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SOIL STRUCTURE INTERACTION IN DIFFERENT SEISMIC ENVIRONMENTS

Abstract

Presented is a plane-strain method for soil-structure interaction

analysis consisting of the superposition of the free field motions and the

interaction motions, in a generalized seismic environment.

The free field is modeled as a ho.rizontally layered viscoelastic medium

and the seismic environment may consist of a combination of S, P and Rayleigh

waves. The soil-structure system is modeled with viscoelastic finite ele­

ments, transmitting boundaries viscous boundaries, and a 3-dimensional simula­

tion.

Comparative analyses of the sam~ structure are conducted for an input of

R waves and for vertically propagating Sand P waves in a rock site and sand

site. In the rock site the R waves produce higher peak horizontal spectral

acceleration up to 25% and a significant rocking effect at points away from

the center of gravity of the structure. However, the Sand P waves show

higher peak vertical spectral acceleration by up to 15% at the center of the

structure. Very similar horizontal response, but higher vertical response

only at the center of the structure for Sand P waves, are obtained for the

sand site.
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SOIL STRUCTURE INTERACTION IN DIFFERENT

SEISMIC ENVIRONMENTS

By

Alberto Gomez-Masso 1, A. ~!. ASCE, John Lysmer2 , M. ASCE,

Jian-Chu Chen3 , and H. Bolton Seed 2, F. ASCE

INTRODUCTION

The current strong interest in nuclear power and the concerns regarding

the seismic safety of the facilities involved has generated the development of

improved methods of seismic soil-structure interaction analysis. A complete

analysis of this problem consists of several parts. First, the seismic

environment must be defined. Second, an analytical model must be designed for

the soil-structure systems, and, third, the model must be analyzed by some

effective and accurate numerical technique. Direct solutions of the complete

interaction approach carried out by the finite element method for simplified

seismic environments have been applied to a wide range of problems with

different geometries (Kausel and Roesset, 1974; Seed et aI, 1975; Lysmer et

a1, 1975).

However, earthquake motions result from a complex pattern of body and

surface waves Whose nature and magnitude will depend on factors such as the

fault rupture mechanism, the focal depth, the regional geDlogy~ the epicentral

distance and the local soil conditions. The control motion for seismic

ISr • Staff Engineer, Woodward-Clyde Consultants, San Francisco, Calif.
2prof • of Civil Engineering., Univ. of Calif., Berkeley, Calif.
3Engineer, Lawrence Livermore Laboratory, Livermore, Calif.
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analysis of nuclear power plants is usually specified by the U. S. Nuclear

Regulatory Commission in the form of a broad-band acceleration spectrum. A

time-history of ground accelerations is then developed which produces the

desired spectral shape. No requirement is made concerning the nature of the

wave systems producing these motions. Thus at the present time the assumption

is often made that soil motions are primarily due to vertically propagating

shear waves and compression waves. On the basis of this assumption,

analytical techniques have been developed to calculate the motions everywhere

in the free field based on one-dimensional wave propagation theory and the use

of equivalent linear soil modeling techniques for a viscoelastic layered

system. Results obtained by this approach have been found to be in good

agreement with field observations of ground response (Schnabel, 1972), and

soil-structure interaction (Valera, 1977), during actual earthquakes.

However, some authors, e.g., Wong and Trifunac (1974), Luco (1976), have

argued that consideration of oblique body waves and surface waves may produce

results significantly different from those obtained by assuming vertically

propagating waves. In fact, low frequency surface waves have been observed in

several earthquakes such as El Centro, 1940 (Trifunac, 1971), Parkfield, 1966

(Anderson, 1974), Koyna, 1967 (Singh et al, 1975) and San Fernando, 1971

(Hanks, 1975).

Methods for approximating the effects of horizontally propagating waves

on structures and earth dams have been proposed by Scavuzzo (1967), Dezfulian

and Seed (1969), Dibaj and Penzien (1969), Udaka (1975), Scanlan (1976),

Werner et al (1977) and others. All of these methods assume either specified

traveling base motions or use theories involving a uniform half space and

extremely simple wave forms.
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It appears, therefore, that there is a need for both a better

determination of the seismic environment in layered soil systems for use in

design studies and also for methods of soil-structure interaction analysis

capable of handling a wider range of input motions. As a step in this

direction an analysis method has been developed to accept any type of plane

strain body waves or Rayleigh waves or a combination of these as input free

field motions. This method of analysis makes use of viscoelastic finite

elements, solves the quilibrium equations following the complex response

method, and uses the equivalent linear method to approximate the non-linear

material behavior. In addition, this method includes the use of transmitting

boundaries to simulate the existence of semi-infinite multilayered free field

deposits, the use of transmitting and/or viscous boundaries in the direction

prependicular to the plane of analysis to simulate 3-dimensional effects in

the ground and the use of viscous boundaries to m0del the half-space

underlying the soil-structure system.

