random variable m from its cumulative distribution F(m), given by
Equation (2-8). These values are then substituted into Equation (2-18)
and the coxrresponding values of a ., are collected and analyzed statistically
to obtain a__- and Var(a ).

max mAax
An estimate of a and Var(a ) can also be obtained through a
max max
Taylor series expansion of the function a {m) around the value a GE),
max max

where m is the mean value of the magnitude. Thus,

p
- - 1 ? 4 nax
amax = amax(m) -+ 3 '-;‘;'Qm Var (m)

- (2-23)
da
Var(amax) (u5§§§)2 Var (m)

e



55

where a in the derivatives denotes that the latter are evaluated at

the mean value m of magnitude m.
After the derivatives of a . are obtained from Equation (2-12) and intro-
duced into Equations (2-23), the latter become

b.m

b e 2
a = —;;—————-[1 + l-b2 Var{m) ]
max b3 2 2
(R+b,)
(2-24)
b,m
blb2e 2 2
Var(amax) &7 b3 ] Var(m)
(R+b4)

where the mean value m and the variance Var{(m) of magnitude m are given
by Equations (2-11).

In Table 5 are listed the mean value Eﬁax’ standard deviation Sa
max

and coefficient of wvariation Va - of the maximum horizontal ground accel-
max

eration for a point source and for the two attenuation relationships, given
by Equations (2-18) and (2-19), respectively.

In Figures 20 and 21 is shown the expected value of the maximum accel-~
eration as a function of distance R for the two attenuation relationships.
For comparison purposes; im the-same figures are shown the results for
the case where a more eritical range of variation for the magnitude m is

assumed (i.e., 4.0 <m < 8.0).
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The influence of the B-parameter (see Equation 2-9) on the expected
value Egax of the maximum ground horizontal ground acceleration is shown
in Figures 22 and 23. TFigure 22 corresponds to Equation (2-18) while

Figure 23 to Equation (2-19).
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'3, DISCUSSION

In a conventional seismic ot static stability analys;s, the séfety
of a soil slope-is measured by means of a factor of safety FS. Material
and seismic parameters entering the expression for ¥S are convention~
ally treated as single-valued quantities. However, so_il properties
(e.g., ¢ and ¢) and ground motion parameters (i.e., amax) are gener-
ally random variables, the variability of which lend themselves to
a probabilistic formulation of the stability problem. A pseudo-
static, probabilistic model, as emploved in the present work, is
capable of accounting for (a) the variability in the numerical values
of the material strength parameters, (b) the uncertainty in the loca-
tion of the failure surface inside the soil slope, and (c) the uncer-
tainty in the exact value of the seismic load.

The soil material comprising the slope was assumed to be statis-
tically homogeneous with strength parameters ¢ and t (=tan¢) along
potential failure surfaces being identically distributed random vari-
ables with given mean values (E;Eb and coefficients of variation (VC,
Vt). Foliowing results fpund by previous investigators, the prob-
ability distributions of ¢ and t were assumed to follow the beta (or,
Pearson's type I) model. |

Potential failure surfaces were taken to be of a log-spiral
type and were defined with. the aid of three random variables: strength

parameter t and two geometric parameters hO and 90. The statistical
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values and bounds of ho and eo were determined empirically, taking
advantage of previous experience with log-spiral types of surfaces.
Thus, generated failure surfaces wére within a realistic range (Figure
2). In Sectdien 1.3, a pfocedure was presented for an approximate
determination of the most'probagle (mean) failure surface. For the slope
considered in the illustrative example (Figure 3); it was found that, by
neglecting the variances of the three random variables (ho,eo,t), the
corresponding failure surface (see Equation 1-8a) lay very close to the
mean surface.