A method is also presented for calculating R-wave motions and oblique

body wave motions in a horizontally layered free field. These different wave

fields may be superimposed to produce a more generalized seismic environment.

Finally, two soil-structure interaction analyses are presented herein

which assess the difference in response produced by an input consisting of

Rayleigh waves and by a combination of vertically propagating shear and

compression waves on the same given structure in a rock site and in a sand

site, respectively.

METHOD OF ANALYSIS - A TWO STEP PROCEDURE

The proposed method of analysis computes the total motions by
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superimposing the free field motions and the soil-structure interaction

motions. The superposition technique has been described by Clough and Penzien

... ...
(1975), Gomez-Masso (1978), and Lysmer (1978) for the analysis of discretized

systems and it has been used by Aydinoglu et al (1977) to approximate the

modal behavior of buildings resting on an elastic soil layer over a half-space

and subjected to harmonic excitations.

A schematic representation of the model with the input and radiated waves

considered in the present method of analysis is shown in Fig. (1). The theory

presented here refers to plane-strain finite-element models consisting of

three regions. A central zone within which elements of irregular shapes can

be used, and two adjacent free-field regions. Each one of the "blocks" next

to the struc ture-and-soil model in Fig. (1) represents a numerical boundary

condition to account for the dissipation of energy in the form of waves.

A diagram of the global method of solution is presented in Fig. (2). The

system to be analyzed is represented by the structure and the surrounding soil

(SSS). All materials are assumed to have viscoelastic properties and the

analysis is carried out in two steps. The finite-element syst;em, SSS, is

decomposed into two finite-element models, namely the free-field system, FFS,

and the incremental system, NET, as shown in Fig. (2). The NET system has

material properties resulting from subtraction of those of the FFS system from

those of the SSS system. The first step of analysis is Step A--The Free-Field

Analysis-- in which the temporal and spatial variation of the seismic motions,

uf ' in the FFS model are determined. The second step is Step B--The Finite-

Element Analysis--in which the interaction motions, ui' caused by the presence

of the structure are calculated. Once the interaction motions are obtained,

the total displacements, u, for the complete interaction analysis of the SSS
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model are obtained by the following superposition:

(1)

where all displacements in Eq. (1) are absolute in the sense that they refer

to the same fixed set of coordinate axes.

The governing equations in Steps A and B are solved by means of the

method of complex response extended to transient motions, together with

complex stiffness expressions to allow for frequency independent material

damping. Material nonlinearities are modeled using the equivalent linear

method (Seed and Idriss, 1969) in both Steps A and B.

COMPUTATION OF FREE FIELD MOTIONS

The types of waves considered are inclined or vertically-propagating S

and P waves and horizontally traveling R waves. The free field consists of a

plane-strain system of homogeneous linearly viscoelastic layers overlying a

homogeneous viscoelastic half space. Because of limitations in the present

state of the art the computations are developed only for horizontally layered

sites.

Let the control motion d(t) consist of a seismic accelerogram recorded on

top of the R, th layer. If the record has N points digitized at equal time

intervals, 6 t, i.e. d(jKt), j = 0,1,2, ••• N-1, then it can be expressed in the

form of a finite Fourier series of N/2 + 1 harmonics as follows:

N/2

d j e Re [ D. exp("".t)

s=O

j=O,l. ••N-l (2)
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ZITs
Ws is the circular frequency of each harmonic, ws =""'"1" for s =

O,1,2 ••• N/2; T = N~t is the duration of the earthquake and D are the complexs

amplitudes.

The free field displacements uf Can be expressed by superimposing the

individual harmonic components as a finite Fourier series of the form

N/z

{uf}' Re ~ (uf}sexp(;wst)

s=O

(3)

where the free-field complex amplitudes, lif , are calculated in the frequency

domain and are given by:

(4)

{P}s is the vector of the free-field amplification functions also known as

transfer functions for each frequency.