The safety of the slope was measured in this study in terms of its
probability of failure Pes the numerical values ¢f which were obtained
through a Monte Carlo simulation of failure. In Figure 7 was given
the flow-chart of the operations followed during the simulation. After
values of the random variables were selected from their distributioms,
the resisting (R) and driving (S) forces were calculated and compared.
Thus, failure corresponded to the case wherein R was exceeded by S (R < S).
This procedure was repeated a large number of times and the probability
of failure Py was obtained as the ratio of the ngmber of counted fail-
ures M over the total number of repetitions N(pf=M/N). Implied in this
method was a frequency interpretation of the probability (pf) of a
random event ("failure") in a specified random experiment (gemeration
of a failure surface and comparison of the resulting values of R and S).
In his discussion on the precision of the frequency interpretation of prob-—
ability, Papoulis [32, p. 4] stated: "This interpretation is obviously
imprecise; however, it cannot be essentially improved ... probability,
like any physical theory is related to physical phemcmena only in

inexact terms. Nevertheless, the theory is an exact discipline
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developed logically from clearly defined axioms, and whén it is
applied to real problems, it works". 'Fﬁrthermore, as in the.devéloped
procedure the selection of failure surfaces was limited to those pass-
ing through the toe, the resulting value of the probability of failure
may be considered as an upper bound. |

It should be noted that this study did not attempt a "system"
approach to the reliability of slopes. Such an approach, in which
the slope is considered as a series system with infinite components
(potential failure surfaces), has been pursued in the past by Catalan
and Cornell [11] who provided an approximaté forﬁulation of slope
stability by transforming the slope reliability problem into a level~
crossing one. The authors remarked that "the conceptulization of a slope
as a series system with infinitely many distinct;‘but correlated modes
was not found to be the most fruitful approach";

In the present analysis, the resistance R developed along a poten-
tial failure surface was assumed to be constant during the earthquake
loading. This is a reasonable assumption for a wide variety of soils,
particularly cohesive ones [3]. The proposed approach is not direct-
ly applicable to the analysis of soil slopes when the material’s
strength decreases during the cyclic loading. This could be, for éx-
ample, the case of liquefaction of saturated sands or sensitive clays
[ 3]. The applicability and limitation of the above assumption has

been also recognized by other researchers of the subject: "Because



of these difficulties, it is not at the present time possible to make

an accurate determination of the behavior of soils (cohesionless soils
and sensitive clays) which are susceptible to liquefaction-like
phenomena ... Fortunately, not all soils are susceptible to such
phenomena. For many soils, the resistance to shear is largely unaffect~
ed by repeated cycles of loading" [48].

The seismic load was introduced into the present analysis through
the maximum acceleration experienced by.the‘slope mass during an earth-
quake. The maximum horizontal acceleration of the slope was taken to
be identical to that of the ground (rigid body assumption). TFurthermore,
it was assumed that the magnitude of the vertical component (with an
upward direction) of the maximum acceleration was equal to two-thirds of
that of the horizontal component (with a direction away from the slope)
[43]; and that both components acted on the slope mass simultaneously.

Three types of factors have an affect on ground motiom parameters,

in general, and maximum ground scceleration, in particular. These are

65

(a) source related factors, (b) travel path related factors, and (c) factors

reflecting site conditions. The current state~of-the-art is limited to
considering only a few representatives from each type [22]. Thus, in
the present study, source factors were accounted through the earthquake
magnitude, travel path factors through the distance between source and

site, and local factors through a number of regional parameters.
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Comparisons between observed and computed values of the maximum
horizontal acceleration have indicated that their ratio (the "error
term €") follows closely a.log-normal distribution. When the “errof
term " was included in .the present study, the two attenuation
relationships received the expressions given in Equations (2-20){(Case
1) and (2-21){(Case 2). The frequency and cumulative distributions of
3y Vere obtained for a median and standard deviation of & equal to
1.0 and 0.5, respectively. These are shown in Figures 16 and 17 for
Case 1 and in Figures 18 and 19 for Case 2.

Three types of earthquake sources were considered (Figure 11);
namely, (a) a point source, (b) a line {(or, fault) source, and (c¢) an
area source. A point source {Figure 1lla) constituteé the fundamental
type of earthquake source. A line source (Figure 11b) is used if a
fault ﬁas been clearly identified in a certain region, or if a string
of earthquakes occurred over a period of time along a well defined line.
An area source (Figure llec) is used when the earthquakes that have
occurred at a certain site are almost qpiformly distributed over an area,
or when there is very limited seismic data and other information [16].

In the case of a point source, the frequency f(amax) and cumulative
F(amax)distributions of the maximum horizontal acceleration a_ . were
derived from the distribution of the magnitude by a transformation of
variables (Section 2.4). The expressions for f(amax) and F(amax)'for

the line and area scurces were given in Appen&ix-éﬁ in‘Appendix B were
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also given the expressions for f(amax) and F(amax) for the case of a
log—quadratic frequency-magnitude relationship (for point socurce).

The statistical values of the maximum horizontal acceleration
were found through a Monte Carlo simulation for the two attenuation
relationships used, given by Equations (2-18)(Case 1) and (2-19)(Case 2),
and for a range of values for the distance R (point source). The results
were listed in Table 5, from which it can be seen that the expected
values of 3 .y VeTe always higher in Case 1 than in Case 2. The opposite
was true for the coefficient of variation Va of IR In Table 5
were also listed the estimates for the statiziical values of 8 x that
were obtained through a Taylor series expansion (see Equations 2-~23).
From a comparison of the results, it can be seen that the expected values
of 2 x for the two cases were very similar while the values of the
standard deviations found through the Taylor series expansion were much
lower.

In order to examine the importance of the limits (mO’mI) of the
magnitude m on‘the expected value of the maximum horizontal acceleration,
the latter was determined for two sets of limiting values of m: one,
for m.o = 2.0, m1 = 6.3 (pertinentﬂto New York Staté),‘and, another, for
m, = 4.0 and m1»=u8.0; The results are shown in Figures-20 (Case 1) and
21 (Case 2), from which it can be seen that for the more critical range

of magnitude, the expected values ofamax are considerably higher.
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The magnitude of an earthquake was considered as random variable
the frequency and cumulative distributions of which were derived in
Section 2.2 and were given by Equation (2~7) and (2-8), respectively.
These expressions correspond to a log-linear frequency—magnitﬁde rela-
tionship. The case of a log~quadratic frequency-magnitude relationship
was also examined and the results were presented in Appendix A.

A reasomable range of variation for the earthquake magnitude m in
New York State has been found [31] to be between o, = 2.0 and m = 6.3
(2.0 <m < 6.3). The same range of variation for m was also adopted in
the present study. The influence of the B-parameter (see Equation 2-2)
on the frequency f(m) distributions of magnitude m was examiﬁed for three
values of B; namely, B = 1.35, 1.5 and 2.5, The results were shown in
Figures 9 and 10, from which one has that f(m) and F(m) are not affected
much when R varies between 1.35 and 1.50 (a range that corresponds to
the Northeastern United States [311}). A value of B = 2.50, however,
resulted to considerable differences in the two distributions.

Two different attenuation relaticnships that have been proposed for
the Northeastern United States were used to obtain the maximum horizontal
ground acceleration amax as a function of the earthquake magnitude, the
distance betweep the source and the site and a number of regional param-~
eters. These were given by Equatidné~(2—18) (Case 1} and (2-19) (Case 2).

The frequency and cumulative distributions of B that correspond to
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each of the two attenuation relationships are shown in Figures 12 and
13 (Case 1) and 14 and 15 {(Case 2), respectively.