Equation (4) expresses free field motions determined by one control

motion. However, in cases where both Sand P waves propagate simultaneously

in the free-field or both horizontal and vertical components of the Rayleigh

wave motions at the control point are known, then the control motions will

consist of a horizontal acceleration time history, dh(t), and a vertical

··v
acceleration time history d (t). If both of these time histories have the

same duration and time interval~t, then Eq. (4) will be replaced by:

(5)

The computation of the free-field transfer functions is different for S

and P waves than for R waves, but once this step is completed, the rest of the
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The computation of transfer

functions for the different types of waves is presented in the following

sections.

Site Transfer Functions for Body Waves The equation of motion for a

discretized n-layer system assuming linear variation of displacement within

each layer, is as follows:

(6)

in which [K] and [M] are the global stiffness and mass matrices of order 2n +

2. The vector {¢} contains 2n + 2 normalized complex displacement amplitudes

for the layers and the boundary, F is the load vector consisting of the last

two boundary forces between the layered system and the half-space. For the

case of inclined body waves the stiffness matrix can be decomposed into three

parts:

[K] - [A] k2 + [B]k + [G] (7)

where k is the complex wave number defining the phase velocity and attenuation

factor of horizontal propagation. For the case of vertical incidence, i.e. k

• 0, the matrices [A] and [B] drop out of this equation, and the S wave and P

wave are completely uncoupled.

The normalized boundary forces and the boundary displacement amplitudes

are calculated by using the theory for waves obliquely incident to a boundary

between two media. Then, by solving Eq (6) for each frequency the rest of the

complex amplitudes ¢ are determined, and from these, the transfer functions
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are readily obtained (Chen, 1979). The numerical examples presented herein

are restricted t however, to the case of vertically incident Sand P waves.

Site Transfer Function for R Waves - The free field is treated as a continuum

in the horizontal direction but discretized into a finite number t n, of semi-

infinite layers underlain by a rigid base, as shown in Fig. (3). Each layer

is modeled with two nodal points each having two degrees of freedomt namely

the horizontal and vertical displacements. The equilibrium equation for a

harmonic R wave is written as the following complex eigenvalue problem (Waas,

1972):

(8)

in which i =y::i, matrices [A], [B] and [G] are formed with the damping and

stiffness properties of the layers, [M] is the global mass matrix, and {V}

contains the 2n complex displacement amplitudes at the layer interfaces. For

a given w , Eq. (8) can be solved for the 2n possible eigenvalues, (wave

numbers) kst and the corresponding eigenvectors (mode shapes)t {V}s' s =

1,2, ••• 2n.

The nodal point displacements can be expressed as the sum of the

contributions of the different mode shapes as follows:

2n

{u} ~ L aj{V}jexp(ioJ t - ikjx)

j=l

(9)

where aj are unknown mode participation factors. Equation (9) represents a
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superposition of generalized R-waves each with its own mode shape and wave

number. For a viscoelastic system the wave numbers are complex with negative

imaginary parts, since these waves decay as they travel in the positive X-

direction. In general, it is not possible to find these mode participation

factors. However, if it is assumed that the fundamental mode dominates the

response at all frequencies, Eq. (9) reduces to:

(10)

where aI' {V} 1 and k 1 correspond to the fundamental mode. If the control

motion is specified at the top of the j-th layer,a is given for each frequency

by:

Cll)

and hence

(12)

The computation of free field R or body wave motions is carried out by

the computer program SITE (Chen, 1979).

COMPUTATION OF THE INTERACTION MOTIONS

Assuming that the energy dissipation in the 3rd direction (the Z­

direction) or through the system base occurs only for non-zero interaction

displacements, u f • the finite element equilibrium equation of the SSS system

in Fig. (2) can be written as follows:



[M]{u} + [E] {ui } + [K] {u} = {Q} (13)

12

where [Ml and [Kl are the global mass and stiffness matrix, respectively. The

vector {Q} represents the loading forces on the boundaries of the system, and

[El is the generalized matrix accounting for the energy dissipation in the Z-

direction and through the system base, and will be discussed later. Likewise,

the dynamic equilibrium equation of the discretized FFS model, shown in Fig.

(2) is the following:

{Q} (14)

where [Mfl and [Kf ] are the global mass and stiffness matrix, respectively,

and the load vector is the same as in the SSS model.