Finally, the influence of the R-parameter (see Equation 2-2} on
the eﬁpected value Eﬁax of 3 ax W3S also examined and the results were

shown in Figures 23 (Case 1) and 24 (Case 2), It can be seen that,

for both cases,a smaller value of the B-parameter resulted to a higher

value of a .
max



4. SUMMARY

A model was developed to determine the reliability of earth

slopes subjected to earthquake loading. The material comprising the
slope was assumed to be probabilistically homogenecus with strength
parameters being random variables following a beta distribution.
Potential failure surfaces were considered to be of an exponential

shape {log spiral) and were defined with the aid of three random
variables: two geometric and one strength parameters. The seismic

load was introduced through the maximum acceleration (amax) experi-
-enced by the slope during an earthquake. The statistical character-
istics of a x were determined by exploring the dependence of the latter
on such factors as the earthquake magnitude, the typé of earthquake:
" source aﬁd the location of -the slope. The measure used-éo asgess the
reliability of a sdil sleope was its probability of failure the numerical

values of which were determined. through a Monte Carle simulation.
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APPENDIX A: DISTRIBUTION OF EARTHQUAKE MAGNITUDE FOR A LOG-
QUADRATIC FREQUENCY-MAGNITUDE RELATIONSHIP

A general quadratic relationship between the logarithm of the

number of earthquakes n_ exceeding a certain magnitude m and the magnitude

m can be written in the following form:

ln(nm) = a + bm + cm2

(a-1)
where a,b, and ¢ are regional parameters.
From Equation (A-l), cne has
n_ = exp(a + bm + cmz) (A=2)
- .
If ™, and o denote the lower and upper limit of m, respectively,
Equation (A~-1) may be written as
2
= - g < -
In(n ) a + blmm) + clmn )", m,imsm (A-3)
From Equation (A-2), one has that the expected number of earth-
quakes (nm ) with magnitude greater than the assumed lower bound (mo)
o
is equal to
n =-exp{a+bm + cm 2) (A-4)
m o o

o)

184/
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The ratio of n_over n signifies the probability with which
m
Q
the earthquake magnitude is greater than m [421; i.e.,

n 2
P[M > m] = L exp (atburtcm )2 = exp[b@nbmo)+c(m2—m02)],m‘i m (A-5)

o exp(a+bm0+cmo )

=]

The cumulative density function F(m) of the earthquake magnitude m is

equal to

F(m) = P[M<m] =1-P[M>mn]
Introducing Equation (A-5) in the above expression, one has
2 2
F{m) = 1 - exp{b(m-m0)+c(m -m )1 (A-86)

The normalizing factor k can be determined from the condition F(ml) = 1

iu e»,

NS

F(my) = k(1 - exp[b(m;-m J+e(minl)]} = 1

=

i

or, k {l—exp{b(ml-mo) + c(mi-mg)]}—l (A-7)

Thus, the cumulative density function for the earthquake magnitude is

equal to
0 < m
o]

F) ={ k{1 - exp[b(m-u) + c@-u)1} > m_ < m<m (A-8)

1

1 m1 < m
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where k is given by Equation (A-7). The probability density function
f(m) can again be formed by taking the derivative of F(m) with respect

tom, i.e.,

f(m) = -k(b-2Zcm)exp [b(m—-mo)+c(m2-m§)], m <m < my (A-9)



APPENDIX B: MAXIMUM ACCELERATION FOR THREE TYPES OF
EARTHQUAKE SOURCES

(a) Point Source

For an attenuation relationship expressed in the form

b.,m ~b

=be’ (R+b) 3

the corresponding  probability density function f(amax) and range of vari-

ation of a .. were given by Equations (2-16) and (2-17), respectively.