Substitution of Eqs. (1) and (14) into Eq. (13) leads to the following

expression in ui :

(15)

where

{u
f

} + [Knl {Uf }){f} - - (lMnl (16)

and [Mnl [M] - [Mfl (17)

[Kn] = [K] - [Kfl (18)

in which the n subscript refers to the NET system. The magnitude of the
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interaction load vector {f} depends on the free field motions and the

properties of the NET system.

The so-called "transmitting boundaries" are dynamic stiffness matrices

which have been successfully used to represent mathematically the semi-

infinite free-field layers and allow a size reduction of the mesh for analysis

with the subsequent savings in computation time (Lysmer and Waas, 1972; Kausel

et al, 1974; Lysmer et aI, 1975). Therefore, this technique is also used in

this study and transmitting boundary matrices are assembled with the stiffness

matrix for the central block in Fig. (1) to form the complete global stiffness

matrix.

The complex response method together with complex stiffness expressions

is used to solve Eq. (15) for any given transient free field motions. The

interaction displacements can be expressed in the following form:

N/2

lUi} e Re [ {ui}.exp(iW.t)

S?O

(19)

By expressing Eq. (15) in terms of finite Fourier series and substituting

the above equation one obtains:

Re

s=0

[M] + [E*] + [K*]) {U.} exp(iw t)
~ s s

(20)

where

s=0
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(21)

and the asterisk,*, indicates a matrix, with complex elements.

Expression (20) can be written in terms of the complex amplitudes Ui for

one particular frequency

(-W; [M] + *[E ] (22)

Upon solution of Eq. (22) for the amplitudes, Ui , the total motions can

be calculated as follows:

(23)

The computer program CREAM (Gomez-Masso, 1978) has been developed to

accept an arbitrary seismic input, calculate the interaction motions and

obtain the total motions by superposition according to this equation.

3-D SiDDJlation - Viscous Boundaries vs Transmitting Boundaries - As shown in

Fig. (1), the input R-waves travel in the X-direction and the radiated surface

waves travel in the X- and Z-directions, whereas the incident and reflected

body waves are contained in the X-Y plane. If a flexible base in considered,

body waves will also propagate through the underlying half-space. The wave

energy reaching the free field boundaries in the X-direction can be absorbed

by R-wave transmitting boundaries.

At the base the viscous boundaries developed by Lysmer and Kuhlemeyer

(1969) can be used to absorb the energy reaching the ha1fspace.
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Viscous boundaries may also be used to absorb the radiated energy in the

Z-direction assuming that this energy is dissipated in the form of plane shear

waves (Lysmer et al 1975). The dynamic stiffness matrix for the boundary can

be expressed as follows:

*[E ] iw"'--
H

[Cl (24)

where i '" V-::;, W is the frequency, [C] is the diagonal matrix of damping

coefficients and H is the thickness of the structure in the Z-direction.

A theoretically more attractive boundary condition is the use of L- and

R-wave transmitting boundaries to absorb also the energy propagated in the Z-

directions.

follows:

For a given frequency such boundaries can be expressed as

m

[E*) =+[ 6Xj ([Ll j + lEl j)
j=l

(,25)

where [L]j and [R], are the Land R-wave boundary matrices developed by Waas

and Lysmer (1972) for a soil profile corresponding to the j-th vertical column

of nodal points. All of the matrices [L]j and [R]j will be similar except for

*the position of the terms in the [E ] matrix. ~Xj is the average width of the

elements adjoining the j-th column of nodal points.

It is interesting to compare the viscous and the transmitting boundaries

used for 3-D simulation. For this purpose two comparative analyses were

carried out using the model shown in Fig. (4) and a synthetic accelerogram

with amax '" 0.25g. First, the L-wave boundaries were compared with the

horizontal viscous boundaries using a seismic input consisting of vertically

propagating shear waves. Second, the R-wave boundaries were compared with the
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vertical viscous boundaries using an input of vertical P waves. The results

obtained using the viscous and the transmitting boundaries show peak

accelerations within 5% to 7% and spectral acceleration curves within 5% to

15% in all cases as shown in Fig. (3). It thus appears that the viscous

boundaries are a good approximation to the more realistic L- and R-wave

transmitting boundaries. Viscous boundaries have the advantages of being more

economical, not requiring vertical nodal point columns and allowing a viscous

base to be considered in the model. Therefore, the viscous boundaries were

used for 3-D simulation in all subsequent analysis presented herein.