The cumulative distribution F(a_ ) of a (i.e., the preobability with
max max

which 2 ax receives values smaller than or equal to a certain value) can

be obtained through a integration of Equation (2-16). Thus,

b
a (R+0,) 3

_ 1 max 4 _ -
F(amax) = k{l-eXP{-B(bz In by mo)]} (B=1)

If the upper limit of the earthquake magnitude (ml) is unrestricted

(i.e., m = w), Equation (B-1) receives the form
_ D _B
b2 & v b2
F(amax) =1 —(R+b4) (Tlu) exp(ﬁmo) (B-2)

In the case of thHe log~quadratic frequency-magnitude relationship

presented in Appendix A, the cumulative distribution of a is equal

to
Pla ) = k{l-exp[b(G-m )+c(G-n>)1} (B-3)
‘max’ ) 0
where k is given by Equation (A-7), and
by
1 'améx(ﬂ+b£)
G = g—-ln 5
2 1
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The frequency distribution of 8 . CED be found by forming the derivative

of Equation (B~3) with respect to 8 s’ i.e.,

fla_ ) = - 1;—-3 <2ce+b)exp[b(c-mo)+c<c;2—m§>] (B=4)

(b) Line Source
In the case of the line source, for the log-linear frequency-magnitude
relationship and & = 90° (¥Figure 11b), the cumulative distribution F(amax)

of the maximm acceleration amax has the form

-8
b,
amax
F(amax) = 1-[(1-k)tkexp@m ) ( by ) - I (B~5)
where k,B,mo,bl,bz,b3 are defined as before,
—b38
T b2

R,ro,D and £ are shown in Figure 1llh.

The probability demnsity function of 8 ax C30 be found by forming the

derivative of Equation (B~5) with respect to & s thus,
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8
S

=k B _Iax. 2 - | -
fa ) = b, b, T (Bm ) ( 5, ) (B-6)

An alternative formulation of the line source, convenient for use
is a Monte Carlo simulation scheme, is as follows:

Assuming that the earthquake has the same likelihood of occurrence
at each point along.the fault, a random number (RAN) can be used to

determine the position of the source along the fault. Thus, for
X = RAN - 2, 9 <x <&

where £ is the length of the fault, the distance z between the center

of the line and the simulated earthquake (Figure 11b) is equal to

z = (x-2/2), -

N

<z <X
2z 3

Applying the cosine law, it is found that the distance R from the site

to the simulated earthquake is equal to

2

R = tz + D2 - Zchos(e)}l/2

(B-7)

(c) Area Source
In the case of a log-linear frequency-magnitude relatiomship,
the probability with which the maximum acceleration AmaX receives values

larger than a is equal to {42]
max
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P[Amax > amaX] = (1-k) + dz—hz k[exp(Bmo)]bl Hamax (B-8)
where
: b b
"‘Si B+2 - E§-8+2
2 2
gl [1-(d/h) ]
b3
5, B2
2

b,h are defined in Figure 1llc, and

B’bl’bZ’b3 are regional parameters,

The cumulative distribution F(a ) of a can be obtained as
max max
the complement of Equation (B-8), i.e.,

s/b2 —B/b2

Fla ) = 1-[(1-K)+ d2-2-h2 k exp(8m )b, Ha 1 (8-9)

The frequency distribution f(amax) can be found from Equation

(B-9) by forming the derivative of F(amax) with respect to amax’ or
B/b -(B8/b,+1)
3 ——23—— & -B— » 2' - L ] 2
f(amax) - d2—h2 b2 b H exp(me) amax (B-10)

A simpler fgrmulation of the area source (equivalent to the one
used in the case of ﬁhe linegséurce)’ean be aéhieved'by'cbnsidering
the circular area as consisting of uniformly distributed point sources
with a varying radius Rp. The value of R_ must be chosen so that the

following expression is true:
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(Areap) = (RAN)(AreaS)
or, ﬂRz = (RAN)(WRZ)
jol b ]
2 2 .
or, Rp = (RAN)R (B-11)
where RP = the distance from the site to the point source (a random
variable),
RS = the radius of the area source, and
RAN = a random number between (¢ and 1.

From Equation (B-11), one has that Rp is equal to

R = fRAN-R, 0<R <R (B~12)