SURFACE WAVES VS. VERTICALLY PROPAGATING WAVES IN A ROCK SITE

The results of a soil-structure interaction analysis using a combined

excitation of Sand P waves were compared to the results of an analysis

obtained for an input of consisting only of Rayleigh waves. This latter case

may be considered an extreme case, since no strong motion seismic environment

is likely to consist entirely of a Rayleigh wave field, but it provides a

limiting bound in assessing the significance of this type of motion.

Computational Model - The soil-structure finite element model used is shown in

Fig. (4). The material properties of the structure were typically those of

steel and reinforced concrete. The free field consisted of two rock layers of

50 ft and 320 ft in thickness with shear wave velocities of about 3600 fps and

5600 fps, respectively and with a damping ratio of 2%.

The control motion used in this analysis was a synthetic record with a

peak acceleration scaled to 0.25 g, and having a spectrum similar to that

specified by the Nuclear Regulatory Commission. This control motion was also

used to calculate the free-field Sand P waves. The input of combined in-
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phase Sand P waves represents the upper limit of body wave excitations and

will be referred to as the S + P wave case.

R-Wave Free Field Motions for the Rock Site The control motion for the

Rayleigh wave analysis was the same as used above. It represents the

horizontal surface component of R waves which travel from left to right. The

location of the control point along the X-axis is of no practical significance

because the surface waves attenuate slowly due to the low material damping of

the rock. The control point was therefore placed at the free field location

corresponding to nodal point G. Spectral acceleration curves for the free

field motions at nodal points E, G, and I are shown in Fig. (4). The small

attenuation in the X-direction observed is due to the very low damping ratio

values of 2% used throughout the rock material. Vertical sp~ctral curves are

similar in frequency content to the corresponding horizontal curves but about

15% higher in magnitude.

Comparison of Response Using S + P Waves and R Waves - A comparison of the

response of the structure subjected to combined S + P waves and R waves is

shown in Figs (5) through (8). The maximum horizontal accelerations computed

at points on the slab for both cases of analysis were identical. The strong

similarity observed in the horizontal response spectra at points on the slab

for the S + P wave and the R-wave cases is shown in Fig. (5).

The vertical response of the slab was, however, somewhat higher for the

Rayleigh wave excitation and decreased in the direction of wave .propagation.

Maximum accelerations were about 20% higher for R-wave case. Vertical

response spectra computed at the two ends of the slab, points E and I, and at
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the center of the slab, point G, for both excitations are shown in Fig. (6).

The first and second plots in Fig. (6) show the comparison of the three

spectra for the S + P waves and the R-waves, respectively. The difference in

response spectra between the two ends at the peak frequencies was 25% for the

S + P wave analysis vs. 60% for the R-wave case. This indicates a stronger

rocking effect in the latter case. Further, since both R-wave and S + P wave

motions can be input in two different directions in the soil-structure

interaction analysis, the envelope of the response spectra for these two cases

should be used rather than a single curve for the comparison of the response

of nodal points away from the center of gravity of the structure. Differences

between the envelope curves for vertical response of the slab shown in the

third plot in Fig. (6) indicate that the Rayleigh wave apalysis produced

responses about 30% higher at the peak frequency than the S + P wave analysis.

Results obtained from the R-wave analysis for the vertical beam elements

showed higher peak horizontal accelerations, by up to 50%, and higher

horizontal response spectra. A comparison of the horizontal response spectra

at the highest point in the beam, point A, and at a point at about one-third

of the height, point B, is shown in Fig. (7). The R-wave spectra at points A

and B were respectively 25% and 15% higher at the peak frequency. However,

the vertical peak accelerations computed at the beam elements were higher for

the S + P wave case by up to 22%. A comparison of the vertical response

spectra at points A and B,also plotted in Fig. (7),shows values from the S + P

wave analysis to be higher at frequencies above 6 Hz and by 15% at the peak

frequency, whereas the opposite occurred at low frequencies.

The maximum beam bending moment and shear and axial forces are plotted in

Fig. (8) where the results for the R-wave case are shown to be higher than
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those of the S + P wave case by up to 35%.

The effect of a wave field consisting solely of traveling R waves in a

rock site would therefore appear to be more severe on some parts of the

structures, than the effect of simultaneous Sand P waves. In addition, the

low attenuation observed in the spectral curves for the R-wave free field

motion indicates that the location of the surface control point is unimportant

for structures founded on materials with relatively high stiffness

characteristics. Hence, this example analysis illustrates a case in which the

results of design computations using a pure R-wave input motion are, for some

parts of the structure, significantly different from those of an S + P wave

analysis. Clearly, however, the significance of this result depends on the

validity of the assumption that R waves constitute the primary component of

the seismic environment.

Effect of Rigid Base of Finite Element Model - All of the above calculations

were obtained using a finite element model with a rigid base at a depth of 370

ft below the ground surface. However, the R-wave analysis was repeated using

a viscous boundary at this depth in order to study the effects of possible

reflections at the rigid boundary on the interaction motions. The structural

responses computed by the two methods were virtually identical and it may thus

be concluded that reflections from the rigid base of the finite element model

are unimportant for practical calculations.

SURFACE WAVES VS. VERTICALLY PROPAGATING WAVES IN A SAND SITE

Soil structure interaction analyses were also conducted for S + P wave

input and for R-wave input for the purpose of assessing the influence of the
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traveling waves· in a shallow, relatively soft soil layer resting on a very

stiff rock halfspace.

Computational Model - The idealized geometry of the site is shown in Fig. (9).

The structure had the same dimensions and material properties as the model

previously used for the rock site. The soil consisted of a 128 ft thick layer

of homogeneous dense sand overlying the bedrock. The soil properties were

those typical of dense sand to a depth of 48 ft and of a very dense sand for

the remaining soil.

The control motion was a time history with a peak acceleration of 0.25g

and a spectral form similar to that of the NRC Regulatory Guide. Contrary to

the analysis of the rock site previously studied, at this site the location of

the control point was found to be of crucial importance for the the frequency

dispersion and significant material damping of the sand layer. Therefore, in

order to make a meaningful comparison between the R-wave and S + P wave

effects the control point was located at a distance of 200 ft., away from the

center of the structure to allow for some motion decay in the sand deposit and

the free field horizontal and vertical R-wave motions were calculated at the

center of the slab and then used as control motions for the S + P wave

analysis.

R-Wave Free Field Motions for Sand Site - The particular configuration of this

site, which consists of a relatively soft soil layer underlain by a much

stiffer rock mass, implies R-wave modes which at low frequencies show much

higher horizontal components than vertical components. The characteristics of

the horizontal and vertical free field motions of the R-wave field which
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propagates from the left to the right are shown in Fig. (9) for nodal points

E, G and I. As can be seen the higher damping and relative softness of the

site as compared to the rock site previously studied produces a remarkable

motion attenuation with distance in the direction of wave propagation.

Comparison of Response Using S + P Waves and R Waves - A comparison of the

response of the structure under the effects of S + P waves and R waves is

presented in Figs. (10) through Fig. (13). All peak horizontal and vertical

accelerations were within 5% or 10% in both cases. The horizontal response

spectra at points on the slab were very similar for both cases of excitation

as is shown in Fig. (10).

Some rocking oscillations of the concrete slab were observed in both

analyses. The difference between the peak vertical accelerations at points on

the slab was within 20%. The vertical response spectra at the ends and the

center of the slab are shown in Fig. (11). The first and second plots in Fig.

(11) show the response spectra at these three points on the slab as obtained

for the S + P wave case and the R-wave case, respectively.

The first plot indicates that the highest peak in the response spectra

for the two ends of the slab were of about the same magnitude for the S + P

wave analysis, while the second plot shows that the R-wave analysis produced

differences in those peaks of about 35%, indicating some attenuation effect.

However, comparison of the envelope curves of the vertical spectra at the slab

ends presented in the third plot shows the R-wave envelope to be higher by

about 10% at frequencies less than 1.5 Hz. The S + P envelope was higher by

about 20% at frequencies between 1.5 and 8 Hz.

Horizontal and vertical spectral curves obtained in both analyses for the
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vertical beam element are plotted in Fig. (12).
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The horizontal response

spectra differ by less than 15% at peak frequencies. The vertical response

spectra showed very similar shapes in the low frequency range. At frequencies

higher than 4 Hz, the R-wave analysis yielded practically no response.

However, in the 4 Hz to 15 Hz range, the S + P wave analysis showed the high

response peaks which were nonexistent in the R-wave results.

The maximum beam bending moments and shear and axial forces calculated

for the R-wave and S + P wave analyses are shown in Fig. (13). These results

indicate that the differences between the two cases were within 5% or 10%.

The main characteristics of the free field R-wave motions in the sand

site were, first that the particular soil profile configuration consisting of

a shallow sand layer overlaying bedrock prevents the propagation of low

frequency vertical motions which seem to be a primary factor in the overall

rocking motion of structures. Second, the material properties of the sand

produce a remarkable motion attenuation in the direction of wave propagation.

The results of analyses using S + P and R wave fields are not significantly

different. Therefore, this case illustrates a situation in which the

assumption of vertically propagating waves would be entirely adequate for

design purposes of stiff heavy structures with shallow embedment even if

Rayleigh waves were in fact the primary source of excitation.

SUMMARY AND CONCLUSIONS

Presented herein is a method for soil-structure-interaction analysis

valid for a completely arbitrary seismic excitation in a plane-strain geometry

with an approximation for 3-dimensional effects. This method is carried out

in two steps. In the first step, the free field motions are calculated. In
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the second step, the interaction motions are calculated and superimposed on

the free field motions in order to obtain the total motions. Strain

compatibility is achieved by using the equivalent linear method.

The method of solution described above uses some of the most efficient

techniques currently available to produce a high quality and reasonably

economic soil-structure interaction analysis. This method can be easily

extended to other geometries such as inclined free field layers, once the

required theories to determine free field motions become part of the state-of­

the-art, and also to a truly 3-dimensional geometry.

The main conclusions of this study are the following:

1. Soil structure interaction problems with an arbitrary seismic environment

can be solved by use of the complex response method and the superposition

principle developed in this paper.

2. An important aspect of any analysis is the selection of a realistic

seismic environment. This environment must satisfy the equations of

motion for the free field, and may consist of both vertically propagating

and horizontally propagating seismic waves.

3. A seismic environment which is composed only of Rayleigh waves may

produce higher response of a shallow-embedment structure built in rock,

than a seismic environement formed only be vertically propagating Sand P

waves.

4. Rayleigh wave effects are relatively unimportant for the design of rigid,

shallow-embedment structures built in a shallow layer of sand overlying

rock.

5. The 3-dimensional ground simulation by a 2-dimensional model may be
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achieved by use of viscous boundaries or the more exact transmitting

boundaries. However, the two methods give nearly identical results and the

simpler viscous boundaries are therefore adequate for practical analyses.

6. The energy reflections from the bottom rigid boundary of a soil-structure

finite element model have only a minor effect on the computed seismic

response of the structure and need not be considered in most cases. In

any event their effects can be eliminated by incorporating a transmitting

boundary at the base of the finite element mesh.

All of the above conclusions are based on a comparison of two

extreme load cases: a system composed entirely of vertically propagating

body waves and a system composed entirely of horizontally propagating

Rayleigh waves. Neither of these cases are likely to occur in nature.

In reality, Rayleigh waves have not been observed in the frequency range

above 1 or 2 Hz. On the other hand, calculations have shown that the

seismic environments produced by slightly inclined body waves are very

similar to those produced by vertically propagating waves. It,

therefore, seems reasonable to conclude that soil-structure interaction

response analyses based on the assumption of vertically propagating body

waves provides an appropriate design procedure for most practical

purposes.
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APPENDIX II
NOTATION

The following symbols are used in this paper:

At B

c

D

d

E

F

G

H

K

k

L

M

m

N

=

=

=

=

=

=

=

=

stiffness components of the free field;

dashpot coefficients;

complex amplitude of the control motion in the frequency domain;

control motion in the time domain;

matrix accounting for energy dissipation in the Z-direction and

through the system base;

equivalent load vector in the soil-structure system;

stiffness component of the free field;

thickness of the structure in the Z-direction;

stiffness matrix;

wave number;

L-wave transmitting boundary;

masS matrix;

number of vertical columns of nodal points in the finite element

mesh;

number of points in a digitized accelerogram;



n = number of layers in the free field;

p = free field transfer functions;

Q = load vector in the soil-structure system;

R = Rayleigh wave trnasmitting boundary;

T = duration of the earthquake;

t = time;

u = displacements;

U complex amplitude of seismic displacements;

V = free field eigenvectors for Rayleigh waves;
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x, y, z =

=

space coordinates;

free field mode participation factor for R-waves;

free field normalized displacement amplitudes for body waves;

earthquake frequency (Hz);

w = earthquake frequency (rad/sec)

Subscripts

f

1

n

=

=

=

free field;

interaction

net properties;



s = corresponds to the 8
th frequency
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Superscripts

h

v

*

= horizontal;

= vertical;

= complex finite element matrix;

= acceleration
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